works.tarefer.ru
5
КЛИМАТ
КЛИМАТ [греч. klima наклон (земной поверхности к солнечным лучам)], статистический многолетний режим погоды, одна из основных географических характеристик той или иной местности. Основные особенности климата определяются
* поступлением солнечной радиации
* процессами циркуляции воздушных масс
* характером подстилающей поверхности.
Из географических факторов, влияющих на климат отдельного региона, наиболее существенны:
* широта и высота местности,
* близость его к морскому побережью,
* особенности орографии и растительного покрова,
* наличие снега и льда,
* степень загрязненности атмосферы.
Эти факторы осложняют широтную зональность климата и способствуют формированию местных его вариантов.
Понятие “климат” гораздо сложнее определения погоды. Ведь погоду можно все время непосредственно видеть и ощущать, можно сразу описать словами или цифрами метеорологических наблюдений. Чтобы составить себе даже самое приблизительное представление о климате местности, в ней нужно прожить по крайней мере несколько лет. Конечно, не обязательно ехать туда, можно взять за много лет данные наблюдений метереологической станции этой местности. Однако такой материал - это многие и многие тысячи различных цифр. Как же разобраться в этом изобилии цифр, как найти среди них те, что отражают свойства климата данной местности?
Древние греки думали, что климат зависит только от наклона падающих на Землю солнечных лучей. По-гречески слово “климат” означает наклон. Греки знали, что чем выше солнце над горизонтом, чем круче солнечные лучи падают на земную поверхность, тем должно быть теплее.
Плавая на север, греки попадали в места с более холодным климатом. Они видели, что солнце в полдень здесь стоит ниже, чем в то же время года в Греции. А в жарком Египте оно, наоборот поднимается выше. Теперь нам известно , что атмосфера пропускает в среднем три четверти тепла солнечных лучей до земной поверхности и только одну четверть задерживает. Поэтому сначала земная поверхность нагревается солнечными лучами, и только потом уже от нее начинает нагреваться воздух.
Когда солнце стоит высоко над горизонтом (А1), участок земной поверхности получает шесть лучей; когда более низко, то лишь четыре луча и шести(А2). Значит, греки были правы, что тепло и холод зависят от высоты солнца над горизонтом. Этим определяется разница в климате между вечно жаркими тропическими странами, где солнце в полдень круглый год поднимается высоко, а дважды или один раз в год стоит прямо над головой, и ледяными пустынями Арктики и Антарктики, где несколько месяцев солнце вообще не показывается.
Однако не одной и той же географической широте даже по одной степени тепла климаты могут очень резко отличаться друг от друга. Так, например, в Исландии в январе средняя температура воздуха равна почти 0°, а на той же широте в Якутии она ниже -48°. По другим свойствам (количеству осадков, облачности и т.д.) климаты на одной широте могут отличаться друг от друга даже сильнее, чем климаты экваториальных и полярных стран. Эти различия климатов зависят от свойств земной поверхности, воспринимающей солнечные лучи. Белый снег отражает почти все падающие на него лучи и поглощает только 0,1-0,2 части приносимого тепла, а черная мокрая пашня, наоборот, почти ничего не отражает. Еще важнее для климата разная теплоемкость воды и суши, т.е. разная их способность запасать тепло. Днем и летом вода значительно медленнее нагревается, чем суша, и оказывается холоднее ее. Ночью и зимой вода остывает гораздо медленнее, чем суша, и оказывается, таким образом, теплее ее.
Кроме того, на испарение воды в морях, озерах и на влажных участках суши затрачивается очень большое количество солнечного тепла. За счет охлаждающего действия испарения в орошаемом оазисе бывает не так жарко, как в окружающей его пустыне.
Значит две местности могут получать совершенно одинаковое количество солнечного тепла, но по-разному его использовать. Из-за этого температура земной поверхности даже на двух соседних участках может отличаться на много градусов. Поверхность песка в пустыне летним днем нагревается до 80°, а температура почвы и растений в соседнем оазисе оказывается на несколько десятков градусов холоднее.
Соприкасающийся с почвой, растительным покровом или водной поверхность. Воздух либо нагревается либо охлаждается в зависимости от того, что теплее - воздух или земная поверхность. Так как именно земная поверхность в первую очередь получает солнечное тепло, то она в основном передает его воздуху. Нагревшийся самый нижний слой воздуха быстро перемешивается с лежащим над ним слоем, и таким путем тепло от земли все выше распространяется в атмосферу.
Однако так бывает далеко не всегда. Например, ночью земная поверхность охлаждается быстрее воздуха, и он отдает ей свое тепло: поток тепла направляется вниз. А зимой над заснеженными просторами материков в наших умеренных широтах и над полярными людами такой процесс идет непрерывно. Земная поверхность здесь или совсем не получает солнечного тепла, или получает его слишком мало и поэтому непрерывно отбирает тепло у воздуха.
Если бы воздух был неподвижен и не существовало ветра, то над соседними различно нагретыми участками земной поверхности покоились бы массы воздуха с разными температурами. Их границы можно было бы проследить до верхних пределов атмосферы. Но воздух непрерывно движется, и его течения стремятся уничтожить эти различия.
Представим себе, что воздух движется над морем с температурой воды 10° и на своем пути проходит над теплым островом с температурой поверхности 20°. Над морем температура воздуха такая же, как воды, но, как только поток переходит через береговую линию и начинает продвигаться в глубь суши, температура его самого нижнего тонкого слоя начинает повышаться, и приближается к температуре суши. Сплошные линии одинаковых температур - изотермы - показывают, как нагревание распространяется все выше и выше в атмосфере. Но вот поток доходит до противоположного берега острова, вступает снова на море и начинает охлаждаться - тоже снизу вверх. Сплошные линии очерчивают наклонную и сдвинутую относительно острова “шапку” теплого воздуха. Эта “шапки” теплого воздуха напоминает форму, которую принимает дым при сильном ветре.
То, что мы видим на рисунке, повторяется всюду над малым и большим различно нагретыми участками. Чем меньше каждый такой участок, тем ниже над ним будет уровень в атмосфере, до которого успеет распространиться нагревание ( или охлаждение) воздушного потока. Если воздушное течение с моря переходит на покрытый снегом материк и движется над ним многие тысячи километров, то оно охладится на несколько километров вверх. Если холодный или теплый участок простирается на сотни километров, то его влияние на атмосферу можно проследить только на сотни метров вверх, при меньших размерах - высота еще меньше.
Различают три основных вида климатов - большой, средний и малый .
Большой климат складывается под влиянием только географической широты и самых больших участков земной поверхности - материков, океанов. Именно этот климат изображают на мировых климатических картах. Большой климат изменяется плавно и постепенно на больших расстояниях, не менее тысяч или многих сотен километров.
Особенности климатов отдельных участков протяженностью в несколько десятков километров (большое озеро, лесной массив, большой город т т.д.) относят к среднему (местному) климату, а более мелких участков (холмы, низины, болота, рощи и т.д.) - к малому климату.
Без такого разделения нельзя было бы разобраться, какие различия климата главные, какие второстепенные.
Иногда говорят, что создание Московского моря на канале имени Москвы изменило климат Москвы. Это неверно. Площадь Московского моря для этого слишком мала.
Различный приток солнечного тепла на разных широтах и неодинаковое использование этого тепла земной поверхность. Не могут полностью объяснить нам все особенности климатов, если не учесть значение характера циркуляции атмосферы.
Воздушные течения все время переносят тепло и холод из разных областей земного шара, влагу с океанов на сушу, а это приводит к возникновению циклонов и антициклонов.
Хотя циркуляция атмосферы все время меняется и мы ощущаем эти изменения в сменах погоды, все же сравнение разных местностей показывает некоторые постоянные местные свойства циркуляции. В одних местах чаще дуют северные ветры, в других - южные. Циклоны имеют свои излюбленные пути движения, антициклоны - свои, хотя, конечно, в любом месте бывают любые ветры и циклоны всюду сменяются антициклонами. В циклонах выпадают дожди.
ref.repetiruem.ru
МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА
РОССИЙСКОЙ ФЕДЕРАЦИИ
ДЕПАРТАМЕНТ НАУЧНО-ТЕХНОЛОГИЧЕСКОЙ ПОЛИТИКИ И ОБРАЗОВАНИЯ
ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ
ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ
АЗОВО-ЧЕРНОМОРСКАЯ ГОСУДАРСТВЕННАЯ АГРОИНЖЕНЕРНАЯ АКАДЕМИЯ
Доклад
ТЕМА: Климат Земли
Выполнил: студент группы Бух-11
Шумилова И.А.
Проверил: д.х.н., профессор
Замащиков В.В.
Зерноград 2011 г.
1. Что такое климат?
КЛИ́МАТ - статистический многолетний режим погоды, одна из основных географических характеристик той или иной местности. Под многолетним режимом понимается совокупность всех условий погоды в данной местности за период, по крайней мере, в несколько десятков лет; типичная годовая смена этих условий и возможные отклонения от нее в отдельные годы; сочетания условий погоды, характерные для различных ее аномалий. Термин климат был введен в научный оборот 2200 лет назад древнегреческим астрономом Гиппархом и означает по-гречески наклон (klimatos). Ученый имел в виду наклон земной поверхности к солнечным лучам, различие которого от экватора к полюсу уже тогда считалось главной причиной различий погоды в низких и высоких широтах. Позднее климатом назвали среднее состояние атмосферы в определенном районе Земли, которое характеризуется чертами, практически неизменными на протяжении одного поколения, то есть порядка 30-40 лет. К таким чертам относятся амплитуда колебания температур, атмосферное давление, атмосферная циркуляция. С развитием наблюдений за погодой с помощью метеорологических зондов и спутников понятие климата было распространено на высокие слои атмосферы.
Описания климата различных местностей включались в географическое описание со времен Древней Греции. Бесценным источником являются летописи, в которых хронисты, как правило, отмечали природные явления. Современная система метеорологических наблюдений начала складываться с 18 в., а повсеместно распространилась лишь к началу 20 в. Для выявления особенностей климата, как типичных, так и редко наблюдаемых, необходимы многолетние ряды метеорологических наблюдений. В умеренных широтах используются 25-50-летние ряды; в тропиках их длительность может быть меньше; иногда (например, для Антарктиды, высоких слоев атмосферы) приходится ограничиваться менее продолжительными наблюдениями, учитывая, что последующий опыт может внести уточнения в предварительные представления. При изучении климата океанов, помимо наблюдений на островах, используют сведения, полученные в разное время на судах в том или ином участке акватории, и регулярные наблюдения на кораблях погоды. Повсеместно используются данные спутникового наблюдения. Представления о климате прошлого получают из данных археологических и геологических исследований. Достоверные результаты дает метод дендрохронологии. Ценнейшие результаты получены при исследовании кернов антарктических льдов, полученных российскими учеными при глубоком бурении в 1990-2000-х гг.
Из всех планет Солнечной системы только Земля обладает уникальной атмосферой и гидросферой, благоприятной для развития на земной поверхности высших форм жизни. Определяется это удачными стеченьями многих обстоятельств: и тем, что Солнце "спокойная" звезда, и тем, что Земля расположена на оптимальном от него расстоянии, и тем, что у нее имеется массивный спутник - Луна, и химическим составом первичной Земли и многими другими причинами.
Наука о климате - климатология изучает причины формирования разных типов климата, их географическое размещение и взаимосвязи климата и других природных явлений. Климатология тесно связана с метеорологией - разделом физики, изучающим краткосрочные состояния атмосферы, т.е. погоду.
Главными факторами, ответственными за возникновение комфортных климатических условий на Земле, являются величина солнечной радиации, давление и теплоемкость земной атмосферы, определяемая составом и влажностью воздуха. Наклон же оси собственного вращения планеты (по отношению к эклиптике) предопределяет смену времен года, зональность и контрастность климата.
2. Климатические характеристики
Климатические характеристики представляют собой статистические выводы из многолетних рядов наблюдений, прежде всего над следующими основными метеорологическими элементами: атмосферным давлением, скоростью и направлением ветра, температурой и влажностью воздуха, облачностью и атмосферными осадками. Учитывают также продолжительность солнечной радиации, дальность видимости, температуру верхних слоев почвы и водоемов, испарение воды с земной поверхности в атмосферу, высоту и состояние снежного покрова, различные атмосферные явления и наземные гидрометеоры (росу, гололед, туманы, грозы, метели и пр.). В 20 в. в число климатических показателей вошли характеристики элементов теплового баланса земной поверхности, таких, как суммарная солнечная радиация, радиационный баланс, величины теплообмена между земной поверхностью и атмосферой, затраты тепла на испарение. В последние годы добавляются такие параметры как контроль за содержанием CO, концентрацией загрязнений, толщина озонового слоя.
