9
Федеральное агентство по образованию
Главное образовательное учреждение высшего профессионального образования
Петрозаводский Государственный Университет
Кольский ФилиалКонтрольная работаДисциплина: БиохимияТема: Гормоны - производные аминокислот. Механизм действия клетки. Катехоламины.
Группа: М/2004-5Заочная форма обученияФакультет: Общеуниверситетская кафедраСпециальность: 060109 2 группа«Сестринское дело»Ревво Ольга Николаевнаг. Апатиты 2005г.СодержаниеВВЕДЕНИЕ1. Гормоны - производные аминокислот2. Синтез гормонов. Механизм действия клетки3. Физиологическая роль катехоламинов. Влияние на секрециюВыводСписок использованной литературыВВЕДЕНИЕОсновной чертой многоклеточных организмов является распределение функций между различными типами клеток. В ходе эволюции это распределение становилось всё более и более существенным, пока не достигло наивысшего уровня у млекопитающих, включая человека. Основные функции всех организмов - размножение, обмен веществ и производство энергии - общие, как у многоклеточных, так и у одноклеточных. Но есть ряд определённых функций, присущие только многоклеточным организмам. В первую очередь, это функции, обеспечивающие координацию организмов в целом. Главной регуляторной системой является система эндокринных желёз. Основными эндокринными железами позвоночных являются поджелудочная железа, гипофиз, щитовидная железа, надпочечники, яичники и семенники. Эти железы вырабатывают специальные химические вещества, называемые гормонами, которые играют роль сигналов, посылаемых в определённых физиологических состояниях организма к соответствующим органам-мишеням, и переносятся кровью. Гормоны обладают высокой биологической активностью и ярко выраженным органотропным действием по отношению к определённым органам и тканям.
В поддержании упорядоченности, согласованности физиологических и метаболических процессов в организме участвует более 100 гормонов и нейромедиаторов. Их химическая природа различна - белки, полипептиды, пептиды, аминокислоты и их производные, стероиды, производные жирных кислот, некоторые нуклеотиды, эфиры и др. [4), стр.204] С химической точки зрения все гормоны можно подразделить на: производные аминокислот, белково-пептидные гормоны и тереоидные гормоны. Гормоны, имеют активные центры, комплиментарные рецепторам, с которыми происходит их связывание.
1. Гормоны - производные аминокислот
Катехоламины - производные пирокатехина, они участвуют в обмене веществ и приспособительных реакциях организма, обеспечивая гомеостаз. К природным гормонам, производным аминокислот, относятся адреналин и норадреналин, синтезирующиеся в мозговом веществе надпочечников.
Мозговое вещество образовано крупными клетками, окрашивающимися солями хрома в желтовато-бурый цвет (хромаффинной ткани). Различают две разновидности этих клеток: эпинефроциты составляют основную массу клеток и вырабатывают адреналин, норэпинефроциты, рассеянные в мозговом веществе в виде небольших групп, вырабатывают норадреналин. [1), стр178] Значительная часть его в надпочечниках подвергается метилированию (по месту расположения боковой цепи), в адреналин. Примерно 80% гормональной секреции приходится на адреналин и 20% - норадреналин. [4), стр.223] Другим источником норадреналина является симпатическая нервная ткань. С ней связана функция норадреналина как медиатора симпатического отдела вегетативной нервной системы.
Катехоламины включают так же дофамин. Дофамин - предшественник норадреналина в процессе его биосинтеза. Как и норадреналин, он - медиатор симпатического звена вегетативной нервной системы. Основноё количество дофамина локализуется в полосатом теле мозговой ткани и базальных ганглиях подбугорья (в гипоталамической области). В центральной нервной системе дофамин играет роль двигательного медиатора. Большое количество его содержится в лёгких, кишечнике, печени - органах, имеющих слабую симпатическую иннервацию. [3), стр. 85]
В норме концентрация адреналина в крови составляет1,9 0,2 нмоль/л, норадреналина 5,2 0,5 нмоль/л, допамина - < 40 нг/л.
2. Синтез гормонов. Механизм действия клетки
Главный путь образования катехоламинов в организме следующий: фенилаланин тирозин диоксифенилаланин (ДОФА) дофамин норадреналин адреналин. В некоторых клетках синтез катехоламинов заканчивается образованием дофамина, а адреналин и норадреналин образуется в меньшем количестве. Такие клетки есть в составе гипоталамуса. Адреналин является преимущественно гормоном, норадреналин - медиатором. Эти биогенные амины нередко называют гормоны-медиаторы. С помощью них происходит передача сигналов при гуморальном пути регуляции.
Синтез катехоламинов в мозговом веществе надпочечников стимулируется нервными импульсами, поступающими по чревному симпатическому нерву. Выделяющийся в синапсах ацетилхолин взаимодействует с холинергическими рецепторами никотинового типа и возбуждает нейросекреторную клетку надпочечника. Благодаря существованию нервно-рефлекторных связей, надпочечники отвечают усилением синтеза и выделения катехоламинов в ответ на болевые и эмоциональные раздражители, гипоксию, мышечную нагрузку, охлаждение и др. Подобный тип регуляции эндокринной железы, являющийся исключением из обычного правила, можно объяснить тем, что мозговой слой надпочечника в эмбриогенезе образуется из нервной ткани. Мозговое вещество надпочечников развивается из эмбриональных клеток - симпатобластов, которые вытесняются из закладки узлов симпатического ствола и превращаются в хромаффинобласты, а последние - в хромаффинные клетки мозгового вещества. [1), стр.179] Таким образом, здесь сохраняется типичный нейрональный тип регуляции.
Существуют и гуморальные пути регуляции активности клеток мозгового вещества надпочечников: синтез и выделение катехоламинов могут возрастать под действием инсулина, глюкокортикоидов при гипогликемии. Катехоламины подавляют как собственный синтез, так и выделение. В адренергических синапсах на пресинаптической мембране есть -адренергические рецепторы. При выбросе катехоламинов в синапс эти рецепторы активируются и оказывают ингибирующее влияние на секрецию катехоламинов.
Катехоламины - гидрофильные вещества, которые не могут диффундировать через клеточную мембрану. Для секреции катехоламинов необходимы ионы Ca. Принято считать, что для выведения гормонов важна не собственно деполяризация мембраны, а происходящий в ней вход Ca в цитоплазму клетки.
Поступив в кровь, гормоны связываются с транспортными белками, что защищает их от разрушения и экскреции. В связанной форме гормон током крови переносится с места секреции к клеткам мишеням. В этих клетках есть рецепторы, которые имеют большее сродство к гормону, чем белки крови. В каждой клетке функционирует обычно несколько типов рецепторов к одному и тому же гормону (например, как -, так и -адренорецепторы). Кроме того, клетка чувствительна обычно к нескольким эндокринным регуляторам - нейромедиаторам, гормонам, простогландинам, факторам роста и др. Каждый из этих регуляторов имеет характерную только для него программу проведения гормонального сигнала в клетке. Обычно 5 - 10% молекул гормона находится в крови в свободном состоянии, и только свободные молекулы могут взаимодействовать с рецептором. При связывании молекул с рецепторами равновесие между гормоном и транспортным белком сдвигается в сторону распада комплекса, и концентрация свободных молекул остаётся практически неизменной. [4), стр.210]
Гематоэнцефалический барьер не пропускает катехоламины из крови в мозг. В то же время их предшественник, диоксифенилаланин (ДОФА), легко проникает через этот барьер и может усилить образование катехоламинов в мозге.
Инактивируются катехоламины в тканях-мишенях, печени и почках. Решающее значение в этом процессе имеют два фермента - моноаминоксидаза, расположенная на внутренней мембране митохондрий и катехол-0-метилтрансфераза, цитозольный фермент.
3. Физиологическая роль катехоламинов. Влияние на секрецию
Продукция этих гормонов резко усиливается при возбуждении симпатической части автономной нервной системы. В свою очередь выделение этих гормонов в кровь приводит к развитию эффектов, аналогичных действию стимуляции симпатических нервов. Разница состоит лишь в том, что гормональный эффект является более длительным. К наиболее важным эффектам катехоламинов относятся стимуляция деятельности сердца, вазоконстрикция, торможение перестальтики и секреции кишечника, расширение зрачка, уменьшение потоотделения, усиление процессов катаболизма и образования энергии.
Адреналин имеет большое сродство к -адренорецепторам, локализующимся в миокарде, вследствие чего вызывает положительные инотропный и хронотропный эффекты в сердце. С другой стороны, норадреналин имеет более высокое сродство к сосудистым -адренорецепторам. Поэтому, вызываемые катехоламинами вазоконстрикция и увеличение периферического сосудистого сопротивления, в большей степени обусловлены действием норадреналина.
При стрессе содержание катехоламинов повышается в 4 - 8 раз. Развивается тахикардия, обильное потоотделение, тремор, головная боль, повышенное чувство тревоги. При опухоли мозгового слоя надпочечников ко всем этим симптомам присоединяется артериальная гипертензия. Поскольку адреналин подавляет секрецию инсулина, активирует гликогенолиз и липолиз, у таких больных наблюдается гипергликемия, глюкозурия, а так же быстрое снижение массы тела.
Содержание адреналина в крови возрастает не только при стрессе, но и при хирургических вмешательствах, в острой фазе инфаркта миокарда, при гипертензии, длительной гиподинамии, тяжёлой физической нагрузке, недостаточности коры надпочечников и почек, при курении и хроническом алкоголизме.
Снижение уровня адреналина наблюдается при недоразвитии мозгового вещества надпочечников, олигофрении, депрессии, миопатиях и мигрени.
