Сочинение: Планеты Земной группы. Планеты земной группы реферат


Реферат Планеты Земной группы

Формат: doc

Дата создания: 04.12.2001

Размер: 4.02 KB

Скачать реферат

Планеты Земной группы.

Меркурий.

Меркурий является ближайшей к Солнцу планетой. Его диаметр всего в полтора раза больше диаметра Луны. Орбита имеет значительный эксцентриситет по сравнению с другими планетами. В перигелии Меркурий проходит на расстоянии 46 млн. км от Солнца, а в афелии удаляется до 70 млн. километров. Из-за сложения неравномерного движения по орбите (благодаря ее сильной вытянутости) с медленным вращением, Солнце на небе Меркурия останавливается, и даже двигается назад. На Меркурии нет времен года. Визуальные наблюдения затруднены, т.к. Меркурий в элонгации не удаляется больше чем на 18-28 градусов, большую часть времени скрываясь в лучах Солнца. Радиолокационными измерениями установлено, что вращение вокруг оси прямое, сидерический период равен примерно 59 земных суток, а меркурианские сутки длятся 220 земных суток. Атмосфера Меркурия имеет крайне низкую плотность и по существу является потоком частиц выбрасываемых Солнцем и охватывающим Меркурий. Более 100 лет назад утвердилось мнение, что Меркурий всегда обращен одной стороной к Солнцу, что приводит к тому, что половина его поверхности оказывается раскаленной. Первые сомнения принесли наблюдения теплового излучения планеты в 1962 году. Дневная сторона планеты оказалась не так горяча, как ожидалось, а от ночной стороны исходил ощутимый поток тепла. Тем не менее, температурный контраст очень высокий: температура на экваторе днем +480°C, а ночью -165°C. Поверхность Меркурия, изобилует кратерами и очень напоминает лунную. Кратеры не столь глубокие как на Луне, что говорит о большей силе тяжести на Меркурии. Хорошо видны эскарпы – следы тектонической активности – крутые уступы длиной от 20 до 500 км и высотой 1-2 км. Происхождение эскарпов связывают со сжатием планеты в процессе ее остывания и приливным влиянием Солнца. По-видимому, эскарпы образовались раньше, чем кратеры меркурианской поверхности, так как они местами разрушены кратерами. «Морей» там меньше, чем на Луне, причем они небольшие. Диаметр меркурианского Моря Зноя 1300 км, как и Моря Дождей на Луне. Как и на Луне, большинство кратеров образовались в результате падений метеоритов. Там, где кратеров немного, мы видим сравнительно молодые участки поверхности. Старые, разрушенные кратеры заметно отличаются от более молодых кратеров, хорошо сохранившихся. Наилучшими условиями для наблюдений являются весенний период для западной элонгации (утренняя видимость) и осенний для восточной элонгации. В эти моменты эклиптика расположена таким образом, что высота Меркурия над горизонтом наибольшая. Спутников Меркурий не имеет.

Меркурий

Венера.

После Меркурия следует планета Венера, масса и радиус которой очень близки к земным. Орбита Венеры почти круговая (эксцентриситет менее 1%), но видимые угловые размеры изменяются очень сильно из-за того, что расстояние от Венеры до Земли в верхнем и нижнем соединениях меняется от 40 до 260 млн. км. При визуальных наблюдениях отчетливо видны фазы Венеры, однако различить детали на поверхности не удается из-за равномерной плотной атмосферы, открытой еще Ломоносовым при прохождении Венеры по диску Солнца. Вращение вокруг оси(обратное) удалось установить радиолокационным способом. Период вращения оказался равным 243 земным дням, а период обращения вокруг Солнца - 225 суткам. За один оборот вокруг Солнца на Венере наблюдаются два его восхода и захода. . Продолжительность солнечных суток на Венере составляет 116,8 земных суток, а венерианский год состоит приблизительно из двух венерианских солнечных суток. Диаметр Венеры почти такой же как у Земли (95%), а масса составляет 80% от массы Земли, и густая плотная атмосфера делает их очень похожими. Температура у поверхности Венеры очень высокая (около 500 град С) и остается все время почти одинаковой. Высокая температура поверхности Венеры обусловлена парниковым эффектом. Густая плотная атмосфера пропускает лучи Солнца, но задерживает инфракрасное тепловое излучение, идущее от нагретой поверхности. Облачный слой сильно ослабляет солнечный свет, освещенность у поверхности Венеры примерно такая же, как у поверхности Земли в облачный день, однако что небо Венеры и ее ландшафт имеют оранжевый цвет из-за особенностей состава атмосферы. Радиолокационные наземные наблюдения обнаружили на этой планете множество неглубоких кратеров, диаметры которых от 30 до 700 км. В целом эта планета оказалась наиболее гладкой из всех планет земной группы, хотя и на ней есть большие горные массивы и протяженные возвышенности, вдвое превышающие по размерам земной Тибет. Грандиозен потухший вулкан Максвелл, его высота 12 км, поперечник подошвы 1000 км, диаметр кратера на вершине 100 км. Сведения о внутреннем строении Венеры опираются, главным образом, на теорию. Современная модель планеты трехслойная: ядро, нижняя мантия и верхняя мантия. Ядро планеты несколько меньше, чем у Земли. На него приходится приблизительно 12% массы планеты (у Земли 16%). Предполагается, что оно состоит из расплавленного железа. Литосфера, может быть, более мощная, толщина коры - неизвестна. С внутренним строением планеты связана и проблема отсутствия магнитного поля: на всех планетах земной группы, кроме Венеры, есть собственное магнитное поле. Самыми сильными магнитными полями обладают планеты гиганты и Земля. Спутников Венера не имеет.

Венера

Марс.

Поверхность Марса изобилует кратерами. Особенно много их в южном полушарии планеты. Темные области, занимающие значительную часть поверхности планеты, получили название морей. Диаметры некоторых морей превышают 2000 км. Возвышенности, напоминающие земные континенты, представляющие собой светлые поля оранжево-красного цвета. Как и на Венере, здесь есть огромные вулканические конусы. Высота наибольшего из них - Олимпуса - превышает 25 км, диаметр кратера 90 км. Диаметр основания этой гигантской конусообразной горы более 500 км. О том, что миллионы лет назад на Марсе происходили мощные вулканические извержения и смещались поверхностные пласты, свидетельствуют остатки лавовых потоков, огромные разломы поверхности (один из них - Маринер - тянется на 4000 км), многочисленные ущелья и каньоны. Возможно, что именно некоторые из этих образований (например, цепочки кратеров или протяженные ущелья) исследователи Марса еще 100 лет назад приняли за "каналы", существование которых впоследствии долгое время пытались объяснить деятельностью разумных обитателей Марса. Перестал быть загадкой и красноватый цвет Марса. Он объясняется тем, что грунт этой планеты содержит много глин, богатых железом. С близкого расстояния неоднократно фотографировались спутники Марса Деймос и Фобос и передавались панорамы поверхности "Красной планеты". Атмосфера Марса очень разрежена. При таком давлении вода закипает уже при температуре +2С. Именно поэтому никаких рек, озер или морей, заполненных водой на Марсе нет. По-видимому, каньоны Марса никогда не были заполнены водой, а происхождение их связано с древней тектоникой Марса - с движением огромных плит марсианской коры. Однако, были получены и снимки явно водно-эрозионных образований. В частности это видно на примере русла древней реки Нергал. Внимательное изучение русел древних рек показало, что их обмеление происходило постепенно. Много обсуждался вопрос, что же это было? Вода? Или какая другая текучая субстанция? Сошлись, все-таки, на воде. Куда же она делась? Вопросов много, на которые сейчас пока нет ответа. Известно лишь, что атмосфера Марса на 95% состоит из углекислого газа, водяных паров - всего 0,05%, кислорода 0,1-0,4%, азота 2,5%.

1)Марс

2)Вулкан “Олимпус”

3)Каньон “Маринер”

4)Спутники Марса:

Фобос и Деймос.

Подобные документы:

Реферат Вселенная, Галактика и Солнечная система На протяжении последних триста лет, начиная от Рене Декарта (1596-1650), было высказано несколько десятков космогонических гипотез, в которых рассмотрены самые разнообразные варианты ранней истории Солнечной системы. Говоря о далёких объектах Вселенной, астрономы обычно жалуются, что во многих случаях имеется слишком мало данных, чтобы осветить развитие объектов.

Реферат Планета Венера Венера – вторая после Меркурия по удаленности от Солнца (108 млн. км) планета земной группы. Она занимает промежуточное положение между Меркурием и Землей. Ее орбита имеет форму почти правильного круга, планета, почти такого же размера, как Земля. Орбита Венеры ближе к окружности, чем у любой другой планеты Солнечной Системы. Временами Венера подходит к Земле на расстояние, меньшее 40 млн. км.

Реферат Планета Марс Марс – от греческого Mas – мужская сила – бог войны, в римском пантеоне почитался как отец римского народа, охранитель полей и стад, позднее – покровитель конных состязаний. Марс – четвертая планета Солнечной системы. Сияющий кроваво-красный диск, увиденный в телескоп, наверняка ужаснул астронома, открывшего эту планету. Поэтому ее так и назвали.

Реферат Происхождение и развитие солнечной системы Груша Мария Владимировна ТЕМА : Происхождение и развитие солнечной системы РЕФЕРАТ Владивосток 2001 г. Содержание : космогонические ГИПОТЕЗЫ ПРОИСХОЖДЕНИЯ СОЛНЕЧНОЙ СИСТЕМЫ Паршаков Евгений Афанасьевич. Происхождение и развитие Солнечной системы (http://parshakov.chat.ru/) [1]

Реферат Строение солнечной системы Солнечная система представляет собой группу небесных тел, весьма различных по своим размерам и физическому строению. В эту группу входят: Солнце, Девять больших планет, вместе с 61 спутником, более 100000 планет (астероидов) , порядка десяти комет, а также бесчисленное множество метеорных тел движущихся как роями так и в виде отдельных частиц.

Реферат Планеты гиганты Далеко за орбитой Марса (самой дальней от Солнца планеты земной группы) и главным поясом астероидов мы встречаем четырех гигантов: Юпитер, Сатурн, Уран и Нептун. Их часто обсуждают вместе, и во многих отношениях это логично, хотя пара Юпитер - Сатурн сильно отличается от пары Уран - Нептун, и каждая планета обладает собственными уникальными характеристиками.

Реферат Обзор солнечной системы Солнечная система представляет собой группу небесных тел, весьма различных по своим размерам и физическому строению. В эту группу входят: Солнце, Девять больших планет, вместе с 61 спутником, более 100000 планет (астероидов) , порядка десяти комет, а также бесчисленное множество метеорных тел движущихся как роями так и в виде отдельных частиц.

Реферат Планета Земля Земля как одна из планет Солнечной системы на первый взгляд ничем не примечательна. Это не самая большая, но и не самая малая из планет. Она не ближе других к солнцу, но и не обитает на периферии планетной системы. И всё же Земля обладает одной уникальной особенностью – на ней есть жизнь. Однако при взгляде на Землю из космоса это не заметно. Хорошо видны облака, плавающие в атмосфере.

Реферат Все про Марс внимание на ярко-оранжевую звезду, которая время от времени сияла на небосклоне. Древние египтяне и жители Вавилона называли ее просто красной звездой. Пифагор предложил именовать ее Пирей, что значит "пламенный". Древние греки посвящали все планеты богам. И конечно, для бога войны Ареса не нашлось более подходящего символа, чем красноватая звезда в черном небе.

Реферат Форма, размеры и движения Земли и их геофизические следствия. Гравитационное поле Земли Тема: « Форма , размеры и движения Земли и их геофизические следствия. Гравитационное поле Земли. Основные характеристики, их изменения по широте, глубине и высоте над поверхностью Земли. Гравитационные аномалии. » Солнечная система включает девять крупных планет, которые со своими 57 спутниками обращаются вокруг массивной звезды по эллиптическим орбитам (рис. 1).

Реферат Проблема Великого Молчания Внеземных Цивилизаций Понятие «проблема внеземных цивилизаций» как таковая зародилась достаточно давно и до сих пор не имеет окончательного решения. Да и само понятие «проблемы…» можно истолковать по-разному. С одной стороны, это может быть проблемой существования внеземных цивилизаций (далее ВЦ), с другой стороны – это проблема поиска ВЦ, с третьей – проблема поиска ВЦ (если они существуют).

Доклад: Загадки Венеры Венера – наша ближайшая соседка. Её размеры, масса и плотность пород близки к земным. Вместе с тем её магнитное поле в три раза слабее, чем на Земле. Венера очень медленно вращается вокруг своей оси в направлении, обратном вращению Земли. Давление на её поверхности достигает 10 млн. Па, а температура около +5000 С. На высоте 49 км над планетой простирается мощный слой облаков.

Реферат Исследование космоса ВСЕЛЕННАЯ - извечная загадка бытия, манящая тайна навсегда. Ибо нет конца у познания. Есть лишь непрерывное преодоление границ неведомого. Но как только сделан этот шаг – открываются новые горизонты. А за ними – новые тайны. Так было, и так будет всегда. Особенно в познании Космоса. Слово «космос» происходит от греческого “kosmos”, синонима астрономического определения Вселенной.

nreferat.ru

Доклад - Планеты земной группы

Содержание:

§1.Планеты земной группы…………………...стр.2

~Краткаяхарактеристика планет земной группы

1.Меркурий……………………………………..стр.3

2.Венера………………………………………....стр.3

3.Марс…………………………………………...стр.3

4.Земля…………………………………………..стр.4

§2.Марс…………………………………………стр.6

1.<span Times New Roman"">            

Марс как планета………………………….стр.6

2.<span Times New Roman"">            

Поверхность Марса.....................................стр.8

3.<span Times New Roman"">            

Атмосфера иКлимат.................................стр.10

4.<span Times New Roman"">            

Спутники МарсаФобос и Деймос...........стр.12

5.<span Times New Roman"">            

Жизнь на Марсе.........................................стр.13

6.<span Times New Roman"">              

Использованнаялитература.....................стр.16

Планеты земной группы

Солнечнаясистема- спаянная силами взаимного притяжения система небесных тел. В неевходят; центральное тело – Солнце 9 больших планет с их спутниками ( которыхсейчас известно уже больше 60), несколько тысяч малых планет, или астероидов(открыто свыше 5 тыс., в действительности их гораздо больше), несколько сотнаблюдавшихся комет и бесчисленное множество метеорных тел.

Большиепланеты подразделяются на две основные группы: планеты земной группы и планетыюпитерианской группы, или планеты-гиганты – Юпитер, Сатурн, Уран и Нептун. Кпланетам земной группы относятся: Меркурий, Венера, Земля и Марс. Земная группаформировалась ближе к Солнцу. Планеты этой группы сравнительно малы и имеютбольшую плотность. Основными их составляющими являются силикаты(соединениякремния) и железо. Состав этих планет свидетельствует, что их рост происходил вотсутствие легких газов за счет каменистых частиц и тел, содержащих различноеколичество железа и других металлов.

 Главное условие роста тел при столкновениях-их низкие относительные скорости на начальном этапе. Чтобы тела достигликилометровых размеров, хаотические скорости не должны превышать 1м/с. Этовозможно, только если нет сильного воздействия извне. В зоне роста планетземной группы внешние воздействия были слабы, лишь в зоне Марса сказалосьвлияние Юпитера, замедлявшее его рост и уменьшавшее массу. Период рассеяния(диссипации) газа из зоны земных планет продолжался не более 10 млн. лет. Восновном газ выдувался солнечным ветром, т.е. потоками заряженных частиц(протонов и электронов), выбрасываемых с поверхности Солнца со скоростями сотникилометров в секунду.

Меркурий.

Наближайшей к Солнцу маленькой планете Меркурий еще не побывали ни космонавты, ниавтоматические станции. Но люди кое-что знают о ней благодаря исследованиям сЗемли и с пролетавшего вблизи аппарата «Маринер-10»(1974-1975гг.). Условия тамеще хуже, чем на Луне. Атмосферы нет, а температура поверхности в среднемсоставляет около 80 С, причем с глубиной она, естественно, возрастает.

Венера.

Венерув недавнем прошлом астрономы считали почти точной копией молодой Земли.Строились догадки, что скрывается под ее облачным слоем: теплые океаны,папоротники, динозавры? Увы из-за близости к Солнцу Венера совсем не похожа наЗемлю: давление атмосферы у поверхности этой планеты в 90 раз больше земного, атемпература и днем, и ночью около 460 С. Хотя на Венеру опустилось несколькоавтоматических зондов, поиском жизни они не занимались:  трудно представить себе жизнь в такихусловиях. Над поверхность Венеры уже не так жарко: на высоте 55 км давление итемпература такие же, как на Земле. Но атмосфера Венеры состоит из углекислогогаза, к тому же в ней плавают облака из серной кислоты. Словом тоже не лучшееместо для жизни.

Марс.

Марсне без оснований считался пригодной для жизни планетой. Хотя климат там оченьсуровый (летним днем температура составляет около 0 С, ночью-80 С, а зимойдоходит до – 120 С), но все же это не безнадежно плохо для жизни: существует жеона на Антарктиде и на вершинах Гималаев. Однако на марсе есть еще однапроблема- крайне разряженная атмосфера, в 100 раз менее плотная, чем на Земле.Она не спасает Марс от губительных ультрафиолетовых лучей.

ЗЕМЛЯ.

Землякажется нам такой огромной, такой надёжной и так много значит для нас, что мыне замечаем её второстепенного положения в семье планет. Слабое единственноеутешение состоит в том, что Земля — наибольшая из планет земной группы. К томуже она обладает атмосферой средней мощности, значительная часть земнойповерхности покрыта тонким неоднородным слоем воды. А вокруг неё вращаетсявеличественный спутник, диаметр которого равен четверти земного диаметра.Однако этих аргументов вряд ли достаточно для того, чтобы поддерживать нашекосмическое самомнение. Крошечная по астрономическим масштабам, Земля – этонаша родная планета, и поэтому она заслуживает самого тщательного изучения.

Послекропотливой и упорной работы десятков поколений учёных было неопровержимодоказано, что Земля вовсе не «центр мироздания», а самая обыкновенная планета,т.е. холодный шар, движущийся вкруг Солнца.

Всоответствии с законами Кеплера  Земля обращается вокруг Солнца спеременной скоростью по слегка вытянутому эллипсу. Ближе всего к солнцу онаподходит в начале января, когда в Северном полушарии царит зима, дальше всегоотходит в начале июля, когда у нас лето. Разница в удалении Земли от Солнцамежду январём и июлем составляет около 5 млн. км. Поэтому зима в северномполушарии чуть-чуть теплее, чем в Южном, а лето, наоборот, чуть-чутьпрохладнее. Это явственнее всего даёт себя знать в Арктике и в Антарктиде.

Эллиптичностьорбиты Земли оказывает на характер времён года лишь косвенное и оченьнезначительное влияние. Причина смены времён года кроется в наклоне земной оси.

Осьвращения Земли расположена под углом в 66.5є к плоскости её движения вокругСолнца. Для большинства практических задач можно принимать, что ось вращенияЗемли перемещается в пространстве всегда параллельно самой себе. На самом жеделе ось вращения Земли, или, что-то же самое, ось мира, поскольку онипараллельны, описывает на небесной сфере малый круг, совершая один полныйоборот за 26 тыс. лет.

Вближайшие сотни лет северный полюс мира будет находиться недалеко от Полярнойзвезды, затем начнёт удаляться от неё, и название последней звезды в ручкековша Малой Медведицы – Полярная – утратит свой смысл. Через 12 тыс. лет полюсмира приблизится к самой яркой звезде северного неба – Веге из созвездия Лиры.

Описанноеявление носит название прецессии оси вращения Земли. Обнаружил явлениепрецессии уже Гиппарх, который сравнил положения звёзд в своём каталоге ссоставленным задолго до него звёздным каталогом Аристилла и Тимохариса.Сравнение каталогов и указало Гиппарху на медленное перемещение оси мира.

Различаюттри наружных оболочки Земли: литосферу, гидросферу и атмосферу. Под литосферойпонимают верхний твердый покров планеты, который служит ложем океана, а наматериках совпадает с сушей. Гидросфера – это подземные воды, воды рек, озер,морей и, наконец, Мирового океана. Вода покрывает 71% всей поверхности Земли. Средняя глубина Мирового океана 3900 м. 

Как только увеличение телескопа позволяет видеть диск Марса,

На нем сразу же можно заметить белые шапки, венчающиеглобус, усеянный сине-зелёными пятнами на оранжевом фоне.

П. Ловелл

МАРС.

Марс как планета.

Исследовать Марс удобнее тогда, когда Земля окажетсяточно между ним и Солнцем.

Такие моменты(они называются противостояниями)повторяются каждые 26 месяцев.

В течении того месяца, когда происходитпротивостояние, и в последующие три месяца Марс пересекает меридиан близполуночи; он виден на протяжении всей ночи и сверкает как звезда – 1-й звезднойвеличины, соперничая по блеску с Венерой и Юпитером.

Орбита Марса довольно сильно вытянута, поэтомурасстояние от него до Земли от противостояния к противостоянию заметноменяется. Последнее противостояние произошло в 1988г.

