Технология приготовления и хранения силоса. Технология приготовления силоса реферат


Реферат - Производство силоса - Рефераты на репетирем.ру

Производство силоса.

Искусство приготовления силоса как способ сохранения сочных кормов было известно тысячи лет, хотя сложные биохимические и микробиологические изменения, которые происходят при процессах силосования, стали понятны сравнительно недавно.

Силосование, или заквашивание, - способ консервирования зеленого корма, при котором растительную массу хранят во влажном состоянии в ямах, траншеях или специальных сооружениях - силосных башнях. Корм, более или менее спрессованный и изолированный от доступа воздуха, подвергается брожению, приобретает кислый вкус, становится мягче, несколько изменяет цвет (бурая окраска), но остается сочным.

Силосование имеет ряд преимуществ по сравнению с другими способами консервирования корма.

Способы силосования

холодный;

горячий.

При холодном способе силосования созревание силоса идет при умеренном повышении температуры, доходящем в некоторых слоях корма до 40°С; оптимальной температурой считается 25-30 °С. При таком силосовании скошенную растительную массу, если нужно, измельчают, укладывают до отказа в кормовместилище, утрамбовывают, сверху как можно плотнее укрывают для изоляции от воздуха.

При горячем способе силосное сооружение заполняют по частям. Зеленую массу на один - два дня рыхло укладывают слоем около 1-1.5 м. При большом количестве воздуха в ней развиваются энергичные микробиологические и ферментные процессы, в результате чего температура корма поднимается до 45-50°С. Затем укладывают второй слой такой же толщины, как и первый, и он, в свою очередь, подвергается разогреванию. Растения, находящиеся внизу и размягченные под влиянием высокой температуры, спрессовываются под тяжестью нового слоя корма. Это вызывает удаление воздуха из нижнего слоя силоса, отчего аэробные процессы в нем прекращаются и температура начинает снижаться. Так слой за слоем заполняют все силосохранилище. Самый верхний слой корма утрамбовывают и плотно прикрывают для защиты от воздуха. В связи с тем, что силосохранилище при горячем способе силосования обычно делают небольших размеров, на верхний слой силосуемого корма помещают груз. Разогревание растительной массы связано с потерей иногда значительной части питательных веществ корма. В частности, резко уменьшается переваримость белков. Поэтому горячее силосование не может считаться рациональным способом сохранения растительной массы. Общие потери сухих веществ корма при холодном силосовании не должны превышать 10-15%, во втором достигают 30% и более.

Холодный способ силосования наиболее распространен, что объясняется как сравнительной его простотой, так и хорошим качеством получающегося корма. Горячий способ силосования допустим лишь для квашения грубостебельчатых, малоценных кормов, которые после разогревания лучше поедаются скотом.

Британские фермеры убирают травы, пока они еще находятся в относительно ранней стадии роста, с высоким содержанием ферментируемых сахаров (водорастворимых углеводов - ВРУ) и низким содержанием волокон. Собирают ли культуру немедленно либо оставляют на поле вянуть несколько часов, зависит от погодных условий во время покоса, но в идеале фермер хочет закладывать на силос культуру с содержанием сухого вещества 25-30%. Во многих странах с умеренным климатом, таких как Великобритания, дожди поздней весной и ранним летом не всегда позволяют подсушить траву, и поэтому при силосовании трав, содержащих менее 25% СВ, всегда используются силосные добавки, чтобы достичь хорошей ферментации и уменьшить потери силоса. [15].

2.Фазы созревания силоса.

Рассмотрим динамику созревания силоса. Процесс квашения можно условно разбить на три фазы.

Первая фаза созревания заквашиваемого корма характеризуется развитием смешанной микрофлоры. На растительной массе начинается бурное размножение разнообразных групп микроорганизмов, внесенных с кормов в силосное помещение. Силосование связано с накоплением в корме кислот, образующихся в результате сбраживания микробами-кислотообразователями содержащихся в растениях сахаристых веществ. Основную роль в процессе силосования играют молочнокислые бактерии, продуцирующие из углеводов (в основном из моно- и дисахаридов) молочную и частично уксусную кислоты. Данные кислоты имеют приятные вкусовые свойства, хорошо усваиваются организмом животного и возбуждают у него аппетит. Молочнокислые бактерии снижают реакцию среды корма до pH 4.2...4.0 и ниже. Накопление молочной и уксусной кислот в силосе обусловливает его сохранность, так как гнилостные и прочие нежелательные для силосования бактерии не способны размножаться в среде с кислой реакцией (ниже рН 4.5...4.7 ). Сами же молочнокислые бактерии относительно устойчивы к кислотам.

Обычно первая фаза брожения бывает кратковременной. Вначале захваченный атмосферный кислород в сырье используется растительными ферментами в еще дышащих растениях, но кислород вскоре кончается, и далее брожение происходит в анаэробных условиях. В это время молочнокислые бактерии, присутствующие вначале в небольшом количестве, начинают быстро размножаться до концентрации 109 -1010 клеток/г, используя сахара, освобожденные из разрушенных растительных клеток, как основной источник энергии.

Во второй фазе - главного брожения - основную роль играют молочнокислые бактерии, продолжающие подкислять корм. Большинство неспороносных бактерий погибает, но бациллярные формы в виде спор могут длительное время сохраняться в заквашенном корме. В начале второй фазы брожения в силосе обычно преобладают кокки, которые позднее сменяются палочковидными молочнокислыми бактериями, отличающимися большой кислотоустойчивостью. При идеальных условиях рН стабилизируется на уровне 3.8 - 4.2, в зависимости от содержания сухого вещества, и силос эффективно консервируется за несколько недель. Однако, когда содержание СВ скошенной травы менее 25%, условия не идеальные, процесс консервации может пройти плохо, особенно если уровень ВРУ также низок (как часто бывает у трав, выросших в умеренном климате). Для нормального силосования нормальных кормов требуется неодинаковое подкисление, в зависимости от различного проявления буферных свойств некоторых составных частей растительного сока. [3].

Буферные свойства.

Механизм действия буферов заключается в том, что в их присутствии значительная часть ионов водорода нейтрализуется. Поэтому несмотря на накопление кислоты, реакция среды почти не снижается до тех пор, пока не израсходован весь буфер. В силосе образуется запас так называемых связанных буферами кислот. Роль буферов могут играть различные соли и некоторые органические вещества (например, протеины), входящие в состав растительного сока.

Для повышения в силосе содержания сырого протеина, а также улучшения ферментации корма в период закладки к массе добавляют мелассу, мочевину, соевый шрот. Мелкое измельчение стержней и оберток початков повышает на 30% поедаемость силоса. [1].

Более буферный корм для получения хорошего силоса должен иметь больше сахаров, чем менее буферный. Следовательно, силосуемость растений определяется не только богатством их сахарами, но и специфическими буферными свойствами. Основываясь на буферности сока растений, можно теоретически вычислить нормы сахара, необходимые для успешного силосования различного растительного сырья.

Буферность сока растений находится в прямой зависимости от количества в них белков. Поэтому большинство бобовых растений трудно силосуется, т.к. в них относительно мало сахара (3...6%) и много белка (20...40%). Прекрасная силосная культура - кукуруза, в стеблях и початках ее содержится 8...10% белка и около 12% сахара. Хорошо силосуется подсолнечник, в котором много белка (около 20%) , но и достаточно углеводов (более 20%). Приведенные показатели рассчитаны на СВ. [1].

В основном силосуемость связывают с запасом моно- и дисахаридов, дающих необходимое подкисление. Минимальное их содержание для доведения реакции среды корма до рН 4.2 может быть названа сахарным минимумом. Технически определить сахарный минимум несложно. Титрованием устанавливают необходимое количество кислот для подкисления пробы исследуемого корма до рН 4.2. затем определяют количество простых сахаров в корме. Допуская, что около 60% сахаров превращаются в молочную кислоту, можно рассчитать, хватает ли имеющегося сахара для должного подкисления корма [11].

Качество силоса во многих случаях не отвечает зоотехническим требованиям. Это обусловлено нарушением технологии силосования (длительное нахождение зеленой массы в поле, силосование перезревшей массы силосных культур, слабая утрамбовка при заполнении траншеи).

Недостаточное уплотнение и плохое укрывание силосных буртов.

Приведенная причина может также привести к плохой консервации и большим потерям при силосовании из-за доступа воздуха (кислорода). В таких условиях значение рН 4.0 не достигается. Следовательно, могут быстро размножаться микроорганизмы, которые обычно ингибированы анаэробиозом. Энтеробактерии и Clostridium, которые ингибируются низкими значениями рН, будут способны расти и утилизировать молочную кислоту. Белок и остаточные ВРУ с последующей утратой пищевой ценности силоса. (рис. 1 и 2). Рост видов Clostridium, имеющий оптимум при рН 7.2, не ингибируется до тех пор, пока рН не упадет ниже 5.5. Следовательно, в плохо законсервированном влажном силосе они могут доминировать среди микрофлоры. Виды Clostridiumпредпочитают также более высокую влажность и силос с низким содержаниемСВ. [16].

Сахаролитические виды, такие как Clostridium tyrobutyricum, используют ВРУ и молочную кислоту в процессе своего роста, и в силосе, который может изначально иметь низкую концентрацию молочной кислоты, неизбежно будет расти рН из-за наработки масляной кислоты, которая слабее, чем молочная.[13].

Протеолитические виды бактерий, такие как С.sporogenes, используют многие из аминокислот силоса, продуцируя преимущественно масляную кислоту и аммиак. Эти реакции меняют условия среды, усиливая развитие С.spp. Типичные реакции С.spp приведены ниже.

Типичные реакции клостридий, расщепляющих сахара:

глюкоза àмасляная кислота + 2 СО2 + 2 Н2,

2 молочная кислота à масляная кислота + 2 СО2 + 2 Н2.

Типичные реакции протеолитических клостридий:

дезаминирование

лизин à уксусная кислота + масляная кислота + 2 Nh4,

декарбоксилирование

глутаминовая кислота à g - аминомасляная кислота + СО2 ,

окислительно-восстановительная реакция

аланин + 2 глицин àуксусная кислота + 3 Nh4 + СО2.

Скармливание коровам, молоко которых идет на сыр, недоброкачественного силоса, подвергавшегося маслянокислому брожению, вызывает в сыре подобное брожение.

Также нежелательны в силосе и дрожжи. Обычно после начального быстрого размножения аэробные виды, такие как Candidas spp. и Pichia spp., “остаются в спячке” в анаэробных условиях, пока силос не откроют для кормления животных. Аэробная порча силоса на поверхности бурта может быть очень быстрой и приводить к полной потере питательности, сопровождаясь образованием диоксида углерода, воды и выделением теплоты, как видно из приведенных ниже типичных реакций дрожжей.

Анаэробиоз:

глюкоза à 2 этанол + 2 СО2 + 64,7 кДж.

Потеря сухого вещества 100%, энергии 9%.

Аэробиоз:

глюкоза + 6 О2à6 СО2 + 6 h3O + 710,5 кДж.

Потеря сухого вещества и энергии - 100%.

Если анаэробные условия устанавливаются быстро, а достижение низкого рН запаздывает, то, помимо видов рода Clostridium, проблемы могут возникать также из-за дрожжей. Будучи устойчивыми к слабокислым условиям, анаэробные дрожжи, например Torulopsisspp., конкурируют с молочнокислыми бактериями за сахара, которые они превращают в этанол и диоксид углерода с потерей СВ и повышением температуры силоса. [8].

Следовательно, биологические добавки к силосу должны быть способны быстро начинать ферментацию и сохранять низкое значение рН в течении всего периода образования и сохранения силоса. Промедление может быть чревато потерей питательных веществ.

Вернемся к основным бактериям, участвующим в силосовании - молочнокислым бактериям. Среди молочнокислых бактерий силоса имеются кокки и неспорообразующие палочки: Streptococcus lactis, S. thermophilus, Lactobacillus plantarum, а из представителей второй - L. brevis. Эти микробы - анаэробы. На характере продуктов, образуемых молочнокислыми бактериями, сказываются не только биохимические особенности той или иной культуры, но и вид углеводов. В растительном сырье имеются пентозаны, дающие при гидролизе пентозы. Поэтому даже при нормально идущем созревании силоса в нем обычно накапливается некоторое количество уксусной кислоты, которая также образуется, как известно, некоторыми другими молочнокислыми бактериями из гексоз. Большинство молочнокислых бактерий живут при температуре 7...42 °С (оптимум около 25...30°С). Отмечено, что при разогревании до 60...65 °С в нем накапливается молочная кислота, которую продуцируют некоторые термотолерантные бактерии, например Bacillus subtilis.

Третья фаза брожения корма - конечная - связана с постепенным отмиранием в созревающем силосе возбудителей молочнокислого процесса. К этому времени силосование подходит к естественному завершению.

О качестве силосованного корма можно судить по составу органических кислот, накопившихся при брожении (табл.1). [11].

Примерное соотношение кислот в силосе разного качества Табл.1

Качество силоса

Реакция среды

Соотношение кислот

Очень хорошее

4,2 и ниже

молочная - 60% и более,

уксусная - 40% и менее, масляная - 0%

Хорошее

4.5 и ниже

молочная - 40-60 %,

уксусная - 60-40%, масляная - следы

Среднее

около 4.5

молочная - 40-60%,

уксусная - 60-40%, масляная - до 0,2%

Плохое

выше 4.7

молочная - мало,

масляная - значительно

Очень плохое

выше 5.5

преобладают летучие кислоты, в том числе и масляная

Для регулирования процесса силосования существует несколько приемов.

Как уже говорилось, на практике быстрое достижение анаэробных условий в буртах или ямах не всегда гарантировано. Непросто также достичь идеального содержания СВ в скошенной траве из-за погодных условий. Поэтому в течение долгого времени велись поиски химических средств, которые могли бы влиять на консервацию силоса.

3.Силосные добавки.

По их действию на процесс ферментации силосные добавки делятся на 2 основные группы: ингибиторы и стимуляторы ферментации. Ингибиторы- это кислотные добавки (серная и муравьиная кислоты) и консерванты (например, формальдегид и параформальдегид). Стимуляторы- это источники углеводов- патока и барда - или разнообразные добавки, такие как молочнокислые бактерии и ферменты.

1.Ингибиторы ферментации.

Опыты по кормлению показали, что силос с рН ниже 3.0 (значение легкодостижимое с помощью сильных неорганических кислот) был неприятным для животных, и даже если они его ели, вызывал ацидоз в рубце. Было вычислено количество кислоты, необходимое для достижения рН 3.6-4.0, более пригодного для питания животных, однако все еще ингибирующего некоторые вредные процессы ферментации. Хотя серная кислота и смесь серной и соляной кислот в качестве добавок были популярны во многих североевропейских странах, они постепенно вышли из употребления из-за коррозионного действия и возникновения проблем, связанных с использованием этих кислот.

Еще в двадцатые годы было предложено в качестве добавок использовать органические кислоты. Но разбрызгивание смеси муравьиной и соляной кислот по силосной массе не привело к успеху. Неудача была связана в основном с трудностью равномерного распределения кислоты в толще силосной массы, но с появлением специальных уборочных машин и накопительных фургонов стало возможным обрызгивать кормовую культуру муравьиной кислотой сразу после скашивания. В частности, использование добавок муравьиной кислоты стало промышленно доступной в 50-х годах. Хотя муравьиная кислота слабее неорганических кислот, она понижает значение рН ниже 4.0, если добавлять ее в концентрации, пропорциональной содержанию СВ. Муравьиная кислота обладает антибактериальной активностью за счет сочетания действия водородного иона и бактерицидности самой недиссоциированной кислоты. Хотя она действует ингибирующе на Clostridium spp., энтеробактерии и некоторые штаммы Streptococcus spp. и Pediococcus spp., но при этом значении рН не полностью подавляет Lactobacillus spp. и, таким образом, некоторая микробная активность сохраняется. [8].

До создания специальных заквасок использовали главным образом химические консерванты (таблица 2), [4] , в состав которых входит от одной до трех органических кислот, являющихся также метаболитами пропионовых бактерий, правда, доля муравьиной кислоты превалирует в составе химических консервантов и очень мала в биологических.

Химические консерванты для силосов. Таблица 2

Название

Состав, %

ВИК-1

муравьиная кислота -27

уксусная кислота -27

пропионовая кислота -26

вода -20

АИВ-2

муравьиная кислота -80

ортофосфорная кислота - 2

вода -18

ВИК-11

муравьиная кислота -80

уксусная кислота -9

пропионовая кислота -11

Было обнаружено, что по мере возрастания концентрации муравьиной кислоты в силосе наблюдалось снижение уровня молочной и уксусной кислот, как и ожидалось, а также увеличивалась концентрация азота белка и ВРУ благодаря ингибированию протеолитической и дыхательной активности микроорганизмов. Однако использование муравьиной кислоты не всегда дает устойчивый эффект при силосовании.

Исследования устойчивости силоса, обработанного муравьиной кислотой, к воздействию кислорода показали, что некоторые дрожжи устойчивы к муравьиной кислоте и иногда вызывают аэробное брожение, как только бурты открывались для использования. До 50% муравьиной кислоты может быть потеряно в процессе силосования, и это также приводит к плохой консервации силоса. Однако промышленные препараты муравьиной кислоты еще достаточно широко используются в Великобритании и северной Европе. [1].

Уксусная, пропионовая и акриловая кислоты, в качестве добавок к силосу, оказались менее эффективными, чем муравьиная, для подавления ферментации. Кроме того, это слабые кислоты, и для достижения ингибирования ферментации их надо вносить в большом количестве, что означает неоправданные затраты.

Благодаря известным бактериостатическим свойствам формалин (40% водный раствор формальдегида) использовался как консервант еще в 30-х годах. Интерес к его использованию возродился, когда были опубликованы результаты изучения обработанной формальдегидом люцерны. Было обнаружено, что умеренные добавки формальдегида защищают растительные белки от микробной атаки в рубце. Однако при полевом применении его потери могут быть высоки из-за летучести, и даже в силосных ямах содержание формальдегида постепенно уменьшается вследствие разложения, так что через 100 дней остается только 20% исходного содержания. Это приводит к порче силоса из-за сочетания маслянокислого брожения по мере падения концентрации формальдегида и последующей аэробной неустойчивости при вскрытии. При применении больших концентраций возникают другие проблемы. Защита растительного белка умеренными концентрациями формальдегида может привести к тому, что при его высоких концентрациях микроорганизмы в рубце будут лишены доступного азота и погибнут, что ухудшит переваривание белка в толстом отделе кишечника. Также обнаружено, что “свободный” формальдегид может переноситься в молоко. [1].

Большая часть этих неприятностей исчезает, когда используют смеси формальдегида и муравьиной кислоты, которые эффективно уменьшают протеолиз и маслянокислую ферментацию и не мешают перевариванию белков, что приводит к увеличению содержания СВ в силосе.

2. Стимуляторы ферментации.

Добавки, которые активно стимулируют ферментационные процессы в силосе, используются уже много лет. Добавление патоки, как оказалось, увеличивает и содержание сухих веществ, и концентрацию молочной кислоты, с последующим уменьшением рН и ингибированием роста вредных микроорганизмов, однако этот уровень рН еще позволяет расти молочнокислым бактериям. Добавка патоки к культурам с низким содержанием ВРУ, таким как бобовые, была только тогда полезна, когда применялись относительно высокие дозы (около 40-50 г/кг и более). При таких дозах не все доступные углеводы превращаются в молочную кислоту лактобациллами, обычно присутствующими в силосе, и к концу ферментации сохранится довольно высокий остаточный уровень ВРУ. [1].

Последняя группа промышленных стимуляторов ферментации - это вещества, включающие молочнокислые бактерии и/или ферменты, известные в совокупности как микробные или биологические силосные добавки.

В таблице 3 представлены некоторые бактериальные закваски для силосования, которые разрабатывались в Институте микробиологии и вирусологии Казахстана. [7].

Бактериальные закваски для силосования. Таблица 3

Название

Место создания

Штаммы

Силосуемые растения

АМС “Казахсил”

Институт микробиологии и вирусологии АН Казахстана

Streptococcus lactis diastaticus (сухой)

Трудносилосуемые (бобовые, злаковые, травосмеси, тростник)

ПКБ

“”

Propionibacterium shermanii

Высокосахаристые, легкосилосуемые (кукуруза, подсолнечник)

ПМБ

“”

Lactobacterium pentoaceticus

Солома и грубостебельчатые остатки растений

Смешанные закваски: АПП (АМС, ПКБ, ПМБ)

“”

Str. lactis diastaticus, P. shermanii, L.pentoaceticus

Кукурузная солома

Силамп (АМС, ПКБ)

“”

Str. lactis diastaticus, P. shermanii

Легкосилосуемые, высокосахаристые

АПП (АМС, ПМБ)

“”

Str. lactis diastaticus, L.pentosus

Многолетние и однолетние с соломой, бобовые. солома

4. Роль молочнокислых бактерий в силосных добавках.

Качество естественной ферментации силоса сильно зависит от числа и типа молочнокислых бактерий, присутствующих в фураже во время закладки силоса. Из четырех родов молочнокислых бактерий, связанных с силосом (Lactobacillus, Pediococcus, Streptococcus, Leuconostoc), со временем в силосной микрофлоре начинают доминировать Lactobacillaceae. На ранних стадиях, когда установился анаэробиоз, кокки быстро размножаются благодаря их норме реакции на кислотность (рН 6.5-5.0 с оптимумом 5.5), хотя некоторые педиококки могут выживать при рН 4.0 из-за их более высокой толерантности к кислоте. [1]. Когда рН падает ниже 5.5 начинают преобладать лактобациллы, и это положение сохраняется на протяжении всего периода консервации. Обнаружено, что процесс силосования начинается гомоферментативными лактобациллами, такими как Lactobacillus plantarum и L. curvatus, а к концу 75-95% лактобацилл представлены гетероферментативными видами, преимущественно L. buchneri и L. brevis. Это объясняется тем, что гетероферментативные лактобациллы более устойчивы к уксусной кислоте, которую они также производят. Показано также, что может иметь место сдвиг от чисто молочнокислого к смешанному брожению, включающему реферментацию молочной кислоты под действием некоторых гомоферментативных бактерий вследствие нехватки субстрата. [12].

В районах с умеренным климатом, где содержание сахара в фураже может быть низким, потребность молочнокислых бактерий в ВРУ силоса может опережать их поступление, и тогда может произойти изменение в схеме ферментации в сторону доминирования гетероферментативных молочнокислых бактерий. Значимость этих естественных схем ферментации иллюстрируется следующими реакциями Lactobacillus spp.. [12].

