60. Патофизиология боли. Болевые синдромы. Этиология, патогенез. Патофизиология боли реферат


ПАТОФИЗИОЛОГИЯ БОЛИ

Шуралёва Н СВ-31

ПАТОФИЗИОЛОГИЯ БОЛИ.

Боль часто выполняет сигнальную функцию, предупреждает организм об опасности и защищает его от возможных чрезмерных повреждений. Такую боль называют физиологической болью. Восприятие, проведение и анализ болевых сигналов в организме обеспечивают специальные нейрональные структуры ноцицептивной системы, входящие в состав соматосенсорного анализатора. Поэтому боль можно рассматривать как одну из сенсорных модальностей, необходимую для нормальной жизнедеятельности и предупреждающую нас о вредоносных воздействиях.

Вместе с тем существует и другой вид боли, который имеет патогенное значение для организма. Патологическая снижает продуктивность и работоспособность, снижает активность, вызывает психо-эмоциональные расстройства, приводит к регионарным и системным нарушениям микроциркуляции, является причиной вторичных иммунных депрессий и нарушения деятельности висцеральных систем. В биологическом смысле она представляет опасность для организма, вызывая целый комплекс дезадаптивных реакций.

В общей структуре боли можно выделить несколько основных компонентов:

По временным параметрам выделяют острую и хроническую боль.

Острая боль — это новая, недавняя боль, неразрывно связанная с вызвавшим её повреждением, и, как правило, является симптомом какого-либо заболевания. Такая боль исчезает при устранении повреждения. Хроническая боль часто приобретает статус самостоятельной болезни, продолжается длительный период времени, и причина, вызвавшая эту боль, в ряде случаев может не определяться.

В зависимости от патогенеза болевые синдромы подразделяют на:

Болевые синдромы, возникающие вследствие активации ноцицептивных рецепторов при травме, воспалении, ишемии, растяжении тканей, относят к соматогенным болевым синдромам. Клинически среди них выделяют: посттравматический и послеоперационный болевые синдромы, боли при воспалении суставов, миофасциальные болевые синдромы, боли у онкологических больных, боли при поражении внутренних органов и многие другие.

Развитие нейрогенных болевых синдромов связывают с повреждением структур периферической или центральной нервной систем, участвующих в проведении ноцицептивных сигналов. Примерами таких болевых синдромов являются невралгии (тригеминальная, межрёберная и другие), фантомно-болевой синдром, таламические боли, каузалгия.

Ведущее значение в механизме развития психогенных болевых синдромов отводится психологическим факторам, которые инициируют боль при отсутствии каких-либо серьёзных соматических расстройств. Часто боли психологической природы возникают вследствие перенапряжения каких-либо мышц.

Патофизиологические механизмы соматогенных болевых синдромов

Клинически соматогенные болевые синдромы проявляются наличием постоянной болезненности, и/или повышением болевой чувствительности в зоне повреждения или воспаления. Со временем зона повышенной болевой чувствительности может расширяться и выходить за пределы повреждённых тканей. Участки с повышенной болевой чувствительностью к повреждающим стимулам называют зонами гипералгезии.

Выделяют первичную и вторичную гипералгезию. Первичная гипералгезия охватывает повреждённые ткани, вторичная гипералгезия локализуется вне зоны повреждения. Психофизически области первичной кожной гипералгезии характеризуются снижением болевых порогов и болевой толерантности к повреждающим механическим и термическим стимулам. Зоны вторичной гипералгезии имеют нормальный болевой порог и сниженную болевую толерантность только к механическим раздражителям.

Механизмы возникновения первичной гипералгезии

Патофизиологической основой первичной гипералгезии является сенситизация (повышение чувствительности) ноцицепторов к действию повреждающих стимулов. Электрофизиологически сенситизация ноцицепторов проявляется снижением порога их активации, увеличением частоты и длительности разрядов в нервных волокнах (группы А-дельта и С), что приводит к усилению афферентного ноцицептивного потока.

Сенситизация ноцицепторов происходит в результате выделения в зоне повреждения медиаторов воспаления, включающих брадикинин, метаболиты арахидоновой кислоты (простагландины и лейкотриены), биогенные амины, пурины и ряд других веществ, которые, взаимодействуя с соответствующими рецепторами на терминалях ноцицептивных афферентов, повышают чувствительность последних к механическим и термическим стимулам.

В настоящее время большое значение в инициации механизмов, обеспечивающих сенситизацию ноцицепторов, отводится брадикинину, который может оказывать как прямое, так и непрямое действие на чувствительные нервные окончания.

Прямой возбуждающий эффект брадикинина на чувствительные нервные окончания опосредуется В2-рецепторами и связан с активацией мембранной фосфолипазы С.

Непрямое возбуждающее действие брадикинина на окончания нервных афферентов обусловлено его воздействием на различные тканевые элементы (эндотелиальные клетки, фибробласты, тучные клетки, макрофаги и нейтрофилы) и стимулированием образования в них медиаторов воспаления (например, простагландинов), которые, взаимодействуя с соответствующими рецепторами на нервных окончаниях, активируют мембранную аде-нилатциклазу. В свою очередь аденилатциклаза и фосфолипаза С стимулируют образование ферментов, фосфорилирующих белки ионных каналов. Результатом фосфорилирования белков ионных каналов является изменение проницаемости мембраны для ионов, что отражается на возбудимости нервных окончаний и способности генерировать нервные импульсы.

Сенситизации ноцицепторов при повреждении тканей способствуют не только тканевые и плазменные алгогены, но и нейропептиды, выделяющиеся из С-афферентов, такие, как субстанция Р, нейрокинин А или кальци-тонин-ген-родственный пептид. Эти нейропептиды обладают противовоспалительным эффектом, вызывая расширение сосудов и увеличение их проницаемости. Кроме этого, они способствуют высвобождению из тучных клеток и лейкоцитов простагландина Е2, цитокинов и биогенных аминов, которые, воздействуя на мембрану нервных окончаний, запускают, как указывалось выше, метаболические процессы, изменяющие возбудимость нервных афферентов.

На сенситизацию ноцицепторов и развитие первичной гипералгезии также влияют эфференты симпатической нервной системы. Установлено, что повышение чувствительности терминалей высокопороговых тонких афферентов при активации постганглионарных симпатических волокон опосредуется двумя путями. Во-первых, за счет повышения сосудистой проницаемости в зоне повреждения и увеличения концентрации медиаторов воспаления (непрямой путь) и, во-вторых, за счет прямого воздействия нейротрансмиттеров симпатической нервной системы — норадреналина и адреналина, на альфа2-адренорецепторы, расположенные на мембране ноцицепторов.

Механизмы развития вторичной гипералгезии

Клинически область вторичной гипералгезии характеризуется повышением болевой чувствительности к интенсивным механическим стимулам вне зоны повреждения и может располагаться на достаточном удалении от места повреждения, в том числе и на противоположной стороне тела. Этот феномен, на наш взгляд, может быть объяснён только механизмами центральной нейропластичности, приводящими к стойкой гипервозбудимости ноцицептивных нейронов. Подтверждением этому служат клинико-экспериментальные данные, свидетельствующие о том, что зона вторичной гипералгезии сохраняется при введении местных анестетиков в область повреждения и исчезает в случае блокады активности нейронов дорзального рога. В электрофизиологических исследованиях было продемонстрировано повышение возбудимости и реактивности нейронов спиноталамическо-го тракта к механическим раздражениям их рецептивных полей, расположенных в зоне вторичной гипералгезии. Сенситизированные нейроны в ответ на предъявляемые раздражения не только генерировали разряды с увеличенной частотой, но и сохраняли повышенную активность более продолжительное время.

Такая сенситизация нейронов дорзальных рогов может быть вызвана различными типами повреждений: термическими, химическими, механическими, возникающими вследствие гипоксии, острого воспаления или электрической стимуляции С-афферентов.

В настоящее время большое значение в механизмах сенситизации ноцицептивных нейронов дорзальных рогов спинного мозга придаётся возбуждающим аминокислотам и нейропептидам.

Иммуногистохимическими методами было установлено, что синаптические терминали многих тонких высоко-пороговых афферентов содержат в качестве нейроме-диатора глутамат, аспартат и ряд нейропептидов, таких, как субстанция Р, нейрокинин А, кальцитонин ген-родственный пептид и многие другие, которые высвобождаются из пресинаптических терминалей под действием ноцицептивных импульсов.

Выделение глутамата из пресинаптических терминалей происходит при любом ноцицептивном воздействии — коротком (уколе) или длительном. Считается, что реализация физиологических болевых реакций (например, защитный рефлекс отдёргивания) при выделении глутамата опосредуется через АМРА-рецепторы (alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid), в то время как NMDA-рецепторы (N-methyl-D-aspartate) обеспечивают длительную, в том числе и патологическую гиперактивность ноцицептивных нейронов.

Активирующее действие глутамата на ноцицептивные нейроны потенцируется субстанцией Р, которая как медиатор сосуществует в более 90 процентах терминалей высокопороговых сенсорных волокон, содержащих глутамат. Субстанция Р, как и другие нейрокинины, взаимодействуя с NK-1 рецепторами (neurokinin-1), не только повышает концентрацию внутриклеточного Са2+ посредством его мобилизации из внутриклеточных депо, но и усиливает активность NMDA-рецепторов.

В последнее время важное значение в механизмах сенситизации ноцицептивных нейронов придается оксиду азота (NO), который в мозге выполняет роль нетипичного внесинаптического медиатора. NO образуется в нейронах, содержащих фермент NO-синтетазу из L-аргини-на. NO выделяется из клеток при NMDA-индуцируемом возбуждении и взаимодействует с пресинаптическими терминалями С-афферентов, усиливая выброс из них глютамата и нейрокининов.

Таким образом, индуцированное ноцицептивной стимуляцией высвобождение глутамата и нейропептидов из центральных терминалей С-афферентов вызывает стойкие изменения возбудимости ноцицептивных нейронов, усиление их спонтанной активности, увеличение длительности послеразрядов и расширение рецептивных полей.

Необходимо подчеркнуть, что возникшая вследствие повреждения тканей сенситизация ноцицептивных нейронов может несколько часов или дней сохраняться и после прекращения поступления ноцицептивных импульсов с периферии, иными словами, если уже произошла гиперактивация ноцицептивных нейронов, то она не нуждается в дополнительной подпитке импульсами из места повреждения. Долговременное повышение возбудимости ноцицептивных нейронов связывают с активацией их генетического аппарата — экспрессией ранних, немедленно реагирующих генов, таких, как c-fos, c-jun, junB и другие.

В механизмах активации прото-нкогенов важная роль отводится ионам Са2+. При повышении концентрации ионов Са2+ в цитозоле, вследствие усиленного их входа через регулируемые NMDA-рецепторами Са-каналы, происходит экспрессия c-fos, c-jun, белковые продукты которых участвуют в регуляции долговременной возбудимости мембраны клетки.

Помимо сенситизации ноцицептивных нейронов дорзального рога, повреждение тканей вызывает также повышение возбудимости и реактивности ноцицептивных нейронов и в вышележащих центрах, включая ядра таламуса и соматосенсорную кору больших полушарий.

Таким образом, периферическое повреждение запускает целый каскад патофизиологических и регуляторных процессов, затрагивающих всю ноцицептивную систему от тканевых рецепторов до корковых нейронов. Вместе с тем, если кратко охарактеризовать патогенез соматогенных болевых синдромов, то можно отметить следующие наиболее важные звенья:

Ограничение входа ноцицептивной импульсации в ЦНС достигается при помощи различного рода блокад местными анестетиками, которые не только могут предотвратить сенситизацию ноцицептивных нейронов, но и способствовать нормализации микроциркуляции в зоне повреждения, улучшая восстановление повреждённых тканей. Использование нестероидных и/или стероидных противовоспалительных препаратов обеспечивает подавление синтеза алгогенов, снижение воспалительных реакций и тем самым уменьшает сенситизацию ноцицепторов. Для активации структур антиноцицептивной системы, осуществляющих контроль за проведением ноцицептивной импульсации в ЦНС, может быть использован целый спектр (в зависимости от клинических показаний) медикаментозных (наркотические и ненаркотические аналгетики, бензодиазепины, агонисты альфа-2-адрено-рецепторов и другие) и немедикаментозных (чрезкож-ная электронейростимуляция, рефлексотерапия, физиотерапия) средств, снижающих болевую чувствительность и негативное эмоциональное переживание.

Патофизиологические механизмы нейрогенных болевых синдромов

Вызванные повреждением периферических нервов или структур центральной нервной системы нейрогенные болевые синдромы представляют собой один из клинических парадоксов. Действительно, нарушение целостности нерва должно приводить к снижению сенсорных ощущений в иннервируемой им области.

Считается, что нейрогенные болевые синдромы возникают при повреждении структур, связанных с проведением ноцицептивных сигналов. Важным доказательством этого положения являются клинические наблюдения.

Для нейрогенного болевого синдрома характерно наличие следующих симптомов: постоянная, спонтанная или пароксизмальная боль, сенсорный дефицит в зоне болезненности, аллодиния (появление болезненного ощущения при лёгком неповреждающем воздействии), гипералгезия и гиперпатия. При неполном, частичном повреждении ноцицептивных афферентов чаще возникает острая периодическая пароксизмальная боль, подобная удару электрического тока и длящаяся всего несколько секунд. В случае полной денервации боли чаще всего имеют постоянный характер.

Механизмы возникновения нейрогенных болевых синдромов в корне отличаются от болевых синдромов, вызванных повреждением соматических тканей или внутренних органов.

Развитие нейрогенных болевых синдромов в настоящее время связывают с морфофункциональными изменениями как в периферическом травмированном нерве, так и в центральной нервной системе.

При повреждении нерва, как известно, возникает атрофия и гибель нервных волокон (причём преимущественно гибнут немиелинизированные С-афференты). Вслед за дегенеративными изменениями начинается регенерация нервных волокон, которая сопровождается образованием невром. Структура нерва становится неоднородной, что является причиной нарушения проведения возбуждения по нерву.

На сегодняшний день существует большое количество клинических и экспериментальных работ, свидетельствующих о наличии в повреждённом нерве анормальной эктопической активности. Ненормальная электрическая активность зарегистрирована как в невроме, так и в самом нервном волокне. Эти локусы ненормальной активности получили название эктопических нейрональных пейсмекерных мест, обладающих самоподдерживающейся активностью. Источником эктопической активности являются зоны демиелинизации и регенерации нерва, невромы, а также нервные клетки дорзальных ганглиев, связанные с повреждёнными аксонами.

Использование специальных методов при проведении электрофизиологических исследований позволило установить, что генерация невромой спонтанной эктопической активности вызвана нестабильностью мембранного потенциала, причиной которой является увеличение на мембране количества натриевых каналов.

Эктопическая активность существенным образом отличается от паттернов нормальных разрядов. Если в нормальных условиях длительность разряда ограничена продолжительностью стимула, то эктопический разряд имеет не только увеличенную амплитуду сигнала, но и большую продолжительность. В результате чего разряд, возникший в одном волокне, может активировать другие волокна. Подобное перекрёстное возбуждение волокон или эфаптическая передача сигнала наблюдается только в условиях патологии и является основой для дизэстезии и гиперпатии.

На повышение фоновой активности повреждённых нервов существенное влияние оказывает увеличение чувствительности нервных волокон к механическим и химическим стимулам. Появление механо- и хемочувствительности в нервных волокнах увеличивает диапазон раздражителей, способных вызвать генерацию потенциалов действия.

Изменение возбудимости нервных волокон при повреждении происходит в течение первых десяти часов и во многом зависит от аксонального транспорта. Установлено, что блокада аксотока задерживает развитие механочувствительности нервных волокон.

Современные клинические и экспериментальные исследования свидетельствуют, что болевой синдром, вызванный повреждением нервов, наряду с появлением анормальной активности в нервных волокнах, сопровождается также повышением возбудимости и реактивности нейронов дорзальных рогов спинного мозга и вышележащих структур ноцицептивной системы.

