Начальная

Windows Commander

Far
WinNavigator
Frigate
Norton Commander
WinNC
Dos Navigator
Servant Salamander
Turbo Browser

Winamp, Skins, Plugins
Необходимые Утилиты
Текстовые редакторы
Юмор

File managers and best utilites

Реферат: Дыхание:. Реферат дыхание


Реферат на тему: «Дыхание»

Министерство образования Российской Федерации

Пензенский Государственный Университет

Медицинский Институт

Кафедра Терапии

 

 

 

 

 

 

 

 

Реферат

на тему:

«Дыхание»

 

 

 

 

 

 

 

 

 

 

 

 

 

Пенза, 2008

 

План

 

Введение

1. Внешнее дыхание

2. Эластичность

3. Потоки в легких

Литература

 

Введение

 

Дыхание - процесс доставки кислорода (О2) к клеткам организма и использование его в биологическом окислении органических веществ с образованием воды и углекислого газа (СО2), который выводится в атмосферу. Эффективный газообмен возможен при интеграции и координации функций различных органов, которые в совокупности образуют систему дыхания. Последняя включает следующие подсистемы: "внешнее дыхание" (газообмен в легких, через кожу и слизистые оболочки), транспорт газов кровью (дыхательную функцию крови и сердечнососудистой системы) и тканевое дыхание (процесс биологического окисления в клетке, сопровождающийся поглощением тканями О2 и выделением СО2).

Газообмен в легких (или «легочное дыхание») обеспечивается легкими с дыхательными путями и капиллярным кровотоком, грудной клеткой с дыхательными мышцами, аппаратом управления. С помощью легочного дыхания осуществляется обмен О2 и СО2 между атмосферным воздухом и артериальной кровью. Газообменная функция легких - одна из важнейших. Ее реализация определяется тремя основными механизмами: вентиляцией, кровотоком и диффузией газов.

Транспорт газов (перенос О2 из легочных капилляров в капилляры тканей и СО2 в обратном направлении) зависит в основном от работы "насоса" сердечнососудистой системы и дыхательной функции крови. Соответственно, нарушения его можно разделить на гемодинамические (при сердечной и сосудистой недостаточности) и гемические (уменьшение количества циркулирующего гемоглобина, ухудшение связывания и отдачи дыхательных газов, нарушение растворимости их в крови).

Тканевое дыхание (процесс энергетического обмена) практически во всех клетках человеческого организма происходит аэробным путем, т. е. с использованием кислорода. Окислительное фосфорилирование потребляет более 90 % поступающего в организм кислорода. Оно происходит с участием ферментов (цитохромов) и направлено на синтез АТФ. Основным источником энергии клетки является глюкоза, для метаболизации которой и нужен О2:

 

С6Н12O6 + 6О2 → 6СО2 + 6Н2О + Энергия

 

При окислении одной молекулы глюкозы образуется 38 молекул АТФ. Энергия, аккумулированная в АТФ, используется для работы ионных насосов, мышечного сокращения, синтеза белка или клеточной секреции. Организм не способен создавать запасы АТФ и должен его постоянно синтезировать, а это требует непрерывной доставки метаболических субстратов и кислорода к клеткам.

При анаэробном метаболизме, идущем без участия кислорода, образуется всего 2 молекулы АТФ (при превращении пирувата в молочную кислоту). Более того, развивающийся лактат-ацидоз резко ограничивает активность ферментов, участвующих в превращениях. Когда доставка кислорода к тканям улучшается, лактат вновь преобразуется в пируват, и аэробный метаболизм возобновляется.

 

1. Внешнее дыхание

 

Структура воздухоносных путей (ВП) и паренхимы легких. Воздухоносные (или дыхательные) пути соответственно их положению в теле подразделяют на верхние и нижние. К верхним ВП относят полость носа, носовую часть глотки, ротовую часть глотки, к нижним ВП – гортань, трахею, бронхи, включая внутрилегочные разветвления бронхов. Увлажнение и фильтрация вдыхаемого воздуха осуществляется в верхних дыхательных путях (в носу, во рту и в глотке).

Нижние воздухоносные пути представляют собой систему дихотомически ветвящихся трубок (каждый бронх разветвляется на два меньших бронха). Хотя диаметр каждой дочерней ветви меньше диаметра родительской трубки, от которой она берет начало, общая площадь поперечного сечения каждой последующей генерации ВП возрастает из-за значительного увеличения общего числа ветвей.

В легком человека насчитывается в среднем 23 генерации ВП. Первые 16 называют проводящими, так как они обеспечивают поступление газа к зонам легких, где происходит газообмен. Поскольку в проводящих воздухоносных путях нет альвеол и, следовательно, они не могут участвовать в газообмене, в совокупности образуемую ими емкость называют анатомическим мертвым пространством. Объем его составляет около 150 мл. Проводящие ВП включают бронхи, бронхиолы и терминальные бронхиолы. Последние семь генераций ВП состоят из дыхательных бронхиол, альвеолярных ходов и альвеолярных мешочков. Каждое из этих образований дает начало альвеолам. Дыхательная бронхиола первого порядка (Z=17) и все дистально расположенные от нее газообменивающие ВП образуют легочный ацинус.

Вдыхаемый воздух продвигается примерно до конечных бронхиол по механизму объемного потока, однако из-за возрастания общей площади поперечного сечения ВП, вследствие многократных ветвлений, поступательное перемещение газов становится очень незначительным. Главным механизмом вентиляции в дыхательной зоне является диффузия газов.

Стенки трахеи и бронхов состоят из трех основных слоев: внутренней слизистой оболочки; гладкомышечного слоя, отделенного от слизистой соединительнотканной подслизистой прослойкой; и внешнего соединительнотканного слоя, содержащего в больших бронхах и трахеи хрящ.

Бронхиальный эпителий является псевдослоистым, состоящим из высоких и низких базальных клеток, каждая из которых прикреплена к базальной мембране. При каждом делении элементов трахеобронхиального дерева характер эпителия их слизистой оболочки и подлежащих структур постепенно меняется. Эпителий переходит от реснитчатого столбчатого к кубическому и затем к плоскому альвеолярному. Газообмен может осуществляться только через плоский эпителий, который появляется в дыхательных бронхиолах (бронхи 17-19-го порядка). Эпителиальные клетки ВП несут на своей апикальной поверхности реснички, которые являются важными элементами мукоцилиарной системы. Реснички столбчатого и кубического эпителия синхронно колеблются в направлении носоглотки, продвигая защитный слой слизи, секретируемой бокаловидными клетками, расположенными между реснитчатыми клетками эпителия.