Реакции гомоферментативных молочнокислых бактерий:

глюкоза, фруктоза à2 молочная кислота,

арабиноза, ксилоза à молочная кислота + уксусная кислота.

Потери сухого вещества не происходит. Потери энергии незначительно.

Реакции гетероферментативных молочнокислых бактерий:

глюкоза àмолочная кислота + этанол + СО2

Потери сухого вещества 20%, энергии 1,7%.

Рост гетероферментативных Lactobacillus spp. в силосе ведет к образованию этанола и диоксида углерода с последующей потерей СВ и энергии.

Селекция штаммов при разработке силосных добавок.

Выбранные виды молочнокислых бактерий с целью включения их в силосные добавки должны:

Быстро расти и быть способными к быстрому доминированию над местной силосной микрофлорой;

Быть гомоферментативными и, таким образом, производить молочную кислоту из доступных ВРУ;

Быть устойчивыми к кислоте, по крайней мере, при рН 4.0;

Быть способными сбраживать гексозы, пентозы и фруктаны;

Не производить декстраны и никак не воздействовать на органические кислоты;

Обладать способность к росту при температуре до 50 °С.

Некоторые штаммы Lactobacillus plantarum обладают всеми этими свойствами, и потому этот вид был выбран для включения в биологические силосные добавки. Однако, т.к. Lactobacillus spp. медленно растут, пока рН силоса не упадет до 5.0, продукт редко состоит исключительно из них. Обычно еще добавляют Pediococcus или Streptococcus spp., т.к. эти виды активны при рН 5.0 - 6.5 и, следовательно, отражая естественный ход ферментации, кокки будут доминировать на ранних стадиях силосования, а при рН ниже 5.0 они будут подавлены гомоферментативными Lactobacillus plantarum.

Дополнительные требования к микробиологическим добавкам

Любая бактериальная силосная добавка помимо селектированных штаммов молочнокислых бактерий должна содержать достаточное число жизнеспособных бактерий, чтобы они могли доминировать в местной микрофлоре при добавлении в скошенную траву не менее 105 -106 бактерий на 1 г травы. Когда биологические силосные добавки и инокуляты только стали использоваться для силосования, в них было такое количество жизнеспособных бактерий, которое успешно обеспечивало силосование. Если корма содержали достаточное количество пригодных к ферментации сахаров, они силосовались без трудностей. Но с другой стороны зеленые корма (особенно выращенные в районах умеренного климата), могут иметь низкое содержание ВРУ (менее 8-20% от СВ), и биологические добавки, содержащие только молочнокислые бактерии, не всегда обеспечивают хорошую ферментацию из-за истощения допустимых сахаров прежде, чем может быть достигнуто удовлетворительное значение рН. Кроме того, наблюдалась тенденция использовать добавки, когда содержание СВ было менее 25%, и в сочетании с тем, что содержание ВРУ было также низким, эти первые инокуляты были неспособны препятствовать вторичной клостридиальной ферментации. Когда на силос закладывали смешанный фураж - райграсс и клевер или другие бобовые, например люцерну - результаты были еще хуже. Бобовые создают лучшую буферную среду, чем другие травы, за счет высокого содержания органических кислот и белка, и поэтому в присутствии бобовых для достижения необходимого рН требуется , чтобы бактерии производили больше молочной кислоты- задача почти не достижимая, если обе культуры были влажными и с низким содержанием ферментируемых сахаров.

Стало ясно, что необходим способ повышения содержания ферментируемых сахаров в самих кормах, так как , хотя растительные ферменты способны медленно производить некоторое добавочное количество ВРУ путем гидролиза гемицеллюлоз до пентоз, есть еще большой неиспользованный источник потенциально ферментируемых сахаров внутри неразрушенных растительных клеток. Количество и тип углеводов, присутствующих в травах, зависят от вида трав, погоды в период роста и способов культивации. Большая часть углеводов в траве может быть разделена на структурные углеводы, состоящие из лигнина и целлюлозы, и запасные углеводы, которые включают ферментируемые сахара (рис.3).В травах умеренного пояса волокна обычно составляют 30-40 % от СВ, основные запасные углеводы, фруктаны и гемицеллюлозы-5-7 % от СВ, истинные ферментируемые сахара -около 10 % от СВ (это глюкоза, фруктоза, сахароза).У бобовых основной запасной углевод- крахмал.[17].

В последние несколько лет появились силосные добавки второго поколения, включающие различные смеси ферментов, способные гидролизовать многие из обычно неподдающихся запасных полисахаридов до гексоз и пентоз, которые могут быть усвоены гомоферментативными молочнокислыми бактериями. Структурные углеводы остаются нетронутыми, так как лигнин и целлюлозу трудно эффективно гидролизовать при нормальных условиях, существующих в силосе. Скорость целлюлазных реакций мала , и поскольку эти ферменты требуют для эффективного гидролиза повышенной температуры и большого времени, реально они мало полезны. Однако есть много выделенных из грибов доступных гемицеллюлаз и амило-глюкозидаз, которые могут производить быстрый гидролиз гемицеллюлозных компонентов неструктурных углеводов в травах с низким содержанием СВ при температуре и рН, существующих в силосе при обычных условиях.

Поэтому в качестве биологических консервантов кормов используют микорм, амилолитические, целлюлозолитические и комплексные цитолитические ферментные препараты. Ведущее место при этом занимают неочищенные ферментные препараты грибного происхождения и микорм. Так, добавление в закладываемый силос 2% кукурузных стержней, обогащенных белково-ферментным комплексом, способствует молочнокислому брожению, значительному повышению содержания молочной кислоты и получению силоса высокого качества, а введение 0,5-1% амилоризина Пх в смесь люцерновой травы и сырого картофеля - улучшению соотношения молочной и уксусной кислот (81,6: 18,4 и 85,9:14,1%), отсутствию масляной кислоты и получению биологически ценного комбинированного силоса. Добавление в закладываемую смесь (картофель - 50%, измельченные початки кукурузы без обверток - 25%, отава люцерны - 25%) глюкаваморина Пх в количестве 5 кг/т способствует улучшению соотношения молочной и уксусной кислот (85,2:14,8%), сокращению потерь СВ в 3 раза. [2].

В связи с включением подобных ферментов в биодобавки к силосу важно отметить, что гексозы и пентозы, получающиеся в результате их деятельности, должны соответствовать ферментативным способностям молочнокислых бактерий в силосе. Тогда как С6 -сахара используются всеми гомо- и гетероферментативными лактобациллами, пентозы могут быть использованы лишь относительно небольшим числом лактобацилл. Из травяного силоса были изолированы штаммы L.plantarum, которые могут утилизировать также и пентозы, и эти штаммы должны использоваться вместе со смесью энзимов, которые продуцируют пентозы. Продукция пентоз особенно полезна, так как оба типа утилизирующих пентозы гомо- и гетероферментативных штаммов лактобацилл выделяют уксусную и молочную кислоты без потерь СВ или энергии.

Последние из появившихся биологических добавок- те, которые содержат только ферменты. Целлюлолитические и гемицеллюлолитические ферменты, содержащиеся в этих продуктах, превращают запасные полисахариды травы в гексозы и пентозы , которые затем используются молочнокислыми бактериями, обычно присутствующими в силосе. Однако, как уже говорилось ранее, в большей части натурального силоса имеется тенденция к размножению гетероферментативных молочнокислых бактерий с последующей потерей СВ из-за образования этанола и диоксида углерода. Следовательно, превращение ВРУ в молочную кислоту с помощью чисто ферментативных добавок менее выгодно энергетически, чем если включаются гомоферментативные молочнокислые бактерии. Если ферменты, присутствующие в этих добавках, также производят пентозы, как и гексозы,С5 -сахара не могут быть утилизированы из-за того , что пентозоусваивающие молочнокислые бактерии в естественных силосах встречаются относительно редко.

Следовательно, кажется целесообразным включать гемицеллюлолитические ферменты, так и гомоферментативные молочнокислые бактерии в биологические добавки к силосу, чтобы перекрыть все возможные сочетания условий силосования. Добавки, которые содержат гомоферментативные молочнокислые бактерии, только тогда будут хорошо работать, когда имеется достаточная концентрация ВРУ для поддержания их пищевых потребностей, и , тем самым, будет достигнуто низкое значение рН и стабильная ферментация. Однако в силосах с низкой концентрацией ВРУ эти бактерии израсходуют все питательные вещества задолго до того, как будет достигнуто стабильное значение рН, и, таким образом, они не будут способны ингибировать рост клостридиальных бактерий. С другой стороны, добавки, содержащие только ферменты, рассчитаны на наличие естественных, преимущественно гетероферментативных молочнокислых бактерий, способных производить достаточное количество кислоты для понижения рН.

Хотя ВРУ может быть достаточно благодаря гидролитической активности ферментов, гетероферментативные молочнокислые бактерии менее энергетически эффективны, чем гомоферментативные, что приводит к потере питательных веществ. Если фураж при закладке на силосование также содержит мало эндогенных молочнокислых бактерий, период, необходимый для того чтобы значение рН снизилось достаточно для ингибирования других микроорганизмов, может затянуться на несколько дней - время достаточное для того, чтобы вредные микроорганизмы начали влиять на процесс ферментации. Однако, добавляя гемицеллюлолитические ферменты одновременно с гомоферментативными молочнокислыми бактериями, можно преодолеть оба этих затруднения.

Пропионовые бактерии в силосовании.

Из свежих трав пропионовые бактерии не выделялись, а из силосов выделялись, но в очень небольшом количестве, поэтому их истинное участие в силосовании в природных условиях сильно нивелировано. При внесении пропионовых бактерий (ПКБ) в силосуемые растения, прежде всего с высоким содержанием сахаров (кукуруза), получили корм более высокого качества, чем в контроле (без внесения ПКБ). Он имел низкую кислотность, был обогащен витаминами В2 и В12, пропионовой кислотой и не подвергался плесневению. [5].

В результате скармливания такого силоса в течении 3 месяцев повысилась яйценоскость птиц, выводимость цыплят, сохранность молодняка животных, в крови которых увеличивается содержание каротина и снижается содержание аммиака [4]. В одном грамме бакконцентрата “Казахсил” ПКМ содержится 109 жизнеспособных клеток, и в 1 тонну силосуемой массы рекомендуют вносить 1,5 г препарата. Особенно высокий эффект (см. таблицу 3) достигается при использовании одновременно трех бакконцентратов: ПКБ, АМС, ПМБ (пентозосбраживающие молочнокислые бактерии).

4. Ферментные препараты при силосовании.

Ферментные препараты при силосовании бобовых трав.

Бобовые травы относятся к категории трудносилосуемых или вообще несилосуемых растений. Ферментные препараты не только силосуют корма, но и обогащают их легкопереваримыми питательными веществами.

Это целловиридин, пектофоетидин, целлолигнорин, глюковомарин и др. В условиях Узбекистана при силосовании зеленой люцерны применялся ферментный препарат- целловиридин - Г3Х (рН 3.9 - 4.1, температура 37 °С, активность 3000 ед./кг). Он обеспечил гидролиз целлюлозы, гемицеллюлозы, пектиновых веществ до моносахаридов (этот процесс очень важен для бобовых, т.к. в них содержится мало сахаров и много белковых веществ - а значит, они плохо силосуются).

В результате образования достаточного количества сахара появляются благоприятные условия для развития молочнокислых бактерий. Значительно уменьшается количество бесполезно теряющегося аммиачного азота, что положительно влияет на сохранение протеина (достигает 78-80%). Под влиянием ферментных препаратов в корме увеличивается содержание белков, аминокислот, которые повышают биологическую ценность корма.

Технология силосования зеленой люцерны с помощью

ферментного препарата целловиридина.

Скошенную и измельченную зеленую массу без провяливания перевозят, взвешивают на автовесах и укладывают в бетонированную траншею слоями толщиной 40-50 см.. Траншея должна быть заранее очищена и дезинфицирована.

Фермент вносят послойно из расчета 2 кг на 1 т силосуемой массы. Этот ферментный препарат имеет порошкообразную структуру и обладает высоким консервирующим свойством. Его надо разбрасывать равномерно по всей поверхности каждого слоя, затем утрамбовывают.

Заполнять траншею силосуемой массой надо быстро - в течение 4-5 дней. Необходимо использовать бетонированные траншеи емкостью 800-1000 т силоса и обеспечивать ежедневную закладку не менее 160-200 т зеленой массы.

Заполненную траншею укрывают полиэтиленовой пленкой, затем землей с толщиной слоя около 10-15 см.

Силос будет готов к скармливанию через 15-20 дней.

Готовый силос имеет влажность 76-78%, рН 4.1 - 4.3. В одном килограмме силоса из зеленой люцерны 0.22 - 0.24 к.е., 35-38 г переваримого протеина. [9].

Таблица 4

Химический состав силоса из зеленой люцерны в абсолютно сухом состоянии, %

Показатель

Зеленая люцерна

Силос

Динамика содержания питательных веществ, %

Протеин

16,6

16,03

96,38

Азот

2,65

2,57

96,09

Жир

2,13

3,56

162,43

Клетчатка

34,04

31,39

91,25

Зола

9,8

10,8

110,09

Кальций

1,57

1,59

102,26

Фосфор

0,29

0,43

148,48

Каротин, мг

48

42

87,5

Тем самым, потери питательных веществ, особенно протеина и каротина, были минимальными.

Если 1 кг АСВ зеленой люцерны принять за 100, то в силосе из зеленой люцерны потери протеина составят 3.62%, каротина 12.5%.

Продолжение хранения в течение 6 месяцев приводит к потери влаги на 5-6%, следовательно, увеличивается содержание сухого и органического вещества, в том числе протеина и кальция. Наблюдается некоторое снижение содержания жира, клетчатки и фосфора. Поедаемость силоса из зеленой люцерны по сравнению с кукурузным силосом повышается на 15-20%.

Варианты опытов силосования различных культур (кукуруза, люцерна) с применением силосных добавок.

При разработке технологии получения препаратов силосных бактерий в качестве сырья используют отходы молочной промышленности: подсырную, творожную и казеиновую сыворотки и пивную дробину. Солодовые ростки, ржаная и гороховая мука используются в гидролизованном виде при помощи кислот или ферментативным путем.

При анализе развития микробиологических процессов в силосе (таблица 5) [10], приготовленного в природных условиях, выяснено, что при спонтанном процессе брожения (контрольные силосы) очень интенсивно росли гнилостные бактерии, в частности в силосе из отавы люцерны, в связи с чем их количество на 7 сутки выросло до 680 млн. на 1 г. В результате бурного развития аммонификаторов в силосе из бобовых замедлилось обогащение молочнокислыми бактериями; в силосе из кукурузы оно было очень интенсивным. В контрольном силосе, приготовленном из отавы люцерны, всвязи с замедлением молочнокислого брожения в конце опыта наблюдались маслянокислые бактерии (титр 103 ). Вследствие сильного роста аммонификаторов контрольный силос из бобовых при органолептической имел неприятный запах распада белков. При применении препаратов силосных бактерий - промышленной подсырно-сывороточной закваски, биомассы силосных бактерий и культуры с высоким титром силосных бактерий - рост молочнокислых бактерий во всех видах силоса был интенсивным, но в силосе из отавы люцерны рост их был значительно медленнее. В результате активного молочнокислого брожения падение рН во всех вариантах опыта было более высоким, в связи с чем рост гнилостных бактерий тормозился раньше, чем в контрольном силосе без добавок. В силосе из отавы люцерны при внесении биологических добавок рос молочнокислых бактерий, несмотря на небольшое количество углеводов, происходил интенсивнее, чем в контрольном силосе из этого же сырья. Следовательно, при применении добавок рост гнилостных бактерий замедлялся, что способствовало сохранению в силосе углеводов, необходимых для молочнокислого брожения. В силосах, заправленных биологическими добавками, уже с первых дней доминировали L. plantarum , всвязи с чем закваски, с точки зрения более экономичного использования углеводов, имели огромное значение.

6. Производственные рекомендации.

При выращивании бактерий в ферментерах производство педиококков и стрептококков гораздо дешевле, чем молочнокислых бактерий. Они не так привередливы в пищевых потребностях, как лактобациллы, растут в ферментерах до большей плотности, лучше выдерживают лиофилизацию и более стабильны при обычных условиях хранения на ферме. Выбор кокков для включения их в продукт должен диктоваться их способностью быстро размножаться в ограниченно аэробных и анаэробных условиях и достигать рН ниже 5.0 быстро, так чтобы клостридии и другие портящие силос микроорганизмы не смогли размножаться.

Еще более важен выбор штаммов Lactobacillus plantarum. В идеале выбранный штамм должен происходить из естественных условий, т.е. из хорошо законсервированного травяного силоса; быть способным к быстрому размножению, чтобы доминировать в силосной микрофлоре; производить много молочной кислоты и быть устойчивым к значению рН , по крайней мере, 4.0. Помимо этих основных условий штаммы Lactobacillusдолжны утилизировать пентозы также, как гексозы, особенно, если гемицеллюлолитические ферменты, производящие пентозы, включены в конечный продукт. Другими словами, ферменты и молочнокислые бактерии в продукте должны дополнять друг друга. Необходим очень строгий контроль за сохранением ферментативной активности Lactobacillus spp. При использовании штаммов с высоким выходом молочной кислоты конечный выход бактериальной биомассы неизменно ниже, чем у штаммов с низкой продукцией кислоты, вероятно, из-за слабых изменений проницаемости и устойчивости бактериальной клеточной стенки. Для сохранения пигментации при оптимальном для роста значении рН обычно важна нейтрализация щелочью, но необходимо постоянно следить за концентрацией молочной кислоты в ростовой среде, чтобы предотвратить в дальнейшем уменьшение выхода бактерий из-за выделения токсичных метаболитов. Следовательно, необходима оптимизация условий роста при производстве штаммов Lactobacillus spp., которые были выбраны за специфические благоприятные характеристики, такие как образование молочной кислоты. Поскольку дальнейшие потери происходят на этапах изъятия из ферментера и лиофилизации, необходим тщательный выбор криопротекторов, а также долговременные испытания на сохранность для выяснения жизнеспособности бактерий в товарных продуктах при хранении.

7. Эффективность биодобавок к силосу

Долговременный мониторинг эффективности некоторых биологических добавок к силосу “в поле”, проведенный английским фермерским хозяйством, отражен в таблице 6 [18 ] , где даны средние результаты примерно 400 анализов силоса (преимущественно травяного) за трехлетний период. Они показывают, что биодобавки могут быть существенной помощью при ферментации, особенно в условиях низкого содержания СВ. Оба показателя - и рН, и содержание аммонийного азота - отражают категорию “очень хороший” ферментации, при этом необходимо отметить, что эти анализы обладают “негативным” отклонением, поскольку фермеры используют добавки только тогда, когда ожидаются плохие условия ферментации (например, низкое содержание СВ). Учитывая это, полученные результаты особенно обнадеживающие.

Влияние азотных удобрений

Из таблицы 6 видно, что в 1985 году наблюдались несколько повышенные значения рН и содержания аммонийного азота и вдвое больший коэффициент вариации по содержанию аммонийного азота по сравнению с предыдущими годами. Такие результаты объяснимы влиянием холодной и дождливой погоды на большей части территории Великобритании. На рисунке 4 показаны результаты анализа силоса и газожидкостной хроматографии летучих жирных кислот для трех различных “типов” силоса. Рисунок 4 а - типичный пример прекрасной ферментации при низком содержании СВ с хорошим сохранением питательных веществ. На рисунке 4 б показан, наоборот, пример типичного “маслянокислого” силосного профиля с высоким рН и содержании аммонийного азота и с пиком масляной кислоты. В этом случае трава была оставлена на поле на 6 дней из-за продолжительного дождя. а потом все-таки собрана. В довершении всего был плохо заложен бурт: уплотнение фуража и закрытие бурта были недостаточными. Поэтому плохие результаты неудивительны. Однако результаты, представленные на рисунке 4 в, нетипичны. Фермер, получивший такой анализ, будет убежден, что его силос должен подвергнуться вторичной ферментации. Судя только по результатам стандартного анализа, это следует из значения рН 4.7 и содержания аммонийного азота 19%. Однако кривая газожидкостной хроматографии опровергает это предположение, так как на ней не обнаруживается следов масляной кислоты. Это не частный случай, т.к. в 1985 г., особенно в очень влажных силосах, были зарегистрированы сходные результаты анализов. Оказывается, это не связано с силосными добавками, поскольку это явление наблюдалось в необработанных силосах, а также в силосах с добавлением патоки, кислот и биодобавок. Общим во всех этих случаях было то, что травы были скошены и заложены на силос сразу после подкормки азотными удобрениями, иногда через 2-3 недели после внесения удобрений. При холодной дождливой погоде растения не успели превратить эти нитраты в свои белки, и, таким образом, в силосной массе был избыток нитратов вне и внутри растений.

Высокий уровень нитратов в силосной массе может влиять на последующую ферментацию. Содержание ВРУ в траве отрицательно коррелирует с уровнем нитратов, использованных для подкормки растений, из-за быстрого роста травостоя. При содержании общего азота в образцах, превышающем 100 г/кг, видимо, молочнокислые бактерии силоса не способны понижать рН до уровня, достаточного для подавления активности клостридий из-за ограниченного количества субстрата. Однако результаты, приведенные на рисунке 4 в, показывают, что и вторичная ферментация в таких условиях не идет [17].

Впоследствии было обнаружено, что при умеренно кислой среде в силосе нитраты будут быстро исчезать, превращаясь в аммиак через промежуточные продукты распада - нитриты. Затем образовавшийся аммоний постепенно поднимает рН до уровня, при котором может начаться активная жизнедеятельность клостридий (рН 5.0), в результате чего начинается “неправильная” ферментация силоса. Некоторые виды клостридий и некоторые штаммы молочнокислых бактерий могут даже утилизировать сами нитраты, так что в это время вторичная ферментация может быть быстрой. Однако известно, что нитриты будут ингибировать рост клостридий, и, следовательно, даже при высоких значениях рН масляная кислота может не выделяться.

Содержание нитратов может оставаться на высоком уровне в течении всего периода консервации силоса. Следовательно, если нитраты медленно, но непрерывно превращаются в нитриты в течении длительного времени, рост клостридий может быть полностью остановлен, несмотря на то, что рН при этом около 5.0. Это может быть причиной ситуации с силосом, показанной на рисунке 4в, проба которого была взята через 3 месяца после закладки.