Многолетние средние значения метеорологических элементов (годовые, сезонные, месячные, суточные и т.д.), их суммы, повторяемости и прочие носят назва
www.studsell.com
КЛИМАТ КЛИМАТ [греч. klima наклон (земной поверхности к солнечным лучам)], статистический многолетний режим погоды, одна из основных географических характеристик той или иной местности. Основные особенности климата определяются * поступлением солнечной радиации * процессами циркуляции воздушных масс * характером подстилающей поверхности. Из географических факторов, влияющих на климат отдельного региона, наиболее существенны: * широта и высота местности, * близость его к морскому побережью, * особенности орографии и растительного покрова, * наличие снега и льда, * степень загрязненности атмосферы. Эти факторы осложняют широтную зональность климата и способствуют формированию местных его вариантов. Понятие 'климат' гораздо сложнее определения погоды. Ведь погоду можно все время непосредственно видеть и ощущать, можно сразу описать словами или цифрами метеорологических наблюдений. Чтобы составить себе даже самое приблизительное представление о климате местности, в ней нужно прожить по крайней мере несколько лет. По свойствам (количеству осадков, облачности и т.д.) климаты на одной широте могут отличаться друг от друга даже сильнее, чем климаты экваториальных и полярных стран. Эти различия климатов зависят от свойств земной поверхности, воспринимающей солнечные лучи. Белый снег отражает почти все падающие на него лучи и поглощает только 0,1-0,2 части приносимого тепла, а черная мокрая пашня, наоборот, почти ничего не отражает. Еще важнее для климата разная теплоемкость воды и суши, т.е. разная их способность запасать тепло. Днем и летом вода значительно медленнее нагревается, чем суша, и оказывается холоднее ее. Ночью и зимой вода остывает гораздо медленнее, чем суша, и оказывается, таким образом, теплее ее. Кроме того, на испарение воды в морях, озерах и на влажных участках суши затрачивается очень большое количество солнечного тепла. За счет охлаждающего действия испарения в орошаемом оазисе бывает не так жарко, как в окружающей его пустыне. Значит две местности могут получать совершенно одинаковое количество солнечного тепла, но по-разному его использовать. Из-за этого температура земной поверхности даже на двух соседних участках может отличаться на много градусов. Поверхность песка в пустыне летним днем нагревается до 80° , а температура почвы и растений в соседнем оазисе оказывается на несколько десятков градусов холоднее. Соприкасающийся с почвой, растительным покровом или водной поверхность. Воздух либо нагревается либо охлаждается в зависимости от того, что теплее - воздух или земная поверхность. Так как именно земная поверхность в первую очередь получает солнечное тепло, то она в основном передает его воздуху. Нагревшийся самый нижний слой воздуха быстро перемешивается с лежащим над ним слоем, и таким путем тепло от земли все выше распространяется в атмосферу. Однако так бывает далеко не всегда. Например, ночью земная поверхность охлаждается быстрее воздуха, и он отдает ей свое тепло: поток тепла направляется вниз. А зимой над заснеженными просторами материков в наших умеренных широтах и над полярными людами такой процесс идет непрерывно. Земная поверхность здесь или совсем не получает солнечного тепла, или получает его слишком мало и поэтому непрерывно отбирает тепло у воздуха. Если бы воздух был неподвижен и не существовало ветра, то над соседними различно нагретыми участками земной поверхности покоились бы массы воздуха с разными температурами. Их границы можно было бы проследить до верхних пределов атмосферы. Но воздух непрерывно движется, и его течения стремятся уничтожить эти различия. Представим себе, что воздух движется над морем с температурой воды 10° и на своем пути проходит над теплым островом с температурой поверхности 20° . Над морем температура воздуха такая же, как воды, но, как только поток переходит через береговую линию и начинает продвигаться в глубь суши, температура его самого нижнего тонкого слоя начинает повышаться, и приближается к температуре суши. Сплошные линии одинаковых температур - изотермы - показывают, как нагревание распространяется все выше и выше в атмосфере. Но вот поток доходит до противоположного берега острова, вступает снова на море и начинает охлаждаться - тоже снизу вверх. Сплошные линии очерчивают наклонную и сдвинутую относительно острова 'шапку' теплого воздуха. Эта 'шапки' теплого воздуха напоминает форму, которую принимает дым при сильном ветре. Различают три основных вида климатов - большой, средний и малый . Большой климат складывается под влиянием только географической широты и самых больших участков земной поверхности - материков, океанов. Именно этот климат изображают на мировых климатических картах. Большой климат изменяется плавно и постепенно на больших расстояниях, не менее тысяч или многих сотен километров. Особенности климатов отдельных участков протяженностью в несколько десятков километров (большое озеро, лесной массив, большой город т т.д.) относят к среднему (местному) климату, а более мелких участков (холмы, низины, болота, рощи и т.д.) - к малому климату.
Заключение
Иногда говорят, что создание Московского моря на канале имени Москвы изменило климат Москвы. Это неверно. Площадь Московского моря для этого слишком мала. Различный приток солнечного тепла на разных широтах и неодинаковое использование этого тепла земной поверхность. Не могут полностью объяснить нам все особенности климатов, если не учесть значение характера циркуляции атмосферы. Воздушные течения все время переносят тепло и холод из разных областей земного шара, влагу с океанов на сушу, а это приводит к возникновению циклонов и антициклонов. Хотя циркуляция атмосферы все время меняется и мы ощущаем эти изменения в сменах погоды, все же сравнение разных местностей показывает некоторые постоянные местные свойства циркуляции. В одних местах чаще дуют северные ветры, в других - южные. Циклоны имеют свои излюбленные пути движения, антициклоны - свои, хотя, конечно, в любом месте бывают любые ветры и циклоны всюду сменяются антициклонами. В циклонах выпадают дожди.
studfiles.net
Вопрос об изменениях климата привлекал внимание многих исследователей, работы которых были посвящены главным образом сбору и изучению данных о климатических условиях различных эпох. Исследования этого направления содержат обширные материалы о климатах прошлого. Меньше результатов было получено при изучении причин изменений климата, хотя эти причины уже давно интересовали специалистов, работающих в данной области. Из-за отсутствия точной теории климата и недостатка, необходимых для этой цели материалов специальных наблюдений при выяснении причин изменений климата возникли большие трудности, не преодоленные до последнего времени. Сейчас не существует общепринятого мнения о причинах изменений и колебаний климата, как для современной эпохи, так и для геологического прошлого. Между тем вопрос о механизме изменений климата приобретает в настоящее время большое практическое значение, которое он еще недавно не имел. Установлено, что хозяйственная деятельность человека начала оказывать влияние глобальные климатические условия, причем это влияние быстро возрастает. Поэтому возникает необходимость в разработке методов прогноза изменений климата для того, чтобы предотвратить опасное для человека ухудшение природных условий. Очевидно, что такие прогнозы нельзя обосновать только эмпирическими материалами об изменениях климата в прошлом. Эти материалы могут быть использованы для оценки климатических условий будущего путем экстраполяции наблюдаемых сейчас изменений климата. Но этот метод прогноза пригоден лишь для очень ограниченных интервалов времени из-за нестабильности факторов, влияющих на климат. Для разработки надежного метода прогноза климата будущего в условиях возрастающего влияния хозяйственной деятельности человека на атмосферные процессы необходимо использование физической теории изменений климата. Между тем, имеющиеся численные модели метеорологического режима являются приближенными и их обоснования содержат существенные ограничения. Очевидно, что эмпирические материалы об изменениях климата имеют очень большое значение, как для построения, так и для проверки приближенных теорий изменений климата. Аналогичное положение имеет место в изучении последствий воздействий на глобальный климат, осуществление которых, по-видимому, возможно в ближайшем будущем. Целью настоящей работы является анализ климатов прошлого, современного и будущего, а также проблем регулирования климата. Для выполнения поставленной цели нами сформулированы следующие задачи: 1. Изучить по литературным источникам климаты прошлых эпох; 2. Ознакомиться с методами изучения и оценки современного климата и климата будущего; 3. Рассмотреть прогнозы и перспективы климата в будущем и проблемы его регулирования. Материалами для выполнения работы послужили монографии и другие публикации современных отечественных и зарубежных ученых по данной проблеме.
КЛИМАТЫ ПРОЛОГО Четвертичный период
Характерной чертой последнего (четвертичного) геологического периода была большая изменчивость климатических условий, в особенности в умеренных и высоких широтах. Природные условия этого времени изучены гораздо подробнее по сравнению с более ранними периодами, но, несмотря на наличие многих выдающихся достижений в изучении плейстоцена, ряд важных закономерностей природных процессов этого времени известен еще недостаточно. К их числу относится, в частности, датировка эпох похолоданий, с которыми связаны разрастания ледяных покровов на суше и океанах. В связи с этим оказывается неясным вопрос об общей длительности плейстоцена, характерной чертой которого было развитие крупных оледенений. Существенное значение для разработки абсолютной хронологии четвертичного периода имеют методы изотопного анализа, к числу которых относятся радиоуглеродный и калиево-аргонный методы. Первый из указанных методов дает более или менее надежные результаты только для последних 40-50 тыс. лет, то есть для заключительной фазы четвертичного периода. Второй метод применим для гораздо более продолжительных интервалов времени. Однако точности результатов его использования заметно меньше, чем радиоуглеродного метода. Плейстоцену предшествовал длительный процесс похолодания, особенно заметный в умеренных и высоких широтах. Этот процесс ускорился в последнем отделе третичного периода - плиоцене, когда, по-видимому, возникли первые ледяные покровы в полярных зонах северного и южного полушарий. Из палеографических данных следует, что время образования оледенений в Антарктиде и Арктике составляет не менее нескольких млн. лет. Площадь этих ледяных покровов вначале была сравнительно невелика, однако постепенно возникла тенденция к их распространению в более низкие широты с последующим отсутствием. Время начала систематических колебаний границ ледяных покровов по ряду причин определить трудно. Обычно считают, что перемещения границы льдов начались около 700 тыс. лет тому назад. Наряду с этим к эпохе активного развития крупных оледенений часто добавляют более длительный интервал времени – эоплейстоцен, в результате чего длительность плейстоцена возрастает до 1,8 – 2 млн. лет. Общее число оледенений, по-видимому, было довольно значительным, поскольку установленные еще в прошлом веке главные ледниковые эпохи оказались состоящими из ряда более теплых и холодных интервалов времени, причем последние интервалы можно рассматривать как самостоятельные ледниковые эпохи. Масштабы оледенений различных ледниковых эпох значительно отличались. При этом заслуживает внимания мнение ряда исследователей, что эти масштабы имели тенденцию к возрастанию, то есть что оледенение в конце плейстоцена были крупнее первых четвертичных оледенений. Лучше всего изучено последнее оледенение, которое происходило несколько десятков тыс. лет назад. В эту эпоху заметно возросла засушливость климата. Возможно, это объяснялось разным уменьшением испарения с поверхности океанов из-за распространения морских льдов в более низкие широты. В результате понижалась интенсивность влагооборота, и уменьшалось количество осадков на суше, на которые влияло увеличение площади материков вследствие изъятия воды из океанов, израсходованной при образовании материкового, ледяного покрова. Не подлежит сомнению, что в эпоху последнего оледенения произошло громадное расширение зоны вечной мерзлоты. Это оледенение закончилось 10 – 15 тыс. лет тому назад, что обычно считают концом плейстоцена и началом голоцена – эпохи, в течение которой на природные условия начала оказывать влияние деятельность человека.
Причины изменений климата
Своеобразные климатические условия четвертичного времени, по-видимому, возникли из-за содержания углекислого газа в атмосфере и в результате процесса перемещения континентов и подъема их уровня, что привело к частичной изоляции Северного полярного океана и размещению антарктического материка в полярной зоне южного полушария. Четвертичному периоду предшествовала обусловленная изменениями поверхности Земли длительная эволюция климата в сторону усиления термической зональности, что выражалось в снижении температуры воздуха в умеренных и высоких широтах. В плиоцене на климатические условия начало оказывать влияние уменьшения концентрации атмосферной углекислоты, что привело к снижению средней глобальной температуры воздуха на 2 – 3 градуса (в высоких широтах на 3 – 5). После чего появились полярные, ледяные покровы, развитие которых привело к снижению средней глобальной температуры. По-видимому, по сравнению с изменениями астрономических факторов, все другие причины оказывали меньшее влияние на колебания климата в четвертичное время.
