Начальная

Windows Commander

Far
WinNavigator
Frigate
Norton Commander
WinNC
Dos Navigator
Servant Salamander
Turbo Browser

Winamp, Skins, Plugins
Необходимые Утилиты
Текстовые редакторы
Юмор

File managers and best utilites

Классическая механика. Реферат механика


Реферат Классическая механика

скачать

Реферат на тему:

План:

    Введение
  • 1 Основные понятия
  • 2 Основные законы
    • 2.1 Принцип относительности Галилея
    • 2.2 Законы Ньютона
    • 2.3 Закон сохранения импульса
    • 2.4 Закон сохранения энергии
  • 3 История
    • 3.1 Древнее время
    • 3.2 Новое время
      • 3.2.1 XVII век
      • 3.2.2 XVIII век
      • 3.2.3 XIX век
    • 3.3 Новейшее время
  • ПримечанияЛитература

Введение

Класси́ческая меха́ника — вид механики (раздела физики, изучающего законы изменения положений тел в пространстве со временем и причины, это вызывающие), основанный на законах Ньютона и принципе относительности Галилея. Поэтому её часто называют «Ньютоновской механикой».

Классическая механика подразделяется на:

  • статику (которая рассматривает равновесие тел)
  • кинематику (которая изучает геометрическое свойство движения без рассмотрения его причин)
  • динамику (которая рассматривает движение тел).

Существует несколько эквивалентных способов формального математического описания классической механики:

  • Законы Ньютона
  • Лагранжев формализм
  • Гамильтонов формализм
  • Формализм Гамильтона — Якоби

Классическая механика даёт очень точные результаты в рамках повседневного опыта. Однако её применение ограничено телами, скорости которых много меньше скорости света, а размеры значительно превышают размеры атомов и молекул. Обобщением классической механики на тела, двигающиеся с произвольной скоростью, является релятивистская механика, а на тела, размеры которых сравнимы с атомными — квантовая механика. Квантовая теория поля рассматривает квантовые релятивистские эффекты.

Тем не менее, классическая механика сохраняет своё значение, поскольку:

  1. она намного проще в понимании и использовании, чем остальные теории
  2. в обширном диапазоне она достаточно хорошо описывает реальность.

Классическую механику можно использовать для описания движения таких объектов, как волчок и бейсбольный мяч, многих астрономических объектов (таких, как планеты и галактики), и иногда даже многих микроскопических объектов, таких как молекулы.

Классическая механика является самосогласованной теорией, то есть в её рамках не существует утверждений, противоречащих друг другу. Однако, её объединение с другими классическими теориями, например классической электродинамикой и термодинамикой приводит к появлению неразрешимых противоречий. В частности, классическая электродинамика предсказывает, что скорость света постоянна для всех наблюдателей, что несовместимо с классической механикой. В начале XX века это привело к необходимости создания специальной теории относительности. При рассмотрении совместно с термодинамикой, классическая механика приводит к парадоксу Гиббса, в котором невозможно точно определить величину энтропии, и к ультрафиолетовой катастрофе, в которой абсолютно чёрное тело должно излучать бесконечное количество энергии. Попытки разрешить эти проблемы привели к развитию квантовой механики.

1. Основные понятия

Классическая механика оперирует несколькими основными понятиями и моделями. Среди них следует выделить:

  • Пространство. Считается, что движение тел происходит в пространстве, являющимся евклидовым, абсолютным (не зависит от наблюдателя), однородным (две любые точки пространства неотличимы) и изотропным (два любых направления в пространстве неотличимы).
  • Время — фундаментальное понятие, не определяемое в классической механике. Считается, что время является абсолютным, однородным и изотропным (уравнения классической механики не зависят от направления течения времени)
  • Система отсчёта состоит из тела отсчёта (некоего тела, реального или воображаемого, относительно которого рассматривается движение механической системы) и системы координат
  • Материальная точка — объект, размерами которого в задаче можно пренебречь[1]. В действительности, любое тело, которое подчиняется законам классической механики, обязательно имеет ненулевой размер. Тела ненулевого размера могут испытывать сложные движения, поскольку может меняться их внутренняя конфигурация, например, тело может вращаться или деформироваться. Тем не менее, в определённых случаях к подобным телам применимы результаты, полученные для материальных точек, если рассматривать такие тела, как совокупности большого количества взаимодействующих материальных точек. Материальные точки характеризуются несколькими параметрами:
  • Сила — физическая величина, характеризующая степень взаимодействия тел между собой. Фактически, определением силы является второй закон Ньютона.
    • Если работа силы не зависит от вида траектории, по которой двигалось тело, а определяется только его начальным и конечным положениями, то такая сила называется потенциальной. Взаимодействие, происходящее посредством потенциальных сил, может описываться потенциальной энергией. По определению, потенциальной энергией называется функция координат тела такая, что сила, действующая на тело равна градиенту от этой функции, взятой с обратным знаком:

2. Основные законы

2.1. Принцип относительности Галилея

Основным принципом, на котором базируется классическая механика является принцип относительности, сформулированный на основе эмпирических наблюдений Г. Галилеем. Согласно этому принципу существует бесконечно много систем отсчёта, в которых свободное тело покоится или движется с постоянной по модулю и направлению скоростью. Эти системы отсчёта называются инерциальными и движутся друг относительно друга равномерно и прямолинейно. Во всех инерциальных системах отсчёта свойства пространства и времени одинаковы, и все процессы в механических системах подчиняются одинаковым законам. Этот принцип можно также сформулировать как отсутствие абсолютных систем отсчёта, то есть систем отсчёта, каким-либо образом выделенных относительно других[4].

2.2. Законы Ньютона

Основой классической механики являются три закона Ньютона.

Первый закон устанавливает наличие свойства инертности у материальных тел и постулирует наличие таких систем отсчёта, в которых движение свободного тела происходит с постоянной скоростью (такие системы отсчёта называются инерциальными).

Второй закон Ньютона вводит понятие силы как меры взаимодействия тела и на основе эмпирических фактов постулирует связь между величиной силы, ускорением тела и его инертностью (характеризуемой массой). В математической формулировке второй закон Ньютона чаще всего записывается в следующем виде:

где  — результирующий вектор сил, действующих на тело;  — вектор ускорения тела; m — масса тела.

Второй закон Ньютона может быть также записан в терминах изменения импульса тела :

В такой форме закон справедлив и для тел с переменной массой, а также в релятивистской механике.

