Изменение циркадианного ритма под влиянием стресса - файл n1.doc. Изменение циркадианного ритма под влиянием стресса реферат


Изменение циркадианного ритма под влиянием стресса

Изменение циркадианного ритма под влиянием стрессаДоступные файлы (1):

n1.doc

ВведениеВ последнее время получила бурное развитие хроно­биология (хрономедицина) - наука о временных закономерностях функционирования организма – о биологических ритмах и временных трендах, их зависимости от состояния биологической системы, о физиологических механизмах, лежащих в их основе. Эта наука изучает также внешние синхронизаторы биологических ритмов, их основные свойства и взаимосвязи с организмами.

Биологические объекты, включая человеческий организм, представляют собой сложные открытые нелинейные системы, которые критически зависят от изменяющихся условий среды обитания и могут реагировать макроскопически на микроскопические флуктуации воздействующих факторов. Чтобы выжить и приспособиться к флуктуациям внешних факторов (например, температуры, климата, естественных электромагнитных полей, доступности пищи и т.д.), биологические системы должны были проявлять значительную степень случайности в своем поведении. Причем, слабые внешние сигналы, уровня шума, могли играть значительную роль в их самоорганизации.

Для понимания организации таких сложных систем во времени необходимо иметь данные длительных измерений их физиологических характеристик, что обычно довольно трудно осуществимо. Именно поэтому проблема воздействия факторов внешней среды на биологические системы получила качественно новое освещение, когда стали использоваться данные длительного мониторирования, характерного для методов хронобиологии. (Т.К.Бреус, С.М. Чибисов, Р.Н.Баевский и К.В.Шебзухов, Монография «Хроноструктура ритмов сердца и факторы внешней среды» Москва, 2002 г., стр.6)

Основной смысл биологических ритмов и их формированиеВ настоящее время общепризнанно, что ритмичность биологических процессов является фундаментальным свойством живой материи и составляет сущность организации жизни (J.Aschoff,1985; F.Halberg, 1953-1998; A.Reinberg, 1973; Н.А.Агаджанян, 1975; Б.С. Алякринский, 1968-1985 ; Р.М.Заславская,1991; Ф.И.Комаров., С.И.Рапопорт, 2000; В.А.Фролов, 1979).

Формирование биологических ритмов неразрывно связано с эволюционным процессом живых организмов, происходившим с самого же начала зарождения и становления жизни в условиях одновременно развивающихся пространственно-временных закономерностей среды обитания. Элементарные живые структуры могли быть жизнеспособными только при возникновении у них динамически устойчивой временной организации, способной адаптироваться к ритмическим изменениям внешней среды. Возникшая временная структура живого организма, имея широкий диапазон реакций, могла противостоять также и влиянию апериодических изменений факторов внешней среды, которые, в свою очередь, способствовали поддержанию системы в активном состоянии.

Ритмические воздействия внешней среды являются главными стимуляторами биоритмов организма, играющими важнейшую роль в их формировании на ранних этапах онтогенеза и определяющими уровень их интенсивности в течение всей последующей жизни. Собственные эндогенные биоритмы организма – это фон, на котором развертывается картина жизнедеятельности и который не обеспечивает последней, если она непрерывно не активируется импульсами из окружающей среды. Последние, таким образом, являются теми силами, которые заводят биологические часы и определяют интенсивность их хода (Комаров Ф.И., Рапопорт С.И., Чибисов С.М.. Роль проблемной комиссии «Хронобиология и хрономедицина» РАМН в развитии внутренней медицины (к 25-летию создания) Клиническая медицина.-М., №9, 2007, С.14-17).

В настоящее время общепризнанно, что наиболее мощным фактором, формирующим биологическую ритмичность, было собственное вращение Земли с сопутствующим ритмом изменений освещенности и температуры. Еще в 1797 году Христофер Гуфелянд, рассматривая суточные колебания различных медицинских показателей у здоровых и больных пациентов, пришел к выводу, что в организме существуют “внутренние часы, ход которых определяется вращением Земли вокруг своей оси”, поэтому многие считают Гуфелянда основателем учения о биологических ритмах. Он впервые обратил внимание на универсальность ритмических процессов и подчеркнул, что “наша жизнь, очевидно, повторяется в определенных ритмах, а каждый день представляет маленькое изложение нашей жизни”. Правда, некоторые исследователи отдают в этом вопросе пальму первенства французскому астроному, математику и физику Жан Жаку Де Мерану, который, изучая особенности солнечного света и вращения Земли, еще в 1729 году установил, что в условиях темноты и постоянной температуры растения сохраняют свойственную им двадцатичетырехчасовую периодичность движения листьев, связав тем самым этот феномен не с освещенностью, а с вращением нашей планеты.

Исключительно крупный вклад в хронобиологию внес российский ученый А.Л.Чижевский. Проведенный им анализ общей смертности в Российской империи с 1800 по 1900 год и по Сакт-Петербургу с 1764 по 1900 год позволил выявить столетнюю цикличность смертности, названную им “вековым ходом”. В дальнейшем А.Л.Чижевский связал проходящие на Земле циклические процессы с солнечной активностью. Международный конгресс по биологической физике и биологической космологии, состоявшийся в 1939 году в Нью-Йорке, оценивая работы А,Л,Чижевского, охарактеризовал его как создателя новых наук - космобиологии и биоорганоритмологии, подчеркнув тем самым неразрывную связь между ними. А.Л.Чижевский показал, что почти все органы функционируют строго ритмически, причем одни ритмы находятся в зависимости от физико-химических процессов, а другие - от факторов внешней среды (важнейшим из которых он считал космическое излучение). Кроме того, по мнению А.Л.Чижевского есть группа независимых (врожденных) ритмов.

Важно заметить, что в хронобиологии понятие “суточный ритм” носит несколько условный характер. До сих пор нет еще ответа на вопрос, почему ритмы, согласовывающие жизнедеятельность организмов с “хронометром”, точным до долей секунды, сами имеют систематическую погрешность до нескольких часов. Возникновение циркадианного “тремора” позволяет подстраивать систему к широкому диапазону постоянно присутствующих изменений внешней среды, в том числе и к ритмическим изменениям среды. Как отмечал Б.С.Алякринский, циркадианные ритмы играют роль общего начала в целостной системе организма, выступая в качестве дирижера всех колебательных процессов, и отличаются признаками всеобщности и необходимости, что дает основание считать их закономерным общебиологическим явлением, т.е. говорить о законе циркадианности.

Иными словами можно сказать, что циркадианные ритмы являются одним из главных компонентов фрактальной системы биологических ритмов, объединяющей частные ритмические процессы различных морфофункциональных структур. Сейчас можно сказать, что фрактальный принцип биоритмов сердца рассматривался в работе Чибисова С.М. «Интегральные взаимоотношения разнопериодических биоритмов сердца в норме и при их десинхронозе». Бродский В.Я. выделяет интегральность как характерную черту биоритмов, отмечая, что даже длинные инициируемые извне и генетически программированные ритмы складываются из коротких собственно клеточных. Так же как околочасовые ритмы, другие клеточные ритмы, скорее всего тоже фракталы, т.е., хотя и детерминированные и закономерные, но в основе своей хаотические изменения. Видимо, интегральность циркадианных ритмов и определяет некоторую их нестабильность и возможность направленных влияний на их параметры.

Классификация биоритмовВ целом диапазон биологических ритмов весьма широк. F.Halberg предложил классифицировать биологические ритмы следующим образом: ультрадианные ритмы с периодом меньше 20 часов, циркадианные - с периодом 24 +-0 4 ч. и инфрадианные - с периодом больше 28 часов. Сравнительно недавно было обнаружено, что существенная роль в жизни и эволюции всех без исключения биологических объектов принадлежит также инфрадианным ритмам. Среди последних следует выделять: циркасемисептанные ритмы с периодом примерно 3 +_ 0,5 сут.; циркасептанные ритмы с периодом 7 ± 3 сут., циркадисептанные - с периодом 14 ± 3 сут., циркавигинтанные с периодом 21 ± 3 сут., циркатригинтанные с периодом 30 ± 5 сут., цирканнуальные с периодом 1 год ± 2 месяца.

Существуют, однако, и другие классификации ритмов, в частности, отечественные. Например, Н.Л.Асланян и соавт. (1989) на основе многолетнего опыта биоритмологических исследований пациентов с различными патологиями предложили обособить интервал времени от 28 ч до 4 суток, поскольку ритмы этих периодов часто наблюдается при патологии. Поэтому именно ритмы в интервале периодов 28 – 96 часов предложено считать инфрадианными и не включать в эту группу ритмы с большими периодами. Предложено также ограничить пределы ультрадианных ритмов интервалом от 3 до 20 часов, а ритмы с периодом 18 – 22 ч и 26 – 30 ч считать переходными к ультрадианным и инфрадианным.Десинхроноз и стрессыВ естественной среде организм всегда подвержен влиянию сложного динамического комплекса факторов, причем действие одних факторов изменяет (усиливает, ослабляет, деформирует) действие других, что создает проблемы для определения их роли и степени биотропности. Нарушения временной структуры организма возникают при рассогласовании упорядоченности структуры его внутренних ритмов, причем причины этого рассогласования могут быть различными – внутренними и внешними.

Нарушение естественного хода биологических ритмов, их взаимной согласованности, т.е. десинхроноз, является обязательным компонентом общего адаптационного синдрома (Алякринский Б.С., 1979), и в этом отчетливо видна связь проблемы биологических ритмов с проблемой адаптации.

Предельное развитие адаптивности (гиперадаптация) может привести к своей противоположности, к “гипертермии” и безвозвратной утере адаптивности, т.е. к анадаптации (Дичев Т.Г., Тарасов К.Е., 1976).

Большинству людей, пишет Г.Селье, в равной мере не нравится как отсутствие стресса, так и избыток его. Поэтому каждый должен тщательно изучить самого себя и найти тот уровень стресса, при котором он чувствует себя наиболее “комфортно”, какое бы занятие он не избрал. В последнее время получает все большее признание точка зрения о полезности умеренного стресса, в частности о том, что умеренный стресс сопровождается повышением продуктивности человека в различных видах деятельности (Франкенх Айзер П.,1970; Паткап П., 1970). Так, водители автомобилей выполняют предъявляемые им экспериментальные задания значительно лучше при воздействии умеренных стрессов, нежели в спокойной обстановке (Пикус и др., 1973). Выявленно благоприятное влияние умеренного стресса на кратковременную память у спортсменов.

Искажение биологического ритма, трансформация его в непериодические колебания свидетельствует о резком обострении внутренних противоречий адаптационного процесса. Изменения исходной периодичности при стрессе характеризуются не только нарушением постоянства периода, но и увеличением амплитуды колебательного процесса, изменениями акрофазы.

Десинхроноз подразделяется на острый и хронический.

Острый десинхроноз возникает при внезапном рассогласовании ритмов датчиков времени и организма. Например, при трансконтинентальных перелетах на современных авиалайнерах, пересекающих за довольно короткое время несколько часовых поясов, возникает резкое нарушение взаимоотношения фаз ритма сон-бодрствование. В случае, если воздействие фактора, вызвавшего острый десинхроноз, длительное время не прекращается, развивается хронический десинхроноз.

Хронический десинхроноз – патологическое состояние, в основе которого лежит перманентная десинхронизация функций организма.

Десинхроноз может быть вызван целым рядом внешних причин, как социальных, так и природных. К числу социальных причин относятся, например:

биотропные факторы антропогенного происхождения, такие как

1) токсические вещества.

2) совокупные социальные стрессы больших промышленных городов, связанные с напряженной работой или управлением транспортом, обилием информации и т.д.; длительное рассогласование ритма сон-бодрствование.

3) рассогласование между суточным стереотипом организма и дискретным временем.

4) десинхроноз, вызванный орбитальными и межпланетными космическими полетами;

К числу десинхронозов, вызванных природными внешними факторами относятся, например, десинхронозы, связанные с:

5) эктремальными природными условиями,

6) изменениями ритмов действующих гелио-геофизических датчиков времени, таких как циклы солнечной активности, суточные и сезонные вариации погоды, изменения климата,

7) ритмами геомагнитного поля Земли, вызванными вращением Солнца,

8) апериодическими изменениями гелио-геофизических факторов, возникающими при солнечных вспышках и геомагнитных бурях. Данная систематизация причин, вызывающих десинхроноз, условна, как всегда, когда речь идет о любой многофакторной системеНарушения хроноструктуры циркадианных ритмовЕстественно предположить, что нарушение хроноструктуры ритмов той или иной системы - явление целостное, и проведенное в следующих подразделах деление по различию проявлений нарушений параметоров ритмов условно. Тем не менее, использование таких диагностических критериев в хрономедицине, как амплитудные изменения ритмов, изменения мезора или периода ритма самостоятельно вполне допустимо и оправдано в ряде конкретных случаев.

Амплитуда циркадианных ритмов имеет исключительно важное значение для оценки функционального состояния человека. Несмотря на то, что вариации амплитуды чаще всего сочетаются с другими проявлениями десинхроноза, следует отметить, что регистрация изменений амплитуды может служить прекрасным тестом при донозологической диагностике.

Так, например, при проведении хронобиологического обследования в группе спортсменов, занимавшихся академической греблей (С.М.Чибисов и соавт., 1983, 1987), было установлено, что одним из первых проявлений переутомления (перетренированности) является нарушение хроноструктуры ритма показателей гемодинамики, проявлявшееся в снижении амплитуды их циркадианного ритма.

Характерно, что после 3-х часового авиа-перелета у пассажиров происходит уменьшение амплитуды 24-х часовых колебаний физиологических показателей, причем, снижение амплитуды ритма наиболее выражено при перелете в восточном направлении. В.А.Матюхин с соавт. отмечают, что чем выше скорость пересечения часовых поясов при перелете, тем ниже амплитуда суточных колебаний показателей.

Н.М.Фатеева , оценивая различные периоды нахождения рабочих на вахте при трансширотных перелетах в условиях Заполярья, отметила, что кроме значительных колебаний среднесуточного уровня показателей свертывания крови, имеются довольно существенные изменения внутрисистемной синхронизации регулируемых параметров. Основными проявлениями этих изменений являются исчезновение статистически значимого 24-х часового ритма, выраженный сдвиг акрофаз, появление статистически значимых 12-ти часовых ритмов; особенно это характерно в начальный период перелета. Относительная стабилизация временной организации показателей гомеостаза отмечается на 30-35 день вахты, а достаточно устойчивого состояния достигает к 45-му дню вахты.

Уместно напомнить, что изменения амплитуды циркадианных ритмов показателей сердечно-сосудистой системы наблюдается не только при десинхронозе, вызванном внешними факторами, но и при десинхронозе, связанном с ее патологией (внутреннем). Так например, Л.И.Виноградовой (1976) было показано, что величина амплитуды колебаний суточного ритма артериального давления и частоты сердечных сокращений у больных нейроциркуляторной дистонией существенно выше, чем у здоровых людей.

Таким образом, изменения амплитуды суточных ритмов является одним из важных диагностических критериев в хрономедицине не только внутренних, но и внешних десинхронозов.

Как свидетельствуют иссследования «внутренних» десинхронозов, стресс, связанный с наличием патологии, сопровождается также изменением периода циркадианного ритма.

Клинические исследования, проведенные в лаборатории, руководимой

Н.А.Асланяном (Методичекие рекомендации к изучению курса

"Патологическая физиология". Тема: "Патофизиология биоритмов" М., изд.

УДН, 1989, 46с. (в соавт. Н.А. Асланян, Г. Халаби)), позволили сформулировать новое понятие “неоритмостаза”, то есть установления относительной стационарности параметров ритмов на новом уровне, происходящем под влиянием стресса, а именно, перехода циркадианного ритмостаза в ультрадианный или инфрадианный неоритмостаз. Например, при выполнении 261-го ритмологического исследования выделения мочи и электролитов у больных, страдающих нейроциркуляторной дистонией, было выявлено, что в 168 случаях (64%) у них выделяются достоверные ритмы, однако их периоды существенно отличаются от периодов ритмов здоровых индивидуумов. Если у здоровых людей среди статистически достоверных ритмов околосуточные ритмы составляли 92%, то у больных нейроциркуляторной дистонией они выявлены только в 31% случаев, в то время как инфрадианные выявлялись в 54% случаев, а ультрадианные ритмы в 15% случаев. В то же время, мезоры и амплитуды ритмов выделения мочи и электролитов в этой группе больных достоверно не отличались от соответствующих показателей здоровых людей.

В совместной работе, проведенной одним из авторов с Л.А.Бабаян (Десинхронизация ритмов водно-электролитно обмена при моделированном стрессе // Медицинский журнал России.-1998. –1 -2.- с.127-129. в соавт. Е.А. Ушкалова, Л.К. Овчинникова, Г.М. Дрогова, Л.А. Бабаян) было показано, что у интактных животных под влиянием внешнего стресса также происходит смещение периодов циркадианных ритмов в инфрадианную область. Обычно статистически достоверно выделяемые ритмы кортикостерона и минералов крови у этих животных составляют 80%, ритмы экскреции минералов с мочой - 74%. При этом среди достоверных ритмов у интактных животных в спокойных условиях доминируют ритмы циркадианного диапазона (75 и 91% соответственно для крови и мочи). Можно заключить, что большинству интактных животных присущи циркадианные ритмы водно-минерального гомеостаза с внутренней синхронизацией по периоду ритмов отдельных показателей с определенной величиной мезоров и амплитуд. Под влиянием длительно воздействующих внешних стрессорных факторов (например, введения алкоголя) водно-минеральная система животных реорганизовывала свою временную структуру. Это выражалось в трансформации циркадианного периода в непериодические колебания или в формировании, в основном, инфрадианной ритмичности: для показателей крови и мочи циркадианные ритмы составляли уже только - 21% , 27%, в то время как инфрадианные ритмы состаляли 56 и 54% соответственно, и ультрадианные ритмы - 23%, 19%.