Можно выделить следующие основные этапы патогенеза и механизмов развития нейрогенных болевых синдромов:

• образование невром и участков демиелинизации в повреждённом нерве, являющихся периферическими пейсмекерными очагами патологического электрогенеза

• возникновение механо- и хемочувствительности в нервных волокнах

• появление перекрёстного возбуждения в нейронах дорзальных ганглиев

• формирование агрегатов гиперактивных нейронов с самоподдерживающейся активностью в ноцицептивных структурах ЦНС

• системные нарушения в работе структур, регулирующих болевую чувствительность

studfiles.net

60. Патофизиология боли. Болевые синдромы. Этиология, патогенез

Понятие и общая характеристика

Боль представляет собой сложное психо­эмоциональное неприятное ощущение, реа­лизующееся специальной системой болевой чувствительности и высшими отделами моз­га. Она сигнализирует о воздействиях, вы­зывающих повреждение ткани или об уже существующих повреждениях, возникших вследствие действия экзогенных факторов или развития патологических процессов. Сис­тему восприятия и передачи болевого сиг­нала называют также ноцицептивной сис­темой2. Болевые сигналы вызывают соот­ветствующий адаптивный эффект — реак­ции, направленные на устранение либо но-цицептивного воздействия, либо самой боли, если она чрезмерна. Поэтому в нормальных условиях боль играет роль важнейшего физиологического защитного механизма. Лю­ди с врожденной или приобретенной (на­пример, при травмах, инфекционных пора­жениях) патологией ноцицептивной системы, лишенные болевой чувствительности, не за­мечают повреждений, что может привести к тяжелым последствиям. Различные виды боли (острая, тупая, локализованная, диф фузная, соматическая, висцеральная и др.)-осуществляются различными структурами ноцицептивной системы.

Патологическая боль. Помимо описанной выше физиологической боли существует патологическая боль. Главным биологичес­ким признаком, отличающим патологичес­кую боль от физиологической, является её дизадаптивное или прямое патогенное зна­чение для организма. Она осуществляется той же ноцицептивной системой, но изме­ненной в условиях патологии и представ­ляет собой выражение нарушения меры процессов, реализующих физиологическую боль, превращение последней из защитного •,. в патологический механизм. Болевой син­дром является выражением соответствующей патологической (алгической) системы.

Патологическая боль обусловливает раз­витие структурно-функциональных изме­нений и повреждений в сердечно-сосудис­той системе и во внутренних органах, дистрофию тканей, нарушение вегетативных реакций, изменения деятельности нервной, эндокринной и иммунной систем, психо­эмоциональной сферы и поведения. Силь­нейшая и длительная боль может вызвать тяжелый шок, неукротимая хроническая боль может быть причиной инвалидизации. Па­тологическая боль становится эндогенным па­тогенным фактором развития новых патологических процессов и приобретает значение самостоятельного нейропатологического синдрома или даже болезни. Патологичес­кая боль плохо корригируется, и борьба с ней весьма затруднительна. Если патологи­ческая боль возникает вторично (при тяже­лых соматических болезнях, при злокачест­венных образованиях и др.), то нередко, доставляя мучительные страдания больному, она заслоняет собой основную болезнь и },, становится главным объектом лечебных вме­шательств, имеющих целью уменьшить стра-: дания больного.

Патологическая боль периферического происхождения

Этот вид патологической боли возни-v кает при хроническом раздражении рецеп-.,. торов боли (ноцицепторов), при повреж­дении ноцицептивных волокон, спинномозго­вых ганглиев и задних корешков. Ука­занные структуры становятся источником интенсивной и нередко постоянной ноцицеп-тивной стимуляции. Ноцицепторы могут усиленно и длительно активироваться при хро-, нических воспалительных процессах (на-~ пример, при артритах), при действии про­дуктов распада тканей (например, при опухолях) и др. Хронически повреждаемые (например, при сдавливании рубцов, раз­росшейся костной тканью и пр.) и регене­рирующие чувствительные нервы, дегенеративно измененные (при действии различных вредностей, при эндокринопатиях), и демие-линизированные волокна весьма чувстви­тельны к различным гуморальным воздей­ствиям, даже к тем, на которые они не реагируют в нормальных условиях (напри­мер, к действию адреналина, ионов К+ и др.). Участки таких волокон становятся эктопи-ческим источником постоянной и значитель­ной ноцицептивной стимуляции.

Особенно значительную роль подобного источника играет неврома — образование из хаотически разросшихся, переплетенных чувствительных нервных волокон, которое возникает при их неупорядоченной и затруд­ненной регенерации. Эти окончания весьма чувствительны к различным механическим, температурным, химическим и эндогенным воздействиям (например, к тем же кате-холаминам). Поэтому приступы боли (кау-залгии) при невромах, а также при повреж­дениях нервов могут быть спровоцированы разными" факторами и изменениями состоя­ния организма (например, при эмоциональ­ном стрессе).

Ноцицептивная стимуляция с периферии может вызвать приступ боли в том случае, если она преодолевает так называемый «воротный контроль» в задних рогах (Мелзак, Уолл), состоящий из аппарата тормозных нейронов (важную роль в нем играют ней­роны желатинозной субстанции), который ре­гулирует поток проходящей и восходящей ноцицептивной стимуляции. Такой эффект может иметь место при интенсивной сти­муляции либо при недостаточности тормоз­ных механизмов «воротного контроля».

Патологическая боль центрального происхождения

Этот вид патологической боли связан с гиперактивацией ноцицептивных нейронов" на спинальном и супраспинальном уровнях. Такие нейроны образуют агрегаты, которые представляют собой генераторы патологичес­ки усиленного возбуждения. Согласно теории генераторных механизмов боли (Г. Н. Кры-жановский) ГПУВ является основным и уни­версальным патогенетическим механизмом патологической боли. Он может образовы­ваться в различных отделах ноцицептивной системы, обусловливая возникновение раз­ных болевых синдромов. При образовании ГПУВ в задних рогах спинного мозга воз­никает болевой синдром спинального проис­хождения (рис. 118), в ядрах тройнич­ного нерва — тригеминальная невралгия (рис. 119), в ядрах таламуса — таламичес-кий болевой синдром. Клиническая картина центральных болевых синдромов и характер их протекания зависят от структурно-функциональных особенностей тех отделов ноцицептивной системы, в которых возник ГПУВ, и от особенностей деятельности ГПУВ.

В соответствии со стадиями развития и механизмами активации ГПУВ на ранних этапах патологического процесса приступ боли, обусловленный активацией ГПУВ, про­воцируется ноцицептивными стимулами с определенного, непосредственно связанного с ГПУВ рецептивного поля (зона проекции боли) (см. рис. 118, 119), на поздних ста­диях приступ провоцируется стимулами раз­личной интенсивности и разной модальности, с разных рецепторных полей, а также мо­жет возникать спонтанно. Особенность при­ступа боли (пароксизмальный, непрерывный, кратковременный, продолжительный и пр.) зависит от особенностей функционирования ГПУВ. Характер' же самой боли (тупая, острая, локализованная, диффузная и др.) определяется тем, какие образования ноци-цептивной системы, реализующие соответ­ствующие виды болевой чувствительности, стали частями патологической (алгической) системы, лежащей в основе данного боле­вого синдрома. Роль патологической детерминанты, формирующей патологическую сис­тему данного синдрома, играет гиперактив­ное образование ноцицептивной системы, в которой возник первичный ГПУВ. Например, при болевом синдроме спинального проис­хождения роль патологической детерминан­ты играет система гиперактивных ноцицеп-тивных нейронов заднего рога (I—III или/и V слоя).

ГПУВ в центральном аппарате ноцицеп­тивной системы формируется под влиянием различных факторов. Он может возникать при длительной ноцицептивной стимуляции с периферии. В этих условиях боль перво­начально периферического происхождения приобретает центральный компонент и стано­вится болевым синдромом спинального про­исхождения. Такая ситуация имеет место при хронических невромах и повреждениях аф­ферентных нервов, при невралгиях, в част­ности при невралгии тройничного нерва.

ГПУВ в центральном ноцицептивном ап­парате может возникнуть также при деафферентации, в связи с повышением чув­ствительности деафференцированных ноци-цептивных нейронов и нарушением тормоз­ного контроля. Деафферентационные бо­левые синдромы могут появляться после ампутации конечностей, перерезки нервов и задних корешков, после перерыва или пере­резки спинного мозга. При этом больной может ощущать боль в лишенной чув­ствительности или в несуществующей части тела (например, в несуществующей конеч­ности, в частях тела ниже перерезки спин­ного мозга). Такого типа патологическая боль получила название фантомной (от фантом — призрак). Она обусловлена дея­тельностью центрального ГПУВ, активность которого уже не зависит от ноцицептивной стимуляции с периферии.

ГПУВ в центральных отделах ноцицеп­тивной системы может возникать при ин­фекционных повреждениях этих отделов (герпетические и сифилитические поврежде­ния, при травмах, токсических воздействиях). В эксперименте такие ГПУВ и соответ­ствующие болевые синдромы воспроизводят­ся путем введения в соответствующие от­делы ноцицептивной системы веществ, либо вызывающих нарушение тормозных меха­низмов, либо непосредственно активирующих ноцицептивные нейроны (столбнячный ток­син, пенициллин, ионы К+ и пр.).

В центральном аппарате ноцицептивной системы могут образовываться вторичные ГПУВ. Так, после образования ГПУВ в задних рогах спинного мозга через продол­жительное время может возникнуть вторич­ный ГПУВ в таламусе. В этих условиях первичный ГПУВ может даже исчезнуть, однако при этом проекция боли на перифе­рию может оставаться прежней, так как в процесс вовлечены структуры той же ноци­цептивной системы. Нередко при локализа­ции первичного ГПУВ в спинном мозге с целью предотвращения поступления из него импульсации в головной мозг производят частичную (перерыв восходящих трактов) или даже полную перерезку спинного мозга. Эта операция, однако, не дает эффекта либо вызывает лишь кратковременное облегчение страданий больного.

studfiles.net

Патофизиология боли — реферат

Трудно найти человека, который хотя бы раз в жизни  не испытывал боли. Она может стать  безжалостным тираном, отравляющим  существование человека, но иногда, правда гораздо реже, и благодетелем, облегчающим страдания. Значение болевого ощущения в жизни человека не требует  доказательств. И личный опыт, и опыт бесчисленных поколений живых существ  заставляет нас избегать боли и бороться с ней. Неслучайно проблеме боли посвящено  огромное число научных исследований, спорных теорий и гипотез.

Боль представляет собой типовой, эволюционно выработанный процесс, возникающий при воздействии  на организм ноцицептивных (от лат. nocere — повреждать) факторов или в результате угнетения противоболевой системы и характеризующийся интеграцией дискриминативно-сенситивного, мотивационно-аффективного, нейроэндокринного и когнитивного компонентов адаптационного ответа. Ощущение боли является отрицательной биологической потребностью, так как ее формирование всегда связано с изменением его основных гомеостатических констант. Наиболее значимыми из них являются целостность защитных оболочек организма (кожа, слизистые, брюшина и пр.) и уровень кислородного режима тканей. В ответ на повреждение в организме активизируются репаративные процессы и происходит мобилизация функций органов и систем, которые обеспечивают энергосубстратную поддержку тканей. С другой стороны, повреждение приводит к активации нейроэндокринных структур, обеспечивающих интегративно-контролирующую деятельность ЦНС, и образованию ноцицептивной системы. Таким образом, ноцицептивная функциональная система является конкретным физиологическим аппаратом, который по нарушениям целостности защитных покровов организма и развитию энергодефицита способен определять несоответствие скорости регенерации новой биологической потребности и включать адаптационно-компенсаторные реакции, направленные на интенсификацию энергообеспечения и устранение структурных повреждений. Рецепция, передача и анализ ноцицептивной информации, а также формирование болевого ощущения обеспечиваются центральными и периферическими нейрональными образованиями и состоят из следующих процессов (рис. 1):  

1. Трансдукция. 

2. Трансмиссия. 

3. Модуляция. 

4. Перцепция. 

Трансдукция представляет собой процесс восприятия, трансформации и кодирования ноцицептивной информации рецепторным аппаратом нервной системы. Специфические рецепторы боли (ноцицепторы) представлены свободными безмиелиновыми нервными окончаниями, которые характеризуются высоким сенсорным порогом. Особенно богаты ими кожа, роговица, слизистые оболочки, париетальная брюшина и плевра, надкостница, стенки кровеносных сосудов. По своей природе специфические болевые рецепторы являются хемоцептивными. Они возбуждаются под влиянием алгогенных химических агентов, которые высвобождаются при повреждении тканей. Различают три типа таких веществ. 

1. Тканевые (серотонин, гистамин, ацетилхолин, простагландины, лейкотриены, ионы К+ и Н+). 

2. Плазменные (каллидин, брадикинин). 

3. Нейрогенные (субстанция Р). 

Тканевые медиаторы  боли непосредственно активируют концевые разветвления безмиелиновых волокон в кожных, мышечных и висцеральных нервных окончаниях. Простагландины сами не вызывают боль, но усиливают эффект ноцицептивного воздействия (феномен периферической сенситизации). Плазменные алгогены вызывают боль как непосредственно, так и за счет повышения сосудистой проницаемости, приводящей к тканевому отеку. Субстанция Р выделяется из нервных окончаний, воздействует на рецепторы, локализованные на их мембране, и, деполяризуя ее, способствует генерации импульсов ноцицептивного потока. 

Неспецифические ноцицепторы генерируют болевые импульсы при сверхпороговом раздражении. К ним относятся механорецепторы, реагирующие на изменение давления и деформацию (пластинки Меркеля, тельца Мейснера, Гольджи — Мацони, Фатер — Пачини), и терморецепторы (колбы Краузе, тельца Руффини). Данный рецепторный аппарат широко представлен как в коже, так и во всех внутренних органах. 

Трансмиссия заключается в передаче ноцицептивной информации по нервным проводникам в интегративные центры центральной нервной системы (ЦНС). Среди афферентных волокон, участвующих в ноцицепции, выделяют: толстые миелиновые А-b-волокна, проводящие импульсы от механорецепторов, со средней скоростью 30-70 м/с, миелиновые А-d-волокна, проводящие импульсы температурной и болевой чувствительности со скоростью 12-30 м/с, и безмиелиновые соматические и постганглионарные С-волокна, проводящие болевые импульсы со скоростью 0,25-1 м/сек. В зависимости от активации афферентных волокон определенного диаметра различают разные типы болевых ощущений. Первичная (эпикритическая) боль является точно локализованной, коротколатентной и качественно детерминированной (острая или колющая). Вторичная (протопатическая) боль — плохо локализованная (разлитая, диффузная), длительнолатентная, тупая, жгучая. Первичная боль связана с афферентной импульсацией в А-d-волокнах, вторичная — в С-волокнах. Следует подчеркнуть, что проводящие боль нервные волокна являются полимодальными и передают информацию, связанную не только с ноцицепцией.

 

Первой релейной станцией, передающей ноцицептивную информацию, являются афферентные нейроны спинальных ганглиев, которые отдают центральный отросток в первую и вторую пластины задних рогов спинного мозга, а периферический отросток — к соматической (включая кожу) и висцеральной зоне. Нейрональная система заднего рога спинного мозга является важным интегративным центром ноцицептивной информации. Особая роль при этом отводится вставочным нейронам желатинозного вещества, которые оказывают модулирующее действие на передачу болевой информации с периферических волокон на спинномозговые нейроны (т.н. контроль афферентного входа путем пресинаптического торможения и облегчения). 

Ноцицептивная информация о характере энергоструктурного дефицита, первично интегрированная на сегментарном уровне спинного мозга в виде паттерна сигналов, передается по спиноталамическому, спиноретикулярному и спиномезенцефальному трактам в головной мозг, где активизирует воспринимающие и регулирующие системы, ответственные за полную оценку биологической значимости повреждения, аффектно-мотивационную окраску ощущений и нисходящую нейроэндокринную регуляцию приспособительных реакций. Хотя все афферентные проекции головного мозга, составляющие соматосенсорные пути, прямо или косвенно участвуют в формировании болевого ощущения, среди них выделяют две основные системы — лемнисковую и экстралемнисковую. 

К лемнисковым восходящим проекциям относят спиноталамический тракт, с деятельностью которого связывают проведение информации о сенсорно-дискриминативных сторонах повреждающего действия. Роль лемнисковой системы состоит в проведении тактильной чувствительности и проприорецепции. Высокая скорость проведения импульса позволяет опознать, оценить и локализовать сенсорный вход до начала активации системы действия. Именно поэтому она играет важную роль в модуляции ноцицепции на супраспинальном уровне. 