Дочетвертичное время По мере отдаления от нашего времени количество сведений о климатических условиях прошлого уменьшается, а трудности интерпритации этих сведений возрастают. Наиболее надежную информацию о климатах отдаленного прошлого мы имеем из данных о непрерывном существовании на нашей планете живых организмов. Мало вероятно, чтобы они существовали вне пределов узкого интервала температуры, от 0 до 50 градусов С, который в наше время ограничивает активную жизнедеятельность большинства животных и растений. На этом основании можно думать, что температура поверхности Земли, нижнего слоя воздуха и верхнего слоя водоемов не выходила из указанных пределов. Фактические колебания средней температуры поверхности Земли за длительные интервалы времени были меньше указанного интервала температур и не превосходили нескольких градусов за десятки млн. лет. Из этого можно сделать вывод о трудности исследования изменений термического режима Земли в прошлом по эмпирическим данным, так как погрешности определения температуры, как методом анализа изотопного состава, так и другими известными сейчас методами составляют обычно не меньше нескольких градусов. Другая трудность изучения климатов прошлого обусловлена неясностью положения различных областей по отношению к полюсам в результате движения континентов и возможностью перемещения полюсов. Климатические условия мезозойской эры и третичного периода характеризировались двумя основными закономерностями: 1. На протяжении этого времени средняя температура воздуха у земной поверхности была значительно выше современной, в особенности в высоких широтах. В соответствии с этим разность температур воздуха между экватором и полюсами была гораздо меньше современной; 2. В течение большей части рассматриваемого времени преобладала тенденция к снижению температуры воздуха, в особенности в высоких широтах. Эти закономерности объясняются изменением содержания углекислого газа в атмосфере и изменением положения континентов. Более высокая концентрация углекислого газа обеспечивала повышение средней температуры воздуха примерно на 5 градусов по сравнению с современными условиями. Низкий уровень континентов повышал интенсивность меридионального теплообмена в океанах, что увеличивало температуру воздуха в умеренных и высоких широтах. Повышение уровня континентов уменьшало интенсивность меридионального теплообмена в океанах и приводило к постоянному снижению температуры в умеренных и высоких широтах. При общей высокой устойчивости термического режима в мезозойское и третичное время, обусловленной отсутствием полярных льдов, в течение сравнительно редко коротких интервалов могли происходить резкие понижения температуры воздуха и верхних слоев водоемов. Эти понижения были обусловлены совпадением во времени ряда вулканических извержений взрывного характера.
Современные изменения климата
Наиболее крупное изменение климата за время инструментальных наблюдений началось в конце 19 века. Оно характеризовалось постепенным повышением температуры воздуха на всех широтах северного полушария во все сезоны года, причем наиболее сильное потепление происходило в высоких широтах и в холодное время года. Потепление ускорилось в 10-х годах 20 века и достигло максимума в 30-х годах, когда средняя температура воздуха в северном полушарии повысилась приблизительно на 0,6 градусов по сравнению с концом 19 века. В 40-х годах процесс потепления сменился похолоданием, которое продолжается до настоящего времени. Это похолодание было довольно медленным и пока еще не достигло масштабов предшествующего ему потепления. Хотя данные о современном изменении климата в южном полушарии имеют менее определенный характер по сравнению с данными для северного полушария, есть основания считать, что в первой половине 20 века в южном полушарии также происходило потепление. В северном полушарии повышение температуры воздуха сопровождалось сохранением площади полярных льдов, отсутствием границы вечной мерзлоты в более высокие широты, продвижением к северу границы леса и тундры и другими изменениями природных условий. Существенное значение имело отмечавшееся в эпоху потепления изменение режима атмосферных осадков. Количество осадков в ряде районов недостаточного увлажнения при потеплении климата уменьшилось, в особенности в холодное время года. Это привело к уменьшению стока рек и падению уровня некоторых замкнутых водоемов. Особую известность получило произошедшее в 30-х годах резкое снижение уровня Каспийского моря, обусловленное главным образом уменьшением стока Волги. Наряду с этим в эпоху потепления во внутриконтинентальных районах умеренных широт Европы, Азии и Северной Америки возросла частота засух, охватывающих большие территории. Потепление, достигшее максимума в 30-х годах, по-видимому, определялось увеличением прозрачности стратосферы, повысившим поток солнечной радиации, поступающей в тропосферу (метеорологическую солнечную постоянную). Это привело к возрастанию средней планетарной температуры воздуха у земной поверхности. Изменения температуры воздуха на различных широтах и в различные сезоны зависели от оптической толщины стратосферного аэрозоля и от перемещения границы морских полярных льдов. Обусловленное потеплением отступления морских арктических льдов привело к дополнительному, заметному повышению температуры воздуха в холодное время года в высоких широтах северного полушария. Представляется вероятным, что изменения прозрачности стратосферы, произошедшие в первой половине 20 века, были связаны с режимом вулканической деятельности и, в частности, с изменением поступления в стратосферу продуктов вулканических извержений, включая в особенности сернистый газ. Хотя этот вывод основан на значительном материале наблюдений, он однако, является менее очевидным по сравнению с приведенной выше основной частью объяснения причин потепления. Следует указать, что это объяснение относится только к главным чертам изменения климата, которое произошло в первой половине 20 века. Наряду с общими закономерностями процесса изменения климата этот процесс характеризовался многими особенностями, относящимися к колебаниям климата за более короткие периоды времени и к колебаниям климата в отдельных географических районах. Но такие колебания климата были в значительной мере обусловлены изменениями циркуляций атмосферы и гидросферы, которые имели в некоторых случаях случайный характер, а в других случаях были следствием автоколебальных процессов. Есть основания думать, что в последние 20-30 лет изменения климата начали в известной мере зависеть от деятельности человека. Хотя потепление первой половины 20 века оказало определенное влияние на хозяйственную деятельность человека и явилось наиболее крупным изменением климата за эпоху инструментальных наблюдений, его масштабы были незначительны по сравнению с теми изменениями климата, которые имели место в течение голоцена, не говоря уже о плейстоцене, когда развивались крупные оледенения. Тем не менее, изучение потепления, произошедшего в первой половине 20 века, имеет большое значение для выяснения механизма изменений климата, освещенным массовыми данными надежных инструментальных наблюдений. В связи с этим всякая количественная теория изменений климата должна быть, прежде всего, проверена по материалам, относящимся к потеплению первой половины 20 века.
Климат будущего Перспективы изменений климата
При изучении климатических условий будущего следует сначала остановиться на тех изменениях, которые могут произойти вследствие естественных причин. Эти изменения могут зависеть от следующих причин: 1. Вулканическая деятельность. Из изучения современных изменений климата следует, что колебания вулканической активности могут влиять на климатические условия для периодов времени, равных годам и десятилетиям. Возможно, также влияние вулканизма на изменения климата за периоды порядка столетий и за длительные интервалы времени; 2. Астрономические факторы. Изменение положения поверхности Земли по отношению к Солнцу создает изменения климата с временными масштабами в десятки тысяч лет; 3. Состав атмосферного воздуха. В конце третичного и в четвертичное время, определенное влияние на климат оказывало убывание содержания углекислого газа в атмосфере. Принимая во внимание скорость этого убывания и соответствующие ему изменения температуры воздуха, можно заключить, что влияние естественных изменений содержания углекислоты на климат существенно для интервалов времени более ста тысяч лет; 4. Строение земной поверхности. Изменение рельефа и связанные с ними изменения положения берегов морей и океанов могут заметно изменить климатические условия на больших пространствах за периоды времени, не меньше сотен тысяч- миллионов лет; 5. Солнечная постоянная. Оставляя в стороне вопрос о существовании влияющих на климат короткопериодических колебаний солнечной постоянной, следует принять во внимание возможность медленных изменений солнечной радиации, обусловленных эволюцией солнца. Также изменения могут существенно влиять на климатические условия за периоды не менее ста миллионов лет. Наряду с изменениями, обусловленными внешними факторами, климатические условия меняются в результате автоколебательных процессов в системе атмосфера – океан - полярные льды. Также изменения относятся к периодам времени порядка годов – десятилетий и, возможно, также к периодам в сотни и даже тысячи лет. Указанные в этом перечне временные масштабы действия различных факторов на изменения климата в основном согласуются с аналогичными оценками Митчелла и других авторов. Сейчас существует проблема предсказания изменений климата в результате деятельности человека, которая существенно отличается от проблемы прогноза погоды. Ведь для нее необходимо принять во внимание изменение во времени показателей хозяйственной деятельности человека. В связи с этим задача предсказания климата содержит два основных элемента – прогноз развития ряда аспектов хозяйственной деятельности и расчет тех изменений климата, которые соответствуют изменению соответствующих показателей деятельности человека.
Возможный экологический кризис
Современная деятельность человека, так же как и его деятельность в прошлом, существенно изменила природную среду на большей части нашей планеты, эти изменения до недавнего времени были только суммой многих локальных воздействий на природные процессы. Они приобрели планетарный характер не в результате изменения человеком природных процессов глобального масштаба, а потому, что локальные воздействия распространились на большие пространства. Иначе говоря, изменение фауны в Европе и Азии не влияло на фауну Америки, регулирование стока американских рек не изменило режима стока африканских рек и так далее. Только в самое последнее время началось воздействие человека на глобальные природные процессы, изменение которых может оказать влияние на природные условия всей планеты. Принимая во внимание тенденции развития хозяйственной деятельности человека в современную эпоху, недавно было высказано предложение, что, дальнейшее развитие этой деятельности может привести к значительному изменению окружающей среды, в результате которого произойдет общий кризис экономики и резко сократится численность населения. К числу крупных проблем относится вопрос о возможности изменения под влиянием хозяйственной деятельности глобального климата нашей планеты. Особое значение этого вопроса заключается в том, что такое изменение может оказать существенное влияние на хозяйственную деятельность человека раньше всех других глобальных экологических нарушений. При определенных условиях влияние хозяйственной деятельности человека на климат может в сравнительно близком будущем привести к потеплению, сравнимому с потеплением первой половины 20 века, а затем намного превзойти это потепление. Таки образом, изменение климата, возможно, является первым реальным признаком глобального экологического кризиса, с которым столкнется человечество при стихийном развитии техники и экономики. Основной причиной этого кризиса на его первой стадии будет пераспределение количества осадков, выпадающих в различных районах земного шара, при их заметном уменьшении во многих районах неустойчивого увлажнения. Поскольку в этих районах расположены важнейшие области производства зерновых культур, изменение режима осадков может существенно затруднить проблему повышения урожайности для обеспечения продовольствием быстро растущего населения земного шара. По этой причине вопрос о предотвращения нежелательных изменений глобального климата является одной из существенных экологических проблем современности.