Следует подчеркнуть, однако, что у большинства показателей происходит, естественно, не только изменение периода, но и значительное изменение величины некоторых мезоров и амплитуд (как это отмечалось в предыдущем параграфе). Например, достоверные ритмы кортикостерона в 100% случаев находились в инфрадианном диапазоне, однако, их мезоры и амплитуды при этом статистически достоверно (Р

Достаточно ярким примером результата потери циркадианной структуры ритма под воздействием внешних факторов является десинхроноз, вызванный челночными производственными перелетами из средних широт в условия Заполярья. При таких перелетах наблюдается десинхронизация циркадианной системы гемостаза, имеющая несколько степеней выраженности. Первая степень характеризуется повышением среднесуточной продолжительности времени свертывания крови, сохранением статистически значимого 24-часового ритма, концентрацией основной мощности временных процессов показателей системы на периоде 24х часов. Вторая степень характеризуется снижением среднесуточной продолжительности времени свертывания крови и отсутствием статистически значимых 24х часовых ритмов. При этом, однако, сохраняется концентрация основной мощности временных показателей на периоде 24х часов, Третья степень десинхроноза сопровождается разнонаправленными изменениями среднесуточных значений показателей системы гемостаза, отсутствием статистически значимых 24х часовых ритмов и проявлением полиморфизма их ультрадианных составляющих.

ЗаключениеСопоставив литературные данные и проанализировав их, можно сделать вывод, что в результате нейроэндокринных изменений под воздействием стресса, а также, вероятно, и изменений их временной структуры, происходит реорганизация не только циркадианной хроноструктуры экскреции натрия, калия, меди, цинка, но и области доверительных интервалов колебаний их мезоров и амплитуд. Литература

  1. «Изменение хроноструктуры показателей работы сердца в норме и при десинхронозе» Тез. докл. I Российского конгр. по Патофизиологиии. М., 1996.- с.259-260 (в соавт.Г.М. Дрогова, Г.М. Кобыляну, И.А. Пермяков)
  2. «Изменение хроноструктуры циркадианных ритмов показателей водно-электролитного обмена при экспериментальном стрессе и некоторых сердечно-сосудистых заболеваниях» Тез. докл. VII Всеросс. симп. "Эколого-физиологические проблемы адаптации". - М., 1994, с.310 (в соавт. Г.М. Дрогова, Л.А. Бабаян)
  3. «Хроноструктура ритмов сердца и факторы внешней среды» Москва, 2002 г., стр.6; авторы: Т.К.Бреус, С.М. Чибисов, Р.Н.Баевский и К.В.Шебзухов
  4. «Хроноструктура ритмов электролитов и микроэлементов при моделированном хроническом стрессе» Тез. докл. VII Российского национального конгресса «Человек и лекарство». -М, 2000, - 530 с. Овчинникова Л.К., Чибисов С.М., Бабаян Л.А.
  5. Хронобиология и хронокардиология (уч. пособие) - М.: Изд. УДН, 1988, 52 с. (в соавт. В.А. Фролов, С.И. Рапопорт, О.А. Артемьева)

Содержание:

  1. Введение
  2. Основной смысл биологических ритмов и их формирование
  3. Классификация биоритмов
  4. Десинхроноз и стрессы
  5. Нарушения хроноструктуры циркадианных ритмов
  6. Заключение
  7. Литература

perviydoc.ru

С. М. Чибисов, Р. Н. Баевский и К. В. Шебзухов хроноструктура ритмов сердца и факторы внешней среды москва, 2002

Т.К.Бреус, С.М. Чибисов, Р.Н.Баевский и К.В.Шебзухов

ХРОНОСТРУКТУРА РИТМОВ СЕРДЦА

И ФАКТОРЫ ВНЕШНЕЙ СРЕДЫ

МОСКВА, 2002

УДК 612.17:577,3+616.12-12-008 Рецензенты: профессор Г.Г. Автандилов

профессор В.И.Торшин

Т.К. Бреус, С.М.Чибисов, Р.Н.Баевский и К.В.Шебзухов

Хроноструктура ритмов сердца и факторы внешней среды:

Монография. – М. Издательство Российского университета дружбы народов; Полиграф сервис, 2002, -232 с.-, ил.

This book describes the experimental studies of various heart rhythm indices in laboratory and in conditions of space (light. The main goal is the study of heart rhythm modification under the action of various environmental factors. The results show that the circadian heart rhythm system is flexible and varies in cycles having periods such as ll-years (the cycle of solar activity), about 28-days, about 14-days and about 7-days. Significant variations of daily rhythm chronostructure depending of the season of the year have been detected. The effects of geomagnetic field perturbations on heart rhythm indices have also been studied. The results obtained from laboratory experiments with animals, and with cosmonauts in flight conditions and confirmed by laboratory' simulations reveal that geomagnetic storms produce heart rhythm desynchromzation. This corresponds to an adaptive stress reaction, similar to the circadian rhythm violation associated with transcontinental flights. The response of heart chronostructure to various external factors is similar and represents a characteristic adaptive stress reaction. The ef­fects of social phenomena or variations of natural external synchronizers, such as the rhythms of solar radiation and geomagnetic field variations, lead to a similar response in biological systems, namely adaptive stress. Our results allow the underlying mechanisms of morphofunctional modifications of heart activity, controlled by time factor, to be determined. This book is intended for physiologists, pathophysiologists, biophysicists and cardiologists.

Работа посвящена экспериментальному изучению в наземной лаборатории и в условиях космического полета хроноструктуры ритмов различных показателей сердечно-сосудистой системы, а также их изменений под воздействием факторов внешней среды. Приво­дятся данные, показывающие, что циркадианная система сердца гибко и последова­тельно изменяется в циклах, имеющих многолетние, инфрадианные и многодневные периоды, например, таких, как одиннадцатилетний цикл солнечной активности, около 28 –дневный, около – 14-дневный, около-недельный ритмы. Выявлены достоверные отличия хронострук­туры суточного ритма, определяемые сменой сезонов года. Показано, что ре­акция хроноструктуры сердца на различные по характеру внешние раздражители, например, социальные факторы и изменения ритма датчиков времени, таких, как ритмы освещенности и геомагнитного поля, однотипна и представляет собой характерный адаптационный стресс. Обсуждается проблема влияния возмущений геомагнитного поля Земли на хроноструктуру показателей ритма сердца. Результаты, полученные как в лабораторных исследованиях животных, так и при исследованиях космонавтов во время полета, подтвержденные лабораторным моделированием, свидетельствуют, что геомагнитные бури вызывают десинхроноз хроноструктуры ритмов сердца, соответствующий адаптационному стрессу, аналогичному стрессу при нарушении циркадианной ритмики, возникающему при трансконтинентальных перелетах. Приведенный материал позволяет оценить механизмы, лежащие в основе морфофункциональных изменений в деятельности сердца, контролируемых временным фактором. Книга предназначена для физиологов, патофизиологов, биофизиков и кардио­логов.

ISBN 5-209-01404-5

ISBN 5-86388-X

^

В последнее десятилетие получила бурное развитие хроно­биология (хрономедицина) - наука о временных закономерностях функционирования организма – о биологических ритмах и временных трендах, их зависимости от состояния биологической системы, о физиологических механизмах, лежащих в их основе. Эта наука изучает также внешние синхронизаторы (или времядатчики) биологических ритмов, их основные свойства и взаимосвязи с организмами.

Биологические объекты, включая человеческий организм, представляют собой сложные открытые нелинейные системы, которые критически зависят от изменяющихся условий среды обитания и могут реагировать макроскопически на микроскопические флуктуации воздействующих факторов. Чтобы выжить и приспособиться к флуктуациям внешних факторов (например, температуры, климата, естественных электромагнитных полей, доступности пищи и т.д.), биологические системы должны были проявлять значительную степень случайности в своем поведении. Причем, слабые внешние сигналы, уровня шума, могли играть значительную роль в их самоорганизации.

Для понимания организации таких сложных систем во времени необходимо иметь данные длительных измерений их физиологических характеристик, что обычно довольно трудно осуществимо. Именно поэтому проблема воздействия факторов внешней среды на биологические системы получила качественно новое освещение, когда стали использоваться данные длительного мониторирования, характерного для методов хронобиологии.

В развитии современной отечественной хронобиологии (или, как ее у нас называют, биоритмологии) первенство принадлежит ученым, которые начали с лабораторных экспериментов и теории, и затем перешли к исследованиям в области космической медицины в начале шестидесятых годов.

В течение более чем 30-и лет на кафедре патологической физиологии Университета дружбы народов под руководством профессора В.А.Фролова велись работы по экспериментальному изучению биологических ритмов сердца. Регистрировались показатели сократительной силы сердца здоровых однотипных животных. Исследовались динамические временные ряды изменений этих показателей, прослеживалась картина их взаимосвязи с циклом солнечной активности, определялись параметры хроноструктуры разно периодичных ритмов и их соотношения с факторами внешней среды. В этом многолетнем исследовании принимал участие практически весь коллектив кафедры. С особой благодарностью хочется отметить неоценимый вклад в эту работу Т.А. Казанской.

С начала восьмидесятых годов в Институте Космических Исследований, совместно с медицинскими клиниками Москвы, Университетом дружбы народов, Институтами Медицинской Академии Наук соавторами этой книги проводились хрономедицинские исследования воздействия гелио-геофизических показателей, на сердечно-сосудистую систему человека. Эти работы велись под руководством академика АМН Ф.И.Комарова и профессора С.И.Рапопорта. В последнее десятилетие существенный вклад в понимание проблемы роли внешних факторов в формировании стрессов сердечно-сосудистой системы человека внесли работы, проводившиеся соавторами книги совместно с лабораторией Института Медико-биологических проблем Минздрава России, руководимой профессором Р.М. Баевским. Авторы данной книги взяли на себя смелость обобщить материалы и подвести итоги некоторых из этих исследований.Дополнительная математическая обработка ряда данных и обсуждение некоторых аспектов работы были любезно осуществлены профессором Н.Л.Асланяном (НИИ кардиологии Армении, Армения) и академиком АН Кыргызстана Э.С Матыевым.

Авторы выражают глубокую благодарность А.А.Конрадову (Институт хим.-физики РАН) за полезное обсуждение эффективности использованных в книге математических методов обработки данных.

Мы также признательны выдающимся специалистам в области хронобиологии и хрономедицины профессору Р.М.Заславской, профессору Миннесотского Университета Францу Халбергу и доктору физ.-мат. наук того же университета Ж.Корнелиссен (США) за неизменную поддержку работ, консультации и полезную критику.

Бреус Т.К.

(Институт космических исследований РАН РФ)

Чибисов С.М. (Российский университет дружбы народов)

Баевский Р.М.

(Институт медико-биологических проблем МЗ РФ)

Шебзухов К.В.

(Российский университет дружбы народов)

ПРЕДИСЛОВИЕ

В настоящее время возникла настоятельная необходимость проведения детальных исследований в области хроноструктуры ритмов и морфологии сердечно-сосудистой системы, а также их изменений под воздействием факторов внешней среды. Фундаментальные экспериментальные исследования явлений десинхроноза сердечно-сосудистой системы и ее морфофункционального состояния весьма ограничены, поэтому предлагаемая книга затрагивает и исследует проблемы значительной актуальности. Специального внимания заслуживает разработка проблемы морфофункционального состояния сердца в период повышения и резких изменений геомагнитной активности в аспекте хронобиологии. Авторам удалось выявить ряд неизвестных раннее характеристик циркадианной ритмики сердечно-сосудистой системы, интересных с теоретической и практической точек зрения. Например, впервые убедительно продемонстрировано наличие феномена изменчивости сократительной функции сердца на протяжении 11-летнего цикла солнечной активности, корреляций популяционных ритмов сердечно-сосудистых катастроф и ритмов солнечной и геомагнитной активности. Выявлены вариации амплитуды и времени акрофаз циркадианного ритма сердца с сезонами года, наличие типовой биоритмологической реакции сердца на воздействие различных внешних факторов, включая геомагнитную активность.

Одним из материалов для исследований послужили экспериментальные наблюдения над кроликами породы “шиншилла”, проводившиеся на протяжении ряда лет на медицинском факультете Российского Университета дружбы народов при идентичных условиях и одними и теми же методами. Последнее обстоятельство имеет ключевое значение для получения убедительных и статистически достоверных результатов в хронобиологии и хрономедицине, когда речь идет о динамике каких-либо показателей под влиянием внешних факторов. Не менее уникальный материал представляют собой архивы данных медицинских наблюдений космонавтов во время экспедиций на космических кораблях “СОЮЗ” и на орбитальной станции МИР. Космонавты, как известно, представляют собой группу здоровых и хорошо тренированных людей, подвергающихся воздействию различных внешних факторов, из которых наиболее значимым для сердечно-сосудистой системы является невесомость. Риск получения стресса под влиянием другого внешнего даже чрезвычайно слабого фактора при неустойчивом состоянии сердечно - сосудистой системы в невесомости особенно велик. Он усугубляется тем в данном случае, что сердечно-сосудистая система является одной из главных мишеней, на которую действуют оба внешних фактора - и невесомость, и возмущения геомагнитного поля.

Авторами использовался широкий спектр современных методических приемов для оценки функционального состояния сердечно-сосудистой системы. В лабораторных исследованиях животных проводилась регистрация артериального давления в левой сонной артерии, пикового систолического давления в полостях левого и правого желудочков сердца и, в условиях пятисекундной окклюзии аорты и легочной артерии, максимального внутрижелудочкового давления при изометрическом сокращении камер сердца. Помимо этого, авторы изучали содержание в крови из полостей левого и правого желудочков свободных жирных кислот, а также кислотно-основное состояние крови методом микро-Аструп.

Полученная информация по экспериментам с животными была проанализирована современными методами математической физики, включая весьма полезный в случае многофакторных зависимостей метод кластерного анализа. Особенно ценно при этом участие физиков в авторском коллективе, что позволяет надеяться на то, что полученные результаты математической обработки достаточно достоверны и надежны.

Большой и чрезвычайно ценный раздел работы представлен материалом, полученным при трансмиссионной электронной микроскопии, сопровождавшей наблюдения над животными, и позволившей определять показатели, характеризующие состояние митохондриального аппарата в процессе всего цикла исследований.

Особенно полезным для всего проведенного цикла исследований является лабораторное моделирование десинхроноза. Десинхроз у животных вызывался искусственно путем введения 20% раствора алкоголя в течение 11 дней в начальной фазе локомоторной активности (6-8 ч) и в период начала фазы покоя (18-20 ч). Результаты моделирования позволили сформулировать основные признаки десинхроноза, возникающего под воздействием внешних факторов воздействия. С данными моделирования сравнивались затем результаты наблюдений в лаборатории и в космосе функциональных расстройств, вызванных воздействием такого естественного внешнего фактора, как геомагнитные бури. Как уже отмечалось выше, практически параллельные исследования функциональных показателей и ультраструктуры кардиомиоцитов позволили авторам убедительно показать, что в период максимума солнечной активности сократительная способность миокарда значительно ниже, а амплитуда сезонных колебаний выше, чем в фазу спада 11-летнего цикла активности Солнца. Было выявлено, что вне зависимости от сезона года максимум сократительной силы миокарда сопровождается гиперфункцией ультраструктур кардиомиоцитПредставляют интерес результаты авторов, свидетельствующие о том, что характеристики хроноструктуры циркадианных ритмов сердечно-сосудистой системы имеют во многом сходную динамику во все сезоны года, но отличаются в деталях. Весенний и осенний периоды являются переходными. Следует подчеркнуть, что весной и осенью состояние сосудистого тонуса оказывает существенно большее влияние на функцию сердца, нежели в другие сезоны года.Авторами книги впервые показано, что в основе энергообеспечения сократительной деятельности сердца в летнее время лежит гликолиз, в то время как, зимой - липолиз,. При этом миокард использует жирные кислоты из циркулирующей крови.

Выявлено влияние большой геомагнитной бури на морфофункциональное состояние сердечно-сосудистой системы у интактных животных, сходное с тем, которое наблюдалось при моделированом десинхронозе. Воздействие обоих сильных раздражителей – геомагнитной бури и алкоголя - на фоне сезонных изменений в период морфофункциональной гиперфункции приводит к десинхронозу, преобладанию, порой, необратимых процессов в виде деградации и деструкции митохондрий и резкого падения сократительной способности сердца.

Большой интерес представляет собой цикл исследований воздействий геомагнитной возмущенности на человека на примере космонавтов в процессе полетов различной длительности. Использовались данные медицинского контроля космонавтов и данные мониторирования по Холтеру, то есть, традиционные и хорошо отработанные методы исследования сердечного ритма, как в космосе, так и в обычных кардиологических клиниках. Тем ценнее и достовернее полученные результаты, свидетельствующие о том, что геомагнитная буря вызывает неспецифическую реакцию адаптационного стресса у космонавтов и специфическиую реакцию напряжения сосудистого тонуса.