Гладкая мускулатура ВП, собранная в непрерывные пучки внутри соединительнотканной подслизистой прослойки, простирается от главных бронхов до дыхательных бронхиол. Мышечные пучки проникают также в газообменные зоны, располагаясь в стенках у входа в альвеолы.

Стенки дыхательных путей постепенно теряют хрящевую основу (в бронхиолах) и гладкую мускулатуру. Утрата хрящевой основы приводит к тому, что с уменьшением диаметра проходимость дыхательных путей становится зависимой от радиального растяжения, обусловленного эластическими структурами окружающих тканей. Вследствие этого диаметр мелких дыхательных путей определяется общим объемом легких.

Из общей емкости легких (5 л) большая часть (около 3 л) приходится на дыхательную (газобменную) зону. Она включает около 300 млн. альвеол. Поверхность альвеолярно-капиллярного барьера составляет 50-100 м2, а толщина - 0,5 мкм. Эпителий, выстилающий внутреннюю поверхность альвеолы, состоит из двух типов клеток: плоских выстилающих (I тип) и секреторных (II тип) Клетки первого типа занимают до 95% площади альвеолярной поверхности. Клетки второго типа продуцируют и секретируют сурфактант, состоящий из протеинов и фосфолипидов. Он распределяется по альвеолярной поверхности и снижает поверхностное натяжение. Эндотелий капилляров также состоит из слоя плоских выстилающих клеток, располагающихся на эндотелиальной базальной мембране. В зоне альвеол базальные мембраны эпителия и эндотелия спаяны друг с другом, что создает сверхтонкий барьер для обмена газов. В отличие от тесного контакта соседних эпителиальных клеток, образующих непроницаемый барьер, соединения между эндотелиальными клетками довольно слабые. Это позволяет воде и растворенным в ней веществам перемещаться между плазмой и интерстициальным пространством.

Механика дыхания - область физиологии дыхания, которая рассматривает силы, ответственные за движения потока воздуха внутрь грудной клетки и обратно.

Для того чтобы обеспечить поглощение кислорода и выделение двуокиси углерода, свежий воздух должен постоянно доставляться к альвеолам с помощью дыхательного насоса. Понимание механизма действия дыхательного насоса, обеспечивающего поток газа в легкие, требует рассмотрения функции дыхательных мышц, свойств ВП, грудной клетки и легких, которые определяют импеданс системы дыхания, а также причин неравномерности вентиляции и других факторов.

При спонтанном дыхании активность дыхательных (инспираторных) мышц необходима для преодоления импеданса дыхательной системы (эластичность × сопротивление). Важнейшей мышцей вдоха является диафрагма. К ней подходят нервы от 3-го, 4-го и 5-го шейных сегментов спинного мозга. При сокращении диафрагмы органы брюшной полости смещаются вниз и вперед, вследствие чего вертикальные размеры грудной полости возрастают. Кроме того, при этом поднимаются и расходятся ребра, приводя к увеличению ее поперечника. При спокойном дыхании диафрагма смещается примерно на 1 см, а при форсированном амплитуда ее движений может достигать 10 см. Поскольку диафрагма имеет куполообразную форму, особое значение приобретает отношение между давлением, напряжением и радиусом ее кривизны. В соответствие с законом Лапласа оно описывается следующим уравнением:

 

Р=2Т/r,

 

где: Р- давление создаваемое мышцей,

Т - напряжение мышцы,

r - радиус кривизны.

По мере уплощения диафрагмы радиус ее кривизны увеличивается и генерируемое давление снижается. Это явление, например, вместе с укорочением мышцы обусловливает снижение силы диафрагмы у пациентов с хронической обструктивной болезнью легких.

При спокойном дыхании диафрагма является единственной активной инспираторной мышцей. При необходимости увеличения вентиляции, например при физической нагрузке или болезненных состояниях, подобных бронхиальной астме, активизируются и другие мышцы. К ним относятся наружные межреберные, лестничные и грудино-ключично-сосцевидные. Две последние группы мышц называются дополнительными дыхательными мышцами.

В отличие от вдоха, выдох в нормальных условиях в состоянии покоя происходит пассивно. Эластическая отдача легких и грудной стенки обеспечивает возникновение градиента давления, достаточного для экспираторного потока. При обструкции ВП выдох становится активным процессом, требующим работы экспираторных мышц, включая внутренние межреберные и брюшные (наружную и внутреннюю косою, поперечную брюшную и прямую брюшную).

Сокращение инспираторных мышц создает градиент давления между атмосферой и альвеолами, в результате чего возникает поток воздуха. Этот градиент преодолевает: (1) эластическую отдачу дыхательной системы, (2) фрикционное сопротивление ВП воздушному потоку и (3) инерционное сопротивление трахеобронхиального воздушного столба, легких и грудной стенки. Взаимоотношения этих трех элементов выражаются уравнением движения легких:

 

P = (E •V) + (R• V ’)+(I +V’’),

 

где: P - движущее давление;

E - эластичность;

V - изменение объема легких;

R - сопротивление;

V ’- объемная скорость потока воздуха;

I - инерционность;

V’’ - скорость изменения объемной скорости воздушного потока (ускорение).

Таким образом, механические свойства системы дыхания, от которых зависит эластическое и неэластическое сопротивление воздушному потоку, определяют необходимое движущее давление.

В норме основная работа дыхательных мышц затрачивается на преодоление эластического сопротивления легких и грудной клетки. Причем, отношение между давлением и изменением объема легких не остается постоянным во всем диапазоне легочных объемов. При их малой величине это отношение может быть выражено как:

 

Р =   ,

 

где: Е - эластичность;

 - изменение объема легких.

 

2. Эластичность

 

Эластичность - есть мера упругости легочной ткани. Чем больше эластичность ткани, тем больше давления требуется приложить для достижения заданного изменения объема легких. Эластическая тяга легких возникает благодаря высокому содержанию в них эластиновых и коллагенновых волокон. Эластин и коллаген находятся в альвеолярных стенках вокруг бронхов и кровеносных сосудов. Возможно, упругость легких обусловлена не столько удлинением этих волокон, сколько изменением их геометрического расположения, как это наблюдается при растяжении нейлоновой ткани: хотя нити сами по себе не изменяют длины, ткань легко растягивается благодаря их особому переплетению.