Основными конечными продуктами обмена катехоламинов являются ванилил-миндальная кислота и адренохром. Суточное выделение ванилил-миндальной кислоты в норме составляет от 2,5 до 38 мкмоль/сут., или 0,5 - 7 мг/сут. Экскреция с мочой адреналина, норадреналина, дофамина и основных продуктов разрушения катехоламинов при различных патологиях может изменяться в сторону уменьшения или увеличения. Так выделение их с мочой увеличивается при феохромацитоме (опухоли мозгового вещества надпочечников). Это происходит по причине того, что опухоль усиленно продуцирует адреналин, норадреналин, ванилил-миндальную кислоту. Симпатоганглиобластома так же активно вырабатывает норадреналин, дофамин, гомованилиновую кислоту. Кроме того, усиленная выработка и выведение этих веществ происходит вследствие реакции симпатоадреналовой системы на боль и коллапс в острый период инфаркта миокарда, при приступах стенокардии, обострении язвенной болезни желудка и двенадцатиперстной кишки. В результате нарушения катаболизма катехоламинов усиливается их экскреция с мочой при гепатитах и циррозе печени. Из-за нарушения в звене управления активностью симпатоадреналовой системы повышается уровень катехоламинов при гипоталамическом или дианцефальном синдроме, гипертонической болезни в период кризов. Курение, физические нагрузки и эмоциональный стресс так же стимулируют высвобождение катехоламинов в кровь из мозгового вещества надпочечников.
При некоторых заболеваниях уровень экскреции катехоламинов с мочой снижается в результате того, что деятельность хромаффинных клеток мозгового вещества надпочечников подавляется под действием интоксикации. Это происходит при аддисоновой болезни, коллагенозах, остром лейкозе, а так же остро протекающих инфекционных заболеваниях (различной этиологии токсических диспепсиях и др.)
Вывод
Таким образом, функции катехоламинов разнообразны. Они вызывают мобилизацию защитных сил организма в условиях стрессового воздействия посредством активации системы гипоталамус - гипофиз - кора надпочечников; улучшают кровоснабжение сердечной и скелетной мышц, повышают их работоспособность. Кроме того, катехоламины содействуют утилизации запасов углеводов за счёт стимуляции процессов распада гликогена, активируют липолиз, усиливают окисление метаболитов, участвуют в механизмах осуществления нервной проводимости, стимулируют функциональную деятельность органов и систем. Катехоламины имеют неоценимое значение в регуляции деятельности организма, процессах метаболизма и обеспечении гемостаза. В настоящее время в кардиологической практике широко используются и их синтетические аналоги: допексамина гидрохлорид, структурно близкий к допамину и изопротеренол, избирательно активирующий -адренорецепторы миокарда и сосудов.
Список использованной литературы
1. Анатомия человека. В двух томах. Т.2/Авт.: М.Р.Сапин, В.Я. Бочаров, Д.Б. Никитюк и др. /Под ред.М.Р. Сапина. - Изд 5-е, перераб. И доп. - М.: Медицина. - 2001. - 64 с.: ил.
2. Биологическая химия. Учеб. для хим., биол. и мед. спец. вузов / Д.Г. Кнорре, С.Д. Мызина, 3-е изд., испр. М: Высш. шк. 2002. - 479 с.: ил. .
3. Камышников В.С. О чём говорят медицинские анализы: Справ. пособие. - Мн.: Беларусская навука, 1998. - 189 с.
4. Физиология человека: Учебник/ Под ред. В.М. Покровского, Г.Ф. Коротько. - 2-е изд. перераб и доп. - М.: Медицина, 2003. - 656 с: ил. - (Учеб. лит. для студ. мед. вузов).
referatwork.ru
Глава VI. БИОЛОГИЧЕСКИ АКТИВНЫЕ ВЕЩЕСТВА
§ 17. ГОРМОНЫ
Общие представления о гормонах
Слово гормон происходит от греч. гормао - возбуждать.
Гормоны – это органические вещества, выделяемые железами внутренней секреции в небольших количествах, транспортируемые кровью к клеткам-мишеням других органов, где они проявляют специфическую биохимическую или физиологическую реакцию. Некоторые гормоны синтезируются не только в эндокринных железах, но и клетками других тканей.
Для гормонов характерны следующие свойства:
a) гормоны секретируются живыми клетками;
b) секреция гормонов осуществляется без нарушения целостности клетки, они поступают непосредственно в кровяное русло;
c) образуются в очень малых количествах, их концентрация в крови составляет 10-6 – 10-12 моль/л, при стимуляции секреции кокого-либо гормона его концентрация может возрасти на несколько порядков;
d) гормоны обладают высокой биологической активностью;
e) каждый гормон действует на определенные клетки-мишени;
f) гормоны связываются со специфическими рецепторами, образуя гормон-рецепторный комплекс, который определяет биологический ответ;
g) гормоны имеют небольшой период полужизни, обычно несколько минут и не более одного часа.
Гормоны по химическому строению делятся на три группы: белковые и пептидные гормоны, стероидные гормоны и гормоны, являющиеся производными аминокислот.
Пептидные гормоны представлены пептидами с небольшим числом аминокислотных остатков. Белки-гормоны содержат до 200 аминокислотных остатков. К их числу относятся гормоны поджелудочной железы инсулин и глюкагон, гормон роста и др. Большинство белковых гормонов синтезируются в виде предшественников – прогормонов, не обладающих биологической активностью. В частности, инсулин синтезируется в виде неактивного предшественника препроинсулина, который в результате отщепления 23 аминокислотных остатков со стороны N-конца превращается в проинсулин и при удалении еще 34 аминокислотных остатков – в инсулин (рис. 58).
Рис. 58. Образование инсулина из предшественника.
К производным аминокислот относятся гормоны адреналин, норадреналин, тироксин, трииодтиронин. К стероидным принадлежат гормоны коры надпочечников и половые гормоны (рис. 3).
Регуляция секреции гормонов
Верхнюю ступень в регуляции секреции гормонов занимает гипоталамус – специализированная область мозга (рис. 59). Этот орган получает сигналы из центральной нервной системы. В ответ на эти сигналы гипоталамус выделяет ряд регуляторных гипоталамических гормонов. Их называют рилизинг-факторы. Это пептидные гормоны, состоящие из 3 – 15 аминокислотных остатков. Рилизинг-факторы поступают в переднюю долю гипофиза – аденогипофиз, расположенный непосредственно под гипоталамусом. Каждый гипоталамический гормон регулирует секрецию какого-либо одного гормона аденогипофиза. Одни рилизинг-факторы стимулируют секрецию гормонов, их называют либеринами, другие, наоборот, тормозят, это – статины. В случае стимуляции гипофизом в кровь выделяются так называемые тропные гормоны, стимулирующие деятельность других желез внутренней секреции. Те в свою очередь начинают выделять собственные специфические гормоны, которые воздействуют на соответствующие клетки-мишени. Последние в соответствии с полученным сигналом вносят коррективы в свою деятельность. Надо отметить, что циркулирующие в крови гормоны в свою очередь тормозят деятельность гипоталамуса, аденогипофиза и желез, в которых они образовались. Такой способ регуляции носит название регуляции по принципу обратной связи.
Рис. 59. Регуляция секреции гормонов
Интересно знать! Гипоталамические гормоны, по сравнению с другими гормонами, выделяются в наименьших количествах. Например, для получения 1 мг тиролиберина (стимулирующего деятельность щитовидной железы) потребовалось 4 т ткани гипоталамуса.
Механизм действия гормонов
Гормоны отличаются по своему быстродействию. Одни гормоны вызывают быстрый биохимический или физиологический ответ. Например, печень начинает выделять глюкозу в кровь после появления адреналина в кровяном русле уже через несколько секунд. Ответ же на действие стероидных гормонов своего максимума достигает через несколько часов и даже дней. Столь значительные различия в скорости ответа на введение гормона связаны с различным механизмом их действия. Действие стероидных гормонов направлено на регуляцию транскрипции. Стероидные гормоны легко проникают через клеточную мембрану в цитоплазму клетки. Там они связываются со специфическим рецептором, образуя гормон-рецепторный комплекс. Последний, попадая в ядро, взаимодействует с ДНК и активирует синтез иРНК, которая далее транспортируется в цитоплазму и инициирует синтез белка (рис. 60.). Синтезированный белок определяет биологический ответ. Аналогичным механизмом действия обладает и гормон щитовидной железы тироксин.
Действие пептидных, белковых гормонов и адреналина направлено не на активацию синтеза белка, а на регуляцию активности ферментов или других белков. Эти гормоны взаимодействуют с рецепторами, находящимися на поверхности клеточной мембраны. Образовавшийся гормон-рецепторный комплекс запускает серию химических реакций. В результате происходит фосфорилирование некорых ферментов и белков, вследствие которого изменяется их активность. В итоге наблюдается биологический ответ (рис. 61).
Рис. 60. Механизм действия стероидных гормонов
Рис. 61. Механизм действия пептидных гормонов
Гормоны – производные аминокислот
Как отмечалось выше, к гормонам, являющимся производными аминокислот, относятся гормоны мозгового слоя надпочечников (адреналин и норадреналин) и гормоны щитовидной железы (тироксин и трииодтиронин) (рис. 62). Все эти гормоны являются производными тирозина.
Рис. 62. Гормоны – производные аминокислот
Органами–мишенями адреналина являются печень, скелетные мышцы, сердце и сердечно-сосудистая система. Близок по структуре к адреналину и другой гормон мозгового слоя надпочечников – норадреналин. Адреналин ускоряет ритм сердца, повышает кровяное давление, стимулирует расщепление гликогена печени и увеличивает содержание глюкозы в крови, обеспечивая, таким образом, мышцы топливом. Действие адреналина направлено на то, чтобы подготовить организм к экстремальным условиям. В состоянии тревоги концентрация адреналина в крови может увеличиться почти в 1000 раз.
Щитовидная железа, как отмечали выше, секретирует два гормона – тироксин и трииодтиронин, их соответственно обозначают Т4 и Т3. Главным результатом действия этих гормонов является увеличение скорости основного обмена.
При повышенной секреции Т4 и Т3 развивается так называемая Базедова болезнь. В таком состоянии скорость обмена веществ увеличена, пища сгорает быстро. Больные выделяют больше тепла, им свойственна повышенная возбудимость, у них наблюдаются тахикардия, потеря массы тела. Дефицит гормонов щитовидной железы у детей приводит к задержке роста и умственного развития – кретинизму. Недостаточность иода в пище, а иод входит в состав этих гормонов (рис. 62), вызывает увеличение щитовидной железы, развитие эндемического зоба. Добавление иода в пищу приводит к уменьшению зоба. С этой целью в Беларуси в состав пищевой соли вводят иодид калия.