Второго закона Ньютона недостаточно для описания движения частицы. Дополнительно требуется описание силы , полученное из рассмотрения сущности физического взаимодействия, в котором участвует тело.

Третий закон Ньютона уточняет некоторые свойства введёного во втором законе понятия силы. Им постулируется наличие для каждой силы, действующей на первое тело со стороны второго, равной по величине и противоположной по направлению силы, действующей на второе тело со стороны первого. Наличие третьего закона Ньютона обеспечивает выполнение закона сохранения импульса для системы тел.

2.3. Закон сохранения импульса

Закон сохранения импульса является следствием законов Ньютона для замкнутых систем, то есть систем, на которые не действуют внешние силы. С более фундаментальной точки зрения закон сохранения импульса является следствием однородности пространства[2].

2.4. Закон сохранения энергии

Закон сохранения энергии является следствием законов Ньютона для замкнутых консервативных систем, то есть систем, в которых действует только консервативные силы. С более фундаментальной точки зрения закон сохранения энергии является следствием однородности времени[3].

3. История

3.1. Древнее время

Классическая механика зародилась в древности главным образом в связи с проблемами, которые возникали при строительстве. Первым из разделов механики, получившим развитие стала статика, основы которой были заложены в работах Архимеда в III веке до н. э. Им были сформулированы правило рычага, теорема о сложении параллельных сил, введено понятие центра тяжести, заложены основы гидростатики (сила Архимеда).

3.2. Новое время

3.2.1. XVII век

Динамика как раздел классической механики начал развиваться только в XVII веке. Его основы были заложены Галилео Галилеем, который первым правильно решил задачу о движении тела под действием заданной силы. На основе эмпирических наблюдений им были открыты закон инерции и принцип относительности. Помимо этого Галилеем внесён вклад в зарождение теории колебаний и науки о сопротивлении материалов.

Христиан Гюйгенс проводил исследования в области теории колебаний, в частности изучал движение точки по окружности, а также колебания физического маятника. В его работах были также впервые сформулированы законы упругого удара тел.

Заложение основ классической механики завершилось работами Исаака Ньютона, сформулировавшего в наиболее общей форме законы механики и открывшего закон всемирного тяготения. Им же в 1684 году был установлен закон вязкого трения в жидкостях и газах.

Так же в XVII веке в 1660 году был сформулирован закон упругих деформаций, носящий имя своего первооткрывателя Роберта Гука.

3.2.2. XVIII век

В XVIII веке зарождается и интенсивно развивается аналитическая механика. Её методы для задачи о движении материальной точки были разработаны Леонардом Эйлером, которые заложил основы динамики твёрдого тела. Эти методы основываются на принципе виртуальных перемещений и на принципе Д’Аламбера. Разработку аналитических методов завершил Лагранж, которому удалось сформулировать уравнения динамики механической системы в наиболее общем виде: с использованием обобщённых координат и импульсов. Помимо этого, Лагранж принял участие в заложении основ современной теории колебаний.

Альтернативный метод аналитической формулировки классической механики основывается на принципе наименьшего действия, который впервые был высказан Мопертюи по отношению к одной материальной точке и обобщён на случай системы материальных точек Лагранжем.

Так же в XVIII веке в работах Эйлера, Даниила Бернулли, Лагранжа и Д’Аламбера были разработаны основы теоретического описания гидродинамики идеальной жидкости.

3.2.3. XIX век

В XIX веке развитие аналитической механики происходит в работах Остроградского, Гамильтона, Якоби, Герца и др. В теории колебаний Раусом, Жуковским и Ляпуновым была разработана теория устойчивости механических систем. Кориолис разработал теорию относительного движения, доказав теорему о разложении ускорения на составляющие. Во второй половине XIX века происходит выделение кинематики в отдельный раздел механики.

Особенно значительны в XIX веке были успехи в области механики сплошной среды. Навье и Коши в общей форме сформулировали уравнения теории упругости. В работах Навье и Стокса были получены дифференциальные уравнения гидродинамики с учётом вязкости жидкости. Наряду с этим происходит углубление знаний в области гидродинамики идеальной жидкости: появляются работы Гельмгольца о вихрях, Кирхгофа, Жуковского и Рейнольдса о турбулентности, Прандтля о пограничных эффектах. Сен-Венан разработал математическую модель, описывающую пластические свойства металлов.

3.3. Новейшее время

В XX веке интерес исследователей переключается на нелинейные эффекты в области классической механики. Ляпунов и Анри Пуанкаре заложили основы теории нелинейных колебаний. Мещерский и Циолковский провели анализ динамики тел переменной массы. Из механики сплошной среды выделяется аэродинамика, основы которой разработаны Жуковским. В середине XX века активно развивается новое направление в классической механике — теория хаоса. Важными также остаются вопросы устойчивости сложных динамических систем.

Примечания

  1. ↑ 1234 Ландау, Лифшиц, с. 9
  2. ↑ 12 Ландау, Лифшиц, с. 26—28
  3. ↑ 12 Ландау, Лифшиц, с. 24—26
  4. Ландау, Лифшиц, с. 14—16

Литература

  • Б. М. Яворский, А. А. Детлаф Физика для школьников старших классов и поступающих в вузы. — М.: Академия, 2008. — 720 с. — (Высшее образование). — 34 000 экз. — ISBN 5-7695-1040-4
  • Сивухин Д. В. Общий курс физики. — Издание 5-е, стереотипное. — М.: Физматлит, 2006. — Т. I. Механика. — 560 с. — ISBN 5-9221-0715-1
  • А. Н. Матвеев Механика и теория относительности - www.alleng.ru/d/phys/phys108.htm. — 3-е изд.. — М.: ОНИКС 21 век: Мир и Образование, 2003. — 432 с. — 5000 экз. — ISBN 5-329-00742-9
  • Ч. Киттель, У. Найт, М. Рудерман Механика. Берклеевский курс физики.. — М.: Лань, 2005. — 480 с. — (Учебники для вузов). — 2000 экз. — ISBN 5-8114-0644-4
  • Ландау, Л. Д., Лифшиц, Е. М. Механика. — Издание 5-е, стереотипное. — М.: Физматлит, 2004. — 224 с. — («Теоретическая физика», том I). — ISBN 5-9221-0055-6
  • Г. Голдстейн Классическая механика. — 1975. — 413 с.
  • С. M. Тарг. Механика - www.femto.com.ua/articles/part_1/2257.html — статья из Физической энциклопедии
Разделы механики

 

wreferat.baza-referat.ru

Реферат Механика

скачать

Реферат на тему:

План:

    Введение
  • 1 Механическая система
  • 2 Разделы механики
  • 3 Различные формулировки механики
  • 4 Классическая механика
    • 4.1 Границы применимости классической механики

Введение

Меха́ника (греч. μηχανική — искусство построения машин) — область физики, изучающая движение материальных объектов и взаимодействие между ними. Важнейшими разделами механики являются классическая механика и квантовая механика.