Авторами книги проведено сопоставление результатов по моделированию десинхроноза и воздействию геомагнитной бури на подопытных животных с данными наблюдения космонавтов на борту орбитальной станции МИР также во время геомагнитной бури и в аналогичном сезоне года. Это сопоставление позволяет утверждать с достаточной убедительностью, что возмущения геомагнитного поля приводят к десинхронозу и адаптивной стресс-реакции у всех живых организмов, типичной для реакции этих систем на любые внешние стрессорные воздействия. Характер воздействия и его интенсивность зависят, как и при модельном десинхронозе, от исходного состояния циркадианной системы в момент воздействия.

Этот вывод, наконец, дает убедительное и разумное объяснение вопроса о том, каким образом геомагнитные возмущения воздействуют на живые организмы, обсуждавшегося уже несколько десятилетий.

В заключение можно сказать, что представленная монография вносит существенный вклад в разработку фундаментальных проблем хронобиологии, а именно, проблемы взаимодействия биологических систем с факторами внешней среды, такими, как ритмы гелио- и геомагнитных факторов и их флуктуации. Монография, в сущности, открывает новое направление биоритмологии - исследования морфофункциональных, ультраструктурных (на митохондриальном уровне) изменений миокарда при чрезвычайных внешних воздействиях на организм, включая геомагнитную активность.

Практическая значимость выполненного труда заключается также в обосновании положения об отсутствии фиксированной “физиологической нормы” работы сердца, уровень которой лабилен и, очевидно, может быть использован в медицинской практике только с учетом ультра-, цирка- и инфрадианной ритмики активности сердца, причем последняя связана с сезонной и многолетней цикличностью.

Член проблемной комиссии по хронобиологии

и хрономедицине РАМН, член Европейского об-

щества хронобиологов, д.м.н., профессор

Р.М.Заславская

В В Е Д Е Н И Е

В настоящее время общепризнанно, что ритмичность биологических процессов является фундаментальным свойством живой материи и составляет сущность организации жизни (J.Aschoff,1985; F.Halberg, 1953-1998; A.Reinberg, 1973; Н.А.Агаджанян, 1975; Б.С. Алякринский, 1968-1985 ; Р.М.Заславская,1991; Ф.И.Комаров., С.И.Рапопорт, 2000; В.А.Фролов, 1979).

Формирование биологических ритмов неразрывно связано с эволюционным процессом живых организмов, происходившим с самого же начала зарождения и становления жизни в условиях одновременно развивающихся пространственно-временных закономерностей среды обитания. Элементарные живые структуры могли быть жизнеспособными только при возникновении у них динамически устойчивой временной организации, способной адаптироваться к ритмическим изменениям внешней среды. Возникшая временная структура живого организма, имея широкий диапазон реакций, могла противостоять также и влиянию апериодических изменений факторов внешней среды, которые, в свою очередь, способствовали поддержанию системы в активном состоянии.

Ритмические воздействия внешней среды являются главными стимуляторами биоритмов организма, играющими важнейшую роль в их формировании на ранних этапах онтогенеза и определяющими уровень их интенсивности в течение всей последующей жизни. Собственные эндогенные биоритмы организма – это фон, на котором развертывается картина жизнедеятельности и который не обеспечивает последней, если она непрерывно не активируется импульсами из окружающей среды. Последние, таким образом, являются теми силами, которые заводят биологические часы и определяют интенсивность их хода (См. например, Ю. Ашофф , 1984; J.Aschoff,1985; Б.С.Алякринский, 1983; Д.С. Саркисов и др.,1975).

В настоящее время общепризнанно, что наиболее мощным фактором, формирующим биологическую ритмичность, было собственное вращение Земли с сопутствующим ритмом изменений освещенности и температуры. Еще в 1797 году Христофер Гуфелянд, рассматривая суточные колебания различных медицинских показателей у здоровых и больных пациентов, пришел к выводу, что в организме существуют “внутренние часы, ход которых определяется вращением Земли вокруг своей оси”, поэтому многие считают Гуфелянда основателем учения о биологических ритмах. Он впервые обратил внимание на универсальность ритмических процессов и подчеркнул, что “наша жизнь, очевидно, повторяется в определенных ритмах, а каждый день представляет маленькое изложение нашей жизни”. Правда, некоторые исследователи отдают в этом вопросе пальму первенства французскому астроному, математику и физику Жан Жаку Де Мерану, который, изучая особенности солнечного света и вращения Земли, еще в 1729 году установил, что в условиях темноты и постоянной температуры растения сохраняют свойственную им двадцатичетырехчасовую периодичность движения листьев, связав тем самым этот феномен не с освещенностью, а с вращением нашей планеты.

Исключительно крупный вклад в хронобиологию внес российский ученый А.Л.Чижевский. Проведенный им анализ общей смертности в Российской империи с 1800 по 1900 год и по Сакт-Петербургу с 1764 по 1900 год позволил выявить столетнюю цикличность смертности, названную им “вековым ходом”. В дальнейшем А.Л.Чижевский связал проходящие на Земле циклические процессы с солнечной активностью. Международный конгресс по биологической физике и биологической космологии, состоявшийся в 1939 году в Нью-Йорке, оценивая работы А,Л,Чижевского, охарактеризовал его как создателя новых наук - космобиологии и биоорганоритмологии, подчеркнув тем самым неразрывную связь между ними. А.Л.Чижевский показал, что почти все органы функционируют строго ритмически, причем одни ритмы находятся в зависимости от физико-химических процессов, а другие - от факторов внешней среды (важнейшим из которых он считал космическое излучение). Кроме того, по мнению А.Л.Чижевского есть группа независимых (врожденных) ритмов.

По мере увеличения продолжительности жизни живых организмов происходил естественный отбор особей, способных приспосабливаться к ритмам внешней среды, имеющим различные периоды. Эволюционные преобразования создали сложную интегральную иерархию временной упорядоченности биологических ритмов различных видов, в которой ключевую роль по-видимому играла суточная ритмика.

Интересно отметить, что в хронобиологии понятие “суточный ритм” носит несколько условный характер. До сих пор нет еще ответа на вопрос, почему ритмы, согласовывающие жизнедеятельность организмов с “хронометром”, точным до долей секунды (астрономические сутки), сами имеют систематическую погрешность до нескольких часов (Г.Б.Федосеев и др.,1987). Можно предположить, что именно эта “погрешность” и есть то преимущество, которое позволило выжить биологической системе в “сумятице” (на первый взгляд) космофизических циклов. Возникновение циркадианного “тремора” позволяет подстраивать систему к широкому диапазону постоянно присутствующих изменений внешней среды, в том числе и к ритмическим изменениям среды. Как отмечал Б.С.Алякринский (1986а), циркадианные ритмы играют роль общего начала в целостной системе организма, выступая в качестве дерижера всех колебательных процессов, и отличаются признаками всеобщности и необходимости, что дает основание считать их закономерным общебиологическим явлением, т.е. говорить о законе циркадианности.

Иными словами можно сказать, что циркадианные ритмы являются одним из главных компонентов фрактальной системы биологических ритмов, объеденяющей частные ритмические процессы различных морфофункциональных структур. Сейчас можно сказать, что фрактальный принцип биоритмов сердца рассматривался в работе Чибисова С.М. (1993) «Интегральные взаимоотношения разнопериодических биоритмов сердца в норме и при их десинхронозе». Бродский В.Я. (2000) выделяет интегральность как характерную черту биоритмов, отмечая, что даже длинные инициируемые извне и генетически програмированные ритмы складываются из коротких собственно клеточных. Так же как околочасовые ритмы, другие клеточные ритмы , скорее всего тоже фракталы, т.е., хотя и детерминированные и закономерные, но в основе своей хаотические изменения. Видимо, интегральность циркадианных ритмов и определяет некоторую их нестабильность и возможность направленных влияний на их параметры.

В целом диапазон биологических ритмов весьма широк. F.Halberg (1964) предложил классифицировать биологические ритмы следующим образом: ультрадианные ритмы с периодом меньше 20 часов, циркадианные - с периодом 24 +-0 4 ч. и инфрадианные - с периодом больше 28 часов.

Сравнительно недавно было обнаружено, что существенная роль в жизни и эволюции всех без исключения биологических объектов принадлежит также инфрадианным ритмам. Среди последних следует выделять: циркасемисептанные ритмы с периодом примерно 3 +_ 0,5 сут.; циркасептанные ритмы с периодом 7 ± 3 сут., циркадисептанные - с периодом 14 ± 3 сут., циркавигинтанные с периодом 21 ± 3 сут., циркатригинтанные с периодом 30 ± 5 сут., цирканнуальные с периодом 1 год ± 2 месяца.

Существуют, однако, и другие классификации ритмов, в частности, отечественные. Например, Н.Л.Асланян и соавт. (1989) на основе многолетнего опыта биоритмологических исследований пациентов с различными патологиями предложили обособить интервал времени от 28 ч до 4 суток, поскольку ритмы этих периодов часто наблюдается при патологии. Поэтому именно ритмы в интервале периодов 28 – 96 часов предложено считать инфрадианными и не включать в эту группу ритмы с большими периодами. Предложено также ограничить пределы ультрадианных ритмов интервалом от 3 до 20 часов, а ритмы с периодом 18 – 22 ч и 26 – 30 ч считать переходными к ультрадианным и инфрадианным.

Н.Л.Асланян, С.М.Чибисов и Г.Халаби (1989) приводят следующее, можно сказать, “утилитарное” определение понятия “биологический ритм” – это ритм живого организма, периодический компонент которого в биологической временной организации целесообразно оценивать с помощью математических методов.

Основными параметрами, характеризующими биологический ритм, являются следующие величины. Период–интервал времени, в течение которого исследуемая величина совершает полный цикл своего изменения (период обратно пропорционален частоте ритма). Мезор – средний уровень исследуемого показателя за один цикл. Амплитуда – это половина разности между максимальным и минимальным значениями аппроксимирующей данный биоритм косинусоиды, либо разность между ее максимальным отклонением и мезором. Акрофаза – это значение временной шкалы в момент наступления максимума амплитуды, выраженное в градусах. Накопленные в настоящее время экспериментальные и клинические данные не вызывают сомнения в том, что изменения ритмов внешней среды являются факторами, обуславливающими морфологические и физиологические изменения в организме. Однако, зачастую конкретная информация носит противоречивый характер и требует дальнейшего углубленного и систематического изучения морфообразующей роли временной организации организма, в частности его регуляторно-адаптивных систем ( Р.М. Баевский, 1976;1979, Э.С.Матыев, 1991). По мнению В.В.Парина и Р.М.Баевского, рассогласование биоритмов предшествует развитию патологических состояний с последующими информационными, энергетическими, обменными и структурными изменениями.

Г Л А В А 1

П А Т О Ф И З И О Л О Г И Я Б И О Р И Т М О В

1.1.^

В естественной среде организм всегда подвержен влиянию сложного динамического комплекса факторов, причем действие одних факторов изменяет (усиливает, ослабляет, деформирует) действие других, что создает проблемы для определения их роли и степени биотропности. Нарушения временной структуры организма возникают при рассогласовании упорядоченности структуры его внутренних ритмов, причем причины этого рассогласования могут быть различными – внутренними (например, патология систем или органов) и внешними (воздействие факторов окружающей среды).

Изучение динамики морфологических структур сердца, наблюдаемых при смене сезона года, позволило Т.Ю.Моисеевой (2000, 2000а) по новому посмотреть на процессы адаптации с позиций информационно- термодинамического подхода и представить сезонные изменеия миокарда как закономерную эволюцию информационно-термодинамической системы.

Нарушение естественного хода биологических ритмов, их взаимной согласованности, т.е. десинхроноз, является обязательным компонентом общего адаптационного синдрома (Алякринский Б.С., 1979), и в этом отчетливо видна связь проблемы биологических ритмов с проблемой адаптации.

Степанова С.И. (1986) рассматривает адаптацию как непрерывно текущий процесс, не прекращающийся ни на одно мгновение от момента зарождения организма до момента смерти. Адаптация рассматривается ею как процесс, имеющий как внешние, так и внутренние противоречия. Внешние противоречия адаптационного процесса заключаются в том, что организм находится в двойственных отношениях со средой: с одной стороны он стремится достичь согласованности с ней, а с другой - сохраняет некоторую рассогласованность, никогда не достигая идеальной гармонии, “пригнанности” к среде. Это и позволяет ему, в конечном счете, приспосабливаться, поскольку пребывание в некотором разладе со средой тренирует защитные механизмы организма, поддерживая их в активном “рабочем” состоянии, обеспечивая тем самым эффективную мобилизацию сил в случае резкого изменения внешних условий.

Иногда адаптацией называют только одну из двух сторон этого процесса, а именно, только согласование с ритмами внешней среды. Если придерживаться такой терминологической трактовки, то вторую сторону этого процесса, т.е. рассогласование, следует называть дезадаптацией, и таким образом феномен адаптации выступает как единство адаптации и дезадаптации, и этот процесс имеет ритмическое течение.

Заметим, что закон ритмичности адаптационного процесса имеет также большое практическое значение, ибо открывает надежный путь к прогнозированию динамики состояния организма при остром и хроническом стрессе, вызванном как внутренними, так и внешними причинами.

Например, он позволяет предвидеть особенности течения хронических заболеваний (периоды ремиссий и обострений), ход процессов восстановления после острых заболеваний и травм, смену периодов улучшений и ухудшений состояния в процессе приспособления к экстремальным условиям существования, в том числе и к условиям космических полетов. Он также позволяет принимать своевременные меры, направленные на поддержание благополучия организма.

Итак, приспособленность организма к условиям среды обитания не бывает абсолютной, так как его слишком тесная связь со средой может стать причиной вымирания (гибели не только отдельной особи, но и исчезновения вида) при внезапном изменении среды (De Beer Sir G., 1973).

Предельное развитие адаптивности (гиперадаптация) может привести к своей противоположности, к “гипертермии” и безвозвратной утере адаптивности, т.е. к анадаптации (Дичев Т.Г., Тарасов К.Е., 1976).

Большинству людей, пишет Г.Селье, в равной мере не нравится как отсутствие стресса, так и избыток его. Поэтому каждый должен тщательно изучить самого себя и найти тот уровень стресса, при котором он чувствует себя наиболее “комфортно”, какое бы занятие он не избрал. В последнее время получает все большее признание точка зрения о полезности умеренного стресса, в частности о том, что умеренный стресс сопровождается повышением продуктивности человека в различных видах деятельности (Франкенх Айзер П.,1970; Паткап П., 1970). Так, водители автомобилей выполняют предъявляемые им экспериментальные задания значительно лучше при воздействии умеренных стрессов, нежели в спокойной обстановке (Пикус и др., 1973). Громова Е.А. и др. выявили благоприятное влияние умеренного стресса (ситуации международных соревнований) на кратковременную память у спортсменов.

Следующие друг за другом циклы жизненных процессов различаются по своим параметрам - длительности периода, амплитуде, фазе. В тех случаях, когда адаптационный процесс протекает спокойно, без особых потрясений организма, когда действующие на организм стресс-факторы не выходят за рамки умеренного уровня, их воздействия на циркадианные ритмы невелики. Если же адаптационный процесс протекает бурно, с выраженными и быстро развивающимися изменениями в организме, что может быть обусловлено действием сильных раздражителей, либо особой динамичностью организма в некоторые периоды его индивидуального развития, в этих случаях состояние организма от цикла к циклу изменяется очень заметно, и колебательные процессы утрачивают свою правильность, регулярность. Искажение биологического ритма, трансформация его в непериодические колебания свидетельствует о резком обострении внутренних противоречий адаптационного процесса. Изменения исходной периодичности при стрессе характеризуются не только нарушением постоянства периода, но и увеличением амплитуды колебательного процесса, изменениями акрофазы.

В настоящей работе исследовалась в основном патофизиология биоритмов сердечно-сосудистой системы, обусловленная изменениями факторов внешней среды, в то время как значительную область хрономедицины патологии сердечно-сосудистой системы мы здесь касаться не будем, рекомендуя читателям, например, монографии Р.М.Заславской с соавторами (1994г., 1997г., 2001), исследовавших многие аспекты этой проблемы. Некоторые данные о десинхронозах сердечно-сосудистой системы при ее патологиях будут приводиться в данной работе лишь там, где это необходимо, для сопоставления или уточнения ряда результатов исследуемой нами проблемы.

Десинхроноз подразделяется на острый и хронический. Острый десинхроноз возникает при внезапном рассогласовании ритмов датчиков времени и организма. Например, при трансконтинентальных перелетах на современных авиалайнерах, пересекающих за довольно короткое время несколько часовых поясов, возникает резкое нарушение взаимоотношения фаз ритма сон-бодрствование. В случае, если воздействие фактора, вызвавшего острый десинхроноз, длительное время не прекращается, развивается хронический десинхроноз.

Хронический десинхроноз – патологическое состояние, в основе которого лежит перманентная десинхронизация функций организма.