Интересно знать! Если поместить головастиков в воду, не содержащую иод, то их метаморфоз задерживается, они достигают гигантских размеров. Добавление иода в воду приводит к метаморфозу, начинается редукция хвоста, появляются конечности, они превращаются в нормальную взрослую особь.
Пептидные и белковые гормоны
Это наиболее разнообразная группа гормонов. К ним относятся рилизинг-факторы гипоталамуса, тропные гормоны аденогипофиза, гормоны эндокринной ткани поджелудочной железы инсулин и глюкагон, гормон роста и многие другие.
Главной функцией инсулина является поддержание определенного уровня глюкозы в крови. Инсулин способствует поступлению глюкозы в клетки печени и мышц, где она в основном превращается в гликоген. При недостатке выработки инсулина или полном его отсутствии развивается заболевание сахарный диабет. При этом заболевании ткани больного не могут поглощать глюкозу в достаточных количествах, несмотря на ее повышенное содержание в крови. У больных происходит выведение глюкозы с мочой. Это явление получило название «голод среди изобилия».
Глюкагон оказывает противоположное инсулину действие, он повышает содержание глюкозы в крови, способствует распаду гликогена в печени с образованием глюкозы, поступающей затем в кровь. В этом его действие сходно с действием адреналина.
Секретируемый аденогипофизом гормон роста, или соматотропин, ответствен за рост скелета и увеличение массы тела человека и животных. Недостаточность этого гормона приводит к карликовости, избыточная же его секреция выражается в гигантизме, или акромегалии, при которой происходит усиленный рост кистей рук, ступней ног, лицевых костей.
Стероидные гормоны
Как отмечено выше, к стероидным гормонам принадлежат гормоны коры надпочечников и половые гормоны (рис. 3).
В коре надпочечников синтезируются свыше 30 гормонов, их называют также кортикоидами. Кортикоиды делят на три группы. Первая группа – это глюкокортикоиды, они регулируют углеводный обмен, оказывают противовоспалительное и антиаллергическое действие. Вторую группу составляют минералокортикоиды, они поддерживают, главным образом, водно-солевой баланс в организме. К третьей группе относятся кортикоиды, занимающие промежуточное положение между глюкокортикоидами и минералокортикоидами.
Среди половых гормонов различают андрогены (мужские половые гормоны) и эстрогены (женские половые гормоны). Андрогены стимулируют рост и созревание, поддерживают функционирование репродуктивной системы и формирование вторичных половых признаков. Эстрогены регулируют активность женской репродуктивной системы.
ebooks.grsu.by
Федеральное агентство по образованию
Главное образовательное учреждение высшего профессионального образования
Петрозаводский Государственный Университет
Тема: Гормоны – производные аминокислот. Механизм действия клетки. Катехоламины.
Факультет: Общеуниверситетская кафедра
Специальность: 060109 2 группа
«Сестринское дело»
г. Апатиты 2005г.
Содержание
Введение
Гормоны – производные аминокислот
Синтез гормонов. Механизм действия клетки
Физиологическая роль катехоламинов. Влияние на секрецию
Вывод
Список использованной литературы
Введение
Основной чертой многоклеточных организмов является распределение функций между различными типами клеток. В ходе эволюции это распределение становилось всё более и более существенным, пока не достигло наивысшего уровня у млекопитающих, включая человека. Основные функции всех организмов – размножение, обмен веществ и производство энергии – общие, как у многоклеточных, так и у одноклеточных. Но есть ряд определённых функций, присущие только многоклеточным организмам. В первую очередь, это функции, обеспечивающие координацию организмов в целом. Главной регуляторной системой является система эндокринных желёз. Основными эндокринными железами позвоночных являются поджелудочная железа, гипофиз, щитовидная железа, надпочечники, яичники и семенники. Эти железы вырабатывают специальные химические вещества, называемые гормонами, которые играют роль сигналов, посылаемых в определённых физиологических состояниях организма к соответствующим органам-мишеням, и переносятся кровью. Гормоны обладают высокой биологической активностью и ярко выраженным органотропным действием по отношению к определённым органам и тканям.
В поддержании упорядоченности, согласованности физиологических и метаболических процессов в организме участвует более 100 гормонов и нейромедиаторов. Их химическая природа различна – белки, полипептиды, пептиды, аминокислоты и их производные, стероиды, производные жирных кислот, некоторые нуклеотиды, эфиры и др. [4), стр.204] С химической точки зрения все гормоны можно подразделить на: производные аминокислот, белково-пептидные гормоны и тереоидные гормоны. Гормоны, имеют активные центры, комплиментарные рецепторам, с которыми происходит их связывание.
1. Гормоны – производные аминокислот
Катехоламины – производные пирокатехина, они участвуют в обмене веществ и приспособительных реакциях организма, обеспечивая гомеостаз. К природным гормонам, производным аминокислот, относятся адреналин и норадреналин, синтезирующиеся в мозговом веществе надпочечников.
Мозговое вещество образовано крупными клетками, окрашивающимися солями хрома в желтовато-бурый цвет (хромаффинной ткани). Различают две разновидности этих клеток: эпинефроциты составляют основную массу клеток и вырабатывают адреналин, норэпинефроциты, рассеянные в мозговом веществе в виде небольших групп, вырабатывают норадреналин. [1), стр178] Значительная часть его в надпочечниках подвергается метилированию (по месту расположения боковой цепи), в адреналин. Примерно 80% гормональной секреции приходится на адреналин и 20% - норадреналин. [4), стр.223] Другим источником норадреналина является симпатическая нервная ткань. С ней связана функция норадреналина как медиатора симпатического отдела вегетативной нервной системы.
Катехоламины включают так же дофамин. Дофамин – предшественник норадреналина в процессе его биосинтеза. Как и норадреналин, он – медиатор симпатического звена вегетативной нервной системы. Основноё количество дофамина локализуется в полосатом теле мозговой ткани и базальных ганглиях подбугорья (в гипоталамической области). В центральной нервной системе дофамин играет роль двигательного медиатора. Большое количество его содержится в лёгких, кишечнике, печени – органах, имеющих слабую симпатическую иннервацию. [3), стр. 85]
В норме концентрация адреналина в крови составляет1,9 0,2 нмоль/л, норадреналина 5,2 0,5 нмоль/л, допамина – < 40 нг/л.
2. Синтез гормонов. Механизм действия клетки
Главный путь образования катехоламинов в организме следующий: фенилаланин тирозин диоксифенилаланин (ДОФА) дофамин норадреналин адреналин. В некоторых клетках синтез катехоламинов заканчивается образованием дофамина, а адреналин и норадреналин образуется в меньшем количестве. Такие клетки есть в составе гипоталамуса. Адреналин является преимущественно гормоном, норадреналин – медиатором. Эти биогенные амины нередко называют гормоны-медиаторы. С помощью них происходит передача сигналов при гуморальном пути регуляции.
Синтез катехоламинов в мозговом веществе надпочечников стимулируется нервными импульсами, поступающими по чревному симпатическому нерву. Выделяющийся в синапсах ацетилхолин взаимодействует с холинергическими рецепторами никотинового типа и возбуждает нейросекреторную клетку надпочечника. Благодаря существованию нервно-рефлекторных связей, надпочечники отвечают усилением синтеза и выделения катехоламинов в ответ на болевые и эмоциональные раздражители, гипоксию, мышечную нагрузку, охлаждение и др. Подобный тип регуляции эндокринной железы, являющийся исключением из обычного правила, можно объяснить тем, что мозговой слой надпочечника в эмбриогенезе образуется из нервной ткани. Мозговое вещество надпочечников развивается из эмбриональных клеток – симпатобластов, которые вытесняются из закладки узлов симпатического ствола и превращаются в хромаффинобласты, а последние – в хромаффинные клетки мозгового вещества. [1), стр.179] Таким образом, здесь сохраняется типичный нейрональный тип регуляции.
Существуют и гуморальные пути регуляции активности клеток мозгового вещества надпочечников: синтез и выделение катехоламинов могут возрастать под действием инсулина, глюкокортикоидов при гипогликемии. Катехоламины подавляют как собственный синтез, так и выделение. В адренергических синапсах на пресинаптической мембране есть -адренергические рецепторы. При выбросе катехоламинов в синапс эти рецепторы активируются и оказывают ингибирующее влияние на секрецию катехоламинов.
Катехоламины – гидрофильные вещества, которые не могут диффундировать через клеточную мембрану. Для секреции катехоламинов необходимы ионы Ca. Принято считать, что для выведения гормонов важна не собственно деполяризация мембраны, а происходящий в ней вход Ca в цитоплазму клетки.
Поступив в кровь, гормоны связываются с транспортными белками, что защищает их от разрушения и экскреции. В связанной форме гормон током крови переносится с места секреции к клеткам мишеням. В этих клетках есть рецепторы, которые имеют большее сродство к гормону, чем белки крови. В каждой клетке функционирует обычно несколько типов рецепторов к одному и тому же гормону (например, как -, так и -адренорецепторы). Кроме того, клетка чувствительна обычно к нескольким эндокринным регуляторам – нейромедиаторам, гормонам, простогландинам, факторам роста и др. Каждый из этих регуляторов имеет характерную только для него программу проведения гормонального сигнала в клетке. Обычно 5 – 10% молекул гормона находится в крови в свободном состоянии, и только свободные молекулы могут взаимодействовать с рецептором. При связывании молекул с рецепторами равновесие между гормоном и транспортным белком сдвигается в сторону распада комплекса, и концентрация свободных молекул остаётся практически неизменной. [4), стр.210]
Гематоэнцефалический барьер не пропускает катехоламины из крови в мозг. В то же время их предшественник, диоксифенилаланин (ДОФА), легко проникает через этот барьер и может усилить образование катехоламинов в мозге.