Марс имеет фазы, но, поскольку он расположен дальше отСолнца, чем Земля. Полной смены фаз у него(как и у других внешних планет) небывает – максимальный «ущерб» соответствует фазе Луны на три дня до полнолунияили спустя три дня после него.

Ось вращения Марса наклонена относительно плоскостиего орбиты на 22 градуса, т.е.всего на 1,5 градуса меньше, чем ось вращенияЗемли наклонена к плоскости эклиптики. Перемещаясь по орбите, от поочередноподставляет Солнцу то южное, то северное полушарие. Поэтому на Марсе так же,как и на Земле, происходит смена времен года, только тянутся они почти в два разадольше. А вот марсианский день мало отличается от земного: сутки там длятся 24ч 37 мин.

Вследствие малой массы сила тяжести на Марсе почти втри раза ниже, чем на Земле. В настоящее время структура гравитационного поля Марсадетально изучена. Она указывает на небольшое отклонение от однородногораспределения плотности в планете. Ядро может иметь радиус до половины радиусапланеты. По-видимому, оно состоит из чистого железа или из сплава Fe– FeS(железо-сульфат железа) и возможно, растворенного в них водорода. По-видимому,ядро Марса частично или полностью пребывает в жидком состоянии. Наличие упланеты собственного, хотя и очень слабого, магнитного поля, обнаруженного спомощью космических аппаратов серии «Марс», подтверждает это.

Марс должен иметь мощную кору толщиной 70-100 км.Между ядром и корой находится силикатная мантия, обогащенная  железом. Красные окислы железа,присутствующие в поверхностных породах, определяю цвет планеты.

Сейчас Марс продолжает остывать. Сейсмическаяактивность планеты слабая.

Тектонический режим Марса отличается от режиматектоники плит, характерного для земли. Ведь для последнего необходимо, чтобыосновная масса выплавляющегося материала снова затягивалась в мантию вместе сокеанической корой. На Марсе же мантийная конвекция не выходит на поверхность ивыплавляющаяся базальтовая магма идет на наращивание коры. Эти отличияобъединяются прежде всего малой массой Марса ( в десять раз меньше земной) и,конечно, тем, что он сформировался дальше от Солнца, вблизи гигантскогоЮпитера, оказавшего значительное влияние на процесс его образования.

Поверхность Марса.

     На первыйвзгляд поверхность Марса напоминает лунную, Однако на самом деле его рельефотличается большим разнообразием. На протяжении долгой геологической историиМарса его поверхность изменяли извержения вулканов и марсотрясения. Глубокиешрамы на лице бога войны оставили метеориты, ветер, вода и льды.

Поверхность планеты состоит как бы из двух контрастныхчастей; древних высокогорий, покрывающих южное полушарие, и более молодыхравнин, сосредоточенных в северных широтах. Кроме того, выделяются два крупныхвулканических района –Элизиум и Фарсида. Разница высот между горными иравнинными областями достигает 6 км.

Высокогорная часть сохранила следы активной метеоритной бомбардировки, происходившейоколо 4 млрд лет назад. Метеоритные кратеры покрывают 2/3 поверхности планеты.На старых высокогорьях их почти столько же, сколько на Луне. Северные равнинывыгладят совершенно иначе. 4 млрд лет назад на них также было множествометеоритных кратеров. Но  потомкатастрофическое событие стерло их  с 1/3поверхности планеты и ее рельеф в этой области начал формироваться заново.Отдельные метеориты падали туда и позже, но в целом ударных кратеров на северемало.

Облик этого полушария определила вулканическаядеятельность. Некоторые из равнин сплошь покрыты древними изверженнымипородами. Потоки жидкой лавы растекались по поверхности, застывали, по нимтекли новые потоки.Эти окаменевшие «реки» сосредоточены вокруг крупных вулканов.Взаимодействие  лавы и подземного льдапривело также к появлению многочисленных борозд и трещин. На далеких от вулкановнизменных областях северного полушария простираются песчаные дюны. Особенномного их у северной полярной шапки.

Обилие вулканических пейзажей свидетельствует о том,что в далеком прошлом Марс пережил достаточно бурную геологическую эпоху,скорее всего она закончилась около миллиарда лет назад. Наиболее активныепроцессы происходили в областях Элизиум (высота 5 км) и Фарсиды (высота 10 км)Вокруг этих вздутий сосредоточены многочисленные разломы, трещины, гребни –следы давних процессов в марсианской коре. Наиболее грандиозная системаканьонов глубиной несколько километров – долина Маринера начинается у вершиныгор Фарсида и тянется на 4 тыс. километров к востоку. В центральной частидолины ее ширина достигает нескольких километров.

Вулканы Марса – по земным меркам явленияисключительные. Но даже среди них выделяется вулкан Олимп, расположенный насеверо-западе гор Фарсида. Диаметр основания этой горы достигает 550 км, авысота ее 27 км, т.е. она в три раза превосходит Эверест, высочайшую вершинуЗемли. Олимп  увенчан огромным60-километровым кратером. К востоку от самой высокой части гор Фарсида обнаружендругой крупный вулкан- Альба. Хотя он не может соперничать с Олимпом по высоте,диаметр его основания почти в три раза больше.

Эти вулканические конусы возникли в результатеспокойных излияний очень жидкой лавы, похожей по составу на лаву земных вулкановГавайских островов. Следы вулканического пепла на склонах других гор позволяютпредположить, что иногда на Марсе происходят и катастрофические извержения.

В прошлом огромную роль в формировании марсианскогорельефа играла проточная вода. На первых снимках «Маринера-4» Марс предсталперед астрономами пустынной и безводной планетой. Но когда поверхность планетыудалось сфотографировать с близкого расстояния, оказалось, что на старыхвысокогорьях часто встречаются  словно быоставленные текущей водой промоины. Тянутся они иногда на многие сотникилометров. Часть этих колоссальных «ручьев» обладает довольно почтеннымвозрастом. Другие долины похожи очень на русла спокойных земных рек. К нимподходят многочисленные притоки, вниз по течению ширина их увеличивается. Своимпоявление они, вероятно, обязаны таянию подземного льда.

Рельеф полярных областей Марса формировался и нынеформируется за счет процессов, связанных с изменениями полярных шапок. От обоихполюсов на сотни километров к экватору тянутся нагромождения осадочных породтолщиной 4-6 км на севере и 1-2 км на юге. Их поверхность изрезана трещинами иобрывами. Трещины закручиваются вокруг полюсов: против часовой стрелки насеверном полюсе и по часовой стрелке на южном. Нагромождения имеют слоистую структуру,что, вероятно, объясняется периодическими изменениями климата  Марса.

Атмосфера и климат.

Атмосфера Марса более разреженна, чем воздушнаяоболочка Земли. По составу она напоминает атмосферу Венеры и на 95 % состоит изуглекислого газа. Около 4% приходится на долю азота и аргона. Кислорода иводородного пара в марсианской атмосфере меньше 1%.

Средняя температура на Марсе значительно ниже, чем наЗемле,- около  — 40 градусов Цельсия. Принаиболее благоприятных условиях летом на дневной половине планеты воздухпрогревается до 20 градусов Цельсия – вполне приемлемая температура для жителейЗемли. Но зимней ночью мороз может достигать -125 градусов Цельсия. Такиерезкие перепады температуры вызваны тем, что разреженная атмосфера Марса неспособна удерживать тепло. Над поверхностью планеты часто дуют сильные ветры,скорость которых доходит до 100 м/с. Малая сила тяжести позволяет дажеразреженным потокам воздуха поднимать огромные облака пыли. Иногда довольнообширные области на Марсе бывают охвачены грандиозными пылевыми бурями. Чащевсего они возникают вблизи полярных шапок. Водяного пара в марсианскойатмосфере совсем немного, но при низких давлении и температуре он  находится в состоянии, к насыщению, и частособирается в облака. Марсианские облака довольно невыразительны по сравнению сземными. В телескоп видны только самые большие из них, но наблюдения скосмических кораблей показали, что на Марсе встречаются облака самыхразнообразных форм и видов: перистые, волнистые. Над низинами, каньонами, долинами– и на дне кратеров в холодное время суток часто стоят туманы.

Зимой 1979 г. в районе посади «Викинга-2» выпал тонкийслой снега, который пролежал несколько месяцев.

Смена времен года на Марсе происходит так же, как и наЗемле. Ярче всего сезонные изменения проявляются в полярных областях. В зимнеевремя полярные шапки занимают значительную площадь. Граница северной полярнойшапки может удалиться от полюса на треть расстояния до экватора, а границаюжной шапки преодолевает половину этого расстояния. Такая разница вызвана тем,что в северном полушарии зима наступает, когда Марс в максимальный периодудаления от Солнца. Из-за этого зима в южном полушарии холоднее, чем всеверном.

С наступлением весны полярная шапка начинает«съеживаться», оставляя за собой постепенно исчезающие островки льда. В то жевремя от полюсов к экватору распространяется так называемая волна потемнения.Современные теории объясняют ее тем, что весенние ветры переносят вдольмеридианов большие массы грун6та с различными отражательными свойствами.

По-видимому, ни одна из шапок не исчезает полностью.До начала исследований Марса при помощи межпланетных зондов предполагалось, чтоего полярные области покрыты застывшей водой. Более точные современные наземныеи космические измерения обнаружили в составе марсианского льда также замерзшийуглекислый газ. Летом он испаряется и поступает в атмосферу. Ветры переносятего к противоположной полярной шапке, где он снова замерзает. Этим круговоротомуглекислого газа и разными размерами полярных шапок объясняется непостоянстводавления марсианской атмосферы. В целом у поверхности оно составляетприблизительно 0,006 давления земной атмосферы, но может подниматься и до 0,01.

Спутники Марса Фобос и Деймос.

Когда в 1877 г. американский астроном Асаф Холл открылдва спутника Марса, он дал им греческие имена Фобос и Деймос, которыепереводятся как «страх» т «ужас».

Страх и ужас – вечные спутники войны, но кого могутиспугать два крохотных безобидных спутника? С Земли Фобос и Деймос видны тольков большой  телескоп как очень слабыесветящиеся точки вблизи яркого марсианского диска.

Фобос обращается вокруг Марса на расстоянии 9400 км отцентра планеты, причем скорость его обращения столь велика, что один оборот онсовершает за треть марсианских суток Из-за этого Фобос восходит на западе иопускается за горизонт на востоке.

Деймос ведет себя более привычно для нас. Его удалениеот центра планеты составляет более 23 тыс. километров, и на один оборот у негоуходит почти на сутки больше, чем у Фобоса.

Сильное приливное трение, возникающее вследствиеблизкого расположения Фобоса к Марсу, уменьшает энергию его движения, и спутникмедленно приближается к поверхности планеты, чтобы в конце концов упасть нанее, если к тому времени гравитационное поле Марса не разорвет его на куски.Пока не были получены более точные данные о спутниках Марса, ученые пыталисьопределить массу Фобоса, ошибочно предполагая, что причиной замедления являетсяего торможение в марсианской атмосфере. Однако первые результаты обескуражили астрономов:выходило, что несмотря на крупные размеры, спутник очень легкий.

Известный астрофизик Иосиф Шкловский даже выдвинулгипотезу, согласно которой спутники Марса…пустые внутри и, следовательно, имеютискусственное происхождение.

С этой точкой зрения пришлось расстаться после того,как космические зонды передали на землю изображения марсианских лун. Обаспутника похожи на продолговатые картофелин. Фобос имеет размеры 28 х 20 х 18км. Деймос меньше, его размеры 16 х 12 х 10 км.

Оба спутника испытывают сильное приливное воздействиесо стороны Марса, поэтому они всегда повернуты к нему одной стороной. Фобос иДеймос движутся по почти круговым орбитам, лежащим в плоскости экваторапланеты. Некоторые исследователи считают, что спутники Марса попали к нему «непо своей воле», а были захвачены из пояса астероидов. Как видно, бог войны неопасен для Земли, но суров со своими приближенными.

Жизнь на Марсе.

Наблюдать с Земли очень трудно. В моментыпротивостояний Солнце светит на Марсе прямо из-за спины наблюдателя.

 В результатедетали поверхности не отбрасывают тени и видны только благодаря различным  цветам и яркости. Во все остальное время Марснаблюдать неудобно. Если же судить о предметах только по различию их яркости,то очень легко ошибиться.

Год великого противостояния 1877-й стал замечательнойвехой в наблюдениях Марса. Итальянский ученый Скиапарелли составил первую картумарсианской поверхности и положил начало одной из наиболее устойчивых иллюзийастрономической науки. Скиапарелли мог различить только светлые и темныеобласти марсианской поверхности. Он зарисовал их и дал им имена, многие изкоторых используются до сих пор.

Ученый упорно пытался разглядеть, что-нибудь насветлых пятнах, и ему показалось, что они пересечены бесчисленными тонкимилиниями. Он нанес их на карту и назвал их каналами. Скиапарелли утверждал, чтоэти протоки имеют в длину от нескольких сот до многих тысяч километров и походи в телескоп на тончайшую  паутину, опутывающую марсианскую поверхность.

Сначала каналы никому. Кроме ученого, разглядеть неудавалось. Но потом их увидел один наблюдатель, за ним – другой, и вскореувлечение марсианскими каналами превратилось в «эпидемию». Особенно много нарубеже 19-20 веков исследованиями Марса занимался американский астрономПерсиваль Ловелл, построивший для этого обсерваторию АО Флагстаффе (штатАризона, США).

Он выдвинул теорию, которая стала необычайнопопулярной. Каналы, говорил он, это искусственные ирригационные сооружения,жители Марса провели их для того, чтобы передавать воду в засушливые районыпланеты. Ловелл понимал, что тонкие полоски, заметные с Земли, вдействительности имеют в ширину несколько сот километров. То, что Скиапареллиназывал каналами, на самом деле, утверждал Ловелл, полосы растительности,тянущиеся вдоль узких потоков воды, возможно даже заключенных в трубы.

Хотя в искусственное происхождение каналов верили немногие ученые, проблема существования растительной жизни на Марсе обсуждаласьсовершенно серьезно. Возникла даже специальная наука – астроботаника, котораяобъясняла сезонные изменения в каналах и темных областях планеты наличиемрастительности. Волна потемнения, распространяющаяся весной от полярной шапки кэкватору, вызывает якобы пробуждением к жизни растительности. Она быстрорасцветает, напитанная талой водой, а потом снова засыпает в ожидании следующейвесны. Людям так хотелось в это верить, то все другие гипотезы просто отбрасывались.

«Если это не растения, тогда что?»- спрашивали они.И  действительно, казалось, что другогообъяснения странному поведению темных областей и каналов найти невозможно.

Но вот в 1965 г. «Маринер-4» передал на Землю первыефотографии Марса, сделанные с небольшого расстояния. Увы, эти изображения непомогли раскрыть тайну марсианских каналов. Каналов на них просто не было! И всепоследующие зонды, как советские, так и американские, не обнаружили никакихпризнаков растительности или искусственных сооружений. Спускаемые аппараты«Викинг-1» и «Викинг-2» передали изображения безжизненных марсианских пейзажей,подобные которым на Земле можно найти разве что в пустынях: камни и песок подкрасноватым небом. Но люди продолжали надеяться. Если не растения, то можетбыть, хотя бы бактерии?!

На «Викингах» были запланированы специальныебиологические эксперименты. Они основывались на естественном предположении, чтоесли на Марсе есть жизнь, то по своей химической природе она не может сильноотличаться от земной. Первый эксперимент был направлен на поиски следовфотосинтеза в марсианском грунте, второй должен был выявить изменения химическогосостава грунта в процессе жизнедеятельности микроорганизмов, в третьем грунтпомещали в питательный бульон и фиксировали изменения в нем. Все триэксперимента показали, что скорее всего даже микроорганизмы на Марсеотсутствуют, хотя из-за некоторых химических сложностей дать совершенно четкийответ на вопрос: «Есть ли жизнь на Марсе?» на этот раз не удалось.

Итак, историю поисков жизни на Марсе можно назватьисторией разочарования. Человек с давних пор мечтал о встрече с братьями поразуму, и Марс представлялся наиболее вероятной родиной для них. Но современныенаблюдения обошлись с этой мечтой крайне безжалостно. Вероятнее всего, вСолнечной системе мы живем совершенно одни. Вопрос же существования жизни наМарсе в прошлом, при более благоприятных климатических условиях остаетсяоткрытым.

Так, в августе 1996 г. американские исследователиобнаружили в метеорите, упавшем в Антарктиде, следы существования жизни.Возможно этот метеорит, возраст которого 1,5 млрд лет, является осколкоммарсианской породы, выброшенным в результате столкновения Марса с крупнымастероидом.

Возможно, жизнь в форме микроорганизмов и существоваларанее на этой загадочной планете.

Использованная литература:

1. «Энциклопедия Аванта +» Т.8.Астрономия

Э68.Глав.ред.М.Д.Аксёнова.-М.: Аванта+,1997.-688с.: ил.

www.ronl.ru

Реферат - Планеты Земной группы

Меркурий.

   Меркурий являетсяближайшей к Солнцу планетой. Его диаметр всего в полтора раза больше диаметраЛуны. Орбита  имеет значительный эксцентриситет по сравнению с другимипланетами. В перигелии Меркурий проходит на расстоянии 46 млн. км от Солнца, а вафелии удаляется до 70 млн. километров. Из-за сложения неравномерного движенияпо орбите (благодаря ее сильной вытянутости) с медленным вращением, Солнце нанебе Меркурия останавливается, и даже двигается назад. На Меркурии нет временгода. Визуальные наблюдения затруднены, т.к. Меркурий в элонгации не удаляетсябольше чем на 18-28 градусов, большую часть времени скрываясь в лучах Солнца. Радиолокационнымиизмерениями установлено, что вращение вокруг оси прямое, сидерический периодравен примерно 59 земных суток, а меркурианские сутки длятся 220 земных суток.Атмосфера Меркурия имеет крайне низкую плотность и по существу является потокомчастиц выбрасываемых Солнцем и охватывающим Меркурий. Более 100 лет назадутвердилось мнение, что Меркурий всегда обращен одной стороной к Солнцу, чтоприводит к тому, что половина его поверхности оказывается раскаленной. Первыесомнения принесли наблюдения теплового излучения планеты в 1962 году. Дневнаясторона планеты оказалась не так горяча, как ожидалось, а от ночной стороныисходил ощутимый поток тепла. Тем не менее, температурный контраст оченьвысокий: температура на экваторе днем +480°C, а ночью -165°C. ПоверхностьМеркурия, изобилует кратерами и очень напоминает лунную. Кратеры не столь глубокиекак на Луне, что говорит о большей силе тяжести на Меркурии. Хорошо видныэскарпы – следы тектонической активности – крутые уступы длиной от 20 до500 км и высотой 1-2 км. Происхождение эскарпов связывают со сжатиемпланеты в процессе ее остывания и приливным влиянием Солнца. По-видимому,эскарпы образовались раньше, чем кратеры меркурианской поверхности, так как ониместами разрушены кратерами. «Морей» там меньше, чем на Луне, причем онинебольшие. Диаметр меркурианского Моря Зноя 1300 км, как и Моря Дождей на Луне.Как и на Луне, большинство кратеров образовались в результате паденийметеоритов. Там, где кратеров немного, мы видим сравнительно молодые участкиповерхности. Старые, разрушенные кратеры заметно отличаются от более молодыхкратеров, хорошо сохранившихся. Наилучшими условиями для наблюдений являютсявесенний период для западной элонгации (утренняя видимость) и осенний длявосточной элонгации. В эти моменты эклиптика расположена таким образом, чтовысота Меркурия над горизонтом наибольшая. Спутников Меркурий не имеет.

/>  

                                                                                          Меркурий

Венера.

   После Меркурия следует планета Венера, массаи радиус которой очень близки к земным.Орбита Венеры почтикруговая (эксцентриситет менее 1%), но видимые угловые размеры изменяются оченьсильно из-за того, что расстояние от Венеры до Земли в верхнем и нижнемсоединениях меняется от 40 до 260 млн. км. При визуальных наблюдениях отчетливовидны фазыВенеры, однако различить детали на поверхности не удается из-за равномернойплотной атмосферы,открытой еще Ломоносовым при прохождении Венеры по диску Солнца. Вращениевокруг оси(обратное) удалось установить радиолокационным способом. Период вращения оказалсяравным 243 земным дням, а  период обращения вокруг Солнца — 225 суткам. За одиноборот вокруг Солнца на Венере наблюдаются два его восхода и захода.  .Продолжительность солнечных суток на Венере составляет 116,8 земных суток, авенерианский год состоит приблизительно из двух венерианских солнечных суток. Диаметр Венеры почтитакой же как у Земли (95%), а масса составляет 80% от массы Земли, и густая плотнаяатмосфера делает их очень похожими. Температура у поверхности Венеры очень высокая (около 500 град С) и остается все время почтиодинаковой. Высокая температура поверхности Венеры обусловлена парниковымэффектом. Густая плотная атмосфера пропускает лучи Солнца, но задерживаетинфракрасное тепловое излучение, идущее от нагретой поверхности. Облачный слойсильно ослабляет солнечный свет, освещенность у поверхности Венеры примернотакая же, как у поверхности Земли в облачный день, однако что небо Венеры и ееландшафт имеют оранжевый цвет из-за особенностей состава атмосферы.Радиолокационные наземные наблюдения обнаружили на этой планете множествонеглубоких кратеров, диаметры которых от 30 до 700 км. В целом эта планетаоказалась наиболее гладкой из всех планет земной группы, хотя и на ней естьбольшие горные массивы и протяженные возвышенности, вдвое превышающие поразмерам земной Тибет. Грандиозен потухший вулкан Максвелл, его высота 12 км,поперечник подошвы 1000 км, диаметр кратера на вершине 100 км. Сведения овнутреннем строении Венеры опираются, главным образом, на теорию. Современнаямодель планеты трехслойная: ядро, нижняя мантия и верхняя мантия. Ядро планетынесколько меньше, чем у Земли. На него приходится приблизительно 12% массыпланеты (у Земли 16%). Предполагается, что оно состоит из расплавленногожелеза. Литосфера, может быть, более мощная, толщина коры — неизвестна. Свнутренним строением планеты связана и проблема отсутствия магнитного поля: навсех планетах земной группы, кроме Венеры, есть собственное магнитное поле.Самыми сильными магнитными полями обладают планеты гиганты и Земля. СпутниковВенера не имеет.

