Были времена, когда мир людей ограничивался поверхностью Земли, находящейся у них под ногами. По мере развития техники человечество расширило свой кругозор. Теперь люди задумываются о том, есть ли границы у нашего мира и каковы масштабы Вселенной? На самом деле её реальные размеры не может представить себе ни один человек. Поскольку у нас нет подходящих ориентиров. Даже профессиональные астрономы рисуют себе (хотя бы в воображении) уменьшенные во много раз модели. Принципиальным является точное соотнесение габаритов, которые имеют объекты Вселенной. А при решении математических задач они вообще неважны, потому что оказываются просто числами, которыми оперирует астроном.
Чтобы говорить про масштабы Вселенной нужно сначала разобраться с тем, что находится к нам ближе всего. Во-первых, это звезда, которая называется Солнцем. Во-вторых – планеты, обращающиеся вокруг нее. Кроме них, есть еще спутники, движущиеся вокруг некоторых космических объектов. И не нужно забывать про пояс астероидов.
Планеты в этом перечне интересуют людей с давних пор, поскольку они являются самыми доступными для наблюдения. С их изучения начала развиваться наука о строении Вселенной — астрономия. Центром Солнечной системы признана звезда. Она является еще и самым большим её объектом. Если сравнивать с Землей, то Солнце по объему больше в миллион раз. Оно только кажется сравнительно маленьким, поскольку сильно удалено от нашей планеты.
Все планеты Солнечной системы делятся на три группы:
Планеты «не разлетаются» от Солнца благодаря силе притяжения. А упасть на звезду они не могут из-за больших скоростей. Объекты действительно очень «шустрые». К примеру, скорость Земли приблизительно равна 30 километрам в секунду.
Перед тем как вы попытаетесь представить себе масштабы Вселенной, стоит разобраться с Солнцем и планетами. Ведь их тоже бывает сложно соотнести друг с другом. Чаще всего условный размер огненной звезды отождествляют с бильярдным шаром, диаметр которого равен 7 см. Стоит отметить, что в реальности он достигает около 1400 тыс. км. В таком «игрушечном» макете первая планета от Солнца (Меркурий) оказывается на расстоянии 2 метров 80 сантиметров. При этом шарик Земли будет иметь в диаметре всего половину миллиметра. Он расположен от звезды на расстоянии 7,6 метра. Расстояние до Юпитера в этом масштабе будет равно 40 м, а до Плутона — 300.
Если говорить об объектах, которые находятся за пределами Солнечной системы, то самая близкая звезда — Проксима Центавра. Она будет удалена так сильно, что это упрощение оказывается слишком маленьким. И это при том, что она находится в пределах Галактики. Что же говорить про масштабы Вселенной. Как видим, она фактически безгранична. Всегда хочется узнать, как соотносятся Земля и Вселенная. И после получения ответа не верится в то, что наша планета и даже Галактика — ничтожная часть огромного мира.
Сантиметр, метр и даже километр — все эти величины оказываются ничтожными уже в пределах Солнечной системы. Что же говорить о Вселенной. Чтобы указать расстояние в пределах Галактики, используется величина, названная световым годом. Это время, которое потребуется свету, движущемуся в течение одного года. Напомним, что одна световая секунда равна почти 300 тысячам км. Поэтому при переводе в привычные километры световой год оказывается приблизительно равным 10 тысячам миллиардов. Представить его невозможно, поэтому масштабы Вселенной невообразимы для человека. Если нужно указать расстояние между соседними галактиками, то и световой год оказывается недостаточным. Нужна еще более крупная величина. Ею оказался парсек, который равен 3,26 светового года.
Она является гигантским образованием, состоящим из звезд и туманностей. Небольшую их часть видно каждую ночь на небосклоне. Структура нашей Галактики весьма сложная. Ее можно считать сильно сжатым эллипсоидом вращения. Причем у него выделяют экваториальную часть и центр. Экватор Галактики большей частью составляют газовые туманности и горячие массивные звезды. В Млечном Пути эта часть находится в центральной его области.
Солнечная система не является исключением из правил. Она тоже расположена вблизи экватора Галактики. Кстати, основная часть звезд образует огромный диск, диаметр которого равен 100 тысячам световых лет, а толщина – 1500 . Если вернуться к тому масштабу, который был использован для представления Солнечной системы, то размеры Галактики станут соразмерны расстоянию от Земли до Солнца. Это невероятная цифра. Поэтому Солнце с Землей оказываются крошками в Галактике.
Перечислим самые основные:
Во Вселенной, кроме того, есть еще квазары и пульсары.
В ней полно того, что еще до конца не открыто, не изучено. Да и то, что удалось обнаружить, частенько подбрасывает новые вопросы и связанные с ними загадки Вселенной. К ним можно отнести даже всем известную теорию «Большого взрыва». Она является действительно только условной доктриной, поскольку человечество может лишь догадываться о том, как это происходило.
Вторая загадка – возраст Вселенной. Его удается сосчитать приблизительно по уже упомянутому реликтовому излучению, наблюдением за шаровыми скоплениями и прочим объектам. Сегодня учёные сошлись во мнении, что возраст Вселенной приблизительно равен 13,7 миллиарда лет. Еще одна тайна — если жизнь на других планетах? Ведь не только в Солнечной системе возникли подходящие условия, и появилась Земля. И Вселенная, скорее всего, наполнена подобными образованиями.
А что находится за пределами Вселенной? Что там, куда не проник человеческий взор? Есть ли что-то за этим рубежом? Если да, то сколько вселенных существует? Это вопросы, на которые ученым только предстоит найти ответы. Наш мир подобен коробке с сюрпризами. Когда-то казалось, что он состоит только из Земли и Солнца, с небольшим количеством звезд на небе. Потом мировоззрение расширилось. Соответственно, и границы раздвинулись. Не удивительно, что многие светлые умы уже давно пришли к выводу, что Вселенная – только часть еще более крупного образования.
fb.ru
Содержание
Введение
1. Общие представления о пространственных и временных характеристиках Вселенной
2. Измерение масс объектов Вселенной
Заключение
Список литературы
Введение
Обычно под пространством (в том числе и космическим) мы понимаем некую протяженную пустоту, в которой могут (но не обязательно) находиться какие-либо предметы. Однако между небесными телами (звездами, планетами, кометами) всегда имеется некоторое количество вещества, поэтому в науке пространство рассматривается не как вместилище материи, а как физическая сущность, обладающая конкретными свойствами и структурой. Каждый объект обладает в пространстве определенным положением и ориентацией, а расстояние между двумя событиями точно определено, даже если эти события произошли в разные моменты времени. Пространство и время тесно связаны с материей, они появляются и исчезают вместе с ней. В связи с этим хочется привести слова А.Эйнштейна по разъяснению им в 1921 г. сути теории относительности: «Суть такова: раньше считали, что если каким-нибудь чудом все материальные вещи исчезли бы вдруг, то пространство и время остались бы. Согласно же теории относительности вместе с вещами исчезли бы и пространство, и время». Аналогичный вывод следует и из теории Большого взрыва, объясняющей происхождение нашей Вселенной.
Можно отметить наиболее важные свойства пространства и времени по современным представлениям.
1. Пространство и время реальны и объективны.
2. Пространство и время — это универсальные и всеобщие формы бытия материи.
3. Пространство трехмерно и обратимо, время — одномерно и необратимо.
4. Пространство однородно и изотропно, время — однородно.
Эти свойства пространства и времени нашли отражение в фундаментальных законах сохранения. Симметрии относительно сдвига времени (однородности времени) соответствует закон сохранения энергии; симметрии относительно пространственного сдвига (однородности пространства) соответствует закон сохранения импульса; симметрии относительно поворота координатных осей (изотропности пространства) соответствует закон сохранения момента импульса (или углового момента). Из этих свойств вытекает абсолютность и инвариантность пространственно-временного интервала S .
5. В геометрии Евклида бесконечность и безграничность пространства совпадали. В случае расширяющейся Вселенной она, а, следовательно, и пространство безграничны и бесконечны. В случае сжимающейся Вселенной пространство будет конечным, но безграничным.
6. Пространство и время связаны между собой и образуют четырехмерный мир. Их свойства определяются движущейся материей.
Понятно, что с понятиями пространства и времени связано не менее фундаментальное понятие массы веществ (объектов) Вселенной. В связи с этим целью данной работы будет рассмотрение пространственных, временных и массовых масштабов Вселенной.
1. Общие представления о пространственных и временных характеристиках Вселенной
Одна из важнейших задач естествознания — создание естественно-научной картины мира в виде целостной упорядоченной системы. Для ее решения используются общие и абстрактные понятия: время и пространство. Всеобщими универсальными формами существования и движения материи принято считать время и пространство. Движение материальных объектов и различные реальные процессы происходят в пространстве и во времени. Особенность естественно-научного представления об этих понятиях заключается в том, что время и пространство можно охарактеризовать количественно с помощью приборов.
Время выражает порядок смены физических состояний и является объективной характеристикой любого процесса или явления. Время -это то, что можно измерить с помощью часов. Принцип работы многих приборов для измерения времени основан на разных физических процессах, среди которых наиболее удобны периодические процессы: вращение Земли вокруг своей оси, электромагнитное излучение возбужденных атомов и др. Многие крупные достижения в естествознании связаны с разработкой более точных приборов для определения времени. Временная характеристика реальных процессов основывается на постулате времени : одинаковые во всех отношениях явления происходят за одинаковое время. Хотя постулат времени кажется естественным и очевидным, его истинность все же относительна, так как его нельзя проверить на опыте даже с помощью самых совершенных часов, поскольку, во-первых, они характеризуются своей точностью и, во-вторых, невозможно создать принципиально одинаковые условия в природе в разное время. Вместе с тем длительная практика естественно-научных исследований позволяет не сомневаться в справедливости постулата времени в пределах той точности, которая достигнута в данный момент времени. При создании классической механики около 300 лет назад И. Ньютон ввел понятие абсолютного, или истинного, математического времени, которое течет всегда и везде равномерно, и относительного времени как меры продолжительности, употребляемой в обыденной жизни и означающей определенный интервал времени: час, день, месяц и т.д. В современном представлении время всегда относительно.Из теории относительности следует, что при скорости, близкой к скорости света в вакууме, время замедляется — происходит релятивистское замедление времени, и что сильное поле тяготения приводит к гравитационному замедлению времени. В обычных земных условиях такие эффекты чрезвычайно малы. Важнейшее свойство времени заключается в его необратимости. Прошлое во всех деталях и подробностях нельзя воспроизвести в реальной жизни — оно забывается. Необратимость времени обусловлена сложным взаимодействием множества природных систем, в том числе атомов и молекул, и символически обозначается стрелой времени, «летящей» всегда из прошлого в будущее. Необратимость реальных процессов в термодинамике связывают с хаотичным движением атомов и молекул.
Понятие пространства гораздо сложнее понятия времени. В отличие от одномерного времени, реальное пространство трехмерно, т.е. имеет три измерения. В трехмерном пространстве существуют атомы и планетные системы, выполняются фундаментальные законы природы. Однако выдвигаются гипотезы, согласно которым пространство нашей Вселенной имеет много измерений, хотя наши органы чувств способны ощущать только три из них.
Развитие представлений о пространстве и времени прошло длинный и сложный путь. Древнегреческие атомисты Левкипп, Демокрит и Эпикур (V-III вв. до н.э.) считали, что существуют только атомы и чистое пространство (пустота). Аристотель в своем учении (IV в. до н.э.) отвергает существование пустого пространства, аргументируя это различными доводами. Физике понадобилось длительное время, чтобы разобраться в этой аргументации великого философа. Это было сделано Галилеем и Эйнштейном. В «Началах» Евклида (III в. до н.э.) пространственные характеристики объектов приобрели строгую математическую форму, т.е. была определена метрика пространства (плоская метрика). В работе К.Птолемея «Великое математическое построение» («Альмагест») в 150 г. н.э. была представлена геоцентрическая система Мира (в центре Мира находится Земля). В ней пространство считалось конечным: оно включало круговое движение всех небесных тел вокруг неподвижной Земли. Время мыслилось бесконечным. Следующий шаг в развитии представлений о пространстве и времени был сделан Н.Коперником. В его работе «О вращениях небесных сфер» (1543 г.) была дана с соответствующими доказательствами гелиоцентрическая система Мира (в центре Солнце), где признавалась концепция единого однородного пространства (свойства всех точек пространства одинаковы) и равномерного течения времени. Поскольку, по Копернику, Вселенная ограничена непроницаемой твердой сферой звезд, то она является конечной. Конечным является и пространство. Вопрос о том, что находится дальше звездной сферы, Коперником не ставился. Дальнейший импульс развитию представлений о пространстве и Вселенной был дан Джордано Бруно (1548-1600). Развивая учение Коперника, Бруно в своем произведении «О бесконечности Вселенной и мирах» выдвигает смелую идею о бесконечном множестве обитаемых миров. Бесконечная Вселенная расположена в бесконечном и безграничном пространстве, не имеющем «края, предела и поверхности». Работы Г.Галилея (1564-1642) имели больше значение для развития механики. В его принципе относительности утверждается равноправность всех инерциальных систем отсчета и даются математические правила (преобразования Галилея) для перехода от одной системы к другой. При этом координаты, скорость тела и его импульс являются вариантными (изменяющимися) величинами; ускорение, время, масса, длина отрезка при этом переходе остаются неизменными (инвариантными). Дальнейшее развитие представлений о пространстве и времени связано с рационалистической физикой Р.Декарта (1596-1650). По Декарту, все явления природы объясняются механическим взаимодействием (давлением или ударом при соприкосновении) мельчайших материальных частиц. Так обосновывалась идея близкодействия. Введя координатную систему, Декарт показал единство физики и геометрии, соединил материальность и протяженность. Это означало отсутствие пустого пространства и совпадение его с протяженностью. Кроме того, по Декарту, материальному миру «соприсуща» длительность, а время — это «способ, каким мы эту длительность мыслим», т.е. время «соприсуще человеку и является модусом мышления». Математическое и экспериментальное обоснование свойств пространства и времени в рамках классической механики было сделано И.Ньютоном в его знаменитой работе «Математические начала натуральной философии» (1687 г.). Ньютон характеризует пространство и время «как вместилища самих себя и всего существующего. Во времени все располагается в смысле порядка последовательности, в пространстве — в смысле порядка положения». Он вводит два вида пространства и времени: абсолютное (истинное, математическое) и относительное (кажущееся, обыденное). Абсолютное время само по себе и по своей сущности, без всякого отношения к чему-либо внешнему, протекает равномерно и иначе называется длительностью. Относительное время есть или точная, или изменчивая, постигаемая чувствами, внешняя мера продолжительности, употребляемая в обыденной жизни вместо истинного математического времени, как-то: час, день, месяц, год. Абсолютное пространство по своей сущности, безотносительно к чему бы то ни было внешнему, остается всегда одинаковым и неподвижным. Относительное пространство есть мера или какая-либо ограниченная подвижная часть, которая определяется нашими чувствами по положению его относительно некоторых тел и которая в обыденной жизни принимается за пространство неподвижное. Как видно, разграничение пространства и времени на абсолютное и относительное связано у Ньютона с теоретическим и эмпирическим уровнями познания. Пространство и время у Ньютона обладают одним признаком субстанции — абсолютная самостоятельность существования и независимость от материи и процессов. Но они не обладают другим важнейшим свойством субстанции — порождать другие тела и сохраняться в их основе при всех изменениях тел. Такой способностью обладает материя. Такое понимание пространства и времени было неоднозначно воспринято современниками и потомками Ньютона — естествоиспытателями и философами. Г.Лейбниц (1646-1716), например, развил реляционную концепцию пространства и времени, в которой они отрицались как абсолютные сущности. Он считал их чисто относительными: «пространство — порядком сосуществования, время — порядком последовательности». Он дальше развивает великолепную идею Аристотеля о связи пространства и времени с материей, о том, что они не могут рассматриваться «в отвлечении» от самих вещей. Это явилось предвосхищением одного из основных положений общей теории относительности А.Эйнштейна. Следующий шаг в развитии представлений о пространстве и времени был сделан в теории электромагнитного поля (1860-1865 гг.) Максвелла. Оказалось, что взаимодействие между зарядами и токами передается с помощью электромагнитного поля, которое распространяется со скоростью света в виде электромагнитных волн. Это сыграло существенную роль для описания физических свойств пространства и времени. В опытах со светом (Майкельсон) было установлено, что скорость света не зависит от движения системы отсчета, а значит, преобразования Галилея для электромагнитных явлений являются неверными. Эти преобразования были найдены Лоренцем, но там оказалось много непонятного: размеры тел сокращались в направлении движения, промежуток времени между событиями сокращался в движущихся системах, масса тел возрастала с ростом скорости их движения. Все эти трудности были объяснены в специальной теории относительности (СТО), разработанной А.Эйнштейном в 1905 г. Это была новая теория пространства и времени. Эйнштейн распространил принцип относительности Галилея на все физические явления и постулировал постоянство скорости света во всех инерциальных системах и ее предельность (самая большая скорость, существующая в природе). Пространство и время оказались относительными, т.е. зависящими от выбора системы отсчета. Вариантными оказались масса тел и их размер, считавшиеся абсолютными в механике Ньютона. Кроме того, пространство и время оказались взаимосвязанными, образуя единый четырехмерный континуум. Абсолютным в СТО оказался, наряду со скоростью света, и пространственно-временной интервал, связывающий пространство и время. Дальнейший этап в развитии представлении о пространстве и времени был связан с разработкой общей теории относительности (ОТО), в которой принцип относительности был распространен на все системы отсчета, т.е. на инерциальные и неинерциальные. Это следовало из эквивалентности инертной и гравитационной массы и было принято А.Эйнштейном в качестве фундаментального закона природы. Оказалось, что свойства пространства зависят от движущейся материи. Ее скопления искривляют пространство, и его метрика описывается не геометрией Евклида, а геометрией Римана. Массивные тела искривляют ход светового луча, уменьшают частоту колебаний, т.е. замедляют ход времени. Это проявляется, в частности, в красном гравитационном смещении: чем больше тяготение, тем больше увеличивается длина волны излучения и уменьшается его частота. При определенных условиях длина волны может устремиться к бесконечности, а частота — к нулю. Это происходит в условиях черной дыры. Таким образом, пространство и время — это не сцена, на которой разыгрываются все события, как полагал Ньютон, и которая остается, даже если исчезает материя.