Инактивируются катехоламины в тканях-мишенях, печени и почках. Решающее значение в этом процессе имеют два фермента – моноаминоксидаза, расположенная на внутренней мембране митохондрий и катехол-0-метилтрансфераза, цитозольный фермент.
3. Физиологическая роль катехоламинов. Влияние на секрецию
Продукция этих гормонов резко усиливается при возбуждении симпатической части автономной нервной системы. В свою очередь выделение этих гормонов в кровь приводит к развитию эффектов, аналогичных действию стимуляции симпатических нервов. Разница состоит лишь в том, что гормональный эффект является более длительным. К наиболее важным эффектам катехоламинов относятся стимуляция деятельности сердца, вазоконстрикция, торможение перестальтики и секреции кишечника, расширение зрачка, уменьшение потоотделения, усиление процессов катаболизма и образования энергии.
Адреналин имеет большое сродство к -адренорецепторам, локализующимся в миокарде, вследствие чего вызывает положительные инотропный и хронотропный эффекты в сердце. С другой стороны, норадреналин имеет более высокое сродство к сосудистым -адренорецепторам. Поэтому, вызываемые катехоламинами вазоконстрикция и увеличение периферического сосудистого сопротивления, в большей степени обусловлены действием норадреналина.
При стрессе содержание катехоламинов повышается в 4 – 8 раз. Развивается тахикардия, обильное потоотделение, тремор, головная боль, повышенное чувство тревоги. При опухоли мозгового слоя надпочечников ко всем этим симптомам присоединяется артериальная гипертензия. Поскольку адреналин подавляет секрецию инсулина, активирует гликогенолиз и липолиз, у таких больных наблюдается гипергликемия, глюкозурия, а так же быстрое снижение массы тела.
Содержание адреналина в крови возрастает не только при стрессе, но и при хирургических вмешательствах, в острой фазе инфаркта миокарда, при гипертензии, длительной гиподинамии, тяжёлой физической нагрузке, недостаточности коры надпочечников и почек, при курении и хроническом алкоголизме.
Снижение уровня адреналина наблюдается при недоразвитии мозгового вещества надпочечников, олигофрении, депрессии, миопатиях и мигрени.
Основными конечными продуктами обмена катехоламинов являются ванилил-миндальная кислота и адренохром. Суточное выделение ванилил-миндальной кислоты в норме составляет от 2,5 до 38 мкмоль/сут., или 0,5 – 7 мг/сут. Экскреция с мочой адреналина, норадреналина, дофамина и основных продуктов разрушения катехоламинов при различных патологиях может изменяться в сторону уменьшения или увеличения. Так выделение их с мочой увеличивается при феохромацитоме (опухоли мозгового вещества надпочечников). Это происходит по причине того, что опухоль усиленно продуцирует адреналин, норадреналин, ванилил-миндальную кислоту. Симпатоганглиобластома так же активно вырабатывает норадреналин, дофамин, гомованилиновую кислоту. Кроме того, усиленная выработка и выведение этих веществ происходит вследствие реакции симпатоадреналовой системы на боль и коллапс в острый период инфаркта миокарда, при приступах стенокардии, обострении язвенной болезни желудка и двенадцатиперстной кишки. В результате нарушения катаболизма катехоламинов усиливается их экскреция с мочой при гепатитах и циррозе печени. Из-за нарушения в звене управления активностью симпатоадреналовой системы повышается уровень катехоламинов при гипоталамическом или дианцефальном синдроме, гипертонической болезни в период кризов. Курение, физические нагрузки и эмоциональный стресс так же стимулируют высвобождение катехоламинов в кровь из мозгового вещества надпочечников.
При некоторых заболеваниях уровень экскреции катехоламинов с мочой снижается в результате того, что деятельность хромаффинных клеток мозгового вещества надпочечников подавляется под действием интоксикации. Это происходит при аддисоновой болезни, коллагенозах, остром лейкозе, а так же остро протекающих инфекционных заболеваниях (различной этиологии токсических диспепсиях и др.)
Вывод
Таким образом, функции катехоламинов разнообразны. Они вызывают мобилизацию защитных сил организма в условиях стрессового воздействия посредством активации системы гипоталамус – гипофиз – кора надпочечников; улучшают кровоснабжение сердечной и скелетной мышц, повышают их работоспособность. Кроме того, катехоламины содействуют утилизации запасов углеводов за счёт стимуляции процессов распада гликогена, активируют липолиз, усиливают окисление метаболитов, участвуют в механизмах осуществления нервной проводимости, стимулируют функциональную деятельность органов и систем. Катехоламины имеют неоценимое значение в регуляции деятельности организма, процессах метаболизма и обеспечении гемостаза. В настоящее время в кардиологической практике широко используются и их синтетические аналоги: допексамина гидрохлорид, структурно близкий к допамину и изопротеренол, избирательно активирующий -адренорецепторы миокарда и сосудов.
Список использованной литературы
Анатомия человека. В двух томах. Т.2/Авт.: М.Р.Сапин, В.Я. Бочаров, Д.Б. Никитюк и др. /Под ред.М.Р. Сапина. – Изд 5-е, перераб. И доп. – М.: Медицина. – 2001. – 64 с.: ил.
Биологическая химия. Учеб. для хим., биол. и мед. спец. вузов / Д.Г. Кнорре, С.Д. Мызина, 3-е изд., испр. М: Высш. шк. 2002. – 479 с.: ил. .
Камышников В.С. О чём говорят медицинские анализы: Справ. пособие. – Мн.: Беларусская навука, 1998. – 189 с.
Физиология человека: Учебник/ Под ред. В.М. Покровского, Г.Ф. Коротько. – 2-е изд. перераб и доп. – М.: Медицина, 2003. – 656 с: ил. – (Учеб. лит. для студ. мед. вузов).
topref.ru
Главная » Рефераты » Текст работы «Гормоны - производные аминокислот. Катехоламины - Медицина»
9
Федеральное агентство по образованию
Главное образовательное учреждение высшего профессионального образования
Петрозаводский Государственный Университет
Кольский ФилиалКонтрольная работаДисциплина: БиохимияТема: Гормоны - производные аминокислот. Механизм действия клетки. Катехоламины.
Группа: М/2004-5Заочная форма обученияФакультет: Общеуниверситетская кафедраСᴨȇциальность: 060109 2 группа«Сестринское дело»Ревво Ольга Николаевнаг. Апатиты 2005г.Содержание - В в е д е н и е -1. Гормоны - производные аминокислот2. Синтез гормонов. Механизм действия клетки3. Физиологическая роль катехоламинов. Влияние на секрециюВыводБиблиография - В в е д е н и е -Основной чертой многоклеточных организмов является распределение функций между различными типами клеток. В ходе эволюции это распределение становилось всё более и более существенным, пока не достигло наивысшего уровня у млекопитающих, включая человека. Основные функции всех организмов - размножение, обмен веществ и производство энергии - общие, как у многоклеточных, так и у одноклеточных. Но есть ряд определённых функций, присущие только многоклеточным организмам. В ᴨȇрвую очередь, это функции, обесᴨȇчивающие координацию организмов в целом. Главной регуляторной системой является система эндокринных желёз. Основными эндокринными железами позвоночных являются поджелудочная железа, гипофиз, щитовидная железа, надпочечники, яичники и семенники. Эти железы вырабатывают сᴨȇциальные химические вещества, называемые гормонами, которые играют роль сигналов, посылаемых в определённых физиологических состояниях организма к соответствующим органам-мишеням, и ᴨȇреносятся кровью. Гормоны обладают высокой биологической активностью и ярко выраженным органотропным действием по отношению к определённым органам и тканям.
В поддержании упорядоченности, согласованности физиологических и метаболических процессов в организме участвует более 100 гормонов и нейромедиаторов. Их химическая природа различна - белки, полиᴨȇптиды, ᴨȇптиды, аминокислоты и их производные, стероиды, производные жирных кислот, некоторые нуклеотиды, эфиры и др. [4), стр.204] С химической точки зрения все гормоны можно подразделить на: производные аминокислот, белково-ᴨȇптидные гормоны и тереоидные гормоны. Гормоны, имеют активные центры, комплиментарные рецепторам, с которыми происходит их связывание.
1. Гормоны - производные аминокислот
Катехоламины - производные пирокатехина, они участвуют в обмене веществ и приспособительных реакциях организма, обесᴨȇчивая гомеостаз. К природным гормонам, производным аминокислот, относятся адреналин и норадреналин, синтезирующиеся в мозговом веществе надпочечников.
Мозговое вещество образовано крупными клетками, окрашивающимися солями хрома в желтовато-бурый цвет (хромаффинной ткани). Различают две разновидности этих клеток: эпинефроциты составляют основную массу клеток и вырабатывают адреналин, норэпинефроциты, рассеянные в мозговом веществе в виде небольших групп, вырабатывают норадреналин. [1), стр178] Значительная часть его в надпочечниках подвергается метилированию (по месту расположения боковой цепи), в адреналин. Примерно 80% гормональной секреции приходится на адреналин и 20% - норадреналин. [4), стр.223] Другим источником норадреналина является симпатическая нервная ткань. С ней связана функция норадреналина как медиатора симпатического отдела вегетативной нервной системы.
Катехоламины включают так же дофамин. Дофамин - предшественник норадреналина в процессе его биосинтеза. Как и норадреналин, он - медиатор симпатического звена вегетативной нервной системы. Основноё количество дофамина локализуется в полосатом теле мозговой ткани и базальных ганглиях подбугорья (в гипоталамической области). В центральной нервной системе дофамин играет роль двигательного медиатора. Большое количество его содержится в лёгких, кишечнике, ᴨȇчени - органах, имеющих слабую симпатическую иннервацию. [3), стр. 85]
В норме концентрация адреналина в крови составляет1,9 0,2 нмоль/л, норадреналина 5,2 0,5 нмоль/л, допамина - < 40 нг/л.