1. Механическая система

Объекты, изучаемые механикой, называются механическими системами. Механическая система обладает определённым числом k степеней свободы и описывается с помощью обобщённых координат q1, … qk. Задача механики состоит в изучении свойств механических систем, и, в частности, в выяснении их эволюции во времени.

Наиболее важными механическими системами являются:

  • материальная точка
  • гармонический осциллятор
  • математический маятник
  • крутильный маятник
  • абсолютно твёрдое тело
  • деформируемое тело
  • абсолютно упругое тело
  • сплошная среда

2. Разделы механики

Механика сплошных сред
Сплошная среда Классическая механика
Закон сохранения массы · Закон сохранения импульса
Теория упругости
Напряжение · Тензор · Твёрдые тела · Упругость · Пластичность · Закон Гука · Реология · Вязкоупругость
Гидродинамика
Жидкость · Гидростатика · Гидродинамика · Вязкость · Ньютоновская жидкость · Неньютоновская жидкость · Поверхностное натяжение
Основные уравнения
Уравнение непрерывности · Уравнение Эйлера · Уравнения Навье — Стокса · Уравнение диффузии · Закон Гука
Известные учёные
Ньютон · ГукБернулли · Эйлер · Коши · Стокс · Навье
См. также «Физический портал»
Квантовая механика
Принцип неопределённости Гейзенберга
ВведениеМатематические основы Основа
Классическая механика · Интерференция · Бра и кет · Гамильтониан
Фундаментальные понятия
Квантовое состояние · Квантовая наблюдаемая · Волновая функция · Квантовая суперпозиция · Квантовая сцепленность · Смешанное состояние ·

Измерение · Неопределённость · Принцип Паули · Дуализм · Декогеренция · Теорема Эренфеста · Туннельный эффект

Эксперименты
Опыт Дэвиссона — Джермера · Опыт Поппера · Опыт Штерна — Герлаха · Опыт Юнга · Проверка неравенств Белла · Фотоэффект · Эффект Комптона
Формулировки
Представление Шрёдингера · Представление Гейзенберга · Представление взаимодействия · Матричная квантовая механика · Интегралы по траекториям · Диаграммы Фейнмана
Уравнения
Уравнение Шрёдингера · Уравнение Паули · Уравнение Клейна — Гордона · Уравнение Дирака · Уравнение фон Неймана · Уравнение Блоха · Уравнение Линдблада · Уравнение Гейзенберга
Интерпретации
Копенгагенская интерпретация · Теория скрытых параметров · Многомировая
Развитие теории
Квантовая теория поля · Квантовая электродинамика · Квантовая хромодинамика · Квантовая гравитация
Сложные темы
Квантовая теория поля · Квантовая гравитация · Теория всего
Известные учёные
Планк · Эйнштейн · Шрёдингер · Гейзенберг · Йордан · Бор · Паули · Дирак · Фок · Борн · де Бройль · Ландау · Фейнман · Бом · Эверетт
См. также «Физический портал»

Стандартные («школьные») разделы механики: кинематика, статика, динамика, законы сохранения. Кроме них, механика включает следующие (во многом перекрывающиеся) разделы:

  • классическая механика
  • теоретическая механика
  • нелинейная динамика
  • релятивистская механика
  • квантовая механика
  • небесная механика
  • неголономная механика
  • теория колебаний
  • теория устойчивости и катастроф
  • механика сплошных сред
  • теория упругости
  • теория пластичности
  • наследственная механика
  • статистическая механика
  • вычислительная механика
  • сопротивление материалов
  • строительная механика

Некоторые курсы механики ограничиваются только твёрдыми телами. Изучением деформируемых тел занимаются теория упругости (сопротивление материалов — её первое приближение) и теория пластичности. В случае, когда речь идёт не о жёстких телах, а о жидкостях и газах, необходимо прибегнуть к механике жидкостей и газов, основными разделами которой являются гидростатика и гидрогазодинамика. Общей теорией, изучающей движение и равновесия жидкостей, газов и деформируемых тел, является механика сплошных сред.

Основной математический аппарат классической механики: дифференциальное и интегральное исчисление, разработанное специально для этого Ньютоном и Лейбницем. К современному математическому аппарату классической механики относятся, прежде всего, теория дифференциальных уравнений, дифференциальная геометрия (симплектическая геометрия, контактная геометрия, тензорный анализ, векторные расслоения, теория дифференциальных форм), функциональный анализ и теория операторных алгебр, теория катастроф и бифуркаций. В современной классической механике используются и другие разделы математики. В классической формулировке, механика базируется на трёх законах Ньютона. Решение многих задач механики упрощается, если уравнения движения допускают возможность формулировки законов сохранения (импульса, энергии, момента импульса и других динамических переменных).

3. Различные формулировки механики

Все три закона Ньютона для широкого класса механических систем (консервативных систем, лагранжевых систем, гамильтоновых систем) связаны с различными вариационными принципами. В этой формулировке классическая механика таких систем строится на основе принципа стационарности действия: системы движутся так, чтобы обеспечить стационарность функционала действия. Такая формулировка используется, например, в лагранжевой механике и в гамильтоновой механике. Уравнениями движения в лагранжевой механике являются уравнения Эйлера — Лагранжа, а в гамильтоновой — уравнения Гамильтона.

Независимыми переменными, описывающими состояние системы в гамильтоновой механике, являются обобщённые координаты и импульсы, а в механике Лагранжа — обобщённые координаты и их производные по времени.

Если использовать функционал действия, определённый на реальной траектории системы, соединяющей некую начальную точку с произвольной конечной, то аналогом уравнений движения будут уравнения Гамильтона — Якоби.