2. Измерение масс объектов Вселенной
Для того, чтобы понять, каковы массовые масштабы Вселенной, необходимо рассмотреть объекты Вселенной и измерить их массы. К объектам Вселенной относят космические объекты — звёзды, галактики и т.д.
Метагалактикой называется доступная наблюдениям часть Вселенной. Но наблюдать можно по-разному: невооруженным глазом, в бинокль, в 6-метровый телескоп. И каждый раз нашим наблюдениям будет доступна разная часть Вселенной. Современная космология, основанная на теории относительности Эйнштейна, определяет возраст Вселенной в 15-20 млрд лет. Никаких галактик, квазаров до этого не существовало. Все они возникли позже. Предположим, что на расстоянии 20 млрд световых лет находится галактика Икс, которая образовалась, скажем, 12 млрд лет тому назад. Первые лучи, извещающие о рождении этой галактики, еще в пути, они находятся на расстоянии (20 — 12) = 8 млрд световых лет от нас и достигнут нас лишь через 8 млрд лет. Поэтому многие галактики нам не видны, но мы можем вычислить их местонахождение, плотность и массу. Приближенно определяя размеры и среднюю плотность вещества в Метагалактике мы можем оценить полную массу вещества, содержащегося внутри объема, ограниченного космологическим горизонтом, — массу Метагалактики. Получается величина порядка 1053 кг. Зная расстояния до нескольких тысяч галактик, можно построить пространственную модель. В построенной модели четко проступала пространственная структура распределения галактик. Оказалось, что галактики образуют ячейки типа пчелиных сот. Вдоль стенок этих ячеек расположены галактики, а внутри – пустоты. Галактики расположены на небе и равномерно, и неравномерно. Если говорить о масштабе в несколько квадратных градусов, то распределение галактик на небе оказывается на удивление равномерным. Необходимо еще раз подчеркнуть, что в очень большом масштабе (больше масштаба ячеек) распределение вещества оказывается совершенно равномерным. То есть если взять в разных местах Вселенной два гигантских куба с ребрами в 100 млн световых лет и количество содержащегося в каждом из них вещества, то результат будет одинаковым, в каких бы местах Метагалактики мы ни помещали эти кубы. Разделив полную массу на объем куба, мы получим среднюю плотность вещества во Вселенной: p= 3 х 10-27 – 10-26 кг/м3 .
Скопления галактик имеют почти сферическую форму; в них насчитывают сотни и тысячи галактик. Ближайшее к нам крупное скопление галактик находится в созвездии Девы (Virgo), в него входят 3000 галактик. Характерные размеры скоплений галактик от 1 до 3 Мпк. Более аморфную форму имеют облака галактик. Известны также малочисленные группы галактик. Примером может служить так называемая Местная Группа галактик. В нее входят две большие спиральные галактики: наша Галактика и Туманность Андромеды, а также ряд галактик меньших размеров. Кроме того, каждая гласная спиральная галактика имеет по нескольку галактик-спутников. У Туманности Андромеды имеется пять больших и пять маленьких спутников. У нашей Галактики крупнейшими спутниками являются Большое и Малое Магеллановы Облака. Кроме того, у нее целая «свита» карликовых галактик (по крайней мере 14 штук). Всего в Мерной Группе галактик насчитывается 38 галактик. На расстоянии 3 Мпк от нас в созвездии Гончих Псов находится другая группа из 34 галактик. Всего сейчас известно несколько десятков подобных групп галактик. Типичные размеры — от 0,1 до 1 Мпк.
Галактики — эти гигантские звездные острова — разнообразны по форме и размерам. Свечение галактик обусловлено свечением звезд — многих миллиардов звезд, входящих в их состав. Еще в галактиках есть газ (главным образом водород и гелий) и пыль. Количество газа и пыли в галактиках обычно невелико. Масса газа и пыли, как правило, составляет несколько процентов от суммарной массы звезд. Суммарная масса звезд, газа и пыли в свою очередь составляет 1/10 от полной массы галактик; 9/10 вещества галактик находится в скрытой, невидимой форме. Загадочная «скрытая масса» содержится в гигантских гало (оболочках) галактик в виде слабо светящегося газа, в форме многочисленных потухших или так никогда и не загоревшихся звезд (коричневых карликов) и темных планет. Существуют методы определения масс галактик. С их помощью установлено, что массы большинства галактик изменяются в пределах от 109 до 10I2 М°, где M ° - масса Солнца. Полная масса нашей Галактики (с учетом скрытой массы), по-видимому, приближается к верхнему из указанных пределов. Размеры галактик (их видимой части) обычно варьируются в пределах от 1 до 100 килопарсек. Большинство галактик выглядят как гигантские спирали, среди них Туманность Андромеды, Туманность Треугольника и наша Галактика (разумеется, последнюю, в отличие от других галактик, никто не видел со стороны). Примерно четверть всех известных галактик имеют круглую или эллиптическую форму. Третий тип галактик — галактики, имеющие неправильную асимметричную форму. Они так и называются — неправильные (irregular) галактики. У многих галактик в центральной части имеется яркое плотное ядро. Ядра галактик состоят в основном из звезд (как и ядро нашей Галактики), но в некоторых ядрах, в самом их центре, происходит колоссальное выделение энергии, которое нельзя объяснить излучением или взрывами обычных звезд. Такие галактики получили название галактик с активными ядрами.
В 1963 г. были обнаружены объекты, подобные активным ядрам галактик. Это квазизвездные (т.е. похожие на звезды) объекты — квазары. Квазары — самые удаленные объекты, наблюдаемые во Вселенной. Некоторые из них находятся на таких расстояниях, на которых обычные галактики уже нельзя обнаружить. Самый далекий из известных квазаров находится на расстоянии 14 млрд световых лет. По-видимому, квазары — это ядра далеких галактик, находящиеся в состоянии очень высокой активности. Сейчас нам известно около 4 тыс. квазаров. Массы квазаров оцениваются в 106 M ° .
Скопления звезд бывают двух типов: шаровые и рассеянные. В нашей Галактике около 500 шаровых скоплений и примерно 20 тыс. рассеянных. Шаровые скопления — самые старые образования в Галактике, своего рода реликты ранней Галактики. Типичный возраст шарового скопления — 15 млрд лет. Шаровые скопления — это массивные объекты правильной сферической формы, содержащие сотни тысяч или даже миллионы звезд. Их массы варьируются в широких пределах от 103 до 107M ° . Размеры шаровых скоплений — около 100 пк. Рассеянные звездные скопления можно найти в любой части неба, но больше всего их вблизи Млечного Пути. Они содержат десятки, сотни, а наиболее крупные — тысячи звезд. Среди рассеянных скоплений встречаются как сравнительно старые, с возрастом несколько миллиардов лет, так и очень молодые. Пример сравнительно молодого скопления — Плеяды: его возраст оценивается в 60 млн лет. Невооруженному глазу доступны 6-7 звезд. В действительности в этом скоплении насчитывается несколько сотен звезд. В настоящее время надежно установлено, что в природе реализуется второй вариант. Звезды рождаются не поодиночке, а группами из массивных газопылевых облаков.
Звезда — основная структурная единица мегамира. Структуры большего масштаба, рассмотренные выше, состоят из звезд. Видимое излучение, приходящее от звездных скоплений, галактик и их скоплений,- это суммарное излучение звезд. Звезды — природные термоядерные реакторы, в которых происходит химическая эволюция вещества, переработка его на ядерном уровне. Астрономам известно много различных типов звезд. Одна и та же звезда в зависимости от массы и возраста проходит различные эволюционные фазы, переходит из одного типа в другой. Все звезды можно разделить на две большие категории: обыкновенные звезды (иногда говорят, «нормальные звезды») и компактные звезды. К последнему классу относятся белые карлики, нейтронные звезды и черные дыры, т.е. все конечные продукты звездной эволюции. Размеры нормальных звезд варьируются от размеров Солнца (или немного меньших) до огромных размеров звезд-сверхгигантов, т.е. от 108 м до 1011 м. Размеры компактных звезд изменяются от нескольких километров (черные дыры, нейтронные звезды) до нескольких тысяч километров (белые карлики). Массы звезд варьируются в сравнительно узком интервале — от 0,01 до 60 M ° . Как правило, вместе со звездами фигурируют планетные системы. Обычно, когда мы говорим о планетной системе, мы подразумеваем нашу Солнечную систему. В то же время есть весомые косвенные свидетельства в пользу существования других планетных систем. В некоторых случаях можно оценить массы планет, входящих в эти системы. Известны объекты, представляющие собой планетные системы в стадии формирования — протозвезда с протопланетным диском. И все же в настоящее время определенно известна только одна планетная система — наша Солнечная система. Ее размер можно определить как диаметр орбиты Плутона: 40 а.е., или 1013 м. Планеты, кометы, астероиды и малые планеты условно названы космическими телами. Максимальный размер определяется размерами планет-гигантов (Юпитер, Сатурн, Уран, Нептун) с кольцами, а минимальный — размерами малых планет и кометных ядер (-10 км).
В основе методов определения масс космических объектов лежит теория гравитации и ее следствия. Чаще всего используется третий закон Кеплера в той обобщенной форме, которую придал ему Ньютон. В данном случае речь идет о свойствах относительного движения двух тел с массами М и т. Если масса одного тела (М) много больше массы другого тела (т), то можно считать, что большое тело неподвижно, а малое тело движется вокруг него по эллиптической орбите. В качестве примера можно привести Землю и Луну, Солнце и Землю, Юпитер и его спутник (скажем, Ио), Солнце и Юпитер. В названных парах небесных тел масса первого тела много больше массы второго (например, масса Солнца в 1000 раз больше массы Юпитера). Размеры тел, составляющих пары, столь малы по сравнению с расстоянием между ними (даже радиус Солнца в 1000 раз меньше расстояния Солнце--Юпитер), что их можно рассматривать как материальные точки.
В ряде случаев картина движения тел не похожа на схему с двумя материальными точками. Например, космическая станция «Мир» обращается вокруг Земли на высоте 330 км, что составляет лишь 1/20 часть радиуса Земли. Однако и в этом случае космическая станция «чувствует» на себе притяжение Земли так, как будто вся масса Земли сосредоточена в ее центре на расстоянии 6700 км от станции. В примере с космической станцией получается, что и станция, и космонавт в ней, и карандаш космонавта (всё тела разной массы) движутся совершенно независимо по одной и той же орбите, характеристики которой определяются только массой Земли. Эта независимость приводит к явлению невесомости. Для всех спутников Земли отношение а3 /Т2 - величина постоянная. Период Т обращения космической станции «Мир» вокруг Земли равен 84 мин. Чем дальше спутник от Земли, тем больше период. На высоте 36000 км от поверхности Земли период обращения спутника равен периоду вращения самой Земли. Орбита с такими характеристиками называется геостационарной. Если наблюдать за таким спутником с вращающейся Земли, то впечатление такое, что спутник неподвижно висит над одной и той же точкой Земли. Есть метод определения массы центрального тела: находим размер орбиты спутника, период его обращения вокруг центрального тела и вычисляем искомую массу. С помощью этого метода по движению Юпитера можно найти массу Солнца. Этим же способом были найдены массы планет, имеющих естественные спутники (по движению этих спутников): Марса, Юпитера, Сатурна, Урана и Нептуна. Меркурий и Венера не имеют естественных спутников. Их массы были измерены с высокой точностью только после появления около них рукотворных (искусственных) спутников. Описанным методом можно определять также массы гигантских космических структур — шаровых скоплений и галактик. Подобно станции на околоземной орбите, звезда на краю скопления «чувствует» всю массу скопления так, как будто она (масса) сосредоточена в центре скопления. Если найти размер орбиты этой звезды и период ее обращения вокруг центра скопления, то по формуле (2.10) можно вычислить массу всего скопления. Размер орбиты найти нетрудно, если известно расстояние до скопления.
Масса звезды — самая важная характеристика звезды, от которой зависят ее свечение, строение, время жизни и вообще вся эволюция. Можно определить массы двух звезд, образующих гравитационно связанную пару — двойную звезду. Массы звезд, составляющих пару, не сильно различаются, поэтому нельзя считать (как это мы делали в случае планеты, обращающейся вокруг Солнца), что звезда меньшей массы обращается вокруг звезды большей массы. В действительности обе звезды обращаются по эллиптическим орбитам вокруг общего центра масс (центра тяжести) системы. Теория тяготения позволяет вывести ряд свойств абсолютных орбит. Одно из них: тела движутся по орбитам так, что их центры (А и В) и центр масс (точка С) всегда находятся на прямой линии. Другое свойство — хорошо известное из школьной физики правило рычага: отношение длин АС и ВС (плечи рычага) обратно пропорционально массам звезд М1 и М 2. . В данном случае следует опереться на третий закон Кеплера. Звезды движутся вокруг центра масс системы. При «удачной» ориентации плоскости орбиты первая звезда часть времени движется к нам, а вторая в это же время движется от нас. Тогда в соответствии с принципом Доплера смещение линий в спектре первой звезды происходит в фиолетовую сторону, а второй — в красную. Через полпериода ситуация меняется на обратную. В спектре, на том месте, где должна быть одна линия, Наблюдается пара линий, го сходящихся, то расходящихся. Звезда меньшей массы движется по орбите быстрее, скорость ее больше, а значит и величина доплеровского смещения у нее больше. Для звезды большей массы все наоборот. Отношение величин доплеровских смещений в спектрах двух звезд равно отношению лучевых скоростей и обратно пропорционально отношению масс звезд. Суммарное смещение пропорционально сумме масс. «Удачная» (с точки зрения возможности определения массы) ориентация спектрально-двойной системы — такая, при которой плоскость орбиты совпадает с лучом зрения. Идеальный случай, когда наблюдаются затмения: одна звезда затмевает другую. Это проявляется и регулярном (периодическом) изменении блеска двойной звезды. По характеру изменения блеска в такой затменной системе астрономы умеют определять ряд важных характеристик звезд — компонентов системы: массы, размеры, среднюю плотность. Теория затмений, позволяющая это делать, проста и тщательно разработана.