2. Синтез гормонов. Механизм действия клетки
Главный путь образования катехоламинов в организме следующий: фенилаланин тирозин диоксифенилаланин (ДОФА) дофамин норадреналин адреналин. В некотоҏыҳ клетках синтез катехоламинов заканчивается образованием дофамина, а адреналин и норадреналин образуется в меньшем количестве. Такие клетки есть в составе гипоталамуса. Адреналин является преимущественно гормоном, норадреналин - медиатором. Эти биогенные амины нередко называют гормоны-медиаторы. С помощью них происходит ᴨȇредача сигналов при гуморальном пути регуляции.
Синтез катехоламинов в мозговом веществе надпочечников стимулируется нервными импульсами, поступающими по чревному симпатическому нерву. Выделяющийся в синапсах ацетилхолин взаимодействует с холинергическими рецепторами никотинового типа и возбуждает нейросекреторную клетку надпочечника. Благодаря существованию нервно-рефлекторных связей, надпочечники отвечают усилением синтеза и выделения катехоламинов в ответ на болевые и эмоциональные раздражители, гипоксию, мышечную нагрузку, охлаждение и др. Подобный тип регуляции эндокринной железы, являющийся исключением из обычного правила, можно объяснить тем, что мозговой слой надпочечника в эмбриогенезе образуется из нервной ткани. Мозговое вещество надпочечников развивается из эмбриональных клеток - симпатобластов, которые вытесняются из закладки узлов симпатического ствола и превращаются в хромаффинобласты, а последние - в хромаффинные клетки мозгового вещества. [1), стр.179] Итак, здесь сохраняется типичный нейрональный тип регуляции.
Существуют и гуморальные пути регуляции активности клеток мозгового вещества надпочечников: синтез и выделение катехоламинов могут возрастать под действием инсулина, глюкокортикоидов при гипогликемии. Катехоламины подавляют как собственный синтез, так и выделение. В адренергических синапсах на пресинаптической мембране есть -адренергические рецепторы. При выбросе катехоламинов в синапс эти рецепторы активируются и оказывают ингибирующее влияние на секрецию катехоламинов.
Катехоламины - гидрофильные вещества, которые не могут диффундировать через клеточную мембрану. Для секреции катехоламинов необходимы ионы Ca. Принято считать, что для выведения гормонов важна не собственно деполяризация мембраны, а происходящий в ней вход Ca в цитоплазму клетки.
Поступив в кровь, гормоны связываются с транспортными белками, что защищает их от разрушения и экскреции. В связанной форме гормон током крови ᴨȇреносится с места секреции к клеткам мишеням. В этих клетках есть рецепторы, которые имеют большее сродство к гормону, чем белки крови. В каждой клетке функционирует обычно несколько типов рецепторов к одному и тому же гормону (например, как -, так и -адренорецепторы). Кроме того, клетка чувствительна обычно к нескольким эндокринным регуляторам - нейромедиаторам, гормонам, простогландинам, факторам роста и др. Каждый из этих регуляторов имеет характерную только для него программу проведения гормонального сигнала в клетке. Обычно 5 - 10% молекул гормона находится в крови в свободном состоянии, и только свободные молекулы могут взаимодействовать с рецептором. При связывании молекул с рецепторами равновесие между гормоном и транспортным белком сдвигается в сторону распада комплекса, и концентрация свободных молекул остаётся практически неизменной. [4), стр.210]
Гематоэнцефалический барьер не пропускает катехоламины из крови в мозг. В то же время их предшественник, диоксифенилаланин (ДОФА), легко проникает через этот барьер и может усилить образование катехоламинов в мозге.
Инактивируются катехоламины в тканях-мишенях, ᴨȇчени и почках. Решающее значение в этом процессе имеют два фермента - моноаминоксидаза, расположенная на внутренней мембране митохондрий и катехол-0-метилтрансфераза, цитозольный фермент.
3. Физиологическая роль катехоламинов. Влияние на секрецию
Продукция этих гормонов резко усиливается при возбуждении симпатической части автономной нервной системы. В свою очередь выделение этих гормонов в кровь приводит к развитию эффектов, аналогичных действию стимуляции симпатических нервов. Разница состоит лишь в том, что гормональный эффект является более длительным. К наиболее важным эффектам катехоламинов относятся стимуляция деятельности сердца, вазоконстрикция, торможение ᴨȇрестальтики и секреции кишечника, расширение зрачка, уменьшение потоотделения, усиление процессов катаболизма и образования энергии.
Адреналин имеет большое сродство к -адренорецепторам, локализующимся в миокарде, вследствие чего вызывает положительные инотропный и хронотропный эффекты в сердце. С другой стороны, норадреналин имеет более высокое сродство к сосудистым -адренорецепторам. В связи с этим, вызываемые катехоламинами вазоконстрикция и увеличение ᴨȇриферического сосудистого сопротивления, в большей стеᴨȇни обусловлены действием норадреналина.
При стрессе содержание катехоламинов повышается в 4 - 8 раз. Развивается тахикардия, обильное потоотделение, тремор, головная боль, повышенное чувство тревоги. При опухоли мозгового слоя надпочечников ко всем этим симптомам присоединяется артериальная гиᴨȇртензия. Поскольку адреналин подавляет секрецию инсулина, активирует гликогенолиз и липолиз, у таких больных наблюдается гиᴨȇргликемия, глюкозурия, а так же быстрое снижение массы тела.
Содержание адреналина в крови возрастает не только при стрессе, но и при хирургических вмешательствах, в острой фазе инфаркта миокарда, при гиᴨȇртензии, длительной гиподинамии, тяжёлой физической нагрузке, недостаточности коры надпочечников и почек, при курении и хроническом алкоголизме.
Снижение уровня адреналина наблюдается при недоразвитии мозгового вещества надпочечников, олигофрении, депрессии, миопатиях и мигрени.
Основными конечными продуктами обмена катехоламинов являются ванилил-миндальная кислота и адренохром. Суточное выделение ванилил-миндальной кислоты в норме составляет от 2,5 до 38 мкмоль/сут., или 0,5 - 7 мг/сут. Экскреция с мочой адреналина, норадреналина, дофамина и основных продуктов разрушения катехоламинов при различных патологиях может изменяться в сторону уменьшения или увеличения. Так выделение их с мочой увеличивается при феохромацитоме (опухоли мозгового вещества надпочечников). Это происходит по причине того, что опухоль усиленно продуцирует адреналин, норадреналин, ванилил-миндальную кислоту. Симпатоганглиобластома так же активно вырабатывает норадреналин, дофамин, гомованилиновую кислоту. Кроме того, усиленная выработка и выведение этих веществ происходит вследствие реакции симпатоадреналовой системы на боль и коллапс в острый ᴨȇриод инфаркта миокарда, при приступах стенокардии, обострении язвенной болезни желудка и двенадцатиᴨȇрстной кишки. В результате нарушения катаболизма катехоламинов усиливается их экскреция с мочой при гепатитах и циррозе ᴨȇчени. Из-за нарушения в звене управления активностью симпатоадреналовой системы повышается уровень катехоламинов при гипоталамическом или дианцефальном синдроме, гиᴨȇртонической болезни в ᴨȇриод кризов. Курение, физические нагрузки и эмоциональный стресс так же стимулируют высвобождение катехоламинов в кровь из мозгового вещества надпочечников.
При некотоҏыҳ заболеваниях уровень экскреции катехоламинов с мочой снижается в результате того, что деятельность хромаффинных клеток мозгового вещества надпочечников подавляется под действием интоксикации. Это происходит при аддисоновой болезни, коллагенозах, остром лейкозе, а так же остро протекающих инфекционных заболеваниях (различной этиологии токсических дисᴨȇпсиях и др.)
Вывод
Итак, функции катехоламинов разнообразны. Они вызывают мобилизацию защитных сил организма в условиях стрессового воздействия посредством активации системы гипоталамус - гипофиз - кора надпочечников; улучшают кровоснабжение сердечной и скелетной мышц, повышают их работоспособность. Кроме того, катехоламины содействуют утилизации запасов углеводов за счёт стимуляции процессов распада гликогена, активируют липолиз, усиливают окисление метаболитов, участвуют в механизмах осуществления нервной проводимости, стимулируют функциональную деятельность органов и систем. Катехоламины имеют неоценимое значение в регуляции деятельности организма, процессах метаболизма и обесᴨȇчении гемостаза. В настоящее время в кардиологической практике широко используются и их синтетические аналоги: доᴨȇксамина гидрохлорид, структурно близкий к допамину и изопротеренол, избирательно активирующий -адренорецепторы миокарда и сосудов.
Библиография
1. Анатомия человека. В двух томах. Т.2/Авт.: М.Р.Сапин, В.Я. Бочаров, Д.Б. Никитюк и др. /Под ред.М.Р. Сапина. - Изд 5-е, ᴨȇрераб. И доп. - М.: Медицина. - 2001. - 64 с.: ил.
2. Биологическая химия. Учеб. для хим., биол. и мед. сᴨȇц. вузов / Д.Г. Кнорре, С.Д. Мызина, 3-е изд., испр. М: Высш. шк. 2002. - 479 с.: ил. .
3. Камышников В.С. О чём говорят медицинские анализы: Справ. пособие. - Мн.: Беларусская навука, 1998. - 189 с.
4. Физиология человека: Учебник/ Под ред. В.М. Покровского, Г.Ф. Коротько. - 2-е изд. ᴨȇрераб и доп. - М.: Медицина, 2003. - 656 с: ил. - (Учеб. лит. для студ. мед. вузов).
Перейти в список рефератов, курсовых, контрольных и дипломов по дисциплине Медицина
referatwork.ru
Федеральное агентство по образованию
Главное образовательное учреждение высшего профессионального образования
Петрозаводский Государственный Университет
Контрольная работа
Тема: Гормоны – производные аминокислот. Механизм действия клетки. Катехоламины.
Факультет: Общеуниверситетская кафедра
Специальность: 060109 2 группа
«Сестринское дело»
г. Апатиты 2005г.
