Начальная

Windows Commander

Far
WinNavigator
Frigate
Norton Commander
WinNC
Dos Navigator
Servant Salamander
Turbo Browser

Winamp, Skins, Plugins
Необходимые Утилиты
Текстовые редакторы
Юмор

File managers and best utilites

Медицинская бактериология «Микробиология микобактерий, актиномицетов, нокардий». Актиномицеты микробиология реферат


Реферат Актиномицеты

скачать

Реферат на тему:

Streptomyces sp 01.png

План:

    Введение
  • 1 Строение
  • 2 Жизненный цикл
    • 2.1 Спорообразование
    • 2.2 Прорастание споры
  • 3 Подвижность
  • 4 Экологические функции
  • 5 Отношение к факторам внешней среды
  • 6 Биохимические особенности
  • 7 Группы родов актиномицетов по 9 изданию определителя Берджи
    • 7.1 Нокардиоформные актиномицеты
    • 7.2 Роды с многогнездовыми спорангиями
    • 7.3 Актинопланы
    • 7.4 Стрептомицеты и близкие роды
    • 7.5 Мадуромицеты
    • 7.6 Термомоноспоры и близкие роды
    • 7.7 Род Termoactynomyces
  • 8 История изучения
  • ПримечанияЛитература

Введение

Актиномицеты (устаревшее название лучистые грибки) — бактерии, имеющие способность к формированию на некоторых стадиях развития ветвящегося мицелия (некоторые исследователи, подчёркивая бактериальную природу актиномицетов, называют их аналог грибного мицелия тонкими нитями) диаметром 0,4—1,5 мкм, которая проявляется у них в оптимальных для существования условиях. Имеют грамположительный тип клеточной стенки и высокое (60—75 %) содержание ГЦ пар в ДНК.

Наиболее распространены в почве: в ней обнаруживаются представители почти всех родов актиномицетов. Актиномицеты обычно составляют четверть бактерий, вырастающих на традиционных средах при посевах их разведённых почвенных суспензий и 5—15 % прокариотной биомассы, определяемой с помощью люминесцентной микроскопии. Их экологическая роль заключается чаще всего в разложении сложных устойчивых субстратов; предположительно они участвуют в синтезе и разложении гумусовых веществ. Могут выступать симбионтами беспозвоночных и высших растений.

1. Строение

Косвенные данные позволят предположить у актиномицетов апикальный рост.

Дифференциация мицелия — процесс усложнения в процессе развития колонии актиномицета. Прежде всего она проявляется в делении на первичный (субстратный) и вторичный (воздушный) мицелий. Воздушный толще, он гидрофобен, содержит больше ДНК и ферментов, на поверхности его клеток имеются различные структуры (палочковидные, фиблиллы).

Мицелий с редкими перегородками, практически ценоцитный у спорообразующих, с частыми перегородками (септами) у форм, для которых мицелий распадается и близких к ним. Вегетативные клетки большинства форм делятся поперечными перегородками, Geodermatophilus и Dermatophilus — во взаимно перпендикулярных направлениях, некоторые актиномицеты содержат клетки с септами, проходящими в совершенно разных направлениях (спорангии Micromonospora, везикулы Frankia). Ветвление происходит по механизму почкования.

Образование септы начинается с впячивания цитоплазматической мембраны.

Часто дифференциация проявляется в образовании амицелиарных структур:

  • коремии — тесное переплетение слившихся гиф, склеенных слизью с оксидами железа;
  • агрегаты клеток;
  • кристаллы вторичных метаболитов;
  • «серные гранулы»;
  • склероции — утолщённые гифы с вакуолями, заполненными липидами, может прорастать как спора;
  • везикулы — инкапсулированные азотфиксирующие образования у Frankia.

В процессе старения цитоплазма клеток приобретает неравномерную электронную плотность, в ней перестают различаться рибосомы, граница нуклеоида расплывается, клеточная стенка становится тонкой и рыхлой, образуется микрокапсула. При автолизисе в цитоплазме образуются обширные светлые участки, нуклеоид распадается, в клеточной стенке образуются отверстия, клетка заполняется мембранными структурами, разрушающимися последними.

2. Жизненный цикл

Нокардиоформные актиномицеты редко образуют споры и размножаются преимущественно фрагментами быстро распадающегося мицелия. Актиномицеты, имеющие продолжительные мицелиальные стадии, различаются по типу спорообразования.

2.1. Спорообразование

По числу спор актиномицеты делят на моно- (например, Saccaromonospora, Micromonospora) олиго- (Actinomadura) и полиспоровые (Streptomyces), выделяя особо те, которые образуют спорангии. Спорообразование преимущественно экзогенное (Thermoactinomyces образует настоящие эндоспоры, однако в настоящее время этот род на основании хемотаксономических и генетических признаков, несмотря на выраженную мицелиальную стадию склонны относить к бациллам), реже псевдоэндогенное (Planomonospora, Dactylosporangium).

У Streptomyces и спорулирующих Actinomyces споры образуются в два этапа:

  • Апикальный участок воздушной гифы отделяется септой, нуклеоид вытягивается.
  • Почти одновременно клетка делится септами на участки, нуклеоид делится в тех же местах, клеточная стенка становится в 2 раза толще, споры округляются и их стенка становится в 7 раз толще стенки гифы.

У олигоспоровых септы закладываются базипитально. У монспоровых могут образовываться по механизму почкования.

Спорообразование вызывается т. н. фактором А (C13h32O4).

2.2. Прорастание споры

Прорастание происходит в следующие стадии:

  • Инактивная спора гидрофобна, термоустойчива, не проявляет дыхательной активности
  • Смачивающаяся активированная спора проявляет активность ферментов, начинается дыхание
  • Спора набухает, начинается синтез РНК
  • Выход 1—3 (реже 4) ростовых трубок, начинается синтез ДНК. Эта стадия необратима, остальные три — обратимы.

Образуют друзды — скопление переплетенных нитей с колбовидными утолщениями на концах.

3. Подвижность

Могут быть подвижны на стадии споры (актинопланы, Geodermatophilus и Dermatophilus), иногда подвижны части мицелия (эрсковия).

4. Экологические функции

Актиномицеты (особенно рода Micromonospora) обнаруживаются в водоёмах и их донных осадках, однако не решен вопрос о том являются ли они постоянными их обитателями или занесены из почвы, неизвестна также их роль в данных местообитаниях.

Почвы являются тем природным субстратом, откуда актиномицеты выделяются в наибольшем разнообразии. Однако большая часть биомассы актиномицетов представлена спорами, которые и дают колонии при учёте популяций в почве методом посева, лишь 1—4 % биомассы занимает мицелий[1]. Он обнаруживается в микрозонах с повышенным содержанием органического вещества.

Актиномицеты доминируют на поздних стадиях микробной сукцессии, когда создаются условия для использования труднодоступных субстратов. Активация актиномицетной микрофлоры происходит при внесении в почву крахмала, хитина, нефтепродуктов и т. д.. В то же время из-за медленного роста актиномицеты не способны конкурировать с немицелиальными бактериями за легкодоступные вещества. Возможно, что вторичные метаболиты (в особенности, меланоидные пигменты) играют какую-то роль в образовании гумуса.

Ценозообразующую роль актиномицеты играют в местах первичного почвообразования, находясь в этих условиях в ассоциации с водорослью. Эти ассоциации в лабораторных условиях формировали лишайникоподобный таллом (актинолишайник).

Актиномицеты (рода Streptomyces, Streptosporangium, Micromonospora, Actinomadura) являются постоянными обитателями кишечника дождевых червей, термитов и многих других беспозвоночных. Разрушая целлюлозу и другие биополимеры, они являются их симбионтами. Представители рода Frankia способны к азотфиксации и образованию клубеньков у небобовых растений (облепиха, ольха и др.). Есть патогенные формы, вызывающие актиномикоз. В организме человека обитают в ротовой полости, в кишечнике, в дыхательных путях, на коже, в зубном налете, в кариозных зубах, на миндалинах.

5. Отношение к факторам внешней среды

Большинство актиномицетов — аэробы, факультативные анаэробы присутствуют лишь среди актиномицетов с непродолжительной мицелиальной стадией. Здесь усматривается некоторая параллель с грибами, среди которых лишь немицелиальные дрожжи также способны жить в анаэробных условиях. Предполагается что менее эффективный анаэробный тип метаболизма успешен при большей относительной поверхности клеток, которая достигается фрагментацией мицелия.

Считается что актиномицеты более устойчивы к высушиванию чем немицелиальные бактерии, благодаря чему они доминируют в пустынных почвах. Лабораторное хранение почвенных образцов в условиях, не способствующих вегетативному росту прокариот увеличивает относительное содержание актиномицетов, учитываемое методом посева. Особенно долго способны сохраняться при высушивании склероции, образуемые родом Chainia. Показано что при aw=0,50 некоторые споры прорастают (р. Streptomyces, Micromonospora), однако образовавшийся мицелий не ветвится. При aw=0,86 прорастают споры практически всех актиномицетов, у некоторых мицелий ветвится, образуются микроколонии, оптимум достигается при aw=0,95.

Чаще всего актиномицеты нейтрофилы, однако некоторые роды ацидофильны или алкалофильны. Характерным свойством актиномицетов является ацидотолерантность, благодаря чему их доля в микробном комплексе лесных почв относительно высока. Отмечено что на кислой среде продлевается вегетативная стадия, на щелочной, напротив, ускоряется спорообразование.

Актиномицеты не требовательны к содержанию органического углерода в среде, многие из них способны расти на «голодном» агаре. Представители рода Nocardia способны осуществлять хемосинтез, окисляя водород, метан и метанол. Широко среди актиномицетов распространена гетеротрофная фиксация CO2.

6. Биохимические особенности

Для актиномицетов отмечается наличие редких метаболических путей и ферментных систем. Например, для них характерен путь расщепления глюкозы Энтнера-Дудорова, встречается полифосфатгексокиназа (вместо обычной гексокиназы), существуют особенности в синтезе ряда аминокислот; во вторичном метаболизме им свойственен шикиматный путь синтеза ароматических соединений, включение цельных углеродных скелетов глюкозы во вторичные метаболиты, например, антибиотики.

