|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Уравнение состояния идеального газа. Реферат уравнение менделеева клапейронаРеферат Уравнение Клапейрона МенделееваскачатьРеферат на тему:
Уравнение состояния идеального газа (иногда уравнение Клапейрона или уравнение Клапейрона — Менделеева) — формула, устанавливающая зависимость между давлением, молярным объёмом и абсолютной температурой идеального газа. Уравнение имеет вид: где
Так как , где — количество вещества, а , где — масса, — молярная масса, уравнение состояния можно записать: Эта форма записи носит имя уравнения (закона) Менделеева — Клапейрона. В случае постоянной массы газа уравнение можно записать в виде: Последнее уравнение называют объединённым газовым законом. Из него получаются законы Бойля — Мариотта, Шарля и Гей-Люссака: — закон Бойля — Мариотта. — Закон Гей-Люссака. — закон Шарля (второй закон Гей-Люссака, 1808 г.)С точки зрения химика этот закон может звучать несколько иначе: Объёмы вступающих в реакцию газов при одинаковых условиях (температуре, давлении) относятся друг к другу и к объёмам образующихся газообразных соединений как простые целые числа. Например, 1 объём водорода соединяется с 1 объёмом хлора, при этом образуются 2 объёма хлороводорода: 1 объём азота соединяется с 3 объёмами водорода с образованием 2 объёмов аммиака: — закон Бойля — Мариотта.Закон Бойля — Мариотта назван в честь ирландского физика, химика и философа Роберта Бойля (1627—1691), открывшего его в 1662 г., а также в честь французского физика Эдма Мариотта (1620—1684), который открыл этот закон независимо от Бойля в 1677 году. В некоторых случаях (в газовой динамике) уравнение состояния идеального газа удобно записывать в форме где — показатель адиабаты, — внутренняя энергия единицы массы вещества. Эмиль Амага обнаружил, что при высоких давлениях поведение газов отклоняется от закона Бойля — Мариотта. И это обстоятельство может быть прояснено на основании молекулярных представлений. С одной стороны, в сильно сжатых газах размеры самих молекул являются сравнимыми с расстояниями между молекулами. Таким образом, свободное пространство, в котором движутся молекулы, меньше, чем полный объём газа. Это обстоятельство увеличивает число ударов молекул в стенку, так как благодаря ему сокращается расстояние, которое должна пролететь молекула, чтобы достигнуть стенки. С другой стороны, в сильно сжатом и, следовательно, более плотном газе молекулы заметно притягиваются к другим молекулам гораздо большую часть времени, чем молекулы в разреженном газе. Это, наоборот, уменьшает число ударов молекул в стенку, так как при наличии притяжения к другим молекулам молекулы газа движутся по направлению к стенке с меньшей скоростью, чем при отсутствии притяжения. При не слишком больших давлениях более существенным является второе обстоятельство и произведение немного уменьшается. При очень высоких давлениях большую роль играет первое обстоятельство и произведение увеличивается. Литература
wreferat.baza-referat.ru Уравнение Клапейрона — Менделеева | Бесплатные курсовые, рефераты и дипломные работыКак уже указывалось, состояние некоторой массы газа определяется тремя термодинамическими параметрами: давлением р, объемом V и температурой Т. Между этими параметрами существует определенная связь, называемая уравнением состояния, которое в общем виде дается выражением f (p, V, T) = 0 , где каждая из переменных является функцией двух других. Французский физик и инженер Б. Клапейрон (1799—1864) вывел уравнение состояния идеального газа, объединив законы Бойля — Мариотта и Гей-Люссака. Пусть некоторая масса газа занимает объем V1, имеет давление p1 и находится при температуре Т1. Эта же масса газа в другом произвольном состоянии характеризуется параметрами p2, V2, Т2 (рис.63). Переход из состояния 1 в состояние 2 осуществляется в … виде двух процессов: 