Десинхроноз может быть вызван целым рядом внешних причин, как социальных, так и природных. К числу социальных причин относятся, например:

  1. биотропные факторы антропогенного происхождения, такие как
а) токсические вещества, например, алкоголь, физические и другие воздействия;

б) совокупные социальные стрессы больших промышленных городов, связанные с напряженной работой или управлением транспортом, обилием информации и т.д.;

  1. уже упоминавшееся длительное рассогласование ритма сон-бодрствование, например, при сменной и ночной работе;
3) рассогласование между суточным стереотипом организма и дискретным временем, возникающим при трансмеридиональных перелетах;

4) десинхроноз, вызванный орбитальными и межпланетными космическими полетами;

К числу десинхронозов, вызванных природными внешними факторами относятся, например, десинхронозы, связанные с:

5) эктремальными природными условиями,

6) изменениями ритмов действующих гелио-геофизических датчиков времени, таких как циклы солнечной активности, суточные и сезонные вариации погоды, изменения климата,

7) ритмами геомагнитного поля Земли, вызванными вращением Солнца,

8) апериодическими изменениями гелио-геофизических факторов, возникающими при солнечных вспышках и геомагнитных бурях.

Данная систематизация причин, вызывающих десинхроноз, условна, как всегда, когда речь идет о любой многофакторной системе. В реальности действие многих из перечисленных факторов может быть тесно переплетено, взаимосвязано, и один фактор может усиливать отрицательное действие другого. Так, например, на орбитальной станции космонавт пребывает в условиях, когда время “естественных” суток составляет всего примерно 90 минут (время облета станцией земного шара), и на него постоянно воздействует такой сильнейший и необычный стресс-фактор, как невесомость.

В настоящей книге предлагается следующая “рабочая” классификация нарушений организации временной структуры организма:

  1. Изменение структуры ритма или десинхронизация:
а) увеличение (уменьшение) амплитуды;

б) изменение периода.

2) Десинхроноз.

Данная классификация приводится лишь для правильности восприятия материала, поскольку в действительности структурные изменения ритма обычно сопутствуют дисинхронозу. В то же время, при проведении хронодиагностики, удается проследить зачастую за изменениями структуры ритма лишь одного или нескольких отдельных показателей, и поэтому, строго говоря, не следует говорить о десинхронозе организма. Наблюдаемые изменения в таких случаях следует определять как десинхронизацию, характеризующуюся рассогласованием существующих в норме соотношений периодов и фаз ритмов исследуемых показателей организма и внешней среды. Тем не менее, в дальнейшем для удобства изложения мы сами не будем строго придерживаться приведенной здесь классификации, считая, что читатель правильно поймет нас после сделанного выше комментария.

Приведем лишь некоторые имеющиеся литературные данные о нарушениях хроноструктуры циркадианных ритмов в соответствии с предложенной нами выше условной классификацией.

Естественно предположить, что нарушение хроноструктуры ритмов той или иной системы - явление целостное, и проведенное в следующих подразделах деление по различию проявлений нарушений параметоров ритмов условно. Тем не менее, использование таких диагностических критериев в хрономедицине, как амплитудные изменения ритмов, изменения мезора или периода ритма самостоятельно вполне допустимо и оправдано в ряде конкретных случаев.

1.2.^

Авторы полностью разделяют точку зрения E.Kanabrocki и соавт.(1983) о том, что амплитуда циркадианных ритмов имеет исключительно важное значение для оценки функционального состояния человека. Несмотря на то, что вариации амплитуды чаще всего сочетаются с другими проявлениями десинхроноза, следует отметить, что регистрация изменений амплитуды может служить прекрасным тестом при донозологической диагностике.

Так, например, при проведении хронобиологического обследования в группе спортсменов, занимавшихся академической греблей (С.М.Чибисов и соавт., 1983, 1987), было установлено, что одним из первых проявлений переутомления (перетренированности) является нарушение хроноструктуры ритма показателей гемодинамики, проявлявшееся в снижении амплитуды их циркадианного ритма.

Характерно, что после 3-х часового авиа-перелета у пассажиров происходит уменьшение амплитуды 24-х часовых колебаний физиологических показателей (А.А.Путилов, 1985), причем, снижение амплитуды ритма наиболее выражено при перелете в восточном направлении (J.Aschoff et al.,1975; K.Klein et al., 1972). В.А.Матюхин с соавт. (1983) отмечают, что чем выше скорость пересечения часовых поясов при перелете, тем ниже амплитуда суточных колебаний показателей.

Н.М.Фатеева (1995), оценивая различные периоды нахождения рабочих на вахте при трансширотных перелетах в условиях Заполярья, отметила, что кроме значительных колебаний среднесуточного уровня показателей свертывания крови, имеются довольно существенные изменения внутрисистемной синхронизации регулируемых параметров. Основными проявлениями этих изменений являются исчезновение статистически значимого 24-х часового ритма, выраженный сдвиг акрофаз, появление статистически значимых 12-ти часовых ритмов; особенно это характерно в начальный период перелета. Относительная стабилизация временной организации показателей гомеостаза отмечается на 30-35 день вахты, а достаточно устойчивого состояния достигает к 45-му дню вахты.

Уместно напомнить, что изменения амплитуды циркадианных ритмов показателей сердечно-сосудистой системы наблюдается не только при десинхронозе, вызванном внешними факторами, но и при десинхронозе, связанном с ее патологией (внутреннем). Так например, Л.И.Виноградовой (1976) было показано, что величина амплитуды колебаний суточного ритма артериального давления и частоты сердечных сокращений у больных нейроциркуляторной дистонией существенно выше, чем у здоровых людей. Такая же закономерность обнаружена В.А.Яковлевым (1978) у больных гипертонической болезнью 1-ой стадии. Неуклонное снижение амплитуды циркадианного ритма различных показателей происходит по мере старения (Aschoff J.,1994)

Таким образом, изменения амплитуды суточных ритмов является одним из важных диагностических критериев в хрономедицине не только внутренних, но и внешних десинхронозов.

1.3 .^

Как свидетельствуют иссследования «внутренних» десинхронозов, стресс, связанный с наличием патологии, сопровождается также изменением периода циркадианного ритма.

Клинические исследования, проведенные в лаборатории, руководимой Н.Л.Асланяном (1986, 1988), позволили сформулировать новое понятие “неоритмостаза”, то есть установления относительной стационарности параметров ритмов на новом уровне, происходящем под влиянием стресса, а именно, перехода циркадианного ритмостаза в ультрадианный или инфрадианный неоритмостаз. Например, при выполнении 261-го ритмологического исследования выделения мочи и электролитов у больных, страдающих нейроциркуляторной дистонией, было выявлено, что в 168 случаях (64%) у них выделяются достоверные ритмы, однако их периоды существенно отличаются от периодов ритмов здоровых индивидуумов. Если у здоровых людей среди статистически достоверных ритмов околосуточные ритмы составляли 92%, то у больных нейроциркуляторной дистонией они выявлены только в 31% случаев, в то время как инфрадианные выявлялись в 54% случаев, а ультрадианные ритмы в 15% случаев. В то же время, мезоры и амплитуды ритмов выделения мочи и электролитов в этой группе больных достоверно не отличались от соответствующих показателей здоровых людей.

В совместной работе, проведенной одним из авторов с Л.А.Бабаян (1990, 1997) было показано, что у интактных животных под влиянием внешнего стресса также происходит смещение периодов циркадианных ритмов в инфрадианную область. Обычно статистически достоверно выделяемые ритмы кортикостерона и минералов крови у этих животных составляют 80%, ритмы экскреции минералов с мочой - 74%. При этом среди достоверных ритмов у интактных животных в спокойных условиях доминируют ритмы циркадианного диапазона (75 и 91% соответственно для крови и мочи). Можно заключить, что большинству интактных животных присущи циркадианные ритмы водно-минерального гомеостаза с внутренней синхронизацией по периоду ритмов отдельных показателей с определенной величиной мезоров и амплитуд. Под влиянием длительно воздействующих внешних стрессорных факторов (например, введения алкоголя) водно-минеральная система животных реорганизовывала свою временную структуру. Это выражалось в трансформации циркадианного периода в непериодические колебания или в формировании, в основном, инфрадианной ритмичности: для показателей крови и мочи циркадианные ритмы составляли уже только - 21% , 27%, в то время как инфрадианные ритмы состаляли 56 и 54% соответственно, и ультрадианные ритмы - 23%, 19%.

Следует подчеркнуть, однако, что у большинства показателей происходит, естественно, не только изменение периода, но и значительное изменение величины некоторых мезоров и амплитуд (как это отмечалось в предыдущем параграфе). Например, достоверные ритмы кортикостерона в 100% случаев находились в инфрадианном диапазоне, однако, их мезоры и амплитуды при этом статистически достоверно (Р

Сопоставляя литературные данные с нашими результатами, можно предположить, что в результате нейроэндокринных изменений под воздействием стресса, а также, вероятно, и изменений их временной структуры, происходит реорганизация не только циркадианной хроноструктуры экскреции натрия, калия, меди, цинка, но и области доверительных интервалов колебаний их мезоров и амплитуд.

Результаты наших исследований дают основания для выделения комплекса реакций водно-солевой гомеостатической системы в качестве защитной реакции по отношению к действию повреждающих факторов. Сущность ее состоит в реорганизации циркадианной ритмики системы. Она носит неоднозначный характер в различных звеньях водно-солевой системы. Так, если ритмика показателей водно-солевого гомеостаза крови характеризуется главным образом изменениями периода и амплитуды, то ритмика эфферентного звена - изменениями периода, амплитуды и мезора. Логично предположить, что благодаря чрезмерной лабильности параметров ритмов эфферентного звена водно-солевой системы сохраняется постоянство мезоров водно-солевого гомеостаза крови, а чрезмерная лабильность параметров ритмов исполнительного аппарата делают водно-солевую систему точным механизмом, обеспечивающим на основе принципа саморегуляции устойчивость показателей водно-солевого гомеостаза организма при действии повреждающих факторов.

Достаточно ярким примером результата потери циркадианной структуры ритма под воздействием внешних факторов является десинхроноз, вызванный челночными производственными перелетами из средних широт (г.Тюмень) в условия Заполярья (г.Харасвай). При таких перелетах наблюдается десинхронизация циркадианной системы гемостаза, имеющая несколько степеней выраженности. Первая степень характеризуется повышением среднесуточной продолжительности времени свертывания крови, сохранением статистически значимого 24-часового ритма, концентрацией основной мощности временных процессов показателей системы на периоде 24х часов. Вторая степень характеризуется снижением среднесуточной продолжительности времени свертывания крови и отсутствием статистически значимых 24х часовых ритмов. При этом, однако, сохраняется концентрация основной мощности временных показателей на периоде 24х часов, Третья степень десинхроноза сопровождается разнонаправленными изменениями среднесуточных значений показателей системы гемостаза, отсутствием статистически значимых 24х часовых ритмов и проявлением полиморфизма их ультрадианных составляющих (Фатеева Н.М. с соавт., 1998).

1.^

В данном разделе мы рассмотрим более подробно данные о десинхронозе, вызванном воздействием различных внешних социальных и природных факторов, перечисленных в пунктах 1) – 8) в разделе 1.1. настоящей Главы, и сопоопоставим эти данные с некоторыми результатами собственных наблюдений.

1.4.1.Воздействие факторов антропогенного происхождения

а) Воздействие алкоголя

При продолжительном действии таких социальных биотропных факторов, как токсические, физические и других воздействия, возникает состояние хронического десинхроноза и повреждение структуры суточных ритмов организма (Рейнберг А., Смоленский М., 1983), что, по мнению Парина В.В., является одним из первых проявлений в цепи событий, приводящих к развитию патологического состояния. С этой точки зрения токсикологические исследования, проведенные в различные фазы циркадианного ритма, могут служить моделью для изучения десинхроноза. С другой стороны, десинхроноз, являясь неспецифическим функциональным состоянием, во многих случаях предваряет клинические признаки заболевания.

Проведенные различными авторами исследования реакции организма здоровых индивидуумов на этанол позволили расширить представления о реакциях организма на экстремальные воздействия и о механизмах адаптации к ним. Так, если рассматривать кислотно-основное состояния крови (КОС) испытуемых, то под

medznate.ru

Что такое циркадный ритм? Циркадные ритмы и их нарушения

Практически все жизненно важные процессы в природе проходят по циклу. Самым простым примером цикла является смена времен года. Каждый год все живое переживает четыре сезона: весну, лето, осень и зиму. Другим примером может послужить цикл полного вращения нашей планеты вокруг солнца. Одно такое вращение длится год. Или же полный оборот Земли вокруг своей оси, образующий сутки.

В нашем организме также происходят определенные циклы. Почему организм человека имеет потребность во сне? Или что способствует его пробуждению? Что такое циркадный ритм? Организм человека подвластен 24-часовому циклу. Самое важное в этом цикле – это смена сна и бодрствования. Этот процесс автоматически регулируется головным мозгом.

циркадный ритм

Понятие циркадного ритма

Циркадные ритмы — это изменение интенсивности биологических процессов, протекающих в организме человека на протяжении суток. Другими словами, это такие биологические часы внутри организма. Сбивать их ритм нельзя, так как это чревато различными заболеваниями психики и жизненно важных органов.

Циркадные ритмы в норме создают циркадный баланс. То состояние, когда у человека прекрасное самочувствие, называется циркадным балансом.

При циркадном балансе человек чувствует себя физически здоровым, у него прекрасный аппетит, отличное настроение, его организм отдохнувший и полон энергии. Человек находится в своем ритме. Но когда циркадный баланс отсутствует, циркадный ритм нарушен, то это оставляет свой отпечаток на здоровье организма.

Проявление циркадных ритмов

Каждый наверняка замечал за собой, что чувствует себя более работоспособным, энергичным и полным жизненных сил и энергии в одни часы суток и более обессиленным, вялым и сонным - в другие. Это связано именно с биологическими ритмами. За работу биологических часов в человеческом организме несут ответственность около 20 тысяч нейронов в гипоталамусе. До сих пор точно неизвестно, как работают эти «часы». Однако ученые уверены, что для нормального функционирования организма их работа должна быть четкой и слаженной, циркадный ритм сердца всегда должен быть в норме.

циркадные ритмы человека

В среднем умственная активность человека имеет два пика: 9:00 утра и 21:00 вечера. Физическая сила своего пика достигает в 11:00 утра и 19:00 вечера.

Цикл «сон - бодрствование»

Постоянная смена дня и ночи – это цикл, от которого напрямую зависит состояние человеческого организма, его циркадный ритм. Цикл смены ночи и дня, ответственный за процесс смены сна и бодрствования. Именно от цикла «сон - бодрствование» зависит протекание многих процессов в организме, его нормальное функционирование и трудоспособность.

Недостаточное количество сна может стать причиной снижения концентрации внимания, падения трудоспособности. В случае отсутствия полноценного здорового сна ухудшаются интеллектуальные функции, нарушаются процессы обмена веществ в организме. Это далеко не все, чем чревато для организма нарушение циркадного ритма сна. Также это чревато ранним старением мозга, психическими нарушениями и даже шизофренией.

суточные циркадные ритмы

Влияние дневного света на циркадные ритмы

Когда солнце уходит за горизонт, падает уровень освещенности. Зрительная система человека посылает сигналы к головному мозгу. Стимулируется выработка такого гормона, как мелатонин. Он способствует снижению активности человека. Мелатонин расслабляет человека, заставляет почувствовать себя сонным.

И наоборот, когда солнце появляется на горизонте, в мозг человека поступает сигнал о повышении освещенности. Выработка мелатонина идет на снижение. Как последствие – активность человеческого организма повышается.

В регулировке цикла «сон – бодрствование» принимают участие и другие стимулы. Например, принятие душа или ванны, привычный звонок будильника, уход в спальню, принятие горизонтального положения и любые другие привычки.

Рассветы и закаты

Ученые считают, что именно ранний подъем с рассветом и отход ко сну после ухода солнца за горизонт позволит сделать работу биологических часов четкой и слаженной.

Именно по этой причине поздний рассвет и ранний закат зимой нередко приводит к тому, что люди чувствуют себя сонными, вялыми и заторможенными. Это нормальная реакция организма на дневной свет. Биологические часы человека не могут настроиться на нормальную работу. Суточные циркадные ритмы дают сбой, и возникают различные проблемы со здоровьем.

Такое же снижение настроения, падение активности и ощущение бессилия испытывают люди, которые живут в условиях полярной ночи или когда очень длительное время держится пасмурная, дождливая погода.

циркадный ритм сердца

Хронотипы человека

Циркадные ритмы человека до сих пор исследуются. Ученые предположили, что существует три основных хронотипа организма человека.

К первому хронотипу относят «жаворонков» - людей утреннего типа. Они просыпаются рано, с восходом солнца. Наутро и первую половину дня выпадает пик их бодрости, трудоспособности и жизнерадостности. Вечером «жаворонки» сонливы, они рано ложатся спать.

Ко второму хронотипу относят людей вечернего типа. Называют их «совы». Ведут себя «совы» противоположно «жаворонкам». Спать они ложатся очень поздно и терпеть не могут утренние пробуждения. Утром «совы» сонливы, вялые, работоспособность крайне низкая.

Утренняя заторможенность «сов» может сопровождаться головной болью. Работоспособность у них повышается только во второй половине дня, чаще даже после шести вечера. Бывают случаи, когда пик работоспособности «совы» выпадает на ночь.