Совокупность данных о массах компонентов более ста двойных звезд {в том числе спектрально-двойных и затменных) позволила обнаружить важную статистическую зависимость между их массами и светимостями. Таким образом, определение масс звезд разбивается на три этапа. На первом этапе определяют массы звезд, входящих состав двойных звездных систем. На втором — по известным массам и светимостям этих звезд строят диаграмму «масса светимость». И, наконец, на третьем этапе с помощью этой диаграммы определяют массу любой звезды, для которой известна светимость. Можно сказать, что наибольшее количество звезд имеют массу от 0, ЗМ° до 3М°. Средняя масса звезд в окрестностях Солнца составляет примерно 0,5 М°. Так что масса нашего светила — Солнца — очень типична в Галактике. А вообще массы звезд находятся в пределах от 0,03 М° до 60 М° (ни меньше, ни больше).
Также ученые, измеряя плотность вещества, определяют массы галактик. Понятно, что, измеряя массы различных космических объектов, можно приблизительно вычислить массовые масштабы Вселенной.
Заключение
Вселенная - это весь существующий материальный мир, безграничный во времени и пространстве и бесконечно разнообразный по формам, которые принимает материя в процессе своего развития. Часть Вселенной, доступная исследованию астрономическими средствами, соответствующими достигнутому уровню развития науки, называется Метагалактикой. Иначе говоря, Метагалактика — охваченная астрономическими наблюдениями часть Вселенной. Она находится в пределах космологического горизонта. Главные составляющие Вселенной — галактики — громадные звездные системы, содержащие десятки, сотни миллиардов звезд. Солнце вместе с планетной системой входят в нашу Галактику, наблюдаемую в форме Млечного Пути. Кроме звезд и планет галактики содержат разреженный газ и космическую пыль. Основное «население» галактик — звезды. Мир звезд необыкновенно разнообразен. У всех космических объектов есть пространственные, временные и массовые характеристики. Протяженность, время образования и жизни, а также масса вещества существуют как у больших (галактики), так и у малых объектов (звезды). Для того чтобы измерить пространственно-временные и массовые масштабы Вселенной, необходимо вычислить данные параметры космических объектов, составляющих саму Вселенную.
Список литературы
1. Гуляев С.А., Жуковский В.М., Комов С.В. Основы естествознания. Учебное пособие для гуманитарных направлений бакалавриата. – Екатеринбург: Изд-во «УралЭкоЦентр», 2001. – 560 с.
2. Данилова В.С, Кожевников Н.Н. Основные концепции современного естествознания: Учебн. пособие для вузов. – М.: Аспект Пресс, 2000. – 256 с.
3. Дубнищева Т.Я. Концепции современного естествознания: учеб. Пособие для студ. вузов.- М.: Издательский центр «Академия», 2006. – 608 с.
4. Игнатова В.А. Основы современного естествознания: Учебное пособие. – Тюмень: Изд-во Тюменского государственного университета, 1997. – 244 с.
5. Лихин А.Ф. Концепции современного естествознания: учебник. — М.: ТК Велби, Изд-во Проспект, 2007. – 264 с.
6. Рау В.Г. Общее естествознание и его концепции: Учебное пособие. – М.: Высш.шк., 2003. – 192 с.
7. Соломатин В.А. История науки. Учебное пособие. – М.: ПЕР СЕ, 2003. – 352 с.
www.ronl.ru
Крупномасштабная структура Вселенной напоминает систему прожилок и волокон, разделенных пустотами
Крупномасштабная структура Вселенной – космологический термин, обозначающий структуру распределения вещества во Вселенной на наибольших видимых масштабах.
Примером простейшей структуры в космическом пространстве является система планета-спутник. Кроме двух ближайших к Солнцу планет (Меркурий и Венера), все остальные имеют своего спутника, и в большинстве случаев даже не одного. Если Землю сопровождает лишь Луна, то вокруг Юпитера вращается целых 67 спутников, хотя некоторые из них довольно малы. Однако вместе со своими спутниками планеты Солнечной системы вращаются вокруг Солнца, образуя так называемую планетную систему.
Солнечная система
В результате наблюдений, астрономами было выявлено, что большинство других звезд также входят в состав планетных систем. Вместе с тем сами светила тоже зачастую образовывают системы и скопления, которые назвали звездными. Согласно имеющимся данным, преобладающая часть звезд составляют парные звездные системы, или с кратным количеством светил. В этом плане наше Солнце считается нетипичным, так как оно не имеет пары
Если же рассматривать околосолнечное пространство в более увеличенных масштабах, то становится очевидно, что все звездные скопления вместе со своим планетными системами образуют звездный остров, так называемую галактику Млечный Путь.
Разнообразные галактики, открытые в рамках проекта SINGS. Смотреть в полном размере.
Впервые об идее крупномасштабной структуры Вселенной задумался выдающийся астроном Уильям Гершель. Именно ему принадлежат такие открытия как обнаружение планеты Уран и двух ее спутников, двух спутников Сатурна, открытие инфракрасного излучения и идея о движении Солнечной системы сквозь космическое пространство. Самостоятельно сконструировав телескоп и проведя наблюдения, он выполнил объемные подсчеты светил различной яркости в определенных областях небосвода и пришел к выводу, что в космическом пространстве существует большое множество звездных островов.
Позже, в начале ХХ-го века американский космолог Эдвин Хаббл смог доказать принадлежность некоторых туманностей к структурам, отличным от Млечного Пути. То есть было достоверно известно, что за пределами нашей галактики также существуют различные звездные скопления. Исследования в этом направлении вскоре значительно расширили наше понимание Вселенной. Оказалось, что помимо Млечного Пути в космическом пространстве существуют десятки тысяч иных галактик. В попытке составить какую-нибудь упрощенную карту видимой Вселенной ученые наткнулись на тот примечательный факт, что галактики в пространстве распределены неравномерно и составляют собою иные структуры немыслимых размеров.
Скопление галактик в созвездии Гидра
Со временем ученые обнаружили, что галактики-одиночки – достаточно редкое явление во Вселенной. Подавляющая же часть галактик образуют крупномасштабные скопления, которые могут быть различных форм и включать в себя две галактики или кратное число, вплоть до нескольких тысяч. Помимо огромных звездных островов эти массивные звездные структуры включают еще и скопления газа, разогретого до высоких температур. Несмотря на очень низкую плотность (в тысячи раз меньше, нежели в солнечной атмосфере), масса этого газа может значительно превышать суммарную массу всех звезд в некоторых совокупностях галактик.
Полученные результаты наблюдений и расчетов навели ученых на мысль о том, что скопления галактик также могут образовывать иные более крупные структуры. Вслед за этим стали два интригующих вопроса: если сама по себе галактика, сложная структура, является частью некой более масштабной конструкции, то может ли эта конструкция быть составной чего-нибудь еще большего? И, в конце концов, есть ли предел такой иерархичной структурности, когда каждая система входит в состав другой?
Галактические стены напоминают сплетения нейронов в коре головного мозга человека
Положительный ответ на первый вопрос подтверждается наличием сверхскоплений галактик, которые в свою очередь перерастают галактические нити, или как их иначе называют «стены». Их толщина в среднем около 10 млн. св. лет, а длина 160 — 260 млн. световых лет. Однако, отвечая на второй вопрос, следует отметить, что сверхскопления галактик не являются некой обособленной структурой, а лишь более плотные участки галактических стен. Поэтому сегодня ученые уверены в том, что именно галактические нити (стены), наибольшие космические структуры, вмесите с войдами (пустым пространством, свободным от звездных скоплений) формируют волокнистую или ячеистую структуру Вселенной.
Несколько отходя от темы, укажем положение нашей планеты в столь сложной структуре:
Современные результаты исследований утверждают, что Вселенная состоит не менее чем из 200 миллиардов галактик. Галактические стены по своей природе являются относительно плоскими и составляют собой стенки «ячеек» Вселенной, а места их пересечений и формируют сверхскопления галактик. В центре же этих ячеек располагаются войды (англ. void — пустота).
Анализ сформированной учеными трехмерной модели распределения галактик говорит о том, что ячеистая структура наблюдается на расстоянии в более чем миллиард световых лет в любом направлении. Данная информация позволяет полагать, что в масштабе в несколько сотен миллионов световых лет любой фрагмент Вселенной будет иметь почти одинаковое количество вещества. А это доказывает, что в указанных масштабах Вселенная однородна.
Несмотря на наличие таких масштабных конструкций, как галактические стены и нити, самыми крупными устойчивыми структурами все же считаются скопления галактик. Дело в том, что известное расширение Вселенной постепенно растягивает структуру любых объектов, и бороться с этой силой может лишь гравитация. В результате наблюдений за скоплениями и сверхскоплениями был обнаружен такой потрясающий эффект как «гравитационное линзирование». То есть лучи, проходящие через межзвездное пространство, искривляются, что указывает на наличие в нем огромной невидимой, скрытой массы. Она может принадлежать различным ненаблюдаемым космическим телам, однако в таких масштабах вероятнее всего принадлежит темной материи
Крест Эйнштейна — гравитационно-линзированный квазар
.
Опираясь на почти однородное реликтовое излучение, ученые убеждены в том, что и вещество во Вселенной должно распределяться равномерно. Но особенность гравитации в том, что она склонна стягивать любые физические частицы в плотные структуры, тем самым нарушая однородность. Таким образом, спустя какое-то время после Большого Взрыва незначительные неоднородности в распределении вещества в пространстве стали все более стягиваться в некоторые структуры. Их возрастающая гравитация (в силу возрастания массы на объем) постепенно замедляла расширение, пока не остановила его вовсе. Мало того, в некоторых частях расширение обернулось в сжатие, что и стало причиной образования галактик и галактических скоплений.
Подобная модель проверялась при помощи компьютерных расчетов. Учитывая совсем незначительные флуктуации (колебания, отклонения) в однородности реликтового излучения, компьютер просчитал, что такие же мелкие флуктуации в распределении вещества после Большого Взрыва при помощи гравитации вполне могли породить скопления галактик и ячеистую крупномасштабную структуру Вселенной.
comments powered by HyperComments
Понравилась запись? Расскажи о ней друзьям!
Просмотров записи: 5360
spacegid.com
Мы можем более наглядно представить относительные масштабы Солнечной системы следующим образом. Пусть Солнце изображается биллиардным шаром диаметром 7 см. Тогда ближайшая к Солнцу планета — Меркурий находится от него в этом масштабе на расстоянии 280 см. Земля — на расстоянии 760 см, гигант — планета Юпитер удалена на расстояние около 40 м, а самая дальняя планета — во многих отношениях пока еще загадочный Плутон — на расстояние около 300м. Размеры земного шара в этом масштабе несколько больше 0,5 мм, лунный диаметр — немногим больше 0,1 мм, а орбита Луны имеет диаметр около 3 см.
Масштабы Вселенной и ее строение
Если бы астрономы-профессионалы постоянно и ощутимо представляли себе чудовищную величину космических расстояний и интервалов времени эволюции небесных светил, вряд ли они могли успешно развивать науку, которой посвятили свою жизнь. Привычные нам с детства пространственно-временные масштабы настолько ничтожны по сравнению с космическими, что когда это доходит до сознания, то буквально захватывает дух. Занимаясь какой-нибудь проблемой космоса, астроном либо решает некую математическую задачу (это чаще всего делают специалисты по небесной механике и астрофизики-теоретики), либо занимается усовершенствованием приборов и методов наблюдений, либо же строит в своем воображении, сознательно или бессознательно, некоторую небольшую модель исследуемой космической системы. При этом основное значение имеет правильное понимание относительных размеров изучаемой системы (например, отношение размеров деталей данной космической системы, отношение размеров этой системы и других, похожих или непохожих на нее, и т. д.) и интервалов времени (например, отношение скорости протекания данного процесса к скорости протекания какого-либо другого).
Автор этой книги довольно много занимался, например, солнечной короной и Галактикой. И всегда они представлялись ему неправильной формы сфероидальными телами примерно одинаковых размеров — что-нибудь около 10 см… Почему 10 см? Этот образ возник подсознательно, просто потому, что слишком часто, раздумывая над тем или иным вопросом солнечной или галактической физики, автор чертил в обыкновенной тетради (в клеточку) очертания предметов своих размышлений. Чертил, стараясь придерживаться масштабов явлений. По одному очень любопытному вопросу, например, можно было провести интересную аналогию между солнечной короной и Галактикой (вернее, так называемой галактической короной). Конечно, автор этой книги очень хорошо, так сказать, умом знал, что размеры галактической короны в сотни миллиардов раз больше, чем размеры солнечной. Но он спокойно забывал об этом. А если в ряде случаев большие размеры галактической короны приобретали некоторое принципиальное значение (бывало и так), это учитывалось формально-математически. И все равно зрительно обе короны представлялись одинаково маленькими…
Если бы автор в процессе этой работы предавался философским размышлениям о чудовищности размеров Галактики, о невообразимой разреженности газа, из которого состоит галактическая корона, о ничтожности нашей малютки-планеты и собственного бытия и о прочих других не менее правильных предметах, работа над проблемами солнечной и галактической корон прекратилась бы автоматически…
Пусть простит мне читатель это лирическое отступление. Я не сомневаюсь, что и у других астрономов возникали такие же мысли, когда они работали над своими проблемами. Мне кажется, что иногда полезно поближе познакомиться с кухней научной работы…
Если мы хотим на страницах этой книги обсуждать волнующие вопросы о возможности разумной жизни во Вселенной, то, прежде всего, нужно будет составить правильное представление о ее пространственно-временных масштабах. Еще сравнительно недавно земной шар представлялся человеку огромным. Свыше трех лет потребовалось отважным сподвижникам Магеллана, чтобы 465 лет тому назад ценой неимоверных лишений совершить первое кругосветное путешествие. Немногим более 100 лет прошло с того времени, когда находчивый герой фантастического романа Жюля Верна совершил, пользуясь последними достижениями техники того времени, путешествие вокруг света за 80 суток. И прошло всего лишь 26 лет с тех памятных для всего человечества дней, когда первый советский космонавт Гагарин облетел на легендарном космическом корабле Восток земной шар за 89 мин. И мысли людей невольно обратились к огромным пространствам космоса, в которых затерялась небольшая планета Земля…
Наша Земля — одна из планет Солнечной системы. По сравнению с другими планетами она расположена довольно близко к Солнцу, хотя и не является самой близкой. Среднее расстояние от Солнца до Плутона — самой далекой планеты Солнечной системы — в 40 раз больше среднего расстояния от Земли до Солнца. В настоящее время неизвестно, имеются ли в Солнечной системе планеты, еще более удаленные от Солнца, чем Плутон. Можно только утверждать, что если такие планеты и есть, они сравнительно невелики. Условно размеры Солнечной системы можно принять равными 50-100 астрономическим единицам*, или около 10 млрд км.
По нашим земным масштабам это очень большая величина, примерно в 1 миллион превосходящая диаметр Земли.