Следует отметить, что все формулировки классической механики, основанные на голономных вариационных принципах, являются менее общими, чем формулировка механики, основанная на уравнениях движения. Не все механические системы имеют уравнения движения, представимые в виде уравнения Эйлера — Лагранжа, уравнения Гамильтона или уравнения Гамильтона — Якоби. Тем не менее, все формулировки являются как полезными с практической точки зрения, так и плодотворными с теоретической. Лагранжева формулировка оказалась особенно полезной в теории поля и релятивистской физике, а гамильтонова и Гамильтона — Якоби — в квантовой механике.

4. Классическая механика

Классическая механика основана на законах Ньютона, преобразовании скоростей Галилея и существовании инерциальных систем отсчёта.

4.1. Границы применимости классической механики

В настоящее время известно три типа ситуаций, в которых классическая механика перестаёт отражать реальность.

  • Свойства микромира не могут быть поняты в рамках классической механики. В частности, в сочетании с термодинамикой она порождает ряд противоречий (см.Классическая механика). Адекватным языком для описания свойств атомов и субатомных частиц является квантовая механика. Подчеркнём, что переход от классической к квантовой механике — это не просто замена уравнений движения, а полная перестройка всей совокупности понятий (что такое физическая величина, наблюдаемое, процесс измерения и т. д.)
  • При скоростях, близких к скорости света, классическая механика также перестаёт работать, и необходимо переходить к специальной теории относительности. Опять же, этот переход подразумевает полный пересмотр парадигмы, а не простое видоизменение уравнений движения. Если же, пренебрегая новым взглядом на реальность, попытаться всё же привести уравнение движения к виду F = ma, то придётся вводить тензор масс, компоненты которого растут с ростом скорости. Эта конструкция уже долгое время служит источником многочисленных заблуждений, поэтому пользоваться ей не рекомендуется.
  • Классическая механика становится неэффективной при рассмотрении систем с очень большим числом частиц (или же большим числом степеней свободы). В этом случае практически целесообразно переходить к статистической физике.

wreferat.baza-referat.ru

Реферат - Механика Ньютона - основа классического описания природы

Государственный Университет Управления

Институт заочного обучения

Специальность – менеджмент

КУРСОВАЯ РАБОТА

по дисциплине: КСЕ

на тему:

«Механика Ньютона – основа классического описания природы. Основная задача механики и границы ее применимости».

Выполнил

Студенческий билет №1211

Группа №УП4-1-98/2

Дата выполнения работы: 02 марта 1999 года.

Содержание.

1. Введение.__________________________________________________ 3

2. Механика Ньютона.________________________________________ 5

2.1. Законы движения Ньютона.______________________________________________ 5

2.1.1. Первый закон Ньютона.________________________________________________ 6

2.1.2. Второй закон Ньютона.________________________________________________ 7

2.1.3. Третий закон Ньютона._________________________________________________ 8

2.2. Закон всемирного тяготения.___________________________________________ 11

2.3. Основная задача механики._____________________________________________ 13

2.4. Границы применимости._______________________________________________ 15

3. Заключение.______________________________________________ 18

4. Список литературы.______________________________________ 20

Н ь ю т о н (1643-1727)

Был этот мир глубокой тьмой окутан.

Да будет свет! И вот явился Ньютон.

(Эпиграмма XVIII века.)[1]

Понятие «физика» уходит своими корнями в глубокое прошлое, в переводе с греческого оно означает «природа». Основной задачей этой науки является установление «законов» окружающего мира. Одно из основных сочинений Платона, ученика Аристотеля, называлось «Физика».

Наука тех лет имела натурфилософский характер, т.е. исходила из того, что непосредственно наблюдаемые перемещения небесных светил есть их действительные перемещения. Отсюда был сделан вывод о центральном положении Земли во Вселенной. Эта система верно отражала некоторые особенности Земли как небесного тела: то, что Земля — шар, что все тяготеет к ее центру. Таким образом, это учение было собственно о Земле. На уровне своего времени оно отвечало основным требованиям, которые предъявлялись к научному знанию. Во-первых, оно с единой точки зрения объясняло наблюдаемые перемещения небесных тел и, во-вторых, давало возможность вычислять их будущие положения. В то же время теоретические построения древних греков носили чисто умозрительный характер – они были совершенно оторваны от эксперимента.

Такая система просуществовала вплоть до XVI столетия, до появления учения Коперника, получившее свое дальнейшее обоснование в экспериментальной физике Галилея, завершившееся созданием ньютоновской механики, объединившей едиными законами движения перемещение небесных тел и земных объектов. Оно явилось величайшей революцией в естествознании, положившей начало развитию науки в ее современном понимании.

Галилео Галилей считал, что мир бесконечен, а материя вечна. Во всех процессах ничто не уничтожается и не порождается – происходит лишь изменение взаимного расположения тел или их частей. Материя состоит из абсолютно неделимых атомов, ее движение – единственное, универсальное механическое перемещение. Небесные светила подобны Земле и подчиняются единым законам механики.

Для Ньютона было важно однозначно выяснить с помощью экспериментов и наблюдений свойства изучаемого объекта и строить теорию на основе индукции без использования гипотез. Он исходил из того, что в физике как экспериментальной науке нет места для гипотез. Признавая не безупречность индуктивного метода, он считал его среди прочих наиболее предпочтительным.

И в эпоху античности, и в XVII веке признавалась важность изучения движения небесных светил. Но если для древних греков данная проблема имела больше философское значение, то для XVII века, преобладающим был аспект практический. Развитие мореплавания обусловливало необходимость выработки более точных астрономических таблиц для целей навигации по сравнению с теми, которые требовались для астрологических целей. Основной задачей было определение долготы, столь нужной астрономам и мореплавателям. Для решения этой важной практической проблемы и создавались первые государственные обсерватории (в 1672 г. Парижская, в 1675 г. Гринвичская). По сути своей это была задача определения абсолютного времени, дававшего при сравнении с местным временем интервал времени, который и можно было перевести в долготу. Определить это время можно было с помощью наблюдения движений Луны среди звезд, а также с помощью точных часов, поставленных по абсолютному времени и находящихся у наблюдателя. Для первого случая были необходимы очень точные таблицы для предсказания положения небесных светил, а для второго – абсолютно точные и надежные часовые механизмы. Работы в этих направлениях не были успешными. Найти решение удалось лишь Ньютону, который, благодаря открытию закона всемирного тяготения и трех основных законов механики, а также дифференциального и интегрального исчисления, предал механике характер цельной научной теории.