Отличительной особенностью актиномицетов является способность к синтезу физиологически-активных веществ, антибиотиков, пигментов, пахучих соединений. Именно ими формируется специфический запах почвы и иногда воды (вещества геосмин, аргосмин, муцидон, 2-метил-изоборнеол). Актиномицеты являются активными продуцентами антибиотиков, образуя до половины известных науке.

7. Группы родов актиномицетов по 9 изданию определителя Берджи

7.1. Нокардиоформные актиномицеты

Аэробные организмы, имеющие в цикле развития мицелиальную стадию. Мицелий может распадаться на элементы, образуя цепочки, подобные спорангиям. Настоящих спор нет. Сюда относят род Nocardia, Rhodococcus, способный использовать углеводороды нефти, Promicromonospora, Actinobispora, Oerskovia и др.. деление на роды — по хемотипу клеточной стенки и другим хемотаксономическим признакам.

7.2. Роды с многогнездовыми спорангиями

Образующийся мицелий делится на отдельные кокковидные клетки, подвижные у Geodermatophilus и Dermatophilus и неподвижные у Frankia. Франкии — азотфиксирующие симбионты ольхи и других небобовых растений, образующие на их корнях клубеньки. Место обитания: почва, воды и кожа млекопитающих.

7.3. Актинопланы

В цикле развития имеют подвижную стадию и стадию образования развитого мицелия, разделенного перегородками. Сапротрофы и факультативные паразиты. Распространены в почве, лесной подстилке, животных останках и воде природных источников, часто развиваясь на пыльце попавших в неё растений. Разделяются на роды по типам спорангиев:

  • Подвижные споры в спорангиях (Actinoplanes, Ampullariella, Dactylosporangium, Pilimelia)
  • Неподвижные споры
    • Одиночные (Micromonospora)
    • В цепочках (Catellatospora)

Тип клеточной стенки II (содержит мезо-ДАПК и глицин).

7.4. Стрептомицеты и близкие роды

Образуют хорошо развитый воздушный мицелий, не распадающийся в процессе развития на отдельные клетки. Спорангии состоят из прямых или закрученных спиралью цепочек неподвижных спор. Обитают в почве, характеризуются сильной антибиотической и хитиноразлагающей активностью.

Тип клеточной стенки I (содержит L-ДАПК)

7.5. Мадуромицеты

Мицелий также не распадается на отдельные клетки. Споры только на воздушном мицелии в цепочках или спорангиях, как подвижные так и нет. Группа плохо изучена и требует ревизии. Образуют короткие цепочки спор (Actinomadura и др.), спорангии с неподвижными (Planomonospora) или подвижными спорами (Streptosporangium).

Типы клеточных стенок II—IV. В гидролизатах целых клеток обнаруживается мадуроза.

7.6. Термомоноспоры и близкие роды

Развитый мицелий, споры расположены одиночно, в цепочках или спорангиеподобных структурах. Тип клеточной стенки III (мезо-ДАПК, нет дифференцирующих сахаров).

7.7. Род Termoactynomyces

Термоактиномицеты образуют типичные эндоспоры и по этому признаку, а также по строению 16s рРНК должны быть отнесены к бациллам, однако образуют развитый мицелий. Термофилы, способные расти в диапазоне 40—48 градусов по Цельсию.

8. История изучения

В 1874 Ф. Кон в пробе из слёзного канала человека впервые обнаружил нитчатую бактерию, названную в честь врача, взявшего пробу Streptothrix foersteri. Поскольку родовое название Strepothrix уже было занято грибом, позднее бактерия была переименована в Streptomyces foersteri. В 1877 патолог Боллингер и ботаник Гарц исследовали опухоли (актиномикозные узлы) коров и обнаружили их возбудителя, которого из-за лучистого расположения нитей назвали лучистым грибком (Actinomyces). Это название вскоре стало собирательным для нескольких близких родов.

В 1884 Израиль получил первую чистую культуру актиномицета (Actinomyces israelii). В дальнейшем было обнаружено множество патогенных форм (1888 — из ноги больного мадуровой болезнью человека Нокардом был выделен первый представитель рода Nocardia), в 1890—1892 Госпирини составил список родов актиномицетов.

В 1912—1916 стали появляться первые описания непатогенных актиномицетов, выделенных из обычных природных субстратов. В этот период свой вклад в развитие актиномицетологии внесли С. А. Ваксман, Краинский, Рудольф Лиске.

Новый этап развития науки начался в 1939, когда Красильников получил в нативном виде антибиотик мицетин, выделяемый стрептомицетами. В 1945 Ваксман, Шатц и Буги выделили стрептомицин. На актиномицеты оказалось обращено большое внимание, однако в основном развивались прикладные аспекты актиномицетологии, связанные с получением и применением антибиотиков. Тем не менее в это период также были получены сведения об экологии, биохимии, строении, циклах развития, которые в свою очередь позволили разработать принципы классификации актиномицетов.

С 1980-х-1990-х внимание переключилось на изучение экологических функций актиномицетов, их взаимоотношения в естественных условиях с животными, растениями и микроорганизмами. Происходит пересмотр систематики, связанный с получением данных о геноме актиномицетов.

Примечания

  1. Звягинцев Д. Г. Почва и микроорганизмы. — М.: 1987

wreferat.baza-referat.ru

Медицинская бактериология «Микробиология микобактерий, актиномицетов, нокардий»

Лекция по микробиологии на тему «Микробиология микобактерий, актиномицетов, нокардий ».

Автор:Каскевич Л.И.

  • Микробиология бактерий рода Mycobacterium

  • Микробиология бактерий рода Actinomyces

  • Микробиология бактерий рода Nocardia

Микробиология бактерий рода Mycobacterium

КЛАССИФИКАЦИЯ

ДОМЕН

Bacteria

ТИП

Actinobacteria

КЛАСС

Actinobacteria

ПОРЯДОК

Actinomycetales

СЕМЕЙСТВО

Mycobacteriaceae

РОД

Mycobacterium

ВИД

Mycobacterium species

Характеристика рода Mycobacterium

  • Род состоит из 74 видов. Широко распространенны в почве, воде и среди людей.

  • 23 медленно растущих вида и 5 быстро растущих видов микобактерий связаны с патологией человека.

  • Микобактерии родственны родам Nосаrdia, Согуnebacterium, представители которых также имеют миколовые кислоты.

МОРФОЛОГИЯ РОДА MYCOBACTERIUM

  • Название рода Мусоbacteriumотmусеtes— грибы +bacterium).

  • Палочковидные бактерии (0,2-0,7 х 1,0-10 мкм), иногда ветвящиеся, нитевидные и мицелиоподобные с гомогенной или зернистой цитоплазмой. Могут приобретать зернистую форму, фильтрующиеся формы, а также L-форму.

  • Грамположительные. Неподвижны. Спор не образуют. Имеют микрокапсулу

  • Содержат в клеточной стенке большое количество липидов (до 40% сухого веса), миколовых кислот и др.. Липиды определяют спирто-, кислото-, щелочеустойчи-вость.

  • Плохо воспринимают анилиновые красители, окрашиваются по Цилю-Нильсену в красный цвет.

КУЛЬТУРАЛЬНЫЕ СВОЙСТВА

  • Аэробы, хемоорганотрофы, требовательны к питательным средам. Рост стимулируют аспарагиновая кислота и глицерин.

  • Все виды делятся на медленно растущие (видимый рост после 7 дней) и быстро растущие (видимый рост до 7 дней).

  • Для возбудителей туберкулеза характерен мед-ленный рост (20-40 дней) в виде шероховатых сухих морщинистых колоний (R-форма). В жидких средах – пленка на поверхности.

  • Некоторые виды микобактерий (М.leprae) не культивируются.

РЕЗИСТЕНТНОСТЬ

  • Устойчивы к факторам внешней среды. Устойчивы к кислотам, щелочам, спиртам, высушиванию, сохраняются несколько недель на предметах. В темных помещениях живут до года.

  • Чувствительны к кипячению, действию солнечного света, дезинфицирующим растворам в больших концентрациях.

  • Быстро вырабатывают антибиотикоустойчивость.

К РОДУ MYCOBACTERIUM ОТНОСЯТСЯ:

  • Патогенные виды–M.tuberculosis,M.bovis,M.africanum(возбудители туберкулеза),M.leprae(возбудитель проказы)

  • Условно-патогенные (атипичные)–M.kansasi,M.ulcerans,M.avium,M.fortuitum(вызывают микобактериозы)

  • сапрофиты–M.smegmatis.

Классификация и дифференцировка по: пигменту (на свету, в темноте), скорости роста, устойчивости к кислотам.

  • M.bovisотличается отM.tuberculosisпо ряду признаков: они короче и толще, растут медленнее в видеRиSформ, более патогенны для кроликов, не восстанавливают нитраты в нитриты, ниациновая проба отрицательная.

ФАКТОРЫ ПАТОГЕННОСТИ

  • миколовая кислота, обеспечивает кислотоустойчивость, антифагоцитарные свойства

  • фосфатиды(фтионовая к-та) - образование гранулем.

  • свободные жирные кислоты- обеспечивают цитотокси-ческое поражение клеток гранулемы (творожистое перерождение).

  • гликолипид(трегалоза+димиколат), корд-фактор - в микрокультуре образует ленты, косы. Разрушает митохондрии клеток, нарушает функцию дыхания.

  • сульфатиды (серосодержащие гликолипиды), усиливают действие корд-фактора, ингибируют слияние фагосомы с лизосомой.

  • Нуклеопротеиды.Вызывают сенсибилизацию организ-ма (ГЗТ), в инфицированном организме дают положительную кожную пробу.

ЭПИДЕМИОЛОГИЯ ТУБЕРКУЛЕЗА

  • Основной механизм передачи – аэрозольный, затем – алиментарный, контактный (травмы кожи), трансплацентарный. Это объясняет многообразие клинических форм.

  • Источник инфекции - больной человек (М.tuberculosis), реже - крупный рогатый скот (М.bovis).

  • Болезнь носит выраженный социальный характер.