Мы можем более наглядно представить относительные масштабы Солнечной системы следующим образом. Пусть Солнце изображается биллиардным шаром диаметром 7 см. Тогда ближайшая к Солнцу планета — Меркурий находится от него в этом масштабе на расстоянии 280 см. Земля — на расстоянии 760 см, гигант — планета Юпитер удалена на расстояние около 40 м, а самая дальняя планета — во многих отношениях пока еще загадочный Плутон — на расстояние около 300м. Размеры земного шара в этом масштабе несколько больше 0,5 мм, лунный диаметр — немногим больше 0,1 мм, а орбита Луны имеет диаметр около 3 см. Даже самая близкая к нам звезда — Проксима Центавра удалена от нас на такое большое расстояние, что по сравнению с ним межпланетные расстояния в пределах Солнечной системы кажутся сущими пустяками. Читатели, конечно, знают, что для измерения межзвездных расстояний такой единицей длины, как километр, никогда не пользуются**).
Эта единица измерений (так же как сантиметр, дюйм и пр.) возникла из потребностей практической деятельности человечества на Земле. Она совершенно непригодна для оценки космических расстояний, слишком больших по сравнению с километром.
В популярной литературе, а иногда и в научной, для оценки межзвездных и межгалактических расстояний как единицу измерения употребляют световой год. Это такое расстояние, которое свет, двигаясь со скоростью 300 тыс. км/с, проходит за год. Легко убедиться, что световой год равен 9,46×1012 км, или около 10000 млрд км.
В научной литературе для измерения межзвездных и межгалактических расстояний обычно применяется особая единица, получившая название парсек;
1 парсек (пк) равен 3,26 светового года. Парсек определяется как такое расстояние, с которого радиус земной орбиты виден под углом в 1 сек. дуги. Это очень маленький угол. Достаточно сказать, что под таким углом монета в одну копейку видна с расстояния в 3 км.
Ни одна из звезд — ближайших соседок Солнечной системы — не находится к нам ближе, чем на 1 пк. Например, упомянутая Проксима Центавра удалена от нас на расстояние около 1,3 пк. В том масштабе, в котором мы изобразили Солнечную систему, это соответствует 2 тыс. км. Все это хорошо иллюстрирует большую изолированность нашей Солнечной системы от окружающих звездных систем, некоторые из этих систем, возможно, имеют с ней много сходства.
Но окружающие Солнце звезды и само Солнце составляют лишь ничтожно малую часть гигантского коллектива звезд и туманностей, который называется Галактикой. Это скопление звезд мы видим в ясные безлунные ночи как пересекающую небо полосу Млечного Пути. Галактика имеет довольно сложную структуру. В первом, самом грубом приближении мы можем считать, что звезды и туманности, из которых она состоит, заполняют объем, имеющий форму сильно сжатого эллипсоида вращения. Часто в популярной литературе форму Галактики сравнивают с двояковыпуклой линзой. На самом деле все обстоит значительно сложнее, и нарисованная картина является слишком грубой. В действительности оказывается, что разные типы звезд совершенно по-разному концентрируются к центру Галактики и к ее экваториальной плоскости. Например, газовые туманности, а также очень горячие массивные звезды сильно концентрируются к экваториальной плоскости Галактики (на небе этой плоскости соответствует большой круг, проходящий через центральные части Млечного Пути). Вместе с тем они не обнаруживают значительной концентрации к галактическому центру. С другой стороны, некоторые типы звезд и звездных скоплений (так называемые шаровые скопления, рис. 2) почти никакой концентрации к экваториальной плоскости Галактики не обнаруживают, но зато характеризуются огромной концентрацией по направлению к ее центру. Между этими двумя крайними типами пространственного распределения (которое астрономы называют плоское и сферическое) находятся все промежуточные случаи. Все же оказывается, что основная часть звезд в Галактике находится в гигантском диске, диаметр которого около 100 тыс. световых лет, а толщина около 1500 световых лет. В этом диске насчитывается несколько больше 150 млрд звезд самых различных типов. Наше Солнце — одна из этих звезд, находящаяся на периферии Галактики вблизи от ее экваториальной плоскости (точнее, всего лишь на расстоянии около 30 световых лет — величина достаточно малая по сравнению с толщиной звездного диска).
Расстояние от Солнца до ядра Галактики (или ее центра) составляет около 30 тыс. световых лет. Звездная плотность в Галактике весьма неравномерна. Выше всего она в области галактического ядра, где, по последним данным, достигает 2 тыс. звезд на кубический парсек, что почти в 20 тыс. раз больше средней звездной плотности в окрестностях Солнца***. Кроме того, звезды имеют тенденцию образовывать отдельные группы или скопления. Хорошим примером такого скопления являются Плеяды, которые видны на нашем зимнем небе (рис. 3).
В Галактике имеются и структурные детали гораздо больших масштабов. Исследованиями последних лет доказано, что туманности, а также горячие массивные звезды распределены вдоль ветвей спирали. Особенно хорошо спиральная структура видна у других звездных систем — галактик (с маленькой буквы, в отличие от нашей звездной системы — Галактики). Одна из таких галактик изображена на рис. 4. Установить спиральную структуру Галактики, в которой мы сами находимся, оказалось в высшей степени трудно.
Звезды и туманности в пределах Галактики движутся довольно сложным образом. Прежде всего, они участвуют во вращении Галактики вокруг оси, перпендикулярной к ее экваториальной плоскости. Это вращение не такое, как у твердого тела: различные участки Галактики имеют различные периоды вращения. Так, Солнце и окружающие его в огромной области размерами в несколько сотен световых лет звезды совершают полный оборот за время около 200 млн лет. Так как Солнце вместе с семьей планет существует, по-видимому, около 5 млрд лет, то за время своей эволюции (от рождения из газовой туманности до нынешнего состояния) оно совершило примерно 25 оборотов вокруг оси вращения Галактики. Мы можем сказать, что возраст Солнца — всего лишь 25 галактических лет, скажем прямо — возраст цветущий…
Скорость движения Солнца и соседних с ним звезд по их почти круговым галактическим орбитам достигает 250 км/с****. На это регулярное движение вокруг галактического ядра накладываются хаотические, беспорядочные движения звезд. Скорости таких движений значительно меньше — порядка 10-50 км/с, причем у объектов разных типов они различны. Меньше всего скорости у горячих массивных звезд (6-8 км/с), у звезд солнечного типа они около 20 км/с. Чем меньше эти скорости, тем более плоским является распределение данного типа звезд.
В том масштабе, которым мы пользовались для наглядного представления Солнечной системы, размеры Галактики будут составлять 60 млн км — величина, уже довольно близкая к расстоянию от Земли до Солнца. Отсюда ясно, что по мере проникновения во все более удаленные области Вселенной этот масштаб уже не годится, так как теряет наглядность. Поэтому мы примем другой масштаб. Мысленно уменьшим земную орбиту до размеров самой внутренней орбиты атома водорода в классической модели Бора. Напомним, что радиус этой орбиты равен 0,53×10-8 см. Тогда ближайшая звезда будет находиться на расстоянии приблизительно 0,014 мм, центр Галактики — на расстоянии около 10 см, а размеры нашей звездной системы будут около 35 см. Диаметр Солнца будет иметь микроскопические размеры: 0,0046 А (ангстрем-единица длины, равная 10-8 см).
Мы уже подчеркивали, что звезды удалены друг от друга на огромные расстояния, и тем самым практически изолированы. В частности, это означает, что звезды почти никогда не сталкиваются друг с другом, хотя движение каждой из них определяется полем силы тяготения, создаваемым всеми звездами в Галактике. Если мы будем рассматривать Галактику как некоторую область, наполненную газом, причем роль газовых молекул и атомов играют звезды, то мы должны считать этот газ крайне разреженным. В окрестностях Солнца среднее расстояние между звездами примерно в 10 млн раз больше, чем средний диаметр звезд. Между тем при нормальных условиях в обычном воздухе среднее расстояние между молекулами всего лишь в несколько десятков раз больше размеров последних. Чтобы достигнуть такой же степени относительного разрежения, плотность воздуха следовало бы уменьшить по крайней мере в 1018 раз! Заметим, однако, что в центральной области Галактики, где звездная плотность относительно высока, столкновения между звездами время от времени будут происходить. Здесь следует ожидать приблизительно одно столкновение каждый миллион лет, в то время как в нормальных областях Галактики за всю историю эволюции нашей звездной системы, насчитывающую, по крайней мере, 10 млрд лет, столкновений между звездами практически не было (см. гл. 9).
Мы кратко обрисовали масштаб и самую общую структуру той звездной системы, к которой принадлежит наше Солнце. При этом совершенно не рассматривались те методы, при помощи которых в течение многих лет несколько поколений астрономов шаг за шагом воссоздавали величественную картину строения Галактики. Этой важной проблеме посвящены другие книги, к которым мы отсылаем интересующихся читателей (например, Б.А.Воронцов-Вельяминов Очерки о Вселенной, Ю.Н. Ефремов В глубины Вселенной). Наша задача — дать только самую общую картину строения и развития отдельных объектов Вселенной. Такая картина совершенно необходима для понимания этой книги.
Уже несколько десятилетий астрономы настойчиво, изучают другие звездные системы, в той или иной степени сходные с нашей. Эта область исследований получила название внегалактической астрономии. Она сейчас играет едва ли не ведущую роль в астрономии. В течение последних трех десятилетий внегалактическая астрономия добилась поразительных успехов. Понемногу стали вырисовываться грандиозные контуры Метагалактики, в состав которой наша звездная система входит как малая частица. Мы еще далеко не все знаем о Метагалактике. Огромная удаленность объектов создает совершенно специфические трудности, которые разрешаются путем применения самых мощных средств наблюдения в сочетании с глубокими теоретическими исследованиями. Все же общая структура Метагалактики в последние годы в основном стала ясной.
Мы можем определить Метагалактику как совокупность звездных систем — галактик, движущихся в огромных пространствах наблюдаемой нами части Вселенной. Ближайшие к нашей звездной системе галактики — знаменитые Магеллановы Облака, хорошо видные на небе южного полушария как два больших пятна примерно такой же поверхностной яркости, как и Млечный Путь. Расстояние до Магеллановых Облаков всего лишь около 200 тыс. световых лет, что вполне сравнимо с общей протяженностью нашей Галактики. Другая близкая к нам галактика — это туманность в созвездии Андромеды. Она видна невооруженным глазом как слабое световое пятнышко 5-й звездной величины*****.
На самом деле это огромный звездный мир, по количеству звезд и полной массе раза в три превышающей нашу Галактику, которая в свою очередь является гигантом среди галактик. Расстояние до туманности Андромеды, или, как ее называют астрономы, М 31 (это означает, что в известном каталоге туманностей Мессье она занесена под № 31), около 1800 тыс. световых лет, что примерно в 20 раз превышает размеры Галактики. Туманность М 31 имеет явно выраженную спиральную структуру и по многим своим характеристикам весьма напоминает нашу Галактику. Рядом с ней находятся ее небольшие спутники эллипсоидальной формы (рис. 5). На рис. 6 приведены фотографии нескольких сравнительно близких к нам галактик. Обращает на себя внимание большое разнообразие их форм. Наряду со спиральными системами (такие галактики обозначаются символами Sа, Sb и Sс в зависимости от характера развития спиральной структуры; при наличии проходящей через ядро перемычки (рис. 6а) после буквы S ставится буква В) встречаются сфероидальные и эллипсоидальные, лишенные всяких следов спиральной структуры, а также неправильные галактики, хорошим примером которых могут служить Магеллановы Облака.
В большие телескопы наблюдается огромное количество галактик. Если галактик ярче видимой 12-й величины насчитывается около 250, то ярче 16-й — уже около 50 тыс. Самые слабые объекты, которые на пределе может сфотографировать телескоп-рефлектор с диаметром зеркала 5 м, имеют 24,5-ю величину. Оказывается, что среди миллиардов таких слабейших объектов большинство составляют галактики. Многие из них удалены от нас на расстояния, которые свет проходит за миллиарды лет. Это означает, что свет, вызвавший почернение пластинки, был излучен такой удаленной галактикой еще задолго до архейского периода геологической истории Земли!.
Иногда среди галактик попадаются удивительные объекты, например радиогалактики. Это такие звездные системы, которые излучают огромное количество энергии в радиодиапазоне. У некоторых радиогалактик поток радиоизлучения в несколько раз превышает поток оптического излучения, хотя в оптическом диапазоне их светимость очень велика ~ в несколько раз превосходит полную светимость нашей Галактики. Напомним, что последняя складывается из излучения сотен миллиардов звезд, многие из которых в свою очередь излучают значительно сильнее Солнца. Классический пример такой радиогалактики — знаменитый объект Лебедь А. В оптическом диапазоне это два ничтожных световых пятнышка 17-й звездной величины (рис. 7). На самом деле их светимость очень велика, примерно в 10 раз больше, чем у нашей Галактики. Слабой эта система кажется потому, что она удалена от нас на огромное расстояние — 600 млн световых лет. Однако поток радиоизлучения от Лебедя А на метровых волнах настолько велик, что превышает даже поток радиоизлучения от Солнца (в периоды, когда на Солнце нет пятен). Но ведь Солнце очень близко — расстояние до него всего лишь 8 световых минут; 600 млн лет — и 8 мин! А ведь потоки излучения, как известно, обратно пропорциональны квадратам расстояний!
Спектры большинства галактик напоминают солнечный; в обоих случаях наблюдаются отдельные темные линии поглощения на довольно ярком фоне. В этом нет ничего неожиданного, так как излучение галактик — это излучение миллиардов входящих в их состав звезд, более или менее похожих на Солнце. Внимательное изучение спектров галактик много лет назад позволило сделать одно открытие фундаментальной важности. Дело в том, что по характеру смещения длины волны какой-либо спектральной линии по отношению к лабораторному стандарту можно определить скорость движения излучающего источника по лучу зрения. Иными словами, можно установить, с какой скоростью источник приближается или удаляется.
Если источник света приближается, спектральные линии смещаются в сторону более коротких волн, если удаляется — в сторону более длинных. Это явление называется эффектом Доплера. Оказалось, что у галактик (за исключением немногих, самых близких к нам) спектральные линии всегда смещены в длинноволновую часть спектра (красное смещение линий), причем величина этого смещения тем больше, чем более удалена от нас галактика.
Это означает, что все галактики удаляются от нас, причем скорость разлета по мере удаления галактик растет. Она достигает огромных значений. Так, например, найденная по красному смещению скорость удаления радиогалактики Лебедь А близка к 17 тыс. км/с. Еще двадцать пять лет назад рекорд принадлежал очень слабой (в оптических лучах 20-й величины) радиогалактике ЗС 295. В 1960 г. был получен ее спектр. Оказалось, что известная ультрафиолетовая спектральная линия, принадлежащая ионизованному кислороду, смещена в оранжевую область спектра! Отсюда легко найти, что скорость удаления этой удивительной звездной системы составляет 138 тыс. км/с, или почти половину скорости света! Радио галактика ЗС 295 удалена от нас на расстояние, которое свет проходит за 5 млрд лет. Таким образом, астрономы исследовали свет, который был излучен тогда, когда образовывались Солнце и планеты, а может быть, даже немного раньше… С тех пор открыты еще более удаленные объекты (гл. 6).
Причины расширения системы, состоящей из огромного количества галактик, мы здесь касаться не будем. Этот сложный вопрос является предметом современной космологии. Однако сам факт расширения Вселенной имеет большое значение для анализа развития жизни в ней (гл. 7).
На общее расширение системы галактик накладываются беспорядочные скорости отдельных галактик, обычно равные нескольким сотням километров в секунду. Именно поэтому ближайшие к нам галактики не обнаруживают систематического красного смещения. Ведь скорости беспорядочных (так называемых пекулярных) движений для этих галактик больше регулярной скорости красного смещения. Последняя растет по мере удаления галактик приблизительно на 50 км/с, на каждый миллион парсек. Поэтому для галактик, расстояния до которых не превосходят нескольких миллионов парсек, беспорядочные скорости превышают скорость удаления, обусловленную красном смещением. Среди близких галактик наблюдаются и такие, которые приближаются к нам (например, туманность Андромеды М 31).