Определенная доля эластической тяги легких обусловлена также действием сил поверхностного натяжения на границе "газ-жидкость" в альвеолах. Поверхностное натяжение - это сила, возникающая на поверхности, разделяющей жидкость и газ. Она обусловлена тем, что межмолекулярное сцепление внутри жидкости гораздо сильнее, чем силы сцепления между молекулами жидкой и газовой фазы. В результате этого площадь поверхности жидкой фазы становится минимальной. Силы поверхностного натяжения в легких взаимодействуют с естественной эластической отдачей, обеспечивая спадение альвеол.

Специальное вещество (сурфактант), состоящее из фосфолипидов и протеинов и выстилающее альвеолярную поверхность, снижает внутриальвеолярное поверхностное натяжение. Сурфактант секретируется альвеолярными эпителиальными клетками II типа и выполняет несколько важных физиологических функций. Во-первых, понижая поверхностное натяжение, он увеличивает растяжимость легкого (уменьшает упругость). Тем самым уменьшается совершаемая при вдохе работа. Во-вторых, обеспечивается стабильность альвеол. Давление, создаваемое силами поверхностного натяжения в пузырьке (альвеоле), обратно пропорционально его радиусу, поэтому при одинаковом поверхностном натяжении в мелких пузырьках (альвеолах), оно больше, чем в крупных. Эти силы также подчиняются закону Лапласа, упомянутому ранее (1), с некоторой модификацией: «Т» – поверхностное натяжение, а «r» - радиус пузырька.

В отсутствие природного детергента мелкие альвеолы стремились бы перекачать свой воздух в более крупные. Поскольку при изменении диаметра меняется слойная структура сурфактанта, его эффект в отношении снижения сил поверхностного натяжения проявляется тем больше, чем меньше диаметр альвеол. Последнее обстоятельство сглаживает эффект меньшего радиуса кривизны и увеличенного давления. Тем самым предотвращается спадение альвеол и появление ателектазов на выдохе (диаметр альвеол минимален), а также перемещение воздуха из меньших альвеол внутрь больших альвеол (за счет выравнивания сил поверхностного натяжения в альвеолах разного диаметра).

Респираторный дистресс-синдром новорожденных характеризуется дефицитом нормального сурфактанта. У больных детей легкие становятся ригидными, неподатливыми, склонными к коллапсу. Дефицит сурфактанта имеется и при респираторном дистресс-синдроме взрослых, однако, его роль в развитии этого варианта дыхательной недостаточности менее очевидна.

Давление, создаваемое эластической паренхимой легкого называется давлением эластической отдачи (Pel). В качестве меры эластической тяги обычно используют растяжимость (С – от англ. complianсе), которая находится в реципрокном отношении к эластичности:

 

С = 1/Е = ΔV/ΔP

 

Растяжимость (изменение объема на единицу давления) отражается наклоном кривой «объем-давление». Подобные различия между прямым и обратным процессом называются гистерезисом. Кроме того, видно, что кривые не исходят из начала координат. Это указывает на то, что легкое содержит небольшой, но измеримый объем газа даже тогда, когда на него не действует растягивающее давление.

Растяжимость обычно измеряется в статических условиях (Сstat), т. е. в состоянии равновесия или, другими словами, в отсутствии движения газа в дыхательных путях. Динамическая растяжимость (Cdyn), которую измеряют на фоне ритмичного дыхания, зависит еще и от сопротивления дыхательных путей. На практике Сdyn измеряется по наклону линии, проведенной между точками начала вдоха и выдоха на кривой «динамическое давление-объем».

В физиологических условиях статическая растяжимость легких человека при небольшом давлении (5-10 см Н2О) достигает примерно 200 мл/см вод. ст. При более высоких давлениях (объемах) она, однако, уменьшается. Этому соответствует более пологий участок кривой «давление—объем». Растяжимость легких несколько снижается при альвеолярном отеке и коллапсе, при повышении давления в легочных венах и переполнении легких кровью, при увеличении объема внесосудистой жидкости, наличии воспаления или фиброзе. При эмфиземе легких растяжимость возрастает, как считают, за счет утраты или перестройки эластических составляющих легочной ткани.

Поскольку изменения давления и объема нелинейны, для оценки упругих свойств легочной ткани часто используют «нормализованную» растяжимость, отнесенную к единице объема легких - удельную растяжимость. Она рассчитывается делением статической растяжимости на объем легких, при котором она измеряется. В клинике статическую растяжимость легких измеряют, получая кривую давление-объем при изменениях объема на 500 мл от уровня функциональной остаточной емкости легких (ФОЕ).

Растяжимость грудной клетки в норме составляет около 200 мл/см вод. ст. Эластическая тяга грудной клетки объясняется наличием структурных компонентов, противодействующих деформации, возможно, мышечным тонусом грудной стенки. Вследствие наличия эластических свойств, грудная клетка в состоянии покоя имеет тенденцию к расширению, а легкие - к спадению, т.е. на уровне функциональной остаточной емкости легких (ФОЕ) эластическая отдача легкого, направленная внутрь, уравновешивается эластической отдачей грудной стенки, направленной наружу. По мере того как объем грудной полости от уровня ФОЕ расширяется до уровня ее максимального объема (общая емкость легких, ОЕЛ), направленная наружу отдача грудной стенки снижается. При уровне 60% жизненной емкости легких, измеряемой на вдохе (максимальное количество воздуха, которое можно вдохнуть, начиная с уровня остаточного объема легких), отдача грудной клетки падает до нуля. При дальнейшем расширении грудной клетки отдача ее стенки направляется внутрь. Большое количество клинических нарушений, включая выраженное ожирение, обширный плевральный фиброз и кифоскалиоз, характеризуются изменениями растяжимости грудной клетки.

В клинической практике обычно оценивается общая растяжимость легких и грудной клетки (Собщая). В норме она составляет около 0,1 см/вод. ст. и описывается следующим уравнением:

 

1/Собщая= 1/С грудной клетки + 1/ Слегких

 

 

Именно этот показатель отражает давление, которое должно быть создано дыхательными мышцами (или аппаратом ИВЛ) в системе для преодоления статической эластической отдачи легких и грудной стенки при различных объемах легкого. В горизонтальном положении растяжимость грудной клетки уменьшается из-за давления органов брюшной полости на диафрагму.