Вершиной научного творчества И. Ньютона является его бессмертный труд “Математические начала натуральной философии”, впервые опубликованный в 1687 году. В нем он обобщил результаты, полученные его предшественниками и свои собственные исследования и создал впервые единую стройную систему земной и небесной механики, которая легла в основу всей классической физики. Здесь Ньютон дал определения исходных понятий – количества материи, эквивалентного массе, плотности; количества движения, эквивалентного импульсу, и различных видов силы. Формулируя понятие количества материи, он исходил из представления о том, что атомы состоят из некой единой первичной материи; плотность понимал как степень заполнения единицы объема тела первичной материей. В этой работе изложено учение Ньютона о всемирном тяготении, на основе которого он разработал теорию движения планет, спутников и комет, образующих солнечную систему. Опираясь на этот закон, он объяснил явление приливов и сжатие Юпитера.

Концепция Ньютона явилась основой для многих технических достижений в течение длительного времени. На ее фундаменте сформировались многие методы научных исследований в различных областях естествознания.

Если кинематика изучает движение геометрического тела, который не обладает никакими свойствами материального тела, кроме свойства занимать определенное место в пространстве и изменять это положение с течением времени, то динамика изучает движение реальных тел под действием приложенных к ним сил. Установленные Ньютоном три закона механики лежат в основе динамики и составляют основной раздел классической механики.

Непосредственно их можно применять к простейшему случаю движения, когда движущееся тело рассматривается как материальная точка, т.е. когда размер и форма тела не учитывается и когда движение тела рассматривается как движение точки, обладающей массой. В кипятке для описания движения точки можно выбрать любую систему координат, относительно которой определяются характеризующие это движение величины. За тело отсчета может быть принято любое тело, движущееся относительно других тел. В динамике имеют дело с инерциальными системами координат, характеризуемыми тем, что относительно них свободная материальная точка движется с постоянной скоростью.

2.1.1. Первый закон Ньютона.

Закон инерции впервые был установлен Галилеем для случая горизонтального движения: когда тело движется по горизонтальной плоскости, то его движение является равномерным и продолжалось бы постоянно, если бы плоскость простиралась в пространстве без конца. Ньютон дал более общую формулировку закону инерции как первому закону движения: всякое тело пребывает в состоянии покоя или равномерного прямолинейного движения до тех пор, пока действующие на него силы не изменят это состояние.

В жизни этот закон описывает случай когда, если перестать тянуть или толкать движущееся тело, то оно останавливается, а не продолжает двигаться с постоянной скоростью. Так автомобиль с выключенным двигателем останавливается. По закону Ньютона на катящийся по инерции автомобиль должна действовать тормозящая сила, которой на практике является сопротивление воздуха и трение автомобильных шин о поверхность шоссе. Они-то и сообщают автомобилю отрицательное ускорение до тех пор, пока он не остановиться.

Недостатком данной формулировки закона является то, что в ней не содержалось указания на необходимость отнесения движения к инерциальной системе координат. Дело в том, что Ньютон не пользовался понятием инерциальной системы координат, – вместо этого он вводил понятие абсолютного пространства – однородного и неподвижного, – с которым и связывал некую абсолютную систему координат, относительно которой и определялась скорость тела. Когда бессодержательность абсолютного пространства как абсолютной системы отсчета была выявлена, закон инерции стал формулироваться иначе: относительно инерциальной системы координат свободное тело сохраняет состояние покоя или равномерного прямолинейного движения.

2.1.2. Второй закон Ньютона.

В формулировке второго закона Ньютон ввел понятия:

— ускорение – векторная величина (Ньютон называл его количеством движения и учитывал при формулировании правила параллелограмма скоростей), определяющая быстроту изменения скорости движения тела.

— сила – векторная величина, понимаемая как мера механического воздействия на тело со стороны других тел или полей, в результате воздействия которой тело приобретает ускорение или изменяет свою форму и размеры.

— масса тела – физическая величина – одна из основных характеристик материи, определяющая ее инерционные и гравитационные свойства.

Второй закон механики гласит: сила, действующая на тело, равна произведению массы тела на сообщаемое этой силой ускорение. Такова его современная формулировка. Ньютон сформулировал его иначе: изменение количества движения пропорционально приложенной действующей силе и происходит по направлению той прямой, по которой эта сила действует, и обратно пропорционально массе тела или математически:

На опыте этот закон легко подтвердить, если к концу пружины прикрепить тележку и отпустить пружину, то за время t тележка пройдет путь s1 (рис. 1), затем к той же самой пружине прикрепить две тележки, т.е. увеличить массу тела в два раза, и отпустить пружину, то за то же время t они пройдут путь s2, в два раза меньший, чем s1 .

Этот закон также справедлив только в инерциальных системах отсчета. Первый закон с математической точки зрения представляет собой частный случай второго закона, потому что, если равнодействующие силы равны нулю, то и ускорение также равно нулю. Однако первый закон Ньютона рассматривается как самостоятельный закон, т.к. именно он утверждает о существовании инерциальных систем.

2.1.3. Третий закон Ньютона.

Третий закон Ньютона гласит: действию всегда есть равное и противоположное противодействие, иначе тела действуют друг на друга с силами, направленными вдоль одной прямой, равными по модулю и противоположными по направлению или математически:

Ньютон распространил действие этого закона на случай и столкновения тел, и на случай их взаимного притяжения. Простейшей демонстрацией этого закона может служить тело, расположенное на горизонтальной плоскости, на которое действуют сила тяжести Fт и сила реакции опоры Fо, лежащие на одной прямой, равные по значению и противоположно направленные, равенство этих сил позволяет телу находиться в состоянии покоя (рис. 2).

Из трех фундаментальных законов движения Ньютона вытекают следствия, одно из которых – сложение количества движения по правилу параллелограмма. Ускорение тела зависит от величин, характеризующих действие других тел на данное тело, а также от величин, определяющих особенности этого тела. Механическое действие на тело со стороны других тел, которое изменяет скорость движения данного тела, называют силой. Она может иметь разную природу (сила тяжести, сила упругости и т.д.). Изменение скорости движения тела зависит не от природы сил, а от их величины. Поскольку скорость и сила – векторы, то действие нескольких сил складывается по правилу параллелограмма. Свойство тела, от которого зависит приобретаемое им ускорение, есть инерция, измеряемая массой. В классической механике, имеющей дело со скоростями, значительно меньшими скорости света, масса является характеристикой самого тела, не зависящей от того, движется оно или нет. Масса тела в классической механике не зависит и от взаимодействия тела с другими телами. Это свойство массы побудило Ньютона принять массу за меру материи и считать, что величина ее определяет количество материи в теле. Таким образом, масса стала пониматься как количество материи.