Деградация нитратов в силосе может ингибировать рост Clostridium spp. путем временного накопления нитритов и газообразного азота, даже несмотря на то, что выделяющийся аммоний противодействует подкислению и поднимает рН до уровня, при котором активность клостридий может иметь место. [14]

Следовательно, хотя уровень аммонийного азота достигает 19% от общего азота (рисунок 4в), то есть достаточен для повышения рН до 4.7, все же вторичная ферментация не идет, так что разумно предположить, что большая часть этого аммонийного азота образовалась вследствие разложения нитратов, а не из-за протеолитической активности бактерий рода Clostridium. Если в конце концов образуется еще больше аммония, рН может подняться еще выше, до точки, где даже нитриты не способны ингибировать активность клостридий. Если начнется вторичная ферментация, и образуется масляная кислота, трудно определить, был ли избыток нитратов начальной причиной проблемы, до тех пор пока силос не будет последовательно проанализирован. Поэтому влияние нитратов на ферментацию силоса нуждается в дальнейшем изучении.

referat.store

Реферат - Силос. Научные основы силосования и факторы влияющие на этот процесс

Министерство аграрной политики Украины

Харьковская государственная зооветеринарная академия

Кафедра кормления и кормопроизводства

Реферат на тему:

«Силос. Научные основы силосования и факторы, влияющие на этот процесс»

Работу подготовил:

студент 3 курса 9 группы ФВМ

Бочеренко В.А.

Харьков 2007

План

1. Общая характеристика корма

2. Научные основы силосования кормов

3. Факторы, влияющие на ход силосования и качество силоса

3.1 Влажность силосуемой массы

3.2 Измельченность силосуемой массы

3.3 Регулирование микробиологических процессов

3.4 Сроки закладки силосуемой массы

3.5 Силосные сооружения

3.6 Уплотнение (трамбовка) и герметичность укрытия силосуемой массы

4. Учет и оценка качества силоса

1. Общая характеристика корма

Силос — это сочный корм, полученный в результате консервирования зеленых растений молочной кислотой. Силос хорошего качества охотно поедается всеми видами сельскохозяйственных животных.

Силосование зеленых кормов сопровождается меньшими потерями питательных веществ, в частности протеина (белка), чем при сушке на сено. Если при обычных условиях уборки на сено из зеленой травы теряется до 30% и более питательных веществ, то при правильно проведенном силосовании в хороших силосных сооружениях потери в общей питательности редко достигают 10%, а в белке близки к нулю. Белки в процессе силосования распадаются частично на пептиды и аминокислоты, но это не существенно снижает их питательность.

Силосование дает возможность заготавливать сравнительно дешевый сочный корм на зимний период, а в засушливых районах — и на летние месяцы при недостатке пастбищного корма; позволяет возделывать такие кормовые культуры, которые дают наивысший урожай, и убирать их независимо от погоды в наиболее удобное для хозяйства время; дает возможность широко пользоваться пожнивными и промежуточными культурами, а также хорошо использовать осенью отаву, которую не удается высушить на сено; позволяет использовать на корм сорняки и грубое разнотравье, из которых при сушке получается плохое сено, а при силосовании — вполне удовлетворительный сочный корм.

В настоящее время трудно представить зимние рационы животных без силоса. Силос повышает аппетит животных, улучшает пищеварение, обеспечивает потребность животных в витаминах и минеральных веществах. В значительной мере этим качествам способствует специфический вкус и запах силоса, образующийся в процессе сложных биохимических превращений белка и углеводов силосуемой массы и напоминающий запах квашеной капусты и других овощей, хлебного кваса и свежевыпеченного хлеба.

Основное преимущество силосования состоит в том, что доброкачественный силос по своей питательности и биологической ценности почти не отличается от зеленой травы. В силосованном корме количество протеина, жира, клетчатки, минеральных веществ и каротина почти не изменяется. Уменьшается лишь содержание сахара на 60-90%, который расходуется на образование органических кислот, главным образом, молочной кислоты. Органические кислоты по своим энергетическим свойствам незначительно уступают простым сахарам и легко усваиваются организмом животного. Например, уксусная кислота, накапливающаяся в процессе силосования, необходима для образования молочного жира. В целом силос высокого качества оказывает положительное влияние на молочную продуктивность коров. Переваримость основных питательных веществ силоса по сравнению со свежескошенной травой изменяется незначительно.

2. Научные основы силосования кормов

Сущность силосования заключается в том, что в свежей растительной массе, плотно уложенной в непроницаемые для воздуха силосные сооружения, в результате биохимических процессов постепенно накапливаются органические кислоты, преимущественно молочная, которые служат консервирующим средством, предохраняя, при известной концентрации, растительную массу от дальнейшего разложения и порчи. Поэтому основная задача правильного силосования сводится, главным образом, к выработке в силосуемой массе необходимого минимума молочной кислоты.

Биохимические процессы вызываются, с одной стороны, действием ферментов растительных клеток, а с другой — разнообразными микроорганизмами, попадающими в силос с зеленой травой.

Первым показателем изменения, происходящего в зеленой массе, сложенной в силосные сооружения, является повышение температуры, которое обусловливается дыханием растительных клеток и процессами брожения, идущими в силосуемой массе. В свежескошенной траве, уложенной в силосохранилище, растительные клетки некоторое время остаются живыми и продолжают дышать. Кислород, необходимый для нормального дыхания, они заимствуют из воздуха, остающегося в силосе. Чем больше воздуха остается в силосе, тем энергичнее идут окислительные процессы, тем сильнее разогревается силосуемая масса и тем выше в ней потери питательных веществ. На дыхание клеток расходуются, главным образом, углеводы, при этом конечным продуктом окислительных процессов являются углекислота и вода.

Наряду с изменениями, происходящими в результате дыхания клеток, в силосуемой массе быстро развиваются и бактериальные процессы. Силосуемая зеленая масса обычно очень богата разнообразными видами бактерий,вызывающими брожение. Из многочисленных видов брожения — молочно- кислого, уксуснокислого, маслянокислого — для успешного силосования желательно молочнокислое, в результате которого накапливается молочная кислота. Накопление уксусной и масляной кислот, продуктов гниения белка тем более плесени ухудшает качество силосованного корма.

Для своего развития молочнокислые бактерии требуют влажной среды иостаточного количества питательных веществ в форме Сахаров; в кислороде: ни не нуждаются, предпочитая анаэробные условия (без кислорода воздуха). При сбраживании Сахаров в качестве основного продукта они образуют молочную кислоту.

Очень важной особенностью молочнокислых бактерий является их способность развиваться в кислой среде, в которой невозможна жизнедеятельность маслянокислых и гнилостных бактерий.

Плесени и бактерии уксуснокислого брожения являются строго аэробными организмами, развивающимися лишь при свободном доступе кислорода воздуха. Поэтому для успеха силосования необходимо создать условия, благоприятные для развития в силосуемой массе молочнокислого брожения.

Богатство силосуемой массы растворимыми углеводами (сахаром) при удержании воды около 70%, анаэробные (без кислорода воздуха) условия и слабое нагревание благоприятствуют росту молочнокислых бактерий. В такой среде они сразу же получают преобладание над другими бактериями и усиливают его по мере выработки молочной кислоты, пока, наконец, и сами не погибают от нее. Процесс силосования практически заканчивается, когда кислотность (рН) достигает 4,0-4,2.

Для того чтобы в короткий срок в силосуемой массе накопилась молочная кислота, а кислотность повысилась до 4,2, необходимо содержание определенного количества сахара, которое получило название сахарного минимума, под которым подразумевается содержание сахара, необходимое для накопления в силосуемой массе молочной кислоты в количестве, достаточном для смещения рН силоса до 4,2. От соотношения сахарного минимума к Фактическому содержанию сахара в траве зависит силосуемость растительной массы.

В зависимости от сахарного минимума и фактического содержания сахара в растениях они делятся на легкосилосующиеся, трудносилосующиеся и не силосующиеся.

Хорошо силосуются все злаковые растения, кукуруза, подсолнечник, овес, сорго, суданская трава, райграс, вико-овсяная и горохо-овсяная и другие злаково-бобовые смеси, капуста, ботва корнеплодов и др. У этих растений сахарный минимум полностью обеспечивается фактическим содержанием сахара.

Трудно силосуются бобовые растения в чистом виде: вика, горох, клевер, люцерна, донник, могар и другие, у которых содержание сахара не обеспечивает полностью сахарный минимум. Поэтому эти растения смешивают с хорошо силосуемой зеленой массой.

Не силосуются в чистом виде молодая люцерна в период бутонизации, крапива, ботва картофеля, арбузы, тыквы, многие сорняки. Зеленая масса этих растений содержит явно недостаточное количество сахара для образования необходимой концентрации молочной кислоты для сохранения корма

Следует отметить, что содержание сахара и сахарный минимум растений могут значительно изменяться в зависимости от фазы вегетации, дозы, вносимых в почву удобрений, времени уборки и др. Поэтому силосуемость трав необходимо определять в каждом отдельном случае. В среднем содержание сахара в силосуемой зеленой массе при натуральной влажности должно быть не ниже 1,5%.

3. Факторы, влияющие на ход силосования и качество силоса

3.1 Влажность силосуемой массы

Для нормального хода молочнокислого брожения в силосуемой массе должна быть определенная концентрация сахара и других веществ в соке. Если влажность силосуемой массы очень высокая, создается опасность сильного разбавления сахара, если масса закладывается сухой — попадает много воздуха. Оптимальной влажностью является 65-75%. При такой влажности происходят меньшие потери питательных веществ и получается более качественный силос. Более влажная масса дает много сока, в котором оказывается протеин и другие вещества, нейтрализующие молочную кислоту, что приводит к неправильному брожению. Если зеленая масса имеет повышенную влажность (более 75%), то ее нужно силосовать в смеси с более сухими кормами или провяливать траву. Крупностебельные растения не провяливают, а понижают влажность путем смешивания с сухой измельченной соломой. Если приходиться силосовать более сухую массу с влажностью ниже 65%, то необходимо ее смешивать с более влажной травой или, в крайнем случае, добавлять воду. При неурегулированной чрезмерно высокой влажности исходного силосуемого сырья в результате брожения накапливается много уксусной кислоты, аммиака, появляется масляная кислота, такой силос приобретает резкий кислый вкус и запах, что значительно снижает его качество и поедаемость животными.

3.2 Измельченность силосуемой массы

Степень измельчения силосуемых растений зависит от их влажности в момент укладки. При влажности 65% и ниже величина резки должна быть 2-3 см, при влажности 70-75% — 4-5 см. при влажности 80% — 8-10 см. Чем крупнее резка, тем меньше выделяется сока, меньше потери питательных веществ. В то же время подсушенная масса обеспечивает необходимое количество сока только при мелкой резке. Мелкотравянистую растительность с высокой влажностью лучше силосовать в неизмельченном виде. Соблюдая требования к длине резки, получают силос лучшего качества, с меньшими потерями. Огрубевшие, трудноуплотняемые растения необходимо измельчать до размера не более 2 см.

3.3 Регулирование микробиологических процессов

При недостатке в силосуемой массе сахара добавляют кормовую патоку (мелассу), разведенную в воде в соотношении 1: 3 в количестве до 2%, кормовую муку зерна злаков или резку корнеплодов в количестве 2-3% (по массе), а также применяют химические консервирующие средства (муравьиная и бензойная кислоты, пиро-сульфит и бисульфат натрия и др.) и специальные закваски из культур молочнокислых бактерий. При силосовании массы с влажностью более 80% вносить химические добавки нецелесообразно, так как они удаляются с жом. Химические средства и закваски чаще всего применяют при силосовании бобовых растений.

3.4 Сроки закладки силосуемой массы

При силосовании зеленых кормов влажным технологическим приемом является быстрая загрузка массы в хранилище и тщательное его укрытие. Закладка силоса в крупнотоннажные плоеные сооружения должна продолжаться не более 3-4 дней, а укрытие массы при хорошей трамбовке должно быть выполнено в первые сутки после окончания загрузки. Срок закладки массы в малообъемные хранилища (до 500 т) не должен превышать 2 дней.

При несоблюдении сроков закладки в процессе дыхания клеток растений развития микроорганизмов уже через несколько часов зеленая масса разогревается до 50-60°С и выше. Если закладку проводят медленно и слой; плотненной травы составляет не более 30 см в день, то масса разогревается до высоких температур. В это время теряются до 30-40% самых ценных питательных веществ (сахара, крахмала, белков, витаминов), содержание переваримого протеина в силосе снижается в 1,5-2 раза, белок становится труднопереваримым, а каротин остается в малом количестве.

В условиях высоких температур в силосе происходит взаимодействие минокислот с сахаром, образуются стойкие непереваримые соединения, придающие перегретому силосу бурый или темно-коричневый цвет. Несмотря на то что бурый силос скот поедает охотно, питательность и полноценность его очень низкая, а следовательно, и продуктивность скота будет невысокой.

3.5 Силосные сооружения

Хороший силос с минимальными потерями можно получить лишь в силосохранилищах, если они правильно устроены.

Силосохранилища должны удовлетворять следующим требованиям:

1)должны быть непроницаемыми для воздуха: чем больше воздуха проникает в силос, тем значительнее потери питательных веществ в процессе брожения и тем труднее получить молочнокислое брожение;

2)должны быть достаточно глубокими, чтобы силосуемая масса плотно укладывалась под давлением собственного веса и меньше задерживала внутри себя воздух;

3)должны иметь строго отвесные и гладкие стены, с закругленными углами, чтобы оседание силосуемой массы шло правильно и равномерно, без образования пустот;

4)наземные силосохранилища (траншеи) должны быть достаточно прочными, чтобы выдержать боковое давление силосуемой массы и, кроме того, кислотоупорными и хорошо предохраняющими силос от промерзания.

Выбор силосных сооружений зависит прежде всего от количества одновременно закладываемой массы в течение не более 4 дней.

Хорошими силосными сооружениями являются траншеи. Их делают заглубленными в землю и наземными. Первые устраивают в плотном глинистом грунте глубиной 2,5-3,5 м, стенки имеют уклон ко дну, ширина по верху — не менее 9 м, а длина — в зависимости от потребности, но не более 30 м. Такие траншеи строят там, где грунтовые воды стоят низко, и в том случае, если от их высшего уровня до дна траншеи не менее 0,5 м.

Наземные траншеи имеют некоторые преимущества. Их можно устраивать в поле независимо от уровня грунтовых вод, затраты на них минимальны. В этом случае траншеи строят в виде двух параллельных стен из досок, брусьев, железобетона, сборных панелей. Ширина между стенами — 6-15 м. высота стен — 2,3-3 м, длина — не более 30-40 м. Основание должно быть замощено или бетонировано.

При одновременной закладке небольших количеств силосуемой массы нужны силосохранилища для получения силоса хорошего качества. В этом случае наилучшими являются башни диаметром 7-9 м, высотой 22 м.

Размер силосохранилищ в каждом конкретном хозяйстве обычно определяется потребностью в силосованном корме в зависимости от количества скота, суточных норм скармливания и продолжительности кормления силосом.

Примерные нормы скармливания силоса (кг): коровам — 15-30, телятам с 3-месячного возраста до 6 месяцев — 0,5-7, молодняку крупного рогатого скота: в возрасте 7-9 месяцев — 10, 10-12 месяцев — 14, 13-18 месяцев — 16, 19-24 месяцев — 18; скоту на откорме: взрослому — 30-40. молодняку — 20-30, лошадям взрослым — 10-15, овцам взрослым — 3-4. молодняку овец — 0,2-2, свиньям взрослым — 5-6, молодняку свиней — 0,5-5 в сутки.

Для небольших объемов заготовки силоса простейшим силосохранилищем являются ямы. Их следует устраивать только в плотном грунте, на сухом возвышенном месте, с низким стоянием грунтовых вод. Лучшим грунтом считается глинистый. При ежегодном силосовании ямы следует облицовывать вязкой глиной, кирпичом, бетоном.

При вычислении вместимости силосных сооружений принимают, что масса 1 м3 готового силоса из кукурузы, подсолнечника, сорго и других злаковых трав составляет около 700 кг, из разнотравья, вико-овсяной смеси и других бобово-злаковых смесей — около 600 кг.

3.6 Уплотнение (трамбовка) и герметичность укрытия силосуемой массы

От степени уплотнения растительной массы зависит качество силоса. Чем лучше утрамбовано силосуемое сырье, тем быстрее выделяется клеточный, тем интенсивнее вытесняется находящийся между частицами корма воздух и уменьшается его поступление в глубинные слои, создаются благоприятные условия для молочнокислого брожения.

Измельченную массу следует закладывать тонким слоем (30-40 см) по всей ширине силосного сооружения и хорошо утрамбовывать с первого и до последнего слоя. Особое внимание надо обращать на равномерное распределение и тщательное уплотнение массы вдоль боковых стен и в углах силохранилища, так как там нередко образуются большие пустоты, в которые легко проникает воздух.

Сильное уплотнение силосуемой массы следует считать обязательным при условии, если сырье имеет оптимальную (70-75%) или несколько пониженную (65-70%) влажность, а также в случае невозможности создания надежной герметизации.

При силосовании сырья с влажностью 80-85% и выше сильное уплотнение нецелесообразно, так как с вытекающим соком резко возрастают потери питательных веществ и снижается качество силоса.

Важным технологическим приемом получения силоса высокого качества является тщательная изоляция корма. Полное прекращение притока воздуха в силосуемую массу предупреждает снижение качества корма вследствие развития аэробных (с кислородом) процессов маслянокислого брожения и приводит к минимуму потери питательных веществ. Поэтому, если силосуемое сырье хорошо трамбовали тяжелым трактором, укрывать его надо немедленно после заполнения хранилища. Задержка укрытия силоса на три дня увеличивает потери до 10% за счет угара и порчи верхнего слоя. В силосе же без укрытия потери питательных веществ могут достигать 40% и более.

В герметичных силосохранилищах башенного типа для предотвращения поступления воздуха достаточно тщательно закрыть загрузные люки. Что ее касается остальных негерметичных хранилищ (траншеи, ямы и др.), то самым надежным способом укрытия силоса является использование водо- и воздухонепроницаемых синтетических пленок (полиэтиленовых, полихлорвиниловых, полиамидных) толщиной не менее 100 мкм. Лучшей пленкой для изоляции является полиэтиленовая стабилизированная (черная) шириной более 4 м. В башнях силосуемую массу укрывают только полиэтиленовой пленкой. Для лучшего уплотнения массы и прижатия пленки на нее кладут слой толщиной 35-50 см малоценной измельченной зеленой массы, мой хорошо увлажненных опилок или торфа.

Для укрытия силоса в траншеях пленку склеивают в один-два полотнища шириной на 2,5-3 м больше перекидки и на 5-6 м длиннее хранилища. Склеивание полотнищ производят в специальных мастерских или непосредственно в хозяйстве. При этом надо следить, чтобы не повредить пленку рядом со швом.

Укрытие силосохранилища начинают с торца с подветренной стороны, предварительно присыпав край пленки землей или песком. Во время укрытия надо следить за равномерностью натяжения пленки, тщательно заправляя ее вдоль боковых стен и по краям.

Выпускаемая промышленностью пленка даже толщиной 200 мкм слабо противостоит воздействию солнечных лучей, перепадам температуры и ветру, и если ее не укрывать слоем земли (5-10 см), песка, опилок, торфа, то через 2-3 месяца она полностью разрушается и происходит разгерметизация корма. Укрытие пленки соломой без слоя извести нежелательно, так как мыши приводят пленку в полную негодность.

Во многих хозяйствах при отсутствии пленки силос хорошего уплотнения укрывают землей, глиной слоем 15-30 см. Этот способ имеет ряд неудобств, связанных с большими затратами труда, особенно при снятии укрытия зимой, к тому же силос сильно загрязняется землей.

4. Учет и оценка качества силоса

Заготовленный силос приходуют не ранее чем через 20 дней после окончания загрузки силосного сооружения. К этому сроку в основном заканчивается заквашивание и осадка засилосованной массы.

Силос учитывают по видам кормовых культур, массе, кормовым единицам, переваримому протеину и каротину. Количество заготовленного силоса определяют путем умножения объема готового корма на его массу в 1 м3 г.

Глубину (высоту), ширину (диаметр) и длину силосных сооружений, необходимых для определения объема силоса, устанавливают до загрузки силосной массы.

Количество кормовых единиц, переваримого протеина и каротина в готовом силосе определяют умножением его веса на питательность в 1 кг (или в 100 кг) корма.

Объем силоса в заглубленных траншеях определяют на основании данных о ширине, глубине и длине траншеи, полученных до загрузки сооружения, и дополнительных измерений высоты силосной массы над уровнем краев траншеи. Если силос осел ниже краев траншеи или находится на их ровне, объем определяют по формуле.

Объем силоса в наземных траншеях определяют на основании данных о ширине и высоте траншеи, полученных до загрузки сооружения, и дополнительных измерений высоты силосной массы над уровнем краев траншеи или расстояния от краев траншеи до уровня корма (если силос заложен ниже ее краев) и длины слоя силоса Высоту силоса измеряют в девяти местах по длине через одинаковые расстояния, равные 1/10 длины слоя силоса (в начале въездов не измеряется). Сумму полученных таким образом данных по высоте силоса делят на 9 к находят среднюю высоту. Средняя длина слоя силоса в траншее определяется как 9/10 его общей длины по низу.

Объем силоса в башнях, полубашнях и круглых ямах определяют на основании данных о высоте (глубине), диаметре силосных сооружений, полученных до загрузки сооружения, и измерения расстояния от уровня краеи сооружения до уровня корма. Если силос находится на уровне или ниже краев сооружения, объем определяют по формуле

Силосованный корм из кукурузы, подсолнечника, сорго и других легко-силосующихся растений при правильном приготовлении обычно бывает готовым для скармливания через 2-3 недели, силос из бобовых, бобово-злаковых и других трудносилосующихся растений готов для скармливания через 2-3 месяца, когда заканчиваются главные бродильные процессы.

Оценку качества готового силоса начинают прежде всего с определения степени доброкачественности силоса.

В условиях хозяйства качество силоса оценивают по основным органолептическим признакам: цвету, запаху и структуре засилосованных растений.

В химической лаборатории, кроме внешних признаков доброкачественности силоса, определяют влажность, активную кислотность (рН), содержание аммиака, количество и соотношение органических кислот (молочной, уксусной, масляной), содержание каротина.

Цвет. Силос хорошего качества имеет цвет растений, из которых он приготовлен. Легкий буроватый оттенок свойственен любому силосу и не является отрицательным признаком. В зависимости от вида засилосованных растений доброкачественный силос может иметь различную окраску: желтовато-зеленую, оливковую, желтую, серовато-зеленую, коричнево-зеленую. При перегреве (выше 55°С) силос приобретает бурый цвет. Силос плохого качества имеет грязно-зеленый, темно-бурый или черный цвет.