Проблема регулирования климата
Для предотвращения неблагоприятных изменений климата, возникающих под влиянием хозяйственной деятельности человека, осуществляются различные мероприятия; наиболее широко ведется борьба с загрязнением атмосферного воздуха. В результате применения во многих развитых странах различных мер, включающих очистку воздуха, используемого промышленными предприятиями, транспортными средствами, отопительными устройствами и так далее, в последние годы достигнуто снижение уровня загрязнения воздуха в ряде городов. Однако во многих районах загрязнение воздуха усиливается, причем, имеется тенденция к росту глобального загрязнения атмосферы. Это указывает на большие трудности предотвращения роста количества антропогенного аэрозоля в атмосфере. Еще труднее были бы задачи (которые пока еще не ставились) предотвращения увеличения содержания углекислого газа в атмосфере и роста тепла, выделяемого при преобразованиях энергии, используемой человеком. Простых технических средств решения этих задач не существует, кроме ограничений потребления топлива и потребления большинства видов энергии, что ближайшие десятилетия несовместимо с дальнейшим техническим прогрессом. Таким образом, для сохранения существующих климатических условий в близком будущем окажется необходимым применение метода регулирования климата. Очевидно, что при наличии такого метода он мог быть использован также для предотвращения неблагоприятных для народного хозяйства естественных колебаний климата и в дальнейшем, соответствующем интересам человечества. Имеется ряд работ, в которых рассматривались различные проекты воздействия на климат. Один из крупнейших проектов имеет целью уничтожение арктических льдов для значительного повышения температуры в высоких широтах. При обсуждении этого вопроса был выполнен ряд исследований связи режима полярных льдов с общими климатическими условиями. Влияние исчезновения полярных льдов на климат будет сложным и не во всех отношениях благоприятным для деятельности человека. Далеко не все последствия разрушения полярных льдов для климата и природных условий различных территорий можно сейчас предсказать с достаточной точностью. Поэтому, при наличии возможности уничтожить льды это мероприятие осуществлять в ближайшем будущем нецелесообразно. Из других путей воздействия на климатические условия заслуживает внимание возможность изменения атмосферных движений большого масштаба. Во многих случаях атмосферные движения неустойчивы, в связи с чем возможны воздействия на них с затратой сравнительно небольшого количества энергии. В других работах упоминаются некоторые методы воздействия на микроклимат в связи с агрометеорологическими задачами. К их числу относятся различные способы защиты растений от заморозков, затенение растений с целью защиты их от перегрева и излишнего испарения влаги, посадки лесных полос и другие. В некоторых публикациях упоминаются другие проекты воздействия на климат. К их числу относятся идеи воздействия на некоторые морские течения путем строительства гигантских плотин. Но ни один проект такого рода не имеет достаточного научного обоснования, возможное влияние их осуществления на климат остается совершенно неясным. Другие проекты включают предложения о создании крупных водоемов. Оставляя в стороне вопрос о возможности осуществления такого проекта, следует отметить, что связанные с ним изменения климата изучены очень мало. Можно думать, что некоторые из выше перечисленных проектов воздействия на климат ограниченных территорий будут доступны для техники близкого будущего, или целесообразность их осуществления будет доказана. Гораздо большие трудности на пути осуществления воздействий на глобальный климат,то есть на климат всей планеты или ее значительной части. Из различных источников путей воздействия на климат, по-видимому,наиболее доступен для современной техники метод, основанный на увеличении концентрации аэрозоля в нижней стратосфере. Осуществление этого воздействия на климат имеет целью предотвратить или ослабить изменения климата, которые могут возникнуть через несколько десятилетий под влиянием хозяйственной деятельности человека. Воздействия такого масштаба могут быть необходимы в 21 веке, когда в результате значительного роста производства энергии может существенно повысится температура нижних слоев атмосферы. Уменьшение прозрачности стратосферы в таких условиях может предотвратить нежелательные изменения климата.
Заключение
Из выше перечисленных материалов можно сделать вывод,что в современную эпоху глобальный климат уже в некоторой мере изменен в результате хозяйственной деятельности человека. Эти изменения обусловлены главным образом увеличением массы аэрозоля и углекислого газа в атмосфере. Современные антропогенные изменения глобального климата сравнительно невелики, что частично объясняется противоположным влиянием на температуру воздуха роста концентрации аэрозоля и углекислого газа. Тем не менее эти изменения имеют определенное практическое значение, в основном в связи с влиянием режима осадков на сельскохозяйственное производство. При сохранении современных темпов хозяйственного развития антропогенные изменения могут быстро возрасти и достигнуть масштабов, превышающих масштабы естественных колебаний климата, происходивших в течение последнего столетия. В дальнейшем при этих условиях изменения климата будут усиливаться, причем в 21 веке они могут стать сравнимыми с естественными колебаниями климата. Очевидно, что столь значительные изменения климата могут оказать громадное влияние на природу нашей планеты и многие стороны хозяйственной деятельности человека. В связи с этим возникают задачи предсказания антропогенных изменений климата, которые возникнут при различных вариантах хозяйственного развития, и разработки методов регулирования климата, которые должны предотвратить его изменения в нежелательном направлении. Наличие этих задач существенно изменяет значение исследований изменений климата и особенно изучения причин этих изменений. Если раньше такие исследования имели в значительной мере познавательные цели, то сейчас выясняется необходимость их выполнения для оптимального планирования развития народного хозяйства. Следует указать на международный аспект проблемы антропогенных изменений климата, который приобретает особенно большое значение при подготовке крупномасштабных воздействий на климат. Воздействие на глобальный климат приведет к изменению климатических условий на территорий многих стран, причем характер этих изменений в разных районах будет различным. В связи с этим в работе Е. К. Федорова неоднократно указывалось, что осуществление любого крупного проекта воздействия на климат возможно только на основе международного сотрудничества. Сейчас есть основания для поставки вопроса о заключении международного соглашения, запрещающего осуществление несогласованных воздействий на климат. Такие воздействия должны разрешаться только на основе проектов, рассмотренных и одобренных ответственными международными органами. Это соглашение должно охватывать как мероприятия по направленному воздействию на климат, так и те виды хозяйственной деятельности человека, которые могут привести к непреднамеренным применениям глобальных климатических условий.
Литература
1. Будыко М.И. Изменения климата .- Ленинград: Гидрометеоиздат, 1974. - 279 с. 2. Будыко М.И. Климат в прошлом и будущем .- Ленинград: Гидрометеоиздат, 1980.- 350 с. 3. Лосев К.С. Климат: вчера, сегодня ... и завтра ?- Ленинград, Гидрометеоиздат, 1985. 173 с. 4. Монин А.С., Шишков Ю.А. История климата .- Ленинград: Гидрометеоиздат, 1974. 407 с.
www.ronl.ru
Введение
Вопрособ изменениях климата привлекал внимание многих исследователей, работы которыхбыли посвящены главным образом сбору и изучению данных о климатических условияхразличных эпох. Исследования этого направления содержат обширные материалы оклиматах прошлого.
Меньшерезультатов было получено при изучении причин изменений климата, хотя этипричины уже давно интересовали специалистов, работающих в данной области. Из-заотсутствия точной теории климата и недостатка, необходимых для этой целиматериалов специальных наблюдений при выяснении причин изменений климатавозникли большие трудности, не преодоленные до последнего времени. Сейчас несуществует общепринятого мнения о причинах изменений и колебаний климата, какдля современной эпохи, так и для геологического прошлого.
Междутем вопрос о механизме изменений климата приобретает в настоящее время большоепрактическое значение, которое он еще недавно не имел. Установлено, чтохозяйственная деятельность человека начала оказывать влияние глобальныеклиматические условия, причем это влияние быстро возрастает. Поэтому возникаетнеобходимость в разработке методов прогноза изменений климата для того, чтобыпредотвратить опасное для человека ухудшение природных условий.
Очевидно,что такие прогнозы нельзя обосновать только эмпирическими материалами обизменениях климата в прошлом. Эти материалы могут быть использованы для оценкиклиматических условий будущего путем экстраполяции наблюдаемых сейчас измененийклимата. Но этот метод прогноза пригоден лишь для очень ограниченных интерваловвремени из-за нестабильности факторов, влияющих на климат.
Дляразработки надежного метода прогноза климата будущего в условиях возрастающеговлияния хозяйственной деятельности человека на атмосферные процессы необходимоиспользование физической теории изменений климата. Между тем, имеющиесячисленные модели метеорологического режима являются приближенными и ихобоснования содержат существенные ограничения.
Очевидно,что эмпирические материалы об изменениях климата имеют очень большое значение,как для построения, так и для проверки приближенных теорий изменений климата.Аналогичное положение имеет место в изучении последствий воздействий наглобальный климат, осуществление которых, по-видимому, возможно в ближайшембудущем.
Цельюнастоящей работы является анализ климатов прошлого, современного и будущего, атакже проблем регулирования климата.
Длявыполнения поставленной цели нами сформулированы следующие задачи:
Изучитьпо литературным источникам климаты прошлых эпох;
Ознакомитьсяс методами изучения и оценки современного климата и климата будущего;
Рассмотретьпрогнозы и перспективы климата в будущем и проблемы его регулирования.
Материаламидля выполнения работы послужили монографии и другие публикации современныхотечественных и зарубежных ученых по данной проблеме.
Климаты прошлого
Четвертичный период
Характернойчертой последнего (четвертичного) геологического периода была большаяизменчивость климатических условий, в особенности в умеренных и высокихширотах. Природные условия этого времени изучены гораздо подробнее по сравнениюс более ранними периодами, но, несмотря на наличие многих выдающихся достиженийв изучении плейстоцена, ряд важных закономерностей природных процессов этоговремени известен еще недостаточно. К их числу относится, в частности, датировкаэпох похолоданий, с которыми связаны разрастания ледяных покровов на суше иокеанах. В связи с этим оказывается неясным вопрос об общей длительностиплейстоцена, характерной чертой которого было развитие крупных оледенений.
Существенноезначение для разработки абсолютной хронологии четвертичного периода имеютметоды изотопного анализа, к числу которых относятся радиоуглеродный икалиево-аргонный методы. Первый из указанных методов дает более или менеенадежные результаты только для последних 40-50 тыс. лет, то есть длязаключительной фазы четвертичного периода. Второй метод применим для гораздоболее продолжительных интервалов времени. Однако точности результатов его использованиязаметно меньше, чем радиоуглеродного метода.
Плейстоценупредшествовал длительный процесс похолодания, особенно заметный в умеренных ивысоких широтах. Этот процесс ускорился в последнем отделе третичного периода — плиоцене, когда, по-видимому, возникли первые ледяные покровы в полярных зонахсеверного и южного полушарий.
Изпалеографических данных следует, что время образования оледенений в Антарктидеи Арктике составляет не менее нескольких млн. лет. Площадь этих ледяныхпокровов вначале была сравнительно невелика, однако постепенно возниклатенденция к их распространению в более низкие широты с последующим отсутствием.Время начала систематических колебаний границ ледяных покровов по ряду причинопределить трудно. Обычно считают, что перемещения границы льдов начались около700 тыс. лет тому назад.
Нарядус этим к эпохе активного развития крупных оледенений часто добавляют болеедлительный интервал времени – эоплейстоцен, в результате чего длительностьплейстоцена возрастает до 1,8 – 2 млн. лет.
Общеечисло оледенений, по-видимому, было довольно значительным, посколькуустановленные еще в прошлом веке главные ледниковые эпохи оказались состоящимииз ряда более теплых и холодных интервалов времени, причем последние интервалыможно рассматривать как самостоятельные ледниковые эпохи.
Масштабыоледенений различных ледниковых эпох значительно отличались. При этомзаслуживает внимания мнение ряда исследователей, что эти масштабы имелитенденцию к возрастанию, то есть что оледенение в конце плейстоцена быликрупнее первых четвертичных оледенений.
Лучшевсего изучено последнее оледенение, которое происходило несколько десятков тыс.лет назад. В эту эпоху заметно возросла засушливость климата.
Возможно,это объяснялось разным уменьшением испарения с поверхности океанов из-зараспространения морских льдов в более низкие широты. В результате понижаласьинтенсивность влагооборота, и уменьшалось количество осадков на суше, накоторые влияло увеличение площади материков вследствие изъятия воды из океанов,израсходованной при образовании материкового, ледяного покрова. Не подлежитсомнению, что в эпоху последнего оледенения произошло громадное расширение зонывечной мерзлоты. Это оледенение закончилось 10 – 15 тыс. лет тому назад, чтообычно считают концом плейстоцена и началом голоцена – эпохи, в течение которойна природные условия начала оказывать влияние деятельность человека.
Причины изменений климата
Своеобразныеклиматические условия четвертичного времени, по-видимому, возникли из-засодержания углекислого газа в атмосфере и в результате процесса перемещенияконтинентов и подъема их уровня, что привело к частичной изоляции Северногополярного океана и размещению антарктического материка в полярной зоне южногополушария.
Четвертичномупериоду предшествовала обусловленная изменениями поверхности Земли длительнаяэволюция климата в сторону усиления термической зональности, что выражалось вснижении температуры воздуха в умеренных и высоких широтах. В плиоцене наклиматические условия начало оказывать влияние уменьшения концентрацииатмосферной углекислоты, что привело к снижению средней глобальной температурывоздуха на 2 – 3 градуса (в высоких широтах на 3 – 5). После чего появилисьполярные, ледяные покровы, развитие которых привело к снижению средней глобальнойтемпературы.
По-видимому,по сравнению с изменениями астрономических факторов, все другие причиныоказывали меньшее влияние на колебания климата в четвертичное время.