Количество материи доступно измерению, будучи пропорциональным весу тела. Вес – это сила, с которой тело действует на опору, препятствующую его свободному падению. Числено вес равен произведению массы тела на ускорение силы тяжести. Вследствие сжатия Земли и ее суточного вращения вес тела изменяется с широтой и на экваторе на 0,5% меньше, чем на полюсах. Поскольку масса и вес строго пропорциональны, оказалось возможным практическое измерение массы или количества материи. Понимание того, что вес является переменным воздействием на тело, побудило Ньютона установить и внутреннюю характеристику тела – инерцию, которую он рассматривал как присущую телу способность сохранять равномерное прямолинейное движение, пропорциональную массе. Массу как меру инерции можно измерять с помощью весов, как это делал Ньютон.

В состоянии невесомости массу можно измерять по инерции. Измерение по инерции является общим способом измерения массы. Но инерция и вес являются различными физическими понятиями. Их пропорциональность друг другу весьма удобна в практическом отношении – для измерения массы с помощью весов. Таким образом, установление понятий силы и массы, а также способа их измерения позволило Ньютону сформулировать второй закон механики.

Первый и второй законы механики относятся соответственно к движению материальной точки или одного тела. При этом учитывается лишь действие других тел на данное тело. Однако всякое действие есть взаимодействие. Поскольку в механике действие характеризуется силой, то если одно тело действует на другое с определенной силой, то второе действует на первое с той же силой, что и фиксирует третий закон механики. В формулировке Ньютона третий закон механики справедлив лишь для случая непосредственного взаимодействия сил или при мгновенной передаче действия одного тела на другое. В случае передачи действия за конечный промежуток времени данный закон применяется тогда, когда временем передачи действия можно пренебречь.

Считается, что стержнем динамики Ньютона является понятие силы, а основная задача динамики заключается в установлении закона из данного движения и, наоборот, в определении закона движения тел по данной силе. Из законов Кеплера Ньютон вывел существование силы, направленной к Солнцу, которая была обратно пропорциональна квадрату расстояния планет от Солнца. Обобщив идеи, высказанные Кеплером, Гюйгенсом, Декартом, Борелли, Гуком, Ньютон придал им точную форму математического закона, в соответствии с которым утверждалось существование в природе силы всемирного тяготения, обусловливающей притяжение тел. Сила тяготения прямо пропорциональна произведению масс тяготеющих тел и обратно пропорционально квадрату расстояния между ними или математически:

, где G – гравитационная постоянная.

Данный закон описывает взаимодействие любых тел – важно лишь то, чтобы расстояние между телами было достаточно велико по сравнению с их размерами, это позволяет принимать тела за материальные точки. В ньютоновской теории тяготения принимается, что сила тяготения передается от одного тяготеющего тела к другому мгновенно, при чем без посредства каких бы то ни было сред. Закон всемирного тяготения вызвал продолжительные и яростные дискуссии. Это не было случайно, поскольку этот закон имел важное философское значение. Суть заключалась в том, что до Ньютона целью создания физических теорий было выявление и представление механизма физических явлений во всех его деталях. В тех случаях, когда это сделать не удавалось, выдвигался аргумент о так называемых «скрытых качествах», которые не поддаются детальной интерпретации. Бэкон и Декарт ссылки на «скрытые качества» объявили ненаучными. Декарт считал, что понять суть явления природы можно лишь в том случае, если его наглядно представить себе. Так, явления тяготения он представлял с помощью эфирных вихрей. В условиях широкого распространения подобных представлений закон всемирного тяготения Ньютона, несмотря на то, что демонстрировал соответствие произведенных на его основе астрономическим наблюдениям с небывалой ранее точностью, подвергался сомнению на том основании, что взаимное притяжение тел очень напоминало перипатетическое учение о «скрытых качествах». И хотя Ньютон установил факт его существования на основе математического анализа и экспериментальных данных, математический анализ еще не вошел прочно в сознание исследователей в качестве достаточно надежного метода. Но стремление ограничивать физическое исследование фактами, не претендующими на абсолютную истину, позволило Ньютону завершить формирование физики как самостоятельной науки и отделить ее от натурфилософии с ее претензиями на абсолютное знание.

В законе всемирного тяготения наука получила образец закона природы как абсолютно точного, повсюду применимого правила, без исключений, с точно определенными следствиями. Этот закон был включен Кантом в его философию, где природа представлялась царством необходимости в противоположность морали — царству свободы.

Физическая концепция Ньютона была своеобразным венцом физики XVII века. Статический подход к Вселенной был заменен динамическим. Эксперементально-математический метод исследования, позволив решить многие проблемы физики XVII века, оказался пригодным для решения физических проблем еще в течение двух веков.

Результатом развития классической механики явилось создание единой механической картины мира, в рамках которой все качественное многообразие мира объяснялось различиями в движении тел, подчиняющемся законам ньютоновской механики. Согласно механической картине мира, если физическое явление мира можно было объяснить на основе законов механики, то такое объяснение признавалось научным. Механика Ньютона, таким образом, стала основой механической картины мира, господствовавшей вплоть до научной революции на рубеже XIX и XX столетий.

Механика Ньютона, в отличие от предшествующих механических концепций, давало возможность решать задачу о любой стадии движения, как предшествующей, так и последующей, и в любой точке пространства при известных фактах, обусловливающих это движение, а также обратную задачу определения величины и направления действия этих факторов в любой точке при известных основных элементах движения. Благодаря этому механика Ньютона могла использоваться в качестве метода количественного анализа механического движения. Любые физические явления могли изучаться как, независимо от вызывающих их факторов. Например, можно вычислить скорость спутника Земли: Для простоты найдем скорость спутника с орбитой, равной радиусу Земли (рис. 3). С достаточной точностью можно приравнять ускорение спутника ускорению свободного падения на поверхности Земли:

.

С другой стороны центростремительное ускорение спутника.

Поэтому,

откуда . – Эта скорость называется первой космической скоростью. Тело любой массы, которому будет сообщена такая скорость, станет спутником Земли.