Содержание
Введение
1. Гормоны – производные аминокислот
2. Синтез гормонов. Механизм действия клетки
3. Физиологическая роль катехоламинов. Влияние на секрецию
Вывод
Список использованной литературы
Введение
Основной чертой многоклеточных организмов является распределение функций между различными типами клеток. В ходе эволюции это распределение становилось всё более и более существенным, пока не достигло наивысшего уровня у млекопитающих, включая человека. Основные функции всех организмов – размножение, обмен веществ и производство энергии – общие, как у многоклеточных, так и у одноклеточных. Но есть ряд определённых функций, присущие только многоклеточным организмам. В первую очередь, это функции, обеспечивающие координацию организмов в целом. Главной регуляторной системой является система эндокринных желёз. Основными эндокринными железами позвоночных являются поджелудочная железа, гипофиз, щитовидная железа, надпочечники, яичники и семенники. Эти железы вырабатывают специальные химические вещества, называемые гормонами, которые играют роль сигналов, посылаемых в определённых физиологических состояниях организма к соответствующим органам-мишеням, и переносятся кровью. Гормоны обладают высокой биологической активностью и ярко выраженным органотропным действием по отношению к определённым органам и тканям.
В поддержании упорядоченности, согласованности физиологических и метаболических процессов в организме участвует более 100 гормонов и нейромедиаторов. Их химическая природа различна – белки, полипептиды, пептиды, аминокислоты и их производные, стероиды, производные жирных кислот, некоторые нуклеотиды, эфиры и др. [4), стр.204] С химической точки зрения все гормоны можно подразделить на: производные аминокислот, белково-пептидные гормоны и тереоидные гормоны. Гормоны, имеют активные центры, комплиментарные рецепторам, с которыми происходит их связывание.
1. Гормоны – производные аминокислот
Катехоламины – производные пирокатехина, они участвуют в обмене веществ и приспособительных реакциях организма, обеспечивая гомеостаз. К природным гормонам, производным аминокислот, относятся адреналин и норадреналин, синтезирующиеся в мозговом веществе надпочечников.
Мозговое вещество образовано крупными клетками, окрашивающимися солями хрома в желтовато-бурый цвет (хромаффинной ткани). Различают две разновидности этих клеток: эпинефроциты составляют основную массу клеток и вырабатывают адреналин , норэпинефроциты, рассеянные в мозговом веществе в виде небольших групп, вырабатывают норадреналин . [1), стр178] Значительная часть его в надпочечниках подвергается метилированию (по месту расположения боковой цепи), в адреналин. Примерно 80% гормональной секреции приходится на адреналин и 20% - норадреналин. [4), стр.223] Другим источником норадреналина является симпатическая нервная ткань. С ней связана функция норадреналина как медиатора симпатического отдела вегетативной нервной системы.
Катехоламины включают так же дофамин. Дофамин – предшественник норадреналина в процессе его биосинтеза. Как и норадреналин, он – медиатор симпатического звена вегетативной нервной системы. Основноё количество дофамина локализуется в полосатом теле мозговой ткани и базальных ганглиях подбугорья (в гипоталамической области). В центральной нервной системе дофамин играет роль двигательного медиатора. Большое количество его содержится в лёгких, кишечнике, печени – органах, имеющих слабую симпатическую иннервацию. [3), стр. 85]
В норме концентрация адреналина в крови составляет1,9 ± 0,2 нмоль/л, норадреналина 5,2 ± 0,5 нмоль/л, допамина – < 40 нг/л.
2. Синтез гормонов. Механизм действия клетки
Главный путь образования катехоламинов в организме следующий: фенилаланин ® тирозин ® диоксифенилаланин (ДОФА) ® дофамин ® норадреналин ® адреналин. В некоторых клетках синтез катехоламинов заканчивается образованием дофамина, а адреналин и норадреналин образуется в меньшем количестве. Такие клетки есть в составе гипоталамуса. Адреналин является преимущественно гормоном, норадреналин – медиатором. Эти биогенные амины нередко называют гормоны-медиаторы. С помощью них происходит передача сигналов при гуморальном пути регуляции.
Синтез катехоламинов в мозговом веществе надпочечников стимулируется нервными импульсами, поступающими по чревному симпатическому нерву. Выделяющийся в синапсах ацетилхолин взаимодействует с холинергическими рецепторами никотинового типа и возбуждает нейросекреторную клетку надпочечника. Благодаря существованию нервно-рефлекторных связей, надпочечники отвечают усилением синтеза и выделения катехоламинов в ответ на болевые и эмоциональные раздражители, гипоксию, мышечную нагрузку, охлаждение и др. Подобный тип регуляции эндокринной железы, являющийся исключением из обычного правила, можно объяснить тем, что мозговой слой надпочечника в эмбриогенезе образуется из нервной ткани. Мозговое вещество надпочечников развивается из эмбриональных клеток – симпатобластов, которые вытесняются из закладки узлов симпатического ствола и превращаются в хромаффинобласты, а последние – в хромаффинные клетки мозгового вещества. [1), стр.179] Таким образом, здесь сохраняется типичный нейрональный тип регуляции.
Существуют и гуморальные пути регуляции активности клеток мозгового вещества надпочечников: синтез и выделение катехоламинов могут возрастать под действием инсулина, глюкокортикоидов при гипогликемии. Катехоламины подавляют как собственный синтез, так и выделение. В адренергических синапсах на пресинаптической мембране есть a-адренергические рецепторы. При выбросе катехоламинов в синапс эти рецепторы активируются и оказывают ингибирующее влияние на секрецию катехоламинов.
Катехоламины – гидрофильные вещества, которые не могут диффундировать через клеточную мембрану. Для секреции катехоламинов необходимы ионы Ca. Принято считать, что для выведения гормонов важна не собственно деполяризация мембраны, а происходящий в ней вход Ca в цитоплазму клетки.
Поступив в кровь, гормоны связываются с транспортными белками, что защищает их от разрушения и экскреции. В связанной форме гормон током крови переносится с места секреции к клеткам мишеням. В этих клетках есть рецепторы, которые имеют большее сродство к гормону, чем белки крови. В каждой клетке функционирует обычно несколько типов рецепторов к одному и тому же гормону (например, как a-, так и b-адренорецепторы). Кроме того, клетка чувствительна обычно к нескольким эндокринным регуляторам – нейромедиаторам, гормонам, простогландинам, факторам роста и др. Каждый из этих регуляторов имеет характерную только для него программу проведения гормонального сигнала в клетке. Обычно 5 – 10% молекул гормона находится в крови в свободном состоянии, и только свободные молекулы могут взаимодействовать с рецептором. При связывании молекул с рецепторами равновесие между гормоном и транспортным белком сдвигается в сторону распада комплекса, и концентрация свободных молекул остаётся практически неизменной. [4), стр.210]
Гематоэнцефалический барьер не пропускает катехоламины из крови в мозг. В то же время их предшественник, диоксифенилаланин (ДОФА), легко проникает через этот барьер и может усилить образование катехоламинов в мозге.
Инактивируются катехоламины в тканях-мишенях, печени и почках. Решающее значение в этом процессе имеют два фермента – моноаминоксидаза, расположенная на внутренней мембране митохондрий и катехол-0-метилтрансфераза, цитозольный фермент.
3. Физиологическая роль катехоламинов. Влияние на секрецию
Продукция этих гормонов резко усиливается при возбуждении симпатической части автономной нервной системы. В свою очередь выделение этих гормонов в кровь приводит к развитию эффектов, аналогичных действию стимуляции симпатических нервов. Разница состоит лишь в том, что гормональный эффект является более длительным. К наиболее важным эффектам катехоламинов относятся стимуляция деятельности сердца, вазоконстрикция, торможение перестальтики и секреции кишечника, расширение зрачка, уменьшение потоотделения, усиление процессов катаболизма и образования энергии.
Адреналин имеет большое сродство к b-адренорецепторам, локализующимся в миокарде, вследствие чего вызывает положительные инотропный и хронотропный эффекты в сердце. С другой стороны, норадреналин имеет более высокое сродство к сосудистым a-адренорецепторам. Поэтому, вызываемые катехоламинами вазоконстрикция и увеличение периферического сосудистого сопротивления, в большей степени обусловлены действием норадреналина.
При стрессе содержание катехоламинов повышается в 4 – 8 раз. Развивается тахикардия, обильное потоотделение, тремор, головная боль, повышенное чувство тревоги. При опухоли мозгового слоя надпочечников ко всем этим симптомам присоединяется артериальная гипертензия. Поскольку адреналин подавляет секрецию инсулина, активирует гликогенолиз и липолиз, у таких больных наблюдается гипергликемия, глюкозурия, а так же быстрое снижение массы тела.
Содержание адреналина в крови возрастает не только при стрессе, но и при хирургических вмешательствах, в острой фазе инфаркта миокарда, при гипертензии, длительной гиподинамии, тяжёлой физической нагрузке, недостаточности коры надпочечников и почек, при курении и хроническом алкоголизме.
mirznanii.com
Федеральное агентство по образованию
Главное образовательное учреждение высшего профессионального образования
Петрозаводский Государственный Университет
Кольский Филиал
Контрольная работа
Дисциплина: Биохимия
Тема: Гормоны — производные аминокислот. Механизм действия клетки. Катехоламины.
Группа: М/2004−5
Заочная форма обучения
Факультет: Общеуниверситетская кафедра
Специальность: 60 109 2 группа
«Сестринское дело»
г. Апатиты 2005 г.
Содержание
Введение
1. Гормоны — производные аминокислот
2. Синтез гормонов. Механизм действия клетки
3. Физиологическая роль катехоламинов. Влияние на секрецию
Вывод
Список использованной литературы
Введение
Основной чертой многоклеточных организмов является распределение функций между различными типами клеток. В ходе эволюции это распределение становилось всё более и более существенным, пока не достигло наивысшего уровня у млекопитающих, включая человека. Основные функции всех организмов — размножение, обмен веществ и производство энергии — общие, как у многоклеточных, так и у одноклеточных. Но есть ряд определённых функций, присущие только многоклеточным организмам. В первую очередь, это функции, обеспечивающие координацию организмов в целом. Главной регуляторной системой является система эндокринных желёз. Основными эндокринными железами позвоночных являются поджелудочная железа, гипофиз, щитовидная железа, надпочечники, яичники и семенники. Эти железы вырабатывают специальные химические вещества, называемые гормонами, которые играют роль сигналов, посылаемых в определённых физиологических состояниях организма к соответствующим органам-мишеням, и переносятся кровью. Гормоны обладают высокой биологической активностью и ярко выраженным органотропным действием по отношению к определённым органам и тканям.