  • На земном шаре ежегодно заболевают 8 млн. человек. Как причина смерти туберкулез занимает первое место в мире среди инфекционных заболеваний.

  • В Республике Беларусь в 2005 зарегистрировано 5065 случаев туберкулеза, из них 4698 – туберкулез органов дыхания

Туберкулез(от лат.tuberculum—бугорок) — хроническая инфекция человека и животных, протекающая с образованием гранулем и творожистоперерожденных очагов, сопровождается поражением различных органов, развитием ГЗТ,

М.tuberculosis( 92 % случаев туберкуле-за), М.bovis( 5% случаев), М.africanum(3% случаев, преимущественно распространен в Африке)

ПАТОГЕНЕЗ ТУБЕРКУЛЕЗА

  • Наиболее частая форма туберкулеза – легочная.

  • На уровне бифуркации трахеи микроб захватывается альвеолярными макрофагами, где и размножается (фагоцитоз обычно незавершенный).

Развивается воспалительный очаг (первичный туберкулез).

ПЕРВИЧНЫЙ ТУБЕРКУЛЕЗ

  • Это так называемый первичный туберкулезный комплекс:üгранулема,üлимфангоит,üлимфаденит.

  • Гранулема(бугорок, туберкулема) состоит из клеточных элементов. В центре макрофаги, среди них клетки Ланганса (крупные вакуолизированные клетки с микробами), затем идет слой эпителиоидных клеток, лимфоциты, фибробласты. Гранулема прорастает соединительной тканью, идет рубцевание, фиброз. Очаг пропитывается солями извести. Образуется петрификат (рентгенологически – очаг Гона).

  • Человек переносит заражение без клинических признаков. При этом возникает положительная аллергическая реакция. Микробы в очаге остаются длительно (иногда на всю жизнь).

ВТОРИЧНЫЙ ТУБЕРКУЛЕЗ

  • В результате образования первичного туберкулезного комплекса человек инфицирован и это таит в себе риск эндогенной реактивации процесса – вторичный туберкулезный процесс:

  • При неблагоприятных условиях происходит распад бугорков (творожистое перерождение), слияние их с образованием полости. Т.е. процесс идет не по продуктивному (выше описанному) пути, а по экссудативному.

  • В тяжелых случаях может наступить диссеминация возбудителя, возникают туберкулезные очаги в различных органах (милиарный туберкулез).

ИММУНИТЕТ: ЕСТЕСТВЕННЫЙ

  • Индивидуален. Зависит от возраста, общего состояния иммунитета и местной защиты.

  • Обычно не предупреждает образование первичного туберкулезного комплекса, но препятствует распространению процесса.

  • Главную роль играет активность альвеолярных макрофагов, но фагоцитоз часто бывает незавершенным.

ИММУНИТЕТ: ПРИОБРЕТЕННЫЙ

  • Нестерильный (инфекционный) – при удалении возбу-дителя возможна реинфекция.

  • Носит в основном клеточный характер –гранулема обеспечивает фиксацию микробов в очаге. Определяется активностью Т-лимфоцитов и макрофагов (ограничение очага). Важно содержание Т-лимфоцитов СD4, их соотношение сCD8. При нарушении Т звена процесс прогрессирует. Важна продукция цитокинов: ИЛ-1, ИЛ-2, ИЛ-8, гамма-интерферона, альфа-ФНО, которые увеличивают активность макрофагов. Развивается ГЗТ.

  • Образование антител не играет существенной роли, так как возбудитель находится в макрофагах.

  • Приобретенный иммунитет индивидуален (у одних стойкий – инфицированы, но не болеют всю жизнь, других – слабый – сразу активный процесс или реактивация)

ЛЕЧЕНИЕ И ПРОФИЛАКТИКА ТУБЕРКУЛЕЗА

  • Противотуберкулезные препараты первого ряда (стрептомицин, рифамицин, изониазид, этанбутол) и альтернативные средства (канамицин, циклосерин, ПАСК). Госпитализация обязательна.

  • Применяется живая вакцина ВСG(БЦЖ), впервые полученная Кальметтом и Гереном из бычьего типа туберкулезной палочки .

  • Вакцину вводят ребенку внутрикожно на 2—5-й день после рождения и далее в сроки календаря прививок (под контролем аллергической пробы).

  • Ослабленным детям вводят менее реактогенную вакцину ВСG-M

Условно-патогенные микобактерии

  • По морфологическим признакам сходны с палочками туберкулеза, отличаются меньшей кислотоустойчивостью.

  • Распространены в почве, воде, продуктах питания, на растениях, в выделениях животных.

  • Вызывают микобактериозы (туберкулезоподобные заболевания): поражение легких, лимфоузлов, кожи.

МИКОБАКТЕРИОЗЫ

studfiles.net

93. Актиномицеты. Таксономия. Характеристика. Мик­робиологическая диагностика. Лечение.

Морфология. Род Actynomyces Ветвящиеся бактерии. Не содержат в клеточной стенке хитина, стенка имеет строение грамположительных бакте­рий. Мицелий имеет вид тон­ких прямых палочек, образуют нити. Характерная особенность актиномицетов — способность образовывать хорошо развитый мицелий. Палочковидные формы, часто с утолщенны­ми концами, в мазке располагаются по оди­ночке, парами, V- и Y-образно. Все морфологические формы спо­собны к истинному ветвлению, особенно на тиогликолевой полужидкой среде. По Граму окрашиваются плохо, часто образуют зер­нистые либо четкообразные формы; некислотоустойчивы. Типовой вид — Actinomyces bovis.

Культуральные свойства. Облигатные и фа­культативные анаэробы. Растут медленно, посевы следует культивировать 7сут. Температурный оптимум рос­та 37С. Некоторые штаммы дают α-β-гемолиз на средах с кровью. Некоторые виды формируют нитчатые микроколонии, на­поминающие мицелий, на 7е сутки образуют S-формы колоний, иногда окрашенные в желтый/красный цвет. A. odontolyticus на кровяном агаре образует красные колонии с зоной β-гемолиза.

Биохимическая активность. Хемоорганотрофы. Ферментируют углеводы с образова­нием кислоты без газа, продукты фермента­ции — уксусная, муравьиная, молочная и ян­тарная кислоты. Наличие каталазы и способность восстанавливать нит­раты в нитриты, индол не образуют.

Антигенная структура. В ИФА выделяют 6 cepoгpyпп: A, B, C, D, E и F.

Чувствительность к антимикробным пре­паратам. Чувствительны к пенициллинам, тетрациклину, эритромицину, но резистентны к антимикотикам. Чувствительны к действию обычно применя­емых антисептиков и дезинфектантов.

Эпидемиология. Источник инфекции — поч­ва. Механизм передачи — контактный, а путь пе­редачи — раневой. Колонизируют слизистую оболочку полости рта человека и млекопитающих.

Патогенез. Вызывают оппортунистическую инфекцию.

Клиника. Актиномикоз — хроническая оппортунистическая инфекция человека и животных, вызываемая анаэробными и факультативно-анаэробными актиномицетами, которая характеризуется гранулематозным воспалением.

Микробиологическая диагностика: Материал для исследования - мок­рота, ликвор, гной из свищей, биопсия тканей.

Для диагностики используют бактериоскопический, бактериологический, серологический и аллергологический методы.

Бактериоскопически: по обнаружению в исследуемом материале друз актиномицетов, имеющих вид мелких желтоватых или серовато-белых зер­нышек с зеленоватым отливом. По Граму споры окрашиваются в темно-фиолетовый, мице­лий — в фиолетовый, а друзы — в розовый цвет.

Для по­давления роста сопутствующей микрофлоры гной и мокроту перед посевом центрифугиру­ют в растворе пенициллина и стрептомицина. Засевают на питательные среды (сахарный агар) и культивируют в аэробных и анаэробных условиях. У выделенных культур определяют способность сворачивать и пептонизировать молоко — признак, характерный для актино­мицетов. Выделение анаэробных видов под­тверждает диагноз актиномикоза.

Для серодиагностики ставят РСК с актинолизатом. Реакция недостаточно специфична, поскольку положительные результаты могут отмечаться при раке легкого и тяжелых нагноительных процессах. Применение в качестве АГ вместо актинолизата внеклеточных белков актиномицетов повышает чувствительность РСК. Этот же АГ можно использовать и для постановки РИГА.

Аллергическую пробу проводят с актинолизатом. Диагностическое значение имеют положительные пробы.

Лечение. Применение пенициллина, тетрациклина, эритромицина, клиндамицина.

Профилактика. Специфическая профилак­тика - нет. Неспецифическая - повышение иммун­ного статуса.

94. Возбудители риккетсиозов. Таксономия. Характеристика.  Микробиологическая диагностика. Специфическая профилактика и лечение.( сыпной тиф) Эпидемический сыпной тиф — острый антропоноз с трансмиссивным механизмом распространения платяными вшами. Клинически характеризуется лихорадкой, тяжелым течени­ем в связи с поражением кровеносных капил­ляров с нарушением кровоснабжения жизнен­но важных органов (мозг, сердце, почки), появ­лением сыпи.

Таксономия и общая характеристика: Возбудитель — R. prowazekii, род Rickettsia семейство Rickettsiaceae; паразитирует только в цитоплазме чувствительных клеток. Хорошо культивируется в организме платяных вшей, желточных мешках, обладает гемолити­ческими свойствами, способен формировать негативные колонии («бляшки») в культуре клеток; при окраске по Здродовскому окрашивается в красный цвет. Устойчив к действию факторов внешней сре­ды; длительно сохраняется в высохших фека­лиях инфицированных вшей.

Эпидемиология и механизм заражения. Заражение реализуется либо втиранием фе­калий инфицированных вшей через расчесы кожи, либо путем вдыхания пылевидного аэ­розоля из высохших инфицированных рикке­тсиями фекалий.

Клиника, диагноз, лечение. Инкубационный период 10 дней. Начало заболевания острое, клиничес­кие проявления обусловлены генерализован­ным поражением системы эндотелиальных клеток кровеносных сосудов, что приводит к наруше­нию каскада тромбо-антитромбообразования. Морфологическую основу болезни составля­ет генерализованный васкулит с формированием сыпи на кож­ных покровах. Болезнь протекает с высокой температурой, симптомами пора­жения сердечно-сосудистой и нервной сис­тем. Иммунитет — непродолжительный, клеточно-гуморальный.