Галактики не распределены в метагалактическом пространстве равномерно, т.е. с постоянной плотностью. Они обнаруживают ярко выраженную тенденцию образовывать отдельные группы или скопления. В частности, группа из примерно 20 близких к нам галактик (включая нашу Галактику) образует так называемую местную систему. В свою очередь местная система входит в большое скопление галактик, центр которого находится в той части неба, на которую проектируется созвездие Девы. Это скопление насчитывает несколько тысяч членов и принадлежит к числу самых больших. На рис. 8 приведена фотография известного скопления галактик в созвездии Северной Короны, насчитывающего сотни галактик. В пространстве между скоплениями плотность галактик в десятки раз меньше, чем внутри скоплений.
Обращает на себя внимание разница между скоплениями звезд, образующими галактики, и скоплениями галактик. В первом случае расстояния между членами скопления огромны по сравнению с размерами звезд, в то время как средние расстояния между галактиками в скоплениях галактик всего лишь в несколько раз больше, чем размеры галактик. С другой стороны, число галактик в скоплениях не идет ни в какое сравнение с числом звезд в галактиках. Если рассматривать совокупность галактик как некоторый газ, где роль молекул — играют отдельные галактики, то мы должны считать эту среду чрезвычайно вязкой.
pronlo.net
Подробно:
Вы знаете, что наша Земля со своим спутником Луной, другие планеты и их спутники, кометы и малые планеты обращаются вокруг Солнца, что все эти тела составляют Солнечную систему. В свою очередь, Солнце и все другие звёзды, видимые на небе, входят в огромную звёздную систему — нашу Галактику. Самая близкая к Солнечной системе звезда находится так далеко, что свет, который распространяется со скоростью 300000 км/с, идёт от неё до Земли более четырёх лет. Звёзды являются наиболее распространённым типом небесных тел, в одной только нашей Галактике их насчитывается несколько сотен миллиардов. Объём, занимаемый этой звёздной системой, так велик, что свет может пересечь его только за 100 тыс. лет.
Основными структурными единицами Вселенной являются «звёздные острова» — галактики, подобные нашей. Одна из них находится в созвездии Андромеды. Это — гигантская галактика, похожая по своему строению на нашу и состоящая из сотен миллиардов звезд. Свет от неё до Земли идет более 2 млн. лет. Галактика Андромеды вместе с нашей Галактикой и еще несколькими галактиками меньшей массы образуют так называемую Местную группу. Некоторые из звездных систем этой группы, в том числе Большое и Малое Магеллановы Облака́, галактики в созвездиях Скульптора, Малой Медведицы, Дракона, Ориона, являются спутниками нашей Галактики. Вместе с ней они обращаются вокруг общего центра масс. Именно расположение и движение галактик определяет строение и структуру Вселенной в целом.
Галактики так далеки друг от друга, что невооруженным глазом можно видеть лишь три ближайшие: две — в Южном полушарии — Большое Магелланово облако, Малое Магелланово облако, а с северного всего одну — туманность Андромеды.
Карликовая галактика в созвездии Стрельца — самая близкая к нашей галактике Млечный Путь. Эта небольшая галактика настолько близка, что Млечный Путь как бы поглощает её. Галактика в Стрельце лежит на расстоянии 80 тыс. световых лет от Солнца и 52 тыс. световых лет от центра Млечного Пути. Следующая самая близкая к нам галактика — Большое Магелланово Облако, находящееся в 170 тысячах световых лет от нас. До 1994 го́да, когда была открыта карликовая галактика в созвездии Стрельца, думали, что самой близкой галактикой является Большое Магелланово Облако.
Первоначально карликовая галактика в Стрельце представляла собой сферу примерно в 1000 световых лет в поперечнике. Но теперь её форма искажена гравитацией Млечного Пути, и галактика растянулась в длину на 10 тыс. световых лет. Несколько миллионов звёзд, которые принадлежат карлику в Стрельце, ныне рассеяны по всему созвездию Стрельца. Поэтому, если просто смотреть на небо, то звёзды этой галактики невозможно отличить от звёзд нашей собственной Галактики.
От наиболее удаленных галактик свет доходит до Земли за 10 млрд. лет. Значительная часть вещества звёзд и галактик находится в таких условиях, создать которые в земных лабораториях невозможно. Всё космическое пространство заполнено электромагнитным излучением, гравитационными и магнитными полями, между звездами в галактиках и между галактиками находится очень разреже́нное вещество в виде газа, пыли, отдельных молекул, атомов и ионов, атомных ядер и элементарных частиц. Как известно, расстояние до ближайшего к Земле небесного тела — Луны составляет примерно 400000 км. Наиболее удаленные объекты располагаются от нас на расстоянии, которое превышает расстояние до Луны более чем в 10 раз. Попробуем представить размеры небесных тел и расстояния между ними во Вселенной, воспользовавшись хорошо известной моделью — школьным глобусом Земли, который в 50 млн. раз меньше нашей планеты. В этом случае мы должны изобразить Луну шариком диаметром примерно 7 см, находящимся от глобуса на расстоянии около 7,5 м. Модель Солнца будет иметь диаметр 28 м и находиться на расстоянии 3 км, а модель Плутона — самой далекой планеты Солнечной системы — будет удалена от нас на 120 км. Ближайшая к нам звезда при таком масштабе модели будет располагаться на расстоянии примерно 800000 км, т. е. в 2 раза дальше, чем Луна. Размеры нашей Галактики сократятся примерно до размеров Солнечной системы, но самые далекие звезды всё же будут находиться за её пределами.
Поскольку все галактики от нас удаляются, невольно складывается впечатление, что наша Галактика находится в центре расширения, в неподвижной центральной точке расширяющейся Вселенной. В действительности же мы имеем дело с одной из астрономических иллюзий. Расширение Вселенной происходит таким образом, что в нём нет «преимущественной» неподвижной точки. Какие бы две галактики мы ни выбрали, расстояние между ними с течением времени будет возрастать. А это значит, что на какой бы из галактик ни оказался наблюдатель, он также увидит картину разбегания звездных островов, аналогичную той, какую видим и мы.
Местная группа со скоростью, равной нескольким сотням километров в секунду, движется по направлению к ещё одному скоплению галактик в созвездии Девы. Скопление в Деве является центром ещё более гигантской системы звёздных островов — Сверхскопления галактик, которое включает в себя и Местную группу вместе с нашей Галактикой. Согласно наблюдательным данным, сверхскопления включают в себя свыше 90 % всех существующих галактик и занимают около 10 % всего объема пространства нашей Вселенной. Сверхскопления обладают массами порядка 1015 масс Солнца. Современным средствам астрономических исследований доступна колоссальная область пространства радиусом около 10-12 млрд. световых лет. В этой области, по современным оценкам, расположено 1010 галактик. Их совокупность получила название Метагалактики.
Итак, мы живем в нестационарной, расширяющейся Вселенной, которая изменяется со временем и прошлое которой нетождественно её современному состоянию, а современное — будущему.
znaniya-sila.narod.ru
Рис. 1. Планеты Солнечной системы
Мы можем более наглядно представить относительные масштабы Солнечной системы следующим образом. Пусть Солнце изображается биллиардным шаром диаметром 7 см. Тогда ближайшая к Солнцу планета - Меркурий находится от него в этом масштабе на расстоянии 280 см. Земля - на расстоянии 760 см, гигант - планета Юпитер удалена на расстояние около 40 м, а самая дальняя планета - во многих отношениях пока еще загадочный Плутон - на расстояние около 300м. Размеры земного шара в этом масштабе несколько больше 0,5 мм, лунный диаметр - немногим больше 0,1 мм, а орбита Луны имеет диаметр около 3 см. Даже самая близкая к нам звезда - Проксима Центавра удалена от нас на такое большое расстояние, что по сравнению с ним межпланетные расстояния в пределах Солнечной системы кажутся сущими пустяками. Читатели, конечно, знают, что для измерения межзвездных расстояний такой единицей длины, как километр, никогда не пользуются**). Эта единица измерений (так же как сантиметр, дюйм и пр.) возникла из потребностей практической деятельности человечества на Земле. Она совершенно непригодна для оценки космических расстояний, слишком больших по сравнению с километром. В популярной литературе, а иногда и в научной, для оценки межзвездных и межгалактических расстояний как единицу измерения употребляют "световой год". Это такое расстояние, которое свет, двигаясь со скоростью 300 тыс. км/с, проходит за год. Легко убедиться, что световой год равен 9,46x1012 км, или около 10000 млрд км. В научной литературе для измерения межзвездных и межгалактических расстояний обычно применяется особая единица, получившая название "парсек";1 парсек (пк) равен 3,26 светового года. Парсек определяется как такое расстояние, с которого радиус земной орбиты виден под углом в 1 сек. дуги. Это очень маленький угол. Достаточно сказать, что под таким углом монета в одну копейку видна с расстояния в 3 км.
Рис. 2. Шаровое скопление 47 Тукана
Ни одна из звезд - ближайших соседок Солнечной системы - не находится к нам ближе, чем на 1 пк. Например, упомянутая Проксима Центавра удалена от нас на расстояние около 1,3 пк. В том масштабе, в котором мы изобразили Солнечную систему, это соответствует 2 тыс. км. Все это хорошо иллюстрирует большую изолированность нашей Солнечной системы от окружающих звездных систем, некоторые из этих систем, возможно, имеют с ней много сходства. Но окружающие Солнце звезды и само Солнце составляют лишь ничтожно малую часть гигантского коллектива звезд и туманностей, который называется "Галактикой". Это скопление звезд мы видим в ясные безлунные ночи как пересекающую небо полосу Млечного Пути. Галактика имеет довольно сложную структуру. В первом, самом грубом приближении мы можем считать, что звезды и туманности, из которых она состоит, заполняют объем, имеющий форму сильно сжатого эллипсоида вращения. Часто в популярной литературе форму Галактики сравнивают с двояковыпуклой линзой. На самом деле все обстоит значительно сложнее, и нарисованная картина является слишком грубой. В действительности оказывается, что разные типы звезд совершенно по-разному концентрируются к центру Галактики и к ее "экваториальной плоскости". Например, газовые туманности, а также очень горячие массивные звезды сильно концентрируются к экваториальной плоскости Галактики (на небе этой плоскости соответствует большой круг, проходящий через центральные части Млечного Пути). Вместе с тем они не обнаруживают значительной концентрации к галактическому центру. С другой стороны, некоторые типы звезд и звездных скоплений (так называемые "шаровые скопления", рис. 2) почти никакой концентрации к экваториальной плоскости Галактики не обнаруживают, но зато характеризуются огромной концентрацией по направлению к ее центру. Между этими двумя крайними типами пространственного распределения (которое астрономы называют "плоское" и "сферическое") находятся все промежуточные случаи. Все же оказывается, что основная часть звезд в Галактике находится в гигантском диске, диаметр которого около 100 тыс. световых лет, а толщина около 1500 световых лет. В этом диске насчитывается несколько больше 150 млрд звезд самых различных типов. Наше Солнце - одна из этих звезд, находящаяся на периферии Галактики вблизи от ее экваториальной плоскости (точнее, "всего лишь" на расстоянии около 30 световых лет - величина достаточно малая по сравнению с толщиной звездного диска). Расстояние от Солнца до ядра Галактики (или ее центра) составляет около 30 тыс. световых лет. Звездная плотность в Галактике весьма неравномерна. Выше всего она в области галактического ядра, где, по последним данным, достигает 2 тыс. звезд на кубический парсек, что почти в 20 тыс. раз больше средней звездной плотности в окрестностях Солнца***. Кроме того, звезды имеют тенденцию образовывать отдельные группы или скопления. Хорошим примером такого скопления являются Плеяды, которые видны на нашем зимнем небе (рис. 3). В Галактике имеются и структурные детали гораздо больших масштабов. Исследованиями последних лет доказано, что туманности, а также горячие массивные звезды распределены вдоль ветвей спирали. Особенно хорошо спиральная структура видна у других звездных систем - галактик (с маленькой буквы, в отличие от нашей звездной системы - Галактики). Одна из таких галактик изображена на рис. 4. Установить спиральную структуру Галактики, в которой мы сами находимся, оказалось в высшей степени трудно.Рис. 3. Фотография звездного скопления Плеяд
Рис. 4. Спиральная галактика NGC 5364
Звезды и туманности в пределах Галактики движутся довольно сложным образом. Прежде всего, они участвуют во вращении Галактики вокруг оси, перпендикулярной к ее экваториальной плоскости. Это вращение не такое, как у твердого тела: различные участки Галактики имеют различные периоды вращения. Так, Солнце и окружающие его в огромной области размерами в несколько сотен световых лет звезды совершают полный оборот за время около 200 млн лет. Так как Солнце вместе с семьей планет существует, по-видимому, около 5 млрд лет, то за время своей эволюции (от рождения из газовой туманности до нынешнего состояния) оно совершило примерно 25 оборотов вокруг оси вращения Галактики. Мы можем сказать, что возраст Солнца - всего лишь 25 "галактических лет", скажем прямо - возраст цветущий... Скорость движения Солнца и соседних с ним звезд по их почти круговым галактическим орбитам достигает 250 км/с****. На это регулярное движение вокруг галактического ядра накладываются хаотические, беспорядочные движения звезд. Скорости таких движений значительно меньше - порядка 10-50 км/с, причем у объектов разных типов они различны. Меньше всего скорости у горячих массивных звезд (6-8 км/с), у звезд солнечного типа они около 20 км/с. Чем меньше эти скорости, тем более "плоским" является распределение данного типа звезд. В том масштабе, которым мы пользовались для наглядного представления Солнечной системы, размеры Галактики будут составлять 60 млн км - величина, уже довольно близкая к расстоянию от Земли до Солнца. Отсюда ясно, что по мере проникновения во все более удаленные области Вселенной этот масштаб уже не годится, так как теряет наглядность. Поэтому мы примем другой масштаб. Мысленно уменьшим земную орбиту до размеров самой внутренней орбиты атома водорода в классической модели Бора. Напомним, что радиус этой орбиты равен 0,53x10-8 см. Тогда ближайшая звезда будет находиться на расстоянии приблизительно 0,014 мм, центр Галактики - на расстоянии около 10 см, а размеры нашей звездной системы будут около 35 см. Диаметр Солнца будет иметь микроскопические размеры: 0,0046 А (ангстрем-единица длины, равная 10-8 см).Мы уже подчеркивали, что звезды удалены друг от друга на огромные расстояния, и тем самым практически изолированы. В частности, это означает, что звезды почти никогда не сталкиваются друг с другом, хотя движение каждой из них определяется полем силы тяготения, создаваемым всеми звездами в Галактике. Если мы будем рассматривать Галактику как некоторую область, наполненную газом, причем роль газовых молекул и атомов играют звезды, то мы должны считать этот газ крайне разреженным. В окрестностях Солнца среднее расстояние между звездами примерно в 10 млн раз больше, чем средний диаметр звезд. Между тем при нормальных условиях в обычном воздухе среднее расстояние между молекулами всего лишь в несколько десятков раз больше размеров последних. Чтобы достигнуть такой же степени относительного разрежения, плотность воздуха следовало бы уменьшить по крайней мере в 1018 раз! Заметим, однако, что в центральной области Галактики, где звездная плотность относительно высока, столкновения между звездами время от времени будут происходить. Здесь следует ожидать приблизительно одно столкновение каждый миллион лет, в то время как в "нормальных" областях Галактики за всю историю эволюции нашей звездной системы, насчитывающую, по крайней мере, 10 млрд лет, столкновений между звездами практически не было (см. гл. 9).