/>

                                                                

                                                                                   Венера

Марс.

   Поверхность Марсаизобилует кратерами. Особенно много их в южном полушарии планеты. Темныеобласти, занимающие значительную часть поверхности планеты, получили названиеморей. Диаметры некоторых морей превышают 2000 км. Возвышенности, напоминающиеземные континенты, представляющие собой светлые поля оранжево-красного цвета.Как и на Венере, здесь есть огромные вулканическиеконусы. Высота наибольшего из них — Олимпуса — превышает 25 км,диаметр кратера 90 км. Диаметр основания этой гигантской конусообразной горыболее 500 км. О том, что миллионы лет назад на Марсе происходили мощныевулканические извержения и смещались поверхностные пласты, свидетельствуютостатки лавовых потоков, огромные разломы поверхности (один из них — Маринер — тянется на 4000 км), многочисленные ущелья и каньоны. Возможно, что именнонекоторые из этих образований (например, цепочки кратеров или протяженныеущелья) исследователи Марсаеще 100 лет назад приняли за «каналы»,существование которых впоследствии долгое время пытались объяснитьдеятельностью разумных обитателей Марса. Перестал быть загадкой и красноватыйцвет Марса. Он объясняется тем, что грунт этой планеты содержит много глин,богатых железом. С близкого расстояния неоднократно фотографировались спутникиМарсаДеймоси Фобос и передавались панорамыповерхности «Красной планеты». Атмосфера Марса очень разрежена. Притаком давлении вода закипает уже при температуре +2С. Именно поэтому никакихрек, озер или морей, заполненных водой на Марсе нет. По-видимому, каньоны Марсаникогда не были заполнены водой, а происхождение их связано с древнейтектоникой Марса — с движением огромных плит марсианской коры. Однако, былиполучены и снимки явно водно-эрозионных образований. В частности это видно напримере русла древней реки Нергал. Внимательное изучение русел древних рекпоказало, что их обмеление происходило постепенно. Много обсуждался вопрос, чтоже это было? Вода? Или какая другая текучая субстанция? Сошлись, все-таки, наводе. Куда же она делась? Вопросов много, на которые сейчас пока нет ответа.Известно лишь, что атмосфера Марса на 95% состоит из углекислого газа, водяныхпаров — всего 0,05%, кислорода 0,1-0,4%, азота 2,5%.

/>/>/>/>

/>/>

                                                                                                                              

/>/>            1)Марс                                                                                                                                                                                                                                                                                         

            2)Вулкан “Олимпус”

            3)Каньон “Маринер”

            4)Спутники Марса:

             Фобос и Деймос.

www.ronl.ru

Сочинение - Планеты Земной группы

Среди многочисленных небесных светил, изучаемых современной астрономией, особое место занимают планеты. Ведь все мы хорошо знаем, что Земля, на которой мы живем, является планетой, так что планеты-тела, в основном подобные нашей Земле.

Но в мире планет мы не встретим даже двух, совершенно похожих друг на друга. Разнообразие физических условий на планетах очень велико. Расстояние планеты от Солнца (а значит, и количество солнечного тепла, и температура поверхности), её размеры, напряжение силы тяжести на поверхности, ориентировка оси вращения, определяющая смену времён года, наличие и состав атмосферы, внутреннее строение и многие другие свойства различны у всех девяти планет Солнечной системы.

Говоря о разнообразии условий на планетах, мы можем глубже познать законы их развития и выяснить их взаимосвязь между теми или иными свойствами планет. Так, например, от размеров, массы и температуры планеты зависит её способность удерживать атмосферу того или иного состава, а наличие атмосферы в свою очередь влияет на тепловой режим планеты.

Как показывает изучение условий, при которых возможно зарождение и дальнейшее развитие живой материи, только на планетах мы можем искать признаки существования органической жизни. Вот почему изучение планет, помимо общего интереса, имеет большое значение с точки зрения космической биологии.

Изучение планет имеет большое значение, кроме астрономии, и для других областей науки, в первую очередь наук о Земле-геологии и геофизики, а также для космогонии-науки о происхождении и развитии небесных тел, в том числе и нашей Земли.

Современные представления о планетах сложились не сразу. Для этого понадобилось много веков накопления и развития знаний и упорной борьбы новых, прогрессивных знаний с взглядами старыми, отживающими.

В древних представлениях о Вселенной Земля считалась плоской, а планеты рассматривались лишь как светящиеся точки на небесном своде, отличавшиеся от звёзд только тем, что они перемещались между ними, переходя из созвездия в созвездие. За это планеты и получили название, означающее «блуждающие». Наблюдателям древности было известно пять планет: Меркурий, Венера, Марс, Юпитер и Сатурн.

Даже после того как была установлена шарообразная форма Земли, и были впервые определены её размеры (Эратосфеном в III в. до н. э.), после того как стала очевидна ограниченность Земли в пространстве, о природе планет ни чего не было известно. И всё же во взглядах выдающихся мыслителей древности: Анаксагора, Демокрита, Эпикура, Лукреция мы встретим идеи о материальности и бесконечности Вселенной, заполненной бесчисленным количеством миров, подобных нашему, причём многие из них могут быть населены живыми существами. Эти мыслители высказывали весьма интересные идеи и о природе небесных тел.

Начиная с IV в. до н. э. господствующим в науке стало мировоззрение Аристотеля, согласно которому Земля находится неподвижно в центре мира, а Солнце, Луна, планеты и звёзды обращаются вокруг неё. Такое представление получило название «геоцентрическое». Геоцентрическая система мира просуществовала в науке почти 2000 лет.

Как известно, любая из планет перемещается по небу среди звёзд вдоль эклиптики — большого круга небесной сферы, который описывает центр солнечного диска в течение года. Большую часть времени планеты движутся в ту же сторону, что и Солнце (прямым движением). Но время от времени планеты изменяют прямое движение на иное, направленное в сторону, противоположную видимому годичному движению Солнца. Попятное продолжается от трёх недель (для Меркурия) до 4.5 месяцев (для Сатурна) и затем снова сменяется прямым движением, так что планета как бы описывает на небе петлю.

Лишь в середине 16 в. великий польский учёный Николай Коперник высказал замечательную идею о том, что Земля вовсе не является центром мира, а обращается вокруг Солнца так же, как и другие планеты. Гениальная книга Коперника «Об обращении небесных сфер», вышедшая в 1543 г., в корне изменила представления об устройстве Солнечной системы и о движении планет и Земли.

Рассматривая Землю как небесное тело, которое наряду с другими планетами обращается вокруг Солнца, Коперник своими трудами подготовил логический вывод о том, что не только характер движения, но и сама природа планет и Земли должна быть одинакова. Этот вывод был сделан выдающимся последователем Коперника итальянским мыслителем Джордано Бруно и подтверждён в результате телескопических открытий Галилея.

Так постепенно складывалось правильное представление о природе планет. Теперь мы знаем, что планеты, в том числе и Земля, представляет собой тёмные, несамосветящиеся тела, освещаемые Солнцем и отражающие его лучи. Такое определение небесных тел распространить не только на планеты нашей Солнечной системы, но и на системы других звёзд, ибо каждая звезда тоже представляет собой Солнце, и около неё также могут обращаться планеты.

Отличить на небе планету от звезды можно по целому ряду признаков. Прежде всего, планеты перемещаются между звёздами, однако их перемещение можно заметить лишь проводя наблюдения в течение нескольких вечеров. Такие планеты, как Венера и Юпитер, легко распознать, так как по блеску они намного превосходят самые яркие из звезд. Отличительным признаком каждой планеты является её цвет: у Венеры он белый, у Марса – красноватый, у Юпитера – желтовато-белый, у Сатурна – жёлтый.

Отличить планету от звезды можно ещё благодаря тому, что все звёзды мерцают, а планеты обычно светят ровным, почти немигающим блеском. Как известно мерцание звёзд вызывается колебаниями воздуха, сквозь который проходят лучи на пути к глазу наблюдателя. Но звёзды даже в самые сильные телескопы представляются точками, а планеты имеют заметные видимые размеры, так как они гораздо ближе к нам, чем звёзды. Каждая точка диска планеты тоже как бы мерцает т.е. изменяет свой блеск, но при этом усиление блеска в одной токе сопровождается ослаблением его в другой. В результате эти «мерцания» отдельных точек планетного диска, складываясь, создают постоянную во времени яркость каждого участка диска, и свет от диска в целом тоже получается неизменным.

Но чтобы не только уметь отличать планеты от звёзд, но и различать их друг от друга и находить на небе, надо хорошо знать звёздное небо – основные созвездия и яркие звёзды, особенно так называемые зодиакальные созвездия, по которым передвигается Солнце, Луна и планеты. Таких созвездий двенадцать.

Все планеты делятся на нижние и верхние. К нижним планетам относятся Меркурий и Венера, которые в своём видимом движению по небу никогда не отходят далеко от Солнца. Угол наибольшего видимого удаления (элонгация) нижней планеты от Солнца зависит от соотношения радиусов орбит планеты и Земли. Эпохи наибольших элонгаций – лучшее время для наблюдения Меркурия и Венеры.

Верхние планеты (Марс, Юпитер, Сатурн, Уран, Нептун, Плутон) могут наблюдаться на любом расстоянии от Солнца – до 180° включительно.

Деление планет на нижние и верхние было сделано сначала на основе различия их видимого движения по небу. Но уже Коперник объяснил это различие тем, что нижние планеты расположены ближе к Солнцу, чем Земля, а верхние планеты — дальше.

Эклиптикальная система координат представляет собой одну из систем небесных координат, определяющих положение светила на небесной сфере. В этой системе основной плоскостью является плоскость эклиптики, т.е. видимого годичного пути центра диска Солнца, направленная плоскости Земной орбиты. Положение светил на небесной сфере в этой системе измеряется долготой и шириной. Долгота светил измеряется дугой эклиптики от точки весеннего равноденствия (пересечения эклиптики с экватором) до точки пересечения эклиптики с большим кругом, проходящем через полюс эклиптики и светило. Направление отсчёта долготы противоположно направлению суточного вращения неба. Широта отсчитывается по кругу широты от эклиптики в обе стороны (от 0° до 90°). Эклиптикальная система координат наиболее удобна для изучения видимых движений планет и Луны, так как они обычно недалеко отходят от эклиптики.

Соединения бывают нижние, когда планета находится между Землёй и Солнцем, и верхние, когда планета находится за Солнцем. Ясно, что в нижнем соединении могут быть только нижние планеты, тогда как в верхнем — все планеты.

Близ нижнего соединения, когда нижняя планета обгоняет Землю в её движении вокруг Солнца, и также описывает «петлю»

На рис. 1 показаны основные конфигурации (положения) нижних и верхних планет относительно Солнца и Земли. Для верхних планет показаны также квадратуры. Так называются положение планет, когда она отстоит от Солнца на 90. Нетрудно понять, что когда верхняя планета находится в квадратуре, Земля для неё будет в наибольшей элонгации. Точно так же, если планета находится в противостоянии, то с точки зрения наблюдателя, находящегося на этой планете, Земля будет в нижнем соединении с Солнцем.

МАРС

Вряд ли какая-нибудь планета вызвала у людей столько споров и дискуссий, как Марс. Спорили не только учёные, но и люди самых различных профессий, занятий, возрастов.

Совершенствовались методы исследований, сменяли друг друга астрономы разных поколений, изменялся и сам характер дискуссий. В десятых-двадцатых годах нашего века спорили главным образом о каналах Марса, о наличии там разумных обитателей (марсиан). В пятидесятых годах много спорили о существовании на Марсе растительности и вообще органической жизни.

Какой планете посвящено наибольшее число фантастических романов, повестей, рассказов? Конечно, Марсу. Фантазия писателей подогревала интерес широкой публики к природе загадочной планеты. Астрономов забрасывали вопросами.

А они, исследователи Вселенной, проводили ночи напролёт наедине с красной планетой. Сначала вписываясь в неё глазами, усиленными оптикой телескопов, затем, снимая её на чувствительные фотопластинки, стремясь запечатлеть вид планеты и её спектр, наконец, поглядывая на перья самописцев, следя за сменой цифр на табло электронных регистраторов, за работой приборов, принимающих изображения планеты от космических аппаратов.

Шли годы и десятилетия, менялись методы исследований, накапливались наши знания о природе красной планеты, на место одних загадок вставали другие, росло число учёных, стремившихся проникнуть в тайны Марса.

Первые наблюдения Марса проводились ещё до изобретения телескопа. Это были позиционные наблюдения. Их целью было определение точных положений планеты по отношениям к звёздам. Такие наблюдения проводил ещё Коперник, стараясь подкрепить ими свою гелиоцентрическую систему мира. Точность наблюдений Коперника составляла около одной минуты дуги. Значительно более точными были наблюдения знаменитого датского астронома Тихо Браге; их точность достигала до 10 секунд дуги. За свою долгую жизнь Тихо пронаблюдал десять противостояний Марса, накопив непрерывный ряд наблюдений за 22 года. Этот ценнейший материал попал после смерти Тихо в самые верные руки — в руки Иоганна Кеплера, прекрасного вычислителя, человека широких взглядов. Обработка наблюдений положений Марса, выполненных Тихо Браге, привела Кеплера к открытию трёх его знаменитых законов движения планет.

Как хорошо, что для выяснения законов движения планет и формы их орбит был выбран именно Марс, а, скажем, не Венера. Орбита Марса имеет эксцентриситет 0,093, тогда как орбита Венеры — только 0,007, в 13 раз меньше. Быть может, имея дело с наблюдениями Венеры или Юпитера, Кеплер не открыл бы свой первый закон, не обнаружил бы отличия орбиты планеты от окружности. И всё же выбор Марса не был делом случая. Наблюдать Венеру очень трудно, так как эта планета не отходит от Солнца далее 48°, наблюдается на светлом небе и её положение трудно привязывать к положениям неподвижных звёзд. С другой стороны, Юпитер и Сатурн движутся по небу очень медленно, так как находятся относительно далеко от Земли. Марс же близок к Земле, сравнительно быстро перемещаться среди звёзд, его можно наблюдать на фоне звёздного неба на любых угловых расстояниях от Солнца он описывает довольно широкие петли около эпохи противостояния.

Элементы орбиты Марса, найденные Кеплером, мало отличались от современных. Например, большая полуось орбиты по Кеплеру равнялась 1,5264 астрономической единицы ( а. е. ), тогда как современное её значение 1,5237 а. е. Эксцентриситет орбиты Марса по Кеплеру равен 0.0934.

Уже из приведённых чисел видно, что Марс расположен от Солнца в полтора раза меньше, и, значит, получает от Солнца в 2,3 раза меньше света и тепла.Расстояние Марса от Солнца составляет в среднем 228 млн. км, тогда как Земля отстоит от дневного светила на 150 млн. км.

Благодаря большому эксцентриситету орбиты Марс может изменять своё расстояние от Солнца в довольно широких пределах. Чтобы найти, на сколько расстояние в ближайшей к Солнцу точке орбиты, перигелии, меньше среднего, надо помножить среднее расстояние на эксцентриситет. Получим:

228 ۰ 0,093 = 21 млн. км.

Кратчайшее расстояние Марса от Солнца равно 207 млн. км, а наибольшее-249 млн. км. Эти величины относятся как 1/1,2, а поток солнечного света и тепла на единицу поверхности Марса в перигелии и афелии как 1,44/1.

Чтобы понять, как можети зменяться положение Марса относительно, Земли, рассмотрим основные конфигурации этой планеты.

Пусть Земля при движении по орбите вокруг Солнца S находится в положении Т. На орбите Марса отметим четыре важных положения планеты: соединение К, когда планета находится за Солнцем, на продолжении прямой ТS, квадратуры Q1 и Q2, когда угол между направлениями на Солнце и планету равен 90°, и противостояние О, когда планета находится снова на продолжении прямой ТS, но в направлении, противоположном Солнцу (отсюда и выражение противостояние)

Легко видеть, что в противостоянии планета расположена ближе всего к Земле, а в соединении расстояние между ними максимально. Поэтому эпоха соединения — самый неблагоприятный период для наблюдения Марса, а эпоха противостояния, наоборот, самый благоприятный.

По условиям видимости не все противостояния равноценны по двум причинам. Во-первых, из-за эксцентриситета орбиты Марса его расстояние от Земли в момент противостояния может меняться от 56 до 100 млн. км. Во-вторых, склонение, а значит, и высота планеты над горизонтом различны для разных противостояний.

Те противостояния, при которых расстояние до Марса не превышает 60 млн. км, принято называть великими. Очевидно, в период великих противостояний Марс должен быть вблизи перигелия. Если соединить перигелий орбиты Марса с Солнцем прямой линией, то она пересечёт орбиту Земли в той точке, которую Земля проходит 29 августа. Поэтому даты великих противостояний Марса приходятся обычно на август или сентябрь (исключением был 1939 г., когда великое противостояние наступило 23 июля).

Великие противостояния следуют с интервалом 15 или 17 лет. Чтобы понять существующую здесь закономерность, вспомним, что период обращения Марса вокруг Солнца равен 287 суткам. Синодический период планеты, т.е. интервал от одного противостояния до следующего, определяется по формуле 1/s=1/т-1/р, где Р=687 сут.- год Марса, Т=365,25 сут. — год Земли. Из этой формулы находим S=780 суткам, т.е. синодический период Марса равен 2 годам 50 суткам.

Марс вращается вокруг своей оси почти так же, как и Земля: его период вращения равен 24 час. 37 мин. 23 сек., что на 41 мин.19 сек. Больше периода вращения Земли. Ось вращения наклонена к плоскости орбиты на угол 65°, почти равный углу наклона земной оси (66,5°). Это значит, что смена дня и ночи, а так же смена времён года на Марсе протекает почти так же, как на Земле. Там есть и тепловые пояса, подобные земным .

Но есть и отличия. Прежде всего, из-за удалённости от Солнца климат, вообще суровее Земного. Далее год Марса почти вдвое длиннее земного, а значит, дольше длятся и сезоны. Наконец из-за эксцентриситета орбиты длительность и характер сезонов заметно отличаются в северном и южном полушариях планеты.

Таким образом, в северном полушарии лето долгое, но прохладное, а зима короткая и мягкая, тогда как в южном полушарии лето короткое, но тёплое, а зима долгая и суровая.

Масса Марса была довольно точно определена по движению его спутников Фобоса и Деймоса, а теперь уточнена по движению искусственных спутников серии «Маринер». Она равна 1:3 098 700 доле массы Солнца, или 0,107 массы Земли, или 6,42۰10*26г. Отсюда средняя плотность Марса получается 3,89 г\см*3, ускорение силы тяжести на его поверхности на экваторе 372 см \ сек*2 (0,38 Земного) и критическая скорость, достаточная для преодоления притяжения планеты, 5,0 км \ сек.

Таковы общие характеристики Марса как планеты, которые во многом определяют условия на Марсе: состояние его атмосферы, климат, ветровой режим.

СПУТНИКИ МАРСА

11 и 17 августа 1877 г. Асаф Холл на Вашингтонской обсерватории открыл два маленьких спутника Марса – Фобос и Деймос. Размеры их дисков были не различимы ни в один телескоп, а блеск в среднем противостоянии соответствовал 11,6 и 12,8 звёздной величины. Это свидетельство об их весьма малых размерах. Блеск Марса в среднем противостоянии равен –1,65, звёздной величины, значит, Марс в 200 000 раз ярче Фобоса и в 600 000 раз ярче Деймоса. Отсюда следует, что диаметры обоих спутников меньше диаметра Марса в 450 и 770 раз соответственно, т.е. раны 15 и 9 км.

В действительности, как показали фотографии «Маринера-9» в 1971 году, оба спутника больше. Фобос имеет размеры 27 на 20 км, Деймос 15 на 11 км. Недооценка размеров спутников получилась потому, что их поверхность оказалась темнее Марсианской.