Диагностика: осуществляется по клинико-эпидемиологическим данным, под­крепляется лабораторным исследованием на специфические антитела (РСК, РНГА, ИФА и др.).

Лечение: Быстрое этиотропное лечение одно­кратным приемом доксициклина, при его отсутствии — препаратами тетрациклинового ряда.

Профилактика. Изоляция завшивлен­ных больных, дезинфекция препаратами, содержащими перметрин. Для специфической профилактики разработана живая вакцина из штамма Е, которая приме­няется в комбинации с растворимым антиге­ном риккетсии Провачека (живая комбини­рованная сыпнотифозная вакцина из штамма), а также инактивированная вакцина из растворимого антигена.

Болезнь Бриля – рецидив после ранее перенесенного эпидемического сыпного тифа.

Возбудитель— R. prowazekii.

Клинически протекает как эпидемический тиф легкой и средней тяжести.

Патоморфология инфек­ционного процесса та же, что и при эпидеми­ческой форме. Различие заключается в эпи­демиологии (нет переносчика, отсутствует се­зонность проявления, источник и реализация способа заражения) и патогенезе начальной стадии болезни. Она возникает вследствие ак­тивации латентно «дремлющих» риккетсий.

Микробиологическая диагностика. Затруд­нена неопределенностью симптоматики на первой неделе заболевания (до появления сыпи) и ее сходством с симптомами при ин­фекциях, чаще брюшнотифозной. Диагноз устанавливается на основании клинико-эпидемиологических данных с учетом анамнеза больного и подкрепляется серологическим исследованием со специфическим антигеном. При отсутствии переносчика в очаге лечение может осуществляться без изоляции больно­го, в зависимости от его состояния. Прогноз благоприятен даже в отсутствии лечения ан­тибиотиками.

Профилактика. Меры профилакти­ки те же, что и при эпидемической форме. Специфическая профилактика невозможна.

studfiles.net

Актиномицеты-возбудители актиноикозов — реферат

Кировская Государственная Медицинская Академия

Кафедра микробиологии и вирусологии

Дисциплина  «Микробиология, вирусология, иммунология»     

Реферат

Тема: Актиномицеты – возбудители актиномикоза.   

Выполнил:

Гумаров И. В.

Группа  П-333

Проверила:

Ветик Е. Н.

                                                                                         Оценка:      

Киров 2011 г.

Содержание

Введение ----------------------------------------------------------------------------- стр. 3

Глава 1--------------------------------------------------------------------------------  стр. 4

Заключение -------------------------------------------------------------------------- стр. 9

Список литературы ---------------------------------------------------------------- стр. 10

Приложения ------------------------------------------------------------------------- стр. 11                   

Введение

Актиномицеты  — это группа микроорганизмов, соединяющая  в себе черты бактерий и грибов.

Актиномицеты  распространены чрезвычайно широко в природе, встречаются в любых  географических широтах, обитают в  теплых и холодных морях и океанах, почве. Многие актиномицеты являются естественными  обитателями организма человека и животных, заселяя слизистые  оболочки. Морфологические признаки актиномицет имеют аналогию со строением несовершенных грибов. Для них характерно нитевидное или палочковидное и кокковидное строение и наличие боковых выростов; способны к формированию ветвящегося мицелия на некоторых стадиях развития диаметром 0,4—1,5 мкм, которая проявляется у них в оптимальных для существования условиях. Подчеркивая бактериальное происхождение актиномицетов, ученые называют их аналог грибного мицелия тонкими нитями. Актиномицеты включают в себя организмы с наиболее характерными среди всех бактерий нитчатым строением.

Цель: ознакомиться с актиномицетами – возбудителями актиномикозов.

Задачи:

  1. Изучить тинкториальные свойства возбудителя;
  2. Охарактеризовать актиномицеты;
  3. Описать эпидемиологию, патогенез и клинику актиномикоза;
  4. Назначить профилактику и лечение актиномикоза.
         

Глава 1

История изучения возбудителя

В 1874 Ф. Кон в пробе из слёзного канала человека впервые обнаружил нитчатую бактерию

В 1845 г. Б. Лангерберг впервые описал заболевание  актиномикоз у человека;

В 1877 г. О. Боллингер изучил детально актиномикоз  у крупного рогатого скота;

В 1878 г. Д. Израэль описал поражения у  человека актиномицетами;

В дальнейшем было обнаружено множество патогенных форм;

в 1890—1892 Госпирини составил список родов актиномицетов.

В 1887 г. К. Гарцем и в 1888 г. М. Афанасьев выделили возбудителя в чистой культуре;

В 1912—1916 стали появляться первые описания непатогенных актиномицетов, выделенных из обычных природных субстратов [3].  

Таксономия  возбудителя

Тип Actinobacteria

Класс Actinobacteria

Род Actinomyces

Вид A. israelii, A. albus, A. bovis, A. naeslundii, A. viscosus, A. odontolyticus

По уровню организации актиномицеты занимают промежуточное положение между  бактериями и грибами.  

Характеристика  микроорганизма

- морфология

Все актиномицеты имеют настоящий ветвящийся мицелий, субстратный или воздушный, со временем распадающийся на полиморфные (кокковидные, колбовидные и др.) элементы, у большинства с плодоносными ветками и спорами в воздушных частях колоний. Нити мицелия прямые или волокнистые, длиной от 50 до 600 мкм и диаметром от 0, 2 до 1-2 мкм. Поперечные перегородки обычно не обнаруживаются. Мицелий актиномицетов ветвистый, ветви развиваются из небольшой почки, которая постепенно вытягивается в палочку, а затем в короткую нить с боковыми ответвлениями. Неподвижны, размножаются спорами, распадом мицелия на фрагменты и почкованием. Могут встречаться клетки V- и Y- образной формы. В клеточной стенке всегда присутствует лизин, отсутствуют хитин, целлюлоза, диаминопимелиновая кислота. Некоторые актиномицеты могут образовывать полисахаридную капсулу вокруг нитей мицелия, состоящую из гиалинизированного вещества [1].

- тинкториальные свойства

Окрашиваются  по Граму положительно, т. е в фиолетовый, являются кислотоустойчивыми организмами.

- культуральные свойства

Форма, цвет и размеры колоний на питательных  средах, требовательность к питательной  среде у актиномицетов вариабельны и видоспецифичны, но в большинстве случаев неприхотливы при росте. Все актиномицеты растут медленно, и посевы следует культивировать в течение 7-14 суток, хорошо растут на белковых средах, дополненных сывороткой, образуя S-формы колоний, на кровяном агаре формируют R- формы колоний, пигментация колоний является характерным признаком актиномицетов,  колонии разнообразного цвета и оттенка. Пигменты могут быть растворимы в воде и спирте, растворимы в воде и нерастворимы в спирте, нерастворимы ни в воде, ни в органических растворителях. Размеры колоний от 0.3-0.5 до 1-1.5 мм. Температура культивирования от3-7 до 40 ° С, оптимум температуры 35-37° С,  оптимальная рН от 6,0 до 6,8. Среди актиномицетов встречаются как облигатные, так и факультативные анаэробы.

- биохимические свойства

Ферментативная  активность актиномицетов разнообразна. Почти все патогенные актиномицеты обладают протеолитической и липолитической акитивностью. Многие образуют каталазу и фосфаты. Имеют амилазу, разжижают  желатин, углеводы ферментируют до кислоты  без газа. Способность восстанавливать  нитраты в нитриты, индол не образуют.

- антигенная структура

Антигенные  свойства  актиномицетов мало изучены; они обусловлены в основном полисахаридами клеточной стенки (видоспецифические  антигены), а также цитоплазматическими  компонентами. У A. israelii обнаружено несколько серовариантов.

- факторы патогенности

Вопрос  о факторах патогенности актиномицет  также мало изучен, но экзотоксинов они не продуцируют. Структурные  и химические компоненты: пили I типа (адгезины).

-резистентность

Устойчивы к высушиванию, действию прямых солнечных  лучей, долго сохраняются в дистиллированной воде, переносят повторное замораживание  и оттаивание, годами сохраняют жизнеспособность в высушенном состоянии. Чувствительны  к действию дезинфицирующих средств  в их рабочей концентрации.  

Роль  в патологии

Актиномицеты вызывают актиномикоз, а также туберкулез, дифтерию.

Актиномикоз - хроническое гранулематозное гнойное  поражение различных органов  и систем с характерной инфильтрацией  тканей, абсцессами и свищами, плотными зернами (друзами) в гное [3].  

Эпидемиология

Актиномицеты  распространены чрезвычайно широко в природе, встречаются в любых  географических широтах, обитают в  теплых и холодных морях и океанах, почве. Многие актиномицеты являются естественными  обитателями организма человека и животных, заселяя слизистые  оболочки. Особенно их много в десневых карманах , криптах миндалин, в строме зубного камня, конкрементах желчевыводящих и мочевых путей, слюнных железах. Основные предрасполагающие факторы – травмы полости рта, периодонтиты, различные медицинские манипуляции. Мужчины болеют актиномикозом в 3 раза чаще, чем женщины, особенно в возрасте от 20 до 50 лет. Болеют сельскохозяйственные животные: крупный и мелкий рогатый скот, лошади, свиньи, кролики [5].  

Патогенез и клиника

Источник  инфекции – больные люди или животные.

Механизм  передачи: контактный, аэрогенный, фекально – оральный.

Пути  передачи: непрямой контакт, воздушно – пылевой, водный, контактно –  бытовой.

Актиномицеты  проявляют выраженную адгезивную активность на слизистых оболочках и способность  к быстрой их колонизации.