Мы кратко обрисовали масштаб и самую общую структуру той звездной системы, к которой принадлежит наше Солнце. При этом совершенно не рассматривались те методы, при помощи которых в течение многих лет несколько поколений астрономов шаг за шагом воссоздавали величественную картину строения Галактики. Этой важной проблеме посвящены другие книги, к которым мы отсылаем интересующихся читателей (например, Б.А.Воронцов-Вельяминов "Очерки о Вселенной", Ю.Н. Ефремов "В глубины Вселенной"). Наша задача - дать только самую общую картину строения и развития отдельных объектов Вселенной. Такая картина совершенно необходима для понимания этой книги.Рис. 5. Туманность Андромеды со спутниками
Уже несколько десятилетий астрономы настойчиво, изучают другие звездные системы, в той или иной степени сходные с нашей. Эта область исследований получила название "внегалактической астрономии". Она сейчас играет едва ли не ведущую роль в астрономии. В течение последних трех десятилетий внегалактическая астрономия добилась поразительных успехов. Понемногу стали вырисовываться грандиозные контуры Метагалактики, в состав которой наша звездная система входит как малая частица. Мы еще далеко не все знаем о Метагалактике. Огромная удаленность объектов создает совершенно специфические трудности, которые разрешаются путем применения самых мощных средств наблюдения в сочетании с глубокими теоретическими исследованиями. Все же общая структура Метагалактики в последние годы в основном стала ясной. Мы можем определить Метагалактику как совокупность звездных систем - галактик, движущихся в огромных пространствах наблюдаемой нами части Вселенной. Ближайшие к нашей звездной системе галактики - знаменитые Магеллановы Облака, хорошо видные на небе южного полушария как два больших пятна примерно такой же поверхностной яркости, как и Млечный Путь. Расстояние до Магеллановых Облаков "всего лишь" около 200 тыс. световых лет, что вполне сравнимо с общей протяженностью нашей Галактики. Другая "близкая" к нам галактика - это туманность в созвездии Андромеды. Она видна невооруженным глазом как слабое световое пятнышко 5-й звездной величины*****. На самом деле это огромный звездный мир, по количеству звезд и полной массе раза в три превышающей нашу Галактику, которая в свою очередь является гигантом среди галактик. Расстояние до туманности Андромеды, или, как ее называют астрономы, М 31 (это означает, что в известном каталоге туманностей Мессье она занесена под № 31), около 1800 тыс. световых лет, что примерно в 20 раз превышает размеры Галактики. Туманность М 31 имеет явно выраженную спиральную структуру и по многим своим характеристикам весьма напоминает нашу Галактику. Рядом с ней находятся ее небольшие спутники эллипсоидальной формы (рис. 5). На рис. 6 приведены фотографии нескольких сравнительно близких к нам галактик. Обращает на себя внимание большое разнообразие их форм. Наряду со спиральными системами (такие галактики обозначаются символами Sа, Sb и Sс в зависимости от характера развития спиральной структуры; при наличии проходящей через ядро "перемычки" (рис. 6а) после буквы S ставится буква В) встречаются сфероидальные и эллипсоидальные, лишенные всяких следов спиральной структуры, а также "неправильные" галактики, хорошим примером которых могут служить Магеллановы Облака. В большие телескопы наблюдается огромное количество галактик. Если галактик ярче видимой 12-й величины насчитывается около 250, то ярче 16-й - уже около 50 тыс. Самые слабые объекты, которые на пределе может сфотографировать телескоп-рефлектор с диаметром зеркала 5 м, имеют 24,5-ю величину. Оказывается, что среди миллиардов таких слабейших объектов большинство составляют галактики. Многие из них удалены от нас на расстояния, которые свет проходит за миллиарды лет. Это означает, что свет, вызвавший почернение пластинки, был излучен такой удаленной галактикой еще задолго до архейского периода геологической истории Земли!.Рис. 6а. Галактика типа "пересеченной спирали"
Рис. 6б. Галактика NGC 4594
Рис. 6с. Галактики Магеллановы облака
Иногда среди галактик попадаются удивительные объекты, например "радиогалактики". Это такие звездные системы, которые излучают огромное количество энергии в радиодиапазоне. У некоторых радиогалактик поток радиоизлучения в несколько раз превышает поток оптического излучения, хотя в оптическом диапазоне их светимость очень велика ~ в несколько раз превосходит полную светимость нашей Галактики. Напомним, что последняя складывается из излучения сотен миллиардов звезд, многие из которых в свою очередь излучают значительно сильнее Солнца. Классический пример такой радиогалактики - знаменитый объект Лебедь А. В оптическом диапазоне это два ничтожных световых пятнышка 17-й звездной величины (рис. 7). На самом деле их светимость очень велика, примерно в 10 раз больше, чем у нашей Галактики. Слабой эта система кажется потому, что она удалена от нас на огромное расстояние - 600 млн световых лет. Однако поток радиоизлучения от Лебедя А на метровых волнах настолько велик, что превышает даже поток радиоизлучения от Солнца (в периоды, когда на Солнце нет пятен). Но ведь Солнце очень близко - расстояние до него "всего лишь" 8 световых минут; 600 млн лет - и 8 мин! А ведь потоки излучения, как известно, обратно пропорциональны квадратам расстояний! Спектры большинства галактик напоминают солнечный; в обоих случаях наблюдаются отдельные темные линии поглощения на довольно ярком фоне. В этом нет ничего неожиданного, так как излучение галактик - это излучение миллиардов входящих в их состав звезд, более или менее похожих на Солнце. Внимательное изучение спектров галактик много лет назад позволило сделать одно открытие фундаментальной важности. Дело в том, что по характеру смещения длины волны какой-либо спектральной линии по отношению к лабораторному стандарту можно определить скорость движения излучающего источника по лучу зрения. Иными словами, можно установить, с какой скоростью источник приближается или удаляется.Рис. 7. Радиогалактика Лебедь А
Если источник света приближается, спектральные линии смещаются в сторону более коротких волн, если удаляется - в сторону более длинных. Это явление называется "эффектом Доплера". Оказалось, что у галактик (за исключением немногих, самых близких к нам) спектральные линии всегда смещены в длинноволновую часть спектра ("красное смещение" линий), причем величина этого смещения тем больше, чем более удалена от нас галактика. Это означает, что все галактики удаляются от нас, причем скорость "разлета" по мере удаления галактик растет. Она достигает огромных значений. Так, например, найденная по красному смещению скорость удаления радиогалактики Лебедь А близка к 17 тыс. км/с. Еще двадцать пять лет назад рекорд принадлежал очень слабой (в оптических лучах 20-й величины) радиогалактике ЗС 295. В 1960 г. был получен ее спектр. Оказалось, что известная ультрафиолетовая спектральная линия, принадлежащая ионизованному кислороду, смещена в оранжевую область спектра! Отсюда легко найти, что скорость удаления этой удивительной звездной системы составляет 138 тыс. км/с, или почти половину скорости света! Радио галактика ЗС 295 удалена от нас на расстояние, которое свет проходит за 5 млрд лет. Таким образом, астрономы исследовали свет, который был излучен тогда, когда образовывались Солнце и планеты, а может быть, даже "немного" раньше... С тех пор открыты еще более удаленные объекты (гл. 6). Причины расширения системы, состоящей из огромного количества галактик, мы здесь касаться не будем. Этот сложный вопрос является предметом современной космологии. Однако сам факт расширения Вселенной имеет большое значение для анализа развития жизни в ней (гл. 7). На общее расширение системы галактик накладываются беспорядочные скорости отдельных галактик, обычно равные нескольким сотням километров в секунду. Именно поэтому ближайшие к нам галактики не обнаруживают систематического красного смещения. Ведь скорости беспорядочных (так называемых "пекулярных") движений для этих галактик больше регулярной скорости красного смещения. Последняя растет по мере удаления галактик приблизительно на 50 км/с, на каждый миллион парсек. Поэтому для галактик, расстояния до которых не превосходят нескольких миллионов парсек, беспорядочные скорости превышают скорость удаления, обусловленную красном смещением. Среди близких галактик наблюдаются и такие, которые приближаются к нам (например, туманность Андромеды М 31). Галактики не распределены в метагалактическом пространстве равномерно, т.е. с постоянной плотностью. Они обнаруживают ярко выраженную тенденцию образовывать отдельные группы или скопления. В частности, группа из примерно 20 близких к нам галактик (включая нашу Галактику) образует так называемую "местную систему". В свою очередь местная система входит в большое скопление галактик, центр которого находится в той части неба, на которую проектируется созвездие Девы. Это скопление насчитывает несколько тысяч членов и принадлежит к числу самых больших. На рис. 8 приведена фотография известного скопления галактик в созвездии Северной Короны, насчитывающего сотни галактик. В пространстве между скоплениями плотность галактик в десятки раз меньше, чем внутри скоплений.Рис. 8. Скопление галактик в созвездии Северной Короны
Обращает на себя внимание разница между скоплениями звезд, образующими галактики, и скоплениями галактик. В первом случае расстояния между членами скопления огромны по сравнению с размерами звезд, в то время как средние расстояния между галактиками в скоплениях галактик всего лишь в несколько раз больше, чем размеры галактик. С другой стороны, число галактик в скоплениях не идет ни в какое сравнение с числом звезд в галактиках. Если рассматривать совокупность галактик как некоторый газ, где роль молекул - играют отдельные галактики, то мы должны считать эту среду чрезвычайно вязкой. Таблица 1 Большой Взрыв | 1 января 0ч 0м 0с |
Образование галактик (z~10) | 10 января |
Образование Солнечной системы | 9 сентября |
Образование Земли | 14 сентября |
Возникновение жизни на Земле | 25 сентября |
Образование древнейших скал на Земле | 2 октября |
Появление бактерий и сине-зеленых водорослей | 9 октября |
Возникновение фотосинтеза | 12 ноября |
Первые клетки с ядром | 15 ноября |
Декабрь |
Воскресенье | Понедельник | Вторник | Среда | Четверг | Пятница | Суббота |
| 1 Возникновение кислородной атмосферы на Земле | 2 | 3 | 4 | 5 Мощная вулканическая деятельность на Марсе | 6 |
7 | 8 | 9 | 10 | 11 | 12 | 13 |
14 | 15 | 16 Первые черви | 17 | 18 Океанский планктон Трилобиты | 19 Ордовик Первые рыбы | 20 Силур Растения колонизируют сушу |
21 Девон Первые насекомые Животные колонизируют сушу | 22 Первые амфибии и крылатые насекомые | 23 Карбон Первые деревья Первые рептилии | 24 Пермь Первые динозавры | 25 Начало мезозоя | 26 Триас Первые млекопитающие | 27 Юра Первые птицы |
28 Мел Первые цветы | 29 Третич-ный периодПервые приматы | 30 Первые гоминиды | 31 Чет-вертичный периодПервые люди (~22:30) |
|
|
|
www.airbase.ru
Содержание
Введение
1. Метагалактика
2. Галактики
2.1 Основные составляющие галактики
2.2 Галактика Млечный Путь
2.3 Звезды 10
2.4 Солнечная система
Заключение
Список использованной литературы
Введение
Вселенная как целое является предметом особой астрономической науки — космологии, имеющей древнюю историю. Истоки ее уходят в античность. Космология долгое время находилась под значительным влиянием религиозного мировоззрения, будучи не столько предметом познания, сколько делом веры.
Вселенная — это самый глобальный объект мегамира, безграничный во времени и пространстве. Согласно современных представлений она представляет собой громадную необъятную сферу. Существуют научные гипотезы об «открытой», то есть «непрерывно расширяющейся», равно как и о «закрытой», то есть «пульсирующей», Вселенной. Обе гипотезы существуют в нескольких вариантах. Однако требуются очень основательные исследования, пока та или иная из них не превратится в более или менее обоснованную научную теорию.
Как считают ученые, все зависит от величины средней плотности материи во Вселенной, а величину эту пока еще не удалось определить с достаточной точностью. Зато точно рассчитана некая критическая величина, выше и ниже которой Вселенная должна вести себя по-разному.
Если средняя плотность материи равна этой величине или ниже ее, то Вселенная будет расширяться бесконечно, причем эта средняя плотность материи во Вселенной будет бесконечно стремиться к нулю — примерно так же, как если бы облачко дыма стало «расплываться» в воздухе. Если же плотность материи окажется выше указанной величины, то в будущем расширение Вселенной прекратится и сменится сжатием.
Не исключено, что периоды расширения и сжатия чередуются бесконечно. В этом случае мы имеем «пульсирующую» Вселенную. Не исключено также, что циклы «расширение — сжатие» отличаются друг от друга, изменяясь согласно какой-то закономерности. В этом случае мы имеем «осциллирующую» Вселенную.
1. Метагалактика
Метагалактика — это часть Вселенной, доступная изучению астрономическими средствами. Она состоит из сотни миллиардов галактик, каждая из которых вращается вокруг своей оси и одновременно разбегаются друг от друга со скоростями от 200 до 150 000 км/с.
Одно из важнейших свойств Метагалактики — ее постоянное расширение, о чем свидетельствует «разлет» скоплений галактик. Доказательством того, что скопления галактик удаляются друг от друга, являются «красное смещение» в спектрах галактик и открытие реликтового излучения (фоновое внегалактическое излучение, соответствующее температуре около 2,7 К).
Из явления расширения Метагалактики вытекает важное следствие: в прошлом расстояния между галактиками были меньше. А если учесть, что и сами галактики в прошлом были протяженными и разреженными газовыми облаками, то очевидно, что миллиарды лет назад границы этих облаков смыкались и образовывали некоторое единое однородное газовое облако, испытывавшее постоянное расширение.
Другое важное свойство Метагалактики — равномерное распределение в ней вещества (основная масса которого сосредоточена в звездах). В современном состоянии Метагалактика — однородна в масштабе порядка 200 Мпк. Маловероятно, что она была такой в прошлом. В самом начале расширения Метагалактики неоднородность материи вполне могла существовать. Поиски следов неоднородности прошлых состояний Метагалактики — одна из важнейших проблем внегалактической астрономии.
Однородность Метагалактики (и Вселенной) надо понимать и в том смысле, что структурные элементы далеких звезд и галактик, физические законы, которым они подчиняются, и физические константы, по-видимому, с большой степенью точности одинаковы повсюду, т.е. те же, что и в нашей области Метагалактики, включая Землю. Типичная галактика, находящаяся в сотне миллионов световых лет от нас, выглядит в основном так же, как наша. Спектры атомов, следовательно, законы химии и атомной физики там идентичны известным на Земле. Это обстоятельство позволяет уверенно распространять открытые в земной лаборатории законы физики на более широкие области Вселенной.
Представление об однородности Метагалактики еще раз доказывает, что Земля не занимает во Вселенной сколько-нибудь привилегированного положения. Конечно, Земля, Солнце и Галактика кажутся нам, людям, важными и исключительными, но для Вселенной в целом они такими не являются.
Исчерпывает ли Метагалактика собой всю возможную материю? Многие ученые так и считают, утверждая единственность нашей расширяющейся Метагалактики — Вселенной. Но такие утверждения напоминают космологию Аристотеля, многократно повторявшиеся заявления о единственности Земли со светилами вокруг нее, единственности Солнечной системы, а также более поздние теории единственности нашей Галактики и т.д. И потому все чаще высказывается мысль о множественности «метагалактик», множественности вселенных, каждая из которых имеет свой собственный набор фундаментальных физических свойств материи, пространства и времени, свой тип нестационарности, организации и др. Эти гипотезы не противоречат современным математическим и физико-теоретическим представлениям. Более того, многие модели релятивистской космологии закономерно подводят к выводам такого рода.[1]
2. Галактики
2.1 Основные составляющие галактики
Галактика — это скопление звезд в объеме, имеющем форму линзы. Большая часть звезд концентрируется в плоскости симметрии этого объема (галактической плоскости), меньшая часть, концентрируется в сферическом объеме (ядре галактики).