К экстралемнисковым восходящим проекциям относят спиноретикулярный, спиноцервикальный, спиномезенцефалический пути и систему проприоспинальных волокон. Эта система обладает слабо выраженной соматотопической и модальной организацией, низкой скоростью проведения из-за большого числа синаптических переключений. Характерными особенностями экстралемнисковой организации являются диффузность проекторной корковой зоны и связь с лимбической системой. С деятельностью экстралемнисковых проекций связывают передачу плохо локализованной протопатической боли, придающей восприятию негативную мотивационно-аффективную направленность. 

Главным релейным ядром  всей соматосенсорной афферентной  системы является вентробазальный таламический комплекс. Здесь оканчиваются восходящие лемнисковые пути и начинаются таламокортикальные проекции. Данный комплекс обеспечивает соматотопическую информацию о локализации боли, пространственную соотнесенность ее и сенсорно-дискриминантный анализ. 

Одной из главных супрасегментарных зон восприятия ноцицептивного афферентного потока и его переработки является ретикулярная формация головного мозга. Именно здесь оканчиваются пути экстралемнисковых проводящих систем и начинается диффузная проприоретикулярная система, тесно взаимодействующая с различными структурами сенсомоторной, вегетативной и эмоционально-поведенческой интеграции. Через связи ретикулярной формации с гипоталамусом, базальными ядрами и лимбическим мозгом реализуются нейроэндокринный и мотивационно-аффективный компоненты боли. 

Формирование болевого ощущения (перцепция) происходит в коре головного мозга. Первая соматосенсорная зона коры принимает непосредственное участие в дискриминантном выделении специфического импульса острой локализованной боли. Вторая соматосенсорная область коры имеет ведущее значение в механизмах формирования адекватных поведенческих реакций на болевое раздражение (когнитивный компонент боли). Орбитально-фронтальная область коры непосредственно участвует в проявлении мотивационно-аффективного компонента системной болевой реакции организма. 

Таким образом, ноцицептивная система является специальным биоинформационным комплексом, который обеспечивает мониторинг энергоструктурного статуса организма. Длительная активация ноцицептивной системы сопровождается развитием стресс-реакции, в реализации которой принимает участие гипоталамо-гипофизарно-адренокортикальная система организма. Данные изменения являются сущностью болевого синдрома. Ноцицептивная импульсация, поступая в промежуточный мозг, активирует симпатические центры гипоталамуса. Обратная эфферентация через ретикулоспинальные волокна стимулирует секрецию адреналина надпочечниками. Проникая через гематоэнцефалический барьер, адреналин индуцирует синтез кортиколиберина, который стимулирует гипофизарную секрецию кортикотропина. Последний индуцирует секрецию кортикотропина в кровь, что сопровождается активацией синтеза кортикостероидов корковым веществом надпочечников. Если катехоламины способствуют краткосрочной адаптации через воздействие на рецепторный аппарат клетки, стимулируя катаболические процессы, то кортикостероиды вызывают долгосрочную адаптацию, оказывая влияние на клеточный геном.

 

Длительная ноцицептивная афферентация приводит к гиперактивации стрессреализующих систем и истощению адаптационных резервов организма. Затянувшаяся катаболическая стадия стресс-ответа, нарушения микроциркуляции и активация свободнорадикальных процессов вызывают дистрофические изменения в органах и системах, которые наиболее часто представлены: иммуносупрессией, некоронарными повреждениями миокарда, ОРДС, стрессовыми язвами ЖКТ, панкреонекрозом, геморрагической энцефалопатией. Эти морфологические изменения являются эквивалентом вторичного энергоструктурного дефицита, обусловленного болевым синдромом. 

Характерной чертой болевого синдрома является феномен центральной  и периферической сенситизации. Периферическая сенситизация обусловлена изменениями химизма тканей в области повреждения вследствие продолжительного воздействия алгогенных агентов. Это приводит к расширению рецептивного поля и снижению сенсорного порога ноцицепторов. Центральная сенситизация связана с гиперпродукцией возбуждающих аминокислот в сегментарных и супрасегментарных интегративных центрах, что приводит к образованию доминантных очагов возбуждения. При этом обычные физиологические импульсы начинают восприниматься как ноцицептивные и вызывать характерные для боли вегетативные реакции.

 

Контроль боли осуществляется тесным взаимодействием ноци- и антиноцицептивных механизмов. Среди последних основными считаются опиатный и ГАМКергический. 

Регуляторная и  модулирующая функции эндогенных опиоидов определяются высвобождением их при резких колебаниях активности нейрогуморальных систем. Локализованные в нервных окончаниях совместно с медиаторами (например, с норадреналином) опиоиды не высвобождаются при умеренном выделении медиатора. Высвобождение их происходит лишь при высокой и длительной активности нерва и значительном выделении медиатора. При этом опиоиды ингибируют дальнейшее высвобождение медиатора и тем самым предупреждают его чрезмерную активность. 

Рецепторы опиоидных пептидов по принципу выполняемых ими функций относятся к рецепторам-модуляторам, опосредующим действие лигандов на функцию других рецепторов. Наибольшая плотность опиатных рецепторов выявлена в области таламуса, базальных ядер, «лимбического» круга и спинного мозга. Опиоиды регулируют формирование сенсорно-ноцицептивного импульса, начиная с сегментарного уровня спинного мозга, где они тормозят афферентную передачу с С-волокон на вставочные нейроны. На уровне головного мозга опиоидные пептиды оказывают возбуждающее действие на нейроны ядер шва, гигантоклеточного ядра ретикулярной формации, центрального серого вещества, формируя нисходящие бульбоспинальные пути, участвующие в механизмах центрального контроля боли. 

Стресс-реакция, вызванная болевым фактором, закономерно сопряжена с активацией ГАМКергического антиноцицептивного механизма. Универсальность ГАМК как медиатора постсинаптического торможения заключается в том, что g-аминобутират активно участвует в метаболических процессах, направленных на стимуляцию внутриклеточной регенерации нейронов. Связь ГАМКергической системы с ноцицептивной системой способна проявляться путем прямой активации ГАМК-нейронов катехоламинами, выделяющимися в адренергических структурах головного мозга при стресс-реакции. Такая активация может, в свою очередь, по механизму обратной связи ограничивать саму стресс-реакцию. Введение экзогенной ГАМК или ее метаболита ГОМК подавляет стресс-реакцию и предупреждает развитие стрессовых повреждений. 

Антиноцицептивная способность ГАМК осуществляется за счет двух основных механизмов. Во-первых, ингибирование в гипоталамусе на постсинаптическом уровне секреции кортиколиберина и тем самым угнетение гипофизарно-надпочечникового звена стресс-реакции. Во-вторых, ГАМК на пресинаптическом уровне обладает способностью ограничивать высвобождение норадреналина из окончаний симпатических нервов в органах и тканях и тем самым ограничивать адренергические влияния на органы-мишени.

student.zoomru.ru

Научно-информационный материал

НАУЧНО-ИНФОРМАЦИОННЫЙ МАТЕРИАЛ

«ТАКТИКА И НЕОТЛОЖНАЯ ТЕРАПИЯ БОЛЕВОГО СИНДРОМА»

Москва 2010г.

Содержание

  1. Введение……………………………………………………………………3
  2. Физиология боли……………………………………………………...…..10
    1. Пути проведения боли и ее механизмы……………………….….12
    2. Клиническая классификация боли………………………………...20
  3. Патофизиология боли…………………………………………………….24
    1. Механизмы возникновения первичной гипералгезии…………...38
    2. Механизмы возникновения вторичной гипералгезии…………...40
    3. Патофизиологические механизмы нейрогенных болевых синдромов………………………………………………………......45
  4. Психология боли………………………………………………………….53
  5. Восприятние боли у детей………………………………………………..67
  6. Боль у детей……………………………………………………………….83
  7. Абдоминальный болевой синдром………………………………………90
  8. Рецидивирующая боль в животе у детей………………………………102
    1. Терминология и нозологическая структура…………………….104
    2. Распространенность………………………………………………111
    3. Клиническая картина и дифференциальная диагностика органической и неорганической РБЖ…………………………..113
    4. Прогноз……………………………………………………………119
    5. Лечение……………………………………………………………120
  9. Синдром раздраженного кишечника…………………………………..127
  10. Головная боль у детей и подростков…………………………………..139
    1. Классификация головной боли у детей…………………………146
    2. Головная боль, обусловленная сосудистыми механизмами…..148
    3. Мигрень……………………………………………………………149
    4. Головная боль, обусловленная ликвородинамическими нарушениями……………………………………………………...160
    5. Гипотензионная головная боль…………………………………..164
    6. Головные боли при церебральном арахноидите……………….165
    7. Головная боль при опухолях головного мозга…………………167
    8. Головная боль, обусловленная напряжением мышц мягких покровов головы…………………………………………………168
    9. Данные дополнительных метолов обследования………………172
    10. Лечение мигрени…………………………………………………175
    11. Лечение гипертензионного синдрома…………………………..177
    12. Лечение гипотензионного синдрома……………………………179
  11. Посттравматические головные боли у детей………………………….180
  12. Дифференциальный диагноз болей в спине у детей………………….194
  13. Применение анальгетиков при лечении боли у детей………………..218
    1. Опиоиды…………………………………………………………..229
    2. Обезболивание под контролем самого ребенка………………...231
    3. Местные анестетики……………………………………………...235
    4. Лечение боли, возникающей при раке…………………………..237
    5. Лекарственное лечение хронических нераковых болей………..238
  14. Боль и обезболивание в неонатологии…………………………………240
    1. Причины боли у новорожденных………………………………..242
    2. Болевые реакции новорожденных……………………………….243
    3. Способы оценки боли…………………………………………….244
    4. Лечение……………………………………………………………246
    5. Стратегия профилактики боли…………………………………..251
  15. Метод профилактики боли у детей раннего возраста при вакцинации...............................................................................................253
  16. Список литературы…………………………………………………….262

ВВЕДЕНИЕ

Боль, несомненно, относится к самым частым жалобам, с которыми имеют дело врачи самых разных специальностей в своей повседневной практике. По данным ВОЗ, в развитых странах мира боль по масштабам своего распространения вполне сопоставима с пандемией.Боль – субъективный феномен, плохо поддающийся какой–либо объективизации. В то же время она приносит человеку максимальные страдания. Совсем непросто дать боли исчерпывающее определение. Согласно наиболее распространенной сегодня научной дефиниции «боль – это неприятное ощущение и эмоциональное переживание, связанное с текущим или потенциальным тканевым повреждением или описываемое в терминах такого повреждения». Как это ни парадоксально на первый взгляд, боль рассматривается как важнейшее биологическое приобретение; она – не только проявление болезни, но и сигнал опасности. В этом ее огромное приспособительное значение. Сигнальное значение боли особенно характерно для острой боли. Хроническая боль – совсем другая категория. Она отличается от острой боли не столько своей длительностью, сколько своим патогенезом, клиническими проявлениями, а также лечением и прогнозом.Острая боль – это прежде всего сигнал какого–то повреждения ткани, в основе которого лежит местный патологический процесс, связанный, например, с травмой, воспалением, инфекцией и т.д. Острая боль уменьшается под влиянием анальгетиков. Хроническая боль продолжается более 3–6 месяцев, т.е. сверх обычного периода заживления тканей, она нередко носит более диффузный характер. Хроническая боль утрачивает свое полезное сигнальное значение; она как бы отрывается от конкретных местных патологических процессов, вызвавших острую боль, и начинает существовать уже по своим закономерностям. В генезе хронической боли, как было установлено в последние годы, среди прочих условий большую (но не исключительную) роль играет психический фактор. Если острая боль справедливо рассматривается как симптом, то хроническая боль может приобретать черты болезни («боль как болезнь» – Loeser J., 2006), которая проявляется не только болью, но и вегетативными, эмоциональными и другими психическими нарушениями, формированием неадаптивного болевого поведения.Помимо принципиального разделения боли на острую и хроническую, существует множество других классификаций боли. С общих клинических позиций выделяют местную, отраженную, иррадиирующую и генерализованную боль. Для невролога очень важна классификация, предусматривающая выделение ноцицептивной, нейропатической и психогенной боли. В неврологической практике чаще всего встречаются боли в спине и шее, головные боли. Помимо дорсалгий и цефалгий, достаточно распространены также абдоминалгии, торакалгии и кардиалгии, в том числе прозопалгии, несколько реже – боли другой локализации. Эта терминология отражает топографическую классификацию болевого синдрома. Последняя иногда дополняется другой классификацией, указывающей на источник боли. В частности, боли разной локализации могут иметь сосудистое, мышечно–скелетное, радикулопатическое, висцеральное или иное, в том числе психогенное, происхождение.Внутри отдельных топографически очерченных болевых синдромов разработаны еще более детализированные классификации, важные для практического использования. Предпринимаются попытки создать подробные классификации (например, боли в спине или в руке, боли в области шеи и руки или в области таза). В этих классификациях определено место для любого болевого синдрома, в том числе редкого (например, гломусной опухоли руки, шей­но–язычного синдрома, вульводинии и т.д.). Не­уди­вительно, что такие классификации выглядят иногда чрезвычайно объемными. Например, современная классификация головной боли, разработанная классификационным комитетом международного общества головной боли, насчитывает уже более 100 (!) форм.Таким образом, складывается ситуация, при которой исследование боли превращается в глобальную и в высшей степени актуальную проблему, которая интенсивно изучается внутри отдельных медицинских специальностей. К последним относятся кардиология, гастроэнтерология, ревматология и другие терапевтические дисциплины, хирургия, онкология, анестезиология, неврология, нейрохирургия, паллиативная медицина, физиология и многие другие медицинские специальности. В США создано свыше 2000 клиник и центров по изучению и лечению боли. Получил распространение термин «медицина боли». В соответствии с этой тенденцией Конгресс США объявил 2001–2010 годы декадой контроля над болью и науки о боли. Более того, алгология, как наука о боли, признана в США самостоятельной медицинской специальностью и три американские ассоциации проводят сертификацию врачей по боли. Появились специальные журналы, целиком предназначенные для освещения проблемы боли. Такая тенденция в последние годы отчетливо просматривается и в России.Этот процесс повсеместной актуализации проблемы боли не является случайным и отражает назревшую необходимость интеграции отдельных дисциплин, изучающих различные аспекты боли, в рамках одного научного направления, получившего название алгологии. Среди многих дисциплин, имеющих отношение к изучению механизмов боли, центральное место, по–ви­ди­мому, должна занять неврология. Совершенно очевидно, что неврология ближе других медицинских специальностей стоит к нейрофизиологии и нейрохимии, на достижениях которых зиждется все современное здание учения о боли. Однако неврология еще не взяла на себя в полной мере роль такой координирующей функции по отношению к исследованию проблемы боли. Это то, что еще предстоит сделать в ближайшем будущем.По данным Hansson P.T. (2006), из 7000 членов международной ассоциации по изучению боли (IASP) неврологи составляют менее 300 человек, что составляет примерно 4% от общего числа членов этой ассоциации. Но природа феномена боли такова, что настоятельно требует для своего изучения именно неврологической компетенции. Ведь боль является прежде всего феноменом соматосенсорной системы. Она может сопровождаться также разнообразными моторными, вегетативными, аффективными и другими проявлениями так называемого болевого поведения. Методы, используемые для изучения боли, относятся в основным к электрофизиологическим (вызванные потенциалы, в том числе тригеминальные; количественное сенсорное тестирование; ноцицептивный флексорный рефлекс и другие) и ис­пользуются в основном в клинике нервных болезней. Методы лечения боли, в том числе с помощью инвазивных методик (стимуляция спинного мозга, глубокая стимуляция мозга и стимуляция моторной коры), также тре­буют неврологического подхода. Наконец, понимание интимных механизмов патогенеза боли (таких, например, как сенситизация ноцицепторов и центральная сенситизация, феномен «взвинчивания» («wind–up»), деафферентационная гиперчувствительность, воротный контроль боли и.т.д.) предполагает владение нейроанатомическими, нейрохимическими и нейрофизиологическими знаниями.Роль невролога еще более возрастает при изучении так называемой нейропатической и хронической боли. Если врачи общей практики чаще имеют дело с ноцицептивной болью, возникновение которой связано с активацией периферических болевых рецепторов (ноцицепторов), то невролог встречается, кроме того, со всеми вариантами нейропатической боли, возникающей при поражении соматосенсорной системы на любом ее уровне, начиная от периферического нерва и кончая корой головного мозга. Таким образом, нейропатическая боль может быть как периферической, так и центральной. Все виды нейропатической боли, независимо от причины ее вызвавшей, имеют некоторые общие особенности: персистирующий характер, неэффективность анальгетиков, многообразное сенсорное сопровождение (парестезии, невралгия, гиперестезия, гипералгезия, аллодиния), сочетание с вегетативными и моторными расстройствами.Хроническая боль, как уже говорилось выше, имеет существенные отличия в своих клинических проявлениях от острой боли и, что очень важно, в подавляющем большинстве случаев (более 80–90%) сопровождается эмоциональными и другими психическими нарушениями.Таким образом, боль имеет различные уровни своего выражения (рис. 1). Ощущение боли возникает, прежде всего, в результате активации но­ци­цепторов. Но­ци­цепция, тем самым, является первым уровнем или первым компонентом болевого восприятия. Само болевое ощущение обеспечивается функционированием всей ноцицептивной системы, которая, кроме ноцицепторов и сложной афферентации, имеет также спинальный и церебральный уровень своей организации. На активность ноцицептивной системы оказывает влияние антиноцицептивная система. Результатом их взаимоотношений и является субъективная интенсивность боли. Следующий более высокий уровень включает в себя аффективный компонент переживания боли. Он обеспечивается связями ноцицептивной и антиноцицептивной системы с другими областями мозга, такими как лимбическая система. Наконец, переживание боли определенным образом проявляется в поведении человека, которое имеет множество других более сложных детерминантов (наследственность, воспитание, «болевой опыт», образование, особенности личности и т.д.). Взаимодействие указанных уровней в конечном итоге и определяет конкретный уровень толерантности боли.Перцепция боли, ее осознание и субъективное переживание, как и ее отражение в поведении человека имеют в своей основе достаточно сложную мозговую организацию, которая испытывает также влияние других, в том числе половых, гендерных и со­цио–куль­ту­ральных факторов. Таким образом, феномен боли мо­жет и должен стать предметом более широкого междисциплинарного исследования, в котором неврология по праву является связующим звеном, выполняющим важную интегрирующую функ­цию.Понятно, что дальнейшее развитие медицины боли имеет огромное практическое значение. Как показывают специальные исследования, недо­ста­точная эф­фек­тивность лечения многих болевых синдромов часто обусловлена недостаточным знакомством врачей с современными достижениями алгологии и, как следствие – неполным обследованием па­циента, неправильной тактикой лечения или не­пол­ным объемом терапии, неадекватным выбором терапевтических методов и средств и т.п.С неврологической точки зрения лечение боли должно строиться с учетом общих представлений о патогенезе боли и клинико–физио­ло­ги­че­ских особенностей отдельных болевых синдромов.Роль невролога становится очевидной еще и потому, что терапия отдельных болевых синдромов существенным образом зависит от того, как будет интерпретирован характер боли (ноциптивная, нейропатическая, психогенная и т.д.), что, несомненно, легче сделать неврологу, чем врачу какой–либо иной специальности.Известно, что основой симптоматического лечения острой боли является применение обезболивающих лекарственных средств. В настоящее время для фармакотерапии острых болевых синдромов разной природы используют ненаркотические и наркотические анальгетики, а также анестетики с разной выраженностью обезболивающего эффекта, сочетая их в случае необходимости с адъювантной терапией.Нейропатическая боль требует иных терапевтических подходов, в которых, помимо местных анестетиков, опиатов, комбинированных препаратов, более широко применяют антидепрессанты, антиконвульсанты, в том числе последнего поколения, блокаторы NMDA–ре­цеп­торов, а также нейростимуляционные и другие нелекарственные методы лечения. Боль­шинство из указанных терапевтических средств требует предварительной консультации невролога.Существуют и другие достаточно распространенные варианты боли, на­пример, такие как центральная боль, психогенная боль, фантомная боль, где главным образом невролог спо­собен пролить свет на церебральные механизмы этих не совсем обычных болевых феноменов и попытаться оказать реальную помощь этим больным. Труд­ной для исследования и недостаточно разработанной остается концепция психогенной боли. В решении этого вопроса необходимы совместные усилия неврологов и психиатров.Таким образом, совершенно очевидно, что нев­ро­лог становится одной из центральных фигур в меж­дисциплинарном изучении боли. Именно благодаря неврологии представители разных специальностей, изучающие проблему боли, начинают говорить на общем и понятном друг другу языке. Не случайно в последние годы регулярно проводятся неврологические конференции разного масштаба, в том числе международные, посвященные медицине боли, которые собирают врачей разных специальностей. Такие творческие контакты и обмен опытом между специалистами разного профиля, безусловно, способствуют более глубокому пониманию механизмов боли. Неврология, как центральная дисциплина в ряду многих других нейронаук, по праву должна занять лидирующие позиции в этом процессе по­знания боли, чтобы, в конечном итоге, научиться эффективно контролировать ее.