Запах. Доброкачественный силос должен иметь приятный, слегка кисловатый запах, напоминающий запах свежезаквашенных овощей и фруктов. Недоброкачественный силос имеет запах плесени, затхлости, навоза, испорченного сыра или селедки, прогорклого масла, редьки, долго не исчезающий при растирании силоса пальцами (это свидетельствует о присутствии масляной кислоты и продуктов распада белка). В этом случае даже без лабораторных исследований можно констатировать недоброкачественность корма. Такой силос скармливать скоту, особенно молодняку, лактирующим и стельным коровам, не рекомендуется или следует скармливать с ограничениями. Силос, имеющий запах свежеиспеченного хлеба и меда, оценивается как доброкачественный. Противопоказаний к его скармливанию практически не имеется.

Структура растений. В доброкачественном силосе сохраняется структура растений. В нем легко различаются частицы листьев, цветов, стеблей, они эластичны и легко отделяются друг от друга. Испорченный силос имеет консистенцию слизистой мажущей массы.

Химические показатели силоса. Активная кислотность (рН) в силосе высокого качества равна 3,9-4,3, содержание органических веществ — 1,8-2.8%, из них на долю молочной кислоты приходится 65-75%, уксусной — 25-35%, масляная кислота отсутствует, аммиачного азота содержится не более 10% от общего количества азота корма.

Недостаточно хороший силос имеет рН 4,4-4,6, испорченный — 6-7 (содержит большое количество аммиака).

Силос с повышенной кислотностью (рН 3,0-3,5) скотом плохо поедается. В этом случае перед скармливанием его рекомендуется раскислять мелом, аммиачной водой, корнеплодами в виде пасты и другими способами.

Качество силоса (в целом) оценивают по балльной системе (табл. 72).

Силос отличного качества должен иметь 16-20 баллов, хорошего — 11-15, удовлетворительного — 6-10, плохого — менее 6 баллов.

Согласно требованиям ГОСТ 23368-79, по органолептическим и химическим показателям силос подразделяется на три класса качества. В таблице 73 приведены требования к качеству силоса из растений (кроме кукурузы), засилосованных обычным способом.

Список использованной литературы

1. Хохрин С.Н. Корма и кормление животных. Санкт-Петербург: «Лань», 2002. — 512с.

2. Аликаев В.А. и др. Справочник по контролю кормления и содержания животных. М.: Колос, 1982. – 436 с.

3. Венедиктов А.М. и другие Кормление сельскохозяйственных животных. Москва: Россельхозиздат, 1988. — 340 с.

4. Достоевский П.П., Судаков Н.А. Справочник ветеринарного врача. Киев: «Урожай»,1990. — 284с.

5. Калашников А.П., Клейменов Н.И., Щеглов В.В и др. Нормы и рационы кормления сельскохозяйственных животных. Москва: Знание, 1993. – 396 с.

www.ronl.ru

Технология заготовки и приготовления силоса

Силосование - один из распространенных и надежных способов консервирования зеленых кормов. По сравнению с другими способами силосование в меньшей мере зависит от погодных условий.

Успех консервирования зеленых кормов зависит как от агротехнических, так и от технологических приемов. К числу таких приемов относятся: определение силосуемости растений, установление оптимальных сроков их уборки, регулирование влажности сырья, сроков закладки и температурного режима, приемов уплотнения и герметизации силосуемой массы, использование препаратов для улучшения качества и сохранности питательных веществ, проведение организационно-технических мероприятий и др.

Силосование кормов

Основные силосные культуры в хозяйствах - кукуруза, подсолнечник и их смеси с бобово-злакрвыми травами, однолетние горохово-вико-злаковые смеси, многолетние злаковые травы, отходы овощеводства и др.

Все эти растения характеризуются высокой степенью силосуемости. К моменту силосования они имеют, как правило, избыточную влажность, которая в значительной мере отрицательно отражается на качестве силоса и величине потерь. Поэтому одна из задач при организации силосования кормов - выбор оптимальной фазы развития растений и использования приемов снижения их влажности.

Оптимальные сроки уборки на силос кукурузы - конец молочного состояния и восковая спелость зерна, викогорохово-овсяных смесей - фаза восковой спелости зерна в первых двух нижних ярусах бобов, подсолнечника - от начала до 50%-ного цветения, корзинок, многолетних злаковых трав - фаза колошения. Промедление с уборкой силосных культур отрицательно сказывается на качестве силоса. Если, например, питательность 1 кг сухого вещества злаковых трав в фазе выхода в трубку составляет 0,95-1,0 корм. ед., то в фазе цветения - около 0,70 корм. ед. при одновременном резком снижении содержания переваримого протеина и витаминов.

 Технология заготовки силоса 

Силосование зеленых кормов повышенной влажности, как правило, сопровождается большими потерями питательных веществ с вытекающим соком. Кукуруза в период молочной спелости имеет влажность 82-87%, поэтому потери массы с соком достигают 30%, а силос имеет низкое качество. Регулировать влажность и силосуемость сырья можно с помощью совместного силосования высоковлажного сырья с сухими компонентами, смешанных посевов силосных культур с зернофуражными и бобовыми культурами, провяливания силосуемого сырья.

Для предотвращения потерь с вытекающим соком целесообразно добавлять в силосуемую массу соломенную резку. При влажности массы 85% и выше необходимо добавлять 15-20% сухой измельченной соломы, при влажности сырья 80% - 10-12%. В этом случае влажность готового силоса будет в пределах 70-75%.

 Заготовка силоса 

Силосование можно проводить послойно. На дно траншеи укладывают измельченную солому слоем 40-50 см, затем слой зеленой массы 30-40 см и опять слой соломы. Каждый слой соломы и зеленой массы тщательно перемешивают и уплотняют бульдозером с одновременным внесением различных консервирующих препаратов.

Использование при заготовке силоса смешанных посевов культур повышенной влажности (кукуруза, подсолнечник) с овсом, горохово-вико-овсяными смесями - эффективный способ снижения потерь, влажности и кислотности силоса, а также повышения его питательности.

Однолетние и многолетние бобово-злаковые травосмеси целесообразно предварительно провяливать до влажности 70-75%. Силос из подвяленной массы имеет более благоприятные биохимические и органолептические показатели, чем силос из трав с высокой влажностью.

Величина потерь с вытекающим соком зависит и от размера частиц резки. При влажности массы в пределах 75% величина резки может быть более мелкой (до 30 мм), при влажности 80% и выше измельчение должно быть более крупным (до 50 мм и более).

При загрузке траншей нельзя допускать заезда транспортных средств на ранее уложенную силосуемую массу. Массу лучше сгружать в конце траншеи и бульдозером перемещать в нужное место. Это предотвратит загрязнение корма землей и значительно ускорит разгрузку транспорта.

При силосовании сырья влажностью до 75% зеленую массу надо сильно уплотнять с самого начала и до конца загрузки хранилища. Это необходимо для быстрого вытеснения воздуха из массы, предотвращения ее разогревания, меньшей осадки корма и более рационального использования хранилищ. Ежедневно после окончания работ массу необходимо дополнительно уплотнять не менее 3-4 ч, особенно у стен траншеи. Необходимо следить за тем, чтобы в период закладки не повышалась температура массы, т. к. это ведет к резкому снижению переваримости, особенно протеина.

 Силосование 

При силосовании массы с избыточным содержанием воды (80% и выше) без добавления соломы трамбовку следует проводить умеренно, лишь в процессе ее укладки и разравнивания по поверхности траншеи. Дополнительно уплотнять такую массу не следует, т. к. это приводит к повышенным потерям за счет вытекания сока.Срок закладки одного хранилища высотой 3-3,5 м и емкостью 2-3 тыс. т не должен превышать четырех дней. После заполнения траншеи массу быстро укрывают полиэтиленовой пленкой и слоем земли или торфа толщиной до 10 см.

Особое внимание следует уделять правильному формированию поверхности бурта, с тем, чтобы атмосферные осадки не задерживались в углублениях и не проникали в глубину массы. Края пленки вдоль стен траншеи надо тщательно заделывать грунтом в виде полосы шириной 25-30 см и толщиной около 15 см. Способ укрытия имеет исключительно важное значение для качества и сохранности корма.

Однолетние и многолетние бобово-злаковые травы в ранние фазы развития имеют повышенную влажность и относятся к группе трудносилосующихея трав. Для получения из них доброкачественного силоса целесообразно в сухую жаркую погоду перед силосованием подвяливать травосмеси до влажности 70-75%. Это особенно важно, когда нельзя приготовить сенаж, тем более сено. Рекомендуется добавлять в силосуемую массу химические консерванты из расчета: пиросульфит натрия 4-5 кг/т, бензойную кислоту 3-4 кг/т, муравьиную 4-5 л/т, пропионовую 4-5 л/т или уксусную 5 л/т. Консерванты можно добавлять во все виды силосуемой массы, а в трудносилосующиеся культуры добавлять 2-3% мелассы, растворенной в 3-5-кратном количестве воды. Эти культуры рекомендуется силосовать в смеси с кукурузой, подсолнечником и другими легкосилосующимися культурами, которые содержат избыточное количество легкосбраживаемых сахаров и мало протеина. Поэтому для обогащения силоса азотом можно использовать мочевину из расчета 4-5 кг/т (2,3 кг азота), одно- и двухзамещенные фосфорнокислый аммоний и натрий (1,2-2,2 кг/т), сернокислый натрий и аммоний (4-5 кг/т).

Химические консерванты, вносимые в силосуемую массу влажностью до 75%, необходимо растворять в воде в соотношении 1:3. При силосовании кукурузы и другого сырья влажностью более 80% химические консерванты вносить нецелесообразно.

СИЛОСОВАНИЕ В РУКАВА

 Силосование в рукава 

Любой вид сельскохозяйственного корма может быть сохранен в полимерных рукавах. Процесс силосования начинается прямо после наполнения рукава, при этом значение pH стремительно понижается, что позволяет сохранять качество кормов на высоком уровне. Потери в таком случае получаются на уровне 3%, редко достигая значения 5%.

Силосование оказывает очень большое влияние на повышение производственной эффективности кормового рациона и, не в последнюю очередь, на экономичность производства молока. Результатом является наибольшая экономия по сравнению с хранением силоса в силосных ямах. Производственные затраты полностью окупаются за счет сохранения качества кормов. Заготавливают в пластиковых мешках  кормовое зерно, кукурузу, силос кукурузный и сорговый, сенаж одногодичный и многолетний жом, люцерну и др.

Оптимальные условия консервирования и низкие потери питательных веществ достигаются благодаря моментальному прекращению доступа воздуха (холодное брожение), надлежащему уплотнению силосной массы, отсутствию потерь силоса в поверхностных и крайних пластах силосной массы, поглощению силосного сока в рукаве, уменьшению потерь питательных веществ, что является возможным при повторном брожении. Сохранение силоса в полимерных рукавах является наиболее благоприятным методом для воспрепятствования попадания кислорода в корм.

 Силосование в рукава 

Процесс силосования осуществляется следующим образом:

Кормовой материал при помощи перевозчиков зеленой массы доставляется к силосному прессу и выгружается на закладочный стол. Погруженная масса на ленте-транспортере подается на прессовочный ротор. Ротор прессует кормовой материал и закладывает его в полимерный рукав. При этом силосуемая масса уплотняется.

После того, как мешок полностью набивается, его сразу герметизируют.

Свежий качественный корм извлекают по мере надобности на протяжении всего года.

Основными преимуществами данной системы являются:

К этому стоит добавить адаптированную и успешно работающую в России модель, а также наличие сервиса и запчастей у нас в стране. Это лучший вариант для силосования свекловичного жома и зерна высокой влажности.

Техника силосования

big-fermer.ru

Реферат - Силос - Ботаника

1. Производство силоса.

Искусство приготовления силоса как способ сохранения сочных кормов было известно тысячи лет, хотя сложные биохимические и микробиологические изменения, которые происходят при процессах силосования, стали понятны сравнительно недавно. Силосование, или заквашивание, - способ консервирования зеленого корма, при котором растительную массу хранят во влажном состоянии в ямах, траншеях или специальных сооружениях - силосных башнях. Корм, более или менее спрессованный и изолированный от доступа воздуха, подвергается брожению, приобретает кислый вкус, становится мягче, несколько изменяет цвет (бурая окраска), но остается сочным. Силосование имеет ряд преимуществ по сравнению с другими способами консервирования корма.

Способы силосования

1. холодный; 2. горячий. * При холодном способе силосования созревание силоса идет при умеренном повышении температуры, доходящем в некоторых слоях корма до 40?С; оптимальной температурой считается 25-30 ?С. При таком силосовании скошенную растительную массу, если нужно, измельчают, укладывают до отказа в кормовместилище, утрамбовывают, сверху как можно плотнее укрывают для изоляции от воздуха. * При горячем способе силосное сооружение заполняют по частям. Зеленую массу на один - два дня рыхло укладывают слоем около 1-1.5 м. При большом количестве воздуха в ней развиваются энергичные микробиологические и ферментные процессы, в результате чего температура корма поднимается до 45-50?С. Затем укладывают второй слой такой же толщины, как и первый, и он, в свою очередь, подвергается разогреванию. Растения, находящиеся внизу и размягченные под влиянием высокой температуры, спрессовываются под тяжестью нового слоя корма. Это вызывает удаление воздуха из нижнего слоя силоса, отчего аэробные процессы в нем прекращаются и температура начинает снижаться. Так слой за слоем заполняют все силосохранилище. Самый верхний слой корма утрамбовывают и плотно прикрывают для защиты от воздуха. В связи с тем, что силосохранилище при горячем способе силосования обычно делают небольших размеров, на верхний слой силосуемого корма помещают груз. Разогревание растительной массы связано с потерей иногда значительной части питательных веществ корма. В частности, резко уменьшается переваримость белков. Поэтому горячее силосование не может считаться рациональным способом сохранения растительной массы. Общие потери сухих веществ корма при холодном силосовании не должны превышать 10-15%, во втором достигают 30% и более. Холодный способ силосования наиболее распространен, что объясняется как сравнительной его простотой, так и хорошим качеством получающегося корма. Горячий способ силосования допустим лишь для квашения грубостебельчатых, малоценных кормов, которые после разогревания лучше поедаются скотом. Британские фермеры убирают травы, пока они еще находятся в относительно ранней стадии роста, с высоким содержанием ферментируемых сахаров (водорастворимых углеводов - ВРУ) и низким содержанием волокон. Собирают ли культуру немедленно либо оставляют на поле вянуть несколько часов, зависит от погодных условий во время покоса, но в идеале фермер хочет закладывать на силос культуру с содержанием сухого вещества 25-30%. Во многих странах с умеренным климатом, таких как Великобритания, дожди поздней весной и ранним летом не всегда позволяют подсушить траву, и поэтому при силосовании трав, содержащих менее 25% СВ, всегда используются силосные добавки, чтобы достичь хорошей ферментации и уменьшить потери силоса. [15].

2.Фазы созревания силоса.

Рассмотрим динамику созревания силоса. Процесс квашения можно условно разбить на три фазы. * Первая фаза созревания заквашиваемого корма характеризуется развитием смешанной микрофлоры. На растительной массе начинается бурное размножение разнообразных групп микроорганизмов, внесенных с кормов в силосное помещение. Силосование связано с накоплением в корме кислот, образующихся в результате сбраживания микробами-кислотообразователями содержащихся в растениях сахаристых веществ. Основную роль в процессе силосования играют молочнокислые бактерии, продуцирующие из углеводов (в основном из моно- и дисахаридов) молочную и частично уксусную кислоты. Данные кислоты имеют приятные вкусовые свойства, хорошо усваиваются организмом животного и возбуждают у него аппетит. Молочнокислые бактерии снижают реакцию среды корма до pH 4.2...4.0 и ниже. Накопление молочной и уксусной кислот в силосе обусловливает его сохранность, так как гнилостные и прочие нежелательные для силосования бактерии не способны размножаться в среде с кислой реакцией (ниже рН 4.5...4.7 ). Сами же молочнокислые бактерии относительно устойчивы к кислотам. Обычно первая фаза брожения бывает кратковременной. Вначале захваченный атмосферный кислород в сырье используется растительными ферментами в еще дышащих растениях, но кислород вскоре кончается, и далее брожение происходит в анаэробных условиях. В это время молочнокислые бактерии, присутствующие вначале в небольшом количестве, начинают быстро размножаться до концентрации 109 -1010 клеток/г, используя сахара, освобожденные из разрушенных растительных клеток, как основной источник энергии. * Во второй фазе - главного брожения - основную роль играют молочнокислые бактерии, продолжающие подкислять корм. Большинство неспороносных бактерий погибает, но бациллярные формы в виде спор могут длительное время сохраняться в заквашенном корме. В начале второй фазы брожения в силосе обычно преобладают кокки, которые позднее сменяются палочковидными молочнокислыми бактериями, отличающимися большой кислотоустойчивостью. При идеальных условиях рН стабилизируется на уровне 3.8 - 4.2, в зависимости от содержания сухого вещества, и силос эффективно консервируется за несколько недель. Однако, когда содержание СВ скошенной травы менее 25%, условия не идеальные, процесс консервации может пройти плохо, особенно если уровень ВРУ также низок (как часто бывает у трав, выросших в умеренном климате). Для нормального силосования нормальных кормов требуется неодинаковое подкисление, в зависимости от различного проявления буферных свойств некоторых составных частей растительного сока. [3].

Буферные свойства.

Механизм действия буферов заключается в том, что в их присутствии значительная часть ионов водорода нейтрализуется. Поэтому несмотря на накопление кислоты, реакция среды почти не снижается до тех пор, пока не израсходован весь буфер. В силосе образуется запас так называемых связанных буферами кислот. Роль буферов могут играть различные соли и некоторые органические вещества (например, протеины), входящие в состав растительного сока. Для повышения в силосе содержания сырого протеина, а также улучшения ферментации корма в период закладки к массе добавляют мелассу, мочевину, соевый шрот. Мелкое измельчение стержней и оберток початков повышает на 30% поедаемость силоса. [1]. Более буферный корм для получения хорошего силоса должен иметь больше сахаров, чем менее буферный. Следовательно, силосуемость растений определяется не только богатством их сахарами, но и специфическими буферными свойствами. Основываясь на буферности сока растений, можно теоретически вычислить нормы сахара, необходимые для успешного силосования различного растительного сырья. Буферность сока растений находится в прямой зависимости от количества в них белков. Поэтому большинство бобовых растений трудно силосуется, т.к. в них относительно мало сахара (3...6%) и много белка (20...40%). Прекрасная силосная культура - кукуруза, в стеблях и початках ее содержится 8...10% белка и около 12% сахара. Хорошо силосуется подсолнечник, в котором много белка (около 20%) , но и достаточно углеводов (более 20%). Приведенные показатели рассчитаны на СВ. [1]. В основном силосуемость связывают с запасом моно- и дисахаридов, дающих необходимое подкисление. Минимальное их содержание для доведения реакции среды корма до рН 4.2 может быть названа сахарным минимумом. Технически определить сахарный минимум несложно. Титрованием устанавливают необходимое количество кислот для подкисления пробы исследуемого корма до рН 4.2. затем определяют количество простых сахаров в корме. Допуская, что около 60% сахаров превращаются в молочную кислоту, можно рассчитать, хватает ли имеющегося сахара для должного подкисления корма [11]. Качество силоса во многих случаях не отвечает зоотехническим требованиям. Это обусловлено нарушением технологии силосования (длительное нахождение зеленой массы в поле, силосование перезревшей массы силосных культур, слабая утрамбовка при заполнении траншеи).

Недостаточное уплотнение и плохое укрывание силосных буртов.

Приведенная причина может также привести к плохой консервации и большим потерям при силосовании из-за доступа воздуха (кислорода). В таких условиях значение рН 4.0 не достигается. Следовательно, могут быстро размножаться микроорганизмы, которые обычно ингибированы анаэробиозом. Энтеробактерии и Clostridium, которые ингибируются низкими значениями рН, будут способны расти и утилизировать молочную кислоту. Белок и остаточные ВРУ с последующей утратой пищевой ценности силоса. (рис. 1 и 2). Рост видов Clostridium, имеющий оптимум при рН 7.2, не ингибируется до тех пор, пока рН не упадет ниже 5.5. Следовательно, в плохо законсервированном влажном силосе они могут доминировать среди микрофлоры. Виды Clostridium предпочитают также более высокую влажность и силос с низким содержанием СВ. [16]. Сахаролитические виды, такие как Clostridium tyrobutyricum, используют ВРУ и молочную кислоту в процессе своего роста, и в силосе, который может изначально иметь низкую концентрацию молочной кислоты, неизбежно будет расти рН из-за наработки масляной кислоты, которая слабее, чем молочная.[13]. Протеолитические виды бактерий, такие как С.sporogenes, используют многие из аминокислот силоса, продуцируя преимущественно масляную кислоту и аммиак. Эти реакции меняют условия среды, усиливая развитие С.spp. Типичные реакции С.spp приведены ниже. Типичные реакции клостридий, расщепляющих сахара: глюкоза --> масляная кислота + 2 СО2 + 2 Н2, 2 молочная кислота --> масляная кислота + 2 СО2 + 2 Н2.

Типичные реакции протеолитических клостридий: 1. дезаминирование лизин --> уксусная кислота + масляная кислота + 2 Nh4 , 2. декарбоксилирование глутаминовая кислота --> ? - аминомасляная кислота + СО2 , 3. окислительно-восстановительная реакция аланин + 2 глицин --> уксусная кислота + 3 Nh4 + СО2. Скармливание коровам, молоко которых идет на сыр, недоброкачественного силоса, подвергавшегося маслянокислому брожению, вызывает в сыре подобное брожение. Также нежелательны в силосе и дрожжи. Обычно после начального быстрого размножения аэробные виды, такие как Candidas spp. и Pichia spp., «остаются в спячке» в анаэробных условиях, пока силос не откроют для кормления животных. Аэробная порча силоса на поверхности бурта может быть очень быстрой и приводить к полной потере питательности, сопровождаясь образованием диоксида углерода, воды и выделением теплоты, как видно из приведенных ниже типичных реакций дрожжей. Анаэробиоз: глюкоза --> 2 этанол + 2 СО2 + 64,7 кДж. Потеря сухого вещества 100%, энергии 9%. Аэробиоз: глюкоза + 6 О2 --> 6 СО2 + 6 h3O + 710,5 кДж. Потеря сухого вещества и энергии - 100%. Если анаэробные условия устанавливаются быстро, а достижение низкого рН запаздывает, то, помимо видов рода Clostridium, проблемы могут возникать также из-за дрожжей. Будучи устойчивыми к слабокислым условиям, анаэробные дрожжи, например Torulopsis spp., конкурируют с молочнокислыми бактериями за сахара, которые они превращают в этанол и диоксид углерода с потерей СВ и повышением температуры силоса. [8]. Следовательно, биологические добавки к силосу должны быть способны быстро начинать ферментацию и сохранять низкое значение рН в течении всего периода образования и сохранения силоса. Промедление может быть чревато потерей питательных веществ.