1) изотермического (изотерма 1 — 1/), 2) изохорного (изохора 1/ — 2). В соответствии с законами Бойля — Мариотта (41.1) и Гей-Люссака (41.5) запишем: (42.1) (42.2) Исключив из уравнений (42.1) и (42.2) , получим Так как состояния 1 и 2 были выбраны произвольно, то для данной массы газа . (42.3) Выражение (42.3) является уравнением Клапейрона, в котором В — газовая постоянная, различная для разных газов. Русский ученый Д. И. Менделеев (1834—1907) объединил уравнение Клапейрона с законом Авогадро, отнеся уравнение (42.3) к одному молю, использовав молярный объем Vm . Согласно закону Авогадро, при одинаковых р и Т моли всех газов занимают одинаковый молярный объем Vm, поэтому постоянная В будет одинаковой для всех газов. Эта общая для всех газов постоянная обозначается R и называется молярной газовой постоянной. Уравнению (42.4) удовлетворяет лишь идеальный газ, и оно является уравнением состояния идеального газа, называемым также уравнением Клапейрона — Менделеева. Числовое значение молярной газовой постоянной определим из формулы (42.4), полагая, что моль газа находится при нормальных условиях ( = 1,013×105 Па, = 273,15 K, = 22,41×10-3 м3/моль): R = 8,31 Дж/(моль×К). От уравнения (42.4) для моля газа можно перейти к уравнению Клапейрона — Менделеева для произвольной массы газа. Если при некоторых заданных давлении и температуре один моль газа занимает молярный объем Vm, то при тех же условиях масса m газа займет объем V = (m/M) Vm, где М — молярная масса (масса одного моля вещества). Единица молярной массы — килограмм на моль (кг/моль). Уравнение Клапейрона — Менделеева для массы m газа (42.5) где = m/M — количество вещества. Часто пользуются несколько иной формой уравнения состояния идеального газа, вводя постоянную Больцмана: = 1,38×10-23 Дж/К. Исходя из этого, уравнение состояния (42.4) запишем в виде где — концентрация молекул (число молекул в единице объема). Таким образом, из уравнения (42.6) следует, что давление идеального газа при данной температуре прямо пропорционально концентрации его молекул (или плотности газа). При одинаковых температуре и давлении все газы содержат в единице объема одинаковое число молекул. Число молекул, содержащихся в 1 м3 газа при нормальных условиях, называется числом Лошмидта (И. Лошмидт (1821—1895) — австрийский химик и физик): 2,68×1025 м-3.
refac.ru Реферат Уравнение КлапейронаскачатьРеферат на тему:
Уравнение состояния идеального газа (иногда уравнение Клапейрона или уравнение Клапейрона — Менделеева) — формула, устанавливающая зависимость между давлением, молярным объёмом и абсолютной температурой идеального газа. Уравнение имеет вид: где
Так как , где — количество вещества, а , где — масса, — молярная масса, уравнение состояния можно записать: Эта форма записи носит имя уравнения (закона) Менделеева — Клапейрона. В случае постоянной массы газа уравнение можно записать в виде: Последнее уравнение называют объединённым газовым законом. Из него получаются законы Бойля — Мариотта, Шарля и Гей-Люссака: — закон Бойля — Мариотта. — Закон Гей-Люссака. — закон Шарля (второй закон Гей-Люссака, 1808 г.)С точки зрения химика этот закон может звучать несколько иначе: Объёмы вступающих в реакцию газов при одинаковых условиях (температуре, давлении) относятся друг к другу и к объёмам образующихся газообразных соединений как простые целые числа. Например, 1 объём водорода соединяется с 1 объёмом хлора, при этом образуются 2 объёма хлороводорода: 1 объём азота соединяется с 3 объёмами водорода с образованием 2 объёмов аммиака: — закон Бойля — Мариотта.