При движении смеси газов по дыхательным путям возникает дополнительное сопротивление, называемое обычно неэластическим. Неэластическое сопротивление обусловлено в основном (70%) аэродинамическим (трение воздушной струи о стенки дыхательных путей), и в меньшей степени вязкостным (или деформационным, связанным с перемещением тканей при движении легких и грудной клетки) компонентами. Доля вязкостного сопротивления может заметно возрастать при значительном увеличении дыхательного объема. Наконец, незначительную долю составляет инерционное сопротивление, оказываемое массой легочных тканей и газа при возникающих ускорениях и замедлениях скорости дыхания. Весьма малое в обычных условиях, это сопротивление может возрастать при частом дыхании или даже стать главным при ИВЛ с высокой частотой дыхательных циклов.

 

3. Потоки в легких

 

В зависимости от ряда обстоятельств поток газа через систему трубок может быть трех типов: ламинарным, турбулентным или переходным. Ламинарный поток характеризуется слоями движущегося газа, параллельными как друг другу, так и стенкам трубок. Скорость движения газа наиболее высока в центре потока, к периферии она постепенно снижается. Для ламинарного потока существует следующая зависимость (прямая аналогия с законом Ома):

 

V= P/R,

 

где: V - объемная скорость кровотока;

P - движущее давление;

R - сопротивление.

Ламинарный поток преобладает при низких скоростях газа и описывается законом Пуазейля:

 

V=Pr 4/8l ,

 

где: V - объемная скорость потока,

P - давление,

r - радиус трубки,

 - вязкость газа,

l - длина трубки.

Преобразуя уравнение, получаем:

 

P = 8l V/r4 = kV .

 

Таким образом, движущее давление пропорционально скорости потока. Уменьшение радиуса трубки наполовину снижает скорость потока в 16 раз, а увеличение же в два раза длины трубки приводит лишь к двукратному повышению сопротивления. Важно также, что на взаимоотношение между давлением и скоростью потока влияет вязкость, а не плотность флюида. Одна из особенностей полностью развитого ламинарного потока заключается в том, что частицы газа в центре трубки передвигаются со скоростью, в два раза превышающей среднюю. Распределение скоростей движения частиц по диаметру трубки называется профилем скорости.

Турбулентный поток - более хаотичное движение газа вдоль трубки, преобладает при высоких скоростях объемного потока. Кроме того, движущее давление для турбулентного потока пропорционально квадрату его скорости (P=kV2). Cопротивление потоку прямо пропорционально плотности газа и обратно пропорционально радиусу пятой степени:

 

R~ d/r5,

 

где: d - плотность газа,

r - радиус трубки.

Из этого следует, что зависимость турбулентного газового потока от радиуса дыхательных путей очень велика. Кроме того, вязкость при таком режиме не играет существенной роли, зато увеличение плотности газа приводит к увеличению сопротивления. Профиль скоростей с максимумом в области оси трубки для турбулентного потока не характерен. Турбулентное движение возникает при высоких потоках, в местах острых изгибов и разветвлений, а также при резком изменении диаметра дыхательных путей.

Переходный поток характеризуется завихрениями, возникающими в месте бифуркации трубки. В условиях дихотомического разветвления трахеобронхиального дерева переходный поток является важным паттерном потока в легких.

Будет ли поток через систему трубок турбулентным или ламинарным, можно предсказать, рассчитав число Рейнольдса (Re) - безразмерное число, связывающее среднюю скорость потока, плотность и вязкость газа, а также радиус трубки:

 

Re = 2rVd/,

 

где: V- средняя скорость потока

d - плотность газа.

Когда Re превышает 20000, поток - турбулентный; когда Re менее 2000, поток - ламинарный. Из уравнения видно, что турбулентный поток легче возникает при высоких скоростях и в широких трубках. Кроме того, газы с низкой плотностью (например, гелий) имеют меньшую тенденцию к турбулентности. Ингаляция гелиево-кислородной смеси снижает риск формирования турбулентного потока, а также уменьшает сопротивление дыхательных путей при его возникновении. В норме общее сопротивление дыхательных путей составляет 0,5-2 см вод. ст./л/с.

Величина сопротивления ВП зависит от нескольких факторов: диаметра и длины бронхов и бронхиол; плотности и вязкости вдыхаемой смеси газов; скорости и характера тока газов и др. Кроме того, одним из важных факторов является объем легких. Чем он больше, тем большее растягивающее действие оказывает паренхима на ВП. В результате этого площадь поперечного сечения каждого из ВП увеличивается. Большая площадь поперечного сечения приводит к снижению сопротивления.

При патологии легких несколько механизмов может вызывать увеличение сопротивления. Так, например, при бронхиальной астме сужение ВП и, соответственно, повышение сопротивления может быть связано с сокращением гладкой мускулатуры бронхов, отеком бронхиальной слизистой или же с обструкцией секретом. Причиной сужения ВП и повышения сопротивления потоку могут быть также новообразование, гнойная мокрота при инфекционных заболеваниях. При эмфиземе утрата тканями эластичности и снижение растягивающего действия легочной паренхимы на ВП уменьшает их просвет и увеличивает сопротивление.

При больших объемах скорость экспираторного потока также напрямую зависит от плеврального давления, которое определяется давлением эластической отдачи грудной стенки и мышечным усилием. Движение газа из легких обеспечивается за счет наличия градиента давлений в альвеолах и на входе в ВП (атмосферное давление). Альвеолярное давление (Рalv) складывается из давления эластической отдачи легких (Pel) и плеврального давления (Ppl):

 

Palv= Pel + Ppl.

 

В свою очередь давление эластической отдачи легких зависит от эластических свойств легочной ткани и степени растяжения легких (т.е. от объема легких). Соответственно, чем больше легочный объем, тем больше скорость экспираторного потока.

Однако при достижении определенной величины плеврального давления в условиях небольших легочных объемов (когда давление эластической отдачи легких становится небольшим), скорость потока остается постоянной, несмотря на дальнейшее возрастание мышечного усилия.

Это ограничение скорости на выдохе связано с компрессией дистальных ВП внутригрудным давлением (Рpl). Рalv превышает Рpl только на величину давления эластической отдачи легких, независимо от величины Рpl. По мере движения газа по дистальным ВП, давление снижается за счет фрикционного сопротивления о стенки ВП. Может наступить момент, когда давление внутри и снаружи воздухопроводящего сегмента выравнивается (трансмуральное давление равно нулю - точка равного давления). За точкой равного давления трансмуральное давление становится отрицательным, и может произойти сужение этого сегмента ВП и снижение скорости экспираторного потока. Однако полного спадения ВП не происходит, так как общая окклюзия вновь повышает интрамуральное давление до уровня альвеолярного в точке перед окклюзированным сегментом. В результате этого сегмент вновь расширяется, поскольку Рalv на выдохе всегда превосходит Рpl, а трансмуральное давление снова становится положительным (т.е. давление внутри трубки больше, чем снаружи). Суммарный результат взаимодействия этих сил представляет собой резистор Старлинга, систему, в которой коллабируемый сегмент, критически сужаясь, лимитирует поток.