Третий хронотип - это люди с колебаниями интенсивности физиологических возможностей на протяжении суток. Их называют «голуби» или, другими словами - аритмики. Такие люди впадают из одной крайности в другую. Могут одинаково эффективно работать как днем, так и вечером.

циркадные ритмы сна

«Жаворонками», «совами» или «голубями» люди рождаются, или они такими становятся? Ответа на этот вопрос еще не нашли. Однако было проведено много исследований, доказывающих существование взаимосвязи между хронотипом и родом деятельности человека. Например: служащие в большинстве случаев являются «жаворонками». Люди, работающие умственно — «совы». А люди физического труда — «голуби». То есть получается, что человек в силе сам настроить свои биологические часы, приспособиться к своему ритму жизни. Главное - не навредить самому себе.

Причины сбоя циркадного ритма

Нарушение циркадных ритмов может происходить по разным причинам. Самые основные и распространенные причины сбоя в работе биологических часов:

циркадные ритмы

Регуляция циркадных ритмов

Человек должен уметь подстроится под любой график, ведь жизнь может предоставить множество сюрпризов, которые могут отобразиться крайне негативно на работе биологических часов. Вот некоторые советы, которые могут помочь поддержать циркадные ритмы человека:

нарушение циркадных ритмов

Лечение сбоя циркадного ритма

Нарушения циркадного ритма лечатся после вынесенного диагноза. Целью лечения является возвращение организма человека к нормальному режиму работы, восстановление работы его биологических часов. Основным и самым распространенным методом лечения расстройства циркадного ритма является лечение ярким светом или хронотерапия. Терапия ярким светом используется с той целью, чтобы восстановить нормальное функционирование организма человека, наладить работу его внутренних биологических часов. Эта методика дает значительные результаты людям, у которых нарушены циркадные ритмы сна.

fb.ru

Хроноструктура биоритмов сердца и факторы внешней среды — реферат

Заметим, что закон ритмичности  адаптационного процесса имеет также  большое практическое значение, ибо открывает надежный путь к прогнозированию динамики состояния организма при остром и хроническом стрессе, вызванном как внутренними, так и внешними причинами.

Например, он позволяет  предвидеть особенности течения хронических  заболеваний (периоды ремиссий и обострений), ход процессов восстановления после острых заболеваний и травм, смену периодов улучшений и ухудшений  состояния в процессе приспособления к экстремальным условиям существования, в том числе и к условиям космических полетов. Он также позволяет принимать своевременные меры, направленные на поддержание благополучия организма.

Итак, приспособленность организма  к условиям среды обитания не бывает  абсолютной, так как его слишком  тесная связь  со средой может стать  причиной вымирания (гибели не только отдельной особи, но и исчезновения вида) при внезапном изменении среды (De Beer Sir G., 1973).

Предельное  развитие адаптивности (гиперадаптация) может привести к  своей противоположности, к “гипертермии” и безвозвратной утере адаптивности, т.е. к анадаптации (Дичев Т.Г., Тарасов К.Е., 1976).

Большинству людей, пишет Г.Селье, в равной мере не нравится как отсутствие стресса, так  и избыток его. Поэтому каждый должен тщательно изучить самого себя и найти тот уровень стресса, при котором он чувствует себя наиболее “комфортно”, какое бы занятие он не избрал. В последнее время получает все большее признание точка зрения о полезности умеренного стресса, в частности о том, что умеренный стресс сопровождается повышением продуктивности человека в различных видах деятельности (Франкенх Айзер П.,1970; Паткап П., 1970). Так, водители автомобилей выполняют предъявляемые им экспериментальные задания значительно лучше при воздействии умеренных стрессов, нежели в спокойной обстановке (Пикус и др., 1973). Громова Е.А. и др. выявили благоприятное влияние умеренного стресса (ситуации международных соревнований) на кратковременную память у спортсменов.

Следующие друг за другом циклы жизненных  процессов различаются по своим  параметрам - длительности периода, амплитуде, фазе. В тех случаях, когда адаптационный процесс протекает спокойно, без особых потрясений организма, когда действующие на организм стресс-факторы не выходят за рамки умеренного уровня, их воздействия на циркадианные ритмы невелики. Если же адаптационный процесс протекает бурно, с выраженными и быстро развивающимися изменениями в организме, что может быть обусловлено действием сильных раздражителей, либо особой динамичностью организма в некоторые периоды его индивидуального развития, в этих случаях состояние организма от цикла к циклу изменяется очень заметно, и колебательные процессы утрачивают свою правильность, регулярность. Искажение биологического ритма, трансформация его в непериодические колебания свидетельствует о резком обострении внутренних противоречий адаптационного процесса. Изменения исходной периодичности при стрессе характеризуются не только нарушением постоянства периода, но и увеличением амплитуды колебательного процесса, изменениями акрофазы.

В настоящей работе исследовалась в основном патофизиология биоритмов сердечно-сосудистой системы, обусловленная изменениями факторов внешней среды, в то время как значительную область хрономедицины патологии сердечно-сосудистой системы мы здесь касаться не будем, рекомендуя читателям, например,  монографии Р.М.Заславской с соавторами  (1994г., 1997г., 2001), исследовавших многие аспекты этой проблемы. Некоторые данные о десинхронозах сердечно-сосудистой системы при ее патологиях будут приводиться в данной работе лишь там, где это необходимо,  для сопоставления или  уточнения ряда результатов исследуемой нами проблемы.

 

Десинхроноз подразделяется на острый  и  хронический. Острый десинхроноз  возникает при внезапном рассогласовании  ритмов датчиков времени и организма. Например, при  трансконтинентальных перелетах на современных авиалайнерах, пересекающих за довольно короткое время несколько часовых поясов, возникает резкое нарушение взаимоотношения фаз ритма сон-бодрствование. В случае, если воздействие фактора, вызвавшего острый десинхроноз, длительное время  не прекращается, развивается хронический десинхроноз.

Хронический десинхроноз – патологическое состояние, в основе которого лежит  перманентная десинхронизация функций  организма.

Десинхроноз может быть вызван целым  рядом внешних причин, как социальных, так и природных. К числу социальных причин относятся,  например:

  1. биотропные факторы антропогенного происхождения, такие как

а) токсические вещества, например, алкоголь, физические и другие воздействия;

б) совокупные социальные стрессы больших промышленных городов, связанные с напряженной работой или управлением транспортом, обилием информации и т.д.; 

  1. уже упоминавшееся длительное рассогласование ритма сон-бодрствование, например,  при сменной и ночной работе;

3) рассогласование между суточным стереотипом организма и дискретным временем, возникающим при трансмеридиональных перелетах;

4) десинхроноз, вызванный орбитальными  и межпланетными космическими полетами;

 

     К числу  десинхронозов, вызванных природными  внешними факторами относятся, например, десинхронозы, связанные с:

5)  эктремальными природными  условиями,

         6) изменениями ритмов действующих  гелио-геофизических датчиков времени,  таких как циклы солнечной  активности, суточные и сезонные  вариации погоды, изменения климата, 

          7) ритмами геомагнитного поля  Земли, вызванными вращением Солнца,

           8) апериодическими изменениями гелио-геофизических  факторов, возникающими при  солнечных  вспышках и геомагнитных бурях. 

Данная систематизация причин, вызывающих десинхроноз, условна, как всегда, когда речь идет о любой многофакторной системе. В реальности действие многих из перечисленных факторов может быть тесно переплетено, взаимосвязано, и один фактор может усиливать отрицательное действие другого. Так, например, на орбитальной станции  космонавт пребывает в условиях, когда время “естественных” суток составляет всего примерно 90 минут (время облета станцией земного шара),  и на него постоянно воздействует такой сильнейший и необычный стресс-фактор, как  невесомость.

В настоящей книге предлагается следующая “рабочая” классификация  нарушений организации временной структуры организма:

  1. Изменение структуры ритма или десинхронизация:    

а) увеличение (уменьшение) амплитуды;

б) изменение периода.

2) Десинхроноз.

Данная классификация приводится лишь для правильности восприятия материала, поскольку в действительности  структурные изменения ритма обычно сопутствуют дисинхронозу. В то же время,  при проведении хронодиагностики, удается проследить зачастую за изменениями структуры ритма лишь одного или нескольких отдельных показателей, и поэтому, строго говоря, не следует говорить о десинхронозе организма.  Наблюдаемые изменения в таких случаях следует определять как десинхронизацию, характеризующуюся рассогласованием существующих в норме соотношений периодов и фаз ритмов исследуемых показателей организма и внешней среды. Тем не менее,  в дальнейшем для удобства изложения мы сами не будем строго придерживаться приведенной здесь классификации, считая, что читатель правильно поймет нас после сделанного выше комментария. 

 

Приведем лишь  некоторые  имеющиеся  литературные данные о нарушениях хроноструктуры циркадианных ритмов в соответствии с  предложенной нами выше условной  классификацией.

Естественно предположить, что нарушение хроноструктуры ритмов той или иной системы - явление целостное,  и проведенное в следующих подразделах деление по различию проявлений нарушений параметоров ритмов условно. Тем не менее, использование таких диагностических критериев в хрономедицине, как амплитудные изменения ритмов, изменения мезора или периода ритма самостоятельно вполне допустимо и оправдано в ряде конкретных случаев.

 

1.2.Увеличение  (уменьшение)  амплитуды  циркадианного  ритма под влиянием стресса

Авторы  полностью разделяют точку зрения  E.Kanabrocki и соавт.(1983) о том, что амплитуда циркадианных ритмов имеет исключительно важное значение для оценки функционального состояния человека. Несмотря на то, что вариации амплитуды чаще всего сочетаются с другими проявлениями десинхроноза, следует отметить, что регистрация изменений амплитуды может служить прекрасным тестом при донозологической диагностике.

Так, например, при проведении хронобиологического  обследования в группе спортсменов, занимавшихся академической греблей (С.М.Чибисов и соавт., 1983, 1987), было установлено, что одним из первых проявлений переутомления (перетренированности) является нарушение хроноструктуры ритма показателей гемодинамики, проявлявшееся  в снижении амплитуды их циркадианного ритма.

Характерно, что после 3-х часового авиа-перелета у пассажиров происходит уменьшение амплитуды 24-х часовых колебаний физиологических показателей (А.А.Путилов, 1985), причем, снижение амплитуды ритма наиболее выражено при перелете в восточном направлении (J.Aschoff et al.,1975;  K.Klein et al., 1972).  В.А.Матюхин с соавт. (1983) отмечают, что чем выше скорость пересечения часовых поясов при перелете, тем ниже амплитуда суточных колебаний показателей.

Н.М.Фатеева (1995), оценивая различные  периоды нахождения рабочих на вахте  при трансширотных перелетах в условиях Заполярья, отметила, что кроме значительных колебаний среднесуточного уровня показателей свертывания крови, имеются довольно существенные изменения внутрисистемной синхронизации регулируемых параметров. Основными проявлениями этих изменений являются исчезновение статистически значимого 24-х часового ритма, выраженный сдвиг акрофаз, появление статистически значимых 12-ти часовых ритмов; особенно это характерно в начальный период перелета. Относительная стабилизация временной организации показателей гомеостаза отмечается на 30-35 день вахты, а достаточно устойчивого состояния достигает к 45-му дню вахты.

Уместно напомнить, что изменения  амплитуды циркадианных ритмов показателей сердечно-сосудистой системы наблюдается не только при десинхронозе, вызванном внешними факторами, но и при десинхронозе, связанном с ее патологией (внутреннем). Так например, Л.И.Виноградовой (1976) было показано, что величина амплитуды колебаний суточного ритма артериального давления и частоты сердечных сокращений у больных нейроциркуляторной дистонией существенно выше, чем у здоровых людей. Такая же закономерность обнаружена В.А.Яковлевым (1978) у больных гипертонической болезнью 1-ой стадии. Неуклонное снижение амплитуды циркадианного ритма различных показателей происходит по мере старения (Aschoff J.,1994)

Таким образом, изменения  амплитуды  суточных ритмов является  одним из важных диагностических критериев в хрономедицине не только внутренних, но и внешних десинхронозов.   

               1.3 .Изменение  периода ритма под влиянием стресса

 

Как свидетельствуют иссследования  «внутренних» десинхронозов, стресс, связанный с наличием патологии, сопровождается  также изменением периода циркадианного ритма.

Клинические исследования, проведенные  в лаборатории, руководимой  Н.Л.Асланяном (1986, 1988), позволили сформулировать новое понятие “неоритмостаза”, то есть установления относительной стационарности параметров ритмов на новом уровне, происходящем под влиянием стресса, а именно, перехода циркадианного ритмостаза в ультрадианный или инфрадианный неоритмостаз. Например, при выполнении 261-го ритмологического исследования выделения мочи и электролитов у больных, страдающих  нейроциркуляторной дистонией, было выявлено, что в 168 случаях (64%) у них выделяются достоверные ритмы, однако их периоды существенно отличаются от периодов ритмов здоровых индивидуумов. Если у здоровых людей среди статистически достоверных ритмов околосуточные ритмы составляли 92%, то у больных нейроциркуляторной дистонией они выявлены только в 31% случаев, в то время как  инфрадианные выявлялись в 54% случаев, а ультрадианные ритмы в 15% случаев. В то же время, мезоры и амплитуды ритмов выделения мочи и электролитов в этой группе больных достоверно не отличались от соответствующих показателей  здоровых людей.

В совместной работе, проведенной  одним из авторов с Л.А.Бабаян (1990, 1997) было показано, что у интактных  животных под влиянием внешнего стресса  также происходит смещение периодов циркадианных ритмов в инфрадианную область. Обычно статистически достоверно выделяемые  ритмы кортикостерона и минералов крови у этих животных  составляют 80%, ритмы экскреции минералов с мочой - 74%. При этом среди достоверных ритмов у интактных животных в спокойных условиях доминируют ритмы циркадианного диапазона (75 и 91% соответственно для крови и мочи). Можно заключить, что большинству интактных животных присущи циркадианные ритмы водно-минерального гомеостаза с внутренней синхронизацией по периоду ритмов отдельных показателей с определенной величиной мезоров и амплитуд. Под влиянием длительно воздействующих внешних стрессорных факторов (например, введения алкоголя)  водно-минеральная система животных реорганизовывала свою временную структуру. Это выражалось в трансформации циркадианного периода в непериодические колебания или в формировании, в основном, инфрадианной ритмичности:  для показателей крови и мочи циркадианные ритмы составляли уже только - 21% , 27%, в то время как инфрадианные ритмы состаляли  56 и 54% соответственно, и ультрадианные ритмы  -  23%, 19%.

referat911.ru

Реферат: Адаптация и циркадные ритмы

Содержание

Введение………………………………………………………………………….3

Глава 1. Спортивная нагрузка и основные ее составляющие…………………5

1.1 Определение понятия "спортивная нагрузка" и ряда смежных терминов………………………………………………………………………….5

1.2. Функциональная нагрузка и ее особенности………………………………7

Глава 2. Адаптивные физиологические ритмы………………………………..10

Глава 3. Адаптационные возможности организма под влиянием физических упражнений………………………………………………………………………15

3.1. Виды и механизм адаптации……………………………………………….15

3.1.1. Механизм адаптаций……………………………………………………...15

3.1.2. Срочная и долговременная адаптация…………………………………..18

3.2. Физиологические изменения в организме под влиянием физических нагрузок………………………………………………………………………….19

3.2.1. Железы внутренней секреции……………………………………………20

3.2.2. Физиологические изменения в нервной системе……………………….21

3.2.3. Физиологические изменения в сердечно-сосудистой системе………...22

Заключение………………………………………………………………………24

Список использованных источников……………………….………………….25

Введение

Образовательный уровень тренера сегодня не может ограничиваться исключительно педагогическими знаниями, тем более что объектом его деятельности является человек в своем сложном взаимоотношении со средой. Следует понимать, что единственное, на чем может базироваться теория спортивной тренировки, - это законы физиологии, которые, как и другие человеческие знания, подвержены эволюции. Ситуация, сложившаяся в спортивной педагогике, по-своему уникальна: искусственно созданные теории безапелляционно принимаются практиками и тиражируются вне зависимости от приносимых ими результатов. Вместе с тем изменившаяся в стране экономическая ситуация сегодня уже не позволяет тренеру "перемалывать" огромное количество "материала" в надежде, что какой-нибудь суперталант сможет подняться на вершину спортивного Олимпа не благодаря, а вопреки применяемым методикам спортивной тренировки.

Термин "адаптация" принято понимать как процесс или свершившийся факт приспособления к чему-либо, причем свершившийся факт адаптации тот же автор в своей монографии характеризует всего лишь как "эффект количественного накопления определенных изменений".

Адаптация организма к постоянно изменяющимся условиям cреды (внешним и внутренним) - безостановочно происходящий процесс приспособления организма к данным изменениям, призванный сохранять в нем гомеостатическое равновесие. Физиологический смысл адаптации организма к внешним и внутренним воздействиям заключается именно в поддержании гомеостаза и, соответственно, жизнеспособности организма практически в любых условиях, на которые он в состоянии адекватно реагировать.

Абсолютная адаптированность организма к чему-либо - относительно нестабильное функциональное состояние, которое может быть достигнуто только при длительном - в течение адаптационного периода - действии на него достаточно неизменного по силе и продолжительности стандартного раздражителя или суммы раздражителей.