Периоды обращения спутников вокруг планеты составляют 7 час. 39 мин. у Фобоса и30 час. 21 мин. у Деймоса, их расстояние от центра планеты 9400 и 23500км. Орбиты почти круговые, их наклон к экватору Марса у Фобоса 1°, у Деймоса 2,7°.

Таким образом, Фобос совершает обращение вокруг планеты втрое быстрее, чем сам Марс вращается вокруг своей оси. За сутки Марса Фобос успевает совершить три полных оборота и успевает пройти ещё дугу в 78°. Для Марсианского наблюдателя он восходит на западе и заходит на востоке. Между последовательными верхними кульминациями Фобоса проходит 11 часов 07 минут.

Совсем иначе движется по небу Деймос. Его период обращения больше периода вращения Марса, но ненамного. Поэтому он хотя и «нормально» восходит на востоке и заходит на западе, но движется по небу Марса крайне медленно. От одной верхней кульминации до следующей проходит 130 часов – пять с лишним суток !

В 1945 г. американский астроном Б. Шарплес обнаружил вековое ускорение в движении Фобоса по орбите. Это означало, что Фобос, строго говоря, движется по очень пологой спирали, постепенно приближаясь к поверхности Марса. Если так будет продолжаться и дальше, то через 15 млн. лет – срок с космогонической точки зрения весьма небольшой – Фобос упадёт на Марс.

Однако только через 14 лет на это обратили внимание. К тому времени появились небесные тела, двигавшиеся точно таким же образом. Это были первые искусственные спутники Земли. Торможение в земной атмосфере заставило их снижаться, а приближение к центру Земли вызвало ускорение их движения.

Известный советский учёный И. С. Шкловский попытался в 1959г. подсчитать, не может ли торможение в самых верхних слоях атмосферы Марса, быть причиной векового ускорения Фобоса. Результат был неожиданным: это возможно только в том случае если Фобос… полый. Тогда он, подобно воздушному шару, будет испытывать заметное сопротивление окружающей газовой среды. Однако эта гипотеза, наделавшая в своё время много шума, не подтвердилась. Фотографии «Маринера-9» показали, что Фобос и Деймос имеют вид громадных каменных глыб.

Наблюдения «Маринера-9» показали, что оба спутника обращены к Марсу одной стороной (как Луна к Земле). Для установления такого вращения достаточно

Только сотен тысяч лет для Фобоса в виду его близости к Марсу.

Непосредственные фотографии, фотоэлектрические и поляризационные наблюдения указывают на то, что наружный слой поверхности обоих спутников – мелко раздробленная пыль, слой которой имеет толщину около 1 мм. Её состав, по-видимому, базальтовый со значительной примесью карбонатов. Инфракрасные наблюдения свидетельствуют о крайне низкой теплопроводности наружного покрова, что подтверждает гипотезу о пылевом слое.

АТМОСФЕРА И ФИОЛЕТОВЫЙ СЛОЙ МАРСА.

В тоже великое противостояние 1909г., когда Французский астроном Антониади наблюдал Марс в 83-сантиметровый рефрактор Медонской обсерватории, в другом месте земного шара были впервые получены снимки Марса со светофильтрами. Этим местом была Пулковская обсерватория, где тогда ещё молодой русский учёный Гавриил Андрианович Тихонов.

Г. А. Тихонову удалось получить большую серию снимков Марса с различными светофильтрами от красного до зелёного. Их обработка позволила обнаружить три явления, получившие названия «эффектов Тихонова».

1. «Моря» Марса кажутся особенно тёмными в красный светофильтр и сравнительно слабее выделяются на фоне материков в зелёный светофильтр. Иначе говоря, контраст между «морями» и материками увеличивается с переходом от зелёных лучей к красным.

2. Полярные шапки резче всего выделяются на фоне материков в зелёных лучах и значительно слабее в красных.

3. Резкость деталей на диске планеты постепенно снижаются к краю диска; это явление особенно заметно на снимках, сделанных в зелёных лучах и гораздо слабее в красных.

В 1924г. в год великого противостояния снимки Райта и Росса не только подтверждали результаты Тихонова, но и позволили обнаружить два новых эффекта. Во-первых, в синих, фиолетовых и ультрафиолетовых лучах никакие детали поверхности не просматривались: были видны только полярные шапки. Во-вторых, диаметр диска Марса в фиолетовых лучах был заметно больше, чем в красных. Это явление получило название эффекта Райта.

Разность диаметров диска Марса в ультрафиолетовых и инфракрасных лучах на снимке Райта и Росса достигала 200-300 км. Если это результат рассеивания солнечных лучей в плотной атмосфере Марса, то её высота должна быть равна половине этой величины, т.е. 100-150 км. Отсюда Райт сделал вывод, что Марс окружён весьма плотной и протяжённой атмосферой.

Советские астрономы-фотометристы Н. П. Барабашов и В. В. Шаронов в1950 году дали объяснение эффекта Райта. Дело было всё-таки в фотографической иррадиации, но в сочетании с законом падения яркости к краю диска Марса. В красных лучах яркость падает к краям диска довольно сильно, поскольку мы наблюдаем здесь шарообразную поверхность планеты. Наоборот, в фиолетовых лучах, диск Марса кажется освещённым более равномерно, и его края довольно ярки. Поэтому в фиолетовых лучах иррадиация будет сильнее, чем в красных, что и вызовет эффект Райта.

Объяснение эффекта Райта Н. П. Барабашовым и В. В. Шароновым было совершенно правильным, за одним исключением. Распределение яркости по диску Марса в фиолетовых лучах они приписывали целиком рассеянию света в атмосфере Марса. В действительности же главную роль здесь играли фотометрические свойства поверхности планеты.

В 1972 г. проблемой фиолетового слоя занялся американский астроном Д. Томпсон. Изучив всю имевшуюся литературу по этой проблеме и использовав фотографическую коллекцию Международного планетного патруля, Томпсон пришёл к простому и неожиданному выводу. Вид Марса в фиолетовых лучах – это его нормальный вид, без всякой дымки. Просто в этих лучах контрасты между морями и материками слишком малы и мы их не различаем. Более того, из наблюдений в ультрафиолетовых лучах выяснилось, что в этих лучах всё выглядит «наоборот»-моря кажутся светлее материков. Эти явления объясняются исключительно цветовыми особенностями пород, слагающих марсианские моря и материки, и атмосфера тут не при чём. Так разрешилась проблема фиолетового слоя.

ТЕМПЕРАТУРНЫЙ РЕЖИМ ПЛАНЕТЫ.

Первые измерения температуры Марса с помощью термометра, помещённого в фокусе телескопа-рефлектора, проводились ещё в начале 20-х годов. Измерения В. Лампланда в 1922г. дали среднюю температуру поверхности Марса 245° К (-28°С), Э. Петтит и С. Никольсон получили в 1924г. 260°К (-260°С). Более низкое значение получили в 1960г. У. Синтон и Дж. Стронг: 230°К (-43°С).

Позднее, в 50-е и 60-е гг. были накоплены и обобщены многочисленные измерения температур в различных точках поверхности Марса, в разные сезоны и времена суток. Из этих измерений следовало, что днём на экваторе температура может доходить до 300°К (+27°С), но уже к вечеру она падает до нуля, а к утру до 223°К (-50°С). На полюсах температура может колебаться от +10°С в период полярного дня до очень низких температур во время полярной ночи.

В 1956 г. к измерению температур был применён новый метод – радиоастрономический. Марс, как и всякое нагретое тело, испускает не только инфракрасное излучение, но и более длинноволновое, лежащее в радиодиапазоне. Его принято называть тепловым радиоизлучением, в отличие от нетеплового, связанного с различными электромагнитными и плазменными процессами. Измеряя поток теплового радиоизлучения, можно определить температуру планеты.

Первые такие измерения выполнили К. Майер, Т. Мак Каллаф и Р. Слонейкер в 1956 г. Они получили среднюю температуру поверхности Марса 218°К, т.е. заметно ниже, по инфракрасному излучению. Измерения, проведённые в последние годы с космических кораблей, показали, что на Марсе могут наблюдаться и ещё более низкие температуры, доходящие до 140°К — ниже точки замерзания углекислого газа.

Многочисленные ряды измерений радиотемператур Марса выполнены советскими учёными А. Д. Кузьминым, Ю. Н. Ветухновской, Б. Я. Лосовским, Б. Г. Кутузой и другими. Во время великого противостояния 1971 г., по их измерениям, средняя температура Марса составляла 198°К.

Различие температур дня и ночи, полярных и тропических районов, зимы и лета приводит к возникновению ветров, имеющих подчас скорости 40-50 м\сек. Система воздушной циркуляции на Марсе изучается сейчас различными методами многими учёными. Важный вклад в развитие теории циркуляции марсианской атмосферы внёс советский учёный, специалист по физике атмосферы Г. С. Голицин. Он показал, при каких условиях в атмосфере Марса могут возникать ветры, имеющие силу урагана, и формироваться смерчи.

Среди образований, обнаруженных на поверхности Марса, всеобщее внимание русло образные протоки, или меандровые долины. Их внешний вид, наличие «притоков» вряд ли можно объяснить иначе, чем, предложив, что это – русла рек.

Однако на Марсе в настоящее время реки течь не могут, там вообще не может быть жидкой воды. Причина этого состоит в том, что при тех низких давлениях, которые господствуют на Марсе, вода закипает при очень низких температурах. Никакая другая жидкость не могла образовать наблюдаемых русел: лава быстро застывает, а жидкая углекислота даже в земных условиях не может существовать.

Итак, единственное возможное объяснения меандров на Марсе – это образование водных потоков, рек. Сейчас для него нет необходимых условий – значит, они были в прошлом. Для этого нужно допустить, что в более ранние эпохи атмосферное давление на Марсе было значительно выше, чем в настоящее время.

БОЛЬШАЯ ПЫЛЕВАЯ БУРЯ И ЕЁ ПРИЧИНЫ.

В июле 1971 г., согласно наблюдениям на Шемахинской астрофизической обсерватории атмосфера планеты была во всех длинах волн, и в ней не наблюдалось ни синих, ни жёлтых облаков. Южная полярная шапка чётко выделялась на фоне материков, превышая их по яркости втрое. Была видна и северная полярная шапка. Контраст морей и материков в красных лучах составлял около 30% и был примерно таким, как в первой половине августа 1956 г., до начала пылевой бури.

В конце августа – начале сентября 1956 г. в южном полушарии разыгралась сильная пылевая буря, скрывшая на две недели южную полярную шапку и резко понизившая контрасты «моря-материки». Новая пылевая буря, только ещё большего масштаба, разыгралась на Марсе во второй половине сентября 1971 г.

В отличие от 1956 г., на этот раз пылевая буря была более длительной и устойчивой. Она началась 22 сентября, а 11 ноября, когда «Маринер-9» на подлёте начал фотографировать Марс, пылевая буря продолжалась. Она была столь интенсивной, что, по отзывам американских специалистов, планета имела «венероподобный вид».

15-20 ноября наступило, казалось, просветление. Но потом всё началось снова, и буря затрудняла научные иследования поверхности Марса. Лишь около 10 января 1972 г. пылевая буря прекратилась, и планета приняла свой обычный вид.

Какие же причины вызвали столь мощную и пылевую бурю? Американские учёные К. Саган, Дж. Веверка и П. Гираш на основании теоретического исследования ветровых режимов на Марсе пришли к выводу, что наиболее эффективным механизмом подъёма пыли с марсианской поверхности являются смерчи или «пылевые дьяволы». Образование смерчей зимой невозможно из-за слабого солнечного нагрева. Летом и в экваториальных районах на плоских пространствах смерчи должны образовываться благодаря интенсивной инсоляции, на склонах же их могут подавлять наклонные ветры. Для подъёма пыли нужна скорость ветра в 80м\сек. На Марсе имеются области, где такие скорости наблюдаются. Смерчи образуются преимущественно вблизи перигелия, когда интенсивность инсоляции на 23% больше, чем во время «среднего» противостояния, и на 47% больше, чем в афелии. Вот почему чаще всего пылевые бури бывают в периоды великих противостояний, когда лето в южном полушарии совпадает с прохождением Марса через перигелий.

Астрономы ожидали новую пылевую бурю в июле-августе 1973 г., когда Марс должен был снова пройти через перигелий, но буря «опоздала» – она началась лишь 13 октября появлением трёх пылевых облаков. По мнению американских астрономов пылевая буря 1973 г., продолжавшаяся до ноября, уступает лишь большой пылевой буре 1971 г. и превосходит бурю 1956 г.

Исследование рельефа Марса радиолокационным методом и по интенсивности полос СО2 в спектре планеты над различными областями подтверждают предположения о том, что моря — не низины, как считали Поллак и Саган, в области перепадауровней. Материки покрыты слоем тонко раздробленной светлой пыли, моря – более крупными зёрнами, возможно, иного состава. Таково в настоящее время наиболее вероятное объяснение природы марсианских «морей».

ЕСТЬ ЛИ ЖИЗНЬ НА МАРСЕ.

Несмотря на все успехи космических и наземных методов исследования «мёртвой» природы Марса, перед астрономами неотступно стоял всё тот же давний вопрос: существует ли жизнь на Марсе? И вот уже в 1976 году американские учёные предприняли попытку решить его путём проведения тщательно продуманной серии экспериментов на поверхности Марса приборами спускаемых аппаратов «Викинг»

Программа «Викинг»готовилась несколько лет, Два космических аппарата были запущены 20 августа и 9 сентября 1975 г.

«Викинг-1» 19 июня 1976г., после 10 месяцев пути, вышел на ареоцентрическую орбиту, а спустя ещё месяц – 20 июля – посадочный блок совершил спуск и посадку в области Хризе. Приборы «Викинга-1» немедленно начали передачу панорамных снимков поверхности планеты. Район посадки имеет довольно ровный рельеф и представляет собой песчаную пустыню с большим количеством камней, на половину занесённых слоем тонкой пыли.

Условия в месте посадки блока оказались довольно суровыми. Рентгеновский флуоресцентный спектрометр передал предварительные сведения о составе марсианской почвы:12-16% железа, 13-15% кремния, 3-8 % кальция, 2-7% алюминия, 0.5-2% титана.

В месте спуска посадочного блока «Викинга-2» – в светлой области Утопия — картина оказалась почти такой же, как и в области Хризе. Такие же камни и глыбы среди песчаной пустыни, некоторые из них испещрены ямками и напоминают пемзу.

Но всех в первую очередь интересовали результаты экспериментов по забору и анализу образцов грунта на присутствие микроорганизмов. 31 июля американские учёные пришли в крайнее возбуждение. Анализатор газообмена показал 15-кратное увеличение содержания кислорода по сравнению с нормой после двух часов инкубации. Спустя ещё 24 часа концентрация кислорода выросла ещё на 30%, а затем начала падать и спустя неделю упала до нуля.

Во втором эксперименте часть пробы загружалась в резервуар с питательным бульоном, в котором имелись радиоактивные атомы. Анализатор детектировал выделявшиеся газы и обнаружил увеличение двуокиси углерода, почти такое же, как при анализе биологически активных образцов земной почвы. Но вскоре и в этом приборе уровень отчётов упал почти до нуля.

Третий эксперимент, в котором регистрировалось поглощение изотопа углерода С14 предполагаемыми органическими соединениями марсианского грунта, 6 августа показал повышенную активность.

На «Викинге-2» выделение кислорода из образцов проходило гораздо медленнее, чем на «Викинге-1». Однако американские учёные полагают, что эти результаты нельзя объяснить одними химическими реакциями.

Итак, первые эксперименты «Викингов» оказались обнадёживающими в отношении гипотезы о существовании на Марсе органической жизни. Конечно, это ещё далеко не доказательство её существования. Нужны дальнейшие исследования.

Можно полагать, что ближайшее будущее в исследовании Марса прямыми принадлежит автоматам. Но мы не сомневаемся ни на минуту, что когда-нибудь, и может быть, скорее, чем мы думаем, на пыльную почву Марса ступит человек, посланец нашей родной Земли.

ВЕНЕРА.

Венера, как и Меркурий, раскрылась перед нами в основном за последние 40 лет. Длительное время мы не знали ни давление атмосферы у поверхности планеты, ни её радиуса. Астрономические наблюдения давали лишь радиус облачного слоя, окружающего планету, в пределах от 6100 до 6200 км.

Атмосфера Венеры была открыта в 1761 г. М. В. Ломоносовым при наблюдении прохождения Венеры перед диском Солнца. При схождении её с диска Солнца край последнего как бы выгнулся, образовав «пупырь». М. В. Ломоносов правильно объяснил наблюдавшееся им явление преломлением солнечных лучей в атмосфере Венеры. Это явление получило название «явление Ломоносова».

В течение почти 200 лет атмосфера Венеры была непроницаемым барьером для изучения поверхности планеты и определения периода её вращения вокруг оси. 80 попыток определить этот период с помощью оптических методов потерпели полную неудачу. Не удавалось определить и наклон оси Венеры к плоскости её орбиты.

Первое уверенное определение радиуса твёрдого шара Венеры было сделано в 1965 г. из радиоастрономических наблюдений с помощью радиоинтерферометра Оуэнс Вилли советским учёным А. Д. Кузьминым и американским учёным Б. Дж. Кларком, Кузьмин и Кларк получили значение 6057 км. Затем последовала большая серия радиолокационных измерений в СССР и США, в ходе которых радиус Венеры всё уточнялся. Окончательное его значение 6050 км.

Масса Венеры была уточнена по пролётам мимо планеты американских космических аппаратов «Маринер-2», «Маринер-5» и «Маринер-10». Она составляет 1:408 524 массы Солнца или 84.5% массы Земли. Пол массе и размерам была уточнена средняя плотность Венеры, 5.27 г\см3, и определено ускорение силы тяжести на её поверхности, 885 см\сек2.

Радиолокационные наблюдения, проводившиеся, начиная с 1961 г., в СССР, США и Англии, позволили определить, наконец, период её вращения. Он оказался самым большим в Солнечной системе:243.16 суток при обратном направлении вращения. Иначе говоря, если смотреть с северного полюса Венеры, планета вращается по часовой стрелке, а не против неё как Земля и все планеты (исключая Уран). Из за этого солнечные сутки на Венере короче звёздных и равны 117 земным суткам. Таким образом, день и ночь на Венере продолжается по 58.5 суток. Несмотря на это, температуры дневного и ночного полушарий планеты отличаются очень мало – благодаря большой теплоёмкости и интенсивному переносу тепла в плотной атмосфере Венеры. В 1932 г. У. Адамс и Т. Денхем на обсерватории Маунт Вилсон обнаружили в спектре Венеры полосы поглощения углекислого газа на длинах волн 7820, 7833 и 8689Е.Полосы были весьма интенсивными, и стало ясно. Что углекислый газ – существенный компонент венерианской атмосферы.

Давление атмосферы у поверхности Венерыоказалось 90 атмосфер! Такого значения никто не ожидал. В моделях атмосферы Венеры, построенных до 1967 г., давление у поверхности принималось от 5 до 20 атмосфер.

Высокая температура нижних слоёв атмосферы Венеры объясняется так называемым парниковым эффектом. Атмосфера планеты пропускает солнечное излучение, правда, лишь частично и не в виде прямых лучей, а в форме многократного рассеянного излучения. Облачный слой Венеры обладает весьма высоким альбедо, 0.78, иначе говоря, более трёх четвёртой солнечной радиации отражается облаками и лишь менее одной четверти проходит вниз. Парниковый эффект имеет место и в атмосферах других планет. Но если в атмосфере Марса он поднимает среднюю температуру у поверхности на 9є, в атмосфере Земли на 35є, то в атмосфере Венеры этот эффект достигает 400 градусов!

ХИМИЧЕСКИЙ СОСТАВ АТМОСФЕРЫ ВЕНЕРЫ.

Венера на 97% состоит из углекислого газа (СО2). Не более 2% приходится на долю азота и инертных газов (в первую очередь аргона). В отношении содержания кислорода различные методы дают пока противоречивые результаты, но в любом случае его меньше 0.1%. Из других газов методы инфракрасной спектроскопии позволили обнаружить окись углерода (СО2) в количестве 5·10··-5 от всей массы атмосферы, хлористый водород (НСI)-4·10··-7 и фтористый водород (НF)-10··-9. Поиски других возможных компонентов венерианской атмосферы пока не привели к положительным результатам, но ни один из них не составляет более 10··-5 общего состава атмосферы. В 1927 г. наземные фотографии Венеры в ультрафиолетовых лучах выявили на диске планеты целую систему тёмных и светлых деталей. В 1960 г. французские астрономы Ш. Буайте и А. Камишель независимо друг от друга обнаружили, что расположение некоторых деталей, фотографируемых в ультрафиолетовых лучах, повторяется каждые четверо суток. Объединив свои наблюдения, они пришли к выводу, что верхний слой Венеры имеет обратное вращение с тем же периодам.

Этот результат получил в дальнейшем полное подтверждение. Скорость вращения на уровне верхней границы облаков иная, чем само планеты. Это означает, что над экватором Венеры на высоте 65-70 км. Господствует постоянно дующий ветер в направлении движения планеты, имеющий скорость 100 м\сек (скорость урагана). Такая система циркуляции атмосферы была предсказана почти 250 лет назад английским метеорологом Гадлеем. На Земле её подавляют другие факторы (разность температур, влияние океанов), на Венере же океанов нет, а температуры выровнены благодаря интенсивному переносу тепла в нижних слоях.