Ограничение потока воздуха за счет этого механизма еще более усиливается под действием нескольких факторов. Например, повышение сопротивления периферических воздухоносных путей увеличивает перепад давления в этих путях, и, следовательно, снижает внутрибронхиальное давление на выдохе. Другой фактор – низкое давление эластической отдачи при небольших исходных легочных объемах. При этом уменьшается движущаяся разница между внутриальвеолярным и внутриплевральным давлением. Кроме того, эта разница уменьшается при увеличении растяжимости легких (т.е. снижении давления эластической отдачи), например, при эмфиземе. С другой стороны, при малых объемах точка равного давления находится ближе к альвеолам, т.е в легко коллабируемых ВП, лишенных хрящевого каркаса. У здоровых людей механизмы ограничения потока воздуха действуют лишь при форсированном выдохе, а у больных с тяжелыми поражениями легких - даже при спокойном дыхании. Преждевременное окончание выдоха приводит к тому, что ФОЕ начинает превышать нормальные значения ("ауто-ПДКВ").

Для осуществления дыхательных движений необходимо преодолеть эластическое сопротивление грудной клетки и легких, неэластическое сопротивление дыхательных путей газовому потоку и сопротивление тканей. При этом дыхательные мышцы выполняют определенную работу. Около 50 % затрачиваемой на это энергии накапливается в упругих структурах легких. Во время выдоха она высвобождается, что позволяет преодолеть сопротивление дыхательных путей. Увеличение сопротивления вдоху или выдоху компенсируется дополнительным усилием мышц вдоха.

Наиболее распространенными способами измерения работы дыхания являются общая плетизмография или пневмотахография с измерением объемной скорости дыхания и внутрипищеводного давления. Работу обычно выражают в килограммометрах и рассчитывают ее либо на один дыхательный цикл, либо на 1 мин, либо на 1 л вентиляции. В нормальных условиях энергетическая «стоимость» спокойного дыхания у взрослого человека составляет в среднем 0,5 кГм/мин.

Работу нередко оценивают косвенно по количеству кислорода, поглощаемого дыхательными мышцами. У здорового взрослого человека оно составляет весьма малую долю (3 - 4%) от общего потребления кислорода. Однако при значительном повышении сопротивления кислородная «стоимость» дыхания резко возрастает и становится критической.

Из множества комбинаций частоты и дыхательного объема организм «выбирает» ту, при которой необходимый объем альвеолярной вентиляции обеспечивается минимальной работой дыхания. Для взрослого человека без патологических изменений растяжимости и аэродинамического сопротивления работа дыхания будет минимальной при дыхательном объеме около 0,5 л и частоте дыхания 14 - 16 в мин.

При повышенном аэродинамическом сопротивлении дыхательных путей наблюдается характерное снижение частоты спонтанного дыхания и увеличение дыхательного объема. Обратное явление происходит при увеличении эластического сопротивления, когда частота дыхания заметно увеличивается и может стать в 2 - 3 раза больше нормальной при уменьшении дыхательного объема.

 

Литература

 

1. «Неотложная медицинская помощь», под ред. Дж. Э. Тинтиналли, Рл. Кроума, Э. Руиза, Перевод с английского д-ра мед. наук В.И.Кандрора, д. м. н. М.В.Неверовой, д-ра мед. наук А.В.Сучкова, к. м. н. А.В.Низового, Ю.Л.Амченкова; под ред. Д.м.н. В.Т. Ивашкина, Д.М.Н. П.Г. Брюсова; Москва «Медицина» 2001

2. Интенсивная терапия. Реанимация. Первая помощь: Учебное пособие / Под ред. В.Д. Малышева. — М.: Медицина.— 2000.— 464 с.: ил.— Учеб. лит. Для слушателей системы последипломного образования.— ISBN 5-225-04560-Х

znakka4estva.ru

Реферат: Дыхание

Мерзляков Олег

Качественное освоение базовой техники невозможно без правильного дыхания, так как ее тренировка требует от Вас то плавного и слитного, то мощного и концентрированного, с напряжением всех мышц, исполнения отдельных приемов, связок и комплексов рукопашного боя. Тем более, хорошо контролируемое дыхание необходимо в спарринге и в бою, где требуется резко, иногда спонтанно менять ритм, мощь движений, направление атаки, местоположение, а также длительное время и с большой интенсивностью вести поединок.

Во всех этих ситуациях дыхание играет не только чисто физиологическую функцию, обеспечивая мышцы необходимым количеством кислорода при конкретной нагрузке и выводя "шлаки" из организма, но и функцию психорегулирования. Правильное дыхание позволит Вам быстро войти в боевой ритм либо, наоборот, успокоиться при чрезмерном напряжении, подготовить организм к предстоящим нагрузкам или отдохнуть после работы, расслабиться, восстановить спокойное течение мыслей, снять напряжение, раздражение или волнение, преодолеть состояние апатии и разбитости.

Для того чтобы научиться правильно дышать, контролировать свое дыхание и с его помощью управлять своей энергией, надо выполнять общие и специальные дыхательные упражнения. Они подробно описаны в китайской дыхательной гимнастике Ци-гуни в упражнениях Пранаямы из индийской Хатха-йоги.

В данном пособии мы раскроем только некоторые их аспекты.

Разнообразные дыхательные упражнения в рукопашном бое направлены, в основном, на овладение контролем дыхания, чтобы потом координировать его с различными движениями (ударами, блоками, передвижениями) .

Общие дыхательные упражнения оказывают на организм очень разнообразное воздействие:

укрепляют и оздоравливают органы дыхания, улучшают деятельность сердечно-сосудистой системы, нормализуют кровяное давление. Положительно влияют они и на нервную систему: улучшают настроение, снимают чувство тревоги и апатии, стабилизируют психоэмоциональное состояние в целом. Кроме этого, общие дыхательные упражнения являются подготовительными при обучении концентрации и медитации, а также правильному дыханию в бою. Основой общих упражнений является полное дыхание, которое состоит из нижнего, среднего и верхнего видов дыхания.