Наиболее  частое поражение - актиномикоз лица, заболевание протекает хронически, но часто осложняется присоединением вторичных бактериальных инфекций; возможны поражения мышц, лимфатических  узлов, языка, слюнных желез и костных тканей. В тканях пораженного организма актиномицеты образуют своеобразные морфологические структуры – друзы, представляющие собой, беспорядочно переплетенные в центре нити мицелия с радиально отходящими на периферию колболовидно расширенными на концах нитями. Диаметр друзы – 5 мкм и более. Вокруг друз скапливаются лимфоциты и лейкоциты, а по периферии образуется грануляционная ткань с большим количеством сосудов, плазматических, эпителиоидных клеток и фибробластов. В центре гранулемы наблюдается некроз клеток и их распад, во время которого макрофаги внедряются в друзы, захватывают кусочки мицелия актиномицета и с ними мигрируют в соседние ткани, где образуют вторичные, третичные и т. д гранулемы. В своем развитии друзы проходят несколько стадий, причем вначале они представлены мягкими конгломератами с обильно растущим мицелием, а на конечных стадиях – кальцинированными плотными тельцами, где в большинстве случаев жизнеспособный возбудитель отсутствует. Сначала образуется гиперемированная безболезненная плотная припухлость, при прогрессировании которой наблюдается размягчение, расплавление подлежащих тканей, и через сформировавшиеся свищи гной выходит наружу или в плевру, брюшную полость и т. д. в зависимости от локализации очага. При  метастазировании актиномицетов в средостение, головной мозг, другие внутренние органы заболевание часто заканчивается смертью [3].  

Иммунитет

Прочного  иммунитета к актиномикозу после перенесенного заболевания не остается. Однако определенная иммунологическая перестройка в организме больного происходит; в сыворотке крови появляются агглютинины, преципитины, комплементсвязывающие антитела. Появляется специфическая кожная аллергическая реакция замедленного типа [4].  

Микробиологическая  диагностика

Исследуемый материал: экссудат, гной из свищей, моча, биоптаты тканей, мокрота, реже ликвор

Наилучшие результаты дают микроскопический, бактериологический и не которые иммунологические методы исследования (кожно – аллергическая проба с актинолизатом, реакция торможения миграции лейкоцитов с актинолизатом). Наиболее распространенный метод диагностики – обнаружение друз. Для их обнаружения подозрительные комочки из патологического материала наносят на предметное стекло в каплю 10 – 20 % щелочи, слегка подогревают, накрывают покровным стеклом и микроскопируют. Друзы можно обнаружить в «раздавленной» капле, при окраске по Граму, Цилю – Нильсену или Романовскому – Гимзе. Для выделения чистой культуры проводят посев на кровяной и сывороточный агары, среды Сабуро или Чапека [2, 5].  

Специфическая профилактика и лечение

Специфическая профилактика не разработана. Для лечения  используют хирургические методы: иссечение  пораженных тканей, выскабливание грануляций, удаление гноев и дренирование абсцессов. Специфическое лечение проводят актинолизатом по определенной схеме, а также используют антибиотики (пенициллинового ряда), иммуностимуляторы (левамизол, пирогенал, продигиозан), общее  стимулирующее воздействие (лазеротерапия, физиотерапия и т. д) [3].                 

Заключение

Актиномицеты  известны давно, но полностью не изучены. Доказано, что они не являются грибами, а занимают промежуточное положение  между грибами и бактериями. Очень  широко распространены и вызывают актиномикоз, против которого специфическая профилактика не разработана.

Таким образом, на данный момент не достаточно полно изучена антигенная структура  актиномицетов, их факторы патогенности.

 

Список  литературы

turboreferat.ru

Реферат - Первая. Общая микробиология. Глава место микроорганизмов среди

ЧАСТЬ ПЕРВАЯ.

ОБЩАЯ МИКРОБИОЛОГИЯ.

ГЛАВА 1.

МЕСТО МИКРООРГАНИЗМОВ СРЕДИ ДРУГИХ ЖИВЫХ

СУЩЕСТВ

КЛАССИФИКАЦИЯ И СИСТЕМАТИКА

Зрительное восприятие объектов окружающего мира является од­ним из наиболее важных способов его познания Однако, человечес­кий глаз видит объекты величиной около 0,1 мм, а различает детали в объектах размером не менее 1 мм В то же время существует целый мир живых существ, разных по своей природе, строению, свойствам, кото­рые вследствие своих малых размеров недоступны зрению человека Такие живые существа называют микроорганизмами. Разли­чаются три царства, эукариоты, прокариоты, вирусы.

Эукариоты (греч eu - хорошо, karyon - ядро) - высшие микроорганизмы Клетка эукариот имеет истинное ядро (лат - nucleus). отделенное от цитоплазмы ядерной мембраной и содержащее двойной набор хромосом. Клетки эукариотов делятся как по типу митоза, так и по типу мейоза, в их цитоплазме содер­жатся эндоплазматическая сеть, митохондрии или хлоропласты. В цитоплазме эукариотов содержатся 80S-рибосомы (S - константа седиментации, харак­теризующая размер частиц) Все эукариоты - аэробы.

Прокариоты, напротив, не имеют истинною ядра - у них нуклеоид, содержащий ДНК, не отделен от цитоплаз­мы ядерной мембраной и свободно располагается в цитоплазме. Деление прокариотических клеток происходит по типу амитоза. Цитоплазма содержит 70S-рибосомы, которые меньше по раз­меру, чем рибосомы в цитоплазме эукариотов. Строение клеточных мембран и жгутиков у прокариотов иное, а клеточная стенка содержит полимерное соединение – пептидогликан, которого нет у эукариотов. Среди прокариотов есть аэробы и анаэробы.

Эти различия имеют практическое значение. Так, избирательность действия на микроорганизмы антибиотиков объясняется различиями в структуре прокариотов и эукариотов. Например, пенициллин действу­ет на клетки, содержащие пептидогликан, тетрациклины - на функцию 70S-рибосом, а полиеновые антибиотики, например, нистатин, - на кле­точную мембрану эукариотов.

Согласно современной классификации микроорганизмов, к царс­тву эукариотов относятся простейшие и грибы (табл. 1). Все прокариоты относятся к отделу Bacteria, вирусы составляют особое царство ви­русов (Vira). В нашей схеме прокариоты разделены на актиномицеты, спирохеты, собственно бактерии, микоплазмы, риккетсии, хламидии, так как эти группы микробов отличаются по структуре и физиологическим свойствам. Среди прокариотов актиномицеты имеют черты сходства с грибами, а спирохеты - с простейшими. В том порядке, в каком в данной схеме расположены отдельные группы прокариотов, наблюдается умень­шение размеров клеток, упрощение структуры и уменьшение способно­сти к самостоятельному существованию. Бактерии осуществляют свой собственный обмен веществ и способны жить и размножаться вне организма хозяина. Микоплазмы лишены клеточной стенки и могут жить только в изотонической и гипертонической среде, риккетсии - строгие внутриклеточные паразиты: они способны к биосинтезу своего белка, но не могут самостоятельно осуществлять процесс дыхания. Хламидии по своим размерам близки к вирусам и являются строгими внутрикле­точными паразитами, способны к биосинтезу белка но, подобно риккетсиям, являются "дыхательными паразитами".

Вирусы не только наиболее малы по размерам, но и по своим био­логическим свойствам настолько отличаются от микроорганизмов, что выделены в особое царство Vira.

Распределением живых существ по группам в зависимости от об­щих признаков занимается биологическая систематика или таксоно­мия (греч. taxis - порядок, nomos - закон). По Международному Кодек­су номенклатуры бактерий имеются следующие категории царства прокариотов: отдел, класс, порядок, семейство, вид. Название вида у микроорганизмов дают по биноминальной (двойной) номенклатуре, предложенной Карлом Линнеем для высших организмов. Первое сло­во обозначает род и пишется с прописной буквы, второе слово - видо­вое название микроба и пишется с строчной буквы. Например, Corynebacterium diphtheriae - возбудитель дифтерии. При повторном упоминании названия в данном тексте принято сокращать родовое название до начальной буквы, например, С. diphtheriae.

Современная таксономия микроорганизмов основана на морфоло­гии, биохимических и физиологических признаках. Более точным яв­ляются современные методы геносистематики, основанные на изуче­нии состава ДНК.

Наиболее общепризнанным среди микробиологов руководством для систематики прокариотов является определитель американского микробиолога Bergy. Первое издание определителя было опубликова­но в 1923 году. После смерти Берги вышло еще несколько изданий. Грибы, простейшие и вирусы не включены в определитель.

^ ГЛАВА 2. МОРФОЛОГИЯ МИКРООРГАНИЗМОВ

Бактерии

Бактерии - это одноклеточные прокариотные микроорганизмы. Ве­личина их измеряется в микрометрах (мкм). Бактерии не отличаются разнообразием форм. Различают три основные формы: шаровидные бактерии - кокки, палочковидные и извитые. Кроме того, существуют промежуточные формы (рис. 2).

Кокки (греч. kokkos - зерно) имеют шаровидную или слегка вытя­нутую форму. Различаются между собой в зависимости от того, как они располагаются после деления. Одиночно расположенные кокки - мик­рококки, расположенные попарно - диплококки. К патогенным диплококкам относятся пневмококки, имеющие ланцетовидную форму, и бо­бовидные диплококки - менингококки и гонококки. Стрептококки де­лятся в одной плоскости и после деления не расходятся, образуя цепоч­ки (греч. streptos - цепочка). Патогенные стрептококки являются возбу­дителями гнойно-воспалительных заболеваний, ангины, рожи, скарла­тины. Тетракокки образуют сочетания из четырех кокков в результате деления в двух взаимно перпендикулярных плоскостях, сарцины (лат. sarcio - связывать) образуются при делении в трех взаимно перпендику­лярных плоскостях и имеют вид скоплений по 8-16 кокков. Стафило­кокки в результате беспорядочного деления образуют скопления, напо­минающие гроздь винограда (греч. staphyle - виноградная гроздь). Сре­ди них есть патогенные виды, вызывающие гнойно-воспалительные и септические заболевания.