Фотографии верхнего слоя облаков Венеры с близкого расстояния были получены в феврале 1974 г. американским космическим кораблём «Маринер-10». Они так же подтвердили четырёх суточный период вращения на уровне облаков.

У планеты имеется, как и у Земли, ионосфера. Дневной максимум электронной концентрации расположен на высоте 145 км. И равен 4·10··5 электронов\см3, что в 10 раз меньше, чем в нашем слое F2. На уровне 500 км. со стороны Солнца наблюдается резкий спад электронной концентрации, а на ночной стороне длинный хвост из заряженных частиц протяжённостью до 3500км. с концентрацией электронов 1000-500 электронов\см3. Такое строение ионосферы связано с обтеканием её солнечным ветром и со слабой направленностью магнитного поля Венеры (по данным Ш. Ш. Долгинова и его сотрудников оно в 10 000 раз слабее земного). Самые верхние слои атмосферы Венеры состоят почти целиком из водорода. Водородная атмосфера Венеры простирается до высоты 5500 км. Наземные американские установки дали возможность исследовать приэкваториальную область планеты. Было обнаружено около 10 кольцевых структур, подобных метеоритным кратерам Луны и Меркурия, диаметром от 35 до 150 км, но сильно сглаженных, уплощенных. Удалось обнаружить гигантский разлом в коре планеты длинной 1500 км, шириной 150 км и глубиной 2 км. Выявлен дугообразный горный массив, пересечённый и частично разрушенный другим. Это говорит в пользу наличия сбросовых движений в коре планеты. Найден вулкан с диаметром основания 300-400 км и около 1 км в высоту. Американские учёные выявили в северном полушарии планеты огромный круглый бассейн протяжённостью около 1500 км с севера на юг и 100 км с запада на восток. Был изучен рельеф 55 районов Венеры. Среди них имеются участки как сильно всхолмлённой местности, с перепадами высот на 2-3 км, так и относительно ровной. Обнаружена большая гладкая равнина длинной около 800 км, и ещё более гладкая, чем поверхность лунных морей. Поверхность Венеры в целом более гладкая, чем поверхность Луны.

Фотографии поверхности Венеры показывают нам каменистую пустыню с характерными скальными образованьями. На снимке «Венеры-9» – свежая осыпь камней. Это говорит о непрекращающейся тектонической активности Венеры. Средняя плотность породы Венеры равна 2.7 г\см3, что тоже близко к плотности земных базальтов.

Таким образом, можно смело сказать, что «чадра», скрывшая лик Венеры от исследований более 300 лет, сорвана, и эта планета предстала глазам учёных со сложным рельефом, следами активного вулканизма и тектонической деятельности и в то же время с явными последствиями её метеоритной бомбардировки в прошлом.

МЕРКУРИЙ.

Меркурий, ближайшая к Солнцу планета Солнечной системы, была для астрономов длительное время полной загадкой. Не был точно измерен период её вращения вокруг оси. Из-за отсутствия спутников не была точно известна масса. Близость к Солнцу мешала производить наблюдения поверхности. В то время как спектры планеты говорили об отсутствии у неё атмосферы, некоторые наблюдатели замечали порой какие-то «туманы», скрывавшие конфигурацию тёмных и светлых пятен, с трудом наблюдаемую на его диске. Поляриметрические наблюдения О. Дольфюса в 1950 году дали указания на наличие весьма слабой атмосферы, в 300 раз разреженнее земной. Но полной уверенности в этом не было.

И вдруг, за какие-нибудь пять лет, всё изменилось, и Меркурий теперь изучен не хуже любой другой планеты Солнечной планеты. Большое значение в разрешении загадок Меркурия имел полёт американского космического аппарата «Маринер-10» в 1974-75гг. Но дело не только в этом полёте: многое о Меркурии мы смогли узнать и с помощью наземных астрономических наблюдений.

Радиолокация позволила установить период вращения Меркурия. Ещё в1882 году Дж. Скиапарелли из визуальных наблюдений сделал вывод, что этот период равен периоду обращения Меркурия вокруг Солнца (88 суток), т.е., что Меркурий обращён к Солнцу одной стороной, как Луна к Земле. Около 50 лет этот период считался предположительным, а потом, уже в 30-х годах нашего столетия, вопросительный знак около значения периода был снят во всех справочниках и таблицах: фотография подтверждала период Мкипарелли. Но всё-таки он оказался неверным.

В1965 году американские радиоастрономы Р. Дайс и Г. Петтенджил с помощью 300-метрового радиотелескопа обсерватории Аресибо установили, что период обращения Меркурия равен 59.3 суток, т.е. он составляет ровно 2/3 орбитального периода. Это открытие поставило перед астрономами два совершенно разных вопроса:

1. Почему визуальные и фотографические наблюдения в течение 80 лет указывали на период 88 суток?

2. Почему период вращения равен 2/3 орбитального периода планеты?

Ответ на оба вопроса оказался сравнительно прост. Три полных оборота вокруг оси Меркурий завершает за 176 суток. За тот же срок планета совершает два оборота вокруг Солнца. Таким образом, Меркурий занимает относительно Солнца то же самое положение на орбите и ориентировка шара остаётся прежней. Такое движение, как показывает теория, является устойчивым. Вращение оказывается в резонансе с орбитальным движением.

Эта соизмеримость периодов и явилась причиной ошибки астрономов в определении периода вращения. Визуальные и фотографические наблюдения Меркурия возможны только около эпох элонгаций, которые повторяются через каждые 116 суток (синодический период Меркурия). Но для наблюдений планеты благоприятна не каждая элонгация: из вечерних, – т.е., что наступают зимой или весной, а из утренних, – т.е., которые бывают летом и осенью (нужно, чтобы Меркурий имел более высокое склонение, чем Солнце). Такие элонгации повторяются раз в год, точнее, раз в 348 суток. Но этот период близок к шестикратному вращению Меркурия 352 суткам. Наблюдая раз в 348 суток Меркурий, мы увидим на нём те же детали, что и год назад. Но астрономы прошлого (Скиапарелли и Антониади), встретившись с этим фактом и имея перед глазами пример Луны, обращённой к Земле одной стороной, полагали, что за это время Меркурий сделал четыре оборота вокруг оси, а не шесть.

После того как недоразумение выяснилось, был сделан ряд важных уточнений. Ось Меркурия оказалась почти перпендикулярной к плоскости его орбиты. Была система счёта долгот: от 0 до 360є навстречу вращению планеты. За начальный меридиан был принят тот, который проходил через подсолнечную точку в момент прохождения Меркурия через перигелий в 1950 году (это было 11 января 1950 года). С помощью этой системы координат американские астрономы К. Чепмен и Д. Крукженк, с одной стороны, и французские астрономы О. Дольфюс и А. Камишель, — с другой, построили карты планеты, основанные на её многолетних визуальных и фотографических наблюдениях. Обе карты хорошо согласовались друг с другом и, как доказал советский планетолог Г. Н. Каттерфельд, также с картами Киаппарелли и Антониади. Уже тогда на поверхности Меркурия были заметны круглые тёмные пятна, похожие на лунные «моря», — тёмные линейные образования протяжённостью 1-2 км и разделяющие их светлые области. Но общее альбедо Меркурия оказалось крайне низким, около 0.05.

ТЕМПЕРАТУРНЫЙ РЕЖИМ ПЛАНЕТЫ.

Радионаблюдения планеты ещё в 1962 году показали сравнительно небольшое различие яркостных температур дневного и ночного полушарий. В 1966 году было установлено, что средняя температура диска Меркурия на волне 11 см меняется с углом фазы. Это означало, что температура ночного полушария планеты далеко не так мала, как предполагалась ранее. В 1970 году Т Мардок и Э Ней из Миннесотского университета по наблюдениям в инфракрасных лучах на волнах от 3.75 до 12 мкм установили, что средняя температура ночного полушария рана 111єК. С другой стороны, температура подсолнечной точки на среднем расстоянии Меркурия от Солнца равна 620єК. В перигелии она может достигать 690єК, а в афелии снижается до 560єК. Таков диапазон температур поверхности Меркурия.

СМЕНА ДНЯ И НОЧИ.

Любопытно, как происходит смена дня и ночи на Меркурии. Солнечные сутки там равны общему наименьшему кратному из периодов вращения и обращения, т.е. 176 земным суткам. День и ночь продолжается по 88 суток, т.е. равны году планеты! Солнце восходит на востоке, поднимается крайне медленно (в среднем на один градус за двенадцать часов), достигает верхней кульминации (на экваторе – зенита) и так же медленно заходит. Но так происходит не на всех долготах. На долготах, близких к 90 и 270є, наблюдается весьма странная и, пожалуй, единственная в Солнечной системе картина. На этих долготах восход и заход Солнца совпадают по времени с прохождением Меркурия через перигелий, когда на короткое время (8суток) угловая скорость орбитального движения планеты превышает угловую скорость орбитального движения планеты превышает угловую скорость её вращения. Солнце на небе планеты описывает петлю, как сам Меркурий на небе Земли. На указанных долготах Солнце после восхода вдруг останавливается, поворачивается обратно и заходит почти в той же точке, где взошло. Но спустя несколько земных суток Солнце восходит снова в той же точке и уже надолго. Около захода картина повторяется в обратном порядке.

Но самое интересное, что удалось узнать о Меркурии, это вид его поверхности. Когда космический аппарат «Маринер-10» передал первые снимки Меркурия с близкого расстояния, астрономы всплеснули руками: перед ними была вторая Луна! Поверхность Меркурия оказалась усеянной кратерами разных размеров, совсем как поверхность Луны. Их распределение по размерам тоже было аналогично лунному. На поверхности планеты были обнаружены гладкие округлые равнины, получившие, по сходству с лунными «морями» название бассейнов. Наибольший из них, Калорис, имеет в диаметре 1300 км (океан Бурь на Луне – 1800 км).

На основании анализа фотографий Меркурия американские геологи П. Шульц и Д. Гаулт предложили следующую схему эволюции его поверхности. После завершения процесса аккумуляции и формирования планеты её поверхность была гладкой. Далее наступил процесс интенсивной бомбардировки планеты остатками до планетного роя, во время которой образовались бассейны типа Калорис, а так же кратеры типа Коперника на Луне. Следующий период характеризовался интенсивным вулканизмом и выходом потока лавы, заполнявшей крупные бассейны. Этот период завершился около 3 млрд. лет назад (возраст планет Солнечной системы известен довольно точно и равен 4.6млрд. лет).

Данные об атмосфере Меркурия указывает лишь на её сильную разрежённость. По радио заметному эксперименту плотность атмосферы на дневной стороне Меркурия не превышает 10··6 молекул\см3, наблюдения с ультрафиолетовым спектрометром дают давление у поверхности 10··-12 бар (1 бар почти равен давлению в 1 атмосферу), что примерно соответствует плотности 10··7молекул.см3 у поверхности. Из них около 0.1% приходится на долю гелия, наличие которого установлено по ультрафиолетовому спектру. Обнаружены небольшие количества водорода и кислорода. Подозревается так же присутствие СО 2 и СО.

Приборы «Маринера-10» установили наличие у планеты слабого магнитного поля – около 100 гамм на расстоянии 450 км. Тщательное изучение магнитного поля планеты показало, что оно имеет более сложную структуру, чем земное кроме дипольного (двухполюсного), в нём присутствуют ещё поля с четырьмя и восемью полюсами с относительной напряжённостью 1:0.4:0.3 (у Земли 1:0.14:0.09). Со стороны Солнца магнитосфера Меркурия сильно сжата под действием солнечного ветра.

Пролёты «Маринера-10» мимо Меркурия позволили уточнить его массу 1\6 023 600 солнечной или 0.054 массы Земли, а так же среднюю плотность. 5.45 г\см3, т.е. Меркурий по плотности занимает второе место в Солнечной системе, уступая только Земле. Диаметр Меркурия составляет 4879 км.

Высокая плотность и наличие магнитного поля показывает, что у Меркурия должно быть плотное железистое ядро. По расчётам С. В. Козловской, плотность в центре Меркурия должна достигать 9.8 г\см3. Радиус ядра, по данным американских учёных, составляет 1800 км (75% радиуса планеты). На долю ядра приходится 80% массы Меркурия. Несмотря на медленное вращение планеты, большинство специалистов считает, что её магнитное поле возбуждается тем же динамо механизмом, что и магнитное поле Земли. Вкратце этот механизм сводится к образованию кольцевых электрических токов в ядре планеты при её вращении, которые и генерируют магнитное поле. Выяснение происхождения магнитного поля Меркурия может иметь большое значение для проблемы планетарного механизма в целом.

ЗЕМЛЯ.

Земля кажется нам такой огромной, такой надёжной и так много значит для нас, что мы не замечаем её второстепенного положения в семье планет. Слабое единственное утешение состоит в том, что Земля — наибольшая из планет земной группы. К тому же она обладает атмосферой средней мощности, значительная часть земной поверхности покрыта тонким неоднородным слоем воды. А вокруг неё вращается величественный спутник, диаметр которого равен четверти земного диаметра. Однако этих аргументов вряд ли достаточно для того, чтобы поддерживать наше космическое самомнение. Крошечная по астрономическим масштабам, Земля – это наша родная планета, и поэтому она заслуживает самого тщательного изучения.

После кропотливой и упорной работы десятков поколений учёных было неопровержимо доказано, что Земля вовсе не «центр мироздания», а самая обыкновенная планета, т.е. холодный шар, движущийся вкруг Солнца.

В соответствии с законами Кеплера Земля обращается вокруг Солнца с переменной скоростью по слегка вытянутому эллипсу. Ближе всего к солнцу она подходит в начале января, когда в Северном полушарии царит зима, дальше всего отходит в начале июля, когда у нас лето. Разница в удалении Земли от Солнца между январём и июлем составляет около 5 млн. км. Поэтому зима в северном полушарии чуть-чуть теплее, чем в Южном, а лето, наоборот, чуть-чуть прохладнее. Это явственнее всего даёт себя знать в Арктике и в Антарктиде.

Эллиптичность орбиты Земли оказывает на характер времён года лишь косвенное и очень незначительное влияние. Причина смены времён года кроется в наклоне земной оси.

Ось вращения Земли расположена под углом в 66.5є к плоскости её движения вокруг Солнца. Для большинства практических задач можно принимать, что ось вращения Земли перемещается в пространстве всегда параллельно самой себе. На самом же деле ось вращения Земли, или, что-то же самое, ось мира, поскольку они параллельны, описывает на небесной сфере малый круг, совершая один полный оборот за 26 тыс. лет.

В ближайшие сотни лет северный полюс мира будет находиться недалеко от Полярной звезды, затем начнёт удаляться от неё, и название последней звезды в ручке ковша Малой Медведицы – Полярная – утратит свой смысл. Через 12 тыс. лет полюс мира приблизится к самой яркой звезде северного неба – Веге из созвездия Лиры.

Описанное явление носит название прецессии оси вращения Земли. Обнаружил явление прецессии уже Гиппарх, который сравнил положения звёзд в своём каталоге с составленным задолго до него звёздным каталогом Аристилла и Тимохариса. Сравнение каталогов и указало Гиппарху на медленное перемещение оси мира.

Различают три наружных оболочки Земли: литосферу, гидросферу и атмосферу. Под литосферой понимают верхний твердый покров планеты, который служит ложем океана, а на материках совпадает с сушей. Гидросфера – это подземные воды, воды рек, озер, морей и, наконец, Мирового океана. Вода покрывает 71% всей поверхности Земли. Средняя глубина Мирового океана 3900 м.

ДВИЖУТСЯ ЛИ МАТЕРИКИ ЗЕМЛИ?

Альфред Вегенер, начинающий немецкий геофизик, подметил сходство в очертаниях земных материков по обе стороны Атлантики. Убедиться в этом не составляет труда каждому: достаточно взглянуть на глобус. Если мысленно пододвинуть Северную и Южную Америки к берегам Европы и Африки, то они сольются воедино точно так же, как в руках археологов складываются в одно целое черепки разбитой греческой амфоры. А что если, вообразил Вегенер, некогда на Земле в действительности существовал один-единственный материк? Потом он был расколот на куски, и осколки дрейфовали, отодвигаясь, друг от друга до тех пор, пока заняли современное взаимное расположение.

В этом случае Атлантический океан представляет собой не то, что иное, как рану на теле Земли: след гигантского разлома, по одну сторону от которого «отплывают» Северная и Южная Америки, по другую – Евразия и Африка.

Догадка Вегенера была высказана в начале нашего века. Большинство учёных приняло её в штыки. Главное возражение состояло в том, что науке не известны силы, которые могли бы приводить в движение по поверхности планеты, словно льдины на озёрной глади, такие громадные образования, как материки. Над сходством береговых линий посмеялись как над курьёзом.

Сегодня гипотеза Вегенера о дрейфе материков обрела новую жизнь, причём многие черты её заметно преобразились. Из глубин Земли к поверхности планеты, считают геофизики, поднимается поток вещества, который образует длинное центральное поднятие – Срединно-Атлантический хребет и далее растекается от него в обе стороны. Растекающиеся по обе стороны от Срединно-Атлантического хребта глубинное вещество Земли обусловливает удаление друг от друга, с одной стороны хребта Северной и Южной Америк, с другой – Евразии и Африки. Процесс этот медленный, он длится сотни миллионов лет. Те побережья материков, которые «плывут» первыми, как носовая часть корабля, сминаются в складки. В результате на материках вдоль этих побережий образуются протяжённые горные хребты: Скалистые горы и Кордильеры в Америке, Драконовы горы в Африке.

Сверхглубокая скважина на Кольском полуострове – дерзкий вызов природе, фантастический рекорд, уникальное достижение науки и техники. Но много ли это или мало по сравнению с размерами Земли? Уподобим для сравнения тело Земли телу человека. Это значит, что глубочайшая скважина Земли как средство зондажа строения её недр, будучи соответственно отнесена к размерам тела человека, гораздо меньше глубины укуса комара.

ТРИНАДЦАТЬ ДВИЖЕНИЙ ЗЕМЛИ.

Прежде чем подробно рассмотреть те движения нашей планеты, которые имеют непосредственное отношение к её недрам, представим общую картину очень сложно движущейся Земли. Некоторые из этих движений быстры и заметны, другие, наоборот, почти неощутимо медленны. Их совокупность демонстрирует на примере Земли ту вечную изменчивость, которая свойственна всему мирозданию и является общим свойством материи. Главной силой, определяющей все эти движения, служит гравитация – притяжение Земли другими телами космоса.

Трудно поверить, что такое огромное тело, как земной шар, весящий 6 000 000 000 000 000 000 000 тонн, одновременно участвует в самых разнообразных движениях. Однако существование этих движений твёрдо установлено современной наукой. Два движения Земли известны с давних времён – это вращение вокруг собственной оси и обращение вокруг солнца.

Известно немало доказательств вращения Земли. Так, например, если с высокой башни бросить камень, то при падении он расколется к востоку, т.е. в том же направлении, в котором вращается Земля.

Все движения в природе в той или иной степени неравномерны. Например, второе движение Земли вокруг Солнца. Оно совершается по эллипсу. Когда Земля проходит через перигелий – ближайшую к Солнцу точку своей орбиты, нас отделяет от Солнца почти 147 млн. км. Через полгода расстояние от Земли до Солнца становится близким к 152 млн. км.

Скорость движения Земли всё время меняется. Вблизи Солнца она увеличивается, с удалением от него – уменьшается. В среднем же Земля летит по своей орбите в 36 раз быстрее пули – 30 километров в секунду. Но эта скорость кажется огромной лишь по земным мерам расстояний. Если бы мы смогли откуда-то из вне с большого расстояния следить за орбитальным движениям земного шара, он показался бы нам более медлительным, чем черепаха: за один час земной шар проходит путь, в девять раз превышающий его диаметр между тем как черепаха за один час покрывает расстояние, равное нескольким десяткам её поперечников.

Земной шар часто сравнивают с волчком. Такое сравнение имеет более глубокий смысл, чем иногда кажется. Если раскрутить волчок, а потом слегка толкнуть его ось – она начнёт описывать конус, причём со скоростью, значительно меньшей скорости вращения волчка. Это движение называется прецессией. Оно свойственно и земному шару, являясь его третьим движением.

Луна вызывает ещё одно, гораздо менее значительное, четвёртое движение Земли. Из-за воздействия Луны на различные точки земного эллипсоида земная ось описывает маленький конус с периодом в 18.6 года. Благодаря этому движению, называемому нутацией небесный полюс вычерчивает на фоне звёздного неба крошечный эллипс, у которого наибольший диаметр близок к 18 секундам дуги, а наименьший – около 14 секунд.

Во всех учебников географии подчёркивается, что наклон оси Земли к плоскости её орбиты всегда остаётся неизменным. Строго говоря, это не совсем точно. Земля, хотя и крайне медленно всё же «покачивается», и наклон земной оси слегка меняется. Впрочем, это пятое движение Земли мало ощутимо.