^

Боль - физиологический феномен, информирующий нас о вредных воздействиях, повреждающих или представляющих потенциальную опасность для организма. Таким образом, боль представляет собой как предупредительную так и защитную систему.

В настоящее время наиболее популярным считается определение боли, данное Международной Ассоциацией по изучению боли: «Боль это неприятное ощущение и эмоциональное переживание, возникающее в связи с настоящей или потенциальной угрозой повреждения тканей или изображаемой терминами такого повреждения». Такое определение не оценивает природу и происхождение болевого стимула, но в равной степени указывает как на её аффективные коннотации, так и на осознанную интерпретацию.

Первые научные концепции физиологии боли появились в первых десятилетиях 19-го столетия. Это был век прорывов в изучении механизмов боли, позволившие учёным не только лучше понять боль, но иногда и облегчить её.

В 20-м веке достижения иммуногистохимии, нейрофармакологии и нейрофизиологии позволили совершить воистину величайшие открытия в анатомии, физиологии и патофизиологии боли. В течение последних 20 лет заметно повышается интерес к фундаментальным механизмам боли. Находки, обнаруженные в результате этих исследований, нашли применение в клинике и ряде прикладных программ различных областей медицины. Идентификация рецепторов и процессов, участвующих в формировании и передаче боли привели к применению новых средств и методов, обеспечивающих новые и всё более эффективные подходы к контролю над болью. Они включают использование предварительной анальгезии опиоидами или ненаркотическими (нестероидными противовоспалительными) средствами, агонистами альфа-2- адренергических рецепторов и местными анестетиками, контролируемую пациентом анальгезию в послеоперационном периоде или введение опиоидов посредством управляемого пациентом устройства, модуляцию боли биогенными аминами, такими как эндогенные опиоидные пептиды, использование интратекального введения препаратов при контролируемой пациентом эпидуральной анальгезии, эпидуральную стимуляцию спинного мозга.

Новые технологии и новые средства позволили более эффективно управлять болью. Применение подобных методов привело к удовлетворению пациентов и улучшению клинических результатов. Наши предки вынуждены были верить моралистам (и докторам), убеждавшим их в необходимости и полезности болевого ощущения и запрещающим применять такие противоестественные средства, как анестетики при родах. Сегодня врачи при проведении диагностических процедур или операций не могут позволить своим пациентам страдать “для их собственного благополучия”. Состояние боли является решающим основанием для назначения эффективного лечения, что является следствием глубокого убеждения в существенном негативном влиянии боли на качество жизни.

^

Болевые рецепторы

Болевые раздражения могут возникать в коже, глубоких тканях и внутренних органах. Эти раздражения воспринимаются ноцицепторами, расположенными по всему телу, за исключением головного мозга. Техника микронейрографии сделала возможным утверждать наличие у человека двух таких же типов рецепторов боли (ноцицепторов), как и у других млекопитающих. Анатомически первый тип ноцицепторов представлен свободными нервными окончаниями, разветвлёнными в виде дерева (миелиновые волокна). Они представляют собой быстрые А - дельта волокна, проводящие раздражение со скоростью 6 - 30 м\с. Эти волокна возбуждаются высокоинтенсивными механическими (булавочный укол) и, иногда, термическими раздражениями кожи. А - дельта ноцицепторы располагаются, преимущественно, в коже, включая оба конца пищеварительного тракта. Находятся они также и в суставах. Трансмиттер А - дельта волокон остаётся неизвестным.

Другой тип ноцицепторов представлен плотными некапсулированными гломерулярными тельцами (немиелиновые С - волокна, проводящие раздражение со скоростью 0,5 - 2 м\с). Эти афферентные волокна у человека и других приматов представлены полимодальными ноцицепторами, поэтому реагируют как на механические,так на температурные и химические раздражения. Они активируются химическими веществами, возникающими при повреждении тканей, являясь одновременно и хеморецепторами, и считаются со своей эволюционной примитивностью оптимальными тканеповреждающими рецепторами. С - волокна распределяются по всем тканям за исключением центральной нервной системы. Однако, они присутствуют в периферических нервах, как nervi nervorum. Волокна, имеющие рецепторы, воспринимающие повреждения тканей, содержат субстанцию Р, выступающую в качестве трансмиттера. Такой тип ноцицепторов также содержит calcitonin ген - связанный пептид, а волокна из внутренних органов - вазоактивный интестинальный пептид.

^

Большинство “болевых волокон” достигают спинного мозга через спинномозговые нервы (в случае, если они отходят от шеи, туловища и конечностей) или входят в продолговатый мозг в составе тройничного нерва. Проксимально от спиномозгового ганглия перед вхождением в спинной мозг задний корешок разделяется на медиальную, содержащую толстые миелиновые волокна, и латеральную части, в состав которой входят тонкие миелиновые (А - дельта) и немиелиновые (С) волокна, что предоставляет возможность хирургу с помощью операционного микроскопа, произвести их функциональное разделение. Однако известно, что проксимальные аксоны примерно 30% С - волокон после выхода из спинномозгового ганглия возвращаются обратно к месту совместного хода чувствительных и двигательных корешков (канатик) и входят в спинной мозг через передние корешки. Этот феномен, вероятно, объясняет причину неэффективности попыток дорзальной ризотомии, предпринимаемой для облегчения боли. Но, тем не менее, поскольку все С - волокна, размещают свои нейроны в спинномозговом ганглии, цель может быть, достигнута ганглиолизисом. При вхождении ноцицептивных волокон в спинной мозг, они разделяются на восходящие и нисходящие ветви. Перед своим окончанием в сером веществе задних рогов эти волокна могут направляться к нескольким сегментам спинного мозга. Разветвляясь, они формируют связи с другими многочисленными нервными клетками. Таким образом, термин “заднероговой комплекс” используется для обозначения данной нейроанатомической структуры. Ноцицептивной информацией прямо или косвенно активируются два основных класса релейных заднероговых клеток: “ноцицептивные специфические” нейроны, активируемые только ноцицептивными стимулами и “wide dynamic range” или “конвергентные” нейроны, активируемые также и не ноцицептивными стимулами. На уровне задних рогов спинного мозга большое число первичных афферентных раздражений передаются через интернейроны или ассоциативные нейроны, чьи синапсы облегчают, либо препятствуют передаче импульсов. Периферический и центральный контроль локализуется в желатинозной субстанции, примыкающей к клеточному слою.

^

Теория “воротного контроля” - одна из наиболее плодотворных концепций механизмов боли, хотя её анатомические и физиологические основы до сих пор не являются полностью отработанными. Основное положение теории состоит в том, что импульсы, проходящие по тонким (“болевым”) периферическим волокнам открывают “ворота” в нервную систему, чтобы достичь её центральных отделов. Два обстоятельства могут закрыть ворота: импульсы, проходящие по толстым (“тактильным”) волокнам и определённые импульсы, нисходящие из высших отделов нервной системы. Механизм действия толстых периферических волокон, закрывающих ворота, заключается в том, что боль, возникающая в глубоких тканях, таких как мышцы и суставы, уменьшается контрраздражением, - механическим растиранием поверхности кожи или использованием раздражающих мазей. Эти свойства имеют терапевтическое применение, например использование высокочастотного, низко интенсивного электрического раздражения толстых кожных волокон, известного, как чрезкожная электронейростимуляция (ЧЭНС), или вибрационной стимуляции. Второй механизм (закрытие ворот изнутри) вступает в действие в случае активации нисходящих тормозных волокон из ствола мозга, либо их прямой стимуляцией, либо гетеросегментарной акупунктурой (низкочастотная высокоинтенсивная периферическая стимуляция). В этом случае нисходящие волокна активируют интернейроны, расположенные в поверхностных слоях задних рогов, постсинаптически ингибирующих желатинозные клетки, предотвращая тем самым передачу информации выше.

^

Открытие опиоидных пептидов и опиоидных рецепторов относится к началу 70х годов. В 1973 г. три исследовательские группы (Hughes, Kosterlitz, Yaksh) определили места приложения морфина, а двумя годами позже другие две группы открыли локализацию природных пептидов, имитирующих действие морфина. Клиническое значение имеют три класса опиоидных рецепторов: мю -, каппа - и дельта - рецепторы (Kosterlitz,Paterson,1985). Их распределение внутри ЦНС очень вариабильно. Плотное размещение рецепторов обнаружено в задних рогах спинного мозга, в среднем мозге и таламусе. Иммуноцитохимические исследования показали наибольшую концентрацию спинальных опиоидных рецепторов в поверхностных слоях задних рогов спинного мозга. Эндогенные опиоидные пептиды (энкефалин,эндорфин,динорфин) взаимодействуют с опиоидными рецепторами всякий раз, когда в результате преодоления болевого порога возникают болевые раздражения. Факт расположения множества опиоидных рецепторов в поверхностных слоях спинного мозга означает, что опиаты могут легко проникать в него из окружающей спинномозговой жидкости. Экспериментальные наблюдения прямого спинального действия опиатов привели к возможности их терапевтического применения методом интратекального и эпидурального введения.

Известно, что для подавления гипервозбудимости спинальных нейронов требуются большие дозы морфина. Однако если малые дозы морфина назначать непосредственно перед повреждающей стимуляцией, то триггерная центральная гипервозбудимость никогда не формируется. В настоящее время стало ясно, что предварительное лечение позволяет предупредить сильную послеоперационную боль.

^

Давно известно, что восходящие “болевые пути” находятся в составе переднебоковых канатиков белого вещества спинного мозга и идут контрлатерально стороне вхождения болевых стимулов. Так же хорошо известно, что часть волокон спиноталамического и спиноретикулярного трактов, проводящих болевое раздражение, присутствует в заднебоковом канатике. Трактотомия или хирургическое пересечение переднебоковой области спинного мозга, включающей спиноталамические и спиноретикулярные пути, приводит к почти полной потере способности ощущать боль на противоположной стороне тела ниже уровня повреждения. Однако обычно, чувствительность в течение нескольких недель постепенно восстанавливается, что объясняется синаптической реорганизацией и вовлечением неповреждённых альтернативных путей. Комиссуральная миелотомия вызывает пролонгированную анальгезию в поражённых сегментах.

Спиноталамический тракт может быть, разделён на две части:

  1. Неоспиноталамический тракт (быстрое проведение, моносинаптическая передача, хорошо локализованная (эпикритическая) боль, А - волокна). Этот тракт направляется к специфическим латеральным ядрам таламуса (вентрозаднелатеральное и вентрозаднемедиальное ядра).
  2. Палеоспиноталамическая система (полисинаптическая передача, медленное проведение, плохо локализованная (протопатическая) боль, С - волокна). Данные пути восходят к неспецифическим медиальным таламическим ядрам (медиальное ядро, интраламинарное ядро, срединный центр). На своём пути к медиальным ядрам таламуса тракт направляет часть волокон к ретикулярной формации.
Стереотаксические электроды, расположенные в таламусе, позволяют распознать специфическую патофизиологию этих структур и развить концепцию, основанную на наличии баланса между медиальным (в основном nucl.centralis lateralis) и латеральным (nucl. ventroposterior) ядрами таламуса, нарушение которого ведёт к сверхторможению их обоих ретикулярным таламическим ядром, а затем к парадоксальной активации корковых полей, связанных с болевым ощущением. Возобновление с учётом новых технических, анатомических и физиологических данных медиальной стереотаксической таламотомии приносит облегчение двум третям больных с хронической и терапевтически резистентной периферической и центральной нейрогенной болью на 50 - 100%.