Закон Бойля — Мариотта назван в честь ирландского физика, химика и философа Роберта Бойля (1627—1691), открывшего его в 1662 г., а также в честь французского физика Эдма Мариотта (1620—1684), который открыл этот закон независимо от Бойля в 1677 году. В некоторых случаях (в газовой динамике) уравнение состояния идеального газа удобно записывать в форме где — показатель адиабаты, — внутренняя энергия единицы массы вещества. Эмиль Амага обнаружил, что при высоких давлениях поведение газов отклоняется от закона Бойля — Мариотта. И это обстоятельство может быть прояснено на основании молекулярных представлений. С одной стороны, в сильно сжатых газах размеры самих молекул являются сравнимыми с расстояниями между молекулами. Таким образом, свободное пространство, в котором движутся молекулы, меньше, чем полный объём газа. Это обстоятельство увеличивает число ударов молекул в стенку, так как благодаря ему сокращается расстояние, которое должна пролететь молекула, чтобы достигнуть стенки. С другой стороны, в сильно сжатом и, следовательно, более плотном газе молекулы заметно притягиваются к другим молекулам гораздо большую часть времени, чем молекулы в разреженном газе. Это, наоборот, уменьшает число ударов молекул в стенку, так как при наличии притяжения к другим молекулам молекулы газа движутся по направлению к стенке с меньшей скоростью, чем при отсутствии притяжения. При не слишком больших давлениях более существенным является второе обстоятельство и произведение немного уменьшается. При очень высоких давлениях большую роль играет первое обстоятельство и произведение увеличивается. Литература
wreferat.baza-referat.ru Реферат Уравнение Клапейрона МенделееваскачатьРеферат на тему:
Уравнение состояния идеального газа (иногда уравнение Клапейрона или уравнение Клапейрона — Менделеева) — формула, устанавливающая зависимость между давлением, молярным объёмом и абсолютной температурой идеального газа. Уравнение имеет вид: где
Так как , где — количество вещества, а , где — масса, — молярная масса, уравнение состояния можно записать: Эта форма записи носит имя уравнения (закона) Менделеева — Клапейрона. В случае постоянной массы газа уравнение можно записать в виде: Последнее уравнение называют объединённым газовым законом. Из него получаются законы Бойля — Мариотта, Шарля и Гей-Люссака: — закон Бойля — Мариотта. — Закон Гей-Люссака. — закон Шарля (второй закон Гей-Люссака, 1808 г.)С точки зрения химика этот закон может звучать несколько иначе: Объёмы вступающих в реакцию газов при одинаковых условиях (температуре, давлении) относятся друг к другу и к объёмам образующихся газообразных соединений как простые целые числа. Например, 1 объём водорода соединяется с 1 объёмом хлора, при этом образуются 2 объёма хлороводорода: 1 объём азота соединяется с 3 объёмами водорода с образованием 2 объёмов аммиака: — закон Бойля — Мариотта.Закон Бойля — Мариотта назван в честь ирландского физика, химика и философа Роберта Бойля (1627—1691), открывшего его в 1662 г., а также в честь французского физика Эдма Мариотта (1620—1684), который открыл этот закон независимо от Бойля в 1677 году. В некоторых случаях (в газовой динамике) уравнение состояния идеального газа удобно записывать в форме где — показатель адиабаты, — внутренняя энергия единицы массы вещества. Эмиль Амага обнаружил, что при высоких давлениях поведение газов отклоняется от закона Бойля — Мариотта. И это обстоятельство может быть прояснено на основании молекулярных представлений. С одной стороны, в сильно сжатых газах размеры самих молекул являются сравнимыми с расстояниями между молекулами. Таким образом, свободное пространство, в котором движутся молекулы, меньше, чем полный объём газа. Это обстоятельство увеличивает число ударов молекул в стенку, так как благодаря ему сокращается расстояние, которое должна пролететь молекула, чтобы достигнуть стенки. С другой стороны, в сильно сжатом и, следовательно, более плотном газе молекулы заметно притягиваются к другим молекулам гораздо большую часть времени, чем молекулы в разреженном газе. Это, наоборот, уменьшает число ударов молекул в стенку, так как при наличии притяжения к другим молекулам молекулы газа движутся по направлению к стенке с меньшей скоростью, чем при отсутствии притяжения. При не слишком больших давлениях более существенным является второе обстоятельство и произведение немного уменьшается. При очень высоких давлениях большую роль играет первое обстоятельство и произведение увеличивается. Литература