Палочковидные бактерии (греч. bacteria - палочка), способные образовывать споры, называют бациллами в том случае, если спора не шире самой палочки, и клостридиями, если диаметр споры превышает диаметр палочки. Палочки, неспособные к спорообразованию, называют бактери­ями. Палочковидные бактерии, в отличие от кокков, разнообразны по ве­личине, форме и расположению клеток: короткие (1 -5 мкм) толстые, с зак­ругленными концами бактерии кишечной группы; тонкие, слегка изогну­тые палочки туберкулеза; располагающиеся под углом тонкие палочки дифтерии; крупные (3-8 мкм) палочки сибирской язвы с "обрубленными" концами, образующие длинные цепочки - стрептобациллы. К извитым формам бактерий относятся вибрионы, имеющие слегка изогнутую форму в виде запятой (холерный вибрион) и спириллы, состоящие из нескольких завитков. К извитым формам также относятся кампилобактеры, похожие под микроскопом на крылья летящей чайки.

^ Структура бактериальной клетки. Структурные элементы бактери­альной клетки можно условно разделить на: а) постоянные структурные элементы - имеются у каждого вида бактерий, в течение всей жизни бакте­рии; это клеточная стенка, цитоплазматическая мембрана, цитоплазма, нуклеоид; б) непостоянные структурные элементы, которые способны обра­зовывать не все виды бактерий, а те бактерии, которые образуют их, могут терять их и вновь приобретать в зависимости от условий существования. Это капсула, включения, пили, споры, жгутики.

Клеточная стенка покрывает всю поверхность клетки. У грамположительных бактерий клеточная стенка более толстая: до 90% - это полимерное соединение пептидогликан, связанный с тейхоевыми кис­лотами, и слой белка. У грамотрицательных бактерий клеточная стенка тоньше, но сложнее по составу: состоит из тонкого слоя пептидогликана, липополисахаридов, белков; она покрыта наружной мембраной. Наружная мембрана грамотрицательных бактерий является барьером для некоторых антибиотиков, в том числе таких, которые получены в последнее время. Возможно, что этим можно объяснить, почему с не­давнего времени в возникновении внутрибольничных инфекций все воз­растающую роль играют грамотрицательные бактерии, такие как ки­шечная палочка, синегнойная палочка. Ранее первенство в этой области принадлежало стафилококкам.

Клеточная стенка выполняет важную биологическую роль: прида­ет бактерии определенную форму, защищает ее от воздействий окру­жающей среды, участвует в транспорте питательных веществ и про­дуктов обмена. В то же время пептидогликан клеточной стенки явля­ется мишенью для действия пенициллина и других антибиотиков, которые нарушают процесс формирования полимерного пептидогликана. Отсюда понятно, почему пенициллины действуют преимуществен­но на грамположительные бактерии, причем на молодые растущие клетки.

Значение клеточной стенки в сохранении определенной формы и в защите от окружающей среды наглядно демонстрируется на примере сферопластов и протопластов, которые образуются при разрушении клеточной стенки под действием пенициллина или лизоцима. Пол­ностью или частично лишенные клеточной стенки, они имеют сфери­ческую форму, могут выживать только в гипертонической среде и не­способны к размножению. L-формы бактерий - это бактерии, полнос­тью или частично утратившие клеточную стенку, но сохранившие спо­собность к размножению. Свое название они получили в честь инсти­тута имени Листера в Англии, где были впервые получены. Не имея клеточной стенки, они также приобретают сферическую форму. L-фор­мы возникают и в естественных условиях, длительно сохраняются в организме человека и играют важную роль в патогенезе некоторых инфекционных заболеваний.

Цитоплазматическая мембрана расположена непосредственно под клеточной стенкой. Она обладает избирательной проницаемостью, и бла­годаря этому регулирует водно-солевой обмен клетки, транспорт пита­тельных веществ в клетку и выведение наружу продуктов обмена. В этих процессах участвуют ферменты пермеазы. Кроме того, здесь имеются ферменты, осуществляющие биологическое окисление.

Цитоплазматическая мембрана путем инвагинации внутрь клетки образует мембранные структуры - мезосомы. Геном клетки (ДНК) свя­зан с мезосомой, и отсюда начинается процесс репликации ДНК при делении клетки.

Цитоплазма - внутреннее гелеобразное содержимое бактериальной клетки, пронизано мембранными структурами, создающими жест­кую систему. В цитоплазме содержатся рибосомы (в которых осуще­ствляется биосинтез белков), ферменты, аминокислоты, белки, рибонуклеиновые кислоты.

Нуклеоид - это хромосома бактерий, двойная нить ДНК, коль­цевидно замкнутая, связанная с мезосомой. В отличие от ядра эукариотов, нить ДНК свободно располагается в цитоплазме, не имеет ядерной оболочки, ядрышка, белков-гистонов. Нить ДНК во много раз длиннее самой бактерии (например, у кишечной палочки длина хро­мосомы более 1 мм).

Помимо нуклеоида, в цитоплазме могут находиться внехромосомные факторы наследственности, называемые плазмидами. Это ко­роткие кольцевидные нити ДНК, прикрепленные к мезосомам.

Включения содержатся в цитоплазме некоторых бактерий в виде зерен, которые можно обнаружить при микроскопии. Большей частью это запас питательных веществ. Например, у дифтерийных палочек на концах видны зерна волютина, и это является важным признаком для определения этого вида бактерий. Вместе с тем это могут быть и скоп­ления неорганических веществ, например, серы, и продукты бактери­ального метаболизма.

Пили (лат. pili - волоски) иначе реснички, фимбрии, бахромки, вор­синки - короткие нитевидные отростки на поверхности бактерий. Пили общего типа (common pili) в количестве нескольких сотен равномерно покрывают бактерию. Они осуществляют прикрепление (адгезию) бак­терии к клетке хозяина и участвуют в питании. Половые пили (sex-пили) имеют внутри канал и образуются только клетками-донорами. Они обеспечивают конъюгацию у бактерий и переход ДНК из одной клетки в другую.

Споры образуют среди патогенных бактерий только палочки - ба­циллы и клостридии. Споры бактерий не являются способом разм­ножения, поскольку из одной клетки формируется только одна спора. Биологическая роль спор - сохранение вида в неблагоприятных усло­виях внешней среды.

Превращение бактериальной клетки в спору происходит при по­падании бактерии во внешнюю среду, чаще всего - в почву. Спора формируется внутри клетки, затем вегетативное тело лизируется. Об­разование споры происходит в течение суток. Споры чрезвычайно ус­тойчивы и могут длительное время сохранять жизнеспособность: де­сятками лет остаются живыми в почве споры возбудителей сибирской язвы, столбняка, ботулизма. Они не погибают при 100°С, убить их можно только автоклавированием, сухим жаром при 160-170°С в течение 1-2 часов, или с помощью спороцидных химических веществ. При попадании в благоприятные условия (оптимальная температура, достаточная влажность, наличие питательных веществ) происходит про­растание спор в вегетативные формы. Прогревание спор при 100°С вызывает их тепловую активацию с последующим прорастанием. Это явление используется при стерилизации дробными методами.

Спорообразование - одно из свойств, характерное для определенных видов бактерий. Форма и расположение споры внутри клетки являются постоянным признаком вида и могут быть использованы для его идентификации. Форма спор бывает круглой или овальной. Расположение центральное - у бацилл сибирской язвы, субтерминальное (ближе к одному из концов) - у клостридий ботулизма и газовой анаэробной инфекции, терминальное (на конце) - у клостридий столб­няка. Для окраски спор применяют способ Ожешки, основанный на их кислотоустойчивости.

Жгутики. Многие виды бактерий способны передвигаться благо­даря наличию жгутиков. Из патогенных бактерий только среди пало­чек и извитых форм имеются подвижные виды. Жгутики представляют собой тонкие эластичные нити, длина которых у некоторых видов в несколько раз больше длины тела самой бактерии. Число и располо­жение жгутиков является характерным видовым признаком бактерий. Различают бактерии: монотрихи - с одним жгутиком на конце тела, лофотрихи - с пучком жгутиков на конце, амфитрихи, имеющие жгути­ки на обоих концах, и перитрихи, у которых жгутики расположены по всей поверхности тела. К монотрихам относится холерный вибрион, к перитрихам - сальмонеллы брюшного тифа.

Жгутики настолько тонки, что не видны в световом микроскопе. Их можно видеть в электронном микроскопе, а также при специальных способах окраски, когда толщину жгутика искусственно увеличивают: при помощи танина достигают набухания жгутикового белка, а затем обрабатывают азотнокислым серебром или красителем, который осе­дает на жгутиках, увеличивая их толщину. Можно косвенно судить о наличии жгутиков, наблюдая подвижность живых бактерий в препа­ратах "раздавленной" или "висячей" капли. Определение подвижнос­ти у бактерий является важным диагностическим признаком, и при по­вседневной практической работе удобно применять метод посева. В столбик полужидкого питательного агара уколом производится посев бактерий. Неподвижные бактерии растут по ходу укола, а у подвиж­ных наблюдается диффузный рост.

Капсула - наружный слизистый слой, который имеется у многих бактерий. У одних видов он настолько тонок, что обнаруживается толь­ко в электронном микроскопе - это микрокапсула. У других видов бак­терий капсула хорошо выражена и видна в обычном оптическом мик­роскопе - это макрокапсула. Капсула обычно состоит из полисахаридов, а у палочки сибирской язвы - из полипептидов

Одни бактерии образуют капсулу только в организме хозяина, на­пример, пневмококки, палочка сибирской язвы, палочка чумы; другие постоянно сохраняют ее, - это капсульные бактерии, например, клебсиеллы. Капсула защищает бактерии от фагоцитоза и антител, поэтому в инфекционном процессе она играет роль одного из факторов патогенности, обеспечивающего антифагоцитарную активность возбудителя болезни. Наличие капсулы является дифференциальным признаком для оп­ределения вида таких микробов, как пневмококк, палочка сибирской язвы, клебсиеллы пневмонии, которые образуют макрокапсулу, види­мую в световом микроскопе. Для обнаружения капсулы применяют спо­соб окраски по Бурри-Гинсу: при этом на темном фоне туши видны ок­рашенные фуксином бактерии, окруженные бесцветной капсулой.