Не остаётся неизменной и форма земной орбиты. Её эллипс становится то более, то менее вытянутым. В этом заключается шестое движение земного шара.

Прямая, соединяющая ближайшую и наиболее отдалённую от Солнца точки орбиты Земли, называется линией апсид. В её медленном повороте выражается седьмое движение Земли.

Из за этого меняются сроки прохождения Земли через перигелий. В настоящую эпоху максимальное сближение Солнца и Земли приходится на 3 января. За 4000 лет до нашей эры Земля проходила через перигелий 21 сентября. Это снова повторится лишь в 17000 году.

Выражение «Луна обращается вокруг земли» не совсем точно. Дело в том, что Земля притягивает луну, а Луна Землю, поэтому оба тела движутся вокруг общего центра тяжести. Если бы массы Земли и Луны были одинаковы, то этот центр находился бы по середине между ними, и оба небесных тела обращались бы вокруг по одной орбите. На самом же деле Луна в 81 раз легче Земли, и центр тяжести системы Земля Луна в 81 раз ближе к Земле, чем к Луне. Он отстоит на 4664 километра от центра Земли в сторону Луны, т.е. находится внутри Земли почти в 1700 километрах от неё поверхности. Вот вокруг этой точки происходит восьмое движение Земли.

Если бы вокруг Солнца обращалась только Земля, оба тела описывали бы эллипсы вокруг общего неподвижного центра тяжести. Однако в действительности притяжение Солнца другими планетами заставляет этот центр двигаться по очень сложной кривой. Ясно, что эго движение отражается и на Земле, порождая ещё одно девятое её движение.

Наконец, сама Земля весьма чутко реагирует на притяжение всех других планет Солнечной системы. Их общее воздействие отклоняет Землю с её простого эллиптического пути вокруг Солнца и вызывает все те неправильности в орбитальном движении Земли, которые астрономы называют возмущениями. Движение Земли под действием притяжения планет является её десятым движением.

Установлено, что звёзды несутся в пространстве со скоростью в десятки, а иногда и сотни километров в секунду. Наше солнце и в этом проявляет себя как рядовая звезда. Вместе со всей солнечной системой, в том числе и Землёй, оно летит в направлении созвездия Геркулеса со скоростью около 20 километров в секунду, перемещение Земли относительно ближайших к Солнцу звёзд называется одиннадцатым её движением.

Долог путь Солнца вокруг галактического ядра. Солнечная система завершает его почти за 200 млн. лет – такова продолжительность «галактического года»!

Полёт Земли в пространстве вместе с Солнцем вокруг центра Галактики – двенадцатое её движение дополняется тринадцатым движением всей нашей звёздной системы Галактики относительно ближайших к ней и известных нам других галактик.

Перечисленные тринадцать движений Земли вовсе не исчерпывают всех её движений. В бесконечной Вселенной каждое из небесных тел, строго говоря, участвует в бесчисленном множестве различных относительных движений.

ХИМИЧЕСКИЙ СОСТАВ ВОЗДУХА.

Компонент Содержание по объёму, %

Азот 78.08

Кислород 20.95

Аргон 0.93

Углекислый газ (СО2) 0.03

Неон 0.0018

Гелий 0.0005

Метан (СН4) 0.0002

Криптон 0.0001

Сернистый газ (СО2) 0.0001

Водород 0.0005

Водяной пар (Н2О) 0.2-0.4

Другие газы и пыль Следы

ЕДИНСТВЕННЫЙ СПУТНИК ЗЕМЛИ – ЛУНА.

Давно минули те времена, когда люди считали, что таинственные силы Луны оказывают влияние на их повседневную жизнь. Никто больше не пытается приписать Луне свои успехи или обвинить её в своих неудачах. Но Луна действительно оказывает разнообразное влияние на Землю, которое обусловлено простыми законами физикии прежде всего динамики.

Самая удивительная особенность движения Луны состоит в том, что скорость её вращения вокруг оси совпадает со средней угловой скоростью обращения вокруг Земли. Поэтому Луна всегда обращена к Земле одним и тем же полушарием.

Поскольку Луна — ближайшее небесное тело её расстояние от Земли известно с наибольшей точностью, до нескольких сантиметров по измерениям при помощи лазеров и лазерных дальномеров. Наименьшее расстояние между центрами Земли и Луны равно 356 410 км. Наибольшее расстояние Луны от Земли достигает 406 700 км, а среднее расстояние составляет 384 401 км.

Земная атмосфера искривляет лучи света до такой степени, что всю Луну (или Солнце) можно видеть ещё до восхода или после заката. Дело в том, что преломление лучей света, входящих в атмосферу из безвоздушного пространства, составляет около 0.5є, т.е. равно видимому угловому диаметру луны. Таким образом, когда верхний край истинной Луны находится чуть ниже горизонта, вся Луна видна над горизонтом.

Из приливных экспериментов был получен другой удивительный результат. Оказывается Земля – упругий шар. До проведения этих экспериментов обычно считали, что Земля вязкая, подобно патоке или расплавленному стеклу; при небольших искажениях она должна была бы, вероятно, сохранять их или же медленно возвращаться к своей исходной форме под действием слабых восстанавливающих сил. Эксперименты показали, что Земля в целом придаётся приливообразующим силам и сразу же возвращается к первоначальной форме после прекращения их действия. Таким образом, Земля не только твёрже стали, но и более упругая.

Мы познакомились с современным состоянием нашей планеты и планет Земной группы. Будущее нашей планеты, да и всей планетной системы, если не произойдёт ничего непредвиденного, кажется ясным. Вероятность того, что установившийся порядок движения планет будет нарушен какой-нибудь странствующей звездой, невелика, даже в течение нескольких миллиардов лет. В ближайшем будущем не приходится ожидать сильных изменений в потоке энергии Солнца. Вероятно, могут повториться ледниковые периоды. Человек способен изменить климат, но при этом может совершить ошибку. Континенты в последующие эпохи будут подниматься и опускаться, но мы надеемся, что процессы будут происходить медленно. Время от времени возможны падения массивных метеоритов.

Но в основном Солнечная система будет сохранять свой современный вид.

www.ronl.ru

Доклад: Планеты Земной группы

Формат: doc

Дата создания: 04.12.2001

Размер: 110.09 KB

Скачать реферат

Планеты Земной группы.

Меркурий.

Меркурий является ближайшей к Солнцу планетой. Его диаметр всего в полтора раза больше диаметра Луны. Орбита имеет значительный эксцентриситет по сравнению с другими планетами. В перигелии Меркурий проходит на расстоянии 46 млн. км от Солнца, а в афелии удаляется до 70 млн. километров. Из-за сложения неравномерного движения по орбите (благодаря ее сильной вытянутости) с медленным вращением, Солнце на небе Меркурия останавливается, и даже двигается назад. На Меркурии нет времен года. Визуальные наблюдения затруднены, т.к. Меркурий в элонгации не удаляется больше чем на 18-28 градусов, большую часть времени скрываясь в лучах Солнца. Радиолокационными измерениями установлено, что вращение вокруг оси прямое, сидерический период равен примерно 59 земных суток, а меркурианские сутки длятся 220 земных суток. Атмосфера Меркурия имеет крайне низкую плотность и по существу является потоком частиц выбрасываемых Солнцем и охватывающим Меркурий. Более 100 лет назад утвердилось мнение, что Меркурий всегда обращен одной стороной к Солнцу, что приводит к тому, что половина его поверхности оказывается раскаленной. Первые сомнения принесли наблюдения теплового излучения планеты в 1962 году. Дневная сторона планеты оказалась не так горяча, как ожидалось, а от ночной стороны исходил ощутимый поток тепла. Тем не менее, температурный контраст очень высокий: температура на экваторе днем +480°C, а ночью -165°C. Поверхность Меркурия, изобилует кратерами и очень напоминает лунную. Кратеры не столь глубокие как на Луне, что говорит о большей силе тяжести на Меркурии. Хорошо видны эскарпы – следы тектонической активности – крутые уступы длиной от 20 до 500 км и высотой 1-2 км. Происхождение эскарпов связывают со сжатием планеты в процессе ее остывания и приливным влиянием Солнца. По-видимому, эскарпы образовались раньше, чем кратеры меркурианской поверхности, так как они местами разрушены кратерами. «Морей» там меньше, чем на Луне, причем они небольшие. Диаметр меркурианского Моря Зноя 1300 км, как и Моря Дождей на Луне. Как и на Луне, большинство кратеров образовались в результате падений метеоритов. Там, где кратеров немного, мы видим сравнительно молодые участки поверхности. Старые, разрушенные кратеры заметно отличаются от более молодых кратеров, хорошо сохранившихся. Наилучшими условиями для наблюдений являются весенний период для западной элонгации (утренняя видимость) и осенний для восточной элонгации. В эти моменты эклиптика расположена таким образом, что высота Меркурия над горизонтом наибольшая. Спутников Меркурий не имеет.

Меркурий

Венера.

После Меркурия следует планета Венера, масса и радиус которой очень близки к земным. Орбита Венеры почти круговая (эксцентриситет менее 1%), но видимые угловые размеры изменяются очень сильно из-за того, что расстояние от Венеры до Земли в верхнем и нижнем соединениях меняется от 40 до 260 млн. км. При визуальных наблюдениях отчетливо видны фазы Венеры, однако различить детали на поверхности не удается из-за равномерной плотной атмосферы, открытой еще Ломоносовым при прохождении Венеры по диску Солнца. Вращение вокруг оси(обратное) удалось установить радиолокационным способом. Период вращения оказался равным 243 земным дням, а период обращения вокруг Солнца - 225 суткам. За один оборот вокруг Солнца на Венере наблюдаются два его восхода и захода. . Продолжительность солнечных суток на Венере составляет 116,8 земных суток, а венерианский год состоит приблизительно из двух венерианских солнечных суток. Диаметр Венеры почти такой же как у Земли (95%), а масса составляет 80% от массы Земли, и густая плотная атмосфера делает их очень похожими. Температура у поверхности Венеры очень высокая (около 500 град С) и остается все время почти одинаковой. Высокая температура поверхности Венеры обусловлена парниковым эффектом. Густая плотная атмосфера пропускает лучи Солнца, но задерживает инфракрасное тепловое излучение, идущее от нагретой поверхности. Облачный слой сильно ослабляет солнечный свет, освещенность у поверхности Венеры примерно такая же, как у поверхности Земли в облачный день, однако что небо Венеры и ее ландшафт имеют оранжевый цвет из-за особенностей состава атмосферы. Радиолокационные наземные наблюдения обнаружили на этой планете множество неглубоких кратеров, диаметры которых от 30 до 700 км. В целом эта планета оказалась наиболее гладкой из всех планет земной группы, хотя и на ней есть большие горные массивы и протяженные возвышенности, вдвое превышающие по размерам земной Тибет. Грандиозен потухший вулкан Максвелл, его высота 12 км, поперечник подошвы 1000 км, диаметр кратера на вершине 100 км. Сведения о внутреннем строении Венеры опираются, главным образом, на теорию. Современная модель планеты трехслойная: ядро, нижняя мантия и верхняя мантия. Ядро планеты несколько меньше, чем у Земли. На него приходится приблизительно 12% массы планеты (у Земли 16%). Предполагается, что оно состоит из расплавленного железа. Литосфера, может быть, более мощная, толщина коры - неизвестна. С внутренним строением планеты связана и проблема отсутствия магнитного поля: на всех планетах земной группы, кроме Венеры, есть собственное магнитное поле. Самыми сильными магнитными полями обладают планеты гиганты и Земля. Спутников Венера не имеет.

Венера

Марс.

Поверхность Марса изобилует кратерами. Особенно много их в южном полушарии планеты. Темные области, занимающие значительную часть поверхности планеты, получили название морей. Диаметры некоторых морей превышают 2000 км. Возвышенности, напоминающие земные континенты, представляющие собой светлые поля оранжево-красного цвета. Как и на Венере, здесь есть огромные вулканические конусы. Высота наибольшего из них - Олимпуса - превышает 25 км, диаметр кратера 90 км. Диаметр основания этой гигантской конусообразной горы более 500 км. О том, что миллионы лет назад на Марсе происходили мощные вулканические извержения и смещались поверхностные пласты, свидетельствуют остатки лавовых потоков, огромные разломы поверхности (один из них - Маринер - тянется на 4000 км), многочисленные ущелья и каньоны. Возможно, что именно некоторые из этих образований (например, цепочки кратеров или протяженные ущелья) исследователи Марса еще 100 лет назад приняли за "каналы", существование которых впоследствии долгое время пытались объяснить деятельностью разумных обитателей Марса. Перестал быть загадкой и красноватый цвет Марса. Он объясняется тем, что грунт этой планеты содержит много глин, богатых железом. С близкого расстояния неоднократно фотографировались спутники Марса Деймос и Фобос и передавались панорамы поверхности "Красной планеты". Атмосфера Марса очень разрежена. При таком давлении вода закипает уже при температуре +2С. Именно поэтому никаких рек, озер или морей, заполненных водой на Марсе нет. По-видимому, каньоны Марса никогда не были заполнены водой, а происхождение их связано с древней тектоникой Марса - с движением огромных плит марсианской коры. Однако, были получены и снимки явно водно-эрозионных образований. В частности это видно на примере русла древней реки Нергал. Внимательное изучение русел древних рек показало, что их обмеление происходило постепенно. Много обсуждался вопрос, что же это было? Вода? Или какая другая текучая субстанция? Сошлись, все-таки, на воде. Куда же она делась? Вопросов много, на которые сейчас пока нет ответа. Известно лишь, что атмосфера Марса на 95% состоит из углекислого газа, водяных паров - всего 0,05%, кислорода 0,1-0,4%, азота 2,5%.

1)Марс

2)Вулкан “Олимпус”

3)Каньон “Маринер”

4)Спутники Марса:

Фобос и Деймос.

Подобные документы:

Реферат Вселенная, Галактика и Солнечная система На протяжении последних триста лет, начиная от Рене Декарта (1596-1650), было высказано несколько десятков космогонических гипотез, в которых рассмотрены самые разнообразные варианты ранней истории Солнечной системы. Говоря о далёких объектах Вселенной, астрономы обычно жалуются, что во многих случаях имеется слишком мало данных, чтобы осветить развитие объектов.

Реферат Планета Венера Венера – вторая после Меркурия по удаленности от Солнца (108 млн. км) планета земной группы. Она занимает промежуточное положение между Меркурием и Землей. Ее орбита имеет форму почти правильного круга, планета, почти такого же размера, как Земля. Орбита Венеры ближе к окружности, чем у любой другой планеты Солнечной Системы. Временами Венера подходит к Земле на расстояние, меньшее 40 млн. км.

Реферат Планета Марс Марс – от греческого Mas – мужская сила – бог войны, в римском пантеоне почитался как отец римского народа, охранитель полей и стад, позднее – покровитель конных состязаний. Марс – четвертая планета Солнечной системы. Сияющий кроваво-красный диск, увиденный в телескоп, наверняка ужаснул астронома, открывшего эту планету. Поэтому ее так и назвали.

Реферат Планеты Земной группы Меркурий является ближайшей к Солнцу планетой. Его диаметр всего в полтора раза больше диаметра Луны. Орбита имеет значительный эксцентриситет по сравнению с другими планетами. В перигелии Меркурий проходит на расстоянии 46 млн. км от Солнца, а в афелии удаляется до 70 млн. километров.

Реферат Происхождение и развитие солнечной системы Груша Мария Владимировна ТЕМА : Происхождение и развитие солнечной системы РЕФЕРАТ Владивосток 2001 г. Содержание : космогонические ГИПОТЕЗЫ ПРОИСХОЖДЕНИЯ СОЛНЕЧНОЙ СИСТЕМЫ Паршаков Евгений Афанасьевич. Происхождение и развитие Солнечной системы (http://parshakov.chat.ru/) [1]

Реферат Строение солнечной системы Солнечная система представляет собой группу небесных тел, весьма различных по своим размерам и физическому строению. В эту группу входят: Солнце, Девять больших планет, вместе с 61 спутником, более 100000 планет (астероидов) , порядка десяти комет, а также бесчисленное множество метеорных тел движущихся как роями так и в виде отдельных частиц.

Реферат Планеты гиганты Далеко за орбитой Марса (самой дальней от Солнца планеты земной группы) и главным поясом астероидов мы встречаем четырех гигантов: Юпитер, Сатурн, Уран и Нептун. Их часто обсуждают вместе, и во многих отношениях это логично, хотя пара Юпитер - Сатурн сильно отличается от пары Уран - Нептун, и каждая планета обладает собственными уникальными характеристиками.

Реферат Обзор солнечной системы Солнечная система представляет собой группу небесных тел, весьма различных по своим размерам и физическому строению. В эту группу входят: Солнце, Девять больших планет, вместе с 61 спутником, более 100000 планет (астероидов) , порядка десяти комет, а также бесчисленное множество метеорных тел движущихся как роями так и в виде отдельных частиц.

Реферат Планета Земля Земля как одна из планет Солнечной системы на первый взгляд ничем не примечательна. Это не самая большая, но и не самая малая из планет. Она не ближе других к солнцу, но и не обитает на периферии планетной системы. И всё же Земля обладает одной уникальной особенностью – на ней есть жизнь. Однако при взгляде на Землю из космоса это не заметно. Хорошо видны облака, плавающие в атмосфере.

Реферат Все про Марс внимание на ярко-оранжевую звезду, которая время от времени сияла на небосклоне. Древние египтяне и жители Вавилона называли ее просто красной звездой. Пифагор предложил именовать ее Пирей, что значит "пламенный". Древние греки посвящали все планеты богам. И конечно, для бога войны Ареса не нашлось более подходящего символа, чем красноватая звезда в черном небе.

Реферат Форма, размеры и движения Земли и их геофизические следствия. Гравитационное поле Земли Тема: « Форма , размеры и движения Земли и их геофизические следствия. Гравитационное поле Земли. Основные характеристики, их изменения по широте, глубине и высоте над поверхностью Земли. Гравитационные аномалии. » Солнечная система включает девять крупных планет, которые со своими 57 спутниками обращаются вокруг массивной звезды по эллиптическим орбитам (рис. 1).

Реферат Проблема Великого Молчания Внеземных Цивилизаций Понятие «проблема внеземных цивилизаций» как таковая зародилась достаточно давно и до сих пор не имеет окончательного решения. Да и само понятие «проблемы…» можно истолковать по-разному. С одной стороны, это может быть проблемой существования внеземных цивилизаций (далее ВЦ), с другой стороны – это проблема поиска ВЦ, с третьей – проблема поиска ВЦ (если они существуют).

Доклад: Загадки Венеры Венера – наша ближайшая соседка. Её размеры, масса и плотность пород близки к земным. Вместе с тем её магнитное поле в три раза слабее, чем на Земле. Венера очень медленно вращается вокруг своей оси в направлении, обратном вращению Земли. Давление на её поверхности достигает 10 млн. Па, а температура около +5000 С. На высоте 49 км над планетой простирается мощный слой облаков.

nreferat.ru

Реферат - Сравнительная характеристика планет земной группы и планет-гигантов

РЕФЕРАТ ПО АСТРОНОМИИ

НА ТЕМУ :

“СРАВНИТЕЛЬНАЯ ХАРАКТЕРИСТИКА ПЛАНЕТ ЗЕМНОЙ ГРУППЫ И ПЛАНЕТ-ГИГАНТОВ”.

Ученика 11 класса, второй группы,

экстерната № 41

БАЛАСАНЯН АРСЕНА.

Москва 1999 г.

ПЛАН:

1. Строение Солнечной системы.

2. Методы изучения физической природы тел Солнечной системы.

3. Отличительные особенности планет земной группы от планет-гигантов.

4. Физические условия на Луне и её рельеф.

5. Планеты земной группы (Венера).

6. Планеты-гиганты ( Сатурн ).

7. Малые тела Солнечной системы.

8. Современные представления о происхождении Солнесной системы.

9. Список использованной литературы.

Строение Солнечной системы.

Солнечная система – система небесных тел, состоящая из Солнца, 9 больших планет и их спутников, десятков тысяч малых планет и их спутников, десятков тысяч малых планет (астероидов), множества комет, мелких метеорных тел и межпланетного газа и пыли. Всё в солнечной системе определяется Солнцем, которое является самым массивным телом и единственным, обладающим собственным свечением. Солнце – обычная звезда главной последовательности с абсолютной звёздной величиной +5. Его объём в миллион раз превышает объём Земли, однако по сравнению со звёздами-гигантами Солнце очень мало. Остальные члены Солнечной системы светят отражённым солнечным светом и выглядят такими яркими на небе, что не трудно и забыть, что для вселенной в целом они даже отдалённо не являются столь важными объектами, какими представляются нам. Девять планет обращаются вокруг Солнца по эллипсам (мало отличающимся от окружностей) почти в одной плоскости в порядке удаления от Солнца: Меркурий, Венера, Земля (с Луной), Марс, Юпитер, Сатурн, Уран, Нептун и Плутон.