Выполнять общие дыхательные упражнения надо в хорошо проветренном помещении, а лучше при открытом окне или на воздухе. Исходным положением для их выполнения являются позы лежа, сидя и стоя.

Нужно постараться полностью расслабиться. Сначала мысленно проследите постепенное расслабление ног. Затем, почувствовав в ногах тяжесть и легкое тепло, перейдите к расслаблению рук, мышц живота и туловища и, закрыв глаза, расслабьте мышцы лица. Приняв одну из вышеуказанных поз, вдыхая и выдыхая через нос, выполните дыхательные упражнения:

1. Техника нижнего дыхания. Сделайте полный выдох и затем медленный вдох, стараясь как можно больше выпятить вперед живот. При этом грудь и плечи должны оставаться на месте. Медленно выдыхая, втяните живот. Разучивать это упражнение можно перед зеркалом, т.к. в этом случае легче контролировать свои движения и вовремя устранять ошибки. Все движения нужно стараться делать слитно, без напряжения. Спина обязательно должна быть прямой.

2. Техника среднего дыхания. Овладев нижним дыханием, начинайте осваивать среднее, которое принято называть грудным. При выполнении упражнения старайтесь удерживать живот и грудь на месте, расширяя грудную клетку в стороны.

При выдохе главное - не сжимать грудную клетку. Ребра должны медленно опускаться за счет расслабления межреберных мышц. На первых порах правильность движений можно контролировать, положив одну руку на живот, а другую на грудь, определяя тем самым их неподвижность. Освоив грудное дыхание, от этих вспомогательных приемов можно отказаться.

3. Техника верхнего дыхания. В разнообразных жизненных ситуациях верхнее дыхание является непроизвольной реакцией на стрессовые ситуации, к которым можно отнести и некоторые моменты рукопашного боя.

Приняв одну из удобных поз, сделайте полный выдох, затем выполните вдох таким образом, чтобы поднималась только грудная клетка, а живот и ребра оставались неподвижными. В конце вдоха, когда наполнятся воздухом верхушки легких, поднимите плечи. Опуская плечи и грудную клетку, выполните выдох.

Каждый вид (нижнее, среднее и верхнее) дыхания нужно выполнять, постепенно увеличивая время с 1 минуты до 5 минут в течение 3 недель.

Очень важно научиться выполнять все виды дыхания ритмично и плавно. Для этого можно про себя вести счет:

на 4 счета - вдох, следующие 2 счета - пауза, затем 4 счета выдох и 2 счета - пауза.

4. Техника полного дыхания. Только в совершенстве овладев нижним, средним и верхним дыханием, приступайте к разучиванию полного дыхания.

Приняв любую позу, выполните полный выдох. Затем через нос сделайте вдох, заполняя сначала нижние доли легких, затем средние и в конце - верхние, соответственно технике нижнего, среднего и верхнего дыхания.

Завершив вдох и задержав дыхание, нужно сделать паузу, после которой начните выдох.

Можно применять два вида выдоха. При первом воздух выдыхается вначале из нижних долей легких, затем из средних и в конце - из верхних. Во втором случае - в обратном порядке.

Первые два месяца при полном дыхании используйте первый способ выдоха, затем практикуйте поочередно оба способа.

После вдоха и выдоха нужно сделать паузы, длительность которых равна, точно также равна длительность вдоха и выдоха. Однако их продолжительность вдвое больше, чем длительность пауз.

Для соблюдения ритмичности выполнения упражнения про себя ведите счет всех фаз, постепенно увеличивая их длительность, но сохраняя пропорцию относительно друг друга.

Продолжительность выполнения упражнения сначала должна составлять не более 2 минут, в дальнейшем надо прибавлять по 1 минуте каждую неделю, доведя ее до 10 минут.

Учитесь сосредотачивать внимание на каждом акте дыхания. На вдохе представляйте, как энергия устремляется в легкие. На паузе, после вдоха, она как бы распространяется по всему организму к каждой клеточке, к каждому органу. На выдохе представляйте, как из организма с потоком воздуха выходят все "шлаки" и недуги.

Целесообразно общими дыхательными упражнениями заниматься утром или поздно вечером.

Специальные дыхательные упражнения в рукопашном бою выполняются с целью повышения готовности к разнообразным ситуациям, возникающим в ходе поединка, или снижения негативных последствий таких ситуаций. Для этого используются специальные силовые дыхательные системы, по японской терминологии ибуки (вариант жесткого ци-гуна).

Ибуки имеет две фазы: вдох, который выполняется через нос и быстро (0,5-1,0 с), и выдох, который выполняется через рот и медленно (около 5 с) с большим напряжением мышц всего тела. Выдох в ибуки мощный, аналогичный крику, но не переходящий в него и представляющий собой нечто среднее между сильным шипением и хрипом. Вначале его можно выполнять тихо, постепенно усиливая мощь (голосовые связки в этом звуке не участвуют).

Ибуки легче выполнять стоя, ноги на ширине плеч. На быстрый вдох свободные руки поднимите к подмышкам ладонями вверх. С медленным выдохом руки опустите вдоль тела ладонями вниз (рис.2).

Другая специальная система дыхания носит название ногарэ. Она отличается от ибуки бесшумным выдохом (тоже через рот) в сочетании с полным расслаблением тела (ногарэ-1}. Выполнение ногарэ несколько раз подряд позволяет быстро насытить организм кислородом и восстановить психическое равновесие.

Заслуживает внимания также стабилизирующий вариант дыхания (ногарэ-2), смысл которого состоит, в частности, в контролируемом замедлении пульса после физической или психической нагрузки. После быстрого вдоха через нос дыхание задерживается на 4-5 секунд, во время которого руки с напряжением выпрямляют пальцами вперед, а затем на бесшумном выдохе следует фаза общего расслабления - руки как бы беспомощно разводят в стороны и опускают к бедрам.

После хорошего освоения отдельных упражнений их можно выполнять в различных комбинациях - вначале в чисто учебных целях, а затем сообразуясь с возможностями их применения в различных жизненных ситуациях.

Выбор упражнений зависит от индивидуальных особенностей человека, уровня его подготовленности и опыта. Вместе с тем в некоторых стандартных ситуациях можно придерживаться следующих рекомендаций.

1. При необходимости постепенного перехода от состояния покоя к готовности к действию необходимо последовательно выполнить 3-5 дыханий ногарэ-1 и 2-3 дыхания ибуки.