Микоплазмы

Микоплазмы относятся к прокариотам, размеры их 125-200 нм. Это наиболее мелкие из клеточных микробов, величина их близка к преде­лу разрешающей способности оптического микроскопа. У них отсут­ствует клеточная стенка, и в этом отношении они близки к L-формам бактерий. С отсутствием клеточной стенки связаны характерные осо­бенности микоплазм. Они не имеют постоянной формы, поэтому встре­чаются сферические, овальные, нитевидные формы. Так как микоплазмы не образуют пептидогликана, они нечувствительны к пенициллинам и другим антибиотикам, избирательно подавляющим синтез этого вещества.

Микоплазмы широко распространены в природе. Их можно выде­лить из почвы, сточных вод, от животных и человека. Существуют и патогенные виды: Mycoplasma pneumoniae является возбудителем рес­пираторных заболеваний. Условно-патогенные Микоплазмы также иг­рают роль в развитии заболеваний: M.hominis - заболеваний мочепо­лового тракта, M.arthritidis - ревматоидного артрита. Из рода уреаплазм патогенными являются Ureaplasma urealyticum, вызывающие за­болевания мочеполовых органов.

Риккетсии

Риккетсии - прокариотные микробы, получили свое название в память американского микробиолога Говарда Тейлора Риккетса, погибшего в ре­зультате лабораторного заражения сыпным тифом. Риккетсии сходны с бактериями по клеточному строению и структуре, а с вирусами их сближа­ет строгий внутриклеточный паразитизм. Они не могут размножаться вне живых клеток хозяина, так как не синтезируют дыхательные ферменты и поэтому неспособны к самостоятельному биологическому окислению. В от­личие от вирусов, они содержат оба вида нуклеиновых кислот - ДНК и РНК - и осуществляют процесс биосинтеза белков.

Для риккетсий характерен плеоморфизм, то есть в зависимости от ус­ловий существования у них изменяется морфология. В благоприятных для размножения условиях это кокковидные формы (300-400 нм) или короткие палочки, в условиях, когда процесс роста происходит быстрее, чем размно­жение, преобладают длинные палочки и нитевидные формы.

Многие виды риккетсий вызывают заболевания человека, называемые риккетсиозами. Это Rickettsia prowazekii (риккетсий Провацека) - возбуди­тель эпидемического сыпного тифа и Coxiella burneti (коксиелла Бернета) -возбудитель Ку-лихорадки.

Хламидии

Хламидии - мелкие прокариотные микробы, сходные по химичес­кому составу с грамотрицательными бактериями. Это строгие внут­риклеточные паразиты, так как не образуют АТФ и потому не спо­собны к самостоятельному процессу биологического окисления, т.е. это "энергетические паразиты". Вне клеток хозяина хламидии представля­ют собой элементарные тельца сферической формы размером 300 нм. В клетке хозяина они превращаются в более крупные ретикулярные тель­ца, которые делятся и образуют микроколонии хламидии, которые мож­но видеть в клетке в виде включений. Образовавшиеся в результате элементарные тельца выходят из клетки и совершают новый цикл в других клетках. Патогенные для человека виды: Chlamydia psittaci -возбудитель орнитоза, источником которого являются птицы; C.trachomatis - возбудитель трахомы, поражающей конъюнктиву глаз и хламидиозного уретрита - заболевания, передающегося половым пу­тем; C.pneumoniae - возбудитель воспаления легких.

Актиномицеты

Актиномицеты - одноклеточные микроорганизмы, относятся к прокариотам. Их клетки имеют такую же структуру, как бактерии: кле­точную стенку, содержащую пептидогликан, цитоплазматическую мем­брану; в цитоплазме расположены нуклеоид, рибосомы, мезосомы, внутриклеточные включения. Поэтому патогенные актиномицеты чувс­твительны к антибактериальным препаратам. В то же время они име­ют сходную с грибами форму ветвящихся переплетающихся нитей, а некоторые актиномицеты, относящиеся к семейству стрентомицет, раз­множаются спорами. Другие семейства актиномицет размножаются путем фрагментации, то есть распада нитей на отдельные фрагменты.

Актиномицеты широко распространены в окружающей среде, осо­бенно в почве, участвуют в круговороте веществ в природе. Среди актиномицетов есть продуценты антибиотиков, витаминов, гормонов. Большинство антибиотиков, применяемых в настоящее время, проду­цируется актиномицетами. Это стрептомицин, тетрациклин и другие.

Патогенные представители актиномицетов вызывают у человека актиномикоз и нокардиоз. Это Actinomyces israelli, Nocardia asteroides и другие. Возбудители актиномикоза вне организма, на питательной среде представляют собой длинные ветвящиеся нити, местами распа­дающиеся на фрагменты. В организме человека патогенные актиноми­цеты образуют друзы - переплетающиеся нити в центре с отдельными отходящими в виде лучей нитями по периферии. Отсюда название: ак­тиномицеты - лучистые грибы. Концы нитей, погруженные в ткань, утол­щены, ослизнены и имеют иной химический состав, и, подобно капсу­ле бактерий, защищают микроб от фагоцитоза.

Спирохеты.

Спирохеты относятся к прокариотам. Имеют признаки, общие как с бактериями, так и с простейшими микроорганизмами. Это од­ноклеточные микробы, имеющие форму длинных тонких спирально изогнутых клеток, способны к активному движению. В неблагоприят­ных условиях некоторые из них могут переходить в форму цисты.

Исследования в электронном микроскопе позволили установить структуру клеток спирохет. Это цитоплазматические цилиндры, окру­женные цитоплазматической мембраной и клеточной стенкой, содер­жащей пептидогликан. В цитоплазме находятся нуклеоид, рибосомы, мезосомы, включения. Под цитоплазматической мембраной располо­жены фибриллы, обеспечивающие разнообразное движение спирохет - поступательное, вращательное, сгибательное.

Сапрофитные спирохеты имеются в окружающей среде. Несколь­ко непатогенных видов являются постоянными обитателями организ­ма человека. Патогенные для человека виды относятся к трем родам: Treponema, Borrelia, Leptospira. Они различаются по форме и рас­положению завитков. Трепонемы состоят из 8-12 одинаковых по ве­личине завитков, положение которых при движении не меняется. Боррелии образуют 5-8 завитков, меняющихся при движении подобно дви­жению змейки. Лептоспиры состоят из 40-50 очень мелких постоянных завитков, концы изогнуты в виде крючков и имеют утолщения. При движении концы лептоспир изгибаются в разные стороны, причем об­разуются форму в виде русской буквы С или латинской S. Спирохеты за исключением боррелий, плохо воспринимают анилиновые красители, поэтому их окрашивают по Романовскому-Гимза. По лучше всего на­блюдать спирохеты в живом виде в темном поле зрения.

Патогенные представители спирохет: Treponema pallidum - вызывает сифилис, Borrelia recurrentis - возвратный тиф, Borrelia burgdorferi - болезнь Лайма, Leptospira interrogans - лептоспироз.

Грибы.

Грибы (Fungi, Mycetes) - эукариоты, низшие растения, лишенные хлорофилла, в связи с чем они не синтезируют органические соедине­ния углерода, то есть это гетеротрофы, имеют дифференцированное ядро, покрыты оболочкой, содержащей хитин. В отличие от бактерий, грибы не имеют в составе оболочки пептидогликана, поэтому нечув­ствительны к пенициллинам. Для цитоплазмы грибов характерно при­сутствие большого количества разнообразных включений и вакуолей.

Среди микроскопических грибов (микромицетов) имеются однок­леточные и многоклеточные микроорганизмы, различающиеся между собой по морфологии и способам размножения. Для грибов характер­но разнообразие способов размножения: деление, фрагментация, поч­кование, образование спор - бесполых и половых.

При микробиологических исследованиях наиболее часто прихо­диться сталкиваться с плесенями, дрожжами и представителями сбор­ной группы так называемых несовершенных грибов.

Плесени образуют типичный мицелий, стелющийся по питатель­ному субстрату. От мицелия вверх подымаются воздушные ветви, ко­торые оканчиваются плодоносящими телами различной формы, несущими споры.

Мукоровые или головчатые плесени (Mucor) - одноклеточные гри­бы с шаровидным плодоносящим телом, наполненным эндоспорами.

Плесени рода Aspergillus - многоклеточные грибы с плодоносящим телом, при микроскопии напоминающим наконечник лейки, разбрыз­гивающей струйки воды; отсюда название "леечная плесень". Некото­рые виды аспергилл используются в промышленности для производства лимонной кислоты и других веществ. Есть виды, вызывающие заболе­вания кожи и легких у человека - аспергиллезы.

Плесени рода Penicillum, или кистевики - многоклеточные грибы с плодоносящим телом в виде кисточки. Из некоторых видов зеленой плесени был получен первый антибиотик - пенициллин. Среди пенициллов есть патогенные для человека виды, вызывающие пенициллиоз. Различные виды плесеней могут быть причиной порчи пищевых про­дуктов, медикаментов, биологических препаратов.

Дрожжи - дрожжевые грибы (Saccharomycetes, Blastomycetes) име­ют форму круглых или овальных клеток, во много раз крупнее бакте­рий. Средний размер дрожжевых клеток приблизительно равен попе­речнику эритроцита (7-10 мкм). Отличительной морфологической осо­бенностью дрожжей является отсутствие нитевидного мицелия и обыч­ное размножение почкованием. На поверхности материнских клеток возникают отростки, которые, отделившись затем от материнской клет­ки, превращаются в самостоятельные новые особи. Кроме почкова­ния, истинные дрожжи могут размножаться половым способом, обра­зуя аски - половые споры.

Большинство видов дрожжей непатогенны. Их способность вызы­вать брожение широко используется в промышленности - в хлебопе­чении, виноделии, в получении спиртов и витаминов. Существуют па­тогенные дрожжевые грибы, вызывающие заболевания, например, Blastomyces dermatitidis - возбудитель бластомикоза, Pneumocystis carinii - возбудитель пневмоцистоза легких.

^ Несовершенные грибы не имеют специальных органов плодоноше­ния. К ним относятся дрожжеподобные грибы и дерматомицеты.