Планеты делятся на две отчётливо различающиеся группы. В первую входят относительно небольшие планеты: Меркурий, Венера, Земля и Марс, с диаметрами от 12756 км (Земля) до 4880 км (Меркурий). Эти планеты имеют некоторые общие характеристики. Все они, например, имеют твёрдую поверхность и, по-видимому, состоят из сходного по составу вещества, хотя Земля и Меркурий более плотные чем Марс и Венера. Их орбиты в общем не отличаются от круговых, только орбиты Меркурия и Марса более вытянуты чем у Земли и Венеры. Меркурий и Венеру называют внутренними планетами, поскольку их орбиты лежат внутри земной; они, как и Луна, бывают в разных фазах – от новой до полной – и остаются в той же части неба, что и Солнце. У Меркурия и Венеры нет спутников, Земля имеет один спутник (известную нам Луну), у Марса два спутника – Фобос и Деймос, оба очень маленькие и явно отличаются по своей природе от Луны.

За Марсом находится широкий провал, в котором движутся тысячи небольших тел, называемых астероидами, планетоидами или малыми планетами. Диаметр даже самого большого из них – Цереры – составляет лишь около 1000 – 1200 км.

Далеко за основной зоной астероидов находятся четыре планеты-гиганта: Юпитер, Сатурн, Уран, Нептун. Эти планеты совершенно отличны от планет земной Группы: они скорее газовые и жидкие чем твёрдые, с очень плотными атмосферами. Их масса настолько велика, что они были способны удержать большую часть первоначального водорода. Так, скорость убегания для Юпитера составляет 60 км/с, тогда как для Земли она равна 11,2 км/с. Их среднее расстояния от Солнца составляют от 778 млн. км (Юпитер) до 4497 млн. км (Нептун). Планеты-гиганты имеют много общего, но сильно отличаются в деталях. Их плотности относительно низки, а плотность Сатурна даже меньше плотности воды. Хотя Юпитер виден исключительно благодаря отражённому от него солнечному свету, планета имеет также собственные источники тепла. Однако, несмотря на то, что температура его ядра должна быть высокой, она далеко недостаточна, чтобы там начались ядерные реакции, поэтому Юпитер нельзя сравнивать со звездой вроде Солнца.

Пять планет – Меркурий, Венера, Марс, Юпитер и Сатурн – известны с древних времён, поскольку все они хорошо видны невооружённым глазом. Уран, который находится на пределе видимости невооружённым глазом, был случайно открыт в 1781г. Все гиганты сопровождаются свитами спутников: Юпитер имеет 14 спутников, Сатурн – 15, Уран – 5 и Нептун – 2. Некоторый из спутников имеют размеры планет с диаметрами, по крайней мере равными диаметру Меркурия. Самая удалённая из известных планет – Плутон – была открыта в 1930 г. Это отнюдь не гигант, по размерам он меньше Земли, и его обычно относят к планетам земной группы, хотя известно о нём очень мало.

Чем ближе планета к Солнцу, тем больше её линейная и угловая скорости и короче период обращения вокруг Солнца. В то время как плоскости орбит большинства планет близки к плоскости земной орбиты (разница составляет 7 градусов для Меркурия и много меньше для других планет), орбита Плутона наклонена к ней относительно сильно – на 17 градусов и настолько вытянута, что при наибольшем сближении с Солнцем Плутон подходит к нему ближе чем Нептун. По всей вероятности, Плутон образует свой собственный класс планет; возможно даже, что некогда он был спутником Нептуна и лишь позднее обрёл независимость.

Кометы также являются членами Солнечной системы. Это большие образования из разреженного газа и пылевых частиц с очень малым твёрдым ядром, они также обращаются вокруг Солнца. Большинство из них имеет эллиптические орбиты, выходящие за орбиту Плутона, так что диаметр последней лишь условно принимается за диаметр Солнечной системы. Кроме того, вокруг Солнца обращаются по эллипсам бесчисленные метеорные тела (их можно рассматривать как своеобразный мусор в Солнечной системе, некоторые метеорные тела определённо связаны с кометами) размером от песчинки до мелкого астероида. Вместе с астероидами и кометами они относятся к малым телам Солнечной системы. Пространство между планетами заполнено крайне разреженным газом и космической пылью. Его пронизывают электромагнитные излучения; оно носитель магнитных и гравитационных полей.

Солнце в 109 раз больше Земли по диаметру и примерно в 333000 раз массивнее Земли. Масса всех планет составляет всего лишь около 0,1% от массы Солнца, поэтому оно силой своего притяжения управляет движением всех членов Солнечной системы.

Законы Кеплера. Первый закон Кеплера: орбита каждой планеты есть эллипс, в одном из фокусов которого находится Солнце. Второй закон Кеплера (закон площадей): радиус-вектор планеты в равные промежутки времени описывает равные площади. Третий закон Кеплера: квадраты сидерических периодов обращения двух планет относятся как кубы больших полуосей их орбит.

Методы изучения физической природы тел Солнечной системы.

1. Применение спектрального анализа. Важнейшим источником информации о большинстве небесных объектов является их изучение. Наиболее ценные и разнообразные сведения о телах позволяет получить спектральный анализ их изучения. Он позволяет установить из анализа излучения качественный и количественный химический состав светила, его температуру, наличие магнитного поля, скорость движения по лучу зрения и многое другое.

Спектральный анализ основан на разложении белого света на составные части. Если узкий пучок света пустить на боковую грань трёхгранной призмы, то, преломляясь в стекле по-разному, составляющие белый свет лучи дадут на экране радужную полоску, называемую спектром. В спектре все цвета расположены всегда в определённом порядке. Под спектральными наблюдениями понимают обычно наблюдения в интервале от инфракрасных до ультрафиолетовых лучей. Для изучения спектров применяют приборы, называемые спектроскопом и спектрографом. В спектроскоп спектр рассматривают, а спектрографом его фотографируют, фотография спектра называется спектрограммой.

Существуют следующие виды спектров.

Сплошной или непрерывный спектр в виде радужной полоски дают твёрдые и жидкие раскалённые тела (уголь, нить электролампы) и достаточно плотные массы газа.

Линейчатый спектр излучения дают разреженные газы и пары при сильном нагревании или под действием электрического разряда. Каждый газ излучает свет строго определённых длин волн и даёт характерный для данного химического элемента линейчатый спектр. Сильные изменения состояния газа или условий его свечения, например нагревание или ионизация, вызывают определённые изменения в спектре данного газа.

Линейчатый спектр поглощения дают газы и пары, когда за ними находится яркий источник, дающий непрерывный спектр. Спектр поглощения представляет собой непрерывный спектр, перерезанный тёмными линиями, которые находятся в тех самых местах, где должны быть расположены яркие линии, присущие данному газу.

Изучение спектров позволяет проводить анализ химического состава газов, излучающих или поглощающих свет. Количество атомов или молекул, излучающих или поглощающих энергию, определяются по интенсивности линий. Чем больше атомов, тем ярче линия в спектре излучения или тем она темнее в спектре поглощения. Когда тело раскалено до красна, в его сплошном спектре ярче всего красная часть. При дальнейшем нагревании наибольшая яркость в спектре переходит в жёлтую, потом в зелёную часть и так далее. Теория излучения света, проверенная на опыте, показывает, что распределение яркости вдоль сплошного спектра зависит от температуры тела. Зная эту зависимость, можно установить температуру Солнца и звёзд.

Надо помнить, что спектральный анализ позволяет определять химический состав только самосветящихся или поглощающих излучение газов. Химический состав твёрдого тела при помощи спектрального анализа определить нельзя.

2. Оптические и радионаблюдения. Для изучения небесных объектов применяют и другие методы, например фотографирование светил при помощи астрографов (телескоп, предназначенный специально для фотографирования участков неба). С помощью астрономических фотографий можно измерить медленные перемещения сравнительно близких звёзд на фоне более далёких, увидеть изображение очень слабых объектов на негативе, измерить величину потоков излучения, приходящего от звёзд, планет и других космических объектов.

Наши представления о небесных телах и их системах чрезвычайно обогатились после того, как стало возможным изучать их радиоизлучение. Для этого созданы радиотелескопы различных систем. Антенны некоторых радиотелескопов похожи на обычные рефлекторы, они собирают радиоволны в фокусе металлического вогнутого зеркала. Это зеркало можно сделать решётчатым и огромных размеров – диаметром в десятки и сотни метров. Такой способ позволяет узнать структуру радиоисточника и измерить его угловой размер, даже если он во много раз меньше угловой секунды.

3.Обсерватории. Астрономические исследования проводятся в научных институтах, университетах и обсерваториях. Но не каждая обсерватория ведёт все виды астрономических работ, но на многих есть специальное оборудование, предназначенное для решения определённого класса астрономических задач, например для определения точного положения звёзд на небе, а также быстродействующие счётные машины.

4. Исследования с помощью космической техники занимают особое место в методах изучения небесных тел и космической среды. К настоящему времени космонавтика сделала возможным: 1) создание внеатмосферных искусственных спутников Земли; 2) создание искусственных спутников Луны и планет; 3) доставку приборов, управляемых с Земли, на Луну и планеты; 4) создание автоматов, доставляющих с Луны пробы грунта; 5) полёты в космос лабораторий с людьми и высадку космонавтов на Луну. Внеатмосферные наблюдения позволяют принимать излучения, которые сильно поглощаются земной атмосферой: далёкие ультрафиолетовые, рентгеновские и инфракрасные лучи, радиоизлучения некоторых длин волн, а также корпускулярные излучения Солнца и других тел. Внеатмосферные наблюдения Луны и планет, звёзд и туманностей, межпланетной и межзвёздной среды очень обогатили наши знания о природе и физических свойствах этих объектов.

Отличительные особенности планет земной группы от планет-гигантов.

Сравнительная таблица основных показателей планет земной группы и планет-гигантов:

Показатель.

Группа планет.

Планеты земной группы.

Планеты-гиганты.

Масса.

От 3,3 1023 кг (Меркурий) до 5,976 1024 кг (Земля).

От 8,7 1025 кг (Уран) до 1,9 1027 кг (Юпитер).

Размер (экваториальный диаметр).

От 4880 км (Меркурий) до 12756 км (Земля).

От 49500 км (Нептун) до 143 000 км (Юпитер).

Плотность.

Плотность планет земной группы близка к земной: 12,5 103 кг/м3 (в 5,5 раз больше плотности воды).

У планет-гигантов очень маленькая плотность (плотность Сатурна меньше плотности воды).

Химический состав.

На примере Земли: Fe (34,6%), O2 (29,5%), Si (15,2%), Mg (12,7%).

В основном они состоят из газов:

h3 (, большая часть), Ch5, Nh4.

Наличие атмосферы.

У планет земной группы есть атмосфера (более разряженная, чем у планет-гигантов).

У всех планет-гигантов обширная атмосфера.

Наличие твёрдой поверхности.

Все планеты земной группы обладают твёрдой поверхностью.

Не имеют твёрдой поверхности.

Количество спутников.

У планет земной группы мало спутников или их вообще нет: Земля – 1, Марс – 2, Меркурий – нет, Венера – нет.

У планет-гигантов большое кол-во спутников: Юпитер – 14, Сатурн – 15, Уран – 5, Нептун – 2.

Наличие колец.

Кольца отсутствуют.

У планет-гигантов есть кольца.

Скорость обращения вокруг собственной оси.

Вращение вокруг своей оси медленное (по сравнению с планетами-гигантами).

Вращение вокруг своей оси быстрое (по сравнению с планетами земной группы).

Меркурий, Венера, Земля и Марс отличаются от планет-гигантов меньшими размерами, меньшей массой, большей плотностью, более медленным вращением, гораздо более разрежёнными атмосферами (на Меркурии атмосфера практически отсутствует, поэтому его дневное полушарие сильно накаляется; все планеты-гиганты окружены мощными протяжёнными атмосферами), малым числом спутников или отсутствием их.

Поскольку планеты-гиганты находятся далеко от Солнца, их температура (по крайней мере, над их облаками) очень низка: на Юпитере – 145 С, на Сатурне – 180 С, на Уране и Нептуне ещё ниже. А температура у планет земной группы значительно выше (на Венере до плюс 500 С). Малая средняя плотность планет-гигантов может объяснятся тем, что она получается делением массы на видимый объём, а объём мы оцениваем по непрозрачному слою обширной атмосферы. Малая плотность и обилие водорода отличают планеты-гиганты от остальных планет.

Физические условия на Луне и её рельеф.

Луна – самое близкое к Земле естественное небесное тело. Её среднее расстояние от Земли составляет 384400 км, что почти в 10 раз превышает длину земного экватора. Это – небольшое небесное тело диаметром 3476 км и массой, составляющей 1/81 массы Земли, поэтому и скорость убегания для неё равна 2,4 км/c, что слишком мало, чтобы удержать заметную атмосферу. Средняя её плотность меньше чем у Земли, вероятно, у Луны нет такого плотного ядра, какое есть у Земли. Советские космические станции установили отсутствие у Луны магнитного поля и поясов радиации и наличие на ней радиоактивных элементов.

Ускорение силы тяжести на поверхности Луны в 6 раз больше, чем на Земле, составляет 162.3 см. сек2 и уменьшается на 0.187 см. сек2 при подъеме на 1 километр. Луна вра­щается относительно Солнца с периодом, равным синодическому месяцу, поэтому день на Луне длится почти 1.5 суток и столько же продолжается ночь. Не будучи защищённой атмосферой, поверхность Луны нагревается днем до + 110о С, а ночью остывает до -120° С, однако, как показали радионаблюдения, эти огромные колебания температуры проникают вглубь лишь на несколько дециметров вследствие чрезвычайно слабой теп­лопроводности поверхностных слоев. По той же причине и во время полных лун­ных затмений нагретая поверхность бы­стро охлаждается, хотя некоторые места дольше сохраняют тепло, вероятно, вслед­ствие большой теплоемкости (так называемые “горя­чие пятна”).

Рельеф лунной поверхности был в основном выяснен в результате мно­голетних телескопических наблюдений. “Лунные моря”, занимающие около 40 % видимой поверхности Луны, представляют собой равнинные низменности, пересе­ченные трещинами и невысокими изви­листыми валами; крупных кратеров на морях сравнительно мало. Многие моря окружены концентрическими кольцевы­ми хребтами. Остальная, более светлая поверхность покрыта многочисленными кратерами, кольцевидными хребтами, бо­роздами и так далее. Кратеры менее 15-20 километров имеют простую чашевидную форму, бо­лее крупные кратеры (до 200 километров) состоят из округлого вала с крутыми внутренними склонами, имеют сравнительно плоское дно, более углубленное, чем окружающая местность, часто с центральной горкой. Высоты гор над окружающей местностью определяются по длине теней на лунной поверхности или фотометрическим способом. Гораздо подробнее и точнее изучен рельеф краевой зоны Луны, которая, в за­висимости от фазы либрации, ограничи­вает диск Луны.

Кратеры на лунной поверхности имеют различный относительный возраст: от древних, едва различимых, сильно пере­работанных образований до очень четких в очертаниях молодых кратеров, иногда окруженных светлыми “лучами”. При этом молодые кратеры перекрывают более древние. В одних случаях кратеры врезаны в поверхность лунных морей, а в других — горные породы морей пере­крывают кратеры. Тектонические разрывы то рассекают кратеры и моря, то сами пере­крываются более молодыми образованьями. Эти и другие соотношения позво­ляют установить последовательность воз­никновения различных структур на лун­ной поверхности; в 1949 советский ученый А. В. Хабаков разделил лунные образо­вания на несколько последовательных возраст­ных комплексов.

В образовании форм лунного рельефа принимали участие, как внутренние силы, так и внешние воздействия. Расчеты термической истории Луны показывают, что вскоре после её образования недра были разогреты радиоактивным теплом и в значительной мере расплавлены, что привело к интенсивно­му вулканизму на поверхности. В результате образовались гигантские лаво­вые поля и некоторое количество вулканических кратеров, а также многочисленные тре­щины, уступы и другое. Вместе с этим на по­верхность Луны на ранних этапах выпадало огромное количество метеоритов и асте­роидов — остатков протопланетного об­лака, при взрывах которых возникали кра­теры — от микроскопических лунок до коль­цевых структур поперечником во много десятков, а возможно и до нескольких сотен километров. Из-за отсутствия атмосферы и гидросфе­ры значительная часть этих кратеров сохрани­лась до наших дней. Сейчас метеориты выпадают на Луну гораздо реже; вулка­низм также в основном прекратился, по­скольку Луна израсходовала много тепловой энергии, а радиоактивные элементы были вынесены во внешние слои Луны. Об остаточном вулканизме свидетельствуют истечения углеродосодержащих газов в лунных кратерах, спектрограммы которых были впервые получены советским астро­номом Н. А. Козыревым.

Планеты земной группы (Венера).

Венера, вторая по близости к Солнцу планета, почти такого же размера, как Земля, а её масса более 80 % земной массы. Расположенная ближе к Солнцу, чем наша планета, Венера получает от него в два с лишним раза больше света и тепла, чем Земля. Тем не менее, с теневой стороны на Венере господствует мороз более 20 градусов ниже нуля, так как сюда не попадают солнечные лучи в течение очень долгого времени. Она имеет очень плотную, глубокую и очень облачную атмосферу, не позволяющую нам увидеть поверхность планеты. Атмосферу — газовую оболочку, на Венере, открыл М.В. Ломоносов, в 1761 году, что так же показало сходство Венеры с Землёй.

Среднее расстояние от Венеры до Солнца 108,2 млн. км; оно практически постоянно, поскольку орбита Венеры ближе к окружности, чем у любой другой планеты. Временами Венера подходит к Земле на расстояние, меньшее 40 миллионов км.

В 1930 году было установлено, что атмосфера Венеры состоит, в основном, из углекислого газа, который способен действовать как своего рода покрывало, задерживая солнечное тепло. Были популярны две картины планеты. Одна рисовала поверхность Венеры почти полностью покрытой водой, в которой могли развиваться примитивные формы жизни, — как это было на Земле миллиарды лет назад. Другая представляла Венеру как раскалённую, сухую и пыльную пустыню .

В1962 году американский аппарат “ Маринер — 2 “ прошёл вблизи Венеры и передал информацию, которая подтвердила, что её поверхность очень горяча. Было установлено также, что период вращения Венеры вокруг оси — длительный, около 243 земных суток, — больше, чем период обращения вокруг Солнца (224, 7 суток), поэтому на Венере “ сутки “ длиннее года и календарь совершенно необычен.

Теперь известно, что Венера вращается в обратном направлении — с востока на запад, а не с запада на восток, как Земля и большинство других планет. Для наблюдателя на поверхности Венеры Солнце восходит на западе, а заходит на востоке, хотя в действительности облачная атмосфера полностью закрывает небо. В феврале 1974 года снимки верхнего слоя облаков показали полосатую структуру облаков. Они также подтвердили, что период вращения верхнего слоя облаков всего лишь 4 суток, так что строение атмосферы Венеры не похоже на земное.

На поверхности Венеры имеются кратеры, происхождение которых неизвестно, но, поскольку в такой плотной атмосфере должна быть сильная эрозия, по “ геологическим “ стандартам они вряд ли могут быть очень старыми. Причиной возникновения кратеров может быть вулканизм, поэтому гипотезу о том, что на Венере происходят вулканические процессы, пока нельзя исключить. Также на Венере найдено несколько горных областей. Самый большой горный район — Иштар — по площади вдвое превышает Тибет. В центре его на высоту 11 км поднимается гигантский вулканический конус. Было обнаружено, что в облаках содержится большое количество серной кислоты.

Поверхность Венеры усыпана гладкими скальными обломками, по составу похожими на земные базальты, многие из которых имели около 1 м в поперечнике. Крайне высокая температура в нижних слоях атмосферы Венеры и на её поверхности в большей мере обусловлена так называемым “парниковым эффектом”. Солнечные световые лучи поглощаются в нижних слоях и, излучаясь обратно в виде инфракрасных лучей, задерживаются её облачным слоем, как в парниках. С высотой над поверхностью температура понижается, и в стратосфере Венеры царит мороз. Температура на поверхности Венеры 485С, а давление в 90 раз превышает давление у поверхности Земли. Было обнаружено, кроме того, что слой облаков кончается на высоте около 30 км. Ниже находится область горячего едкого тумана. На высотах 50 — 70 км располагаются мощные облачные слои и дуют ураганные ветры. У поверхности Венеры атмосфера очень плотная (всего лишь в 10 раз меньше плотности воды).

Планеты-гиганты (Сатурн).

Сатурн, самая дальняя из планет, известных с древности хорошо видный невооружённым глазом объект, хотя в дотелескопические времена не было возможности обнаружить его кольца. Среднее расстояние Сатурна от Солнца 1427 млн. км, а период обращения – 24,46 года. Он бывает в противостоянии примерно раз в 378 дней, так что его можно наблюдать ежегодно в течение нескольких месяцев.

Сатурн – вторая из крупнейших планет. Его экваториальный диаметр составляет 120000 км, а полярный значительно меньше, поскольку планета сильно сплюснута. Это объясняется, во-первых, его низкой плотностью (она меньше плотности воды, что отличает Сатурн от других главных планет) и, во-вторых, его быстрым вращением вокруг оси. Период вращения на экваторе равен 10 ч 14 мин, а на полюсах – примерно на 26 мин длиннее.