Дочетвертичное время
Помере отдаления от нашего времени количество сведений о климатических условияхпрошлого уменьшается, а трудности интерпритации этих сведений возрастают.Наиболее надежную информацию о климатах отдаленного прошлого мы имеем из данныхо непрерывном существовании на нашей планете живых организмов. Мало вероятно,чтобы они существовали вне пределов узкого интервала температуры, от 0 до 50градусов С, который в наше время ограничивает активную жизнедеятельностьбольшинства животных и растений. На этом основании можно думать, чтотемпература поверхности Земли, нижнего слоя воздуха и верхнего слоя водоемов невыходила из указанных пределов. Фактические колебания средней температурыповерхности Земли за длительные интервалы времени были меньше указанногоинтервала температур и не превосходили нескольких градусов за десятки млн. лет.
Изэтого можно сделать вывод о трудности исследования изменений термическогорежима Земли в прошлом по эмпирическим данным, так как погрешности определениятемпературы, как методом анализа изотопного состава, так и другими известнымисейчас методами составляют обычно не меньше нескольких градусов.
Другаятрудность изучения климатов прошлого обусловлена неясностью положения различныхобластей по отношению к полюсам в результате движения континентов ивозможностью перемещения полюсов.
Климатическиеусловия мезозойской эры и третичного периода характеризировались двумяосновными закономерностями:
Напротяжении этого времени средняя температура воздуха у земной поверхности былазначительно выше современной, в особенности в высоких широтах. В соответствии сэтим разность температур воздуха между экватором и полюсами была гораздо меньшесовременной;
Втечение большей части рассматриваемого времени преобладала тенденция к снижениютемпературы воздуха, в особенности в высоких широтах.
Этизакономерности объясняются изменением содержания углекислого газа в атмосфере иизменением положения континентов. Более высокая концентрация углекислого газаобеспечивала повышение средней температуры воздуха примерно на 5 градусов посравнению с современными условиями. Низкий уровень континентов повышалинтенсивность меридионального теплообмена в океанах, что увеличивалотемпературу воздуха в умеренных и высоких широтах.
Повышениеуровня континентов уменьшало интенсивность меридионального теплообмена вокеанах и приводило к постоянному снижению температуры в умеренных и высокихширотах.
Приобщей высокой устойчивости термического режима в мезозойское и третичное время,обусловленной отсутствием полярных льдов, в течение сравнительно редко короткихинтервалов могли происходить резкие понижения температуры воздуха и верхнихслоев водоемов. Эти понижения были обусловлены совпадением во времени рядавулканических извержений взрывного характера.
Современные изменения климата
Наиболеекрупное изменение климата за время инструментальных наблюдений началось в конце19 века. Оно характеризовалось постепенным повышением температуры воздуха навсех широтах северного полушария во все сезоны года, причем наиболее сильноепотепление происходило в высоких широтах и в холодное время года. Потеплениеускорилось в 10-х годах 20 века и достигло максимума в 30-х годах, когдасредняя температура воздуха в северном полушарии повысилась приблизительно на0,6 градусов по сравнению с концом 19 века. В 40-х годах процесс потеплениясменился похолоданием, которое продолжается до настоящего времени. Этопохолодание было довольно медленным и пока еще не достигло масштабовпредшествующего ему потепления.
Хотяданные о современном изменении климата в южном полушарии имеют менееопределенный характер по сравнению с данными для северного полушария, естьоснования считать, что в первой половине 20 века в южном полушарии такжепроисходило потепление.
Всеверном полушарии повышение температуры воздуха сопровождалось сохранениемплощади полярных льдов, отсутствием границы вечной мерзлоты в более высокиешироты, продвижением к северу границы леса и тундры и другими изменениямиприродных условий.
Существенноезначение имело отмечавшееся в эпоху потепления изменение режима атмосферныхосадков. Количество осадков в ряде районов недостаточного увлажнения припотеплении климата уменьшилось, в особенности в холодное время года. Этопривело к уменьшению стока рек и падению уровня некоторых замкнутых водоемов.
Особуюизвестность получило произошедшее в 30-х годах резкое снижение уровняКаспийского моря, обусловленное главным образом уменьшением стока Волги. Нарядус этим в эпоху потепления во внутриконтинентальных районах умеренных широтЕвропы, Азии и Северной Америки возросла частота засух, охватывающих большиетерритории.
Потепление,достигшее максимума в 30-х годах, по-видимому, определялось увеличениемпрозрачности стратосферы, повысившим поток солнечной радиации, поступающей втропосферу (метеорологическую солнечную постоянную). Это привело к возрастаниюсредней планетарной температуры воздуха у земной поверхности.
Изменениятемпературы воздуха на различных широтах и в различные сезоны зависели отоптической толщины стратосферного аэрозоля и от перемещения границы морскихполярных льдов. Обусловленное потеплением отступления морских арктических льдовпривело к дополнительному, заметному повышению температуры воздуха в холодноевремя года в высоких широтах северного полушария.
Представляетсявероятным, что изменения прозрачности стратосферы, произошедшие в первойполовине 20 века, были связаны с режимом вулканической деятельности и, вчастности, с изменением поступления в стратосферу продуктов вулканическихизвержений, включая в особенности сернистый газ. Хотя этот вывод основан назначительном материале наблюдений, он однако, является менее очевидным посравнению с приведенной выше основной частью объяснения причин потепления.
Следуетуказать, что это объяснение относится только к главным чертам измененияклимата, которое произошло в первой половине 20 века. Наряду с общими закономерностямипроцесса изменения климата этот процесс характеризовался многими особенностями,относящимися к колебаниям климата за более короткие периоды времени и кколебаниям климата в отдельных географических районах.
Нотакие колебания климата были в значительной мере обусловлены изменениямициркуляций атмосферы и гидросферы, которые имели в некоторых случаях случайныйхарактер, а в других случаях были следствием автоколебальных процессов.
Естьоснования думать, что в последние 20-30 лет изменения климата начали визвестной мере зависеть от деятельности человека. Хотя потепление первойполовины 20 века оказало определенное влияние на хозяйственную деятельностьчеловека и явилось наиболее крупным изменением климата за эпохуинструментальных наблюдений, его масштабы были незначительны по сравнению стеми изменениями климата, которые имели место в течение голоцена, не говоря ужео плейстоцене, когда развивались крупные оледенения.
Темне менее, изучение потепления, произошедшего в первой половине 20 века, имеетбольшое значение для выяснения механизма изменений климата, освещенныммассовыми данными надежных инструментальных наблюдений.
Всвязи с этим всякая количественная теория изменений климата должна быть, преждевсего, проверена по материалам, относящимся к потеплению первой половины 20века.
Климат будущего
Перспективыизменений климата
Приизучении климатических условий будущего следует сначала остановиться на техизменениях, которые могут произойти вследствие естественных причин. Этиизменения могут зависеть от следующих причин:
Вулканическаядеятельность. Из изучения современных изменений климата следует, что колебаниявулканической активности могут влиять на климатические условия для периодоввремени, равных годам и десятилетиям. Возможно, также влияние вулканизма наизменения климата за периоды порядка столетий и за длительные интервалывремени;
Астрономическиефакторы. Изменение положения поверхности Земли по отношению к Солнцу создаетизменения климата с временными масштабами в десятки тысяч лет;
Составатмосферного воздуха. В конце третичного и в четвертичное время, определенноевлияние на климат оказывало убывание содержания углекислого газа в атмосфере.Принимая во внимание скорость этого убывания и соответствующие ему изменениятемпературы воздуха, можно заключить, что влияние естественных измененийсодержания углекислоты на климат существенно для интервалов времени более статысяч лет;
Строениеземной поверхности. Изменение рельефа и связанные с ними изменения положенияберегов морей и океанов могут заметно изменить климатические условия на большихпространствах за периоды времени, не меньше сотен тысяч- миллионов лет;
Солнечнаяпостоянная. Оставляя в стороне вопрос о существовании влияющих на климаткороткопериодических колебаний солнечной постоянной, следует принять вовнимание возможность медленных изменений солнечной радиации, обусловленныхэволюцией солнца. Также изменения могут существенно влиять на климатическиеусловия за периоды не менее ста миллионов лет.
Нарядус изменениями, обусловленными внешними факторами, климатические условияменяются в результате автоколебательных процессов в системе атмосфера – океан — полярные льды. Также изменения относятся к периодам времени порядка годов –десятилетий и, возможно, также к периодам в сотни и даже тысячи лет. Указанныев этом перечне временные масштабы действия различных факторов на измененияклимата в основном согласуются с аналогичными оценками Митчелла и другихавторов. Сейчас существует проблема предсказания изменений климата в результатедеятельности человека, которая существенно отличается от проблемы прогнозапогоды. Ведь для нее необходимо принять во внимание изменение во временипоказателей хозяйственной деятельности человека. В связи с этим задачапредсказания климата содержит два основных элемента – прогноз развития рядааспектов хозяйственной деятельности и расчет тех изменений климата, которыесоответствуют изменению соответствующих показателей деятельности человека.
Возможный экологический кризис
Современнаядеятельность человека, так же как и его деятельность в прошлом, существенноизменила природную среду на большей части нашей планеты, эти изменения донедавнего времени были только суммой многих локальных воздействий на природныепроцессы. Они приобрели планетарный характер не в результате изменениячеловеком природных процессов глобального масштаба, а потому, что локальныевоздействия распространились на большие пространства. Иначе говоря, изменениефауны в Европе и Азии не влияло на фауну Америки, регулирование стока американскихрек не изменило режима стока африканских рек и так далее. Только в самоепоследнее время началось воздействие человека на глобальные природные процессы,изменение которых может оказать влияние на природные условия всей планеты.
Принимаяво внимание тенденции развития хозяйственной деятельности человека всовременную эпоху, недавно было высказано предложение, что, дальнейшее развитиеэтой деятельности может привести к значительному изменению окружающей среды, врезультате которого произойдет общий кризис экономики и резко сократитсячисленность населения.
Кчислу крупных проблем относится вопрос о возможности изменения под влияниемхозяйственной деятельности глобального климата нашей планеты. Особое значениеэтого вопроса заключается в том, что такое изменение может оказать существенноевлияние на хозяйственную деятельность человека раньше всех других глобальныхэкологических нарушений.
Приопределенных условиях влияние хозяйственной деятельности человека на климатможет в сравнительно близком будущем привести к потеплению, сравнимому спотеплением первой половины 20 века, а затем намного превзойти это потепление.Таки образом, изменение климата, возможно, является первым реальным признакомглобального экологического кризиса, с которым столкнется человечество пристихийном развитии техники и экономики.
Основнойпричиной этого кризиса на его первой стадии будет пераспределение количестваосадков, выпадающих в различных районах земного шара, при их заметномуменьшении во многих районах неустойчивого увлажнения. Поскольку в этих районахрасположены важнейшие области производства зерновых культур, изменение режимаосадков может существенно затруднить проблему повышения урожайности дляобеспечения продовольствием быстро растущего населения земного шара.
Поэтой причине вопрос о предотвращения нежелательных изменений глобальногоклимата является одной из существенных экологических проблем современности.
Проблема регулирования климата
Дляпредотвращения неблагоприятных изменений климата, возникающих под влияниемхозяйственной деятельности человека, осуществляются различные мероприятия;наиболее широко ведется борьба с загрязнением атмосферного воздуха. Врезультате применения во многих развитых странах различных мер, включающихочистку воздуха, используемого промышленными предприятиями, транспортнымисредствами, отопительными устройствами и так далее, в последние годы достигнутоснижение уровня загрязнения воздуха в ряде городов. Однако во многих районахзагрязнение воздуха усиливается, причем, имеется тенденция к росту глобальногозагрязнения атмосферы. Это указывает на большие трудности предотвращения ростаколичества антропогенного аэрозоля в атмосфере.
Ещетруднее были бы задачи (которые пока еще не ставились) предотвращенияувеличения содержания углекислого газа в атмосфере и роста тепла, выделяемогопри преобразованиях энергии, используемой человеком. Простых техническихсредств решения этих задач не существует, кроме ограничений потребления топливаи потребления большинства видов энергии, что ближайшие десятилетия несовместимос дальнейшим техническим прогрессом.
Такимобразом, для сохранения существующих климатических условий в близком будущемокажется необходимым применение метода регулирования климата. Очевидно, что приналичии такого метода он мог быть использован также для предотвращениянеблагоприятных для народного хозяйства естественных колебаний климата и вдальнейшем, соответствующем интересам человечества.