Дрожжеподобные грибы, подобно истинным дрожжам, представля­ют собой круглые или овальные клетки, размножающиеся почковани­ем. Но есть два существенных признака, по которым их отличают при проведении микробиологических исследований: дрожжеподобные гри­бы, в отличие от истинных дрожжей, образуют псевдомицелий и не образуют половых спор. Дрожжеподобные грибы рода Candida мо­гут быть обнаружены на слизистых оболочках здоровых людей. У новорожденных и грудных детей, у ослабленных больных они вызывают кандидоз - поражение слизистых оболочек, кожи, внутренних органов. Это заболевание может возникнуть вследствие экзогенного заражения. Но чаще кандидоз развивается как эндогенная инфекция при длитель­ном лечении антибиотиками широкого спектра действия, которые, бу­дучи направлены против бактерий - возбудителей заболевания, попутно подавляют рост бактерий - представителей нормальной микрофлоры организма, что ведет к дисбактериозу. Будучи эукариотамй, грибы Кандида нечувствительны к антибактериальным антибиотикам. Ос­вободившись от антагонистического влияния бактерий, они безудерж­но размножаются и вызывают кандидозы. Наиболее часто возбудите­лями кандидозов у человека являются виды Candida albicans, C.tropicalis и другие.

Дерматомицеты являются возбудителями заболеваний кожи (греч. derma - кожа), волос, ногтей. Это трихофитон - возбудитель трихофи-тии, эпидермофитон - возбудитель эпидермофитии, микроспорой - воз­будитель микроспории, ахорион - возбудитель парши. В волосах, че­шуйках кожи, соскобах ногтей отрезки мицелия дерматомицстов хо­рошо видны, так как сильно преломляют свет.

Простейшие

Простейшие - Protozoa (греч. proto - начало, zoa - животное) - эукариоты, микроскопические одноклеточные животные организмы. По сравнению с бактериями характеризуются более сложным строением. У них имеются примитивные органы, такие, как ротовое и анальное отверстие, сократительные вакуоли, мионемы. Ядро диф­ференцированное. Оболочки, обособленной от протоплазмы, простей­шие не имеют, хотя некоторые из них образуют пелликулу за счет уп­лотнения наружного слоя протоплазмы. Движение простейших осу­ществляется при помощи разных механизмов: перемещением протоплаз­мы, образующей псевдоподии (амебы), наличием жгутиков (жгутико­вые) или ресничек (реснитчатые). При размножении проходят слож­ные циклы развития, с чередованием полового и бесполого цикла, в организме основного хозяина - переносчика инфекции и промежуточ­ного хозяина - человека или животного. При этом на разных стадиях развития разные формы одного и того же микроорганизма могут на­столько отличаться друг от друга, что против них применяются разные химиотерапевтические препараты. Например, на половые и бесполые формы плазмодиев малярии избирательно действуют разные препара­ты.

Среди амеб патогенной для человека является дизентерийная аме­ба (Entamoeba histolytica), первооткрыватель ее - Ф.А. Леш (1875 г.). К жгутиковым относятся: лямблии - Lamblia intestinalis (Д.Ф. Лямбль, 1859 г.), трихомонады - Trichomonas hominis, обитатель кишечного тракта, Trichomonas vaginalis - паразит урогенитального тракта, возбудитель распространенного заболевания человека; лейшмании - Leshmania tropica, L.donovani, L.braziliensis; трипаносомы - Trypanosoma gambiense. К классу споровиков, названных так по одной из стадий развития, относят четыре вида плазмодиев малярии и токсоплазмы -Toxoplasma gondii - возбудитель токсоплазмоза. К реснитчатым отно­сится кишечный балантидий - Balantidium coli.

Изучение морфологии простейших может производиться в живом состоянии, при этом можно наблюдать их движение. Для исследования в окрашенном виде простая окраска непригодна, так как она не по­зволяет выявить сложную структуру этих микроорганизмов. Приме­няется метод окраски по Романовскому-Гимза, дифференцирующий от­дельные элементы клетки.

ГЛАВА 3.

^ МЕТОДЫ МИКРОСКОПИЧЕСКОГО ИССЛЕДОВАНИЯ

МИКРОБОВ

Методы микроскопического исследования используют для изуче­ния формы и структуры клетки, подвижности микробов.

^ Микроскопия в световом оптическом микроскопе

Световой микроскоп состоит из механической и оптической час­ти. Механическая часть микроскопа - это штатив, состоящий из осно­вания и колонки, к которой прикреплены тубус и предметный столик. В колонке имеются две винтовые системы для установки тубуса. Макрометрический винт служит для установки на фокус при слабых уве­личениях (объектив х8), а при сильных объективах (х40, х90) - доя первоначальной, грубой установки. Для более точной установки слу­жит микрометрический винт. Это одна из наиболее хрупких частей микроскопа, и работа с ним требует особой осторожности.

Оптическая часть микроскопа состоит из осветительного аппарата, объективов и окуляров.

Осветительный аппарат расположен под предметным столиком. В большинстве микроскопов свет отражается от зеркала и, пройдя через линзы конденсора, фокусируется в плоскости препарата. В сов­ременных микроскопах освещение достигается с помощью вмонтиро­ванного в микроскоп источника света.

Объективы представляют собой систему линз в металлической оп­раве. Передняя (фронтальная) линза - самая маленькая. От нее глав­ным образом зависит увеличение микроскопа. Расположенные за ней линзы называются коррекционными, так как они предназначены для устранения недостатков оптического изображения.

На оправе объективов обозначается создаваемое ими увеличение: х8, х40, х90. Объективы х 8 (малое увеличение) и х40 - это сухие объективы. При работе с ними между фронтальной линзой объектива

и препаратом находится воздух. При этом, вследствие разницы пока­зателей преломления стекла (1,52) и воздуха (1,0), часть световых лу­чей, проходя через оптически неоднородные среды, рассеивается. При микроскопии с объективами х 8 и х 40 это не имеет значения. Но мик­робы настолько малы, что для их исследования необходимо более силь­ное увеличение, которое дает объектив х90. При работе с этим объек­тивом рассеивание света должно быть устранено. Для этого между пред­метным стеклом и линзой помещают каплю жидкости, показатель пре­ломления которой равен показателю преломления стекла. Более всего для этого подходит кедровое масло или его заменители. При микро­скопии объектив погружают в каплю масла, поэтому объектив назы­вают иммерсионным (лат. immercio - погружение), а масло - иммерси­онным маслом. Иммерсионный объектив требует особо осторожного обращения. Фронтальная линза имеет настолько короткое фокусное расстояние до исследуемого объекта, что опускать объектив нужно медленно, глядя сбоку, чтобы не раздавить препарат, что связано с порчей линзы.

Окуляры имеют две линзы: верхняя называется глазной г нижняя -собирательной. Окуляры обозначают по тому увеличению, которое они дают, например: х7, х10, х15. Окуляр дает увеличение, ничего не до­бавляя в деталях изображения, данного объективом.

Чтобы определить общее увеличение микроскопа, нужно умножить увеличение объектива на увеличение окуляра.

Разрешающая способность светового микроскопа - это наимень­шее расстояние между точками в препарате, которые еще не слива­ются в одно изображение. Для светового микроскопа эта способность зависит от длины волны видимого света, и предел разрешения опти­ческого микроскопа равен 0,2 мкм.

Изображение объекта в микроскопе увеличенное и обратное.

^ Правила микроскопии с иммерсионной системой

Работать сидя.

Поднять конденсор до уровня предметного столика.

Глядя на верхнюю поверхность конденсора, осветить поле зрения.

Установить иммерсионный объектив.

На предметный столик поместить препарат с каплей Иммерсион­ного масла.

Глядя сбоку, осторожно опустить тубус с помощью макровинта до соприкосновения объектива с маслом и чуть-чуть погрузить его в мас­ло, не доводя до соприкосновения с предметным стеклом.

Глядя в окуляр, медленно поднимать макровинтом тубус до по­лучения изображения в поле зрения. Не разрешается опускать макровинтом тубус, глядя в окуляр.

Микровинтом, вращая его не более чем вполоборота, найти ясное изображение и рассматривать его. Держать оба глаза открытыми. Ле­вой рукой передвигать препарат для общего обозрения. Если предметный столик подвижный - можно для более мелких и точных движений пользоваться боковыми винтами. Правой рукой слегка вращать мик­ровинт, чтобы препарат всегда был в фокусе.

После просмотра препарата поднять тубус при помощи макро­винта, снять препарат, установить объектив х8, вытереть мягкой сал­феткой масло с иммерсионного объектива.

^ Микроскопия в темном поле. Для микроскопии в темном поле при­меняются особые конденсоры, у которых центральная часть линзы за­темнена, за исключением узкой полоски по периферии. Кроме того, боковые поверхности конденсора представляют собой не прямую ли­нию, а параболу. Внутренняя поверхность такого темнопольного па­раболоид-конденсора зеркальная. Лучи света попадают в темнопольный конденсор только через узкую полоску по периферии линзы. За­тем они отражаются от его зеркальной поверхности и, если в поле зре­ния нет никакого объекта, то ни один луч не попадает в объектив. Поле зрения кажется совершенно черным. Если же в поле зрения есть какие-то объекты, например, микробы, то лучи, отраженные от них, попада­ют в объектив, и их можно видеть светящимися на темном фоне.

Это явление подобно тому, которое наблюдается в комнате с за­темненными окнами, когда в косых лучах света, проникающих через щель, видны танцующие пылинки, при обычном освещении невидимые (феномен Тиндаля).

За неимением специального темнопольного конденсора можно обычный конденсор превратить в темнопольный, поместив между его линзами кружок черной бумаги, н

www.ronl.ru


Смотрите также

 

..:::Новинки:::..

Windows Commander 5.11 Свежая версия.

Новая версия
IrfanView 3.75 (рус)

Обновление текстового редактора TextEd, уже 1.75a

System mechanic 3.7f
Новая версия

Обновление плагинов для WC, смотрим :-)

Весь Winamp
Посетите новый сайт.

WinRaR 3.00
Релиз уже здесь

PowerDesk 4.0 free
Просто - напросто сильный upgrade проводника.

..:::Счетчики:::..

 

     

 

 

.