Вернемся к основным бактериям, участвующим в силосовании - молочнокислым бактериям. Среди молочнокислых бактерий силоса имеются кокки и неспорообразующие палочки: Streptococcus lactis, S. thermophilus, Lactobacillus plantarum, а из представителей второй - L. brevis. Эти микробы - анаэробы. На характере продуктов, образуемых молочнокислыми бактериями, сказываются не только биохимические особенности той или иной культуры, но и вид углеводов. В растительном сырье имеются пентозаны, дающие при гидролизе пентозы. Поэтому даже при нормально идущем созревании силоса в нем обычно накапливается некоторое количество уксусной кислоты, которая также образуется, как известно, некоторыми другими молочнокислыми бактериями из гексоз. Большинство молочнокислых бактерий живут при температуре 7...42 ?С (оптимум около 25...30?С). Отмечено, что при разогревании до 60...65 ?С в нем накапливается молочная кислота, которую продуцируют некоторые термотолерантные бактерии, например Bacillus subtilis. * Третья фаза брожения корма - конечная - связана с постепенным отмиранием в созревающем силосе возбудителей молочнокислого процесса. К этому времени силосование подходит к естественному завершению. О качестве силосованного корма можно судить по составу органических кислот, накопившихся при брожении (табл.1). [11].

Примерное соотношение кислот в силосе разного качества Табл.1 Качество силоса Реакция среды Соотношение кислот Очень хорошее 4,2 и ниже молочная - 60% и более, уксусная - 40% и менее, масляная - 0% Хорошее 4.5 и ниже молочная - 40-60 %, уксусная - 60-40%, масляная - следы Среднее около 4.5 молочная - 40-60%, уксусная - 60-40%, масляная - до 0,2% Плохое выше 4.7 молочная - мало, масляная - значительно Очень плохое выше 5.5 преобладают летучие кислоты, в том числе и масляная

Для регулирования процесса силосования существует несколько приемов. Как уже говорилось, на практике быстрое достижение анаэробных условий в буртах или ямах не всегда гарантировано. Непросто также достичь идеального содержания СВ в скошенной траве из-за погодных условий. Поэтому в течение долгого времени велись поиски химических средств, которые могли бы влиять на консервацию силоса. 3.Силосные добавки.

По их действию на процесс ферментации силосные добавки делятся на 2 основные группы: ингибиторы и стимуляторы ферментации. Ингибиторы- это кислотные добавки (серная и муравьиная кислоты) и консерванты (например, формальдегид и параформальдегид). Стимуляторы- это источники углеводов- патока и барда - или разнообразные добавки, такие как молочнокислые бактерии и ферменты.

1.Ингибиторы ферментации.

Опыты по кормлению показали, что силос с рН ниже 3.0 (значение легкодостижимое с помощью сильных неорганических кислот) был неприятным для животных, и даже если они его ели, вызывал ацидоз в рубце. Было вычислено количество кислоты, необходимое для достижения рН 3.6-4.0, более пригодного для питания животных, однако все еще ингибирующего некоторые вредные процессы ферментации. Хотя серная кислота и смесь серной и соляной кислот в качестве добавок были популярны во многих североевропейских странах, они постепенно вышли из употребления из-за коррозионного действия и возникновения проблем, связанных с использованием этих кислот. Еще в двадцатые годы было предложено в качестве добавок использовать органические кислоты. Но разбрызгивание смеси муравьиной и соляной кислот по силосной массе не привело к успеху. Неудача была связана в основном с трудностью равномерного распределения кислоты в толще силосной массы, но с появлением специальных уборочных машин и накопительных фургонов стало возможным обрызгивать кормовую культуру муравьиной кислотой сразу после скашивания. В частности, использование добавок муравьиной кислоты стало промышленно доступной в 50-х годах. Хотя муравьиная кислота слабее неорганических кислот, она понижает значение рН ниже 4.0, если добавлять ее в концентрации, пропорциональной содержанию СВ. Муравьиная кислота обладает антибактериальной активностью за счет сочетания действия водородного иона и бактерицидности самой недиссоциированной кислоты. Хотя она действует ингибирующе на Clostridium spp., энтеробактерии и некоторые штаммы Streptococcus spp. и Pediococcus spp., но при этом значении рН не полностью подавляет Lactobacillus spp. и, таким образом, некоторая микробная активность сохраняется. [8]. До создания специальных заквасок использовали главным образом химические консерванты (таблица 2), [4] , в состав которых входит от одной до трех органических кислот, являющихся также метаболитами пропионовых бактерий, правда, доля муравьиной кислоты превалирует в составе химических консервантов и очень мала в биологических.

Химические консерванты для силосов. Таблица 2 Название Состав, % ВИК-1 муравьиная кислота -27 уксусная кислота -27 пропионовая кислота -26 вода -20 АИВ-2 муравьиная кислота -80 ортофосфорная кислота - 2 вода -18 ВИК-11 муравьиная кислота -80 уксусная кислота -9 пропионовая кислота -11

Было обнаружено, что по мере возрастания концентрации муравьиной кислоты в силосе наблюдалось снижение уровня молочной и уксусной кислот, как и ожидалось, а также увеличивалась концентрация азота белка и ВРУ благодаря ингибированию протеолитической и дыхательной активности микроорганизмов. Однако использование муравьиной кислоты не всегда дает устойчивый эффект при силосовании. Исследования устойчивости силоса, обработанного муравьиной кислотой, к воздействию кислорода показали, что некоторые дрожжи устойчивы к муравьиной кислоте и иногда вызывают аэробное брожение, как только бурты открывались для использования. До 50% муравьиной кислоты может быть потеряно в процессе силосования, и это также приводит к плохой консервации силоса. Однако промышленные препараты муравьиной кислоты еще достаточно широко используются в Великобритании и северной Европе. [1]. Уксусная, пропионовая и акриловая кислоты, в качестве добавок к силосу, оказались менее эффективными, чем муравьиная, для подавления ферментации. Кроме того, это слабые кислоты, и для достижения ингибирования ферментации их надо вносить в большом количестве, что означает неоправданные затраты. Благодаря известным бактериостатическим свойствам формалин (40% водный раствор формальдегида) использовался как консервант еще в 30-х годах. Интерес к его использованию возродился, когда были опубликованы результаты изучения обработанной формальдегидом люцерны. Было обнаружено, что умеренные добавки формальдегида защищают растительные белки от микробной атаки в рубце. Однако при полевом применении его потери могут быть высоки из-за летучести, и даже в силосных ямах содержание формальдегида постепенно уменьшается вследствие разложения, так что через 100 дней остается только 20% исходного содержания. Это приводит к порче силоса из-за сочетания маслянокислого брожения по мере падения концентрации формальдегида и последующей аэробной неустойчивости при вскрытии. При применении больших концентраций возникают другие проблемы. Защита растительного белка умеренными концентрациями формальдегида может привести к тому, что при его высоких концентрациях микроорганизмы в рубце будут лишены доступного азота и погибнут, что ухудшит переваривание белка в толстом отделе кишечника. Также обнаружено, что «свободный» формальдегид может переноситься в молоко. [1]. Большая часть этих неприятностей исчезает, когда используют смеси формальдегида и муравьиной кислоты, которые эффективно уменьшают протеолиз и маслянокислую ферментацию и не мешают перевариванию белков, что приводит к увеличению содержания СВ в силосе.

2. Стимуляторы ферментации.

Добавки, которые активно стимулируют ферментационные процессы в силосе, используются уже много лет. Добавление патоки, как оказалось, увеличивает и содержание сухих веществ, и концентрацию молочной кислоты, с последующим уменьшением рН и ингибированием роста вредных микроорганизмов, однако этот уровень рН еще позволяет расти молочнокислым бактериям. Добавка патоки к культурам с низким содержанием ВРУ, таким как бобовые, была только тогда полезна, когда применялись относительно высокие дозы (около 40-50 г/кг и более). При таких дозах не все доступные углеводы превращаются в молочную кислоту лактобациллами, обычно присутствующими в силосе, и к концу ферментации сохранится довольно высокий остаточный уровень ВРУ. [1]. Последняя группа промышленных стимуляторов ферментации - это вещества, включающие молочнокислые бактерии и/или ферменты, известные в совокупности как микробные или биологические силосные добавки. В таблице 3 представлены некоторые бактериальные закваски для силосования, которые разрабатывались в Институте микробиологии и вирусологии Казахстана. [7].

Бактериальные закваски для силосования. Таблица 3 Название Место создания Штаммы Силосуемые растения АМС “Казахсил” Институт микробиологии и вирусологии АН Казахстана Streptococcus lactis diastaticus (сухой) Трудносилосуемые (бобовые, злаковые, травосмеси, тростник) ПКБ

“” Propionibacterium shermanii Высокосахаристые, легкосилосуемые (кукуруза, подсолнечник) ПМБ

“” Lactobacterium pentoaceticus Солома и грубостебельчатые остатки растений Смешанные закваски: АПП (АМС, ПКБ, ПМБ)

“” Str. lactis diastaticus, P. shermanii, L.pentoaceticus Кукурузная солома Силамп (АМС, ПКБ)

“” Str. lactis diastaticus, P. shermanii Легкосилосуемые, высокосахаристые АПП (АМС, ПМБ)

“” Str. lactis diastaticus, L.pentosus Многолетние и однолетние с соломой, бобовые. солома

4. Роль молочнокислых бактерий в силосных добавках.

Качество естественной ферментации силоса сильно зависит от числа и типа молочнокислых бактерий, присутствующих в фураже во время закладки силоса. Из четырех родов молочнокислых бактерий, связанных с силосом (Lactobacillus, Pediococcus, Streptococcus, Leuconostoc), со временем в силосной микрофлоре начинают доминировать Lactobacillaceae. На ранних стадиях, когда установился анаэробиоз, кокки быстро размножаются благодаря их норме реакции на кислотность (рН 6.5-5.0 с оптимумом 5.5), хотя некоторые педиококки могут выживать при рН 4.0 из-за их более высокой толерантности к кислоте. [1]. Когда рН падает ниже 5.5 начинают преобладать лактобациллы, и это положение сохраняется на протяжении всего периода консервации. Обнаружено, что процесс силосования начинается гомоферментативными лактобациллами, такими как Lactobacillus plantarum и L. curvatus, а к концу 75-95% лактобацилл представлены гетероферментативными видами, преимущественно L. buchneri и L. brevis. Это объясняется тем, что гетероферментативные лактобациллы более устойчивы к уксусной кислоте, которую они также производят. Показано также, что может иметь место сдвиг от чисто молочнокислого к смешанному брожению, включающему реферментацию молочной кислоты под действием некоторых гомоферментативных бактерий вследствие нехватки субстрата. [12]. В районах с умеренным климатом, где содержание сахара в фураже может быть низким, потребность молочнокислых бактерий в ВРУ силоса может опережать их поступление, и тогда может произойти изменение в схеме ферментации в сторону доминирования гетероферментативных молочнокислых бактерий. Значимость этих естественных схем ферментации иллюстрируется следующими реакциями Lactobacillus spp.. [12]. Реакции гомоферментативных молочнокислых бактерий: глюкоза, фруктоза --> 2 молочная кислота, арабиноза, ксилоза --> молочная кислота + уксусная кислота. Потери сухого вещества не происходит. Потери энергии незначительно. Реакции гетероферментативных молочнокислых бактерий: глюкоза --> молочная кислота + этанол + СО2 Потери сухого вещества 20%, энергии 1,7%. Рост гетероферментативных Lactobacillus spp. в силосе ведет к образованию этанола и диоксида углерода с последующей потерей СВ и энергии.

Селекция штаммов при разработке силосных добавок.

Выбранные виды молочнокислых бактерий с целью включения их в силосные добавки должны: 1. Быстро расти и быть способными к быстрому доминированию над местной силосной микрофлорой; 2. Быть гомоферментативными и, таким образом, производить молочную кислоту из доступных ВРУ; 3. Быть устойчивыми к кислоте, по крайней мере, при рН 4.0; 4. Быть способными сбраживать гексозы, пентозы и фруктаны; 5. Не производить декстраны и никак не воздействовать на органические кислоты; 6. Обладать способность к росту при температуре до 50 ?С. Некоторые штаммы Lactobacillus plantarum обладают всеми этими свойствами, и потому этот вид был выбран для включения в биологические силосные добавки. Однако, т.к. Lactobacillus spp. медленно растут, пока рН силоса не упадет до 5.0, продукт редко состоит исключительно из них. Обычно еще добавляют Pediococcus или Streptococcus spp., т.к. эти виды активны при рН 5.0 - 6.5 и, следовательно, отражая естественный ход ферментации, кокки будут доминировать на ранних стадиях силосования, а при рН ниже 5.0 они будут подавлены гомоферментативными Lactobacillus plantarum.

Дополнительные требования к микробиологическим добавкам

Любая бактериальная силосная добавка помимо селектированных штаммов молочнокислых бактерий должна содержать достаточное число жизнеспособных бактерий, чтобы они могли доминировать в местной микрофлоре при добавлении в скошенную траву не менее 105 -106 бактерий на 1 г травы. Когда биологические силосные добавки и инокуляты только стали использоваться для силосования, в них было такое количество жизнеспособных бактерий, которое успешно обеспечивало силосование. Если корма содержали достаточное количество пригодных к ферментации сахаров, они силосовались без трудностей. Но с другой стороны зеленые корма (особенно выращенные в районах умеренного климата), могут иметь низкое содержание ВРУ (менее 8-20% от СВ), и биологические добавки, содержащие только молочнокислые бактерии, не всегда обеспечивают хорошую ферментацию из-за истощения допустимых сахаров прежде, чем может быть достигнуто удовлетворительное значение рН. Кроме того, наблюдалась тенденция использовать добавки, когда содержание СВ было менее 25%, и в сочетании с тем, что содержание ВРУ было также низким, эти первые инокуляты были неспособны препятствовать вторичной клостридиальной ферментации. Когда на силос закладывали смешанный фураж - райграсс и клевер или другие бобовые, например люцерну - результаты были еще хуже. Бобовые создают лучшую буферную среду, чем другие травы, за счет высокого содержания органических кислот и белка, и поэтому в присутствии бобовых для достижения необходимого рН требуется , чтобы бактерии производили больше молочной кислоты- задача почти не достижимая, если обе культуры были влажными и с низким содержанием ферментируемых сахаров. Стало ясно, что необходим способ повышения содержания ферментируемых сахаров в самих кормах, так как , хотя растительные ферменты способны медленно производить некоторое добавочное количество ВРУ путем гидролиза гемицеллюлоз до пентоз, есть еще большой неиспользованный источник потенциально ферментируемых сахаров внутри неразрушенных растительных клеток. Количество и тип углеводов, присутствующих в травах, зависят от вида трав, погоды в период роста и способов культивации. Большая часть углеводов в траве может быть разделена на структурные углеводы, состоящие из лигнина и целлюлозы, и запасные углеводы, которые включают ферментируемые сахара (рис.3).В травах умеренного пояса волокна обычно составляют 30-40 % от СВ, основные запасные углеводы, фруктаны и гемицеллюлозы-5-7 % от СВ, истинные ферментируемые сахара -около 10 % от СВ (это глюкоза, фруктоза, сахароза).У бобовых основной запасной углевод- крахмал.[17]. В последние несколько лет появились силосные добавки второго поколения, включающие различные смеси ферментов, способные гидролизовать многие из обычно неподдающихся запасных полисахаридов до гексоз и пентоз, которые могут быть усвоены гомоферментативными молочнокислыми бактериями. Структурные углеводы остаются нетронутыми, так как лигнин и целлюлозу трудно эффективно гидролизовать при нормальных условиях, существующих в силосе. Скорость целлюлазных реакций мала , и поскольку эти ферменты требуют для эффективного гидролиза повышенной температуры и большого времени, реально они мало полезны. Однако есть много выделенных из грибов доступных гемицеллюлаз и амило-глюкозидаз, которые могут производить быстрый гидролиз гемицеллюлозных компонентов неструктурных углеводов в травах с низким содержанием СВ при температуре и рН, существующих в силосе при обычных условиях. Поэтому в качестве биологических консервантов кормов используют микорм, амилолитические, целлюлозолитические и комплексные цитолитические ферментные препараты. Ведущее место при этом занимают неочищенные ферментные препараты грибного происхождения и микорм. Так, добавление в закладываемый силос 2% кукурузных стержней, обогащенных белково-ферментным комплексом, способствует молочнокислому брожению, значительному повышению содержания молочной кислоты и получению силоса высокого качества, а введение 0,5-1% амилоризина Пх в смесь люцерновой травы и сырого картофеля - улучшению соотношения молочной и уксусной кислот (81,6: 18,4 и 85,9:14,1%), отсутствию масляной кислоты и получению биологически ценного комбинированного силоса. Добавление в закладываемую смесь (картофель - 50%, измельченные початки кукурузы без обверток - 25%, отава люцерны - 25%) глюкаваморина Пх в количестве 5 кг/т способствует улучшению соотношения молочной и уксусной кислот (85,2:14,8%), сокращению потерь СВ в 3 раза. [2]. В связи с включением подобных ферментов в биодобавки к силосу важно отметить, что гексозы и пентозы, получающиеся в результате их деятельности, должны соответствовать ферментативным способностям молочнокислых бактерий в силосе. Тогда как С6 -сахара используются всеми гомо- и гетероферментативными лактобациллами, пентозы могут быть использованы лишь относительно небольшим числом лактобацилл. Из травяного силоса были изолированы штаммы L.plantarum, которые могут утилизировать также и пентозы, и эти штаммы должны использоваться вместе со смесью энзимов, которые продуцируют пентозы. Продукция пентоз особенно полезна, так как оба типа утилизирующих пентозы гомо- и гетероферментативных штаммов лактобацилл выделяют уксусную и молочную кислоты без потерь СВ или энергии. Последние из появившихся биологических добавок- те, которые содержат только ферменты. Целлюлолитические и гемицеллюлолитические ферменты, содержащиеся в этих продуктах, превращают запасные полисахариды травы в гексозы и пентозы , которые затем используются молочнокислыми бактериями, обычно присутствующими в силосе. Однако, как уже говорилось ранее, в большей части натурального силоса имеется тенденция к размножению гетероферментативных молочнокислых бактерий с последующей потерей СВ из-за образования этанола и диоксида углерода. Следовательно, превращение ВРУ в молочную кислоту с помощью чисто ферментативных добавок менее выгодно энергетически, чем если включаются гомоферментативные молочнокислые бактерии. Если ферменты, присутствующие в этих добавках, также производят пентозы, как и гексозы,С5 -сахара не могут быть утилизированы из-за того , что пентозоусваивающие молочнокислые бактерии в естественных силосах встречаются относительно редко. Следовательно, кажется целесообразным включать гемицеллюлолитические ферменты, так и гомоферментативные молочнокислые бактерии в биологические добавки к силосу, чтобы перекрыть все возможные сочетания условий силосования. Добавки, которые содержат гомоферментативные молочнокислые бактерии, только тогда будут хорошо работать, когда имеется достаточная концентрация ВРУ для поддержания их пищевых потребностей, и , тем самым, будет достигнуто низкое значение рН и стабильная ферментация. Однако в силосах с низкой концентрацией ВРУ эти бактерии израсходуют все питательные вещества задолго до того, как будет достигнуто стабильное значение рН, и, таким образом, они не будут способны ингибировать рост клостридиальных бактерий. С другой стороны, добавки, содержащие только ферменты, рассчитаны на наличие естественных, преимущественно гетероферментативных молочнокислых бактерий, способных производить достаточное количество кислоты для понижения рН. Хотя ВРУ может быть достаточно благодаря гидролитической активности ферментов, гетероферментативные молочнокислые бактерии менее энергетически эффективны, чем гомоферментативные, что приводит к потере питательных веществ. Если фураж при закладке на силосование также содержит мало эндогенных молочнокислых бактерий, период, необходимый для того чтобы значение рН снизилось достаточно для ингибирования других микроорганизмов, может затянуться на несколько дней - время достаточное для того, чтобы вредные микроорганизмы начали влиять на процесс ферментации. Однако, добавляя гемицеллюлолитические ферменты одновременно с гомоферментативными молочнокислыми бактериями, можно преодолеть оба этих затруднения.

Пропионовые бактерии в силосовании.

Из свежих трав пропионовые бактерии не выделялись, а из силосов выделялись, но в очень небольшом количестве, поэтому их истинное участие в силосовании в природных условиях сильно нивелировано. При внесении пропионовых бактерий (ПКБ) в силосуемые растения, прежде всего с высоким содержанием сахаров (кукуруза), получили корм более высокого качества, чем в контроле (без внесения ПКБ). Он имел низкую кислотность, был обогащен витаминами В2 и В12, пропионовой кислотой и не подвергался плесневению. [5]. В результате скармливания такого силоса в течении 3 месяцев повысилась яйценоскость птиц, выводимость цыплят, сохранность молодняка животных, в крови которых увеличивается содержание каротина и снижается содержание аммиака [4]. В одном грамме бакконцентрата “Казахсил” ПКМ содержится 109 жизнеспособных клеток, и в 1 тонну силосуемой массы рекомендуют вносить 1,5 г препарата. Особенно высокий эффект (см. таблицу 3) достигается при использовании одновременно трех бакконцентратов: ПКБ, АМС, ПМБ (пентозосбраживающие молочнокислые бактерии).

4. Ферментные препараты при силосовании.