Адаптационные изменения (более или менее выраженные) происходят в организме в ответ практически на любые изменения его внешней и внутренней среды. Спортивная тренировка фактически является изменением условий существования организма спортсмена, призванным добиться в нем определенных спецификой спорта адаптационных изменений.

Адаптационные изменения могут носить и негативный или относительно негативный характер, в том числе и в случаях, когда речь идет о спорте. Так, увеличение процента содержания медленных волокон в мышцах спринтера вследствие избыточного применения в тренировках нагрузок аэробной направленности может расцениваться как негативный эффект адаптационных изменений в ответ на данные нагрузки.

Цель: охарактеризовать адаптационные возможности организма при физических нагрузках.

Задачи:

1. Рассмотреть понятие нагрузки и ее составляющие;

2. Изучить физиологические ритмы человека.

3. Изучить именения происходящие в организме под влиянием физической нагрузки

Объект: физиологические изменения происходящие в организме при адаптации к физическим нагрузкам.

Предмет: частота сердечных сокращений и артериального давления при различных нагрузках.

Профессор Л. П. Матвеев (1977, 1976) под нагрузкой (тренировочной) подразумевает определенную величину воздействия физических упражнений на функциональное состояние, организма спортсмена. Нагрузка, по мнению автора, может быть выражена "внеш­ней" и "внутренней" сторонами. К "внешней" нагрузке автор относит количественные и ка­чественные показатели выполняемых физиче­ских упражнений (в мерах преодолеваемого расстояния, затраченного времени, поднятого веса, числа повторений и т. д.). "Внутреннюю" сторону нагрузки, автор характеризует вели­чиной ответных реакций организма, т. е. сте­пенью физиологических и биохимических сдвигов в организме под влиянием данного уп­ражнения (или упражнений).

Несмотря на то, что определение Л. П. Матвеева было дано в 1967 году, оно сохра­нило свое смысловое содержание до сегодняш­него дня и включено с небольшими поправ­ками в учебники теории и методики физического воспитания.

Эту же мысль позднее подчеркивал а своей работе и В. Н. Афанасьев (1976), отно­ся объем, интенсивность, плотность работы к внешней сторону нагрузки, а реакцию функ­циональных систем к внутренней стороне нагрузки.

А. Д. Солдатов, К. Д. Чернов (1978), раскрывая содержательную сторону термина "нагрузка", попытались раскрыть ее через количественные характеристики спортивной деятельности и состояния спортсмена, ука­зав на причинно-следственную зависимость между ними.

По мнению И. Ю. Бондарчука (1988), под нагрузкой понимается прежде всего ко­личественная мера воздействия физических упражнений, сопряженная с "расходованием рабочих потенциалов" организма.

Брейзер В. В. в соавт. (1988), В. П. Фи­лип, В. С. Рубин (1988) и др. рассматрива­ют нагрузку и предлагают планировать ее, учитывая лишь один из параметров — это количество тренировочных дней или объем выполненной работы (будь то общая или спе­циальная физическая подготовка) и уровень тренированности (Н. П. Гусев, Ю. Н. Лысен­ко, 1989).

Мы склонны "внешнюю" нагрузку харак­теризовать как физическую, а "внутреннюю" называть функциональной нагрузкой.

Что касается понятия функциональная (нагрузка, то хотя этот термин очень часто употребляется в спортивной литературе, особенно в практике спорта высших достиже­ний, однако не удалось обнаружить его определения.

Наиболее часто употребляемые в теории и практике спорта понятия "тренировочная" и "спортивная" нагрузки также до сих пор имеют самые различные толкования.

Анализируя определение, данное Л. П. Матвеевым, можно отметить, что содержание, которое автор вкладывает в понятие "трени­ровочная нагрузка", значительно, шире, а сле­довательно и сам термин неадекватен содер­жанию, заключенному в этом определении. Термин, который смог бы наиболее полно от­разить содержание, вкладываемое в понятие "тренировочная нагрузка" — это, по моему мнению, "спортивная нагрузка".

Таким образом, предлагая заменить тер­мин "тренировочная нагрузка" на "спортив­ная нагрузка", можно дать определение последнему.

Спортивная нагрузка — это интегративное единство физической нагрузки и нагруз­ки функциональной, имеющей место при вы­полнении различных двигательных. действий спортсмена, связанных с выполнением кон­кретных физических упражнений. Вводимый здесь термин "спортивная нагрузка" харак­теризует нагрузку, которая характерна отра­жает двигательную деятельность. Что касает­ся других типов деятельности, то имеющая там место нагрузка будет, по-видимому, называться, в зависимости от вида деятельности, технико-конструкторской, научно-теоретиче­ской, художественно-эстетической, наряду с этим можно вычленить учебную и производ­ственную (трудовую) нагрузки. Однако, несмотря на различные виды деятельности, ос­новные составляющие компоненты нагрузки в принципе идентичны компонентам спортив­ной нагрузки.

Анализ приведенного выше определения спортивной нагрузки обнаруживает его двой­ственную природу, которая по определению Л. П. Матвеева имеет "внутреннюю" и "внеш­нюю" стороны. Отсюда следует, что спортив­ную нагрузку можно и нужно подразделять на два ее вида: физическую — "внешнюю" и функциональную — "внутреннюю", которые хотя и взаимосвязаны, но диаметрально про­тивоположны.

Термин "физическая на­грузка" более точно отражает ее смысловое содержание, нежели понятие "внешняя" нагрузка. Поэтому под физической нагрузкой следует понимать некую величину выполненной спортсменом определенным способом (методом) физической работы, выраженной в динамических, пространственных и временных ха­рактеристиках.

Под функциональной нагрузкой мы будем понимать интегральную величину, отражающую психофизиологические, соматофизиологические, биохимические и прочие сдвиги, которые обуславливают повы­шенный уровень функцоинирования систем ор­ганизма, а также определенные величины раз­личных энергозатрат, которые чаше всего выра­жаются термином "рабочие потенциалы". Причем особый акцент следует сделать на неразрывности существования физической и функциональной нагрузок. Может быть поэ­тому физическую и функциональную нагруз­ки можно сравнить с двумя сторонами меда­ли. Такое сравнение подчеркивает, что одна сторона без другой существовать не может, ибо в этом случае нарушится целостность данного явления; поэтому и существование любой из этих сторон в отдельности невоз­можно. Таким образом, не может быть функциональной нагрузки без физической, и в то же время наличие физической нагрузки всег­да обуславливает нагрузку функциональную. Причем, эта обусловленность носит количест­венно-качественную взаимосвязь. Следователь­но, по величине функциональных сдвигов в организме можно относительно судить о ве­личине физической нагрузки. Здесь говорится относительно, потому что, как отмечают спе­циалисты в области физиологии спорта, одна и та же величина физической нагрузки всег­да сопровождается одними и теми же вели­чинами функциональных сдвигов при одном и том же исходном состоянии организма, а при различном исходном состоянии организ­ма одни и те же физические нагрузки вызы­вают неадекватные по величине функциональ­ные сдвиги в организме.

Таким образом, кратко охарактеризовав физическую и функциональную нагрузки, можно отметить, что "спортивная нагрузка" включает в себя определенную интегративную величину выполненной работы — "физи­ческую нагрузку" — и сопутствующие ей интегративные сдвиги в организме — "функцио­нальную нагрузку".

Нельзя отрицать и того, что процесс фи­зической подготовки, по существу своему, есть единство двух существенно различных хотя и взаимосвязанных процессов, а именно: трени­ровочного — как процесса накопления необходимых двигательных навыков и умений, а также сдвигов в организме, и соревнователь­ного — как процесса трансформации накопленных двигательных умений и навыков, а также положительных сдвигов в организме спортсмена с целью реализации их в макси­мально возможный спортивный результат, осуществляемый, как правило, лишь в процес­се спортивных соревнований. Поэтому физи­ческая нагрузка в свою очередь может быть подразделена на две разновидности: трениро­вочную и соревновательную. Что касается функциональной нагрузки, то, в силу своей специфики, она непосредственно не может быть подразделена на две выше названные разновидности, но всецело обуславливается либо спецификой (характером, величиной и прочее) тренировочной физической нагрузки, либо спецификой (характером, величиной и прочее) соревновательной физической на­грузки.

Следовательно, если физическая и функ­циональная нагрузки являются двумя качест­венно различными видами спортивной нагруз­ки, то тренировочная и соревновательная на­грузки выступают лишь как разновидности этих видов спортивной нагрузки.

Необходимо остановиться еще на двух моментах. Во-первых, следует различать вы­полненную физическую нагрузку и ту, кото­рую мы планируем, т. е. такую нагрузку, ко­торая при определенных условиях превраща­ется в действительность, но еще не преврати­лась в нее; возможность еще не реализована, но мы уже рассматриваем ее так, как если бы имели дело с чем-то уже существующим. Это относится как к физической, так и к функциональной нагрузкам.

Когда мы говорим о нагрузке, то чаще всего подразумеваем, что нагрузка уже вы­полнена, т. е. нагрузка реальная, уже имев­шая место. Но в то же время нам приходится нередко говорить о планируемой физической нагрузке. В отличие от реальных процессов, которые имеют место в первом случае, во вто­ром случае имеет место предполагаемая, т. е. возможная нагрузка. Поэтому она (нагрузка) выступает как идеальная модель будущей ре­альной нагрузки.

Глава 2.Адаптивные физиологические ритмы

Биоритмологический подход к феномену времени как к биологическому параметру и изучение закономерностей временной организации живых систем открывают новые возможности для регуляции и управления процессами, протекающими в организме.

Биологические ритмы — колебания смены и интенсивности процессов и физиологических реакций. В их основе лежат изменения метаболизма биологических систем, обусловленные влиянием внешних и внутренних Факторов. Факторы, которые влияют на ритмичность процессов, происходящих в живом организме, получили определение "синхронизаторы", или "датчики времени".

Физиологические ритмы — циклические колебания в различных системах организма. Они составляют основу жизни. Одни ритмы поддерживаются в течение всей жизни, и даже кратковременное их прерывание приводит к смерти. Другие появляются в определенные периоды жизни индивидуума, причем часть из них находится под контролем сознания, а часть протекает независимо от него. Ритмические процессы взаимодействуют друг с другом и с внешней средой.

Изменение ритмов, выходящих за пределы нормы, либо появление их там, где они раньше не обнаруживались, связано с болезнью.

Физиологические ритмы являются одной из основных форм проявления жизнедеятельности, наблюдаются у всех живых организмов и на всех уровнях организации живой материи — от субклеточных структур до целостного организма. Они, как правило, не являются строго периодическими колебаниями: в определенных пределах меняется их период, амплитуда, форма, уровень.

Наиболее близки к периодическим колебаниям физиологические ритмы, которые возникают при усвоении организмом ритмичных внешних сигналов (напр., световых мельканий), различные адаптивные ритмы.

Физиологические ритмы характеризуются широким спектром частот; их период варьирует от десятитысячных долей секунды до нескольких лет. Часто один и тот же показатель одновременно участвует в нескольких видах колебательных изменений (напр., пульсовые, дыхательные и суточные изменения артериального давления, волны различной частоты на ЭЭГ). Характерные для одной системы ритмы могут передаваться другой (напр., изменения частоты сердечных сокращений в ритме дыхания). Физиологические ритмы могут быть замаскированы апериодическими колебаниями исследуемого показателя (шумами) и другими ритмическими колебаниями, форма их часто бывает сложной. Поэтому разработаны специальные методы анализа, позволяющие выявлять и изучать скрытую периодичность физиологических процессов (гармонический анализ, автокорреляционный анализ, скользящее суммирование и др.).

Большинство физиологических ритмов связано с чередованием различных функциональных состояний соответствующих систем (напр., сокращение и расслабление мускулатуры, сон и бодрствование). Поэтому в различные фазы колебательного процесса отмечается разная реакция на внешние воздействия: разное направление смещения фазы суточного цикла при действии датчика времени в различные его моменты, отсутствие реакции на раздражение в рефракторный период и т.п.

Адаптивные физиологические ритмы выработались в процессе эволюции как форма приспособления организмов к циклически меняющимся условиям среды. Наиболее изучены околосуточные (циркадные) ритмы, циркадные ритмы отражают периодичность геофизических факторов, обусловленную вращением Земли вокруг своей оси. В течение суток закономерно изменяется, прежде всего, естественное освещение. Суточным колебаниям подвержены цикл день-ночь, температура и влажность воздуха, напряженность электрического и магнитного поля Земли, потоки разнообразных космических факторов, падающих на Землю в конкретный временной цикл. Под влиянием этих внешних факторов совершалась эволюция всех форм жизни на Земле, колебания их в настоящее время, как и миллионы лет назад, играют жизненно важную роль для всех без исключения обитателей Земли. Напр., для дневных животных восход Солнца — сигнал для активной деятельности: добывания пищи, строительства жилья, выращивания потомства, а с наступлением темноты активизируются животные, ведущие ночной образ жизни. И все животные "подстраиваются" к этому суточному ритму. А кто не сможет "вписаться" в этот режим, заданный природой, погибают. Для выживания любой организм должен соизмерить свой ритм с внешними ритмами. Адаптация конкретного организма или видовая адаптация к внешним условиям в широком биологическом смысле — это синхронизация жизненных процессов (ритмов) организма или целой популяции с внешними ритмами, таким образом, циркадная периодичность жизненных функций является врожденным свойством.

Для организма человека характерно повышение в дневные и снижение в ночные часы физиологических функций, обеспечивающих его физическую активность (частоты сердечных сокращений, минутного объема крови, артериального давления, температуры тела, потребления кислорода, содержания сахара в крови, физической и умственной работоспособности и др.). В обычных условиях наблюдаются определенные соотношения между фазами отдельных околосуточных ритмов. Поддержание постоянства этих соотношений обеспечивает согласование функций организма во времени, обозначаемое как внутреннее согласование. Помимо этого, под действием меняющихся с суточной периодичностью факторов среды (синхронизаторов, или датчиков времени) происходит внешнее согласование циркадных ритмов. Различают первичные (имеющие основное значение) и вторичные (менее значимые) синхронизаторы. У животных и растений первичным синхронизатором служит, как правило, солнечный свет, у человека им становится также социальные факторы.

Динамика околосуточных физиологических ритмов у человека и высших животных обусловлена не только врожденными механизмами, но и выработанным в течение жизни суточным стереотипом деятельности. Имеющиеся данные о возможности рассогласования по частоте отдельных циркадных ритмов дают возможность предположить существование целого ряда относительно независимых осцилляторов, каждый из которых регулирует ритм определенной, широко разветвленной функциональной системы. В многоклеточных организмах центральные регуляторы не возбуждают колебаний в периферических тканях, а только синхронизируют присущие каждой клетке организма циркадные ритмы по частоте и фазе. Регуляция физиологических ритмов у высших животных и человека осуществляется в основном гипоталамо-гипофизарной системой.

Циркадный механизм не универсален. Он различается в зависимости от биологического вида или даже от типа клеток у одного организма. Полагают, что циркадный механизм замыкается именно на уровне клетки в отличие, например, от менструального цикла, включающего нервные и эндокринные взаимодействия многих тканей. Клеточные механизмы можно изучать методами биохимии и генной инженерии. Существует множество биохимических способов воздействия на работу циркадных часов. Сначала использовались преимущественно световые импульсы. Так, для дрозофилы постоянного освещения — даже на уровне света неполной Луны — достаточно, чтобы остановить ход часов. При этом свет действует опосредованно, а не прямо на молекулы колебательного механизма. У большинства циркадных ритмов период почти совсем не зависит от уровня температуры, если только она остается в физиологически допустимых пределах. Более того, циркадные часы в отличие от подлинных независимых (по температуре) систем не защищены от перепадов температуры: малейшее изменение последней способно сдвинуть их фазу. Помимо света и перепадов температуры на период влияют многие химические вещества, изменяющие проницаемость мембран и нарушающие синтез белка. Их кратковременное введение приводит к сдвигу фазы. Однако затрагиваемые при этом процессы многочисленны и многообразны, и не ясно, чем может быть опосредовано их влияние на ход часов. Вероятно, ни сам АТФ, ни процесс его синтеза и распада не являются деталями механизма часов. То же можно сказать и о синтезе белков.

Глава 3. Адаптационные возможности организма под влиянием физических упражнений

3.1. Виды и механизм адаптации

3.1.1. Срочная и долговременная адаптация

Срочная и долговременная адаптация. Резкое изменение условий внешней среды, несущее угрозу организму, запускает его сложную адаптивную реакцию. Основной регуляторной системой последней является гипоталамо - гипофизарноадреналовая система, деятельность которой, в конечном итоге, и перестраивает активность вегетативных систем организма таким образом, что сдвиг гомеостаза устраняется или заблаговременно прекращается. В этой адаптивной перестройке активно участвует и нервная система, особенно ее гипоталамический отдел. В центральной нервной системе происходят изменения клеточного обмена, в частности, повышается метаболизм важнейших биологических макромолекул - РНК и белков. После ликвидации нарушений гомеостаза метаболизм макромолекул в нервных структурах, участвующих в процессе адаптации, все еще остается измененным. В этом и заключается механизм адаптации: если угроза повреждения гомеостаза повторится, она будет протекать уже на фоне измененного, адаптированного к стрессорному воздействию метаболизма клеточных структур.