Импульсы входящие через неоспиноталамическую систему переключаются на волокна, передающие сигналы через заднее бедро внутренней капсулы к первой соматосенсорной зоне коры, постцентральной извилине и второй соматосенсорной зоне (operculum parietal). Высокая степень топической организации внутри латерального ядра таламуса делает возможным пространственную локализацию боли. Изучения тысяч корковых поражений в обеих мировых войнах демонстрируют, что повреждения постцентральной извилины никогда не вызывает потери болевой чувствительности, хотя ведут к потере соматотопически организованной низкопороговой механорецептивной чувствительности, также как и ощущения укола иглой.

Импульсы, входящие через палеоспиноталамический тракт, переключаются на медиальное ядро таламуса и проецируются на неокортекс диффузным способом. Проекция в лобной области отражает аффективные компоненты боли. Позитронно-эмиссионная томография показывает, что повреждающие стимулы активируют нейроны цингулярной извилины и орбитальной фронтальной коры. Цингулотомия или префронтальная лоботомия показывают отличный эффект в лечении боли у онкологических больных. Таким образом, в головном мозге нет “болевого центра”, а восприятие и реакция на боль являются функцией ЦНС в целом.

^

Известно, что микроинъекции морфина в периакведуктальное серое вещество (PAG)среднего мозга (центральное серое вещество _ ЦСВ), также как и его электрическая стимуляция вызывает настолько глубокую анальгезию, что у крыс даже хирургические вмешательства не вызывают каких - либо заметных реакций. Когда были открыты области сосредоточения опиоидных рецепторов и естественных опиатов, стало понятно, что эти отделы ствола мозга являются релейной станцией супраспинальных нисходящих модуляторных контрольных систем. Вся система, как стало сейчас понятно, представляется следующим образом.

Аксоны группы клеток, использующих В - эндорфин в качестве трансмиттера, расположенные в области nucl.arcuatus гипоталамуса (который сам находится под контролем префронтальной и островковой зон коры головного мозга) пересекают перивентрикулярное серое вещество в стенке третьего желудочка, оканчиваясь в периакведуктальном сером веществе (PAG). Здесь они ингибируют местные интернейроны, освобождая, таким образом, от их тормозного влияния клетки, чьи аксоны проходят вниз к области nucleus raphe magnum в середине ретикулярной формации продолговатого мозга. Аксоны нейронов этого ядра, преимущественно серотонинергических (трансмиттер - 5 - гидрокситриптамин), направляются вниз по дорсолатеральному канатику спинного мозга, заканчиваясь в поверхностных слоях заднего рога. Некоторая часть raphe - спинальных аксонов и значительное число аксонов из ретикулярной формации являются норадренергическими. Таким образом, как серотонинергические, так и норадренергические нейроны ствола мозга выступают как структуры, блокирующие ноцицептивную информацию в спинном мозге. Присутствие соединений биогенных аминов в контролирующих боль системах объясняет причину анальгезии, вызываемой трициклическими антидепрессантами. Эти препараты подавляют повторное поглощение серотонина и норадреналина синапсом и, таким образом, усиливают тормозное действие трансмиттеров на нейроны спинного мозга. Наиболее мощное торможение болевой чувствительности у животных вызывается прямой стимуляцией nucl.raphe magnus (ядра шва). У человека перивентрикулярное и периакведуктальное серое вещество представляют собой места, наиболее часто используемые для стимуляции через имплантируемые электроды для устранения боли. Упоминаемые выше коллатерали от спиноталамических аксонов к ретикулярной формации могут объяснить эффект гетеросегментарной акупунктуры, поскольку спинальные неспецифические нейроны могут быть активированы таким стимулом, как укол иглы.

^

Боль можно классифицировать следующим образом:

  1. Ноцигенная
  2. Нейрогенная
  3. Психогенная
Данная классификация может быть полезной для первоначальной терапии, однако, в дальнейшем подобное разделение групп невозможно из-за их тесного сочетания.

Ноцигенная боль

Когда при раздражении кожных ноцицепторов, ноцицепторов глубоких тканей или внутренних органов тела, возникающие импульсы, следуя по классическим анатомическим путям, достигают высших отделов нервной системы и отображаются сознанием, формируется ощущение боли. Боль от внутренних органов возникает вследствие быстрого сокращения, спазма или растяжения гладких мышц, поскольку сами гладкие мышцы нечувствительны к жару, холоду или рассечению. Боль от внутренних органов, особенно имеющих симпатическую иннервацию, может ощущаться в определённых зонах на поверхности тела. Такая боль называется отражённой. Наиболее известные примеры отражённой боли - боль в правом плече и правой стороне шеи при поражении желчного пузыря, боль в нижней части спины при заболевании мочевого пузыря и, наконец, боль в левой руке и левой половине грудной клетки при заболеваниях сердца. Нейроанатомическая основа этого феномена не совсем понятна. Возможное объяснение состоит в том, что сегментарная иннервация внутренних органов та же, что и отдалённых областей поверхности тела. Однако это не объясняет причины отражения боли от органа к поверхности тела, а не vice versa. Ноцигенный тип боли терапевтически чувствителен к морфину и другим наркотическим анальгетикам и может контролироваться состоянием “ворот”.

Нейрогенная боль

Этот тип боли может быть, определён, как боль вследствие повреждения периферической или центральной нервной системы и не объясняется раздражением ноцицепторов. Такая боль имеет ряд особенностей, отличающих её, как клинически, так и патофизиологически от ноцигенной боли:

  1. Нейрогенная боль имеет характер дизестезии. Хотя дескрипторы: тупая, пульсирующая или давящая являются наиболее частыми для подобной боли, патогномоничными характеристиками для неё считаются определения: обжигающая и стреляющая.
  2. В огромном большинстве случаев нейрогенной боли отмечается частичная потеря чувствительности.
  3. Характерны вегетативные расстройства, такие как снижение кровотока, гипер и гипогидроз в болевой области. Боль часто усиливает или сама вызывает эмоционально-стрессовые нарушения.
  4. Обычно отмечается аллодиния (означающая болевое ощущение в ответ на низко интенсивные, в нормальных условиях не вызывающие боли раздражители). Например, лёгкое прикосновение, дуновение воздуха или причёсывание при тригеминальной невралгии вызывает в ответ “болевой залп”. Более ста лет назад Trousseau (1877) отметил сходство между пароксизмальной стреляющей болью при тригеминальной невралгии и эпилептическими припадками. В настоящее время известно, что все стреляющие нейрогенные боли могут лечиться антиконвульсантами.
  5. Необъяснимой характерной чертой даже резкой нейрогенной боли является то, что она не мешает засыпанию пациента. Однако если даже больной засыпает, он внезапно просыпается от сильной боли.
  6. Нейрогенная боль невосприимчива к морфину и другим опиатам в обычных анальгетических дозах. Это демонстрирует то, что механизм нейрогенной боли отличен от опиоид-чувствительной ноцигенной боли.
Нейрогенная боль имеет много клинических форм. К ним можно отнести некоторые поражения периферической нервной системы, такие как постгерпетическая невралгия, диабетическая невропатия, неполное повреждение периферического нерва, особенно срединного и локтевого (рефлекторная симпатическая дистрофия), отрыв ветвей плечевого сплетения. Нейрогенная боль вследствие поражения центральной нервной системы обычно бывает обусловлена цереброваскулярной катастрофой. Это то, что известно под классическим названием “таламического синдрома”, хотя недавние исследования показывают, что в большинстве случаев очаги поражения расположены в иных областях, чем таламус.

Многие боли клинически проявляются смешанными - ноцигенными и нейрогенными элементами. Например, опухоли вызывают повреждение тканей и компрессию нервов; при диабете ноцигенная боль возникает вследствие поражения периферических сосудов, нейрогенная - вследствие нейропатии; при грыжах межпозвонкового диска,компримирующих нервный корешок, болевой синдром включает жгучий и стреляющий нейрогенный элемент.

Психогенная боль

Утверждение что боль может быть исключительно психогенного происхождения, является дискуссионным. Широко известно, что личность пациента формирует болевое ощущение. Оно усилено у истерических личностей, и более точно отражает реальность у пациентов неистероидного типа.

Люди различных этнических групп отличаются по восприятию послеоперационной боли. Пациенты европейского происхождения отмечают менее интенсивную боль, чем американские негры или латиноамериканцы. У них также отмечается низкая интенсивность боли по сравнению с азиатами, хотя эти отличия не очень значительны (Faucett et al,1994).

Любое хроническое заболевание или недомогание, сопровождающееся болью, влияет на эмоции и поведение личности. Боль часто ведёт к появлению тревожности и напряжённости, которые сами увеличивают восприятие боли. Это поясняет важность психотерапии в контроле над болью. Биологическая обратная связь, релаксационный тренинг, поведенческая терапия и гипноз применяются в качестве психологического вмешательства и могут оказаться полезными в некоторых упорных, рефрактерных к лечению случаях. Лечение может быть более эффективным ,если учитывает психологическую и другие системы (окружающую среду, психофизиологию, познавательную, поведенческую), которые потенциально влияют на болевое восприятие. Обсуждение психологического фактора хронической боли ведётся на основе теории психоанализа, с бихевиористских, когнитивных и психофизиологических позиций.

Некоторые люди более устойчивы к развитию нейрогенной боли. Поскольку эта тенденция имеет вышеупомянутые этнические и культуральные особенности, она кажется врождённой. Поэтому так заманчивы перспективы исследований, проводимых в настоящее время и направленных на поиск локализации и выделение “гена боли”.

^

Боль может приводить к выраженной дизрегуляционной патологии и может стать причиной шока и смерти.

Боль принято подразделять на пять компонентов:

1. Перцептуальный компонент, позволяющий определить место повреждения.

2. Эмоционально–аффективный компонент, формирующий неприятное психоэмоциональное переживание.

3. Вегетативный компонент, отражающий рефлекторные изменения работы внутренних органов и тонуса симпато–адреналовой системы.

4. Двигательный компонент, направленный на устранение действия повреждающих стимулов.

5. Когнитивный компонент, формирующий субъективное отношение к испытываемой в данной момент боли на основе накопленного опыта.

Основными факторами, влияющими на восприятие боли, являются:

1. Пол.

2. Возраст.

3. Конституция.

4. Воспитание.

5. Предшествующий опыт.

6. Настроение.

7. Ожидание боли.

8. Страх.

9. Расса.

10. Национальность.

Прежде всего, восприятие боли зависит от половой принадлежности индивидуума. При предъявлении одинаковых по интенсивности болевых раздражителей у женщин объективный показатель боли (расширение зрачка) выражен сильнее. При использовании позитронной эмиссионной томографии было выявлено, что у женщин во время болевого раздражения отмечается значительно более выраженная активация структур мозга. Специальное исследование, проведенное на новорожденных, показало, что девочки проявляют более выраженную мимическую реакцию в ответ на болевое раздражение, чем мальчики. Возраст также имеет существенное значение для восприятия боли. Клинические наблюдения в большинстве случаев свидетельствуют о том, что интенсивность болевого восприятия снижается с возрастом. Например, число случаев безболевых инфарктов увеличивается у пациентов старше 65 лет, увеличивается также число случаев безболевой язвы желудка. Однако эти феномены могут объясняться различными особенностями проявления патологических процессов в пожилом возрасте, а не снижением болевого восприятия как такового. При моделировании патологической боли аппликацией капсаицина на кожу у молодых и престарелых людей возникала боль и гипералгезия одинаковой интенсивности. Однако у престарелых отмечался удлиненный латентный период до начала болевых ощущений и до развития максимальной интенсивности боли. У престарелых людей ощущение боли и гипералгезия длятся дольше, чем у молодых. Был сделан вывод, что у престарелых пациентов снижена пластичность ЦНС при длительном болевом раздражении. В клинических условиях это проявляется более медленным восстановлением и длительной повышенной болевой чувствительностью после повреждения тканей.

Известно также, что этнические группы, проживающие в северных регионах планеты, легче переносят боль по сравнению с южанами. Как уже было сказано выше, боль является многокомпонентным феноменом и ее восприятие зависит и от многих факторов. Поэтому дать четкое, всеобъемлющее определение боли довольно затруднительно. Наиболее популярным определением принято считать формулировку, предложенную группой экспертов Международной Ассоциации по изучению боли: «Боль – это неприятное ощущение и эмоциональное переживание, связанное с реальным или потенциальным повреждением тканей или описываемое в терминах такого повреждения». Данное определение свидетельствует о том, что ощущение боли может возникать не только при повреждении ткани или в условиях риска повреждения ткани, но даже при отсутствии какого–либо повреждения. В последнем случае определяющим механизмом возникновения боли является психоэмоциональное состояние человека (наличие депрессии, истерии или психоза). Иными словами, интерпретация человеком болевого ощущения, его эмоциональная реакция и поведение могут не коррелировать с тяжестью повреждения.

Боль может быть разделена на: соматическую поверхностную (в случае повреждения кожных покровов), соматическую глубокую (при повреждении костно–мышечной системы) и висцеральную. Боль может возникать при повреждении структур периферической и/или центральной нервных систем, участвующих в проведении и анализе болевых сигналов. Нейропатической болью называют боль, возникающую при повреждении периферических нервов, а при повреждении структур ЦНС – центральной болью. Особую группу составляют психогенные боли, которые возникают вне зависимости от соматических, висцеральных или нейрональных повреждений и определяются психологическими и социальными факторами. По временным параметрам выделяют острую и хроническую боль.

Острая боль – это новая, недавняя боль, неразрывно связанная с вызвавшим ее повреждением и, как правило, является симптомом какого–либо заболевания. Такая боль исчезает при устранении повреждения.

Хроническая боль часто приобретает статус самостоятельной болезни, продолжается длительный период времени и причина, вызвавшая эту боль, в ряде случаев может не определяться. Международная ассоциация по изучению боли определяет ее как «боль, которая продолжается сверх нормального периода заживления». Главным отличием хронической боли от остройявляется не временной фактор, а качественно иные нейрофизиологические, биохимические, психологические и клинические соотношения. Формирование хронической боли существенно зависит от комплекса психологических факторов. Хроническая боль является излюбленной маской скрытой депрессии. Тесная связь депрессии с хронической болью объясняется общими биохимическими механизмами.

Восприятие боли обеспечивается сложноорганизованной ноцицептивной системой, включающей в себя особую группу периферических рецепторов и центральных нейронов, расположенных во многих структурах центральной нервной системы и реагирующих на повреждающее воздействие. Иерархическая, многоуровневая организация ноцицептивной системы соответствует нейропсихологическим представлениям о динамической локализации мозговых функций и отвергает представления о «болевом центре», как конкретной морфологической структуре, удаление которой способствовало бы устранению болевого синдрома. Данное утверждение подтверждается многочисленными клиническими наблюдениями, свидетельствующими о том, что нейрохирургическое разрушение какой–либо из ноцицептивных структур у больных, страдающих хроническими болевыми синдромами, приносит только временное облегчение. Болевые синдромы, возникающие вследствие активации ноцицептивных рецепторов при травме, воспалении, ишемии, растяжении тканей, относят к соматогенным болевым синдромам.

Клинически соматогенные болевые синдромы проявляются наличием постоянной болезненности и/или повышением болевой чувствительности в зоне повреждения или воспаления. Пациенты, как правило, легко локализуют такие боли, четко определяют их интенсивность и характер. Со временем зона повышенной болевой чувствительности может расширяться и выходить за пределы поврежденных тканей. Участки с повышенной болевой чувствительностью к повреждающим стимулам называют зонами гипералгезии. Выделяют первичную и вторичную гипералгезию. Первичная гипералгезия охватывает поврежденные ткани, вторичная гипералгезия локализуется вне зоны повреждения. Психофизически области первичной кожной гипералгезии характеризуются снижением болевых порогов и болевой толерантности к повреждающим механическим и термическимстимулам. Зоны вторичной гипералгезии имеют нормальный болевой порог и сниженную болевую толерантность только к механическим раздражителям. Патофизиологической основой первичной гипералгезии является сенситизация (повышение чувствительности) ноцицепторов – А– ? и С–волокон к действию повреждающих стимулов. Сенситизация ноцицепторов проявляется снижением порога их активации, расширением их рецептивных полей, увеличением частоты и длительности разрядов в нервных волокнах, что приводит к усилению афферентного ноцицептивного потока. Экзогенное или эндогенное повреждение запускает целый каскад патофизиологических процессов, затрагивающих всю ноцицептивную систему (от тканевых рецепторов до корковых нейронов), а также целый ряд других регуляторных систем организма. Экзогенное или эндогенное повреждение приводит к выбросу вазонейроактивных веществ, ведущих к развитию воспаления. Эти вазонейроактивные вещества или так называемые медиаторы воспаления вызывают не только типовые проявления воспаления, в том числе и выраженную болевую реакцию, но и повышают чувствительность ноцицепторов к последующим раздражениям. Различают несколько типов медиаторов воспаления.