Ферментные препараты при силосовании бобовых трав. Бобовые травы относятся к категории трудносилосуемых или вообще несилосуемых растений. Ферментные препараты не только силосуют корма, но и обогащают их легкопереваримыми питательными веществами. Это целловиридин, пектофоетидин, целлолигнорин, глюковомарин и др. В условиях Узбекистана при силосовании зеленой люцерны применялся ферментный препарат- целловиридин - Г3Х (рН 3.9 - 4.1, температура 37 ?С, активность 3000 ед./кг). Он обеспечил гидролиз целлюлозы, гемицеллюлозы, пектиновых веществ до моносахаридов (этот процесс очень важен для бобовых, т.к. в них содержится мало сахаров и много белковых веществ - а значит, они плохо силосуются). В результате образования достаточного количества сахара появляются благоприятные условия для развития молочнокислых бактерий. Значительно уменьшается количество бесполезно теряющегося аммиачного азота, что положительно влияет на сохранение протеина (достигает 78-80%). Под влиянием ферментных препаратов в корме увеличивается содержание белков, аминокислот, которые повышают биологическую ценность корма.

Технология силосования зеленой люцерны с помощью ферментного препарата целловиридина.

Скошенную и измельченную зеленую массу без провяливания перевозят, взвешивают на автовесах и укладывают в бетонированную траншею слоями толщиной 40-50 см.. Траншея должна быть заранее очищена и дезинфицирована. Фермент вносят послойно из расчета 2 кг на 1 т силосуемой массы. Этот ферментный препарат имеет порошкообразную структуру и обладает высоким консервирующим свойством. Его надо разбрасывать равномерно по всей поверхности каждого слоя, затем утрамбовывают. Заполнять траншею силосуемой массой надо быстро - в течение 4-5 дней. Необходимо использовать бетонированные траншеи емкостью 800-1000 т силоса и обеспечивать ежедневную закладку не менее 160-200 т зеленой массы. Заполненную траншею укрывают полиэтиленовой пленкой, затем землей с толщиной слоя около 10-15 см. Силос будет готов к скармливанию через 15-20 дней. Готовый силос имеет влажность 76-78%, рН 4.1 - 4.3. В одном килограмме силоса из зеленой люцерны 0.22 - 0.24 к.е. * , 35-38 г переваримого протеина. [9].

Таблица 4 Химический состав силоса из зеленой люцерны в абсолютно сухом состоянии, %

Показатель Зеленая люцерна Силос Динамика содержания питательных веществ, % Протеин 16,6 16,03 96,38 Азот 2,65 2,57 96,09 Жир 2,13 3,56 162,43 Клетчатка 34,04 31,39 91,25 Зола 9,8 10,8 110,09 Кальций 1,57 1,59 102,26 Фосфор 0,29 0,43 148,48 Каротин, мг 48 42 87,5

Тем самым, потери питательных веществ, особенно протеина и каротина, были минимальными. Если 1 кг АСВ зеленой люцерны принять за 100, то в силосе из зеленой люцерны потери протеина составят 3.62%, каротина 12.5%. Продолжение хранения в течение 6 месяцев приводит к потери влаги на 5-6%, следовательно, увеличивается содержание сухого и органического вещества, в том числе протеина и кальция. Наблюдается некоторое снижение содержания жира, клетчатки и фосфора. Поедаемость силоса из зеленой люцерны по сравнению с кукурузным силосом повышается на 15-20%.

Варианты опытов силосования различных культур (кукуруза, люцерна) с применением силосных добавок.

При разработке технологии получения препаратов силосных бактерий в качестве сырья используют отходы молочной промышленности: подсырную, творожную и казеиновую сыворотки и пивную дробину. Солодовые ростки, ржаная и гороховая мука используются в гидролизованном виде при помощи кислот или ферментативным путем. При анализе развития микробиологических процессов в силосе (таблица 5) [10], приготовленного в природных условиях, выяснено, что при спонтанном процессе брожения (контрольные силосы) очень интенсивно росли гнилостные бактерии, в частности в силосе из отавы люцерны, в связи с чем их количество на 7 сутки выросло до 680 млн. на 1 г. В результате бурного развития аммонификаторов в силосе из бобовых замедлилось обогащение молочнокислыми бактериями; в силосе из кукурузы оно было очень интенсивным. В контрольном силосе, приготовленном из отавы люцерны, всвязи с замедлением молочнокислого брожения в конце опыта наблюдались маслянокислые бактерии (титр 103 ). Вследствие сильного роста аммонификаторов контрольный силос из бобовых при органолептической имел неприятный запах распада белков. При применении препаратов силосных бактерий - промышленной подсырно-сывороточной закваски, биомассы силосных бактерий и культуры с высоким титром силосных бактерий - рост молочнокислых бактерий во всех видах силоса был интенсивным, но в силосе из отавы люцерны рост их был значительно медленнее. В результате активного молочнокислого брожения падение рН во всех вариантах опыта было более высоким, в связи с чем рост гнилостных бактерий тормозился раньше, чем в контрольном силосе без добавок. В силосе из отавы люцерны при внесении биологических добавок рос молочнокислых бактерий, несмотря на небольшое количество углеводов, происходил интенсивнее, чем в контрольном силосе из этого же сырья. Следовательно, при применении добавок рост гнилостных бактерий замедлялся, что способствовало сохранению в силосе углеводов, необходимых для молочнокислого брожения. В силосах, заправленных биологическими добавками, уже с первых дней доминировали L. plantarum , всвязи с чем закваски, с точки зрения более экономичного использования углеводов, имели огромное значение.

6. Производственные рекомендации.

При выращивании бактерий в ферментерах производство педиококков и стрептококков гораздо дешевле, чем молочнокислых бактерий. Они не так привередливы в пищевых потребностях, как лактобациллы, растут в ферментерах до большей плотности, лучше выдерживают лиофилизацию и более стабильны при обычных условиях хранения на ферме. Выбор кокков для включения их в продукт должен диктоваться их способностью быстро размножаться в ограниченно аэробных и анаэробных условиях и достигать рН ниже 5.0 быстро, так чтобы клостридии и другие портящие силос микроорганизмы не смогли размножаться. Еще более важен выбор штаммов Lactobacillus plantarum . В идеале выбранный штамм должен происходить из естественных условий, т.е. из хорошо законсервированного травяного силоса; быть способным к быстрому размножению, чтобы доминировать в силосной микрофлоре; производить много молочной кислоты и быть устойчивым к значению рН , по крайней мере, 4.0. Помимо этих основных условий штаммы Lactobacillus должны утилизировать пентозы также, как гексозы, особенно, если гемицеллюлолитические ферменты, производящие пентозы, включены в конечный продукт. Другими словами, ферменты и молочнокислые бактерии в продукте должны дополнять друг друга. Необходим очень строгий контроль за сохранением ферментативной активности Lactobacillus spp. При использовании штаммов с высоким выходом молочной кислоты конечный выход бактериальной биомассы неизменно ниже, чем у штаммов с низкой продукцией кислоты, вероятно, из-за слабых изменений проницаемости и устойчивости бактериальной клеточной стенки. Для сохранения пигментации при оптимальном для роста значении рН обычно важна нейтрализация щелочью, но необходимо постоянно следить за концентрацией молочной кислоты в ростовой среде, чтобы предотвратить в дальнейшем уменьшение выхода бактерий из-за выделения токсичных метаболитов. Следовательно, необходима оптимизация условий роста при производстве штаммов Lactobacillus spp., которые были выбраны за специфические благоприятные характеристики, такие как образование молочной кислоты. Поскольку дальнейшие потери происходят на этапах изъятия из ферментера и лиофилизации, необходим тщательный выбор криопротекторов, а также долговременные испытания на сохранность для выяснения жизнеспособности бактерий в товарных продуктах при хранении.

7. Эффективность биодобавок к силосу

Долговременный мониторинг эффективности некоторых биологических добавок к силосу “в поле”, проведенный английским фермерским хозяйством, отражен в таблице 6 [18 ] , где даны средние результаты примерно 400 анализов силоса (преимущественно травяного) за трехлетний период. Они показывают, что биодобавки могут быть существенной помощью при ферментации, особенно в условиях низкого содержания СВ. Оба показателя - и рН, и содержание аммонийного азота - отражают категорию “очень хороший” ферментации, при этом необходимо отметить, что эти анализы обладают “негативным” отклонением, поскольку фермеры используют добавки только тогда, когда ожидаются плохие условия ферментации (например, низкое содержание СВ). Учитывая это, полученные результаты особенно обнадеживающие.

Влияние азотных удобрений

Из таблицы 6 видно, что в 1985 году наблюдались несколько повышенные значения рН и содержания аммонийного азота и вдвое больший коэффициент вариации по содержанию аммонийного азота по сравнению с предыдущими годами. Такие результаты объяснимы влиянием холодной и дождливой погоды на большей части территории Великобритании. На рисунке 4 показаны результаты анализа силоса и газожидкостной хроматографии летучих жирных кислот для трех различных “типов” силоса. Рисунок 4 а - типичный пример прекрасной ферментации при низком содержании СВ с хорошим сохранением питательных веществ. На рисунке 4 б показан, наоборот, пример типичного “маслянокислого” силосного профиля с высоким рН и содержании аммонийного азота и с пиком масляной кислоты. В этом случае трава была оставлена на поле на 6 дней из-за продолжительного дождя. а потом все-таки собрана. В довершении всего был плохо заложен бурт: уплотнение фуража и закрытие бурта были недостаточными. Поэтому плохие результаты неудивительны. Однако результаты, представленные на рисунке 4 в, нетипичны. Фермер, получивший такой анализ, будет убежден, что его силос должен подвергнуться вторичной ферментации. Судя только по результатам стандартного анализа, это следует из значения рН 4.7 и содержания аммонийного азота 19%. Однако кривая газожидкостной хроматографии опровергает это предположение, так как на ней не обнаруживается следов масляной кислоты. Это не частный случай, т.к. в 1985 г., особенно в очень влажных силосах, были зарегистрированы сходные результаты анализов. Оказывается, это не связано с силосными добавками, поскольку это явление наблюдалось в необработанных силосах, а также в силосах с добавлением патоки, кислот и биодобавок. Общим во всех этих случаях было то, что травы были скошены и заложены на силос сразу после подкормки азотными удобрениями, иногда через 2-3 недели после внесения удобрений. При холодной дождливой погоде растения не успели превратить эти нитраты в свои белки, и, таким образом, в силосной массе был избыток нитратов вне и внутри растений. Высокий уровень нитратов в силосной массе может влиять на последующую ферментацию. Содержание ВРУ в траве отрицательно коррелирует с уровнем нитратов, использованных для подкормки растений, из-за быстрого роста травостоя. При содержании общего азота в образцах, превышающем 100 г/кг, видимо, молочнокислые бактерии силоса не способны понижать рН до уровня, достаточного для подавления активности клостридий из-за ограниченного количества субстрата. Однако результаты, приведенные на рисунке 4 в, показывают, что и вторичная ферментация в таких условиях не идет [17]. Впоследствии было обнаружено, что при умеренно кислой среде в силосе нитраты будут быстро исчезать, превращаясь в аммиак через промежуточные продукты распада - нитриты. Затем образовавшийся аммоний постепенно поднимает рН до уровня, при котором может начаться активная жизнедеятельность клостридий (рН 5.0), в результате чего начинается “неправильная” ферментация силоса. Некоторые виды клостридий и некоторые штаммы молочнокислых бактерий могут даже утилизировать сами нитраты, так что в это время вторичная ферментация может быть быстрой. Однако известно, что нитриты будут ингибировать рост клостридий, и, следовательно, даже при высоких значениях рН масляная кислота может не выделяться. Содержание нитратов может оставаться на высоком уровне в течении всего периода консервации силоса. Следовательно, если нитраты медленно, но непрерывно превращаются в нитриты в течении длительного времени, рост клостридий может быть полностью остановлен, несмотря на то, что рН при этом около 5.0. Это может быть причиной ситуации с силосом, показанной на рисунке 4в, проба которого была взята через 3 месяца после закладки. Деградация нитратов в силосе может ингибировать рост Clostridium spp. путем временного накопления нитритов и газообразного азота, даже несмотря на то, что выделяющийся аммоний противодействует подкислению и поднимает рН до уровня, при котором активность клостридий может иметь место. [14] Следовательно, хотя уровень аммонийного азота достигает 19% от общего азота (рисунок 4в), то есть достаточен для повышения рН до 4.7, все же вторичная ферментация не идет, так что разумно предположить, что большая часть этого аммонийного азота образовалась вследствие разложения нитратов, а не из-за протеолитической активности бактерий рода Clostridium. Если в конце концов образуется еще больше аммония, рН может подняться еще выше, до точки, где даже нитриты не способны ингибировать активность клостридий. Если начнется вторичная ферментация, и образуется масляная кислота, трудно определить, был ли избыток нитратов начальной причиной проблемы, до тех пор пока силос не будет последовательно проанализирован. Поэтому влияние нитратов на ферментацию силоса нуждается в дальнейшем изучении.

Список использованной литературы.

1. Авраменко П.С., Постовалова Л.М. Производство силосованных кормов. Минск.: Урожай, 1984. - 110 c. 2. Бакай С.М. Биотехнология обогащения кормов мицелиальным белком. - К.: Урожай, 1987.- с.133-135 3. Боярский Л.Г. Технология приготовления силоса. - М.: Агропромиздат, 1988. - с.13-20. 4. Домрачева Г.И., Кононов Ю.В., Майданюк А.Э. Влияние пропионовокислых бактерий на качество силоса, рост и развитие молодняка животных // Научн. тр. Сиб. научно иссл. Ин-та с.-х. животных. Омск, 1970. №15. с.173-177. 5. Ильина К.А., Беседина С.Ф. Влияние Propionibacterium shermanii на состав органических кислот в силосе // Тр. Ин-та микр. и вирусол. АН Каз.ССР. 1966 Т.9 с.29-35 6. Клаар Я. И. Технология производства препарата силосных бактерий (L.plantarum) и их применение для силосования. - Таллин, 1961.- 32 с. 7. Коноплев Е.Г., Щербаков Л.А. Применение комплексной закваски пропионовокислых бактерий и дрожжей при силосовании кукурузы // Изв. АН СССР. Сер.Биол. 1970. №1 с.142-144. 8. Мак-Доналд П. Биохимия силоса: пер. с англ. М.: Агропромиздат, 1985. 9. Методические указания по силосованию зеленой люцерны с помощью ферментного препарата целловиридина и скармливанию её животным / под ред. В.М. Бегрина и др. - Ташкент: МСХ УзССР, 1982. - 11 с. 10. Рекомендации по силосованию зеленых кормов с использованием закваски молочнокислых бактерий / Отделение ВАСХНИЛ по нечерноземной зоне РСФСР. Ярославский НИИ животноводства и кормопроизводства. Произв. управл. с.-х. Ярославского облисполкома; Сост.: Н.В. Колесников, Т.Ф. Ерофеева.- Ярославль, 1982.- 10 с. 11. Теппер Е. З. и др. Практикум по микробиологии/ Е. З. Теппер, В.К. Шильникова, Г.И. Переверзева. - 4-е изд., перераб. и доп. - М.: Колос, 1993. - с.149. 12. Шлегель Г. Общая микробиология: пер. с нем. / под ред. Е. Н. Кондратьевой. - М.: Мир, 1987. - 566с. 13. Edwards R. A., McDonald P //Fermentation of Silage-a Review/McCullough M. E. (ed.). Iowa: National Feed Ingredients Association, 1978. P. 29. 14. Spolstra S F // Grass and Forage Sci. 1985 V. 40. P.1-10 15. Sprague M. A.//Proc. 12th Grassl. Conf., Moscow. 1974. V. 3. P. 651. 16. Weissbach F., Schmidt L., Hein E.// Proc. 12th Grassl. Conf., Moscow. 1974. V. 3. P. 663. 17. Woolford M. K. The Sillage Fermentation. Microbiology Series, V. 14. New York: Marcel Dekker, 1989.

www.ronl.ru

Технология заготовки силоса — реферат

Содержание

 

Силос является прекрасным компонентом зимних рационов. Силосование имеет ряд преимуществ перед другими видами заготовки кормов.  1. Потери питательных веществ при силосовании трав составляют редко более 10%, в то время как при сушке на сено они достигают 25-40% и более.  2. Силосование дает возможность заготовлять дешевый сочный корм на зимний период и для подкормки скота летом в засушливых районах.  3. Для силосования можно возделывать такие культуры, которые дают наивысший урожай зеленой массы, и убирать их можно независимо от погоды.  4. На силосование можно использовать пожнивные культуры, отаву и различные отходы овощных культур.  Для силосования используются растения, специально высеваемые и естественного произрастания.  Из посевных лучшее растение для силосования - кукуруза. Хороший силос  можно получить  при  силосовании сорго, чумизы, суданки, подсолнечника, при скашивании их во время цветения 50-70 % всех растений.  Рожь, овес, ячмень хорошо силосуются в стадии молочно-восковой спелости, при условии наиболее плотной укладки в силосохранилищах; чаще эти растения для силосования высевают в смеси с бобовыми растениями.  Хороший силос получается из луговой травы, отавы и из многих дикорастущих трав.  Тростник, камыш, осока при скашивании их за лето 2-3 раза дают неплохой силос.  Люцерну, клевер и другие бобовые, а также крапиву необходимо силосовать вместе со злаковыми растениями.  Лучшее время уборки различных растений для силосования: кукурузы - в период молочно-восковой и восковой спелости зерна; подсолнечника - когда расцветает не более половины корзинок; сорго - в период восковой спелости; земляной груши (стебли) - незадолго до постоянных заморозков; кормовой капусты - поздно осенью, перед заморозками; вико-овсяной и горохово-овсяной смесей - в начало образования бобов у вики и гороха; клевера и люцерны - в начале цветения; тростника и камыша - до выбрасывания метелки. Тростник и камыш, а также осоку можно силосовать несколько раз в лето, по мере отрастания отавы. 

 

 

 

 

 Сущность силосования

В свежей растительной массе, плотно уложенной в ямы или траншеи, в результате брожения накапливаются органические кислоты до 1,5-2% силосуемой массы, преимущественно молочная, которые и предохраняют корм (консервируют) от дальнейшего разложения. Главная задача при силосовании - создать такие условия в заложенной кормовой массе, которые способствовали бы молочнокислому брожению, а следовательно, накоплению преимущественно молочной кислоты.  На силосование оказывает влияние доступ воздуха. Молочнокислые бактерии, вызывающие брожение, как организмы анаэробные, для своего развития в кислороде не нуждаются. Чем больше воздуха останется в силосуемой массе, тем больше она будет согреваться, энергичнее дышать, а следовательно, и больше будет терять питательных веществ. При наличии воздуха в силосе сильнее будут развиваться плесени. Влажность силосуемой массы должна быть 65-75%. При повышенной влажности медленно накапливаются нужные кислоты, при меньшей влажности корма плотно не укладываются, и в них остается воздух. Для обеспечения требуемой влажности к сухим кормам добавляют воду или сочные корма, к массе с повышенной влажностью - мякину, соломенную резку и др. Температура не имеет значения для силосования, так как разные виды молочнокислых бактерий развиваются при температуре от 5 до 55°. 

 

Технология заготовки и приготовления  силоса

Силосование - один из распространенных и надежных способов консервирования  зеленых кормов. По сравнению с  другими способами силосование  в меньшей мере зависит от погодных условий.

Все технологические приемы должны быть направлены на создание благоприятных  условий для молочнокислого брожения и подавления вредной микрофлоры (аэробные бактерии, дрожжевые клетки, гнилостные бактерии и плесневые грибы). Для этого необходимо соблюдение двух основных условий: создание анаэробной среды, содержание в силосуемой массе достаточного количества сахара и ее оптимальная для молочнокислого брожения влажность (не более 70%). Под сахарным минимумом понимают такое количество сахара в растениях, которое необходимо для образования молочной кислоты в кол-ве, обеспечивающем быстрое подкисление массы до pH 4,0-4,2 при данной буферной емкости сырья. При pH 4,0-4,2 подавляется деятельность большинства вредных м/о и грибков, при этом сами молочнокислые бактерии функционируют нормально.

Растения по силосуемости делятся  на три группы: легкосилосующиеся (кукуруза, корнеплоды, злаковые травы, подсолнечник, клубни картофеля, арбуз, тыква, бобовозлаковые мешанки, листья капусты, ботва корнеплодов и др.), трудносилосующиеся (донник, вика, люцерна желтая, клевер, лебеда и др.) и несилосующиеся в чистом виде (крапива, плети дыни и огурцов, кабачков, арбуза, тыквы, ботва картофеля и помидоров и др.).

Трудносилосующиеся растения лучше  силосовать не в чистом виде, а в  смеси с легкосилосующимися в  соотношении 1:1.

Несилосующиеся  в чистом виде растения можно использовать для силосования только в смеси с легкосилосующимися растениями (в соотношении не менее 1 : 3) или легко осахаривающимися продуктами (вареный картофель, молотое зерно злаков, патока), а также при внесении специальных заквасок и химических консервантов. В среднем содержание сахара в сырой силосуемой массе должно быть не ниже 1 — 1,5%.

Технология приготовления силоса: скашивание; измельчение; погрузка и транспортировка; трамбовка; герметизация.

Влажность силосуемой массы. Для силосования растений большинства видов оптимальной считают влажность 65 — 80 %. При высокой влажности сырья увеличивается количество уксусной кислоты.

Измельчение растительной массы имеет важное значение для получения высококачественного силоса. Степень измельчения растений зависит от стадии их вегетации, влажности силосуемого сырья, содержания в корме питательных веществ, особенно сахаров, и других факторов.

Температура. Молочнокислые бактерии могут развиваться при температуре от 5 до 55°. Однако наиболее интенсивно молочнокислое брожение протекает при температуре 25 — 35°. Степень повышения температуры в силосуемой массе зависит от влажности корма, его уплотнения и интенсивности загрузки силосохранилища. При медленной загрузке и рыхлой укладке массы температура бывает выше, чем при быстрой и плотной укладке корма. Отсюда различают «холодный» и «горячий» способы силосования. Обычно при первом способе температура силосуемого корма не превышает 30°, а при втором - достигает 50° и выше.

Иногда  потери при «горячем» способе  силосования достигают 40%. Поэтому в настоящее время повсеместно применяется «холодный» способ силосования.

Для предохранения корма от разогревания рекомендуется процесс силосования  заканчивать за 3 — 4 дня, измельчать и тщательно трамбовать растительную массу и хорошо изолировать ее от окружающего воздуха в период хранения.

Успех силосования зависит и от других факторов — типа и размера хранилища, качества силосуемого сырья, техники  силосования и пр. Силосуют корма  в облицованных траншеях, башнях или  наземным способом. Наилучший способ – закладка зеленой массы в капитальные сооружения (снижение потерь питательных веществ).

Для получения высококачественного  силоса ежедневно закладываемый  слой хорошо утрамбованной массы  должен быть не менее 0,7— 1 м.

В день окончания закладки силосной массы траншеи (и другие сооружения) тщательно укрывают. Лучшим материалом для укрытия силоса служит полиэтиленовая пленка сверху насыпают слой земли или тора и слой соломы.