www.wreferat.baza-referat.ru Уравнение Клапейрона — МенделееваКоличество просмотров публикации Уравнение Клапейрона — Менделеева - 326 Как уже указывалось, состояние некоторой массы газа определяется тремя термодинамическими параметрами: давлением р, объёмом V и температурой Т. Между этими параметрами существует определенная связь, называемая уравнением состояния, ĸᴏᴛᴏᴩᴏᴇ в общем виде дается выражением f (p, V, T) = 0 , где каждая из переменных является функцией двух других. Французский физик и инженер Б. Клапейрон (1799—1864) вывел уравнение состояния идеального газа, объединив законы Бойля — Мариотта и Гей-Люссака. Пусть некоторая масса газа занимает объём V1, имеет давление p1 и находится при температуре Т1. Эта же масса газа в другом произвольном состоянии характеризуется параметрами p2, V2, Т2 (рис.63). Переход из состояния 1 в состояние 2 осуществляется в виде двух процессов: 1) изотермического (изотерма 1 — 1/), 2) изохорного (изохора 1/ — 2). В соответствии с законами Бойля — Мариотта (41.1) и Гей-Люссака (41.5) запишем: (42.1) (42.2) Исключив из уравнений (42.1) и (42.2) , получим Так как состояния 1 и 2 были выбраны произвольно, то для данной массы газа . (42.3) Выражение (42.3) является уравнением Клапейрона, в котором В — газовая постоянная, различная для разных газов. Русский ученый Д. И. Менделеев (1834—1907) объединил уравнение Клапейрона с законом Авогадро, отнеся уравнение (42.3) к одному молю, использовав молярный объём Vm . На основании закона Авогадро, при одинаковых р и Т моли всех газов занимают одинаковый молярный объём Vm, в связи с этим постоянная В будет одинаковой для всех газов. Эта общая для всех газов постоянная обозначается R и принято называть молярной газовой постоянной. Уравнению (42.4) удовлетворяет лишь идеальный газ, и оно является уравнением состояния идеального газа, называемым также уравнением Клапейрона — Менделеева. Числовое значение молярной газовой постоянной определим из формулы (42.4), полагая, что моль газа находится при нормальных условиях ( = 1,013×105 Па, = 273,15 K, = 22,41×10-3 м3/моль): R = 8,31 Дж/(моль×К). От уравнения (42.4) для моля газа можно перейти к уравнению Клапейрона — Менделеева для произвольной массы газа. В случае если при некоторых заданных давлении и температуре один моль газа занимает молярный объём Vm, то при тех же условиях масса m газа займет объём V = (m/M) Vm, где М — молярная масса (масса одного моля вещества). Единица молярной массы — килограмм на моль (кг/моль). Уравнение Клапейрона — Менделеева для массы m газа (42.5) где = m/M — количество вещества. Часто пользуются несколько иной формой уравнения состояния идеального газа, вводя постоянную Больцмана: = 1,38×10-23 Дж/К. Исходя из этого, уравнение состояния (42.4) запишем в виде где — концентрация молекул (число молекул в единице объёма). Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, из уравнения (42.6) следует, что давление идеального газа при данной температуре прямо пропорционально концентрации его молекул (или плотности газа). При одинаковых температуре и давлении все газы содержат в единице объёма одинаковое число молекул. Число молекул, содержащихся в 1 м3 газа при нормальных условиях, принято называть числом Лошмидта (И. Лошмидт (1821—1895) — австрийский химик и физик): 2,68×1025 м-3. referatwork.ru Уравнение состояния идеального газа Менделеева-Клапейрона с выводомУравнение состояния идеального газа показывает корреляцию его основных макропараметров, а именно: объема V, давления P, а также температуры T.