Поскольку повторное воздействие стресс-фактора приводит к адаптации, а именно на этом основаны тренировки, то сдвиги в метаболизме РНК и белков биологически целесообразны и способствуют более эффективному развитию физиологических адаптации. В процессе формирования адаптации к природным факторам среды ведущую роль играют реакции коры надпочечников, возбуждаемые секрецией адренокортикотропного гормона гипофиза. Любое интенсивное воздействие на организм приводит к появлению в организме изменений, лучше всего определяемых по состоянию надпочечников - их весу и химическому составу или по выделению в кровь и содержанию в тканях гормонов кортикостероидов и катехоламинов. Это касается, в основном, формирования индивидуальных адаптаций, реакций организма на факторы внешней среды.

Необычные факторы окружающей среды (в данном случае - физическая нагрузка) оказывающие неблагоприятное влияние на общее состояние, самочувствие, здоровье и работоспособность человека, называются экстремальными факторами. По длительности воздействия на организм эти факторы могут быть кратковременными, воздействие которых организм компенсирует за счет имеющихся резервов, и длительные, которые требуют адаптационной перестройки деятельности функциональных систем человека, иногда даже неблагоприятной для здоровья.

При кратковременных воздействиях экстремальных факторов на организм человека запускаются все имеющиеся резервные возможности, направленные на самосохранение, и только после освобождения организма от экстремального воздействия происходит восстановление гомеостаза (рис.1.).

При длительных неадекватных воздействиях экстремальных факторов на организм человека функциональные перестройки определяются

Своевременным включением процессов восстановления гомеостаза их силой и продолжительностью.

Большинство адаптационных реакций человеческого организма осуществляются в два этапа: начальный этап срочной, но не всегда совершенной, адаптации, и последующий этап совершенной, долговременной адаптации.

Срочный этап адаптации возникает непосредственно после начала действия раздражителя на организм и может быть реализован лишь на основе ранее сформировавшихся физиологических механизмов. Примерами проявления срочной адаптации являются: пассивное увеличение теплопродукции в ответ на холод, увеличение теплоотдачи в ответ на тепло, рост легочной вентиляции и минутного объема кровообращения в ответ на недостаток кислорода. На этом этапе адаптации функционирование органов и систем протекает на пределе физиологических возможностей организма, при почти полной мобилизации всех резервов, но не обеспечивая наиболее оптимальный адаптивный эффект. Так, бег нетренированного человека происходит при близких к максимуму величинах минутного объема сердца и легочной вентиляции, при максимальной мобилизации резерва глюкогена в печени. Биохимические процессы организма, их скорость, как бы лимитируют эту двигательную реакцию, она не может быть ни достаточно быстрой, ни достаточно длительной.

Долговременная адаптация к длительно воздействующему стрессору возникает постепенно, в результате длительного, постоянного или многократно повторяющегося действия на организм факторов среды. Основными условиями долговременной адаптации являются последовательность и непрерывность воздействия экстремального фактора. По существу, она развивается на основе многократной реализации срочной адаптации и характеризуется тем, что в результате постоянного количественного накопления изменений организм приобретает новое качество - из неадаптированного превращается в адаптированный. Такова адаптация к недостижимой ранее интенсивной физической работе (тренировка), развитие устойчивости к значительной высотной гипоксии, которая ранее была несовместима с жизнью, развитие устойчивости к холоду, теплу, большим дозам ядов. Таков же механизм и качественно более сложной адаптации к окружающей действительности.

При действии на организм слабых, пороговых раздражений (реакция тренировки) в центральной нервной системе развивается возбуждение, быстро сменяющееся охранительным торможением, что обеспечивает снижение ее возбудимости, реактивности по отношению к слабому раздражителю. При действии раздражителей средней силы происходит развитие "реакции активации" - активации защитных систем организма, которая, однако, не носит характера патологической гиперфункции. Уровень энергетического обмена при этой реакции менее экономичен, чем при реакции тренировки, но, в отличие от стресса, не приводит к истощению. Таким образом, адаптация организма к слабым и средним по силе воздействиям происходит без элементов повреждения и истощающих организм энергетических трат. При этом отмечается в первом случае (реакция тренировки) - постепенное, а во втором (реакция активации) - быстрое повышение резистентности организма.

3.1.2. Механизм адаптаций

Существует три механизма адаптаций:

1.пассивный путь адаптации - по типу толерантности, выносливости;

2.адаптивный путь действует на клеточно-тканевом уровне;

3.резистентный путь - сохраняет относительное постоянство внутренней среды

Специфические адаптивные механизмы, свойственные человеку, дают ему возможность переносить определенный размах отклонений факторов от оптимальных значений без нарушения нормальных функций организма. Зоны количественного выражения физической нагрузки, отклоняющегося от оптимума, но не нарушающего жизнедеятельности, определяются как зоны нормы. Их две: отклонение в сторону недостатка дозирования физической нагрузки и в сторону избытка. Дальнейший сдвиг может снизить эффективность адаптивных механизмов и даже нарушить жизнедеятельность организма. При крайнем недостатке нагрузки или ее избытке выделяют зоны пессимума. Адаптация к любому фактору связана с затратами энергии. В зоне оптимума активные механизмы не нужны, и энергия расходуется на фундаментальные жизненные процессы, организм находится в равновесии со средой. При увеличении нагрузки и выходе ее за пределы оптимума включается адекватные механизмы.

Механизмы обеспечивающие адаптивный характер общего уровня стабилизации отдельных функциональных систем (т. е. увеличивается потребление организмом кислорода, повышается интенсивность обменных процессов. Это происходит на органном уровне: увеличивается скорость кровотока, повышается артериальное давление, увеличивается дыхательный объем легких, учащается дыхание, дыхание становится более глубоким) и организма в целом. Общие адаптационные реакции организма являются неспецифическими, то есть организм аналогично реагирует в ответ на действия различных по качеству и силе раздражителей (физические упражнения).

3.2. Физиологические изменения в организме под влиянием физических нагрузок

Физические нагрузки могут вызывать в организме значительные изменения, в крайних случаях даже несовместимы с жизнью (то есть приводить к смерти), а могут весьма слабо влиять на протекающие в нем процессы.

Это зависит от интенсивности и длительности физических нагрузок. Чем более интенсивна и длительна нагрузка, чем, соответственно, большие изменения она вызывает в организме.

Длительностьнагрузки измеряется в единицах времени (минутах, например). Интенсивность нагрузки измеряется в единицах, оценивающих работу - ваттах, джоулях, калориях и других, сугубо физиологических единицах.

Интенсивность нагрузки зависит и от того, какое количество мышечной массы включается в работу. Чем больше это количество, тем интенсивнее работа.

Если нагрузка предельно интенсивна или длительна, то все структуры организма начинают работать на обеспечение такого высокого уровня жизнедеятельности. В этих условиях не остается ни одной системы, ни одного органа, которые были бы индифферентны по отношению к физической нагрузке. Одни системы увеличивают свою деятельность, обеспечивая мышечное сокращение, а другие - затормаживают, освобождая резервы организма.

Даже малоинтенсивная мышечная работа никогда не является работой только одних мышц, это деятельность всего организма.

Физиологические системы, увеличивающие свою деятельность во время мышечной работы и помогающие ее осуществлению, называют системами обеспечения мышечной деятельности.

3.2.1. Физиологические изменения в сердечно-сосудистой системе

К сердечно-сосудистой системе относятся сердце, кровеносные сосуды и лимфатическая система.

Основной функцией сердечно-сосудистой системы является обеспечение тока физиологических жидкостей - крови и лимфы.

Движение крови и лимфы - обязательное условие для жизни высших организмов. Движение крови обеспечивается работой сердца (сокращением сердечной мышцы). Движение лимфы обеспечивается иными механизмами, о которых речь пойдет ниже.

Часто сердечно сосудистую систему называют системой кровообращения.

Из основной функции вытекают другие функции сердечно-сосудистой системы:

· Обеспечение клеток питательными веществами и кислородомУдаление из клеток продуктов жизнедеятельности

· Обеспечение переноса гормонов и, соответственно, участие в гормональной регуляции функций организма

· Участие в процессах терморегуляции (за счет расширения или сужения кровеносных сосудов кожи) и обеспечение равномерного распределения температуры тела

· Обеспечение перераспределения крови между работающими и неработающими органами

· Выработка и передача в кровоток клеток иммунитета и иммунных тел (эту функцию выполняет лимфатическая система - часть сердечно-сосудистой системы)

· Другие функции, описание которых достаточно сложно, поэтому не приводится.

Деятельность сердечно-сосудистой системы регулируется собственными регуляторными механизмами сердца и сосудов, а также нервной системой и системой желез внутренней секреции.

3.2.2. Физиологические изменения в нервной системе

Нервную систему принято подразделять на центральную и периферическую.

К центральной нервной системе относятся головной и спинной мозг.

К периферической нервной системе относятся отходящие от головного и спинного мозга нервы.

В головном и спинном мозге расположено большое количество нервных клеток, тогда как периферические нервы - это отростки этих нервных клеток. Таким образом, очень упрощенно можно сказать, что центральная нервная система - это тела клеток, а периферическая - их отростки.

Существует еще одна классификация нервной системы, независимая от первой. По этой классификации нервную систему подразделяют на соматическую и вегетативную.

К соматической нервной системе (от латинского слова «сома» - тело) относится часть нервной системы (и тела клеток, и их отростки), которая управляет деятельностью скелетных мышц (тела) и органов чувств. Эта часть нервной системы в большой степени контролируется нашим сознанием. То есть мы способны по своему желанию согнуть или разогнуть руку, ногу и так далее.

Однако мы неспособны сознательно прекратить восприятие, например, звуковых сигналов.

Вегетативная нервная система (в переводе с латинского «вегетативный» - растительный) - это часть нервной системы (и тела клеток, и их отростки), которая управляет процессами обмена веществ, роста и размножения клеток, то есть функциями - общими и для животных, и для растительных организмов. В ведении вегетативной нервной системы находится, например, деятельность внутренних органов и сосудов.

Вегетативная нервная система практически не контролируется сознанием, то есть мы не способны по своему желанию снять спазм желчного пузыря, остановить деление клетки, прекратить деятельность кишечника, расширить или сузить сосуды.

Основные процессы, происходящие в нервной системе во время интенсивной физической нагрузки:

· Формирование в головном мозге модели конечного результата деятельности.

· Формирование в головном мозге программы предстоящего поведения.

· Генерация в головном мозге нервных импульсов, запускающих мышечное сокращение, и передача их мышцам.

· Управление изменениями в системах, обеспечивающих мышечную деятельность и не принимающих участие в мышечной работе.

· Восприятие информации о том, каким образом происходит сокращение мышц, работа других органов, как изменяется окружающая обстановка.

· Анализ информации, поступающей от структур организма и окружающей обстановки.

· Внесение при необходимости коррекций в программу поведения, генерация и посылка новых исполнительных команд мышцам.

3.2.3. Железы внутренней секреции

Изменения активности желез внутренней секреции во время мышечной деятельности зависят от характера выполняемой работы, ее длительности и интенсивности. В любом случае эти изменения направлены на обеспечение максимальной работоспособности организма.

Даже если организм еще не начал выполнять мышечную работу, но готовится к ее осуществлению (состояние спортсмена перед стартом), в организме наблюдаются изменения в деятельности желез внутренней секреции, характерные для начала работы.

Если мышечная работа чрезмерно длительна и/или интенсивна, возможности практически всех желез внутреней секреции выделять свои гормоны истощаются. В этих условиях основной задачей системы желез внутренней секреции становится не поддержание максимальной работоспособности, а сохранение внутренней среды организма в пределах, совместимых с жизнью.

В частности, для этих целей повышается выделение тирокальцитонина щитовидной железы, вызывая снижение возбудимости центральной нервной системы и мышечного аппарата.

Поскольку без гормональной поддержки протекание физиологических процессов невозможно, истощение желез внутренней секреции в результате выполнения чрезвычайно тяжелой и/или длительной работы является одним из факторов, обуславливающих ее прекращение.

ЗАКЛЮЧЕНИЕ

Лишь непосвященному, либо человеку недалекому может показаться, что изучение механизмов адаптации организма проблема исключительно физиологическая. Реально работающие законы и принципы адаптации организма не могут не учитываться в практике, например, педагогики (включая спортивную), медицины, психологии и других научно-практических направлений, объектом внимания которых является Человек в его сложных взаимоотношениях со Средой. В последние годы внимание представителей естественнонаучных направлений мировой научной общественности приковано к решению прежде всего разнообразных частных проблем физиологии и медицины. Конечно, расшифровка генома может позволить науке и практике выйти на качественно новый уровень, но без знания и овладения принципами, в соответствии с которыми в целом организме происходит реализация генотипа в фенотип этому “запрограммированному” мировым научным сообществом открытию (как и любым “частным” открытиям в физиологии и медицине) уготована роль “вещи в себе”, или, по крайней мере, ни в науке, ни в практике не сможет быть использован весь его потенциал.

Вместе с тем, следует помнить, что любая теория – это не свод законов в окончательной редакции, а прежде всего принцип призванный упорядочить накопленные экспериментальные данные, ответить на стоящие перед практиками и теоретиками вопросы, а также сформулировать новые вопросы, по возможности указав пути для их возможного решения.

Использование постулатов системной физиологии и медицины в решении многочисленных задач, стоящих перед спортивными педагогами, физиологами, врачами, может дать возможность едва ли не ювелирного управления тренировочным процессом, процессами восстановления после тренировочных и соревновательных нагрузок, повышения спортивной работоспособности, что в конечном итоге неминуемо приведет к достижению спортсменом высоких спортивных результатов.

Список используемых источников

1. Аронов Г.Е., Иванова Н.И. Иммунологическая активность при различных режимах физической нагрузки. - Киев: Здоровье, 1987. - 84 с.

2. Аршавский И.А. Биологические и медицинские аспекты проблемы адаптации и стресса в свете данных физиологии онтогенеза. - В кн.: Актуальные вопросы современной физиологии. М., 1976, с. 114 - 191.

3. Блеер А.Н., Чистова Н.А., Кузнецова Т.Н. и др. Профессиональный взгляд тренера на цели, задачи и проблемы современной спортивной медицины //Теор. и практ. физ. культ., 2001, № 12, с. 28 - 32.

4. Вовк С.И. Особенности долговременной динамики тренированности // Теор. и практ. физ. культ.- 2001.- №2.-С.28-31.

5. Волков В.Н. Теоретические основы и прикладные аспекты управления состоянием тренированности в спорте. Монография. - Челябинск: Факел, 2001. - 252 с.

6. Волков В.Н., Гавриш Т.В., Гавриш И.В. Функциональный контроль и принципы оценки тренированности в спорте. Монография. - Челябинск: Факел, 1998. - 230 с.

7. Волков В.Н., Исаев А.П., Куликов Л.М. Тренированность. Монография в 2 частях. - Челябинск: УралГАФК, 1994. - 329 с.

8. Годик М.А., Бальсевич В.К., Тимошкин В.Н. Система общеевропейских тестов для оценки физического состояния человека //Теор. и практ. физ. культ., 1994, № 5-6, с. 24 - 31.

9. Граевская Н.Д., Долматова Т.И., Калугина Г.Е. и др. К вопросу об унификации оценки функционального состояния спортсменов //Теор. и практ. физ. культ., 1995, № 2, с. 11 - 15.

10. Дембо А.Г. Влияние направленности тренировочного процесса на организм спортсмена. Изб. лекции. Л., 1978. - 68 с.

11. Дж.Х. Уилмор, Д.Л. Костилл. Физиология спорта и двигательной активности. – К.: олимпийская литература, 1997, - 502 с.

12. Иорданская Ф.А., Карполь Н.В. Значение функциональной подготовки в процессе тренировки высококвалифицированных волейболисток //Теор. и практ. физ. культ., 1995, № 2, с. 16 - 20.

13. Козырев О.А., Богачев Р.С., Дубенская Л.И. и др. Оценка адаптационных реакций спортсменов-лыжников на этапах подготовки // Теор. и практ. физ. культ.- 2000.- №1.-С.9-11.

14. Лайл Майкели, Мак Дженкинс. Энциклопедия спортивной медицины. - СПб.: Лань, 1997, с. 6 - 7.

15. Матвеев Л.П. Заметки по поводу некоторых новаций во взглядах на теорию спортивной тренировки //Теор. и практ. физ. культ., 1995, № 12, с. 49 - 52.

16. Меерсон Ф.З. Адаптационная медицина: концепция долговременной адаптации. М.: Дело, 1993.-138с.

17. Никитюк Б.А., Талько В.И. Адаптация компонентов сердечно-сосудистой системы к дозированным двигательным нагрузкм // Теор. и практ. физ. культ.- 1991.- №1.-С.23-27.

18. Павлов С.Е., Кузнецова Т.Н., Афонякин И.В. Современная теория адаптации и опыт использования ее основных положений в подготовке пловцов // Теор. и практ. физ. культ.- 2001.- №2.-С.32-37.

19. Солодков А.С., Сологуб Е.Б. Физиология человека. Общая. Спортивная. Возростная. Учебник для высших учебшых заведений физической культуры. – М.: Терра-Спорт, 2001, - 520с.