I. Плазменные медиаторы воспаления

1. Калликриин–кининовая ситема: брадикинин, каллидин

2. Компоненты комплимента: С2–С4, С3а, С5 – анафилотоксины, С3в – опсонин, С5–С9 – комплекс мембранной атаки

3. Система гемостаза и фибринолиза: XII фактор (фактор Хагемана), тромбин, фибриноген, фибринопептиды, плазмин и др.

II. Клеточные медиаторы воспаления 1. Биогенные амины: гистамин, серотонин, катехоламины

2. Производные арахидоновой кислоты: – простагландины (ПГЕ1, ПГЕ2, ПГF2 ? , тромбоксан А2, простациклин I2), – лейкотриены (ЛТВ4, МРС (А) – медленно реагирующая субстанция анафилаксии), – хемотаксические липиды

3. Гранулоцитарные факторы: катионные белки, нейтральные и кислые протеазы, лизосомальные ферменты

4. Факторы хемотаксиса: нейтрофильный хемотаксический фактор, хемотаксический фактор эозинофилов и др.

5. Кислородные радикалы: О2–супероксид, Н2О2, NO, ОН–гидроксильная группа

6. Адгезивные молекулы: селектины, интегрины

7. Цитокины: ИЛ–1, ИЛ–6, фактор некроза опухоли, хемокины, интерфероны, колониестимулирующий фактор и др.

8. Нуклеотиды и нуклеозиды: АТФ, АДФ, аденозин 9. Нейромедиаторы и нейропептиды: субстанция Р, кальцитонин ген–родственный пептид, нейрокинин А, глутамат, аспартат, норадреналин, ацетилхолин.

В настоящее время выделяют более 30 нейрохимических соединений, участвующих в механизмах возбуждения и торможения ноцицептивных нейронов в центральной нервной системе. Среди многочисленной группы нейромедиаторов, нейрогормонов и нейромодуляторов, опосредующих проведение ноцицептивных сигналов, существуют как простые молекулы – возбуждающие аминокислоты – ВАК (глутамат, аспартат), так и сложные высокомолекулярные соединения (субстанция Р, нейрокинин А, кальцитонин ген–родственный пептид и др.). ВАК играют важную роль в механизмах ноцицепции. Глутамат содержится более чем в половине нейронов дорзальных ганглиев и высвобождается под действием ноцицептивных импульсов. ВАК взаимодействуют с несколькими подтипами глутаматных рецепторов. Это прежде всего ионотропные рецепторы: NMDA–рецепторы (N–метил–D–аспартат) и АМРА–рецепторы ( амино–3–гидрокси–5–метил–4– изоксазол–пропионовой кислоты), а также металоболотропные глутаматные рецепторы. При активации этих рецепторов происходит интенсивное поступление ионов Са 2+ в клетку и изменение ее функциональной активности. Формируется стойкая гипервозбудимость нейронов и возникает гипералгезия.

Необходимо подчеркнуть, что возникшая вследствие повреждения тканей сенситизация ноцицептивных нейронов может несколько часов или дней сохраняться и после прекращения поступления ноцицептивных импульсов с периферии. Иными словами, если уже произошла гиперактивация ноцицептивных нейронов, то она не нуждается в дополнительной подпитке импульсами из места повреждения. Долговременное повышение возбудимости ноцицептивных нейронов связывают с активацией их генетического аппарата – экспрессией ранних, немедленно реагирующих генов, таких как c–fos, c–jun, junB и другие. В частности, продемонстрирована положительная корреляция между количеством fos –позитивных нейронов и степенью боли. В механизмах активации протоонкогенов важная роль отводится ионам Са 2+ . При повышении концентрации ионов Са 2+ в цитозоле, вследствие усиленного их входа через регулируемые NMDA–рецепторами Са–каналы, происходит экспрессия с–fos, с–jun , белковые продукты которых участвуют в регуляции долговременной возбудимости мембраны клетки. В последнее время важное значение в механизмах сенситизации ноцицептивных нейронов придается оксиду азота (NO), который в мозге выполняет роль нетипичного внесинаптического медиатора. Малые размеры и отсутствие заряда позволяют NO проникать через плазматическую мембрану и участвовать в межклеточной передаче сигнала, функционально соединяя пост– и пресинаптические нейроны. NO образуется из L–аргинина в нейронах, содержащих фермент NO–синтетазу. NO выделяется из клеток при NMDA–индуцируемом возбуждении и взаимодействует с пресинаптическими терминалями С–афферентов, усиливая выброс из них возбуждающей аминокислоты глутамата и нейрокининов. Оксид азота играет ключевую роль в воспалительных процессах. Локальное введение ингибиторов NО синтазы в сустав эффективно блокирует ноцицептивную передачу и воспаление. Все это свидетельствует, что оксид азота образуется в воспаленных суставах.

Кинины являются одними из наиболее мощных алгогенных модуляторов. Они быстро образуются при повреждении ткани и вызывают большинство эффектов, наблюдаемых при воспалении: вазодилатацию, увеличение сосудистой проницаемости, экстравазацию плазмы, миграцию клеток, боль и гипералгезию. Они активируют С–волокна, что приводит к нейрогенному воспалению за счет выброса из нервных терминалей субстанции Р, кальцитонин ген–родственного пептида и других нейромедиаторов. Прямой возбуждающий эффект брадикинина на чувствительные нервные окончания опосредуется B2–рецепторами и связан с активацией мембранной фосфолипазы С. Непрямое возбуждающее действие брадикинина на окончания нервных афферентов обусловлено его воздействием на различные тканевые элементы (эндотелиальные клетки, фибробласты, тучные клетки, макрофаги и нейтрофилы) и стимулированием образования в них медиаторов воспаления, которые, взаимодействуя с соответствующими рецепторами на нервных окончаниях, активируют мембранную аденилатциклазу. В свою очередь, аденилатциклаза и фосфолипаза С стимулируют образование ферментов, фосфорилирующих белки ионных каналов. Результатом фосфорилирования белков ионных каналов является изменение проницаемости мембраны для ионов, что отражается на возбудимости нервных окончаний и способности генерировать нервные импульсы. Брадикинин, действуя через В2–рецепторы, стимулирует образование арахидоновой кислоты с последующим образованием простагландинов, простациклинов, тромбоксанов и лейкотриенов. Эти вещества, обладая выраженным самостоятельным алгогенным действием, в свою очередь, потенциируют способность гистамина, серотонина и брадикинина сенситизировать нервные окончания. В результате этого из немиелинизированных С–афферентов усиливается выброс тахикининов (субстанции Р и нейрокинина А), которые, увеличивая сосудистую проницаемость, еще больше повышают локальную концентрацию медиаторов воспаления.

Применение глюкокортикоидов препятствует образованию арахидоновой кислоты за счет подавления активности фосфолипазы А2. В свою очередь, нестероидные противовоспалительные препараты (НПВП) препятствуют образованию циклических эндопероксидов, в частности, простагландинов. Под общим названием НПВП объединяются различные по химическому строению вещества, оказывающие ингибирующее влияние на циклооксигеназу. Все НПВП в той или иной степени обладают противовоспалительным, жаропонижающим и анальгетическим эффектом. К сожалению, практически все НПВП при длительном применении обладают выраженным побочным действием. Они вызывают диспепсию, пептические язвы и желудочно–кишечные кровотечения. Может возникать также необратимое снижение клубочковой фильтрации, ведущее к интерстициальному нефриту и острой почечной недостаточности. НПВП оказывают отрицательное действие на микроциркуляцию, могут вызывать бронхоспазм. В настоящее время известно, что существует две разновидности циклооксигеназ.

Циклооксигеназа–1 (ЦОГ–1) образуется в условиях нормы, а циклооксигеназа–2 (ЦОГ–2) образуется в процессе воспаления. В настоящее время разработка эффективных НПВП направлена на создание избирательных ингибиторов ЦОГ–2, которые в отличие от неселективных ингибиторов обладают значительно менее выраженным побочным действием. Вместе с тем имеются сведения о том, что препараты со «сбалансированной» ингибирующей активностью по отношению к ЦОГ–1 и ЦОГ–2 могут обладать более выраженной противовоспалительной и анальгетической активностью по сравнению со специфическими ингибиторами ЦОГ–2. Наряду с разработкой препаратов, ингибирующих ЦОГ–1 и ЦОГ–2, ведутся поиски принципиально новых анальгетических препаратов. Предполагается, что за хроническое воспаление ответственны В1–рецепторы. Антагонисты этих рецепторов значительно снижают проявления воспаления. Кроме того брадикинин участвует в выработке диацилглицерола и активирует протеинкиназу С, что, в свою очередь, усиливает сенситизацию нервных клеток. Протеинкиназа С играет очень важную роль в ноцицепции, и сейчас проводятся поиски препаратов, способных подавлять ее активность. Помимо синтеза и выброса медиаторов воспаления, гипервозбудимости спинальных ноцицептивных нейронов и усиления афферентного потока, идущего в центральные структуры мозга, определенную роль играет активность симпатической нервной системы .

Установлено, что повышение чувствительности терминалей ноцицептивных афферентов при активации постганглионарных симпатических волокон опосредуется двумя путями. Во–первых, за счет повышения сосудистой проницаемости в зоне повреждения и увеличения концентрации медиаторов воспаления (непрямой путь) и, во–вторых, за счет прямого воздействия нейротрансмиттеров симпатической нервной системы – норадреналина и адреналина на 2–адренорецепторы, расположенные на мембране ноцицепторов. При воспалении происходит активация так называемых «молчащих» ноцицептивных нейронов, которые в отсутствие воспаления не отвечают на различного рода ноцицептивные раздражения. Наряду с усилением афферентного ноцицептивного потока при воспалении отмечается усиление нисходящего контроля. Это происходит в результате активации антиноцицептивной системы. Она активируется, когда болевой сигнал достигает антиноцицептивных структур ствола мозга, таламуса и коры больших полушарий мозга. Активация околоводопроводного серого вещества и большого ядра шва вызывает высвобождение эндорфинов и энкефалинов, которые связываются с рецепторами, запуская серию физико–химических изменений, уменьшающих боль. Наибольшее число используемых анальгетиков оказывают свое действие благодаря взаимодействию с µ –рецепторами . До недавнего времени было принято считать, что опиоиды действуют исключительно на нервную систему и вызывают анальгетический эффект за счет взаимодействия с опиоидными рецепторами, локализованными в головном и спинном мозге. Однако опиатные рецепторы и их лиганды обнаружены на иммунных клетках, в периферических нервах, в воспаленных тканях. В настоящее время известно, что 70% рецепторов к эндорфину и энкефалинам расположены в пресинаптической мембране ноцицепторов и чаще всего болевой сигнал подавляется (перед тем как достигнуть задних рогов спинного мозга). Динорфин активирует рецепторы и ингибирует вставочные нейроны, что приводит к высвобождению ГАМК, которая вызывает гиперполяризацию клеток заднего рога и ингибирует дальнейшую передачу сигнала.

Опиоидные рецепторы располагаются в спинном мозге главным образом вокруг терминалей С–волокон в I пластине дорзальных рогов. Они синтезируются в телах малых клеток дорзальных ганглиев и транспортируются проксимально и дистально по аксонам. Опиоидные рецепторы неактивны в невоспаленных тканях, после начала воспаления эти рецепторы активируются в течение нескольких часов. Синтез опиатных рецепторов в нейронах ганглиев дорзальных рогов также увеличивается при воспалении, но этот процесс, включая время транспортировки по аксонам, составляет несколько дней. В клинических исследованиях установлено, что инъекция 1 мг морфина в коленный сустав после удаления мениска дает выраженный продолжительный анальгетический эффект. В дальнейшем было показано наличие опиатных рецепторов в воспаленной синовиальной ткани. Следует отметить, что способность опиатов вызывать местный анальгетический эффект при их аппликации на ткани была описана еще в XVIII веке. Так, английский врач Хеберден (Heberden) в 1774 году опубликовал работу, в которой описал положительный эффект аппликации экстракта опия при лечении геморроидальных болей. Показан хороший анальгетический эффект диаморфина при его локальной аппликации на места пролежней и на малигнизированные участки кожи, при удалении зубов в условиях выраженного воспаления окружающей ткани. Антиноцицептивные эффекты (возникающие в течение нескольких минут после аппликации опиоидов) зависят прежде всего от блокады распространения потенциалов действия, а также от уменьшения выброса возбуждающих медиаторов, в частности, субстанции Р из нервных окончаний. Морфин плохо абсорбируется через нормальную кожу и хорошо всасывается через воспаленную. Поэтому аппликация морфина на кожу дает только локальный анальгетический эффект и не действует системно.

В последние годы все большее число авторов начинают говорить о целесообразности применения сбалансированной аналгезии, т.е. сочетанном применении НПВП и опиатных анальгетиков , что дает возможность снизить дозы и соответственно побочные эффекты как первых, так и вторых. Опиоиды все чаще начинают применяться при артритических болях. В частности, в настоящее время с этой целью используется болюсная форма трамадола. Этот препарат является агонистом–антагонистом, и поэтому вероятность возникновения физической зависимости при использовании адекватных доз невелика. Известно, что опиоиды, относящиеся к группе агонистов–антагонистов, в значительно меньшей степени вызывают физическую зависимость по сравнению с истинными опиатами. Существует мнение, что опиоиды, используемые в корректных дозах, более безопасны, чем традиционные НПВС. Одним из важнейших факторов хронизации боли является присоединение депрессии. По мнению некоторых авторов, при лечении хронической боли необходимо всегда использовать антидепрессанты, независимо от ее патогенеза. Противоболевой эффект акнтидепрессантов достигается за счет трех механизмов. Первый – уменьшение депрессивной симптоматики. Второй – антидепрессанты активируют серотонические и норадренэргические антиноцицептивные системы. Третий механизм заключается в том, что амитриптилин и другие трициклические антидепрессанты действуют как антагонисты NMDA–рецепторов и взаимодействуют с эндогенной аденозиновой системой. Таким образом, в патогенезе болевых синдромов, возникающих при воспалении, участвует большое число различных нейрофизиологических и нейрохимических механизмов, которые неизбежно приводят к изменениям в психофизиологическом статусе пациента. Поэтому наряду с противовоспалительными и анальгетическими препаратами для проведения комплексной патогенетически обоснованной терапии, как правило, необходимо назначать и антидепрессанты.

^

Патофизиологической основой первичной гипералгезии является сенситизация (повышение чувствительности) ноцицепторов ("болевых" рецепторов) к действию повреждающих стимулов. Электрофизиологически сенситизация ноцицепторов проявляется снижением порога их активации, увеличением частоты н длительности разрядов в нервных волокнах (группы А-дельта и С), что приводит к усилению афферентного ноцицептивного потока.

Сенситизация ноцицепторов происходит а результате выделения в зоне повреждения медиаторов воспаления, включающих брадикинин, метаболиты арахидоновой кислоты (простагландины и лейкотриены), биогенные амины, пурины и ряд других веществ, которые, взаимодействуя с. соответствующими рецепторами на терминалях ноцицептивных афферентов, повышают чувствительность последних к механическим и термическим стимулам.

В настоящее время большое значение в инициации механизмов, обеспечивающих сенситизацию ноцицепторов, отводится брадикинину, который может оказыват как прямое, так и непрямое действие на чувствительны! нервные окончания.

Прямой возбуждающий эффект брадикинина на чувствительные нервные окончания опосредуется В2-рецеп торами и связан с активацией мембранной фосфолипа зы С.