Имеетсяряд работ, в которых рассматривались различные проекты воздействия на климат.Один из крупнейших проектов имеет целью уничтожение арктических льдов длязначительного повышения температуры в высоких широтах. При обсуждении этоговопроса был выполнен ряд исследований связи режима полярных льдов с общимиклиматическими условиями. Влияние исчезновения полярных льдов на климат будетсложным и не во всех отношениях благоприятным для деятельности человека. Далеконе все последствия разрушения полярных льдов для климата и природных условийразличных территорий можно сейчас предсказать с достаточной точностью. Поэтому,при наличии возможности уничтожить льды это мероприятие осуществлять вближайшем будущем нецелесообразно.
Издругих путей воздействия на климатические условия заслуживает вниманиевозможность изменения атмосферных движений большого масштаба. Во многих случаяхатмосферные движения неустойчивы, в связи с чем возможны воздействия на них сзатратой сравнительно небольшого количества энергии.
Вдругих работах упоминаются некоторые методы воздействия на микроклимат в связис агрометеорологическими задачами. К их числу относятся различные способызащиты растений от заморозков, затенение растений с целью защиты их отперегрева и излишнего испарения влаги, посадки лесных полос и другие.
Внекоторых публикациях упоминаются другие проекты воздействия на климат. К ихчислу относятся идеи воздействия на некоторые морские течения путемстроительства гигантских плотин. Но ни один проект такого рода не имеетдостаточного научного обоснования, возможное влияние их осуществления на климатостается совершенно неясным.
Другиепроекты включают предложения о создании крупных водоемов. Оставляя в стороневопрос о возможности осуществления такого проекта, следует отметить, чтосвязанные с ним изменения климата изучены очень мало.
Можнодумать, что некоторые из выше перечисленных проектов воздействия на климатограниченных территорий будут доступны для техники близкого будущего, илицелесообразность их осуществления будет доказана.
Гораздобольшие трудности на пути осуществления воздействий на глобальный климат, тоесть на климат всей планеты или ее значительной части.
Изразличных источников путей воздействия на климат, по-видимому, наиболее доступендля современной техники метод, основанный на увеличении концентрации аэрозоля внижней стратосфере. Осуществление этого воздействия на климат имеет цельюпредотвратить или ослабить изменения климата, которые могут возникнуть черезнесколько десятилетий под влиянием хозяйственной деятельности человека.Воздействия такого масштаба могут быть необходимы в 21 веке, когда в результатезначительного роста производства энергии может существенно повыситсятемпература нижних слоев атмосферы. Уменьшение прозрачности стратосферы в такихусловиях может предотвратить нежелательные изменения климата.
Заключение
Извыше перечисленных материалов можно сделать вывод, что в современную эпохуглобальный климат уже в некоторой мере изменен в результате хозяйственнойдеятельности человека. Эти изменения обусловлены главным образом увеличениеммассы аэрозоля и углекислого газа в атмосфере.
Современныеантропогенные изменения глобального климата сравнительно невелики, что частичнообъясняется противоположным влиянием на температуру воздуха роста концентрацииаэрозоля и углекислого газа. Тем не менее эти изменения имеют определенноепрактическое значение, в основном в связи с влиянием режима осадков насельскохозяйственное производство. При сохранении современных темповхозяйственного развития антропогенные изменения могут быстро возрасти идостигнуть масштабов, превышающих масштабы естественных колебаний климата,происходивших в течение последнего столетия.
Вдальнейшем при этих условиях изменения климата будут усиливаться, причем в 21веке они могут стать сравнимыми с естественными колебаниями климата. Очевидно,что столь значительные изменения климата могут оказать громадное влияние наприроду нашей планеты и многие стороны хозяйственной деятельности человека.
Всвязи с этим возникают задачи предсказания антропогенных изменений климата,которые возникнут при различных вариантах хозяйственного развития, и разработкиметодов регулирования климата, которые должны предотвратить его изменения внежелательном направлении. Наличие этих задач существенно изменяет значениеисследований изменений климата и особенно изучения причин этих изменений. Еслираньше такие исследования имели в значительной мере познавательные цели, тосейчас выясняется необходимость их выполнения для оптимального планированияразвития народного хозяйства.
Следуетуказать на международный аспект проблемы антропогенных изменений климата,который приобретает особенно большое значение при подготовке крупномасштабныхвоздействий на климат. Воздействие на глобальный климат приведет к изменениюклиматических условий на территорий многих стран, причем характер этихизменений в разных районах будет различным. В связи с этим в работе Е. К.Федорова неоднократно указывалось, что осуществление любого крупного проектавоздействия на климат возможно только на основе международного сотрудничества.
Сейчасесть основания для поставки вопроса о заключении международного соглашения,запрещающего осуществление несогласованных воздействий на климат. Такиевоздействия должны разрешаться только на основе проектов, рассмотренных иодобренных ответственными международными органами. Это соглашение должноохватывать как мероприятия по направленному воздействию на климат, так и тевиды хозяйственной деятельности человека, которые могут привести кнепреднамеренным применениям глобальных климатических условий.
Список литературы
1.Будыко М.И. Изменения климата .- Ленинград: Гидрометеоиз-дат, 1974. — 279 с.
2.Будыко М.И. Климат в прошлом и будущем .- Ленинград: Гид-рометеоиздат, 1980.-350 с.
3.Лосев К.С. Климат: вчера, сегодня… и завтра ?- Ленинград, Гидрометеоиздат,1985. 173 с.
4.Монин А.С., Шишков Ю.А. История климата .- Ленинград: Гидрометеоиздат, 1974.407 с.
Дляподготовки данной работы были использованы материалы с сайта referat2000.bizforum.ru/
www.ronl.ru
Погода – состояние атмосферы в данном месте Земли в определенный момент или интервал времени. Это состояние определяется динамикой атмосферы, физико-химическими процессами в ней и ее взаимодействием с поверхностью Земли и с космическим пространством, а также с процессами, определяемыми собственной внутренней энергетикой атмосферы и поверхности Земли. Совокупность погод в данном месте принято называть климатом.
Климат. По-гречески, климат – означает наклон. В климатологии имеется в виду наклон земной поверхности к солнечным лучам. Климат – одна из основных географических характеристик той или иной местности, он определяет многолетний статистический режим погоды этого места. Основные особенности климата зависят от поступления энергии солнечного излучения, циркуляции воздушных масс в атмосфере и характера подстилающей поверхности данного места. Кроме того, климат отдельного региона определяется географической широтой и высотой места над уровнем моря, удаленностью его от морских побережий, особенностями орографии (рельефа) и растительного покрова, наличием ледников и снеговых покровов, степенью загрязненности атмосферы. Вращение Земли вокруг своей оси, наклоненной к плоскости экватора на 23,26°, и обращение Земли вокруг Солнца приводят к суточным и годичным вариациям погоды, а также к определенным широтным (зональным) закономерностям климата на Земле.
Климат
КЛИМАТ — многолетний режим погоды, типичный для данного района Земли, как бы средняя погода за много лет. Термин «климат» был введен в научный оборот 2200 лет назад древнегреческим астрономом Гиппархом и означает по-гречески «наклон» («klimatos»). Ученый имел в виду наклон земной поверхности к солнечным лучам, различие которого от экватора к полюсу уже тогда считалось главной причиной различий погоды в низких и высоких широтах. Позднее климатом назвали среднее состояние атмосферы в определенном районе Земли, которое характеризуется чертами, практически неизменными на протяжении одного поколения, то есть порядка 30-40 лет. К таким чертам относятся амплитуда колебания температур, атмосферное давление, атмосферная циркуляция.
Различают макроклимат и микроклимат:
Макроклимат (греч makros — большой) — климат крупнейших территорий, это климат Земли в целом, климатических поясов, а также крупных регионов суши и акваторий океанов или морей. В макроклимате определяется уровень солнечной радиации и закономерности атмосферной циркуляции;
Микроклимат (греч. mikros — маленький) — часть местного климата. Микроклимат в основном зависит от рельефа, лесных насаждений, различий в увлажнении почвогрунтов, весенне-осенних заморозков, сроков таяния снега и льда на водоемах. Учет микроклимата имеет существенное значение для размещения сельскохозяйственных культур, для строительства городов, прокладки дорог, для любой хозяйственной деятельности человека, а также для его здоровья.
Описание климата составляется по наблюдениям о погоде за много лет. Оно включает средние многолетние показатели температуры и количество осадков по месяцам, сведения о ветрах, облачности, повторяемости различных типов погоды. Но описание климата будет неполным, если в нем не даны отклонения от средних показателей. Обычно в описание включают сведения о самых высоких и самых низких температурах, о самом большом и малом количестве осадков за все время наблюдений.
Климат Земли изменяется не только в пространстве, но и во времени. Огромное количество фактов по данной проблеме дает палеоклиматология — наука о древних климатах. Исследования показали, что геологическое прошлое Земли — чередование эпох морей и эпох суши. Это чередование связано с медленными колебаниями земной коры, во время которых площадь океана то сокращалась, то увеличивалась. В эпоху увеличения площади Мирового океана солнечные лучи поглощаются водой и нагревают Землю, от которой нагревается и атмосфера. Общее потепление неизбежно вызовет распространение теплолюбивых растений и животных. Распространение теплого климата «вечной весны» в эпоху моря объясняется также и повышением концентрации СО2, что вызывает явление парникового эффекта. Благодаря ему усиливается потепление.
При наступлении эпохи суши картина меняется. Это связано с тем, что суша, в отличие от воды, больше отражает солнечные лучи, а значит, слабее нагревается. Это приводит к меньшему прогреву атмосферы, и неизбежно климат станет холоднее.
Многие ученые считают космос одной из важных причин колебания климата Земли. Приводятся, например, достаточно веские доказательства солнечно-земных связей. С увеличением активности Солнца связаны изменения солнечной радиации, возрастает повторяемость циклонов. Уменьшение солнечной активности может привести к засухам.
Солнце, погода и климат. Приток солнечного света и тепла, приходящих на вращающуюся Землю, приводит к суточному изменению температуры почти на всех широтах, кроме полярных шапок, где ночи и дни могут длиться вплоть до полугода. Суточные и годичные изменения освещенности Земли солнечными лучами приводят к сложной периодической изменчивости нагрева в различных районах Земли. Результатом неодинакового нагрева в разных участках суши, океана и атмосферы является возникновение мощных струйных течений в океанах, а также к ветры, циклоны и ураганы в тропосфере. Эти перемещения вещества сглаживают перепады температуры, при этом они оказывают сильное влияние на погоду в каждой точке Земли и, тем самым, формируют климат на всей планете. Можно ожидать, что устоявшийся в течение тысячелетий тепловой режим на Земле должен обеспечить очень точную повторяемость погодных явлений в каждом заданном регионе. Однако во многих других местах, при сохранении общих закономерностей, за многие годы часто наблюдаются заметные отклонения от среднего. Все эти аномалии хотя бы частично, могут быть связаны с солнечной активностью.
На фоне сравнительно устойчивого климата погода постоянно меняется, в основном, за счет циркуляции атмосферы. Наиболее устойчива погода в тропических странах и наиболее изменчива в средних широтах и околополярных областях, в частности, на севере Атлантического и Тихого океанов, где часто возникают и развиваются циклоны. Методы прогноза погоды на сутки опираются на построение ежедневных приземных и высотных синоптических карт погоды, к анализу которых применяются общие физические закономерности атмосферных процессов. При прогнозировании на 3–5 суток и более применяются различные статистические приемы.
Основные типы климата. Классификация климатов дает упорядоченную систему для характеристики типов климата, их районирования и картографирования. Типы климата, преобладающие на обширных территориях, называются макроклиматами. Макроклиматический район должен иметь более или менее однородные климатические условия, отличающие его от других районов, хотя и представляющие собой лишь обобщенную характеристику (поскольку не существует двух мест с идентичным климатом), больше отвечающую реалиям, чем выделение климатических районов только на основе принадлежности к определенному широтно-географическому поясу.
Климат ледниковых покровов господствует в Гренландии и Антарктиде, где средние месячные температуры ниже 0° C. В темное зимнее время года эти регионы совершенно не получают солнечной радиации, хотя там бывают сумерки и полярные сияния. Даже летом солнечные лучи падают на земную поверхность под небольшим углом, что снижает эффективность прогрева. Большая часть приходящей солнечной радиации отражается льдом. Как летом, так и зимой в возвышенных районах Антарктического ледникового покрова преобладают низкие температуры. Климат внутренних районов Антарктиды гораздо холоднее климата Арктики, поскольку южный материк отличается большими размерами и высотами, а Северный Ледовитый океан смягчает климат, несмотря на широкое распространение паковых льдов. Летом во время коротких потеплений дрейфующий лед иногда тает. Осадки на ледниковых покровах выпадают в виде снега или мелких частичек ледяного тумана. Внутренние районы ежегодно получают всего 50–125 мм осадков, но на побережье может выпадать и более 500 мм. Иногда циклоны приносят в эти районы облачность и снег. Снегопады часто сопровождаются сильными ветрами, которые переносят значительные массы снега, сдувая его со скал. Сильные стоковые ветры с метелями дуют с холодного ледникового щита, вынося снег на побережья.