Кроме звезд в состав галактик входят межзвездное вещество (газы, пыль, астероиды, кометы), электромагнитные, гравитационные поля, космические излучения. Солнечная система расположена вблизи галактической плоскости нашей галактики. Для земного наблюдателя звезды, концентрирующиеся в галактической плоскости, сливаются в видимую картину Млечного пути.
Систематическое исследование галактик было начато в начале прошлого века, когда были установлены на телескопах приборы для спектрального анализа световых излучений звезд.
Американский астроном Э. Хаббл разработал метод классификации известных ему тогда галактик с учетом их наблюдаемой формы. В его классификации выделены несколько типов (классов) галактик, в каждом из которых существуют подтипы или подклассы. Он же определил примерное процентное распределение наблюдаемых галактик: эллиптические по форме (приблизительно 25%), спиральные (приблизительно 50%), линзообразные (приблизительно 20%) и пекулярные (неправильной формы) галактики (приблизительно 5%).
Сегодня известно, что галактики объединяются в устойчивые структуры (скопления и сверхскопления галактик). Астрономам известно облако галактик с плотностью 220 032 галактик на один квадратный градус. Наша Галактика входит в скопление галактик, которое называют Местной системой.
В Местную систему входят наша Галактика, галактика Туманность Андромеды, спиралеобразная галактика из созвездия Треугольник и еще 31 звездная система. Поперечник этой системы — 7 млн световых лет. В это объединение галактик входит галактика Туманность Андромеды, которая существенно больше нашей Галактики: ее диаметр более 300 тыс. св. лет. Она находится на расстоянии 2,3 млн св. лет от нашей Галактики и состоит из нескольких биллионов звезд. Наряду с такой огромной галактикой, как Туманность Андромеды, астрономам известны галактики-карлики.
В созвездиях Льва и Скульптора обнаружены почти шарообразные галактики размером 3000 св. лет в поперечнике. Имеются данные о линейных размерах следующих крупномасштабных структур во Вселенной: звездные системы — 108 км, галактики, содержащие около 1013 звезд, — 3 · 104 св. лет, скопление галактик (из 50 ярких галактик) — 107св. лет, сверхскопления галактик— 109 св. лет. Расстояние между скоплениями галактик равно приблизительно 20 · 107св. лет.
Обозначение галактик принято давать относительно соответствующего каталога: обозначение каталога плюс номер галактики (NGC2658, где NGC — новый общий каталог Дрейера, 2658 — номер галактики в этом каталоге). В первых звездных каталогах галактики ошибочно фиксировались как туманности определенной светимости. Во второй половине ХХ в. было установлено, что классификация галактик Хаббла не является точной: существует большое множество разновидностей пекулярных по форме галактик. Местная система (скопление галактик) входит в гигантское сверхскопление галактик, поперечник которой составляет 100 млн лет, наша Местная система находится от центра этого сверхскопления на расстоянии более 30 млн св. лет. Современная астрономия использует широкий спектр методов исследования объектов, находящихся на огромных расстояниях от наблюдателя. Большое место в астрономических исследованиях занимает метод радиологических измерений, разработанный в начале прошлого века.[2]
2.2 Галактика Млечный Путь
Наша галактическая система — рядовая звездная система. На небе в ясную безлунную ночь хорошо видна яркая белесоватая полоса — Млечный Путь. Он простирается (при вечерних наблюдениях) через созвездия Скорпиона, Стрельца, Орла и дальше вверх к созвездиям Лебедя, Цефея и Кассиопеи. При утренних наблюдениях можно проследить его другую ветвь: по созвездиям Персея, Возничего, Тельца, Близнецов, Ориона и Большого Пса. В южном полушарии он проходит через созвездия Паруса, Киля, Южного Креста и Центавра. Таким образом, Млечный Путь образует на небе полный круг. Греки назвали Млечный Путь галактическим (молочным) кругом. Его светлое сияние происходит в основном из-за свечения бесчисленного количества слабых звезд.
Представление о том, что Млечный Путь состоит из огромного числа звезд, восходит еще к Демокриту. Его догадку подтвердил Галилей с помощью своего телескопа. У. Гершель обратил внимание на то, что в направлении созвездия Геркулеса звезды как бы раздвигаются, а на противоположной стороне — сближаются. Такое впечатление получается при движении по дороге, по обеим сторонам которой высажены деревья, поэтому Солнце движется по отношению к ближайшим звездам и расстояния до них неодинаковы.[3]
Наша Галактика, Млечный Путь, имеет спиралеобразную форму: при рассмотрении ее сбоку она имеет вид диска с утолщением в центре, сверху — вид спирали, образованной двумя рукавами, расходящимися из ядра Галактики. Масса нашей Галактики более 2 · 1011 масс Солнца. Масса Солнца более 2 · 1030кг. Поперечник Галактики Млечный Путь составляет 100 000 св. лет. Наша Солнечная система находится от центра Галактики на расстоянии 34 000 св. лет. Ядро нашей Галактики находится внутри Млечного Пути в направлении созвездия Стрельца. Ядро Галактики — это центральное сгущение активных процессов, происходящих в Галактике. Предполагается, что масса ядра галактик составляет всего лишь несколько процентов от массы всей Галактики. Для определения масс крупномасштабных объектов Вселенной (звезды и т. д.) используется ряд зависимостей, например: спектр-светимость, масса-светимость, сила гравитационного взаимодействия и другие.
В 1944 г. немецкий астроном В. Бадде (1893—1966) — работал в основном в США — построил модели звездной природы ядра галактик. Все звезды, входящие в нашу Галактику, он назвал «звездным населением» и разделил на два типа: 1) звезды ядра Галактики (гало) и 2) звезды периферийной части Галактики (диско). Согласно этой модели все звезды в нашей Галактике сосредоточены в рассеянных и шаровых скоплениях звезд. Первые принадлежат диско нашей Галактики, вторые входят в гало, центральную часть Галактики. Рассеянные скопления состоят из ста до тысячи звезд, шаровые — из нескольких сотен тысяч и миллионов звезд. Деление звезд на «население диско» и «население гало» отличается от деления ГМО[4] на «население диско» и «население рукавов». К первым относятся холодные ГМО, ко вторым — теплые. Суть этого отличия состоит в том, что гравитационное поле Галактики не позволяет переходить звездам, например из «населения гало» в «население диско». У звезд, составляющих «население гало», отношение содержания легких химических элементов к тяжелым существенно меньше, чем у звезд «населения диско». Для того чтобы происходил взаимный переход звезд из одного населения в другое, звездам нужно менять свою металличность. Что же касается облаков ГМО, то их движение в Галактике является более интенсивным, т. е. они при движении могут переходить из холодного в теплое состояние и из теплого в холодное, меняя свое место, положение в Галактике. В настоящее время утверждается, что в нашей Галактике осуществляется процесс образования новых звезд из структур МЗС[5], названных ГМО (гигантские молекулярные облака в МЗС). На это звездообразование, как считают специалисты, тратится приблизительно 4 массы Солнца в год. При этом говорится, что звезды рождаются в спиральных рукавах (70%), в межзвездном пространстве (10%), в области центра Галактики, с диаметром 1 кпс (10%), над галактической плоскостью, в гало (около 10%). Таким образом, получается, что спиральные рукава, занимающие всего лишь 1% всего объема Галактики, являются основной областью звездообразования в настоящее время. Теория звездообразования изложена в интересной работе В. Г. Сурдина «Рождение звезд»1. Проблемы, с которыми сталкивается эта теория, следующие:
1. Если наша Галактика тратит 4 массы Солнца своей МЗС на звездообразование в год, то за 2 млрд лет она должна была МЗС уже полностью израсходовать, но Галактика имеет возраст около 10—13 млрд лет, и МЗС в ней сохраняется.
2. Происходит ли процесс звездообразования отдает часть своей энергии-массы в МЗС и вспыхивает как звезда) одинаковым для всех форм галактик или только он характерен для спиралеобразных?
3. Каков источник образования энергии-массы МЗС Галактики (только внутренний или общегалактический)?
Одним из ответов на эти вопросы является гипотеза об образовании Галактики из энергии-массы более крупных структур, таких как сверхскопления галактик и скоплений галактик. Первыми во времени, как полагают, образовались сверхскопления галактик, затем — скопления галактик и лишь позднее появились галактики с индивидуальной формой. Иначе говоря, считается, что энергия-масса, достаточная для образования сверхскоплений галактик, переходит за счет фрагментации в энергию-массу отдельных скоплений галактик и т. д.
Металличность звезды — это величина, характеризующая отношение тяжелых элементов в звезде (их условно называют металлами) к количеству содержащегося в ней водорода: Fe/H, где Fe — количество (масса) тяжелых элементов в звезде, Η — масса водорода. За основу шкалы измерения металличности звезды берется металличность Солнца, в котором содержится 2—3% тяжелых металлов (Fe/H). Существует точка зрения, согласно которой на догалактической стадии, 13 млрд лет тому назад, при формировании нашей Галактики в составе ее энергии-массы не было тяжелых элементов. Она состояла из водорода (3/4) и гелия (1/4)· Силы тяготения сжимали догалактическую структуру, которую трудно назвать облаком, как часто это делается. В этой догалактической структуре произошло уплотнение и фрагментация, т. е. появились неоднородности с высокой плотностью. Эти фрагментарные плотности могут рассматриваться как очаги образования скоплений звезд спектрального класса О и В. Эти звезды называют звездами первого поколения или предсверхновыми, поскольку их масса достигала, как полагают, несколько тысяч масс Солнца.
Звезды спектральных классов О и В наблюдаются сегодня. Они имеют температуру поверхности от 15 000 до 25 000 К и существенно выше. Однако они не являются чисто водородно-гелиевыми звездами первого поколения. В линиях их спектров наблюдаются линии водорода, гелия, кремния, кислорода и углерода. Чисто водородно-гелиевых звезд не удалось обнаружить до сих пор: есть звезды с содержанием тяжелых элементов в 100—400 раз меньше, чем у Солнца, но еще с меньшим содержанием не наблюдаются. В связи с этим фактом высказывается предположение о наличии замедленной или прерывистой физико-химической эволюции Галактики: в течение первой половины жизни Галактики происходил линейный рост тяжелых элементов в межзвездной среде за счет звезд первого поколения, затем этот рост приостановился. Как полагают, звезды первого поколения обладали огромной энергией-массой, которая позволяла возникнуть термоядерному синтезу тяжелых химических элементов из легких. Они просуществовали приблизительно 1 млрд лет, выбросив огромную энергию-массу в окружающую среду, обогатив ее тяжелыми химическими элементами. Образовавшаяся в Галактике межзвездная среда, как полагают, привела к образованию звезд второго поколения. Энергия-масса этих звезд не позволяет образовывать тяжелые химические элементы. Например, наше Солнце, возрастом в 5 млрд лет, не может образовывать тяжелые химические элементы, их оно «заимствовало» из МЗС Галактики. Звезды, содержащие много тяжелых химических элементов, называют молодыми в смысле места, которое они занимают в эволюции Вселенной. Современные исследования обнаружили мощный источник излучения в диапазоне радиоволн из ядра нашей Галактики. Ядро нашей Галактики, по современным оценкам, имеет линейные размеры порядка 4000 св. лет.
Высказывается мнение, что внутри ядра находится массивная «черная дыра», окруженная газовым облаком диаметром в 1 млрд км, являющаяся источником выброса энергии-массы (вещества) со скоростью около 600 км/с в количестве одной массы Солнца в год. Эта гипотеза требует соответствующей проверки. Для проверки этой гипотезы российские и западноевропейские ученые планируют запустить в 2006 г. сверхмощный телескоп, который, как полагают ученые, поможет рассмотреть эту «черную дыру».[6]
2.3 Звезды
Звезда — плазменный шар. В звездах сосредоточена основная масса (98—99%) видимого вещества в известной нам части Вселенной. Звезды — мощные источники энергии. В частности, жизнь на Земле обязана своим существованием энергии излучения Солнца.
Звезда — динамическая, направленным образом изменяющаяся плазменная система. В ходе жизни звезды ее химический состав и распределение химических элементов значительно изменяются. На поздних стадиях развития звездное вещество переходит в состояние вырожденного газа (в котором квантово-механическое влияние частиц друг на друга существенным образом сказывается на его физических свойствах — давлении, теплоемкости и др.), а иногда и нейтронного вещества (пульсары — нейтронные звезды, барстеры — источники рентгеновского излучения и др.).[7]
Звезды рождаются из космического вещества в результате его конденсации под действием гравитационных, магнитных и других сил. Под влиянием сил всемирного тяготения из газового облака образуется плотный шар — протозвезда, эволюция которой проходит три этапа.
Первый этап эволюции связан с обособлением и уплотнением космического вещества. Второй представляет собой стремительное сжатие протозвезды. В какой-то момент давление газа внутри протозвезды возрастает, что замедляет процесс ее сжатия, однако температура во внутренних областях пока остается недостаточной для начала термоядерной реакции. На третьем этапе протозвезда продолжает сжиматься, а ее температура — повышаться, что приводит к началу термоядерной реакции. Давление газа, вытекающего из звезды, уравновешивается силой притяжения, и газовый шар перестает сжиматься. Образуется равновесный объект — звезда. Такая звезда является саморегулирующейся системой. Если температура внутри не повышается, то звезда раздувается. В свою очередь, остывание звезды приводит к ее последующему сжатию и разогреванию, ядерные реакции в ней ускоряются. Таким образом, температурный баланс оказывается восстановлен. Процесс преобразования протозвезды в звезду растягивается на миллионы лет, что сравнительно немного по космическим масштабам.
Рождение звезд в галактиках происходит непрерывно. Этот процесс компенсирует также непрерывно происходящую смерть звезд. Поэтому галактики состоят из старых и молодых звезд. Самые старые звезды сосредоточены в шаровых скоплениях, их возраст сравним с возрастом галактики. Эти звезды формировались, когда про-тогалактическое облако распадалось на все более мелкие сгустки. Молодые звезды (возраст около 100 тыс. лет) существуют за счет энергии гравитационного сжатия, которая разогревает центральную область звезды до температуры 10—15 млн. К и «запускает» термоядерную реакцию преобразования водорода в гелий. Именно термоядерная реакция является источником собственного свечения звезд.
С момента начала термоядерной реакции, превращающей водород в гелий, звезда типа нашего Солнца переходит на так называемую главную последовательность, в соответствии с которой будут изменяться с течением времени характеристики звезды: ее светимость, температура, радиус, химический состав и масса. После выгорания водорода в центральной зоне у звезды образуется гелиевое ядро. Водородные термоядерные реакции продолжают протекать, но только в тонком слое вблизи поверхности этого ядра. Ядерные реакции перемещаются на периферию звезды. Выгоревшее ядро начинает сжиматься, а внешняя оболочка — расширяться. Оболочка разбухает до колоссальных размеров, внешняя температура становится низкой, и звезда переходит в стадию красного гиганта. С этого момента звезда выходит на завершающий этап своей жизни. Наше Солнце это ждет примерно через 8 млрд. лет. При этом его размеры увеличатся до орбиты Меркурия, а может быть, и до орбиты Земли, так что от планет земной группы ничего не останется (или останутся оплавленные камни).
Для красного гиганта характерна низкая внешняя, но очень высокая внутренняя температура. При этом в термоядерные процессы включаются все более тяжелые ядра, что приводит к синтезу химических элементов и непрерывной потере красным гигантом вещества, которое выбрасывается в межзвездное пространство. Так, только за один год Солнце, находясь в стадии красного гиганта, может потерять одну миллионную часть своего веса. Всего за десять — сто тысяч лет от красного гиганта остается лишь центральное гелиевое ядро, и звезда становится белым карликом. Таким образом, белый карлик как бы вызревает внутри красного гиганта, а затем сбрасывает остатки оболочки, поверхностных слоев, которые образуют планетарную туманность, окружающую звезду.