Непрямое возбуждающее действие брадикинина н. окончания нервных афферентов обусловлено его воз действием на различные тканевые элементы (эндотелиальные клетки, фибробласты, тучные клетки, макрофаг” и нейтрофилы) и стимулированием образования в ни;

медиаторов воспаления (например, простагландинов), которые, взаимодействуя с соответствующими рецептора ми на нервных окончаниях, активируют мембранную аде нилатциклазу. В свою очередь аденилатциклаза и фосфолилаза С стимулируют образование ферментов, фосформирующих белки ионных каналов. Результатом фосформирования белков ионных каналов является изменение проницаемости мембраны для ионов, что отражается на возбудимости нервных окончаний и способности генерировать нервные импульсы.

Сенситизации ноцицепторов при повреждении тканей способствуют не только тканевые и плазменные алгогены, но и нейропептиды, выделяющиеся из С-афферен-тов, такие, как субстанция Р, нейрокинин А или кальцитонин-ген-родственный пептид. Эти нейропептиды обла-дают противовоспалительным эффектом, вызывая расширение сосудов и увеличение их проницаемости. Кроме этого, они способствуют высвобождению из тучных клеток и лейкоцитов простаглаидина Е2, цитокинов и биогенных аминов, которые, воздействуя на мембрану нервных окончаний, запускают, как указывалось выше, метаболические процессы, изменяющие возбудимость нер вных афферентов.

На сенситизацию ноцицепторов и развитие первичной гипералгезии также влияют эфференты симпатической нервной системы. Установлено, что повышение чувствительности терминалей высокопороговых тонких афферентов при активации постганглионарных симпатических волокон опосредуется двумя путями. Во-первых, за счет повышения сосудистой проницаемости в зоне повреждения и увеличения концентрации медиаторов воспаления (непрямой путь) и, во-вторых, за счет прямого воздействия нейротрансмиттеров симпатической нервной системы — норадреналина и адреналина, на альфа2-адренорецепторы, расположенные на мембране ноцицепторов.

^

Клинически область вторичной гипералгезии характеризуется повышением болевой чувствительности к интенсивным механическим стимулам вне зоны повреждения и может располагаться на достаточном удалении от места повреждения, в том числе и на противоположной стороне тела. Этот феномен, на наш взгляд, может быть объяснён только механизмами центральной нейроплас-тичности, приводящими к стойкой гипервозбудимости ноцицептивных нейронов. Подтверждением этому служат клинико-экспериментальные данные, свидетельствующие о том, что зона вторичной гипералгезии сохраняется при введении местных анестетиков в область повреждения и исчезает в случае блокады активности нейронов дорзального рога. В электрофизиологических исследованиях было продемонстрировано повышение возбудимости и реактивности нейронов спиноталамическо-го тракта к механическим раздражениям их рецептивных полей, расположенных в зоне вторичной гипералге-эии. Сенситизированмые нейроны в ответ на предъявляемые раздражения не только генерировали разряды с увеличенной частотой, но и сохраняли повышенную активность более продолжительное время.

Такая сенситизация нейронов дорзальных рогов может быть вызвана различными типами повреждений: термическими, химическими, механическими, возникающими вследствие гипоксии, острого воспаления или электрической стимуляции С-афферентов.

В настоящее время большое значение в механизмах сенситизации ноцицептивных нейронов дорзальных рогов спинного мозга придаётся возбуждающим аминокислотам и нейропептидам.

Иммуногистохимическими методами было установлено, что синаптические терминали многих тонких высоко-пороговых афферентов содержат в качестве нейроме-диатора глутамат, аспартат и ряд нейропептидов, таких, как субстанция Р, нейрокинин А, кальцитонин ген-родственный пептид и многие другие, которые высвобождаются из пресинаптических терминалей под действием ноцицептивных импульсов.

Выделение глутамата из пресинаптических терминалей происходит при любом ноцицептивном воздействии — коротком (уколе) или длительном. Считается, что реализация физиологических болевых реакций (например, защитный рефлекс отдёргивания) при выделении глутамата опосредуется через АМРА-рецепторы (alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid), в то время как NMDA-рецепторы (N-methyl-D-aspartate) обеспечивают длительную, в том числе и патологическую гипер-активность ноцицептивных нейронов.

Активирующее действие глутамата на ноцицептивные нейроны потенцируется субстанцией Р, которая как медиатор сосуществует в более 90 процентах терминалей высокопороговых сенсорных волокон, содержащих глутамат. Субстанция Р, как и другие нейрокинины, взаимодействуя с NK-1 рецепторами (neurokinin-1), не только повышает концентрацию внутриклеточного Са2+ посредством его мобилизации из внутриклеточных депо, но и усиливает активность NMDA-рецепторов.

В последнее время важное значение в механизмах сенситизации ноцицептивных нейронов придается оксиду азота (NO), который в мозге выполняет роль нетипичного внесинаптического медиатора. NO образуется в нейронах, содержащих фермент NO-синтетазу из L-аргини-на. NO выделяется из клеток при NMDA-индуцируемом возбуждении и взаимодействует с пресинаптическими тер-миналями С-афферентов, усиливая выброс из них глю-тамата и нейрокининов.

Таким образом, индуцированное ноцицептивной стимуляцией высвобождение глутамата и нейропептидов из центральных терминалей С-афферентов вызывает стойкие изменения возбудимости ноцицептивных нейронов, усиление их спонтанной активности, увеличение длительности послеразрядов и расширение рецептивных полей.

Необходимо подчеркнуть, что возникшая вследствие повреждения тканей сенситизация ноцицептивных нейронов может несколько часов или дней сохраняться и после прекращения поступления ноцицептивных импульсов с периферии, иными словами, если уже произошла гиперактивация ноцицептивных нейронов, то она не нуждается в дополнительной подпитке импульсами из места повреждения. Долговременное повышение возбудимости ноцицептивных нейронов связывают с активацией их генетического аппарата — экспрессией ранних, немедленно реагирующих генов, таких, как c-fos, c-jun, junB и другие.

В механизмах активации прото-онкогенов важная роль отводится ионам Са2+. При повышении концентрации ионов Са2+ в цитозоле, вследствие усиленного их входа через регулируемые NMDA-рецепторами Са-каналы, происходит экспрессия c-fos, c-jun, белковые продукты которых участвуют в регуляции долговременной возбудимости мембраны клетки.

Помимо сенситизации ноцицептивных нейронов дор-зального рога, повреждение тканей вызывает также повышение возбудимости и реактивности ноцицептивных нейронов и в вышележащих центрах, включая ядра тала-муса и соматосенсорную кору больших полушарий.

Таким образом, периферическое повреждение запускает целый каскад патофизиологических и регулятор-ных процессов, затрагивающих всю ноцицептивную систему от тканевых рецепторов до корковых нейронов. Вместе с тем, если кратко охарактеризовать патогенез соматогенных болевых синдромов, то можно отметить следующие наиболее важные звенья:

  1. Раздражение ноцицепторов при повреждении тканей
  2. Выделение алгогенов и сенситизация ноцицепторов в области повреждения
  3. Усиление ноцицептивного афферентного потока с периферии
  4. Сенситизация ноцицептивных нейронов на различных уровнях ЦНС
В связи с этим патогенетически обоснованным при соматогенных болевых синдромах считается применение средств, направленных;
  1. На подавление синтеза медиаторов воспаления
  2. На ограничение поступления ноцицептивной импуль-сации из зоны повреждения в ЦНС.
  3. На активацию структур антиноцицептивной системы.
Ограничение входа ноцицептивной импульсации в ЦНС достигается при помощи различного рода блокад местными анестетиками, которые не только могут предотвратить сенситизацию ноцицептивных нейронов, но и способствовать нормализации микроциркуляции в зоне повреждения, улучшая восстановление повреждённых тканей. Использование нестероидных и/или стероидных противовоспалительных препаратов обеспечивает подавление синтеза алгогенов, снижение воспалительных реакций и тем самым уменьшает сенситизацию ноцицепторов. Для активации структур антиноцицептивной системы, осуществляющих контроль за проведением ноцицептивной импульсации в ЦНС, может быть использован целый спектр (в зависимости от клинических показаний) медикаментозных (наркотические и ненаркотические аналгетики, бензодиазепины, агонисты альфа-2-адрено-рецепторов и другие) и немедикаментозных (чрезкож-ная электронейростимуляция, рефлексотерапия, физиотерапия) средств, снижающих болевую чувствительность и негативное эмоциональное переживание.

^

Вызванные повреждением периферических нервов или структур центральной нервной системы непременные болевые синдромы представляют собой один из клинических парадоксов. Действительно, нарушение целостности нерва должно приводить к снижению сенсорных ощущений в иннервируемой им области. Однако пациенты с полной денервацией конечности, например, при авульсии плечевого сплетения, часто испытывают в парализованной руке мучительные боли.

Считается, что нейрогенные болевые синдромы возникают при повреждении структур, связанных с проведением ноцицептивных сигналов. Важным доказательством этого положения являются клинические наблюдения. Так, у пациентов после повреждения периферических нервов в области постоянной болезненности, помимо парестезии и дизестезии, отмечается повышение порогов на укол и ноцицептивный электрический стимул. У больных сирингомиелией выраженный болевой синдромвозникает при распространении патологического процесса на дорзальные рога спинного мозга, при этом снижается температурная и болевая чувствительность возникает при распространении патологического процесса на дорзальные рога спинного мозга, при этом снижается температурная и болевая чувствительность. У больных с рассеянным склерозом, страдающих также приступами болевых пароксизмов, склеротические бляшки обнаружены в афферентах спиноталамического тракта. Изолированное поражение вентролатеральных квадрантов спинного мозга наряду с возникновением спонтанных болей и дизестезии вызывает снижение болевой и температурной чувствительности. При клиническом обследовании пациентов с таламическими болями, возникающими после церебро-васкулярных нарушений, также отмечается снижение температурной и болевой чувствительности. При этом очаги повреждений, выявленные методом компьютерной томографии, соответствуют местам прохождения афферентов соматической чувствительности в стволе мозга, среднем мозге и таламусе. Спонтанные боли возникают у людей при повреждении соматосенсорной коры, являющейся конечным корковым пунктом восходящей ноцицептивной системы. Всё это свидетельствует о том, чтонейрогенный болевой синдром может возникнуть независимо от места повреждения боль-проводящих путей.

Для непременного болевого синдрома характерно наличие следующих симптомов: постоянная, спонтанная или пароксизмальная боль, сенсорный дефицит в зоне болезненности, аллодиния (появление болезненного ощущения при лёгком неповреждающем воздействии), гипе-ралгезия и гиперпатия. Полиморфизм болевых ощущений у разных пациентов обусловлен характером, степенью и местом повреждения. При неполном, частичном повреждении ноцицептивных афферентов чаще возникает острая периодическая пароксизмальная боль, подобная удару электрического тока и длящаяся всего несколько секунд. В случае полной денервации боли чаще всего имеют постоянный характер.

Одной из типичных черт нейрогенных болевых синдромов является аллодиния — болевое ощущение, возникающее при слабом механическом раздражении кисточкой определённых кожных участков. В механизме возникновения аллодинии большое значение придаётся сенситизации нейронов широкого динамического диапазона (ШДД-нейроны), которые одновременно получают афферентные сигналы от низкопороговых "тактильных" А-бета волокон и высокопороговых "болевых" С-воло-кон.

Механизмы возникновения нейрогенных болевых синдромов в корне отличаются от болевых синдромов, вызванных повреждением соматических тканей или внутренних органов.

Развитие нейрогенных болевых синдромов в настоящее время связывают с морфофункциональными изменениями как в периферическом травмированном нерве, так и в центральной нервной системе.

При повреждении нерва, как известно, возникает атрофия и гибель нервных волокон (причём преимущественно гибнут немиелинизированные С-афференты). Вслед за дегенеративными изменениями начинается регенерация нервных волокон, которая сопровождается образованием невром. Структура нерва становится неоднородной, что является причиной нарушения проведения возбуждения по нерву.

На сегодняшний день существует большое количество клинических и экспериментальных работ, свидетельствующих о наличии в повреждённом нерве анормальной эктопической активности. Считается, что спонтанные эктопические разряды являются основой для парестезий и болей у пациентов с повреждёнными нервами. Ненормальная электрическая активность зарегистрирована как в невроме, так и в самом нервном волокне. Эти локусы ненормальной активности получили название эктопических нейрональных пейсмекерных мест, обладающих самоподдерживающейся активностью. Источником эктопической активности являются зоны демиелинизации и регенерации нерва, невромы, а также нервные клетки дорзальных ганглиев, связанные с повреждёнными аксонами.

Использование специальных методов при проведении электрофизиологических исследований позволило установить, что генерация невромой спонтанной эктопической активности вызвана нестабильностью мембранного потенциала, причиной которой является увеличение на мембране количества натриевых каналов.

Эктопическая активность существенным образом отличается от паттернов нормальных разрядов. Если в нормальных условиях длительность разряда ограничена продолжительностью стимула, то эктопический разряд имеет не только увеличенную амплитуду сигнала, но и большую продолжительность. В результате чего разряд, возникший в одном волокне, может активировать другие волокна. Подобное перекрёстное возбуждение волокон или эфаптическая передача сигнала наблюдается только в условиях патологии и является основой для дизэсте-зии и гиперпатии.

На повышение фоновой активности повреждённых нервов существенное влияние оказывает увеличение чувствительности нервных волокон к механическим и химическим стимулам. Появление механо- и хемочувствитель-ности в нервных волокнах увеличивает диапазон раздражителей, способных вызвать генерацию потенциалов действия.

Изменение возбудимости нервных волокон при повреждении происходит в течение первых десяти часов и во многом зависит от аксонального транспорта. Установлено, что блокада аксотока задерживает развитие механочувствительности нервных волокон.

Современные клинические и экспериментальные исследования свидетельствуют, что болевой синдром, вызванный повреждением нервов, наряду с появлением анормальной активности в нервных волокнах, сопровождается также повышением возбудимости и реактивности нейронов дорзальных рогов спинного мозга и вышележащих структур ноцицептивной системы. Центральная сенситизация при повреждении периферических нервов или дорзальных корешков характеризуется увеличением спонтанной импульсной активности нейронов дорзального рога и появлением у них вспышек высокочастотных разрядов^ расширением рецептивных полей, повышением реактивности нейронов на периферические раздражения и удлинением времени послеразрядов.

Одновременно с увеличением нейрональной активности на уровне дорзальных рогов спинного мозга у животных с экспериментальными моделями нейрогенных болевых синдромов регистрируется усиление активности нейронов в таламических ядрах — вентробазальном и парафасцикулярном комплексах, в соматосенсорной коре больших полушарий. Однако наблюдаемые изменения активности нейронов в структурах ноцицептивной системы при нейрогенных болевых синдромах имеют ряд принципиальных отличий по сравнению с механизмами, приводящими к сенситизации ноцицептивных нейронов у пациентов с соматогенными болевыми синдромами.

Структурной основой нейрогенных болевых синдромов, согласно представлениям Г. Н. Крыжаиовского, является агрегат взаимодействующих сенситизи-рованных нейронов с нарушенными тормозными механизмами и повышенной возбудимостью. Такие агрегаты способны развивать длительную самоподдерживающуюся патологическую активность, для которой не обязательна афферентная стимуляция с периферии. Агрегаты нейронов с патологической активностью могут возникать вследствие деаффереитации структур, осуществляющих проведение и обработку ноцицептивных сигналов на разных уровнях спинного и головного мозга. Например, де-аффервнтация спинного мозга у животных путем перерезки дорзальных корешков приводит к появлению вы- сокочастотных пачечных разрядов в нейронах дорзаль-ных рогов. Схожая "эпилептиформная" активность в спинном мозге также была зарегистрирована и у людей, страдающих болевым синдромом, вызванным травматическим повреждением спинномозговых корешков.

Формирование агрегатов гиперактивных нейронов осуществляется синаптическими и несинаптическими механизмами.

Одним из условий образования агрегатов при повреждении нейрональных структур является возникновение устойчивой деполяризации нейронов, которая обусловлена:

Важное значение в механизмах образования агрегатов гиперактивных нейронов в структурах ЦНС отводится подавлению тормозных реакций, которые опосреду-ются глицином и гаммааминомасляной кислотой (ГАМК). Подтверждением этому служит возникновение болевого синдрома у крыс при аппликации на дорзальную поверхность спинного мозга стрихнина — препарата, блокирующего постсинаптическое глициновое торможение, или веществ, нарушающих ГАМК-ергическое торможение (например, бикукулина или пикротоксина). Внутриспиналь-ное введение стрихнина усиливает также развитие болевого синдрома при повреждении седалищного нерва. Дефицит спинального глицинергического и ГАМК-ерги-ческого торможения возникает и при локальной ишемии спинного мозга, приводящей к развитию выраженной аллодинии и нейрональной гипервозбудимости.