Субполярный климат проявляется в тундровых районах на северных окраинах Северной Америки и Евразии, а также на Антарктическом п-ове и прилегающих к нему островах. В восточной Канаде и Сибири южная граница этого климатического пояса проходит значительно южнее Полярного круга из-за сильно выраженного влияния обширных массивов суши. Это приводит к затяжным и крайне холодным зимам. Лето короткое и прохладное со средними месячными температурами, редко превышающими +10° С. До некоторой степени длинные дни компенсируют непродолжительность лета, однако на большей части территории получаемого тепла недостаточно для полного оттаивания грунтов. Постоянно мерзлый грунт, называемый многолетней мерзлотой, сдерживает рост растений и фильтрацию талых вод в грунт. Поэтому летом плоские участки оказываются заболоченными. На побережье зимние температуры несколько выше, а летние – несколько ниже, чем во внутренних районах материка. Летом, когда влажный воздух находится над холодной водой или морским льдом, на арктических побережьях часто возникают туманы.
Годовая сумма осадков обычно не превышает 380 мм. Большая их часть выпадает в виде дождя или снега летом, при прохождении циклонов. На побережье основная масса осадков может быть принесена зимними циклонами, но низкие температуры и ясная погода холодного сезона, характерные для большей части областей с субполярным климатом, неблагоприятны для значительного снегонакопления.
Субарктический климат известен также под названием «климат тайги» (по преобладающему типу растительности – хвойным лесам). Этот климатический пояс охватывает умеренные широты Северного полушария – северные области Северной Америки и Евразии, расположенные непосредственно к югу от субполярного климатического пояса. Здесь проявляются резкие сезонные климатические различия из-за положения этого климатического пояса в достаточно высоких широтах во внутренних частях материков. Зимы затяжные и крайне холодные, и чем севернее, тем дни короче. Лето короткое и прохладное с длинными днями. Зимой период с отрицательным температурами очень продолжителен, а летом температура временами может превышать +32° С. На большей части рассматриваемого климатического пояса выпадает менее 500 мм осадков в год, причем их количество максимально на наветренных побережьях и минимально во внутренней части Сибири. Снега зимой выпадает очень мало, снегопады сопряжены с редкими циклонами. Лето обычно более влажное, причем дожди идут, в основном, при прохождении атмосферных фронтов. На побережьях часто бывают туманы и сплошная облачность. Зимой в сильные морозы над снежным покровом висят ледяные туманы.
Влажный континентальный климат с коротким летом характерен для обширной полосы умеренных широт Северного полушария. В Северной Америке она простирается от прерий на юге центральной Канады до побережья Атлантического океана, а в Евразии охватывает большую часть Восточной Европы и некоторые районы Средней Сибири. Такой же тип климата наблюдается на японском о.Хоккайдо и на юге Дальнего Востока. Основные климатические особенности этих районов определяются преобладающим западным переносом и частым прохождением атмосферных фронтов. В суровые зимы средние температуры воздуха могут понижаться до –18° С. Лето короткое и прохладное, безморозный период менее 150 дней. Годовая амплитуда температур не столь велика, как в условиях субарктического климата. В Москве средние температуры января –9° С, июля – +18° С. В этом климатическом поясе постоянную угрозу для сельского хозяйства представляют весенние заморозки. В приморских провинциях Канады, в Новой Англии и на о.Хоккайдо зимы теплее, чем во внутриконтинентальных районах, так как восточные ветры временами приносят более теплый океанический воздух.
Годовое количество осадков колеблется от менее 500 мм во внутренних частях материков до более 1000 мм на побережьях. На большей части района осадки выпадают преимущественно летом, часто при грозовых ливнях. Зимние осадки, в основном в виде снега, связаны с прохождением фронтов в циклонах. Метели часто наблюдаются в тылу холодного фронта.
Влажный континентальный климат с длинным летом. Температуры воздуха и продолжительность летнего сезона увеличиваются к югу в районах влажного континентального климата. Такой тип климата проявляется в умеренном широтном поясе Северной Америки от восточной части Великих Равнин до атлантического побережья, а в юго-восточной Европе – в низовьях Дуная. Сходные климатические условия и в северо-восточном Китае и центральной Японии. Здесь также преобладает западный перенос. Средняя температура наиболее теплого месяца +22° С (но температуры могут превышать +38° С), летние ночи теплые. Зимы не такие холодные, как в областях влажного континентального климата с коротким летом, но температура иногда опускается ниже 0° С. Годовая амплитуда температур обычно составляет 28° С. Чаще всего в условиях влажного континентального климата с длинным летом выпадает от 500 до 1100 мм осадков в год. Наибольшее количество осадков приносят летние грозовые ливни во время вегетационного сезона. Зимой дожди и снегопады, в основном, сопряжены с прохождением циклонов и связанных с ними фронтов.
Морской климат умеренных широтприсущ западным побережьям материков, прежде всего, северо-западной Европы, центральной части тихоокеанского побережья Северной Америки, югу Чили, юго-востоку Австралии и Новой Зеландии. На ход температуры воздуха смягчающее влияние оказывают преобладающие западные ветры, дующие с океанов. Зимы мягкие со средними температурами наиболее холодного месяца выше 0° С, но, когда побережий достигают потоки арктического воздуха, бывают и морозы. Лето в целом довольно теплое; при вторжениях континентального воздуха днем температура может на короткое время повышаться до +38° С. Этот тип климата с небольшой годовой амплитудой температур является наиболее умеренным среди климатов умеренных широт.
В районах умеренного морского климата средняя годовая сумма осадков колеблется от 500 до 2500 мм. Наиболее увлажнены наветренные склоны прибрежных гор. Циклоны, движущиеся с океанов, приносят много осадков на западные материковые окраины. Зимой, как правило, держится облачная погода со слабыми дождями и редкими кратковременными снегопадами. На побережьях обычны туманы, особенно летом и осенью.
Влажный субтропический климат характерен для восточных побережий материков к северу и югу от тропиков. Основные области распространения – юго-восток США, некоторые юго-восточные районы Европы, север Индии и Мьянмы, восточный Китай и южная Япония, северо-восточная Аргентина, Уругвай и юг Бразилии, побережье провинции Натал в ЮАР и восточное побережье Австралии. Лето во влажных субтропиках продолжительное и жаркое, с такими же температурами, как и в тропиках. Средняя температура самого теплого месяца превышает +27° С, а максимальная – +38° С. Зимы мягкие, со средними месячными температурами выше 0° С. Во влажных субтропиках средние годовые суммы осадков колеблются от 750 до 2000 мм, распределение осадков по сезонам довольно равномерное. Зимой дожди и редкие снегопады приносятся главным образом циклонами. Летом осадки выпадают в основном в виде грозовых ливней, связанных с мощными затоками теплого и влажного океанического воздуха, характерными для муссонной циркуляции восточной Азии. Ураганы (или тайфуны) проявляются в конце лета и осенью, особенно в Северном полушарии.
Субтропический климат с сухимлетом типичен для западных побережий материков к северу и югу от тропиков. В Южной Европе и Северной Африке такие климатические условия характерны для побережий Средиземного моря, что послужило поводом называть этот климат также средиземноморским. Такой же климат в южной Калифорнии, центральных районах Чили, на крайнем юге Африки и в ряде районов на юге Австралии. Во всех этих районах жаркое лето и мягкая зима. Как и во влажных субтропиках, зимой изредка бывают морозы. Во внутренних районах летом температуры значительно выше, чем на побережьях, и часто такие же, как в тропических пустынях. В целом преобладает ясная погода. Летом на побережьях, близ которых проходят океанические течения, нередко бывают туманы. Максимум осадков связан с прохождением циклонов зимой, когда преобладающие западные воздушные потоки смещаются по направлению к экватору. Влияние антициклонов и нисходящие потоки воздуха под океанами обусловливают сухость летнего сезона. Среднее годовое количество осадков в условиях субтропического климата колеблется от 380 до 900 мм и достигает максимальных величин на побережьях и склонах гор. Летом обычно осадков не хватает для нормального роста деревьев, и поэтому там развивается специфический тип вечнозеленой кустарниковой растительности, известный под названиями маквис, чапарраль, мали, маккия и финбош.
Семиаридный климат умеренных широт (синоним – степной климат) характерен преимущественно для внутриматериковых районов, удаленных от океанов (источников влаги) и обычно расположенных в дождевой тени высоких гор. Основные районы с семиаридным климатом – межгорные котловины и Великие Равнины Северной Америки и степи центральной Евразии. Жаркое лето и холодная зима обусловлены внутриматериковым положением в умеренных широтах. По крайней мере один зимний месяц имеет среднюю температуру ниже 0° С, а средняя температура самого теплого летнего месяца превышает +21° С. Температурный режим и продолжительность безморозного периода существенно изменяются в зависимости от широты. Термин «семиаридный» применяется для характеристики этого климата, потому что он менее сухой, чем собственно аридный (сухой) климат. Средняя годовая сумма осадков обычно менее 500 мм, но более 250 мм. Поскольку для развития степной растительности в условиях более высоких температур необходимо большее количество осадков, широтно-географическое и высотное положение местности определяют климатические изменения. Для семиаридного климата нет общих закономерностей распределения осадков в течение года. Например, в районах, граничащих с субтропиками с сухим летом, отмечается максимум осадков зимой, в то время как в районах, смежных с областями влажного континентального климата, дожди выпадают, в основном, летом. Циклоны умеренных широт приносят большую часть зимних осадков, которые часто выпадают в виде снега и могут сопровождаться сильными ветрами. Летние грозы нередко бывают с градом. Количество осадков сильно изменяется от года к году.
Аридный климат умеренных широт присущ, главным образом, центрально-азиатским пустыням, а на западе США – лишь небольшим участкам в межгорных котловинах. Температуры такие же, как в районах с семиаридным климатом, однако осадков здесь недостаточно для существования сомкнутого естественного растительного покрова и средние годовые суммы обычно не превышают 250 мм. Как и в семиаридных климатических условиях, количество осадков, определяющее аридность, зависит от термического режима.
Семиаридный климат низких широт в основном типичен для окраин тропических пустынь (например, Сахары и пустынь центральной Австралии), где нисходящие потоки воздуха в субтропических зонах высокого давления исключают выпадение осадков. От семиаридного климата умеренных широт рассматриваемый климат отличается очень жарким летом и теплой зимой. Средние месячные температуры выше 0° С, хотя зимой иногда случаются заморозки, особенно в районах, наиболее удаленных от экватора и расположенных на больших высотах. Количество осадков, необходимое для существования сомкнутой естественной травянистой растительности, здесь выше, чем в умеренных широтах. В приэкваториальной полосе дожди идут в основном летом, тогда как на внешних (северных и южных) окраинах пустынь максимум осадков приходится на зиму. Осадки большей частью выпадают в виде грозовых ливней, а зимой дожди приносятся циклонами.
Аридный климат низких широт. Это жаркий сухой климат тропических пустынь, простирающихся вдоль Северного и Южного тропиков и находящихся большую часть года под влиянием субтропических антициклонов. Спасение от изнуряющей летней жары можно найти лишь на побережьях, омываемых холодными океаническими течениями, или в горах. На равнинах средние летние температуры заметно превышают +32° С, зимние обычно выше +10° С. На большей части этого климатического района средняя годовая сумма осадков не превышает 125 мм. Бывает так, что на многих метеорологических станциях несколько лет подряд вообще не регистрируются осадки. Иногда средняя годовая сумма осадков может достигать 380 мм, но и этого все же достаточно лишь для развития разреженной пустынной растительности. Изредка осадки выпадают в форме непродолжительных сильных грозовых ливней, но вода быстро стекает, образуя ливневые паводки. Самые засушливые районы расположены вдоль западных берегов Южной Америки и Африки, где холодные океанические течения препятствуют формированию облаков и выпадению осадков. На этих побережьях часто бывают туманы, образующиеся за счет конденсации влаги в воздухе над более холодной поверхностью океана.