Законы ньютоновской механики связывали силу не с движением, а с изменением движения. Это позволило отказаться от традиционных представлений о том, что для поддержания движения нужна сила, и отвести трению, которое делало силу необходимой в действующих механизмах для поддержания движения, второстепенную роль. Установив динамический взгляд на мир вместо традиционного статического, Ньютон свою динамику сделал основой теоретической физики. Хотя Ньютон проявлял осторожность в механических истолкованиях природных явлений, все равно считал желательным выведение из начал механики остальных явлений природы. Дальнейшее развитие физики стало осуществляться в направлении дальнейшей разработки аппарата механики применительно к решению конкретных задач, по мере решения которых механическая картина мира укреплялась.

Вследствие развития физики в начале XX века определилась область применения классической механики: ее законы выполняются для движений, скорость которых много меньше скорости света. Было установлено, что с ростом скорости масса тела возрастает. Вообще законы классической механики Ньютона справедливы для случая инерциальных систем отсчета. В случае неинерциальных систем отсчета ситуация иная. При ускоренном движении неинерциальной системы координат относительно инерциальной системы первый закон Ньютона (закон инерции) в этой системе не имеет места, – свободные тела в ней будут с течением времени менять свою скорость движения.

Первое несоответствие в классической механике было выявлено, тогда когда был открыт микромир. В классической механике перемещения в пространстве и определение скорости изучались вне зависимости от того, каким образом эти перемещения реализовывались. Применительно к явлениям микромира подобная ситуация, как выявилось, невозможна принципиально. Здесь пространственно-временная локализация, лежащая в основе кинематики, возможна лишь для некоторых частных случаев, которые зависят от конкретных динамических условий движения. В макро масштабах использование кинематики вполне допустимо. Для микро масштабов, где главная роль принадлежит квантам, кинематика, изучающая движение вне зависимости от динамических условий, теряет смысл.

Для масштабов микромира и второй закон Ньютона оказался несостоятельным – он справедлив лишь для явлений большого масштаба. Выявилось, что попытки измерить какую-либо величину, характеризующую изучаемую систему, влечет за собой неконтролируемое изменение других величин, характеризующих данную систему: если предпринимается попытка установить положение в пространстве и времени, то это приводит к неконтролируемому изменению соответствующей сопряженной величины, которая определяет динамическое состояние системы. Так, невозможно точно измерить в одно и то же время две взаимно сопряженные величины. Чем точнее определяется значение одной величины, характеризующей систему, тем более неопределенным оказывается значение сопряженной ей величины. Это обстоятельство повлекло за собой существенное изменение взглядов на понимание природы вещей.

Несоответствие в классической механики исходило из того, что будущее в известном смысле полностью содержится в настоящем – этим и определяется возможность точного предвидения поведения системы в любой будущий момент времени. Такая возможность предлагает одновременное определение взаимно сопряженных величин. В области микромира это оказалось невозможным, что и вносит существенные изменения в понимание возможностей предвидения и взаимосвязи явлений природы: раз значение величин, характеризующих состояние системы в определенный момент времени, можно установить лишь с долей неопределенности, то исключается возможность точного предсказания значений этих величин в последующие моменты времени, т.е. можно лишь предсказать вероятность получения тех или иных величин.

Другое открытие пошатнувшее устои классической механики, было создания теории поля. Классическая механика пыталась свести все явления природы к силам, действующим между частицами вещества, – на этом основывалась концепция электрических жидкостей. В рамках этой концепции реальными были лишь субстанция и ее изменения – здесь важнейшим признавалось описание действия двух электрических зарядов с помощью относящихся к ним понятий. Описание же поля между этими зарядами, а не самих зарядов было весьма существенным для понимания действия зарядов. Вот простой пример нарушения третьего закона Ньютона в таких условиях: если заряженная частица удаляется от проводника, по которому течет ток, и соответственно вокруг него создано магнитное поле, то результирующая сила, действующая со стороны заряженной частицы на проводник с током в точности равна нулю.

Созданной новой реальности места в механической картине мира не было. В результате физика стала иметь дело с двумя реальностями – веществом и полем. Если классическая физика строилась на понятии вещества, то с выявлением новой реальности физическую картину мира приходилось пересматривать. Попытки объяснить электромагнитные явления с помощью эфира оказалось несостоятельными. Эфир экспериментально обнаружить не удалось. Это привело к созданию теории относительности, заставившей пересмотреть представления о пространстве и времени, характерные для классической физики. Таким образом, две концепции – теория квантов и теория относительности – стали фундаментом для новых физических концепций.

Вклад, сделанный Ньютоном в развитие естествознания, заключался в том, что он дал математический метод обращения физических законов в количественно измеримые результаты, которые можно было подтвердить наблюдениями, и, наоборот, выводить физические законы на основе таких наблюдений. Как он сам писал в предисловии к «Началам», "… сочинение это нами предлагается как математические основания физики. Вся трудность физики… состоит в том, чтобы по явлениям движения распознать силы природы, а затем по этим силам объяснить остальные явления… Было бы желательно вывести из начал механики и остальные явления природы, рассуждая подобным же образом, ибо многое заставляет меня предполагать, что все эти явления обусловливаются некоторыми силами, с которыми частицы тел вследствие причин, пока неизвестных, или стремятся друг к другу и сцепляются в правильные фигуры, или же взаимно отталкиваются и удаляются друг от друга. Так как эти силы неизвестны, до сих пор попытки философов объяснить явления природы и оставались бесплодными. Я надеюсь, однако, что или этому способу рассуждения, или другому, более правильному, изложенные здесь основания доставят некоторое освещение".[2]

Ньютоновский метод стал главным инструментом познания природы. Законы классической механики и методы математического анализа демонстрировали свою эффективность. Физический эксперимент, опираясь на измерительную технику, обеспечивал небывалую ранее точность. Физическое знание все в большей мере становилось основой промышленной технологии и техники, стимулировало развитие других естественных наук. В физике изолированные ранее свет, электричество, магнетизм и теплота оказались объединенными в электромагнитную теорию. И хотя природа тяготения оставалась не выясненной, его действия можно было рассчитать. Утвердилась концепция механистического детерминизма Лапласа, исходившая из возможности однозначно определить поведение системы в любой момент времени, если известные исходные условия. Структура механики как науки казалась прочной, надежной и почти полностью завершенной – т.е. не укладывающиеся в существующие классические каноны феномены, с которыми приходилось сталкиваться, казались вполне объяснимыми в будущем более изощренными умами с позиций классической механики. Складывалось впечатление, что знание физики близко к своему полному завершению – столь мощную силу демонстрировал фундамент классической физики.