P – давление [Па] V- объем [м3] ν - количество вещества [моль] R – универсальная газовая постоянная, 8,31 [Дж/(моль · К)] T – температура [K] Данную формулу также называют уравнением Менделеева-Клапейрона для идеального газа в честь двух ученых впервые получившего (Бенуа Клапейрон (1799 – 1864)) и применившего (Дмитрий Иванович Менделеев (1834 – 1907)) его. Вывод уравнения Менделеева-КлапейронаДавление идеального газа зависит от концентрации частиц и температуры тела:
n - концентрация частиц [м-3] k – константа Больцмана k = 1,38 · 10-23 [Дж/К] Т – абсолютная температура, в кельвинах [К] Возьмем основное уравнение МКТ, выведенное через кинетическую энергию:
Подставим nkT вместо давления и выразим кинетическую энергию:
Концентрация частиц газа n равна:
N – число молекул газа в емкости объемом V [м3]. N также можно представить как произведение количества вещества ν и числа Авогадро NA:
Подставим эти величины в уравнение давления идеального газа (p=nkT):
Произведение числа Авогадро NA и константы Больцмана k дает универсальную газовую постоянную R, которая равна 8,31 [Дж/(моль · К)]. Используя это, упростим уравнение давления и получим искомое уравнение состояния идеального газа:
Учитывая, что количество вещества ν также можно определить, если известны масса вещества m и его молярная масса M:
можно привести уравнение к следующему виду:
Частными случаями уравнения являются газовые законы, описывающие изопроцессы в идеальных газах, т.е. процессы, при которых один из макропараметров (T, P, V) в закрытой изолированной системе постоянный. Всего этих частных случаев 3. Закон Бойля-Мариотта - изотермический процессПроходит при постоянной температуре: T= const. P·V = const, то есть для конкретного вещества произведение давления на объем остается постоянным: P1·V1 = P2·V2. Закон Гей-Люссака - изобарный процессПроходит при постоянном давлении: P = const. V/T = const, то есть для конкретного вещества отношение объема и температуры остается постоянным: V1/T1 = V2/T2. Закон Шарля - изобарный процессПроходит при постоянном объеме: V = const. P/T = const, то есть для конкретного вещества отношение давления и температуры остается постоянным: P1/T1 = P2/T2. Понравилась статья, расскажите о ней друзьям: Скорее всего, Вам будет интересно: people-ask.ru 1.2. Уравнение Клапейрона-МенделееваКак уже указывалось, состояние некоторой массы определяется тремя термодинамическими параметрами: давлением р , объемом V и температурой Т. Между этими параметрами существует определенная связь, называемая уравнением состояния. Французский физик Б.Клапейрон вывел уравнение состояния идеального газа, объединив законы Бойля-Мариотта и Гей-Люссака.
1) изотермического (изотерма 1-1), 2) изохорного (изохора 1-2). В соответствии с законами Бойля-Мариотта (1.1) и Гей-Люссака (1.4) запишем: (1.5) . (1.6) Исключив из уравнений (1.5) и (1.6) p1' , получим
Так как состояния 1 и 2 были выбраны произвольно, то для данной массы газа величина остается постоянной, т.е. . (1.7) Выражение (1.7) является уравнением Клапейрона, в котором В - газовая постоянная, различная для разных газов. Русский ученый Д.И.Менделеев объединил уравнение Клапейрона с законом Авогадро, отнеся уравнение (1.7) к одному молю, использовав молярный объем Vm. Согласно закону Авогадро, при одинаковых р и Т моли всех газов занимают одинаковый молярный объем Vm, поэтому постоянная В будет одинакова для всех газов. Эта общая для всех газов постоянная обозначается R и называется молярной газовой постоянной. Уравнению PVm=RT (1.8) удовлетворяет лишь идеальный газ, и оно является уравнением состояния идеального газа, называемым также уравнением Менделеева-Клапейрона. Числовое значение молярной газовой постоянной определим из формулы (1.8), полагая, что моль газа находится при нормальных условиях (р0=1,013105 Па, Т0=273,15 К, Vm=22,4110-3 м3 /моль): R=8,31 Дж/(моль К). От уравнения (1.8) для моля газа можно перейти к уравнению Клапейрона-Менделеева для произвольной массы газа. Если при некотором заданном давлении и температуре один моль газа занимает объем Vm, то при тех же условиях масса m газа займет объем , где М - молярная масса (масса одного моля вещества). Единица молярной массы - килограмм на моль (кг/моль). Уравнение Клапейрона-Менделеева для массы m газа , (1.9) где - количество вещества. Часто пользуются несколько иной формой уравнения состояния идеального газа, вводя постоянную Больцмана: . Исходя из этого, уравнение состояния (1.8) запишем в виде , где - концентрация молекул (число молекул в единице объема). Таким образом, из уравнения р=nkT (1.10) следует, что давление идеального газа при данной температуре прямо пропор-ционально концентрации его молекул (или плотности газа). При одинаковых температуре и давлении все газы содержат в единице объема одинаковое число молекул. Число молекул, содержащихся в 1 м3 газа при нормальных условиях, называется числом Лошмидта: . studfiles.net |
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|