Силосование кормов с применением  химических препаратов и заквасок. Химическое консервирование целесообразно применять при силосовании растений с недостаточным или избыточным содержанием сахаров, а также закладке на силос массы с высокой влажностью (75% и выше). Химическое консервирование снижает потери питательных веществ 3-4 раза и повышает качество корма. Одним из лучших консервантов является пиросульфит натрия. Консервирующее действие препарата основано на его антисептических свойствах. Он тормозит бродильные процессы и угнетает жизнедеятельность маслянокислых и гнилостных микроорганизмов. На 1 т измельченной зеленой массы вносят от 3 до 5 кг пиросульфита натрия (для бобовых — 4,5 — 5 кг).

Из  сухих химических препаратов, обладающих хорошими консервирующими свойствами, используют бисульфат натрия (8 — 10 кг на 1 т), пиросульфат аммония (10—12 кг на 1 т), дигидросульфат аммония (14 кг на 1 т), формалин или уротропин — формальдегидный способ силосования (по 10 г на 1 т) и некоторые другие. Перед внесением химических добавок в силосуемую массу влажностью до 75% их растворяют в воде в соотношении 1:2 или 1:3 и равномерно вносят различными опрыскивателями, дозаторами и т.д. Для приготовления силоса из трудно силосующихся растений иногда используют минеральные кислоты или смесь минеральных кислот и солей. При внесении в силосуемую массу кислотных препаратов в ней быстро создается устойчивая кислая среда, предохраняющая корм от развития маслянокислого брожения и гнилостных процессов. Быстрое подкисление консервируемой массы затормаживает и действие ферментов, в частности разлагающих протеин. Для консервирования кормов используют также органические кислоты: муравьиную, молочную, пропионовую, сорбиновую и др. Муравьиная кислота дешевле и лучше других кислот изучена. Корм, законсервированный муравьиной кислотой, охотно поедается животными. Молочная и сорбиновая кислоты хотя и отличаются хорошими консервирующими свойствами, но вследствие высокой их стоимости пока не получили практического применения. В последние годы для консервирования трудно силосующихся растений испытаны бензойная, антраниловая и сульфаниловая кислоты, которые также оказались хорошими консервантами. Кислотные препараты вносят при силосовании послойно через 20-25 см и хорошо уплотняют. При силосовании трав, початков кукурузы, сырого зерна и особенно кукурузы в смеси с бобовыми культурами целесообразно применять специальные закваски молочнокислых бактерий. Выпускаемый для этих целей молочной промышленностью сухой биопрепарат усиливает молочнокислое брожение и подавляет неблагоприятные бродильные и гнилостные процессы в силосуемой массе. Качество силоса определяют по его запаху, цвету, структуре растений и химическому составу. Показателями качества готового силоса служат величина рН и содержание в нем различных органических кислот. В хорошем силосе содержится около 2% свободных кислот, причем большая часть приходится на долю молочной кислоты, а около 1/3 — на уксусную (масляная кислота отсутствует), рН такого силоса близок к 4,2. Правильно засилосованный корм из легкосилосующихся растений готов для скармливания через 15 — 20 дней, силос из бобовых—через 1,5 — 2 мес. Хорошо приготовленный силос служит превосходным и дешевым сочным кормом для сельскохозяйственных животных всех видов. Животным можно давать только доброкачественный силос. Если он проморожен, то непосредственно перед раздачей его надо оттаивать. Силос быстро портится на воздухе, поэтому его следует давать животным только на одно кормление.

Основные силосные культуры в хозяйствах - кукуруза, подсолнечник и их смеси  с бобово-злакрвыми травами, однолетние горохово-вико-злаковые смеси, многолетние злаковые травы, отходы овощеводства и др.

Все эти растения характеризуются высокой  степенью силосуемости. К моменту  силосования они имеют, как правило, избыточную влажность, которая в  значительной мере отрицательно отражается на качестве силоса и величине потерь. Поэтому одна из задач при организации силосования кормов - выбор оптимальной фазы развития растений и использования приемов снижения их влажности.

Оптимальные сроки уборки на силос кукурузы - конец молочного состояния и  восковая спелость зерна, викогорохово-овсяных смесей - фаза восковой спелости зерна в первых двух нижних ярусах бобов, подсолнечника - от начала до 50%-ного цветения, корзинок, многолетних злаковых трав - фаза колошения. Промедление с уборкой силосных культур отрицательно сказывается на качестве силоса. Если, например, питательность 1 кг сухого вещества злаковых трав в фазе выхода в трубку составляет 0,95-1,0 корм. ед., то в фазе цветения - около 0,70 корм. ед. при одновременном резком снижении содержания переваримого протеина и витаминов.

Силосование зеленых кормов повышенной влажности, как правило, сопровождается большими потерями питательных веществ с вытекающим соком. Кукуруза в период молочной спелости имеет влажность 82-87%, поэтому потери массы с соком достигают 30%, а силос имеет низкое качество. Регулировать влажность и силосуемость сырья можно с помощью совместного силосования высоковлажного сырья с сухими компонентами, смешанных посевов силосных культур с зернофуражными и бобовыми культурами, провяливания силосуемого сырья.

Для предотвращения потерь с вытекающим соком целесообразно добавлять  в силосуемую массу соломенную резку. При влажности массы 85% и выше необходимо добавлять 15-20% сухой измельченной соломы, при влажности сырья 80% - 10-12%. В этом случае влажность готового силоса будет в пределах 70-75%.

Силосование можно проводить послойно. На дно траншеи укладывают измельченную солому слоем 40-50 см, затем слой зеленой  массы 30-40 см и опять слой соломы. Каждый слой соломы и зеленой массы  тщательно перемешивают и уплотняют бульдозером с одновременным внесением различных консервирующих препаратов.

Использование при заготовке силоса смешанных посевов культур повышенной влажности (кукуруза, подсолнечник) с  овсом, горохово-вико-овсяными смесями - эффективный способ снижения потерь, влажности и кислотности силоса, а также повышения его питательности.

Однолетние и многолетние бобово-злаковые травосмеси целесообразно предварительно провяливать до влажности 70-75%. Силос  из подвяленной массы имеет более  благоприятные биохимические и органолептические показатели, чем силос из трав с высокой влажностью.

yaneuch.ru

Технология приготовления и хранения силоса

Силос — консервированный сочный корм. Среди заготовок для кормления животных в зимний период он занимает важное место.

Основными культурами для приготовления силоса являются зеленая кукуруза, сорго, подсолнечник и смеси этих культур с бобово–злаковыми травами. Силос готовят также из однолетних горохо–злаковых, многолетних злаковых трав и отходов овощеводства.

В зеленой силосуемой массе накапливаются органические кислоты за счет сбраживания бактериями сахаров. При соблюдении технологии силосования общие потери питательных веществ не превышают 12–15%.

По силосуемости (по обеспеченности сахарами) растения разделяются на три группы:

1. легкосилосующиеся — викоовсяная смесь в фазе цветения, горох до цветения, клевер красный в фазе цветения, кукуруза, подсолнечник, рапс озимый, овес и др.;

2. трудносилосующиеся — вика, донник, люпин в начале цветения, люцерна в фазе молочной спелости, лебеда и др.;

3. несилосующиеся растения — ботва помидоров, крапива, мята, полынь и др.

Следует также учесть, что силос из измельченных растений по качеству всегда лучше, хотя и немного кислее приготовленного из целых растений. Величина резки зависит от влажности массы во время укладки ее в хранилище. Если влажность составляет 65% и ниже, длина частиц должна быть 2–Зсм, при влажности 70–75% — 4–5 см, при влажности 80% — 8–10 см.

Оптимальная влажность силосуемой массы 65–75%. Молочные кислоты при этом накапливаются в массе от 2/3 до 4/5 суммы образующихся органических кислот. Из более влажной массы выделяется больше сока. Растворенные в соке вещества нейтрализуют молочную кислоту, что приводит к нарушению процессов брожения, и образуется значительное количество уксусной кислоты, которая снижает питательность силоса. Регулировать влажность и силосуемость сырья можно при помощи следующих технологических приемов:

 · провяливание силосуемого сырья;

 · силосование влажного сырья с сухими компонентами;

 · смешанные посевы силосных культур с зернофуражными и бобовыми культурами.

Важное значение имеет время уборки силосуемых культур. Так, в большинстве районов страны оптимальный срок уборки кукурузы на силос — фаза восковой спелости зерна. В засушливых районах, где урожай кукурузы невелик, лучше сажать сорго в чистых посевах или в смеси с кукурузой. Сорго скашивают в момент твердения зерна. Подсолнечник убирают в начале цветения (цветет 15–20% растений).

При необходимости использования несилосующихся, трудносилосуемых растений, а также для уменьшения потерь питательных веществ при силосовании злаковых культур можно пользоваться химическими консервантами.

При внесении консервантов следует соблюдать технику безопасности: работать следует в резиновых сапогах, перчатках, защитных фартуках, пользоваться респираторами или противогазами. В случае попадания на кожу кислоты, ее следует быстро смыть большим количеством воды с мылом. Вносить препараты следует с подветренной стороны. Выделяющийся при силосовании зеленой массы сок нельзя давать животным.

Силосохранилища могут быть различной конструкции — траншейного типа, круглого сечения и др., но все они должны отвечать следующим требованиям: стены и дно следует делать водо- и воздухонепроницаемыми, в него не должны проникать грунтовые или сточные воды.

Загрузку силосохранилища следует начать с укладки на дно хранилища 40–50 см измельченной соломы, затем загружают 30–40 см зеленой массы и опять солому таким же слоем. Каждый слой соломы и зеленой массы необходимо перемешивать и уплотнять, внося при этом консерванты. Ежедневно после закладки массу необходимо уплотнять не менее 3–4 часов, особенно у стен хранилища. Система загрузки массы транспортом для приготовления силоса аналогична закладке сенажа.

Если силосуется масса с избыточным содержанием влаги (80% и выше) без добавления соломы, то уплотнение следует выполнять умеренно в процессе укладки, без дополнительного уплотнения, так как это приведет к потерям питательности силоса за счет вытекания сока.

Емкость хранилища следует подбирать с учетом возможности его загрузки, но не более 4–х дней. После загрузки хранилища его немедленно затягивают полиэтиленовой пленкой и укрывают слоем земли или торфа толщиной до 10 см. Поверхность покрытия должна быть выполнена таким образом, чтобы атмосферные осадки не задерживались в углублениях и не проникали в массу. Края пленки вдоль стен хранилища надо тщательно заделывать грунтом в виде полосы шириной 25–30 см и толщиной около 15 см.

Для укрытия хранилища наиболее приемлема полиэтиленовая стабилизированная сажей пленка СТУ 138–67 шириной 8 и 12 м. Узкие пленки (шириной 3–4 м) необходимо скреплять (склеивать) в пологи.



biofile.ru

Реферат - 1. Производство силоса

1. Производство силоса.

Искусство приготовления силоса как способ сохранения сочных кормов было известно тысячи лет, хотя сложные биохимические и микробиологические изменения, которые происходят при процессах силосования, стали понятны сравнительно недавно.

Силосование, или заквашивание, - способ консервирования зеленого корма, при котором растительную массу хранят во влажном состоянии в ямах, траншеях или специальных сооружениях - силосных башнях. Корм, более или менее спрессованный и изолированный от доступа воздуха, подвергается брожению, приобретает кислый вкус, становится мягче, несколько изменяет цвет (бурая окраска), но остается сочным.

Силосование имеет ряд преимуществ по сравнению с другими способами консервирования корма.

Способы силосования

холодный;

горячий.

При холодном способе силосования созревание силоса идет при умеренном повышении температуры, доходящем в некоторых слоях корма до 40°С; оптимальной температурой считается 25-30 °С. При таком силосовании скошенную растительную массу, если нужно, измельчают, укладывают до отказа в кормовместилище, утрамбовывают, сверху как можно плотнее укрывают для изоляции от воздуха.

^ При горячем способе силосное сооружение заполняют по частям. Зеленую массу на один - два дня рыхло укладывают слоем около 1-1.5 м. При большом количестве воздуха в ней развиваются энергичные микробиологические и ферментные процессы, в результате чего температура корма поднимается до 45-50°С. Затем укладывают второй слой такой же толщины, как и первый, и он, в свою очередь, подвергается разогреванию. Растения, находящиеся внизу и размягченные под влиянием высокой температуры, спрессовываются под тяжестью нового слоя корма. Это вызывает удаление воздуха из нижнего слоя силоса, отчего аэробные процессы в нем прекращаются и температура начинает снижаться. Так слой за слоем заполняют все силосохранилище. Самый верхний слой корма утрамбовывают и плотно прикрывают для защиты от воздуха. В связи с тем, что силосохранилище при горячем способе силосования обычно делают небольших размеров, на верхний слой силосуемого корма помещают груз. Разогревание растительной массы связано с потерей иногда значительной части питательных веществ корма. В частности, резко уменьшается переваримость белков. Поэтому горячее силосование не может считаться рациональным способом сохранения растительной массы. Общие потери сухих веществ корма при холодном силосовании не должны превышать 10-15%, во втором достигают 30% и более.

Холодный способ силосования наиболее распространен, что объясняется как сравнительной его простотой, так и хорошим качеством получающегося корма. Горячий способ силосования допустим лишь для квашения грубостебельчатых, малоценных кормов, которые после разогревания лучше поедаются скотом.

Британские фермеры убирают травы, пока они еще находятся в относительно ранней стадии роста, с высоким содержанием ферментируемых сахаров (водорастворимых углеводов - ВРУ) и низким содержанием волокон. Собирают ли культуру немедленно либо оставляют на поле вянуть несколько часов, зависит от погодных условий во время покоса, но в идеале фермер хочет закладывать на силос культуру с содержанием сухого вещества 25-30%. Во многих странах с умеренным климатом, таких как Великобритания, дожди поздней весной и ранним летом не всегда позволяют подсушить траву, и поэтому при силосовании трав, содержащих менее 25% СВ, всегда используются силосные добавки, чтобы достичь хорошей ферментации и уменьшить потери силоса. [15].

^ 2.Фазы созревания силоса.

Рассмотрим динамику созревания силоса. Процесс квашения можно условно разбить на три фазы.

Первая фаза созревания заквашиваемого корма характеризуется развитием смешанной микрофлоры. На растительной массе начинается бурное размножение разнообразных групп микроорганизмов, внесенных с кормов в силосное помещение. Силосование связано с накоплением в корме кислот, образующихся в результате сбраживания микробами-кислотообразователями содержащихся в растениях сахаристых веществ. Основную роль в процессе силосования играют молочнокислые бактерии, продуцирующие из углеводов (в основном из моно- и дисахаридов) молочную и частично уксусную кислоты. Данные кислоты имеют приятные вкусовые свойства, хорошо усваиваются организмом животного и возбуждают у него аппетит. Молочнокислые бактерии снижают реакцию среды корма до pH 4.2...4.0 и ниже. Накопление молочной и уксусной кислот в силосе обусловливает его сохранность, так как гнилостные и прочие нежелательные для силосования бактерии не способны размножаться в среде с кислой реакцией (ниже рН 4.5...4.7 ). Сами же молочнокислые бактерии относительно устойчивы к кислотам.

Обычно первая фаза брожения бывает кратковременной. Вначале захваченный атмосферный кислород в сырье используется растительными ферментами в еще дышащих растениях, но кислород вскоре кончается, и далее брожение происходит в анаэробных условиях. В это время молочнокислые бактерии, присутствующие вначале в небольшом количестве, начинают быстро размножаться до концентрации 109 -1010 клеток/г, используя сахара, освобожденные из разрушенных растительных клеток, как основной источник энергии.

^ Во второй фазе - главного брожения - основную роль играют молочнокислые бактерии, продолжающие подкислять корм. Большинство неспороносных бактерий погибает, но бациллярные формы в виде спор могут длительное время сохраняться в заквашенном корме. В начале второй фазы брожения в силосе обычно преобладают кокки, которые позднее сменяются палочковидными молочнокислыми бактериями, отличающимися большой кислотоустойчивостью. При идеальных условиях рН стабилизируется на уровне 3.8 - 4.2, в зависимости от содержания сухого вещества, и силос эффективно консервируется за несколько недель. Однако, когда содержание СВ скошенной травы менее 25%, условия не идеальные, процесс консервации может пройти плохо, особенно если уровень ВРУ также низок (как часто бывает у трав, выросших в умеренном климате). Для нормального силосования нормальных кормов требуется неодинаковое подкисление, в зависимости от различного проявления буферных свойств некоторых составных частей растительного сока. [3].

Буферные свойства.

Механизм действия буферов заключается в том, что в их присутствии значительная часть ионов водорода нейтрализуется. Поэтому несмотря на накопление кислоты, реакция среды почти не снижается до тех пор, пока не израсходован весь буфер. В силосе образуется запас так называемых связанных буферами кислот. Роль буферов могут играть различные соли и некоторые органические вещества (например, протеины), входящие в состав растительного сока.

Для повышения в силосе содержания сырого протеина, а также улучшения ферментации корма в период закладки к массе добавляют мелассу, мочевину, соевый шрот. Мелкое измельчение стержней и оберток початков повышает на 30% поедаемость силоса. [1].

Более буферный корм для получения хорошего силоса должен иметь больше сахаров, чем менее буферный. Следовательно, силосуемость растений определяется не только богатством их сахарами, но и специфическими буферными свойствами. Основываясь на буферности сока растений, можно теоретически вычислить нормы сахара, необходимые для успешного силосования различного растительного сырья.

Буферность сока растений находится в прямой зависимости от количества в них белков. Поэтому большинство бобовых растений трудно силосуется, т.к. в них относительно мало сахара (3...6%) и много белка (20...40%). Прекрасная силосная культура - кукуруза, в стеблях и початках ее содержится 8...10% белка и около 12% сахара. Хорошо силосуется подсолнечник, в котором много белка (около 20%) , но и достаточно углеводов (более 20%). Приведенные показатели рассчитаны на СВ. [1].

В основном силосуемость связывают с запасом моно- и дисахаридов, дающих необходимое подкисление. Минимальное их содержание для доведения реакции среды корма до рН 4.2 может быть названа сахарным минимумом. Технически определить сахарный минимум несложно. Титрованием устанавливают необходимое количество кислот для подкисления пробы исследуемого корма до рН 4.2. затем определяют количество простых сахаров в корме. Допуская, что около 60% сахаров превращаются в молочную кислоту, можно рассчитать, хватает ли имеющегося сахара для должного подкисления корма [11].

Качество силоса во многих случаях не отвечает зоотехническим требованиям. Это обусловлено нарушением технологии силосования (длительное нахождение зеленой массы в поле, силосование перезревшей массы силосных культур, слабая утрамбовка при заполнении траншеи).

Недостаточное уплотнение и

плохое укрывание силосных буртов.

Приведенная причина может также привести к плохой консервации и большим потерям при силосовании из-за доступа воздуха (кислорода). В таких условиях значение рН 4.0 не достигается. Следовательно, могут быстро размножаться микроорганизмы, которые обычно ингибированы анаэробиозом. Энтеробактерии и Clostridium, которые ингибируются низкими значениями рН, будут способны расти и утилизировать молочную кислоту. Белок и остаточные ВРУ с последующей утратой пищевой ценности силоса. (рис. 1 и 2). Рост видов Clostridium, имеющий оптимум при рН 7.2, не ингибируется до тех пор, пока рН не упадет ниже 5.5. Следовательно, в плохо законсервированном влажном силосе они могут доминировать среди микрофлоры. Виды Clostridium предпочитают также более высокую влажность и силос с низким содержанием СВ. [16].

Сахаролитические виды, такие как ^ Clostridium tyrobutyricum, используют ВРУ и молочную кислоту в процессе своего роста, и в силосе, который может изначально иметь низкую концентрацию молочной кислоты, неизбежно будет расти рН из-за наработки масляной кислоты, которая слабее, чем молочная.[13].

Протеолитические виды бактерий, такие как С.sporogenes, используют многие из аминокислот силоса, продуцируя преимущественно масляную кислоту и аммиак. Эти реакции меняют условия среды, усиливая развитие С.spp. Типичные реакции С.spp приведены ниже.

Типичные реакции клостридий, расщепляющих сахара:

глюкоза à масляная кислота + 2 СО2 + 2 Н2,

2 молочная кислота à масляная кислота + 2 СО2 + 2 Н2.

Типичные реакции протеолитических клостридий:

дезаминирование

лизин à уксусная кислота + масляная кислота + 2 Nh4 ,

декарбоксилирование

глутаминовая кислота à g - аминомасляная кислота + СО2 ,

окислительно-восстановительная реакция

аланин + 2 глицин à уксусная кислота + 3 Nh4 + СО2.

Скармливание коровам, молоко которых идет на сыр, недоброкачественного силоса, подвергавшегося маслянокислому брожению, вызывает в сыре подобное брожение.

Также нежелательны в силосе и дрожжи. Обычно после начального быстрого размножения аэробные виды, такие как ^ Candidas spp. и Pichia spp., «остаются в спячке» в анаэробных условиях, пока силос не откроют для кормления животных. Аэробная порча силоса на поверхности бурта может быть очень быстрой и приводить к полной потере питательности, сопровождаясь образованием диоксида углерода, воды и выделением теплоты, как видно из приведенных ниже типичных реакций дрожжей.

Анаэробиоз:

глюкоза à 2 этанол + 2 СО2 + 64,7 кДж.

Потеря сухого вещества 100%, энергии 9%.

Аэробиоз:

глюкоза + 6 О2 à 6 СО2 + 6 h3O + 710,5 кДж.

Потеря сухого вещества и энергии - 100%.

Если анаэробные условия устанавливаются быстро, а достижение низкого рН запаздывает, то, помимо видов рода Clostridium, проблемы могут возникать также из-за дрожжей. Будучи устойчивыми к слабокислым условиям, анаэробные дрожжи, например Torulopsis spp., конкурируют с молочнокислыми бактериями за сахара, которые они превращают в этанол и диоксид углерода с потерей СВ и повышением температуры силоса. [8].

Следовательно, биологические добавки к силосу должны быть способны быстро начинать ферментацию и сохранять низкое значение рН в течении всего периода образования и сохранения силоса. Промедление может быть чревато потерей питательных веществ.