Переменно-влажный тропический климат. Районы с таким климатом расположены в тропических субширотных поясах, на несколько градусов севернее и южнее экватора. Этот климат называется также муссонным тропическим, так как преобладает в тех частях Южной Азии, которые находятся под влиянием муссонов. Другие районы с таким климатом – тропики Центральной и Южной Америки, Африки и Северной Австралии. Средние летние температуры обычно около +27° С, а зимние – около +21° С. Самый жаркий месяц, как правило, предшествует летнему сезону дождей. Средние годовые суммы осадков колеблются от 750 до 2000 мм. В течение летнего дождливого сезона определяющее воздействие на климат оказывает внутритропическая зона конвергенции. Здесь часто бывают грозы, иногда в течение длительного времени сохраняется сплошная облачность с затяжными дождями. Зима сухая, так как в этот сезон господствуют субтропические антициклоны. В некоторых районах дожди не выпадают в течение двух-трех зимних месяцев. В Южной Азии влажный сезон совпадает с летним муссоном, который приносит влагу с Индийского океана, а зимой сюда распространяются азиатские континентальные сухие воздушные массы.
Влажный тропический климат, или климат влажных тропических лесов, распространен в экваториальных широтах в бассейнах Амазонки в Южной Америке и Конго в Африке, на полуострове Малакка и на островах Юго-Восточной Азии. Во влажных тропиках средняя температура любого месяца не менее +17° С, обычно средняя месячная температура около +26° С. Как в переменно-влажных тропиках, из-за высокого полуденного стояния Солнца над горизонтом и одинаковой продолжительности дня в течение всего года сезонные колебания температуры невелики. Влажный воздух, облачность и густой растительный покров препятствуют ночному охлаждению и поддерживают максимальные дневные температуры ниже +37° С, более низкие, чем в более высоких широтах.
Среднее годовое количество осадков во влажных тропиках колеблется от 1500 до 2500 мм, распределение по сезонам обычно довольно равномерное. Осадки, в основном, связаны с внутритропической зоной конвергенции, которая располагается немного севернее экватора. Сезонные смещения этой зоны к северу и югу в некоторых районах приводят к формированию двух максимумов осадков в течение года, разделенных более сухими периодами. Ежедневно тысячи гроз прокатываются над влажными тропиками. В промежутках между ними солнце светит в полную силу.
Климаты высокогорий. В высокогорных районах значительное разнообразие климатических условий обусловлено широтно-географическим положением, орографическими барьерами и различной экспозицией склонов по отношению к Солнцу и влагонесущим воздушным потокам. Даже на экваторе в горах встречаются снежники-перелетки. Нижняя граница вечных снегов опускается к полюсам, достигая уровня моря в полярных районах. Подобно ей и другие границы высотных термических поясов понижаются по мере приближения к высоким широтам. Наветренные склоны горных хребтов получают больше осадков. На горных склонах, открытых для вторжений холодного воздуха, возможно понижение температуры. В целом для климата высокогорий характерны более низкие температуры, более высокая облачность, большее количество осадков и более сложный ветровой режим, чем для климата равнин на соответствующих широтах. Характер сезонных изменений температур и осадков в высокогорьях обычно такой же, как и на прилегающих равнинах.
Климатические пояса и локальные особенности климата. В конце 18 в. ученик М.В.Ломоносова и один из первых русских академиков И.И. Лепехин, наметил общую схему размещения растительности и животного мира по земной поверхности мира в зависимости от тепловых (климатических) поясов. В начале 19 в. немецкий естествоиспытатель и путешественник А. Гумбольдт установил зональность и высотную поясность растительности в связи с изменением количества приходящего на Землю тепла.
Первоначально на поверхности Земли выделялось 5 климатических поясов: один жаркий, расположенный по обе стороны от экватора между северным и южным тропическими кругами; два умеренных – между тропическими и полярными кругами и два холодных, располагающихся вокруг Северного и Южного полюсов.
Позднее, когда накопилось достаточно сведений о температуре земной поверхности в различных частях нашей планеты, число климатических поясов увеличилось до 7, а границами между ними стали считать не астрономические тропические и полярные круги, а линии равных средних температур (изотерм). Границей жаркого пояса стала считаться средняя годовая изотерма в 20°, умеренных поясов – изотерма самого теплого месяца в году +10°. Из холодных поясов выделили еще два пояса вечного мороза, границу между которыми проводили по изотерме самого теплого месяца в году 0°.
Если бы ось вращения Земли была перпендикулярна плоскости ее орбиты (т.е. к эклиптике ), то на каждой географической широтеоблученность солнечным излучением оставалась бы всегда неизменной. В полярных зонах, из-за косого падения солнечных лучей, нагрев поверхность Земли максимально отличался бы от нагрева экваториальной зоны нормально падающими солнечными лучами. Тогда климат на всей Земле больше всего зависел бы от географической широты (т.е. от углового расстояния до экватора). Сравнительно небольшой наклон земной оси вращения Земли приводит к изменению потока излучения от Солнца на каждой широте в течение года (т.е. за время оборота Земли вокруг Солнца). Это изменение особенно сильно сказывается у полюсов (полярные зоны), в которых продолжительность ночи превышает сутки. Напротив, вблизи экватора Солнце может кульминировать в зените. В зависимости от пределов возможных положений Солнца над горизонтом в течение года условно принято разделять Земной шар на тепловые пояса: жаркий (между широтами тропиковот –23,5° до +23,5°) и два холодных, в которых северная и южная широты превышают 66,5°. Остальная часть Земли между жаркими и холодными, названы умеренными поясами. Сейчас, пользуясь данными о температуре и количестве поступающей солнечной энергии (радиации), выделяют 13 климатических поясов, которые обычно называют географическими: арктический, антарктический, субарктический, субантарктический, умеренные северный и южный, субтропические северный и южный, тропические северный и южный, субэкваториальные северный и южный, экваториальный. Климатические пояса, зависящие, в основном, от географической широты, хорошо прослеживаются как на суше, так и в океане.
Температура воздуха. Температура воздуха – степень нагретости воздуха, определяемая при помощи термометров и термографов является одной из важнейших характеристик погоды и климата, оказывающая прямое воздействие на человека, животных, растения, на работу механизмов и т.д. Максимальная температура +58° С отмечена в сентябре 1922 в районе Триполи (Северная Африка), минимальная –89° С в июле 1983 года на станции «Восток» в Антарктиде.
Температура воздуха во многом зависит от того, каким образом солнечные лучи попадают на данный участок земной поверхности. Поверхность прогревается и начинает передавать тепло в атмосферу. Разность температур создает перепады давления воздуха на земную поверхность. Перепады давления создают движение воздуха, называемое ветром. Возникают зоны высокого и низкого давления. При разнице в атмосферном давлении воздух перемещается из зон высокого давления в зоны низкого давления, чтобы уравнять давление на всей поверхности.
Области высокого и низкого давления постоянно перемещаются по земной поверхности, создавая движение воздуха и перенеся с собой воздушные массы. При встрече двух воздушных масс с различными характеристиками воздух не может свободно перемещаться, и между ними образуется своего рода граница, именуемая атмосферным фронтом. Погода в районах действия атмосферных фронтов сопровождается облачностью, осадками, увеличением скорости ветра и резким изменением температуры воздуха.
Проходя через земную атмосферу и встречая на своем пути облака, пыль и водяные пары, солнечные лучи частично поглощаются или отражаются в мировое пространство. До земной поверхности доходит лишь около 40% солнечной энергии, поступающей на верхнюю границу атмосферы. Вместе с тем приходящая лучистая энергия Солнца дает земной поверхности свет, тепло и энергию почти для всех химических превращений земного вещества, совершающихся на земной поверхности. Количество поступающей солнечной энергии закономерно убывает от экватора к полюсам в зависимости от угла падения солнечных лучей и длины их пути через атмосферу. В этом же направлении изменяется и атмосферное тепло.
Поверхность Земли обладает различной отражающей способностью падающих на нее солнечных лучей (величиной альбедо ). По этой причине различные части поверхности по-разному поглощают тепло и нагреваются. Неравномерное нагревание земной поверхности приводит в движение воздушные и водные массы, стремящиеся выровнять температуру. Взаимосвязанные воздушные и морские течения переносят с места на место огромное количество тепла. Особенно большую роль в переносе (адвекции) тепла играют теплые и холодные морские течения, так как вода поглощает и накапливает тепла значительно больше, чем воздух. Поэтому более сильные отклонения от средних температур наблюдаются на морских побережьях.
Сезонные климатические явления. В следствии неравномерного распределения солнечного тепла и атмосферных осадков на земной поверхности, климат Земли очень разнообразен. Известный ученый Б.П. Алисов выделил на Земле 13 климатических поясов, которые отличаются друг от друга температурными условиями и воздушными массами. Основные климатические пояса соответствуют распространению четырех типов воздушных масс. Особенно большие контрасты температуры у поверхности Земли – между экватором и полюсами из-за различия прихода солнечной энергии на разных широтах. В области экватора находится экваториальный климатический пояс. Здесь преобладают экваториальный воздух и пониженное атмосферное давление. В тропических поясах господствуют тропический воздух, высокое давление, нисходящее движение воздуха. В умеренных поясах преобладают западные ветры. Здесь значительно холоднее, чем в тропических поясах. Переходные пояса находятся между остальными поясами. Приставка «суб» в переводе с латинского означает «под». Субэкваториальный пояс – подэкваториальный пояс и т.д. В переходных поясах воздушные массы меняются с сезоном. На распределение температуры влияет расположение континентов и океанов. Из-за высоких теплоемкости и теплопроводности океанических вод океаны значительно ослабляют колебания температуры, которые возникают в результате изменений прихода солнечной радиации в течение года. В связи с этим в средних и высоких широтах температура воздуха над океанами летом заметно ниже, чем над континентами, а зимой – выше.
Прогнозирование погоды. Прогнозы текущей погоды (в пределах от 0 и вплоть до 6–12 часов) основываются на интенсивном, с точки зрения наблюдений, подходе и называются прогнозами текущей погоды. Традиционно прогнозирование текущей погоды концентрируется на анализе и экстраполяции наблюдаемых метеорологических полей с особым упором на мезомасштабные поля облаков и осадков, полученных по данным спутников и радиолокаторов. Прогностическая продукция текущей погоды особенно ценна в случае мезомасштабных неблагоприятных условий погоды, связанных с сильной конвекцией и интенсивными циклонами. В случае с тропическими циклонами, прогнозирование текущей погоды является важным подходом к обнаружению и последующему краткосрочному предсказанию, которое обеспечивает действенность прогноза в некоторых случаях свыше 24 часов.
Численный (гидродинамический) метод прогноза погоды основан на математическом решении системы полных уравнений гидродинамики и получении прогностических полей давления, температуры на определенные промежутки времени. Вычислительные центры Москва, Вашингтон, Токио, Рейдинг (Европейский прогностический центр) используют различные численные схемы развития крупномасштабных атмосферных процессов. Точность численных прогнозов зависит от скорости расчета вычислительных систем, от количества и качества информации, поступающей с метеостанций. Чем больше данных, тем точнее расчет.
Синоптический метод составления прогнозов погоды основан на анализе карт погоды. Сущность этого метода состоит в одновременном обзоре состояния атмосферы на обширной территории, позволяющем определить характер развития атмосферных процессов и дальнейшее наиболее вероятное изменение погодных условий в интересующем районе. Осуществляется такой обзор с помощью карт погоды, на которые наносятся данные метеорологических наблюдений на различных высотах, а также у поверхности земли, производимых одновременно по одной программе в различных точках земного шара. На основе подробного анализа этих карт синоптик определяет дальнейшие условия развития атмосферных процессов в определенный период времени и рассчитывает характеристики метеоэлементов – температуру, ветер, облачность, осадки и т.д.
Статистические методы прогноза позволяют по прошлому и настоящему состоянию атмосферы спрогнозировать состояние погоды на определенный будущий период времени, т.е. предсказать изменения различных метеоэлементов в будущем.
В оперативной практике синоптики используют несколько методов, иногда несовпадающих по ряду параметров поэтому последнее слово всегда остается за прогнозистом, выбирающим на лучший, с его точки зрения, метод прогнозирования. Часто выбирается комплексный подход – использование сразу нескольких частных методов прогноза одной и той же характеристики состояния атмосферы с целью выбора окончательной формулировки прогноза.
www.ronl.ru