1. Карпенков С.Х. Основные концепции естествознания. М.: ЮНИТИ, 1998.

2. Ньютон и философские проблемы физики XX века. Коллектив авторов под ред. М.Д. Ахундова, С.В. Илларионова. М.: Наука, 1991.

3. Гурский И.П. Элементарная физика. М.: Наука, 1984.

4. Большая Советская Энциклопедия в 30 томах. Под ред. ПрохороваА.М., 3 издание, М., Советская энциклопедия, 1970.

5. ДорфманЯ.Г. Всемирная история физики с начала XIX до середины XX вв. М., 1979.

[1] С.Маршак, соч. в 4-х томах, Москва, Гослитиздат, 1959, т. 3, с. 601

[2] Цит. по: Бернал Дж. Наука в истории общества. М.,1956.С.265

www.ronl.ru

Реферат: Механика

Курсовая работа

Вопросы для программированного

контроля по курсуМеханика

РУКОВОДИТЕЛЬ:

Сабирова Файруза Мусовна Выполнил:

студент 426 группы

Ерёменко А.С.

КИНЕМАТИКА

1)Перемещением называют:

а) линию в пространстве, описываемую точкой при движении

б)вектор, соединяющий начальное и конечное положение точки

в) длину пути

г) вектор, соединяющий начало координат и конечную точку пути

2 Средней скоростью перемещения называют :

а)б)в)г)

3 Тангенциальное ускорение имеет обозначение:

а)б)в)г)

4 Нормальное ускорение имеет обозначение:

а)б)в)г)

5 Полное ускорение при равнопеременном криволинейном движении имеет обозначение:

а)б)в)г)

6 Как взаимно расположены касательная к траектории и ускорение :

тангенциальное нормальное

а) перпендикулярно под острым углом

б) перпендикулярно сонаправленно

в) сонаправленно перпендикулярно

г) под острым углом перпендикулярно

ДИНАМИКА ПОСТУПАТЕЛЬНОГО ДВИЖЕНИЯ7 Первый закон Ньютона имеет следующую формулировку:

а) существуют такие СО ,в которых свободные тела движутся прямолинейно и равномерно

б) сила есть произведение массы на ускорение

в) силы в природе возникают симметричными парами

г) в НИСО свободные тела движутся прямолинейно и равномерно

8 Второй закон Ньютона имеет следующую формулировку:

а) существуют такие СО ,в которых свободные тела движутся прямолинейно и равномерно

б) сила есть произведение массы на ускорение

в) силы в природе возникают симметричными парами

г) ускорение ,с которым движется тело, под воздействием силы, прямо пропорционально ускорению и обратно пропорционально массе

9 Третий закон Ньютона имеет следующую формулировку:

а) существуют такие СО ,в которых свободные тела движутся прямолинейно и равномерно

б) сила есть произведение массы на ускорение

в) силы в природе возникают симметричными парами

г) два тела взаимодействуют друг на друга с силами, равными по модулю, но противоположными по направлению

10 Основной закон динамики поступательного движения выражается следующим выражением:

а)б)в)г)

11 Первый закон Кеплера имеет следующую трактовку:

а) тела в центральных полях движутся по траекториям конического сечения : парабола, гипербола, эллипс б) радиус-вектор движущегося в центральных поле тела за равные промежутки ометает равные площади в) для двух движущихся в центральных поле тел отношение квадратов времён обращения равно отношению кубов больших полуосей их орбит

12 Второй закон Ньютона имеет следующую трактовку:

а) тела в центральных полях движутся по траекториям конического сечения : парабола, гипербола, эллипс б) радиус-вектор движущегося в центральных поле тела за равные промежутки ометает равные площади в) для двух движущихся в центральных поле тел отношение квадратов времён обращения равно отношению кубов больших полуосей их орбит

13 Третий закон Ньютона имеет следующую трактовку:

а) тела в центральных полях движутся по траекториям конического сечения : парабола, гипербола, эллипс б) радиус-вектор движущегося в центральных поле тела за равные промежутки ометает равные площади в) для двух движущихся в центральных поле тел отношение квадратов времён обращения равно отношению кубов больших полуосей их орбит

14 После упругого центрального удара тел 1(м,в ) и 2( м1, ) скорости их будут равными:

а)

б)

в)

г)

15 После неупругого центрального удара тел 1(м1,в ) и 2( м1, ) скорости их будут равными:

а)

б)

в)

г)

16 Сила, вызывающая упругую деформацию, зависит от смещения:

а)прямо пропорционально

б) обратно пропорционально

в) экспоненциально

г) пропорционально квадрату смещения

ДИНАМИКАВРАЩАТЕЛЬНОГОДВИЖЕНИЯ

17 Момент инерции сплошного однородного цилиндра равен:

а)б)В)Г)

18 Момент инерции полого однородного цилиндра равен:

а)б)В)Г)

19 Момент инерции однородного шара равен:

б) обратно пропорционально

в) экспоненциально

г) пропорционально квадрату смещения

а)б)В)Г)

20 Момент инерции однородного стержня длины R относительно относително центра масс равен:

а)б)В)Г)

21 Основной закон динамики вращательного движения выражается уравнением:

а)б)в)г)

ДИНАМИКА ЖИДКОСТЕЙ И ГАЗОВ

22 Уравнение Бернулли имеет следующий вид :

а)

б)

в)

г)

23 Формула Стокса имеет следующий вид

а)

б)

в)

г)

24 Формула Пуазейля имеет следующий вид :

а)

б)

в)

г)

25 Число Рейнольдса равно :

а)

б)

в)

г)

superbotanik.net


Смотрите также

 

..:::Новинки:::..

Windows Commander 5.11 Свежая версия.

Новая версия
IrfanView 3.75 (рус)

Обновление текстового редактора TextEd, уже 1.75a

System mechanic 3.7f
Новая версия

Обновление плагинов для WC, смотрим :-)

Весь Winamp
Посетите новый сайт.

WinRaR 3.00
Релиз уже здесь

PowerDesk 4.0 free
Просто - напросто сильный upgrade проводника.

..:::Счетчики:::..

 

     

 

 

.