В поддержании упорядоченности, согласованности физиологических и метаболических процессов в организме участвует более 100 гормонов и нейромедиаторов. Их химическая природа различна — белки, полипептиды, пептиды, аминокислоты и их производные, стероиды, производные жирных кислот, некоторые нуклеотиды, эфиры и др. [4), стр. 204] С химической точки зрения все гормоны можно подразделить на: производные аминокислот, белково-пептидные гормоны и тереоидные гормоны. Гормоны, имеют активные центры, комплиментарные рецепторам, с которыми происходит их связывание.
1. Гормоны — производные аминокислот
Катехоламины — производные пирокатехина, они участвуют в обмене веществ и приспособительных реакциях организма, обеспечивая гомеостаз. К природным гормонам, производным аминокислот, относятся адреналин и норадреналин, синтезирующиеся в мозговом веществе надпочечников.
Мозговое вещество образовано крупными клетками, окрашивающимися солями хрома в желтовато-бурый цвет (хромаффинной ткани). Различают две разновидности этих клеток: эпинефроциты составляют основную массу клеток и вырабатывают адреналин, норэпинефроциты, рассеянные в мозговом веществе в виде небольших групп, вырабатывают норадреналин. [1), стр178] Значительная часть его в надпочечниках подвергается метилированию (по месту расположения боковой цепи), в адреналин. Примерно 80% гормональной секреции приходится на адреналин и 20% - норадреналин. [4), стр. 223] Другим источником норадреналина является симпатическая нервная ткань. С ней связана функция норадреналина как медиатора симпатического отдела вегетативной нервной системы.
Катехоламины включают так же дофамин. Дофамин — предшественник норадреналина в процессе его биосинтеза. Как и норадреналин, он — медиатор симпатического звена вегетативной нервной системы. Основноё количество дофамина локализуется в полосатом теле мозговой ткани и базальных ганглиях подбугорья (в гипоталамической области). В центральной нервной системе дофамин играет роль двигательного медиатора. Большое количество его содержится в лёгких, кишечнике, печени — органах, имеющих слабую симпатическую иннервацию. [3), стр. 85]
В норме концентрация адреналина в крови составляет1,9 0,2 нмоль/л, норадреналина 5,2 0,5 нмоль/л, допамина — < 40 нг/л.
2. Синтез гормонов. Механизм действия клетки
Главный путь образования катехоламинов в организме следующий: фенилаланин тирозин диоксифенилаланин (ДОФА) дофамин норадреналин адреналин. В некоторых клетках синтез катехоламинов заканчивается образованием дофамина, а адреналин и норадреналин образуется в меньшем количестве. Такие клетки есть в составе гипоталамуса. Адреналин является преимущественно гормоном, норадреналин — медиатором. Эти биогенные амины нередко называют гормоны-медиаторы. С помощью них происходит передача сигналов при гуморальном пути регуляции.
Синтез катехоламинов в мозговом веществе надпочечников стимулируется нервными импульсами, поступающими по чревному симпатическому нерву. Выделяющийся в синапсах ацетилхолин взаимодействует с холинергическими рецепторами никотинового типа и возбуждает нейросекреторную клетку надпочечника. Благодаря существованию нервно-рефлекторных связей, надпочечники отвечают усилением синтеза и выделения катехоламинов в ответ на болевые и эмоциональные раздражители, гипоксию, мышечную нагрузку, охлаждение и др. Подобный тип регуляции эндокринной железы, являющийся исключением из обычного правила, можно объяснить тем, что мозговой слой надпочечника в эмбриогенезе образуется из нервной ткани. Мозговое вещество надпочечников развивается из эмбриональных клеток — симпатобластов, которые вытесняются из закладки узлов симпатического ствола и превращаются в хромаффинобласты, а последние — в хромаффинные клетки мозгового вещества. [1), стр. 179] Таким образом, здесь сохраняется типичный нейрональный тип регуляции.
Существуют и гуморальные пути регуляции активности клеток мозгового вещества надпочечников: синтез и выделение катехоламинов могут возрастать под действием инсулина, глюкокортикоидов при гипогликемии. Катехоламины подавляют как собственный синтез, так и выделение. В адренергических синапсах на пресинаптической мембране есть -адренергические рецепторы. При выбросе катехоламинов в синапс эти рецепторы активируются и оказывают ингибирующее влияние на секрецию катехоламинов.
Катехоламины — гидрофильные вещества, которые не могут диффундировать через клеточную мембрану. Для секреции катехоламинов необходимы ионы Ca. Принято считать, что для выведения гормонов важна не собственно деполяризация мембраны, а происходящий в ней вход Ca в цитоплазму клетки.
Поступив в кровь, гормоны связываются с транспортными белками, что защищает их от разрушения и экскреции. В связанной форме гормон током крови переносится с места секреции к клеткам мишеням. В этих клетках есть рецепторы, которые имеют большее сродство к гормону, чем белки крови. В каждой клетке функционирует обычно несколько типов рецепторов к одному и тому же гормону (например, как -, так и -адренорецепторы). Кроме того, клетка чувствительна обычно к нескольким эндокринным регуляторам — нейромедиаторам, гормонам, простогландинам, факторам роста и др. Каждый из этих регуляторов имеет характерную только для него программу проведения гормонального сигнала в клетке. Обычно 5 — 10% молекул гормона находится в крови в свободном состоянии, и только свободные молекулы могут взаимодействовать с рецептором. При связывании молекул с рецепторами равновесие между гормоном и транспортным белком сдвигается в сторону распада комплекса, и концентрация свободных молекул остаётся практически неизменной. [4), стр. 210]
Гематоэнцефалический барьер не пропускает катехоламины из крови в мозг. В то же время их предшественник, диоксифенилаланин (ДОФА), легко проникает через этот барьер и может усилить образование катехоламинов в мозге.
Инактивируются катехоламины в тканях-мишенях, печени и почках. Решающее значение в этом процессе имеют два фермента — моноаминоксидаза, расположенная на внутренней мембране митохондрий и катехол-0-метилтрансфераза, цитозольный фермент.
3. Физиологическая роль катехоламинов. Влияние на секрецию
Продукция этих гормонов резко усиливается при возбуждении симпатической части автономной нервной системы. В свою очередь выделение этих гормонов в кровь приводит к развитию эффектов, аналогичных действию стимуляции симпатических нервов. Разница состоит лишь в том, что гормональный эффект является более длительным. К наиболее важным эффектам катехоламинов относятся стимуляция деятельности сердца, вазоконстрикция, торможение перестальтики и секреции кишечника, расширение зрачка, уменьшение потоотделения, усиление процессов катаболизма и образования энергии.
Адреналин имеет большое сродство к -адренорецепторам, локализующимся в миокарде, вследствие чего вызывает положительные инотропный и хронотропный эффекты в сердце. С другой стороны, норадреналин имеет более высокое сродство к сосудистым -адренорецепторам. Поэтому, вызываемые катехоламинами вазоконстрикция и увеличение периферического сосудистого сопротивления, в большей степени обусловлены действием норадреналина.
При стрессе содержание катехоламинов повышается в 4 — 8 раз. Развивается тахикардия, обильное потоотделение, тремор, головная боль, повышенное чувство тревоги. При опухоли мозгового слоя надпочечников ко всем этим симптомам присоединяется артериальная гипертензия. Поскольку адреналин подавляет секрецию инсулина, активирует гликогенолиз и липолиз, у таких больных наблюдается гипергликемия, глюкозурия, а так же быстрое снижение массы тела.
Содержание адреналина в крови возрастает не только при стрессе, но и при хирургических вмешательствах, в острой фазе инфаркта миокарда, при гипертензии, длительной гиподинамии, тяжёлой физической нагрузке, недостаточности коры надпочечников и почек, при курении и хроническом алкоголизме.
Снижение уровня адреналина наблюдается при недоразвитии мозгового вещества надпочечников, олигофрении, депрессии, миопатиях и мигрени.
Основными конечными продуктами обмена катехоламинов являются ванилил-миндальная кислота и адренохром. Суточное выделение ванилил-миндальной кислоты в норме составляет от 2,5 до 38 мкмоль/сут., или 0,5 — 7 мг/сут. Экскреция с мочой адреналина, норадреналина, дофамина и основных продуктов разрушения катехоламинов при различных патологиях может изменяться в сторону уменьшения или увеличения. Так выделение их с мочой увеличивается при феохромацитоме (опухоли мозгового вещества надпочечников). Это происходит по причине того, что опухоль усиленно продуцирует адреналин, норадреналин, ванилил-миндальную кислоту. Симпатоганглиобластома так же активно вырабатывает норадреналин, дофамин, гомованилиновую кислоту. Кроме того, усиленная выработка и выведение этих веществ происходит вследствие реакции симпатоадреналовой системы на боль и коллапс в острый период инфаркта миокарда, при приступах стенокардии, обострении язвенной болезни желудка и двенадцатиперстной кишки. В результате нарушения катаболизма катехоламинов усиливается их экскреция с мочой при гепатитах и циррозе печени. Из-за нарушения в звене управления активностью симпатоадреналовой системы повышается уровень катехоламинов при гипоталамическом или дианцефальном синдроме, гипертонической болезни в период кризов. Курение, физические нагрузки и эмоциональный стресс так же стимулируют высвобождение катехоламинов в кровь из мозгового вещества надпочечников.
При некоторых заболеваниях уровень экскреции катехоламинов с мочой снижается в результате того, что деятельность хромаффинных клеток мозгового вещества надпочечников подавляется под действием интоксикации. Это происходит при аддисоновой болезни, коллагенозах, остром лейкозе, а так же остро протекающих инфекционных заболеваниях (различной этиологии токсических диспепсиях и др.)