Сатурн – газовый гигант, состоящий в основном из водорода. По сравнению с Юпитером в его составе обнаруживается несколько больше метана и меньше аммиака, так как низкие температуры приводят к вымораживанию большей части аммиака из атмосферы планеты. Хотя масса Сатурна в 95 раз превышает массу Земли, сила тяжести на его поверхности лишь немногим больше, чем на Земле. Вблизи ядра Сатурна температура высокая, давление значительное, и поэтому водород, возможно, находится в металлическом состоянии. До сих пор не обнаружено признаков существования у Сатурна магнитного поля. Поскольку Сатурн, как и все планеты-гиганты, находится далеко от Солнца его температура (по крайней мере, над облаками) очень низка: – 180 С.

Если смотреть в телескоп средней, Сатурн выглядит желтоватым диском, пересечённым облачными полосами, которые в общем похожи на юпитерианские, но значительно более “спокойные”. Пятна в полосах Сатурна относительно редки, но всё же иногда появляются. На Сатурне нет пятен, сравнимым со знаменитым Большим Красным Пятном Юпитера. Не считая самих полос, все остальные образования поверхности Сатурна живут сравнительно недолго и быстро изменяются.

Теоретически построены модели массивных планет, вроде Сатурна и Юпитера, состоящих из водорода и гелия. В центре планеты температура может достигать нескольких тысяч градусов. Плотность газовой атмосферы у основания около 100 кг/м3. Малая средняя плотность планет-гигантов может объяснятся тем, что она получается делением массы на видимый объём, а объём мы оцениваем по непрозрачному слою обширной атмосферы. Малая плотность и обилие водорода отличают планеты-гиганты от остальных планет.

Исключительным образованием в Солнечной системе казалось яркое кольцо толщиной не более чем в несколько километров, окружающее Сатурн. Оно расположено в плоскости Экватора Сатурна, которая наклонена к плоскости его орбиты на 27 градусов. Поэтому в течение 30-летнего оборота Сатурна вокруг Солнца кольцо видно нам то довольно раскрытым, то точно с ребра, когда его можно разглядеть в виде тонкой линии лишь в большие телескопы. Ширина этого кольца такова, что по нему, будь оно сплошное, мог бы катиться земной шар.

Русский учёный А.А. Белопольский, изучив спектр кольца, подтвердил теоретический вывод о том, что кольцо у Сатурна должно быть не сплошным, а состоять из множества мелких частиц. По спектру, используя принцип Доплера – Физо, он установил, что внутренние части кольца вращаются быстрее, чем наружные, в соответствие с третьим законом Кеплера.

Фотографии, переданные автоматическими станциями, запущенными к Сатурну, показали, что его кольцо состоит из многих сотен отдельных узких “колечек”, разделённых тёмными промежутками. Предполагается, что такая структура колец связана с гравитационным влиянием многочисленных спутников планеты на движение частиц вещества, образующего кольца.

Система колец Сатурна либо возникла при разрушении некогда существовавшего спутника планеты (например, при его столкновении с другим спутником или астероидом), либо же представляет остаток того вещества, из которого в далёком прошлом образовались спутники Сатурна и которое из-за приливного воздействия планеты не смогло “собраться” в отдельные спутники.

Малые тела Солнечной системы.

1. Астероиды. Малые планеты, или астероиды, в основном обращаются между орбитами Марса и Юпитера и невооружённым глазом невидимы. В настоящее время известно более 3000 астероидов. Возможно, астероиды возникли потому, что веществу по какой-то причине не удалось собраться в одно большое тело – планету. На протяжении миллиардов лет астероиды сталкиваются друг с другом. На эту мысль наводит то, что ряд астероидов имеет не шарообразную, а неправильную форму. Суммарная масса астероидов оценивается всего лишь в 0,1 массы Земли.

Самый яркий астероид – Веста не бывает ярче 6-й звёздной величины. Самый крупный астероид – Церера, его диаметр около 800 км, и за орбитой Марса даже в сильнейшие телескопы на столь малом диске ничего нельзя рассмотреть. Самые мелкие из известных астероидов имеют диаметры лишь около километра. Конечно, у астероидов нет атмосферы. Для астероидов характерно петлеобразное перемещение на фоне звёздного неба, орбиты некоторых астероидов имеют необычайно большие эксцентриситеты, вследствие чего в перигелии они подходят к Солнцу ближе, чем Марс и даже Земля

2. Болиды и метеориты. Болидом называется довольно редкое явление – летящий по небу огненный шар. Это явление вызывается вторжением в плотные слои атмосферы крупных метеорных тел, окружённых обширной оболочкой раскалённых газов и частиц, образующихся при нагревании вследствие торможения в атмосфере. Болиды часто имеют заметный угловой диаметр в 1/10 – ½ видимого диаметра Луны и бывают видны даже днём. От сильного сопротивления воздуха метеорное тело нередко раскалывается и с грохотом выпадает на Землю в виде осколков. Упавшее на Землю тело называется метеоритом.

Метеорит, имеющий небольшие размеры, иногда целиком испаряется в атмосфере Земли. В большинстве случаев масса метеорита за время полёта сильно уменьшается. До Земли долетают лишь остатки метеорита, обычно успевающие остыть, когда космическая скорость его уже погашена сопротивлением воздуха. Бывает три вида метеоритов: каменные, железные и железокаменные, особенно много находят железных метеоритов. По содержанию радиоактивных элементов определяют возраст метеоритов. Он различен, но самые старые метеориты имеют возраст 4,5 млрд. лет.

Структура некоторых метеоритов свидетельствует о том, что они подвергались высоким температурам и давлениям и, следовательно, могли существовать в недрах разрушившейся планеты или крупного астероида

3. Кометы и метеоры. Метеорное тело, порождающее метеор, — это, как правило, крошечная частичка, обычно меньше песчинки, движущаяся вокруг Солнца. Она так мала, что становится видимой, только когда попадает в верхнюю атмосферу Земли (его скорость при этом около 42 км/с). Метеоры бывают двух основных типов: метеорные потоки и спорадические (случайные) метеоры. Последние могут появляться с любой стороны и в любое время. В отличие от них метеорные потоки связаны с кометами. Например, хорошо известный поток Леонид, наблюдающийся каждый год в ноябре, связывают со слабой периодической кометой Темпеля, причём метеорные частицы движутся по той же самой орбите, что и сама комета. Принято считать, что метеоры – это просто “обломки” комет. Может быть это некоторое упрощение, но совершенно определённо известно, что одна из периодических комет – комета Биэлы – распалась и вместо неё возник метеорный поток. Нет сомнения, что, когда комета движется по орбите, она буквально “рассыпает” следом за собой метеорное вещество.

Большая комета состоит из трёх основных частей: ядра (содержащего большую часть массы), головы кометы, или “комы” и хвоста. Голова и хвост кометы видны только тогда, когда комета приближается к Солнцу и пол действием солнечного излучения лёд в ядре начинает испаряться. Когда комета удаляется, хвост исчезает. Небольшие кометы, однако, часто лишены хвостов и в небе выглядят скорее как небольшие клочки слабо подсвеченной пряжи.

Хвосты комет бывают двух основных типов: газовые и пылевые. В целом газовые хвосты относительно прямые, тогда как пылевые искривлены, поскольку они отстают от летящей по орбите кометы. Хвосту комет формируются в результате испарения льдов их ядер, поэтому вещество ядер постоянно расходуется, и, по космическим понятиям, кометы – короткоживущие образования.

Кометы – члены Солнечной системы, но их орбиты в большинстве случаев отличаются от орбит планет тем, что они гораздо более эксцентричные. Кометы практически не испускают собственного излучения, а отражают солнечный свет; последний к тому же заставляет вещество комет светиться (флуоресцировать). Таким образом, большую часть комет нельзя проследить на протяжении всей орбиты, и они видны, только когда подходят относительно близко к Земле и Солнцу.

Кометы бывают короткопериодические и долгопериодические. Все короткопериодические кометы – слабые, и многие из них трудно наблюдать в телескоп. Некоторые кометы имеют сравнительно круговые орбиты, и за ними можно проследить на всём их пути вокруг Солнца. Другие яркие кометы имеют намного большие периоды, которые мы даже не можем определить точно. Появление комет такого типа нельзя предсказать, и они всегда являются сюрпризом для астрономов.

Современные представления о происхождении Солнечной системы.

Для развития материалистического мировоззрения огромную роль играли первые научные предположения о происхождении Солнечной системы. В 1796 г. французский учёный Лаплас подробно описал гипотезу образования Солнца и планет из уже вращающейся газовой туманности. Лаплас учёл основные характерные черты Солнечной системы, которые должна объяснить любая гипотеза о её происхождении: основная масса системы сосредоточена в Солнце; орбиты планет и спутников почти круговые и лежат почти в одной плоскости; расстояния между ними возрастают по определённому закону; почти все планеты не только обращаются вокруг Солнца, но и вращаются вокруг своих осей в одном направлении.

Итак, согласно современным представлениям Солнечная система началась с бесформенной массы газа. Тогда ещё не было настоящего Солнца, в котором происходили бы ядерные реакции. Основную долю газа составлял водород. По прошествии некоторого времени это облако – Солнечная туманность – начало принимать регулярную форму. При этом несколько увеличилась температура, хотя Солнце ещё не сформировалось. Газовое облако продолжало сжиматься под действием гравитационных сил так, что самая плотная часть его находилась в центре. Так возникло Солнце, которое начало излучать, то есть стало звездой. По мере увеличения светимости Солнца газовое облако становилось всё менее однородным. В нём появились сгущения, способные притягивать окружающее вещество; так образовались протопланеты. С ростом размеров и массы протопланет их гравитационное притяжение становилось всё сильнее, и они собирали всё больше материала из окружающих областей туманности. По мере сжатия солнечной туманности всё больше вещества собиралось в протопланетах, одновременно возрастала мощность излучения Солнца. Основные протопланеты продолжали расти и набирать вещество благодаря своему гравитационному притяжению, поэтому число протопланет становилось всё меньше. По мере роста протопланет их форма становилась сферической и Солнечная система начала принимать знакомый нам вид. Солнце уже излучало энергию благодаря термоядерным реакциям. В течение длительного периода формирования протопланет Солнце вступило в устойчивый период существования как звезда главной последовательности. Примерно 5 млрд. лет назад Солнечная система сформировалась в том виде, в каком мы знаем её теперь, — с устойчивым Солнцем, окружённым планетами.

По гипотезе О. Ю. Шмидта, планеты возникли из вещества огромного холодного газопылевого облака, вращавшегося вокруг Солнца. На примере Земли можно рассмотреть, как образовывались планеты Солнечной системы. Расчёты показывают, что Земля выросла до её современной массы за несколько сот миллионов лет. Земля, холодная на поверхности, стала разогреваться за счёт распада радиоактивных элементов. Это привело к расплавлению земных недр. Тяжёлые элементы продиффундировали вниз, образовав ядро, а лёгкие образовали кору. В рое частиц, окружавшем зародыши планет, повторялся процесс слипания частиц, и возникли спутники планет. В частях газопылевого диска, удалённых от Солнца, царила низкая температура, и водород при формировании больших планет не улетучился. Сильный нагрев облака вблизи Солнца ускорял рассеяние водорода, и в планетах земной группы его почти не сохранилось. Шмидту удалось также впервые теоретически вывести наблюдаемый закон планетных расстояний от Солнца.

Большую трудность представляет объяснение того, как первоначальное газопылевое облако, окружавшее молодое Солнце, сохранило свои большие размеры и получило быстрое вращение.

Теоретические расчёты, учитывающие наличие магнитного поля и ряд других факторов, позволяют объяснить происхождение планетной системы, но отдельные моменты этой теории всё ещё нуждаются в проверке и уточнении.

Список использованной литературы:

1.Б.А. Воронцов-Вельяминов “АСТРОНОМИЯ 10”. Москва, “ПРОСВЕЩЕНИЕ” 1985 г.

2.Б.А. Воронцов- Вельяминов “АСТРОНОМИЯ 11”. Москва, “ПРОСВЕЩЕНИЕ” 1989 г.

3.Р. Болдуин “Что мы знаем о Луне”. Москва, “МИР” 1967г.

4.Энциклопедия (первый том) “Наука и вселенная”. Под редакцией А.Д. Суханова и Г.С. Хромова. Москва, “МИР” 1983 г.

5.Советский энциклопедический словарь. Москва “Советская Энциклопедия” 1987 г.

6.Е.П. «Левитан АСТРОНОМИЯ 11». Москва, «ПРОСВЕЩЕНИЕ» 1999г.

7. Физика космоса. 1986г.

www.ronl.ru

Реферат планеты Земной группы

Общеобразовательная

средняя школа №30

г. Ярославля

РЕФЕРАТ

Планеты Земной группы

Ученик: Корольков Аркадий Владимирович г. Ярославль 1999 г. Учитель: Салов Владимер Иванович

Среди многочисленных небесных светил, изучаемых современной астрономией, особое место занимают планеты. Ведь все мы хорошо знаем, что Земля, на которой мы живем, является планетой, так что планеты-тела, в основном подобные нашей Земле.

Но в мире планет мы не встретим даже двух, совершенно похожих друг на друга. Разнообразие физических условий на планетах очень велико. Расстояние планеты от Солнца (а значит, и количество солнечного тепла, и температура поверхности), её размеры, напряжение силы тяжести на поверхности, ориентировка оси вращения, определяющая смену времён года, наличие и состав атмосферы, внутреннее строение и многие другие свойства различны у всех девяти планет Солнечной системы.

Говоря о разнообразии условий на планетах, мы можем глубже познать законы их развития и выяснить их взаимосвязь между теми или иными свойствами планет. Так, например, от размеров, массы и температуры планеты зависит её способность удерживать атмосферу того или иного состава, а наличие атмосферы в свою очередь влияет на тепловой режим планеты.

Как показывает изучение условий, при которых возможно зарождение и дальнейшее развитие живой материи, только на планетах мы можем искать признаки существования органической жизни. Вот почему изучение планет, помимо общего интереса, имеет большое значение с точки зрения космической биологии.

Изучение планет имеет большое значение, кроме астрономии, и для других областей науки, в первую очередь наук о Земле-геологии и геофизики, а также для космогонии-науки о происхождении и развитии небесных тел, в том числе и нашей Земли.

Современные представления о планетах сложились не сразу. Для этого понадобилось много веков накопления и развития знаний и упорной борьбы новых, прогрессивных знаний с взглядами старыми, отживающими.

В древних представлениях о Вселенной Земля считалась плоской, а планеты рассматривались лишь как светящиеся точки на небесном своде, отличавшиеся от звёзд только тем, что они перемещались между ними, переходя из созвездия в созвездие. За это планеты и получили название, означающее “блуждающие”. Наблюдателям древности было известно пять планет: Меркурий, Венера, Марс, Юпитер и Сатурн.

Даже после того как была установлена шарообразная форма Земли, и были впервые определены её размеры (Эратосфеном в III в. до н. э.), после того как стала очевидна ограниченность Земли в пространстве, о природе планет ни чего не было известно. И всё же во взглядах выдающихся мыслителей древности: Анаксагора, Демокрита, Эпикура, Лукреция мы встретим идеи о материальности и бесконечности Вселенной, заполненной бесчисленным количеством миров, подобных нашему, причём многие из них могут быть населены живыми существами. Эти мыслители высказывали весьма интересные идеи и о природе небесных тел.

Начиная с IV в. до н. э. господствующим в науке стало мировоззрение Аристотеля, согласно которому Земля находится неподвижно в центре мира, а Солнце, Луна, планеты и звёзды обращаются вокруг неё. Такое представление получило название “геоцентрическое”. Геоцентрическая система мира просуществовала в науке почти 2000 лет.

Как известно, любая из планет перемещается по небу среди звёзд вдоль эклиптики - большого круга небесной сферы, который описывает центр солнечного диска в течение года. Большую часть времени планеты движутся в ту же сторону, что и Солнце (прямым движением). Но время от времени планеты изменяют прямое движение на иное, направленное в сторону, противоположную видимому годичному движению Солнца. Попятное продолжается от трёх недель (для Меркурия) до 4.5 месяцев (для Сатурна) и затем снова сменяется прямым движением, так что планета как бы описывает на небе петлю.

Лишь в середине 16 в. великий польский учёный Николай Коперник высказал замечательную идею о том, что Земля вовсе не является центром мира, а обращается вокруг Солнца так же, как и другие планеты. Гениальная книга Коперника “Об обращении небесных сфер”, вышедшая в 1543 г., в корне изменила представления об устройстве Солнечной системы и о движении планет и Земли.

Рассматривая Землю как небесное тело, которое наряду с другими планетами обращается вокруг Солнца, Коперник своими трудами подготовил логический вывод о том, что не только характер движения, но и сама природа планет и Земли должна быть одинакова. Этот вывод был сделан выдающимся последователем Коперника итальянским мыслителем Джордано Бруно и подтверждён в результате телескопических открытий Галилея.

Так постепенно складывалось правильное представление о природе планет. Теперь мы знаем, что планеты, в том числе и Земля, представляет собой тёмные, несамосветящиеся тела, освещаемые Солнцем и отражающие его лучи. Такое определение небесных тел распространить не только на планеты нашей Солнечной системы, но и на системы других звёзд, ибо каждая звезда тоже представляет собой Солнце, и около неё также могут обращаться планеты.

Отличить на небе планету от звезды можно по целому ряду признаков. Прежде всего, планеты перемещаются между звёздами, однако их перемещение можно заметить лишь проводя наблюдения в течение нескольких вечеров. Такие планеты, как Венера и Юпитер, легко распознать, так как по блеску они намного превосходят самые яркие из звезд. Отличительным признаком каждой планеты является её цвет: у Венеры он белый, у Марса – красноватый, у Юпитера – желтовато-белый, у Сатурна – жёлтый.

Отличить планету от звезды можно ещё благодаря тому, что все звёзды мерцают, а планеты обычно светят ровным, почти немигающим блеском. Как известно мерцание звёзд вызывается колебаниями воздуха, сквозь который проходят лучи на пути к глазу наблюдателя. Но звёзды даже в самые сильные телескопы представляются точками, а планеты имеют заметные видимые размеры, так как они гораздо ближе к нам, чем звёзды. Каждая точка диска планеты тоже как бы мерцает т.е. изменяет свой блеск, но при этом усиление блеска в одной токе сопровождается ослаблением его в другой. В результате эти “мерцания” отдельных точек планетного диска, складываясь, создают постоянную во времени яркость каждого участка диска, и свет от диска в целом тоже получается неизменным.

Но чтобы не только уметь отличать планеты от звёзд, но и различать их друг от друга и находить на небе, надо хорошо знать звёздное небо – основные созвездия и яркие звёзды, особенно так называемые зодиакальные созвездия, по которым передвигается Солнце, Луна и планеты. Таких созвездий двенадцать.

Все планеты делятся на нижние и верхние. К нижним планетам относятся Меркурий и Венера, которые в своём видимом движению по небу никогда не отходят далеко от Солнца. Угол наибольшего видимого удаления (элонгация) нижней планеты от Солнца зависит от соотношения радиусов орбит планеты и Земли. Эпохи наибольших элонгаций – лучшее время для наблюдения Меркурия и Венеры.

Верхние планеты (Марс, Юпитер, Сатурн, Уран, Нептун, Плутон) могут наблюдаться на любом расстоянии от Солнца – до 180 включительно.

Деление планет на нижние и верхние было сделано сначала на основе различия их видимого движения по небу. Но уже Коперник объяснил это различие тем, что нижние планеты расположены ближе к Солнцу, чем Земля, а верхние планеты - дальше.

Эклиптикальная система координат представляет собой одну из систем небесных координат, определяющих положение светила на небесной сфере. В этой системе основной плоскостью является плоскость эклиптики, т.е. видимого годичного пути центра диска Солнца, направленная плоскости Земной орбиты. Положение светил на небесной сфере в этой системе измеряется долготой и шириной. Долгота светил измеряется дугой эклиптики от точки весеннего равноденствия (пересечения эклиптики с экватором) до точки пересечения эклиптики с большим кругом, проходящем через полюс эклиптики и светило. Направление отсчёта долготы противоположно направлению суточного вращения неба. Широта отсчитывается по кругу широты от эклиптики в обе стороны (от 0 до 90). Эклиптикальная система координат наиболее удобна для изучения видимых движений планет и Луны, так как они обычно недалеко отходят от эклиптики.

Соединения бывают нижние, когда планета находится между Землёй и Солнцем, и верхние, когда планета находится за Солнцем. Ясно, что в нижнем соединении могут быть только нижние планеты, тогда как в верхнем - все планеты.

Близ нижнего соединения, когда нижняя планета обгоняет Землю в её движении вокруг Солнца, и также описывает “петлю”

На рис. 1 показаны основные конфигурации (положения) нижних и верхних планет относительно Солнца и Земли. Для верхних планет показаны также квадратуры. Так называются положение планет, когда она отстоит от Солнца на 90. Нетрудно понять, что когда верхняя планета находится в квадратуре, Земля для неё будет в наибольшей элонгации. Точно так же, если планета находится в противостоянии, то с точки зрения наблюдателя, находящегося на этой планете, Земля будет в нижнем соединении с Солнцем.

netnado.ru


Смотрите также