Вернемся к основным бактериям, участвующим в силосовании - молочнокислым бактериям. Среди молочнокислых бактерий силоса имеются кокки и неспорообразующие палочки: Streptococcus lactis, S. thermophilus, Lactobacillus plantarum, а из представителей второй - L. brevis. Эти микробы - анаэробы. На характере продуктов, образуемых молочнокислыми бактериями, сказываются не только биохимические особенности той или иной культуры, но и вид углеводов. В растительном сырье имеются пентозаны, дающие при гидролизе пентозы. Поэтому даже при нормально идущем созревании силоса в нем обычно накапливается некоторое количество уксусной кислоты, которая также образуется, как известно, некоторыми другими молочнокислыми бактериями из гексоз. Большинство молочнокислых бактерий живут при температуре 7...42 °С (оптимум около 25...30°С). Отмечено, что при разогревании до 60...65 °С в нем накапливается молочная кислота, которую продуцируют некоторые термотолерантные бактерии, например Bacillus subtilis.

Третья фаза брожения корма - конечная - связана с постепенным отмиранием в созревающем силосе возбудителей молочнокислого процесса. К этому времени силосование подходит к естественному завершению.

О качестве силосованного корма можно судить по составу органических кислот, накопившихся при брожении (табл.1). [11].

Примерное соотношение кислот в силосе разного качества Табл.1

Качество силоса

Реакция среды

Соотношение кислот

Очень хорошее

4,2 и ниже

молочная - 60% и более,

уксусная - 40% и менее, масляная - 0%

Хорошее

4.5 и ниже

молочная - 40-60 %,

уксусная - 60-40%, масляная - следы

Среднее

около 4.5

молочная - 40-60%,

уксусная - 60-40%, масляная - до 0,2%

Плохое

выше 4.7

молочная - мало,

масляная - значительно

Очень плохое

выше 5.5

преобладают летучие кислоты, в том числе и масляная

Для регулирования процесса силосования существует несколько приемов.

Как уже говорилось, на практике быстрое достижение анаэробных условий в буртах или ямах не всегда гарантировано. Непросто также достичь идеального содержания СВ в скошенной траве из-за погодных условий. Поэтому в течение долгого времени велись поиски химических средств, которые могли бы влиять на консервацию силоса.

^ 3.Силосные добавки.

По их действию на процесс ферментации силосные добавки делятся на 2 основные группы: ингибиторы и стимуляторы ферментации. Ингибиторы- это кислотные добавки (серная и муравьиная кислоты) и консерванты (например, формальдегид и параформальдегид). Стимуляторы- это источники углеводов- патока и барда - или разнообразные добавки, такие как молочнокислые бактерии и ферменты.

1.Ингибиторы ферментации.

Опыты по кормлению показали, что силос с рН ниже 3.0 (значение легкодостижимое с помощью сильных неорганических кислот) был неприятным для животных, и даже если они его ели, вызывал ацидоз в рубце. Было вычислено количество кислоты, необходимое для достижения рН 3.6-4.0, более пригодного для питания животных, однако все еще ингибирующего некоторые вредные процессы ферментации. Хотя серная кислота и смесь серной и соляной кислот в качестве добавок были популярны во многих североевропейских странах, они постепенно вышли из употребления из-за коррозионного действия и возникновения проблем, связанных с использованием этих кислот.

Еще в двадцатые годы было предложено в качестве добавок использовать органические кислоты. Но разбрызгивание смеси муравьиной и соляной кислот по силосной массе не привело к успеху. Неудача была связана в основном с трудностью равномерного распределения кислоты в толще силосной массы, но с появлением специальных уборочных машин и накопительных фургонов стало возможным обрызгивать кормовую культуру муравьиной кислотой сразу после скашивания. В частности, использование добавок муравьиной кислоты стало промышленно доступной в 50-х годах. Хотя муравьиная кислота слабее неорганических кислот, она понижает значение рН ниже 4.0, если добавлять ее в концентрации, пропорциональной содержанию СВ. Муравьиная кислота обладает антибактериальной активностью за счет сочетания действия водородного иона и бактерицидности самой недиссоциированной кислоты. Хотя она действует ингибирующе на Clostridium spp., энтеробактерии и некоторые штаммы Streptococcus spp. и Pediococcus spp., но при этом значении рН не полностью подавляет Lactobacillus spp. и, таким образом, некоторая микробная активность сохраняется. [8].

До создания специальных заквасок использовали главным образом химические консерванты (таблица 2), [4] , в состав которых входит от одной до трех органических кислот, являющихся также метаболитами пропионовых бактерий, правда, доля муравьиной кислоты превалирует в составе химических консервантов и очень мала в биологических.

Химические консерванты для силосов. Таблица 2

Название

Состав, %

ВИК-1

муравьиная кислота -27

уксусная кислота -27

пропионовая кислота -26

вода -20

АИВ-2

муравьиная кислота -80

ортофосфорная кислота - 2

вода -18

ВИК-11

муравьиная кислота -80

уксусная кислота -9

пропионовая кислота -11

Было обнаружено, что по мере возрастания концентрации муравьиной кислоты в силосе наблюдалось снижение уровня молочной и уксусной кислот, как и ожидалось, а также увеличивалась концентрация азота белка и ВРУ благодаря ингибированию протеолитической и дыхательной активности микроорганизмов. Однако использование муравьиной кислоты не всегда дает устойчивый эффект при силосовании.

Исследования устойчивости силоса, обработанного муравьиной кислотой, к воздействию кислорода показали, что некоторые дрожжи устойчивы к муравьиной кислоте и иногда вызывают аэробное брожение, как только бурты открывались для использования. До 50% муравьиной кислоты может быть потеряно в процессе силосования, и это также приводит к плохой консервации силоса. Однако промышленные препараты муравьиной кислоты еще достаточно широко используются в Великобритании и северной Европе. [1].

Уксусная, пропионовая и акриловая кислоты, в качестве добавок к силосу, оказались менее эффективными, чем муравьиная, для подавления ферментации. Кроме того, это слабые кислоты, и для достижения ингибирования ферментации их надо вносить в большом количестве, что означает неоправданные затраты.

Благодаря известным бактериостатическим свойствам формалин (40% водный раствор формальдегида) использовался как консервант еще в 30-х годах. Интерес к его использованию возродился, когда были опубликованы результаты изучения обработанной формальдегидом люцерны. Было обнаружено, что умеренные добавки формальдегида защищают растительные белки от микробной атаки в рубце. Однако при полевом применении его потери могут быть высоки из-за летучести, и даже в силосных ямах содержание формальдегида постепенно уменьшается вследствие разложения, так что через 100 дней остается только 20% исходного содержания. Это приводит к порче силоса из-за сочетания маслянокислого брожения по мере падения концентрации формальдегида и последующей аэробной неустойчивости при вскрытии. При применении больших концентраций возникают другие проблемы. Защита растительного белка умеренными концентрациями формальдегида может привести к тому, что при его высоких концентрациях микроорганизмы в рубце будут лишены доступного азота и погибнут, что ухудшит переваривание белка в толстом отделе кишечника. Также обнаружено, что «свободный» формальдегид может переноситься в молоко. [1].

Большая часть этих неприятностей исчезает, когда используют смеси формальдегида и муравьиной кислоты, которые эффективно уменьшают протеолиз и маслянокислую ферментацию и не мешают перевариванию белков, что приводит к увеличению содержания СВ в силосе.

2. Стимуляторы ферментации.

Добавки, которые активно стимулируют ферментационные процессы в силосе, используются уже много лет. Добавление патоки, как оказалось, увеличивает и содержание сухих веществ, и концентрацию молочной кислоты, с последующим уменьшением рН и ингибированием роста вредных микроорганизмов, однако этот уровень рН еще позволяет расти молочнокислым бактериям. Добавка патоки к культурам с низким содержанием ВРУ, таким как бобовые, была только тогда полезна, когда применялись относительно высокие дозы (около 40-50 г/кг и более). При таких дозах не все доступные углеводы превращаются в молочную кислоту лактобациллами, обычно присутствующими в силосе, и к концу ферментации сохранится довольно высокий остаточный уровень ВРУ. [1].

Последняя группа промышленных стимуляторов ферментации - это вещества, включающие молочнокислые бактерии и/или ферменты, известные в совокупности как микробные или биологические силосные добавки.

В таблице 3 представлены некоторые бактериальные закваски для силосования, которые разрабатывались в Институте микробиологии и вирусологии Казахстана. [7].

Бактериальные закваски для силосования. Таблица 3

Название

Место создания

Штаммы

Силосуемые растения

АМС “Казахсил”

Институт микробиологии и вирусологии АН Казахстана

^ Streptococcus lactis diastaticus (сухой)

Трудносилосуемые (бобовые, злаковые, травосмеси, тростник)

ПКБ

“”

^ Propionibacterium shermanii

Высокосахаристые, легкосилосуемые (кукуруза, подсолнечник)

ПМБ

“”

^ Lactobacterium pentoaceticus

Солома и грубостебельчатые остатки растений

Смешанные закваски: АПП (АМС, ПКБ, ПМБ)

“”

^ Str. lactis diastaticus, P. shermanii, L.pentoaceticus

Кукурузная солома

Силамп (АМС, ПКБ)

“”

Str. lactis diastaticus, P. shermanii

Легкосилосуемые, высокосахаристые

АПП (АМС, ПМБ)

“”

^ Str. lactis diastaticus, L.pentosus

Многолетние и однолетние с соломой, бобовые. солома

^ 4. Роль молочнокислых бактерий в силосных добавках.

Качество естественной ферментации силоса сильно зависит от числа и типа молочнокислых бактерий, присутствующих в фураже во время закладки силоса. Из четырех родов молочнокислых бактерий, связанных с силосом (Lactobacillus, Pediococcus, Streptococcus, Leuconostoc), со временем в силосной микрофлоре начинают доминировать Lactobacillaceae. На ранних стадиях, когда установился анаэробиоз, кокки быстро размножаются благодаря их норме реакции на кислотность (рН 6.5-5.0 с оптимумом 5.5), хотя некоторые педиококки могут выживать при рН 4.0 из-за их более высокой толерантности к кислоте. [1]. Когда рН падает ниже 5.5 начинают преобладать лактобациллы, и это положение сохраняется на протяжении всего периода консервации. Обнаружено, что процесс силосования начинается гомоферментативными лактобациллами, такими как Lactobacillus plantarum и L. curvatus, а к концу 75-95% лактобацилл представлены гетероферментативными видами, преимущественно L. buchneri и L. brevis. Это объясняется тем, что гетероферментативные лактобациллы более устойчивы к уксусной кислоте, которую они также производят. Показано также, что может иметь место сдвиг от чисто молочнокислого к смешанному брожению, включающему реферментацию молочной кислоты под действием некоторых гомоферментативных бактерий вследствие нехватки субстрата. [12].

В районах с умеренным климатом, где содержание сахара в фураже может быть низким, потребность молочнокислых бактерий в ВРУ силоса может опережать их поступление, и тогда может произойти изменение в схеме ферментации в сторону доминирования гетероферментативных молочнокислых бактерий. Значимость этих естественных схем ферментации иллюстрируется следующими реакциями Lactobacillus spp.. [12].

Реакции гомоферментативных молочнокислых бактерий:

глюкоза, фруктоза à 2 молочная кислота,

арабиноза, ксилоза à молочная кислота + уксусная кислота.

Потери сухого вещества не происходит. Потери энергии незначительно.

Реакции гетероферментативных молочнокислых бактерий:

глюкоза à молочная кислота + этанол + СО2

Потери сухого вещества 20%, энергии 1,7%.

Рост гетероферментативных ^ Lactobacillus spp. в силосе ведет к образованию этанола и диоксида углерода с последующей потерей СВ и энергии.

Селекция штаммов при разработке силосных добавок.

Выбранные виды молочнокислых бактерий с целью включения их в силосные добавки должны:

Быстро расти и быть способными к быстрому доминированию над местной силосной микрофлорой;

Быть гомоферментативными и, таким образом, производить молочную кислоту из доступных ВРУ;

Быть устойчивыми к кислоте, по крайней мере, при рН 4.0;

Быть способными сбраживать гексозы, пентозы и фруктаны;

Не производить декстраны и никак не воздействовать на органические кислоты;

Обладать способность к росту при температуре до 50 °С.

Некоторые штаммы Lactobacillus plantarum обладают всеми этими свойствами, и потому этот вид был выбран для включения в биологические силосные добавки. Однако, т.к. Lactobacillus spp. медленно растут, пока рН силоса не упадет до 5.0, продукт редко состоит исключительно из них. Обычно еще добавляют Pediococcus или Streptococcus spp., т.к. эти виды активны при рН 5.0 - 6.5 и, следовательно, отражая естественный ход ферментации, кокки будут доминировать на ранних стадиях силосования, а при рН ниже 5.0 они будут подавлены гомоферментативными Lactobacillus plantarum.

Дополнительные требования к микробиологическим добавкам

Любая бактериальная силосная добавка помимо селектированных штаммов молочнокислых бактерий должна содержать достаточное число жизнеспособных бактерий, чтобы они могли доминировать в местной микрофлоре при добавлении в скошенную траву не менее 105 -106 бактерий на 1 г травы. Когда биологические силосные добавки и инокуляты только стали использоваться для силосования, в них было такое количество жизнеспособных бактерий, которое успешно обеспечивало силосование. Если корма содержали достаточное количество пригодных к ферментации сахаров, они силосовались без трудностей. Но с другой стороны зеленые корма (особенно выращенные в районах умеренного климата), могут иметь низкое содержание ВРУ (менее 8-20% от СВ), и биологические добавки, содержащие только молочнокислые бактерии, не всегда обеспечивают хорошую ферментацию из-за истощения допустимых сахаров прежде, чем может быть достигнуто удовлетворительное значение рН. Кроме того, наблюдалась тенденция использовать добавки, когда содержание СВ было менее 25%, и в сочетании с тем, что содержание ВРУ было также низким, эти первые инокуляты были неспособны препятствовать вторичной клостридиальной ферментации. Когда на силос закладывали смешанный фураж - райграсс и клевер или другие бобовые, например люцерну - результаты были еще хуже. Бобовые создают лучшую буферную среду, чем другие травы, за счет высокого содержания органических кислот и белка, и поэтому в присутствии бобовых для достижения необходимого рН требуется , чтобы бактерии производили больше молочной кислоты- задача почти не достижимая, если обе культуры были влажными и с низким содержанием ферментируемых сахаров.

Стало ясно, что необходим способ повышения содержания ферментируемых сахаров в самих кормах, так как , хотя растительные ферменты способны медленно производить некоторое добавочное количество ВРУ путем гидролиза гемицеллюлоз до пентоз, есть еще большой неиспользованный источник потенциально ферментируемых сахаров внутри неразрушенных растительных клеток. Количество и тип углеводов, присутствующих в травах, зависят от вида трав, погоды в период роста и способов культивации. Большая часть углеводов в траве может быть разделена на структурные углеводы, состоящие из лигнина и целлюлозы, и запасные углеводы, которые включают ферментируемые сахара (рис.3).В травах умеренного пояса волокна обычно составляют 30-40 % от СВ, основные запасные углеводы, фруктаны и гемицеллюлозы-5-7 % от СВ, истинные ферментируемые сахара -около 10 % от СВ (это глюкоза, фруктоза, сахароза).У бобовых основной запасной углевод- крахмал.[17].

В последние несколько лет появились силосные добавки второго поколения, включающие различные смеси ферментов, способные гидролизовать многие из обычно неподдающихся запасных полисахаридов до гексоз и пентоз, которые могут быть усвоены гомоферментативными молочнокислыми бактериями. Структурные углеводы остаются нетронутыми, так как лигнин и целлюлозу трудно эффективно гидролизовать при нормальных условиях, существующих в силосе. Скорость целлюлазных реакций мала , и поскольку эти ферменты требуют для эффективного гидролиза повышенной температуры и большого времени, реально они мало полезны. Однако есть много выделенных из грибов доступных гемицеллюлаз и амило-глюкозидаз, которые могут производить быстрый гидролиз гемицеллюлозных компонентов неструктурных углеводов в травах с низким содержанием СВ при температуре и рН, существующих в силосе при обычных условиях.

Поэтому в качестве биологических консервантов кормов используют микорм, амилолитические, целлюлозолитические и комплексные цитолитические ферментные препараты. Ведущее место при этом занимают неочищенные ферментные препараты грибного происхождения и микорм. Так, добавление в закладываемый силос 2% кукурузных стержней, обогащенных белково-ферментным комплексом, способствует молочнокислому брожению, значительному повышению содержания молочной кислоты и получению силоса высокого качества, а введение 0,5-1% амилоризина Пх в смесь люцерновой травы и сырого картофеля - улучшению соотношения молочной и уксусной кислот (81,6: 18,4 и 85,9:14,1%), отсутствию масляной кислоты и получению биологически ценного комбинированного силоса. Добавление в закладываемую смесь (картофель - 50%, измельченные початки кукурузы без обверток - 25%, отава люцерны - 25%) глюкаваморина Пх в количестве 5 кг/т способствует улучшению соотношения молочной и уксусной кислот (85,2:14,8%), сокращению потерь СВ в 3 раза. [2].

В связи с включением подобных ферментов в биодобавки к силосу важно отметить, что гексозы и пентозы, получающиеся в результате их деятельности, должны соответствовать ферментативным способностям молочнокислых бактерий в силосе. Тогда как С6 -сахара используются всеми гомо- и гетероферментативными лактобациллами, пентозы могут быть использованы лишь относительно небольшим числом лактобацилл. Из травяного силоса были изолированы штаммы L.plantarum, которые могут утилизировать также и пентозы, и эти штаммы должны использоваться вместе со смесью энзимов, которые продуцируют пентозы. Продукция пентоз особенно полезна, так как оба типа утилизирующих пентозы гомо- и гетероферментативных штаммов лактобацилл выделяют уксусную и молочную кислоты без потерь СВ или энергии.

Последние из появившихся биологических добавок- те, которые содержат только ферменты. Целлюлолитические и гемицеллюлолитические ферменты, содержащиеся в этих продуктах, превращают запасные полисахариды травы в гексозы и пентозы , которые затем используются молочнокислыми бактериями, обычно присутствующими в силосе. Однако, как уже говорилось ранее, в большей части натурального силоса имеется тенденция к размножению гетероферментативных молочнокислых бактерий с последующей потерей СВ из-за образования этанола и диоксида углерода. Следовательно, превращение ВРУ в молочную кислоту с помощью чисто ферментативных добавок менее выгодно энергетически, чем если включаются гомоферментативные молочнокислые бактерии. Если ферменты, присутствующие в этих добавках, также производят пентозы, как и гексозы,С5 -сахара не могут быть утилизированы из-за того , что пентозоусваивающие молочнокислые бактерии в естественных силосах встречаются относительно редко.

Следовательно, кажется целесообразным включать гемицеллюлолитические ферменты, так и гомоферментативные молочнокислые бактерии в биологические добавки к силосу, чтобы перекрыть все возможные сочетания условий силосования. Добавки, которые содержат гомоферментативные молочнокислые бактерии, только тогда будут хорошо работать, когда имеется достаточная концентрация ВРУ для поддержания их пищевых потребностей, и , тем самым, будет достигнуто низкое значение рН и стабильная ферментация. Однако в силосах с низкой концентрацией ВРУ эти бактерии израсходуют все питательные вещества задолго до того, как будет достигнуто стабильное значение рН, и, таким образом, они не будут способны ингибировать рост клостридиальных бактерий. С другой стороны, добавки, содержащие только ферменты, рассчитаны на наличие естественных, преимущественно гетероферментативных молочнокислых бактерий, способных производить достаточное количество кислоты для понижения рН.

Хотя ВРУ может быть достаточно благодаря гидролитической активности ферментов, гетероферментативные молочнокислые бактерии менее энергетически эффективны, чем гомоферментативные, что приводит к потере питательных веществ. Если фураж при закладке на силосование также содержит мало эндогенных молочнокислых бактерий, период, необходимый для того чтобы значение рН снизилось достаточно для ингибирования других микроорганизмов, может затянуться на несколько дней - время достаточное для того, чтобы вредные микроорганизмы начали влиять на процесс ферментации. Однако, добавляя гемицеллюлолитические ферменты одновременно с гомоферментативными молочнокислыми бактериями, можно преодолеть оба этих затруднения.

Пропионовые бактерии в силосовании.

Из свежих трав пропионовые бактерии не выделялись, а из силосов выделялись, но в очень небольшом количестве, поэтому их истинное участие в силосовании в природных условиях сильно нивелировано. При внесении пропионовых бактерий (ПКБ) в силосуемые растения, прежде всего с высоким содержанием сахаров (кукуруза), получили корм более высокого качества, чем в контроле (без внесения ПКБ). Он имел низкую кислотность, был обогащен витаминами В2 и В12, пропионовой кислотой и не подвергался плесневению. [5].

В результате скармливания такого силоса в течении 3 месяцев повысилась яйценоскость птиц, выводимость цыплят, сохранность молодняка животных, в крови которых увеличивается содержание каротина и снижается содержание аммиака [4]. В одном грамме бакконцентрата “Казахсил” ПКМ содержится 109 жизнеспособных клеток, и в 1 тонну силосуемой массы рекомендуют вносить 1,5 г препарата. Особенно высокий эффект (см. таблицу 3) достигается при использовании одновременно трех бакконцентратов: ПКБ, АМС, ПМБ (пентозосбраживающие молочнокислые бактерии).

^ 4. Ферментные препараты при силосовании.

Ферментные препараты при силосовании бобовых трав.

Бобовые травы относятся к категории трудносилосуемых или вообще несилосуемых растений. Ферментные препараты не только силосуют корма, но и обогащают их легкопереваримыми питательными веществами.

Это целловиридин, пектофоетидин, целлолигнорин, глюковомарин и др. В условиях Узбекистана при силосовании зеленой люцерны применялся ферментный препарат- целловиридин - Г3Х (рН 3.9 - 4.1, температура 37 °С, активность 3000 ед./кг). Он обеспечил гидролиз целлюлозы, гемицеллюлозы, пектиновых веществ до моносахаридов (этот процесс очень важен для бобовых, т.к. в них содержится мало сахаров и много белковых веществ - а значит, они плохо силосуются).

В результате образования достаточного количества сахара появляются благоприятные условия для развития молочнокислых бактерий. Значительно уменьшается количество бесполезно теряющегося аммиачного азота, что положительно влияет на сохранение протеина (достигает 78-80%). Под влиянием ферментных препаратов в корме увеличивается содержание белков, аминокислот, которые повышают биологическую ценность корма.

Технология силосования зеленой люцерны с помощью

ферментного препарата целловиридина.

Скошенную и измельченную зеленую массу без провяливания перевозят, взвешивают на автовесах и укладывают в бетонир

www.ronl.ru


Смотрите также