В условиях недостаточности тормозных механизмов и повышенной возбудимости нейронов облегчаются синаптические межнейронные взаимодействия, происходит активация "молчащих" неактивных синапсов и объединение близлежащих сенситизированных нейронов в единый агрегат.

При формировании нейрогенных болевых синдромов глубокие нейропластические преобразования затрагивают не только первичное ноцицептивное реле, но и высшие структуры системы болевой чувствительности. Их деятельность изменяется настолько, что электростимуляция центрального серого вещества (одной из важнейших структур антиноцицептивной системы), которая эффективно используется для купирования болей у онкологических больных, не приносит облегчения пациентам с нейрогенными болевыми синдромами.

Таким образом, в основе развития нейрогенных болевых синдромов лежат структурно-функциональные изменения, затрагивающие периферические и центральные отделы системы болевой чувствительности. Под влиянием повреждающих факторов возникает дефицит тормозных реакций, приводящий к развитию в первичном ноцицеп-тивном реле агрегатов гиперактивных нейронов, продуцирующих мощный афферентный поток импульсов, который сенситизирут сулраспинальные ноцицептивные центры, дезинтегирует их нормальную работу и вовлекает их в патологические реакции. Происходящие при этом пластические изменения объединяют гхпеоактивированные ноцицептивные структуры в новую патодинамическую организацию — патологическую алгическую систему, результатом деятельности которой является болевой синдром.

Резюмируя приведённые клинико-экспериментальные данные по механизмам развития нейрогенных болевых синдромов, можно выделить следующие основные этапы патогенеза:• образование невром и участков демиелинизации в повреждённом нерве, являющихся периферическими пей-смекерными очагами патологического электрогенеза:

Учитывая особенности патогенеза нейрогенных болевых синдромов, оправданным при лечении данной патологии будет использование средств, подавляющих патологическую активность периферических пеисмекеров и агрегатов гипервозбудимых нейронов.

Приоритетными в настоящее время считаются следующие лекарственные средства: антиконвульсанты и препараты, усиливающие тормозные реакции в ЦНС — бензодиазепины, агонисты рецепторов ГАМК, блокаторы кальциевых каналов, антагонисты возбуждающих аминокислот, периферические и центральные блокаторы Na-каналов.

medznate.ru

78.Механизм возникновения боли. Патофизиология болевого синдрома.

Механизм возникновения боли. Афферентная иннервация пульпы зуба осуществляется за счет миелиновых нервных волокон типа А-дельтаи безмиелиновых волокон типа С. Оба типа волокон отвечают за возникновение болевого синдрома. Миелиновые волокна ответственны за острую, локализованную боль, безмиелиновые — за тупую, диффузную. Существует три теории природы зубной боли: 1) гидродинамическая теория, рассматривающая движение жидкости по дентинным трубочкам; 2) теория прямого нервного раздражения и 3) теория, согласно которой отростки одонтобластов служат болевыми рецепторами и участвуют в синаптической передаче раздражения. Окончания сенсорного нерва в участке воспаления могут раздражаться при увеличении внутрипульпарного давления, изменении рН, при высвобождении простагландинов и других медиаторов воспаления, а также продуктов разрушения клеток. Этот процесс усиливается высвобождением нейропептидов из нервных волокон, когда обычный стимул воспринимается как болевой (Raab, 1993

79. Одонтогенная хрониоинтоксикация. Понятие. Этиология. Патогенез. Роль в развитии общесоматической патологии.

Очаг инфекции - это скопление микробов, продуктов их жизнедеятельности, элементов распада и клеток, которые постоянно рефлекторно раздражают нервные рецепторы. В ответ на такое раздражение может возникнуть особый тип реакции организма - сепсис.

Продолжительность септической реакции может колебаться от нескольких часов (молниеносная форма ), дней (острый сепсис ) до нескольких месяцев и даже лет (хронический сепсис ).

Взависимости от локализации первичного очага инфекции различают сепсис одонтогенный, отогенный, тонзиллогенный и др.

Первичный очаг, что было причиной септического состояния, а также входные ворота инфекции и связи между местным очагом и общей реактивностью организма остаются главной проблемой диагностики и лечения хрониосептичних состояний.

Изменения реактивности организма при очаговой инфекции в настоящее время большинство клиницистов связывают с определенными иммунологическими нарушениями. Длительное существование локального очага инфекции (в зубах, периодонте, миндалинах, верхнечелюстном синусе и других органах и тканях) сопровождается повышенной чувствительностью организма - сенсибилизацией к действию того или иного раздражителя.

Втечение последних 50 - 70 лет были изучены особенности ротового сепсиса, стало важным этапом в становлении стоматологии как клинической дисциплины. Были раскрыты этиологические факторы и патогенетические механизмы, которые побудили к пересмотру имеющихся методов лечения зубов с очагом хронического воспаления.

Вначале XX в. американские ученые Э. Rosenow и R. Bieling предложили теорию, согласно которой из очага инфекции микроорганизмы попадают в тот или иной орган и поражают его. Исходя из этого, авторы утверждали, что каждый депульпированный зуб является неизбежным источником сепсиса, а потому его нужно обязательно удалять. Упрощенный механизм попадания бактерий из одонтогенных очагов в другие органы вызвал сомнения у врачей - исследователей из многих стран и теория ротового сепсиса американских ученых подверглась серьезной критике.

Признание важной роли стоматогенных очагов инфекции в заболевании организма имеет большое практическое значение, так как нередко после ликвидации очага поражения исчезают расстройства в органах и системах, удаленных от него. Поэтому очаги поражения, имеющихся в полости рта, следует рассматривать не как местное заболевание, а как источник аутоинфекции и аутоинтоксикации всего организма. Следствием стоматогенной хрониоинтоксикации и объективным критерием ее наличии есть существование очагообусловленых болезней внутренних органов, вызванных локальным очагом инфекции.

Для определения очага хронического сепсиса были предложены различные термины : " очаг хронического воспаления", " хронический очаг инфекции", "очаг дремотной инфекции", " одонтогенный очаг", " стоматологический очаг".

Таким образом подчеркивалась его локализация и связь со стоматологическими заболеваниями.

Термином стоматогенная очаговая инфекция называют такое состояние организма, когда болезнь любой системы организма или органа патогенетически связана с хроническим, вялым, иногда скрытым воспалительным процессом в челюстно - лицевой области.

Стоматогенным очагом инфекции называют локализованную хроническую воспалительную болезнь органов или тканей челюстно - лицевой области, которая, возможно, испытала медикаментозного воздействия, но способна вызвать стоматогенную хрониоинтоксикацию.

Стоматогенной хрониоинтоксикацией называют хроническую болезнь организма, возникающую вследствие длительного и постоянного воздействия продуктов метаболизма микроорганизмов и распада клеток стоматогенного очага инфекции, характеризуется несоответствием субъективных симптомов и нарушений, регистрируемых объективно.

Анатомическое и патофизиологическое обоснование возникновения очагов патологического раздражения в челюстно - лицевой области.

Челюстно - лицевая область не случайно привлекает к себе пристальное внимание исследователей и врачей в изучении очаговой инфекции, поскольку полость рта - это начало пищеварительного тракта и частично дыхательных путей и поэтому представляет собой ворота, через к о т о р ы е в о р г а н и з м п о с т о я н н о п о п а д а е т б о л ь ш о е к о л и ч е с т в о р а з л и ч н ы х микроорганизмов. Количество бактерий в ротовой жидкости колеблется от 50 млн. до 5 млрд. Предпосылка богатства микрофлоры - анатомо - физиологическая специфика органов и тканей полости рта.

На десенном крае гигиенично ухоженной полости рта выявляется небольшое количество бактерий. Пренебрежение гигиеной приводит к накоплению микрофлоры на зубах : уже через четыре часа на 1 мм зубной поверхности насчитывают 10-10бактерий, среди которых преобладают

Streptococcus и Actinomyces, а также грамотрицательные, факультативные анаэробные палочки - Haemopholus, Eikenella, Actinobacillus actinomycetemcomitans.

Втечение суток количество бактерий возрастает на 10-10,формируя массивные скопления в поверхностных слоях десневой борозды. Характерной особенностью микробных скоплений на зубах является то, что микроорганизмы формируют структуры, перпендикулярные зубной поверхности за счет различных механизмов адгезии и коагрегации. Джгутиковые и нитевидные бактерии играют важную роль в удержании микробных масс. В 1 г зубного налета количество бактерий колеблется от

10 до 1000 млрд.

Бактерицидность нормальной СОПР, а также слюны содержит микрофлору состоянии пониженной вирулентности. Гуморальные и клеточные факторы антибактериальной защиты тесно связаны и взаимодействуют между собой.

Неспецифические факторы антибактериальной защиты, в целом направлены на ликвидацию микроорганизмов ( посторонних ), реализуются за счет механического, химического и физиологического механизмов.

К неспецифическим факторам антибактериальной защиты, которые влияют только на отдельные виды микроорганизмов, относятся иммуноглобулины - защитные белки крови или секретов, имеющих функцию антител и относящиеся к глобулиновой фракции. В полости рта всего Ig A, Ig G, Ig M.

Важнейшая роль в предотвращении сенсибилизации организма стоматогенной инфекцией отведена барьерной функции пародонта, которая обеспечивается следующими факторами:

- способностью эпителия десны к ороговению ; - количеством и особенностями направления пучков коллагеновых волокон ; - тургором десен;

- по состоянию гликозаминогликанов соединительнотканных образований пародонта ; - особенностями строения и функции десневой борозды ; - наличием тучных и плазматических клеток ;

- десневой жидкости с высоким содержанием бактерицидных веществ и иммуноглобулинов. Ротовая полость - высокочувствительная рецепторная зона, которая может быть источником резких рефлекторных воздействий на внутренние органы. Сложная и богатая иннервация челюстно -

лицевой области способствует тому, что импульсы, раздражения из системы тройничного, лицевого и симпатических нервов зубочелюстного аппарата могут через ядра головного мозга, а также при участии коры передаваться на систему блуждающего нерва и систему пограничных стволов и достигать почти всех внутренних органов, вызывая в них патологические раздражения.

Общеизвестна патогенная роль стоматогенных очагов инфекции в возникновении многих соматических заболеваний. По современным пониманием, очаг в полости рта - это источник сенсибилизации ( микробной, лекарственной) и аутосенсибилизации организма. Патогенное действие очага в полости рта реализуется через подавление факторов неспецифической защиты организма.

Механизмы влияния очагов патологического раздражения в зубочелюстной области на состояние организма впервые научно были обоснованы в начале XX века экспериментальными исследованиями американских ученых, главным образом E. Rosenow.

ВЕвропе микробиологическая теория ротового сепсиса резко критиковалась за неправильные методологические подходы к экспериментам и интерпретацию полученных результатов.

Уточнить возникновения и развития стоматогенной хрониоинтоксикации попытался Б.А. Егоров. В 30 - х годах прошлого века ученый разработал понятие " вегетативно - септического синдрома ", в котором впервые определялась роль нервной системы и развития септического процесса.

По данным Г.Д. Овруцкого и его учеников, патогенное влияние стоматогенного очага инфекции реализуется также и угнетением факторов неспецифической защиты организма.

Анализируя состояние иммунологической реактивности лиц с периапикальных очагами, С.И. Черкашин характеризует патогенез стоматогенной хрониоинтоксикации следующим образом: экзо - и эндотоксины микроорганизмов из имеющихся очагов инфекции, цитотоксины попадают в кровь и лимфу ; образуются " гибридные " антигены, инициирующие иммунологические реакции ( антиген - антитело ), которые со временем приводят к снижению неспецифической резистентности, клеточного иммунитета ; одновременно под действием очага инфекции на организм происходит активация свободнорадикального окисления, усиливает сенсибилизацию, вызывает повреждение мембран клеток, дегрануляцию ферментов лимфоцитов ; изменяются количественные и качественные показатели элементов крови.

Главными очагами аутосенсибилизации в полости рта является хронический апикальный периодонтит, хронический гангренозный пульпит, пародонтит и др. (схема1).

Патогенез очагообусловленых заболеваний. Очагообусловлеными называют заболевания в н у т р е н н и х о р г а н о в, а т а к ж е п а т о л о г и ч е с к и е р е а к ц и и о р г а н и з м а, происхождение которых обусловлено локальным источником аутоинфекции.

Есть истинные данные, свидетельствующие о том, что возникновение некоторых заболеваний сердечно - сосудистой системы, опорно - двигательного аппарата и других систем обусловлено очагом

инфекции в организме. Одним из общих инфекционных заболеваний, которое возникает вследствие наличия в организме местного инфекционного очага, является сепсис.

Как отмечает И.В. Давыдовский (1962 ), особенностью сепсиса является то, что общая картина болезни у разных людей остается примерно одна и та же при разнообразии возбудителей. Чаще сепсис вызывают стафилококк, стрептококк и кишечная палочка.

Выраженность изменений в органах и системах организма у больных сепсисом зависит от общего состояния организма и состояния его иммунитета.

Существует несколько точек зрения на механизм возникновения изменений в организме при очагообусловленых заболеваниях.

Так, И. Лукомский (1938 ) на основании клинико - экспериментальных исследований сформировал токсикогенную теорию патогенеза ротового сепсиса. В хроническом воспалительном зу бной очаге является патол огический тк аневый обмен, к оторый поддерживается жизнедеятельностью слабковирулентних микробов. Вследствие этого возникают промежуточные продукты распада белка, вещества типа биогенных аминов, всасываясь в кровь, сенсибилизирующие организм. Эти же вещества могут вызвать у сенсибилизированном организме явления общей интоксикации. Автор считает, что различные патоморфологические и рентгенологические формы хронического периодонтита, а именно фиброзный, гранулематозный и гранулирующий, отражающих различные степени активности патологического обмена, образования промежуточных продуктов распада белка.

Активным в данном случае является гранулирующий периодонтит, следующим по интенсивности- гранулематозный, менее активный- фиброзный.

Таким образом, согласно этой теории, инфекционное начало в хроническом одонтогенном очаге не имеет особого значения для возникновения хрониосепсиса. Исключительная роль принадлежит токсинам и антигенам, которые образовались в первичном зубной костре. Поэтому ротовой сепсис И.Г. Лукомский характеризует как хроническую стоматогенную интоксикацию.

Д.А. Энтин, определяя роль инфекционного и токсикогенного факторов, предложил нейротрофическое теорию патогенеза ротового сепсиса. Согласно этой теории, стоматогенный очаг является источником раздражения нервных элементов в тканях периодонта (или миндалин) и воротами интоксикации нервных элементов. Вследствие этого на периферии возникают деструктивные процессы, которые могут проявляться в форме различных заболеваний.

Вхронических зубных очагах могут возникать раздражение периферических чувствительных нервов микробами, химическими или механическими агентами. Длительные патологические раздражения нарушают физиологическое состояние и деятельность центральной нервной системы, возникают патологические рефлексы. Первичные сдвиги проявляются в виде сосудистого и трофического невроза органов, затем функциональные нарушения приводят к анатомическим изменениям в органах по присоединением инфекции. С современных позиций только инфекционно - аллергическая теория достаточно полно объясняет эти изменения. При заболеваниях, развитие которых связано с стоматогенным очагом воспаления, часто отмечается сенсибилизация организма к стрептококка, которого почти всегда находят в очагах поражения.

Врезультате этого протистрептококовые антитела в комплексе с антигенами фиксируются в клетках, что приводит к возникновению гиперергической реакции или поражения отдельного органа. При этом формируется реакция замедленного типа. Клеточная деструкция, связанная с реакцией антиген - антитело, сопровождается появлением биологически активных веществ ( гистамин, ацетилхолин, серотонин и др.)., Попадание которых в кровь вызывает различные

изменения в органах и тканях. Возникшие в результате этого общие и местные патологические реакции воспроизводят разную клиническую картину.

studfiles.net


Смотрите также