20. Суздальницкий Р.С., Левандо В.А., Кассиль Г.Н. и др. Стрессовые и спортивные иммунодефициты у человека //Теор. и практ. физ. культ., 1990, № 6, с. 9 - 17.

21. Суслов Ф.П., Холодов Ж.К. Теория и методика спорта: Учебное пособие для УОР /Под. ред. Ф.П. Суслова, Ж.К. Холодова). - М.: Тип. Воениздата, 1997. - 415 с.

22. Суслов Ф.П., Шепель С.П. Структура годичного соревновательно-тренировочного цикла подготовки: реальность и иллюзии //Теор. и практ. физ. культ., 1999, № 9, с. 57 - 61.

23. Хмелева С.Н., Буреева А.А., Давыдов В.Ю., Васильев Н.Д. Адаптация к физическим нагрузкам и ее медико-биологические характеристики у спортсменов циклических видов спорта // Теор. и практ. физ. культ.- 1997.- № 4.-С.19-21.

24. Хребтова А.Ю. Функциональное значение особенностей периферической крови у спортсменов с различной направленностью тренировочного процесса // Теор. и практ. физ. культ.- 1999.- № 1.-С.42-44.

superbotanik.net

Реферат Циркадный ритм

скачать

Реферат на тему:

План:

Введение

Циркадные (циркадианные) ритмы — циклические колебания интенсивности различных биологических процессов, связанные со сменой дня и ночи. Несмотря на связь с внешними стимулами, циркадные ритмы имеют эндогенное происхождение, представляя, таким образом, «внутренние часы» организма. Циркадные ритмы присутствуют у таких организмов как цианобактерии[1], водоросли, грибы, растения, животные. Период циркадных ритмов обычно близок к 24 часам.

1. История открытия

Впервые об изменении положения листьев в течение дня у тамаринда (Tamarindus indicus) упоминает описывавший походы Александра Македонского Андростен.

В новое время в 1729 году французский астроном де Мейрен сообщил о ежедневных движениях листьев у мимозы стыдливой (Mimosa pudica). Эти движения повторялись с определенной периодичностью даже если растения помещались в темноту, где отсутствовали такие внешние стимулы как свет, что позволило предположить эндогенное происхождение биологических ритмов, к которым были приурочены движения листьев растения. Де Мейрен предположил, что эти ритмы могут иметь что-то общее с чередованием сна и бодрствования у человека.

Декандоль в 1832 году определил, что период, с которыми растения мимозы совершают данные листовые движения, короче длины суток и составляет примерно 22-23 часа.

В 1880 году Чарльз Дарвин и его сын Фрэнсис сделали предположение о наследственной природе циркадных ритмов. Предположение о наследственной природе циркадных ритмов было подтверждено окончательно опытами, во время которых скрещивались растения фасоли, периоды циркадных ритмов которых различались. У гибридов длина периода отличалась от длины периода у обоих родителей. Эндогенная природа циркадных ритмов была окончательно подтверждена в 1984 году во время опытов с грибами вида Нейроспора густая (Neurospora crassa), проведенными в космосе. Эти опыты показали независимость околосуточных ритмов от геофизических сигналов, связанных с вращением земли вокруг своей оси.

2. Циркадные ритмы растений

Циркадные ритмы растений связаны со сменой дня и ночи и важны для адаптации растений к суточным колебаниям таких параметров как температура, освещение, влажность. Растения существуют в постоянно меняющемся мире, поэтому циркадные ритмы важны для того, чтобы растение могло дать надлежащий ответ на абиотический стресс. Изменение положения листьев в течение суток — лишь один из немногих ритмических процессов у растений. В течение суток колеблются такие параметры как активность ферментов, интенсивность газообмена и фотосинтетическая активность.

В способности растений распознавать чередование дня и ночи играет роль фитохромная система. Примером работы такой системы является ритм цветения у растения ‘’Pharbitis nil’’. Цветение у этого растения зависит от длины светового дня: если день короче определенного интервала, то растение цветет, если длиннее — вегетирует. В течение суток условия освещения меняются из-за того, что солнце находится под разными углами к горизонту, и соответственно меняется спектральный состав света, что воспринимается различными фитохромами которые возбуждаются светом с разной длиной волны. Так, вечером в спектре много дальних красных лучей, которые активизируют только фитохром А, давая растению сигнал о приближении ночи. Получив этот сигнал, растение принимает соответствующие меры. Важность фитохромов для температурной адаптации была выяснена во время опытов с трансгенными осинами ‘’Populus tremula’’, у которых продукция фитохрома А была повышена. Растениям постоянно «казалось», что они получают свет высокой интенсивности, и таким образом не могли адаптироваться к суточным колебаниям температуры и страдали от ночных заморозков.

При исследовании суточных ритмов у арабидопсис была также показана фотопериодичность работы трех генов CO, FKF1 и G1. Ген constans участвует в определении времени цветения. Синтез продукта гена CO запускается комплексом из белков FKF1 и G1. В этом комплексе продукт гена FKF1 играет роль фоторецептора. Синтез белка CO запускается через 4 часа после начала освещения и останавливается в темноте. Синтезированный белок за ночь разрушается и таким образом необходимая для цветения растения концентрация белка достигается только в условиях долгого летнего дня.

3. Циркадные ритмы у животных

Практически все животные приспосабливают свои физиологические и поведенческие процессы к суточным колебаниям абиотических параметров. Примером циркадного ритма у животных является цикл сон-бодрствование. У человека и у других животных существуют внутренние часы которые идут даже в отсутствие внешних стимулов которые могут дать информацию о времени суток. Исследование молекулярно-биологической природы этих часов началось около 30 лет назад. Конопка и Бензер, работавшие в калифорнийском технологическом институте обнаружили три мутантных линии дрозофил, циркадные ритмы которых отличались от циркадных ритмов мушек дикого типа. Дальнейший анализ показал что у мутантов мутации затрагивали аллели одного локуса, который был назван исследователями per (от period). В отсутствие нормальных сигналов окружающей среды период околосуточной активности у мушек дикого типа составлял 24 часа, у мутантов per-s 19 часов, у мутантов per-1 29 часов, у мутантов per-0 вообще не наблюдалось никакого ритма. Впоследствии было обнаружено, что продукты генов per есть во многих клетках дрозофил участвующих в продукции циркадного ритма насекомого. Более того, у мушек дикого типа наблюдаются циркадные колебания в количестве per mРНК и белка Per в то время как у мушек per0 у которых нет циркадного ритма такой цикличности экспрессии не наблюдается.

3.1. Циркадные ритмы и цикл сон-бодрствование у человека

Периоды сна и бодрствования у человека сменяются с циркадной периодичностью. При исследовании связи периодичности сна и бодрствования с внешними стимулами изучалось изменение продолжительности периода данных колебаний у человека. В отсутствие таких стимулов как свет, который позволяет человеку судить о времени суток, подопытные все равно ложились спать и пробуждались в обычное время; таким образом, период ритма сон-бодрствование не изменялся и в течение некоторого времени оставался равным 24 часам, правда через некоторое время он увеличился до 36 часов. Когда подопытные возвратились в нормальные условия, то 24 часовой цикл был восстановлен. Таким образом, у человека и у многих других животных есть внутренние часы, которые идут даже в отсутствии внешних сигналов. Одним из наиболее распространенных внешних сигналов является свет. У человека рецепторы, находящиеся в сетчатке, реагируют на свет и посылают сигнал в супрахиазмальное ядро. Дальнейшее распространение сигнала приводит к выработке гормонов регулирующих циркадную активность организма. Однако при этом такие органы как сердце, печень, почки имеют свои «внутренние часы» и могут выбиваться из ритма, устанавливаемого супрахиазматическим ядром. Сигнал, поступающий в шишковидную железу, вызывает синтез и выделение в кровоток вызывающего сон нейрогормона мелатонина (N-ацетил-5-метокситриптамин). У пожилых людей выделяется меньше мелатонина что, вероятно, объясняет, почему старые люди чаще страдают бессонницей. Большая часть исследователей полагает, что супрахиазматическое ядро отвечает за циркадные ритмы и за колебания параметров, связанных с циклом сон-бодрствование, таких как температура тела, давление и продукция мочи.

4. Заболевания, связанные с нарушением циркадного ритма

У взрослых во время сна уменьшается продукция мочи в связи с увеличением содержания антидиуретического гормона в крови. У некоторых детей и взрослых, у которых цикличность колебаний содержания вазопрессина нарушена, уменьшение продукции мочи в ночное время не происходит, что приводит к неконтролируемому мочеиспусканию. Такое заболевание как смертельная наследственная бессонница заканчивается летальным исходом и связана с врожденными дефектами нейронов супрахиазматического ядра. Любопытным является то, что подобные симптомы возникают при болезни Крейцфельда-Якоба, когда поражаются клетки того же супрахиазматического ядра.

Литература

  1. Purves D. et al (2004). ‘’Neuroscience’’. Sinauer Associates, Inc. Publishers Sunderland, Massachusetts U.S.A
  2. Алехина Н. Д. и др (2005) ‘’Физиология растений’’. М.: Издательский центр «Академия»
  3. McClung C. (2006). ‘’Plant Circadian rhythms’’

Примечания

  1. Опыт показал связь циркадного ритма и клеточного деления - www.membrana.ru/lenta/?10235. — 23 марта 2010

wreferat.baza-referat.ru

Реферат Циркадные ритмы

скачать

Реферат на тему:

План:

Введение

Циркадные (циркадианные) ритмы — циклические колебания интенсивности различных биологических процессов, связанные со сменой дня и ночи. Несмотря на связь с внешними стимулами, циркадные ритмы имеют эндогенное происхождение, представляя, таким образом, «внутренние часы» организма. Циркадные ритмы присутствуют у таких организмов как цианобактерии[1], водоросли, грибы, растения, животные. Период циркадных ритмов обычно близок к 24 часам.

1. История открытия

Впервые об изменении положения листьев в течение дня у тамаринда (Tamarindus indicus) упоминает описывавший походы Александра Македонского Андростен.

В новое время в 1729 году французский астроном де Мейрен сообщил о ежедневных движениях листьев у мимозы стыдливой (Mimosa pudica). Эти движения повторялись с определенной периодичностью даже если растения помещались в темноту, где отсутствовали такие внешние стимулы как свет, что позволило предположить эндогенное происхождение биологических ритмов, к которым были приурочены движения листьев растения. Де Мейрен предположил, что эти ритмы могут иметь что-то общее с чередованием сна и бодрствования у человека.

Декандоль в 1832 году определил, что период, с которыми растения мимозы совершают данные листовые движения, короче длины суток и составляет примерно 22-23 часа.

В 1880 году Чарльз Дарвин и его сын Фрэнсис сделали предположение о наследственной природе циркадных ритмов. Предположение о наследственной природе циркадных ритмов было подтверждено окончательно опытами, во время которых скрещивались растения фасоли, периоды циркадных ритмов которых различались. У гибридов длина периода отличалась от длины периода у обоих родителей. Эндогенная природа циркадных ритмов была окончательно подтверждена в 1984 году во время опытов с грибами вида Нейроспора густая (Neurospora crassa), проведенными в космосе. Эти опыты показали независимость околосуточных ритмов от геофизических сигналов, связанных с вращением земли вокруг своей оси.

2. Циркадные ритмы растений

Циркадные ритмы растений связаны со сменой дня и ночи и важны для адаптации растений к суточным колебаниям таких параметров как температура, освещение, влажность. Растения существуют в постоянно меняющемся мире, поэтому циркадные ритмы важны для того, чтобы растение могло дать надлежащий ответ на абиотический стресс. Изменение положения листьев в течение суток — лишь один из немногих ритмических процессов у растений. В течение суток колеблются такие параметры как активность ферментов, интенсивность газообмена и фотосинтетическая активность.

В способности растений распознавать чередование дня и ночи играет роль фитохромная система. Примером работы такой системы является ритм цветения у растения ‘’Pharbitis nil’’. Цветение у этого растения зависит от длины светового дня: если день короче определенного интервала, то растение цветет, если длиннее — вегетирует. В течение суток условия освещения меняются из-за того, что солнце находится под разными углами к горизонту, и соответственно меняется спектральный состав света, что воспринимается различными фитохромами которые возбуждаются светом с разной длиной волны. Так, вечером в спектре много дальних красных лучей, которые активизируют только фитохром А, давая растению сигнал о приближении ночи. Получив этот сигнал, растение принимает соответствующие меры. Важность фитохромов для температурной адаптации была выяснена во время опытов с трансгенными осинами ‘’Populus tremula’’, у которых продукция фитохрома А была повышена. Растениям постоянно «казалось», что они получают свет высокой интенсивности, и таким образом не могли адаптироваться к суточным колебаниям температуры и страдали от ночных заморозков.

При исследовании суточных ритмов у арабидопсис была также показана фотопериодичность работы трех генов CO, FKF1 и G1. Ген constans участвует в определении времени цветения. Синтез продукта гена CO запускается комплексом из белков FKF1 и G1. В этом комплексе продукт гена FKF1 играет роль фоторецептора. Синтез белка CO запускается через 4 часа после начала освещения и останавливается в темноте. Синтезированный белок за ночь разрушается и таким образом необходимая для цветения растения концентрация белка достигается только в условиях долгого летнего дня.

3. Циркадные ритмы у животных

Практически все животные приспосабливают свои физиологические и поведенческие процессы к суточным колебаниям абиотических параметров. Примером циркадного ритма у животных является цикл сон-бодрствование. У человека и у других животных существуют внутренние часы которые идут даже в отсутствие внешних стимулов которые могут дать информацию о времени суток. Исследование молекулярно-биологической природы этих часов началось около 30 лет назад. Конопка и Бензер, работавшие в калифорнийском технологическом институте обнаружили три мутантных линии дрозофил, циркадные ритмы которых отличались от циркадных ритмов мушек дикого типа. Дальнейший анализ показал что у мутантов мутации затрагивали аллели одного локуса, который был назван исследователями per (от period). В отсутствие нормальных сигналов окружающей среды период околосуточной активности у мушек дикого типа составлял 24 часа, у мутантов per-s 19 часов, у мутантов per-1 29 часов, у мутантов per-0 вообще не наблюдалось никакого ритма. Впоследствии было обнаружено, что продукты генов per есть во многих клетках дрозофил участвующих в продукции циркадного ритма насекомого. Более того, у мушек дикого типа наблюдаются циркадные колебания в количестве per mРНК и белка Per в то время как у мушек per0 у которых нет циркадного ритма такой цикличности экспрессии не наблюдается.

3.1. Циркадные ритмы и цикл сон-бодрствование у человека

Периоды сна и бодрствования у человека сменяются с циркадной периодичностью. При исследовании связи периодичности сна и бодрствования с внешними стимулами изучалось изменение продолжительности периода данных колебаний у человека. В отсутствие таких стимулов как свет, который позволяет человеку судить о времени суток, подопытные все равно ложились спать и пробуждались в обычное время; таким образом, период ритма сон-бодрствование не изменялся и в течение некоторого времени оставался равным 24 часам, правда через некоторое время он увеличился до 36 часов. Когда подопытные возвратились в нормальные условия, то 24 часовой цикл был восстановлен. Таким образом, у человека и у многих других животных есть внутренние часы, которые идут даже в отсутствии внешних сигналов. Одним из наиболее распространенных внешних сигналов является свет. У человека рецепторы, находящиеся в сетчатке, реагируют на свет и посылают сигнал в супрахиазмальное ядро. Дальнейшее распространение сигнала приводит к выработке гормонов регулирующих циркадную активность организма. Однако при этом такие органы как сердце, печень, почки имеют свои «внутренние часы» и могут выбиваться из ритма, устанавливаемого супрахиазматическим ядром. Сигнал, поступающий в шишковидную железу, вызывает синтез и выделение в кровоток вызывающего сон нейрогормона мелатонина (N-ацетил-5-метокситриптамин). У пожилых людей выделяется меньше мелатонина что, вероятно, объясняет, почему старые люди чаще страдают бессонницей. Большая часть исследователей полагает, что супрахиазматическое ядро отвечает за циркадные ритмы и за колебания параметров, связанных с циклом сон-бодрствование, таких как температура тела, давление и продукция мочи.

4. Заболевания, связанные с нарушением циркадного ритма

У взрослых во время сна уменьшается продукция мочи в связи с увеличением содержания антидиуретического гормона в крови. У некоторых детей и взрослых, у которых цикличность колебаний содержания вазопрессина нарушена, уменьшение продукции мочи в ночное время не происходит, что приводит к неконтролируемому мочеиспусканию. Такое заболевание как смертельная наследственная бессонница заканчивается летальным исходом и связана с врожденными дефектами нейронов супрахиазматического ядра. Любопытным является то, что подобные симптомы возникают при болезни Крейцфельда-Якоба, когда поражаются клетки того же супрахиазматического ядра.

Литература

  1. Purves D. et al (2004). ‘’Neuroscience’’. Sinauer Associates, Inc. Publishers Sunderland, Massachusetts U.S.A
  2. Алехина Н. Д. и др (2005) ‘’Физиология растений’’. М.: Издательский центр «Академия»
  3. McClung C. (2006). ‘’Plant Circadian rhythms’’

Примечания

  1. Опыт показал связь циркадного ритма и клеточного деления - www.membrana.ru/lenta/?10235. — 23 марта 2010

wreferat.baza-referat.ru


Смотрите также