Вывод
Таким образом, функции катехоламинов разнообразны. Они вызывают мобилизацию защитных сил организма в условиях стрессового воздействия посредством активации системы гипоталамус — гипофиз — кора надпочечников; улучшают кровоснабжение сердечной и скелетной мышц, повышают их работоспособность. Кроме того, катехоламины содействуют утилизации запасов углеводов за счёт стимуляции процессов распада гликогена, активируют липолиз, усиливают окисление метаболитов, участвуют в механизмах осуществления нервной проводимости, стимулируют функциональную деятельность органов и систем. Катехоламины имеют неоценимое значение в регуляции деятельности организма, процессах метаболизма и обеспечении гемостаза. В настоящее время в кардиологической практике широко используются и их синтетические аналоги: допексамина гидрохлорид, структурно близкий к допамину и изопротеренол, избирательно активирующий -адренорецепторы миокарда и сосудов.
Список использованной литературы
1. Анатомия человека. В двух томах. Т. 2/Авт.: М. Р. Сапин, В. Я. Бочаров, Д. Б. Никитюк и др. /Под ред.М. Р. Сапина. — Изд 5-е, перераб. И доп. — М.: Медицина. — 2001. — 64 с.: ил.
2. Биологическая химия. Учеб. для хим., биол. и мед. спец. вузов / Д. Г. Кнорре, С. Д. Мызина, 3-е изд., испр. М: Высш. шк. 2002. — 479 с.: ил..
3. Камышников В. С. О чём говорят медицинские анализы: Справ. пособие. — Мн.: Беларусская навука, 1998. — 189 с.
4. Физиология человека: Учебник/ Под ред. В. М. Покровского, Г. Ф. Коротько. — 2-е изд. перераб и доп. — М.: Медицина, 2003. — 656 с: ил. — (Учеб. лит. для студ. мед. вузов).
Показать Свернутьreferat.bookap.info
Гормоны и гормоноиды — производные тирозина. Катехоламины. Катехоламиновые гормоноиды — адреналин (эпинефрин) и норадреналин (норэпинефрин) — секретируются мозговым слоем надпочечников, дофамин — гипофизотропными ядрами гипоталамуса. Эти соединения — производные молекулы L-тирозина, к кольцевой части которого в 3-е положение введена дополнительная гидроксильная группа (диоксифенилаланиновое, или катехоловое, ядро), а боковая цепь декарбоксилирована:
Гормоны — производные тирозина Структура этих гормоноидов была впервые описана Олдричем в 1901 — 1902 гг. Они обнаружены в организме беспозвоночных даже у представителей Protozoa. Химическая структура этих соединений в историческом плане — одна из наиболее древних.Адреналин и норадреналин вызывают два ряда эффектов, обозначаемых а- и в-адрснергическими, сопряженными с взаимодействием катехоламинов соответственно с а- и в-адренореиепторами реагирующих клеток (Алквист. 1945, 1966). а-Адренергическое действие охватывает такие быстрые эффекты, как вазоконстрикция, сокращения «третьего века» (мигательной перепонки), сокращение капсулы селезенки, матки, семявыносящих протоков, а также торможение гладкой мускулатуры желудка, кишечника и мочевого пузыря.
Относительно медленно развивающиеся в-эффекты (в1 и в2) сводятся к регуляции сердечной деятельности, релаксации бронхов, дилятации некоторых групп кровеносных сосудов, гипергликемии и гиперлипоацидемии, а также торможению перистальтики кишечника и желудка. Установлено, что у адреналина более выражено в-адренергическое действие, а у норадреналина — а-адренергическое (Аиёнс, I960; Алквист, 1966). а-Адренергические эффекты обоих катехоламинов избирательно снимаются а-адреноблокаторами (фентоламином, тропафеном, эрготамином и его производными), в-адрснергические эффекты — специальными в-адреноблокаторами (пропранололом, альпренололом, бензодиксином). а-Адреноэффекты первично связаны с деполяризацией или с гиперполяризацией клеточных мембран, в-адреноэффскты — с метаболическими сдвигами в клетках.
Исследование связи структурных элементов молекул катехоламинов с проявлением их биологической активности показало, что для проявления а-адренергических свойств особую роль играет свободная аминогруппа боковой цепи молекулы.
Алкилирование аминогруппы приводит к убыванию а-адренергических свойств и усилению в-адренергических, причем ослабление одних эффектов и усиление других пропорционально размерам углеводородного радикала, присоединяемого к N-аминогруппе. Так, L-изопротеренол почти лишен а-адренергических свойств, но оказывает более сильное в-адренергическое действие, чем адреналин. Вместе с тем наличие аминоазота в боковой цепи молекулы катехоламинов необходимо для проявления различного вида адренергических эффектов.
Видимо, аминоазот, а также бензольное кольцо и в-гидроксил этаноламинной боковой цепи являются существенными компонентами актонной части молекул катехоламинов, причем выраженность а- или в-эффектов определяется степенью алкилирования N. Вместе с тем в формировании адресной части катехоламинов важен 3, 4-диоксифенильный фрагмент их молекулы. Для проявления а-адренергических эффектов достаточно присутствия только одного м-фенольного гидроксила: для эффективного связывания гормоноида с в-адренорсцепторами необходимы оба гидроксила фенольного кольца.
Различные модификации, производимые в фенольном кольце, резко снижают сродство катехоламинов к в-адренорецепторам и превращают адреномиметики в в-адреноблокаторы.
Дофамин, секретируемый особыми нейросекреторными клетками гипоталамуса, способен вызывать торможение секреции пролактина и в меньшей степени СТГ аденогипофизом через специальные дофаминергические рецепторы. Его агонист парлодел используется при патологической секреции молочных желез у женщин (синдром галактореи).
Таковы трийодтиронин (3,5,3'-трийодтиронин, Т3) и тироксин (3,5,3',5'-тетрайодтиронин, Т4) — гормоны фолликулярных клеток щитовидной железы позвоночных, осуществляющие регуляцию энергообмена, синтеза белка и развития организма.
Структура Т4 впервые охарактеризована Кендаллом (1915), Т3 — Гроссом и Питт-Риверсом (1952). Т3 и Т4 обнаружены в некоторых сине-зеленых водорослях.
В отличие от катехоламинов тирониновые гормоны за счет присутствия в их молекуле двух плоских бензольных колец относительно плохо растворимы в воде при нейтральных значениях рН. Их водорастворимость значительно возрастает при увеличении щелочности среды. Вместе с тем они хорошо растворимы в некоторых спиртах, в частности в бутаноле, что используют при определении гормонов в плазме крови и тканях. Из-за относительно низкой полярности тирониновые соединения обладают выраженной липофильностью и в отличие от катехоламинов сравнительно легко могут проходить через клеточные мембраны.
Биологическая активность тиреоидных гормонов определяется совокупностью структурных особенностей их молекулы: дифенилэфирной связью, боковой цепью (остаток аланина) и йодфенольными функциями. Важнейшую роль в проявлении специфической гормональной активности играют степень йодирования тиронина и положение атомов йода в кольцах. Так, моно- и дийодтиронины малоактивны. Активны лишь тиронины, содержащие 3 или 4 атома йода. Наибольшее значение имеет йодирование 3-го и 5-го положений в кольце А и 3-го положения в кольце В. Показано, что наибольшей биологической активностью обладает Т3, Т4 менее эффективен, а 3,3',5'-трийодтиронин вообще не обладает гормональной активностью.
Некоторые авторы считают, что Т3 — не только секретируемый гормон, но и активированная на периферии форма тироксина.
По-видимому, боковая цепь и дийодированное кольцо А — рекогнонная часть гормональной молекулы, а монойодированное кольцо В — актон (Йоргенсен и др., 1962; Тата, 1980). Полагают, что гормоны щитовидной железы являются лишь носителями (транспортерами) йода — самостоятельного специфического регулятора определенных обменных процессов в клетке. Эффект тиреоидных гормонов проявляется лишь постольку, поскольку в клетках реагирующих органов и тканей происходит дейодирование гормонов, т.е. высвобождение атомов йода из органических соединений. Приведенная точка зрения не лишена оснований.
В определенных условиях йод способен воспроизводить отдельные эффекты тиреоидных гормонов. Однако в целом предположение об уникальной и самостоятельной роли йода опровергается рядом экспериментальных данных. Так, оказалось, что изопропиловое производное Т3, в котором йод в положении 3' замещен изопропиловым радикалом, более активно, чем природный гормон. Тироксиноподобное действие оказывает также производное Т4, в котором все атомы йода были замещены на бромированные изопропиловые радикалы (Тэйлор и др., 1967; Тата, 1980).
Таким образом, йод в молекуле тиреоидных гормонов, очевидно, не имеет уникального самостоятельного значения. Его роль сводится, по-видимому, к обеспечению структурного соответствия гормона и специфического циторецептора.
Производное триптофана мелатонин — гормоноид эпифиза и ряда периферических органов. По структуре — это N-ацетил—5-метокситриптамин (Лернер и др., 1959, 1968):
Производные триптофана Главная функция этого гормона — конденсирование меланинов вокруг ядра в меланофорах, приводящее к посветлению покровных тканей. Роль мелатонина в регуляции пигментного обмена наиболее выражена у низших позвоночных. Наряду с влиянием на пигментный обмен мелатонин способен в определенных концентрациях вызывать у разных видов позвоночных антигонадотропный эффект, а также тормозить другие функции гипофиза. Он оказывает и седативное действие.Кроме мелатонина в эпифизе образуется и аккумулируется также другое биологически активное, но негормональное производное триптофана — серотонин (5-окситриптамин), близкое по структуре к мелатонину и один из ближайших его предшественников в процессе биосинтеза. В соответствии с этим мелатонин можно рассматривать не только как производное триптофана, точнее триптамина, но и как производное серотонина. Очевидно, для проявления специфической биологической активности мелатонина, отличающейся от активности серотонина, очень важно метилирование 5-оксигруппы в индольном кольце и наличие ацетильной группы в боковой цепи молекулы гормона. При этом N-ацетильная группа, видимо, важна прежде всего для снятия биологической активности серотонина.
В.Б. Розен
medbe.ru