2. При необходимости мгновенной мобилизации к действиям или для быстрого снятия высокого психоэмоционального напряжения необходимо выполнить 3-5 дыхательных циклов ибуки. Этот же прием помогает восстановить дыхание при его сбое после удара, например, в солнечное сплетение (так называемая самореанимация для выхода из полуобморочного состояния, состояния опьянения, при необходимости включения резервных возможностей организма в стрессовых ситуациях и т.д.).

3. Для ускорения восстановления работоспособности после тяжелого поединка или изнурительной тренировки надо последовательно выполнить целый комплекс различных дыхательных упражнений:

3-5 циклов дыханий ногарэ-1 для усиленной вентиляции легких, восстановления нормального дыхательного ритма и снятия одышки;

3-5 дыхательных циклов ногарэ-2 для стабилизации дыхания, при этом необходимо в паузах перед выдохом направить внимание на замедление пульса;

3-5 возбуждающих и мобилизующих дыхательных циклов ибуки.

Все перечисленные силовые дыхательные комплексы можно совмещать с отработкой тех или иных приемов. Например, при медленном, расслабленном их выполнении можно сделать от 1 до 8 приемов на одно ногарэ-1. При медленном, с напряжением всех мышц выполнении отдельных ударов, связок или комплексов формальных упражнений можно сделать 1-2 приема на одно ибуки.

В процессе разучивания и совершенствования базовой техники надо постоянно тренировать и свое дыхание, которое в поединке несколько отличается от обычного. Вдох при выполнении технических действий проводится, как правило, через нос, резко, быстро и незаметно, мышцы грудной клетки - расслаблены. При вдохе движется только область живота, словно там находится мяч, который то наполняют, то выпускают из него воздух. Фиксация ударов и блоков выполняется на выдохе. При этом сам выдох проводится порциями через нос (можно и через слегка приоткрытый рот) на каждый удар или блок резким напряжением мышц живота. Это поможет Вам увеличить силу удара и подведет к понятию химэ - предельной концентрации при выполнении технических действий, а в случае, если Вы пропустили во время своей атаки удар противника, поможет ослабить его негативные последствия.

Отдельные удары или их серии можно наносить и при задержке дыхания.

Только при правильном дыхании можно эффективно применять приемы базовой техники в спарринге и в бою.

superbotanik.net

Реферат Дыхание

скачать

Реферат на тему:

План:

    Введение
  • 1 Дыхание у растений
  • 2 Дыхание у человека
    • 2.1 Характер дыхания (по степени тяжести)
    • 2.2 Участвуют в дыхании (по степени тяжести)
    • 2.3 Хрипы (по степени тяжести)
    • 2.4 Аускультативная характеристика дыхания (по степени тяжести)
    • 2.5 Внешнее дыхание
    • 2.6 Патология внешнего дыхания
      • 2.6.1 Альвеолярная гиповентиляция
  • 3 Дыхание и физические нагрузки
  • 4 Приборы для исследования параметров дыхания
  • ПримечанияЛитература

Введение

Дыхание — это процесс, обеспечивающий метаболизм живых организмов из окружающей среды кислородом (О2) и отводящий в окружающую среду в газообразном состоянии некоторую часть продуктов метаболизма организма (СО2, h3O и др[1]). Дыхание — основная форма диссимиляции у человека, животных, растений и многих микроорганизмов. При дыхании богатые химической энергией вещества, принадлежащие организму, окисляются до бедных энергией конечных продуктов (диоксида углерода и воды), используя для этого молекулярный кислород.

Под внешним дыханием понимают газообмен между организмом и окружающей средой, включающий поглощение кислорода и выделение углекислого газа, а также транспорт этих газов внутри организма.

Клеточное дыхание включает биохимические процессы транспортировки белков через клеточные мембраны; а также собственно окисление в митохондриях, приводящее к преобразованию химической энергии пищи.

У организмов, имеющих большие площади поверхности, контактирующие с внешней средой, дыхание может происходить за счёт диффузии газов непосредственно к клеткам через поры (например, в листьях растений, у полостных животных). При небольшой относительной площади поверхности транспорт газов осуществляется за счёт циркуляции крови (у позвоночных и др.) либо в трахеях (у насекомых).

1. Дыхание у растений

Основная статья: Фотодыхание

Большинство растений в светлое время суток вырабатывают кислород, но в их клетках идет и обратный процесс: кислород поглощается в процессе дыхания. Ночью в комнате, плотно уставленной растениями, можно наблюдать снижение концентрации кислорода и увеличение концентрации углекислого газа.

На самом деле, в живых клетках растений процесс дыхания происходит круглосуточно. Просто на свету скорость образования кислорода в результате фотосинтеза обычно превышает скорость его поглощения. Так же как и у животных, клеточное дыхание растений протекает в специальных клеточных митохондриях.

Общие принципы организации процесса дыхания на молекулярном уровне у растений и животных схожи. Однако в связи с тем, что растения ведут прикрепленный образ жизни, их метаболизм постоянно должен подстраиваться к изменяющимся внешним условиям, поэтому и их клеточное дыхание имеет некоторые особенности (дополнительные пути окисления, альтернативные ферменты).

Газообмен с внешней средой осуществляется через устьица чечевичек, трещины в коре (у деревьев).

2. Дыхание у человека

Взрослый человек, находясь в состоянии покоя, совершает в среднем 14 дыхательных движений в минуту[2]. Вместе с тем, частота дыхания может претерпевать значительные колебания (от 10 до 18 за минуту)[2]. У детей частота дыхания составляет 20-30 дыхательных движений в минуту; у грудных детей — 30-40; у новорождённых — 40-60[2].

В течение одного вдоха (в спокойном состоянии) в лёгкие поступает 400—500 мл воздуха. Этот объём воздуха называется дыхательным объёмом (ДО). Такое же количество воздуха поступает из лёгких в атмосферу в течение спокойного выдоха. Максимально глубокий вдох составляет около 2000 мл воздуха. Максимальный выдох также составляет около 2000 мл.

После максимального выдоха в лёгких остаётся воздух в количестве около 1500 мл, называемый остаточным объёмом лёгких. После спокойного выдоха в лёгких остаётся примерно 3000 мл. Этот объём воздуха называется функциональной остаточной ёмкостью (ФОЁ) лёгких.

Благодаря ФОЁ в альвеолярном воздухе поддерживается относительно постоянное соотношение содержания кислорода и углекислого газа, так как ФОЁ в несколько раз больше ДО. Только 2/3 ДО достигает альвеол, который называется объёмом альвеолярной вентиляции.

Взрослый человек (при дыхательном объёме 0,5 литра и частоте 14 дыхательных движений в минуту) пропускает через лёгкие 7 литров воздуха в минуту[2]. В состоянии физической нагрузки минутный объём дыхания может достигать 120 литров в минуту [2].

Соотношение вдоха и выдоха по времени 1:2 — 1:3.

Без дыхания человек обычно может прожить до 5-7 минут, после чего наступают необратимые изменения в мозге.

Дыхание — одна из немногих способностей организма, которая может контролироваться сознательно и неосознанно. Это одна из причин[источник не указан 110 дней], почему при медитации очень важно следить за дыханием. При частом и поверхностном дыхании возбудимость нервных центров повышается, а при глубоком — наоборот, снижается. Люди с ослабленной нервной системой дышат на 12 % чаще, чем люди с сильной нервной системой[источник не указан 110 дней].

Виды дыхания: глубокое и поверхностное, частое и редкое, верхнее, среднее (грудное) и нижнее (брюшное).

Особые виды дыхательных движений наблюдаются при икоте и смехе.

2.1. Характер дыхания (по степени тяжести)

  • Частое поверхностное
  • Стонущее (кряхтение)
  • Ацидоническое
  • Патологическое

2.2. Участвуют в дыхании (по степени тяжести)

  • Крылья носа
  • Подключичная и ярёмная ямки
  • Межрёберная
  • Глубокая шейная мускулатура

2.3. Хрипы (по степени тяжести)

  • Сухие локализованные
  • Сухие распространённые
  • Влажные локализованные
  • Влажные распространённые
  • Крепитация

2.4. Аускультативная характеристика дыхания (по степени тяжести)

  • Нормальное
  • Жёсткое
  • Локально ослабленное
  • Распространённо ослабленное дыхание
  • Бронхиальное
  • Не проводится

2.5. Внешнее дыхание

Дыхание у человека включает внешнее дыхание и тканевое дыхание.

Внешнее дыхание человека включает две стадии:

  1. вентиляция альвеол,
  2. диффузия газов из альвеол в кровь и обратно.

Вентиляция альвеол осуществляется чередованием вдоха (инспирация) и выдоха (экспирация). При вдохе в альвеолы поступает атмосферный воздух, а при выдохе из альвеол удаляется воздух, насыщенный углекислым газом. Вдох и выдох осуществляется путём изменения размеров грудной клетки с помощью дыхательных мышц.

Выделяют два типа дыхания по способу расширения грудной клетки:

  • грудной тип дыхания (расширение грудной клетки производится путём поднятия рёбер),
  • брюшной тип дыхания (расширение грудной клетки производится путём уплощения диафрагмы).

Тип дыхания зависит от двух факторов:

  • возраст человека (подвижность грудной клетки уменьшается с возрастом),
  • профессия человека (при физическом труде преобладает брюшной тип дыхания).

2.6. Патология внешнего дыхания

Основная форма патологии внешнего дыхания — дыхательная недостаточность.

Основные типы нарушений внешнего дыхания:

  • альвеолярная гиповентиляция,
  • альвеолярная гипервентиляция,
  • нарушения лёгочной перфузии,
  • нарушения вентиляционно-перфузионных отношений,
  • нарушения диффузии.

Часто наблюдается сочетание типов нарушений.

2.6.1. Альвеолярная гиповентиляция

Альвеолярная гиповентиляция характеризуется недостаточной альвеолярной вентиляцией, в результате чего в кровь поступает меньше кислорода и обычно происходит недостаточный вывод из крови углекислого газа. Гиповентиляция приводит к снижению количества кислорода в крови (гипоксемия) и к увеличению количества углекислого газа в крови (гиперкапния).

Причины альвеолярной гиповентиляции:

  • нарушения проходимости дыхательных путей,
  • уменьшение дыхательной поверхности лёгких,
  • нарушение расправления и спадения альвеол,
  • патологические изменения грудной клетки,
  • механические препятствия экскурсиям грудной клетки,
  • расстройства деятельности дыхательной мускулатуры,
  • расстройства центральной регуляции дыхания.

Нарушения проходимости дыхательных путей:

  • спазм мелких бронхов (обструктивный бронхит, бронхиальная астма),
  • западение языка,
  • попадание в трахею или бронхи пищи, рвотных масс, инородных тел,
  • закупорка дыхательных путей новорождённых слизью, мокротой или меконием,
  • воспаление или отёк гортани,
  • обтурация или компрессия опухолью или абсцессом.

3. Дыхание и физические нагрузки

При физических нагрузках дыхание, как правило, усиливается. Обмен веществ ускоряется, мышцам требуется больше кислорода.

4. Приборы для исследования параметров дыхания

  • Капнограф — прибор для измерения и графического отображения содержания углекислоты в воздухе, выдыхаемом пациентом, в течение определённого периода времени.
  • Пневмограф — прибор для измерения и графического отображения частоты, амплитуды и формы дыхательных движений, в течение определённого периода времени.
  • Спирограф — прибор для измерения и графического отображения динамических характеристик дыхания.
  • Спирометр — прибор для измерения ЖЕЛ (жизненной емкости лёгких).

Примечания

  1. В зависимости от уровня обмена веществ человек выделяет через легкие в среднем около 5 — 18 л СО, и 50 г воды в час. А с ними — около 400 других примесей летучих соединений.
  2. ↑ 12345 Физиология человека. В 3-х т. Т. 2. Пер с англ. / Под ред. Р. Шмидта и Г. Тевса. — М.: Мир, 1996. — 313 с.: ил. — ISBN 5-03-002544-8.

Литература

  • Дыхание // Малая медицинская энциклопедия. — Т. 2. — С. 146.

wreferat.baza-referat.ru


Смотрите также

 

..:::Новинки:::..

Windows Commander 5.11 Свежая версия.

Новая версия
IrfanView 3.75 (рус)

Обновление текстового редактора TextEd, уже 1.75a

System mechanic 3.7f
Новая версия

Обновление плагинов для WC, смотрим :-)

Весь Winamp
Посетите новый сайт.

WinRaR 3.00
Релиз уже здесь

PowerDesk 4.0 free
Просто - напросто сильный upgrade проводника.

..:::Счетчики:::..

 

     

 

 

.