Белые карлики невелики по своим размерам — их диаметр даже меньше диаметра Земли, хотя их масса сравнима с солнечной. Плотность такой звезды в миллиарды раз больше плотности воды. Кубический сантиметр его вещества весит больше тонны. Тем не менее, это вещество является газом, хотя и чудовищной плотности. Вещество, из которого состоит белый карлик, — очень плотный ионизированный газ, состоящий из ядер атомов и отдельных электронов.
В белых карликах термоядерные реакции практически не идут, они возможны лишь в атмосфере этих звезд, куда попадает водород из межзвездной среды. В основном эти звезды светят за счет огромных запасов тепловой энергии. Время их охлаждения — сотни миллионов лет. Постепенно белый карлик остывает, цвет его меняется от белого к желтому, а затем — к красному. Наконец, он превращается в черный карлик — мертвую холодную маленькую звезду размером с земной шар, который невозможно увидеть из другой планетной системы.
Несколько иначе развиваются более массивные звезды. Они живут всего несколько десятков миллионов лет. В них очень быстро выгорает водород, и они превращаются в красные гиганты всего за 2,5 млн. лет. При этом в их гелиевом ядре температура повышается до нескольких сотен миллионов градусов. Такая температура дает возможность для протекания реакций углеродного цикла (слияние ядер гелия, приводящее к образованию углерода). Ядро углерода, в свою очередь, может присоединить еще одно ядро гелия и образовать ядро кислорода, неона и т.д. вплоть до кремния. Выгорающее ядро звезды сжимается, и температура в нем поднимается до 3—10 млрд. градусов. В таких условиях реакции объединения продолжаются вплоть до образования ядер железа — самого устойчивого во всей последовательности химического элемента. Более тяжелые химические элементы — от железа до висмута также образуются в недрах красных гигантов, в процессе медленного захвата нейтронов. При этом энергия не выделяется, как при термоядерных реакциях, а, наоборот, поглощается. В результате сжатие звезды все убыстряется.
Образование же наиболее тяжелых ядер, замыкающих таблицу Менделеева, предположительно происходит в оболочках взрывающихся звезд, при их превращении в новые или сверхновые звезды, которыми становятся некоторые красные гиганты. В зашлакованной звезде нарушается равновесие, электронный газ более не способен противостоять давлению ядерного газа. Наступает коллапс — катастрофическое сжатие звезды, она «взрывается внутрь». Но если отталкивание частиц или какие-либо другие причины все же останавливают этот коллапс, происходит мощный взрыв — вспышка сверхновой звезды. Одновременно при этом в окружающее пространство сбрасывается не только оболочка звезды, но и до 90% ее массы, что приводит к образованию газовых туманностей. При этом светимость звезды увеличивается в миллиарды раз. Так, был зафиксирован взрыв сверхновой звезды в 1054 г. В китайских летописях было записано, что она видна днем, как Венера, в течение 23 дней. В наше время астрономы выяснили, что эта сверхновая звезда оставила после себя Крабовидную туманность, являющуюся мощным источником радиоизлучения.
Взрыв сверхновой звезды сопровождается выделением чудовищного количества энергии. При этом рождаются космические лучи, намного повышающие естественный радиационный фон и нормальные дозы космического излучения. Так, астрофизики подсчитали, что примерно раз в 10 млн. лет сверхновые звезды вспыхивают в непосредственной близости от Солнца, повышая естественный фон в 7 тысяч раз. Это чревато серьезнейшими мутациями живых организмов на Земле. Кроме того, при взрыве сверхновых идет сброс всей внешней оболочки звезды вместе с накопившимися в ней «шлаками» — химическими элементами, результатами деятельности нуклеосинтеза. Поэтому межзвездная среда сравнительно быстро обретает все известные на сегодняшний день химические элементы тяжелее гелия. Звезды следующих поколений, в том числе и Солнце, с самого начала содержат в своем составе и в составе окружающего их газопылевого облака примесь тяжелых элементов.[8]
2.4 Солнечная система
Солнечная система представляет собой систему «звезда — планеты». В нашей Галактике приблизительно 200 млрд звезд, среди которых, как полагают специалисты, некоторые звезды имеют планеты. В Солнечную систему входит центральное тело, Солнце, и девять планет с их спутниками (известно более 60 спутников). Диаметр Солнечной системы — более 11,7 млрд км.
В начале XXI в. в Солнечной системе обнаружен объект, который астрономы назвали Седной (имя эскимосской богини океана). Седна имеет диаметр в 2000 км. Один ее оборот вокруг Солнца составляет 10 500 земных лет.
Некоторые астрономы называют этот объект планетой Солнечной системы. Другие астрономы называют планетами только космические объекты, имеющие центральное ядро с относительно высокой температурой. Например, температура в центре Юпитера, по расчетам, достигает 20 000 К. Поскольку в настоящее время Седна находится на расстоянии около 13 млрд км от центра Солнечной системы, то информация об этом объекте достаточно скудна. В самой дальней точке орбиты расстояние от Седны до Солнца достигает огромной величины — 130 млрд км.
В нашу звездную систему входят два пояса малых планет (астероидов). Первый находится между Марсом и Юпитером (содержит более 1 млн астероидов), второй — за орбитой планеты Нептун. Некоторые астероиды имеют диаметр более 1000 км. Внешние границы Солнечной системы окружены так называемым облаком Оорта, названо по имени нидерландского астронома, высказавшего в прошлом веке гипотезу о существовании этого облака. Как полагают астрономы, самый близкий к Солнечной системе край этого облака состоит из льдинок воды и метана (ядер комет), которые, подобно мельчайшим планетам, обращаются вокруг Солнца под действием его силы тяготения на расстоянии свыше 12 млрд км. Количество подобных миниатюрных планет исчисляется миллиардами.
В литературе часто встречается гипотеза о звезде-спутнике Солнца Немезиде. (Немезида в греч. мифологии является богиней, карающей за нарушение морали и законов). Некоторые астрономы утверждают, что Немезида находится на расстоянии 25 трлн км от Солнца в самой отдаленной точке своей орбиты вокруг Солнца и 5 трлн км — в самой близкой точке ее орбиты к Солнцу. Как полагают эти астрономы, прохождение Немезиды через облако Оорта вызывает катастрофы в Солнечной системе, поскольку небесные тела из этого облака попадают в Солнечную систему. Астрономы с древних времен интересуются остатками тел внеземного происхождения, метеоритами. Ежедневно, как утверждают исследователи, падает на Землю около 500 внеземных тел. Более 50% падающих метеоритов — каменные метеориты, 4% — железные и 5% — железокаменные. Среди каменных выделяют хондриты (от соответствующего греч. слова — шарик, зерно) и ахондриты. Интерес к метеоритам связан с изучением вопроса о происхождении Солнечной системы и происхождении жизни на Земле.
Наша Солнечная система делает со скоростью 240 км/с полный оборот вокруг центра Галактики за 230 млн лет. Это называется галактическим годом. Кроме этого, Солнечная система движется вместе со всеми объектами нашей Галактики со скоростью приблизительно 600 км/с вокруг некоторого общего гравитационного центра скопления галактик. Это означает, что скорость движения Земли относительно центра нашей галактики в несколько раз больше ее скорости относительно Солнца. Кроме этого, Солнце вращается вокруг своей оси со скоростью 2 км/с. По своему химическому составу Солнце состоит из водорода (90%), гелия (7%) и тяжелых химических элементов (2—3%). Здесь указываются приблизительные цифры. По массе атом гелия почти в 4 раза больше массы атома водорода.
Солнце — звезда спектрального класса G, располагающаяся на главной последовательности звезд диаграммы Герцшпрунга — Ресселла. Масса Солнца (2· 1030 кг) составляет практически 98,97 % всей массы Солнечной системы, на все остальные образования в этой системе (планеты и т. д.) приходится всего лишь 2% общей массы Солнечной системы. В суммарной массе всех планет основную долю составляет масса двух планет-гигантов, Юпитера и Сатурна, около 412,45 земных масс, на остальные приходится всего лишь 34 земных массы. Масса Земли— 6 · 1024кг, 98% момента количества движения в Солнечной системе принадлежит планетам, а не Солнцу. Солнце — это созданный природой естественный термоядерный плазменный реактор, имеющий форму шара со средней плотностью 1,41 кг/м3. Это означает, что средняя плотность на Солнце чуть больше плотности обычной на нашей Земле воды. Светимость Солнца (L) равна примерно 3,86 • 1033эрг/с. Радиус Солнца составляет округленно 700 тыс. км. Таким образом, два радиуса Солнца (диаметр) в 109 раз больше земного. Ускорение свободного падения на Солнце — 274 м/с2, на Земле — 9,8 м/с2. Это означает, что вторая космическая скорость для преодоления силы тяготения Солнца равна 700 км/с, для Земли — 11,2 км/с.
Плазма — это физическое состояние, когда ядра атомов отдельно сосуществуют с электронами. В слоенном газоплазменном образовании под действием силы гравитации происходят существенные отклонения от средних значений температуры, давления и т. д. в каждом слое Солнца.
Термоядерные реакции идут внутри Солнца в шаровой области с радиусом 230 тыс. км. В центре этой области температура около 20 млн К. Она понижается к границам этой зоны до 10 млн К. Следующая шаровая область с протяженностью 280 тыс. км имеет температуру 5 млн К. В этой области термоядерные реакции не идут, поскольку пороговая для них температура в 10 млн К. Эту область называют областью переноса лучистой энергии, идущей изнутри предшествующей области. За этой областью следует область конвекции (лат. convectio — привоз, перенесение). В области конвекции температура достигает 2 млн К.
Конвекция — это физический процесс переноса энергии в форме тепла определенной средой. Физические и химические свойства конвективной среды могут быть различными: жидкость, газ и т. д. Свойства этой среды определяют скорость процесса переноса энергии в форме тепла в следующую область Солнца. Конвективная область или зона имеет на Солнце протяженность приблизительно 150—200 тыс. км.
Скорость движения в конвективной среде сравнима со скоростью звука (300 м/с). Величина этой скорости играет большую роль в отводе тепла из недр Солнца в его последующие области (зоны) и в космос.
Солнце не взрывается в силу того, что скорость горения ядерного горючего внутри Солнца заметно меньше скорости отвода тепла в конвективной зоне, даже при очень резких выделениях энергии-массы. Конвективная зона в силу физических свойств опережает возможность взрыва: конвективная зона расширяется на несколько минут раньше возможного взрыва и тем самым переносит избыток энергии-массы в следующий слой, область Солнца. В ядре до конвективных зон Солнца плотность массы достигается большим количеством легких элементов (водорода и гелия). В конвективной зоне происходит процесс рекомбинации (образования) атомов, тем самым увеличивается молекулярная масса газа в конвективной зоне. Рекомбинация (лат. recombinare — соединять) происходит из остывающего вещества плазмы, обеспечивающей термоядерные реакции внутри Солнца. Давление в центре Солнца равно 100 г/см3.
На поверхности Солнца температура достигает приблизительно 6000 К. Таким образом, температура от конвективной зоны падает до 1 млн К и достигает 6000 К на уровне полного радиуса Солнца.
Свет — это электромагнитные волны разной длины. Область Солнца, где возникает свет, называется фотосферой (греч. фотос — свет). Область над фотосферой называется хромосферой (от греч. — цвет). Фотосфера занимает 200—300 км (0,001 радиуса Солнца). Плотность фотосферы 10-9— 10-6 г/см3, температура фотосферы убывает от ее нижнего слоя вверх до 4,5 тыс. К. В фотосфере возникают солнечные пятна и факелы. Понижение температуры в фотосфере, т. е. в нижнем слое атмосферы Солнца, достаточно типичное явление. Следующий слой — это хромосфера, его протяженность равна 7—8 тыс.км. В этом слое температура начинает расти до 300 тыс, К. Следующий атмосферный слой — солнечная корона — в ней температура уже достигает 1,5—2 млн К. Солнечная корона распространяется на несколько десятков радиусов Солнца и затем рассеивается в межпланетном пространстве. Эффект увеличения температуры в солнечной короне Солнца связывают с таким явлением, как «солнечный ветер». Это — газ, образующий солнечную корону, состоит в основном из протонов и электронов, скорость которых увеличивается согласно одной из точек зрения, так называемыми волнами световой активности из зоны конвекции, разогревающими корону. Каждую секунду Солнце теряет 1/100 часть своей массы, т. е. приблизительно 4 млн τ за секунду. «Расставание» Солнца со своей энергией-массой проявляется в форме тепла, электромагнитного излучения, солнечного ветра. Чем дальше от Солнца, тем меньше вторая космическая скорость, необходимая для выхода частиц, образующих «солнечный ветер», из поля тяготения Солнца. На расстоянии Земной орбиты (150 млн км) скорость частиц солнечного ветра достигает 400 м/с. Среди множества проблем исследования Солнца важное место занимает проблема солнечной активности, с которой связан ряд таких явлений, как солнечные пятна, активность магнитного поля Солнца и солнечная радиация. Солнечные пятна образуются в фотосфере. Среднее годовое число солнечных пятен измеряется 11 -летним периодом. По своей протяженности они могут достигать в поперечнике до 200 тыс. км. Температура солнечных пятен ниже, чем температура фотосферы, в которой они образуются, на 1—2 тыс. К, т. е. 4500 К и ниже. Поэтому они выглядят темными. Появление солнечных пятен связывают с изменением магнитного поля Солнца. В солнечных пятнах напряженность магнитного поля значительно выше, чем в других областях фотосферы.
Две точки зрения в объяснении магнитного поля Солнца:
1. Магнитное поле Солнца возникло в процессе образования Солнца. Поскольку магнитное поле упорядочивает процесс выброса энергии-массы Солнца в окружающую среду, то согласно этой позиции 11-летний цикл появления пятен не является закономерностью. В 1890 г. директор Гринвичской обсерватории (основана в 1675 г. в предместье Лондона) Э. Маудер заметил, что с 1645 по 1715 г. нет упоминаний об 11-летних циклах. Гринвичский меридиан — это нулевой меридиан, от которого ведется отсчет долгот на Земле.
2. Вторая точка зрения представляет Солнце как некую динамо-машину, в которой электрически заряженные частицы, входящие в плазму, создают мощное магнитное поле, резко возрастающее через 11-летние циклы. Существует гипотеза об особых космических условиях, в которых находится Солнце и Солнечная система. Речь идет о так называемом коротационном круге (англ. corotation — совместное вращение). В коротационном круге на определенном его радиусе, согласно некоторым исследованиям, происходит синхронное вращение спиральных рукавов и самой Галактики, что создает особые физические условия для движения структур, входящих в этот круг, где находится и Солнечная система.
В современной науке развивается точка зрения о тесной связи процессов, происходящих на Солнце, с жизнью человека на Земле. Наш соотечественник А. Л. Чижевский (1897—1964) является одним из основоположников гелиобиологии, изучающей влияние энергии Солнца на развитие живых организмов и человека. Например, исследователи обратили внимание на временные совпадения крупных событий в социальной жизни человека с периодами вспышек солнечной активности. В прошлом столетии максимум активности Солнца приходился на 1905—1907, 1917, 1928, 1938, 1947, 1968, 1979 и 1990-1991 гг.
Происхождение Солнечной системы. Происхождение Солнечной системы из газопылевого облака межзвездной среды (МЗС) является наиболее признанной концепцией. Высказывается мнение, что масса исходного для образования Солнечной системы облака была равна 10 массам Солнца. В этом облаке решающим был химический его состав (около 70% составлял водород, около 30% — гелий и 1—2% — тяжелые химические элементы). Приблизительно 5 млрд лет назад из этого облака образовалось плотное сгущение, названное протосолнечным диском. Как полагают, взрыв сверхновой звезды в нашей Галактике придал этому облаку динамический импульс вращения и фрагментации: образовались протозвезда и протопланетный диск. Согласно этой концепции процесс образования протосолнца и протопланетного диска происходил быстро, за 1 млн лет, что привело к сосредоточению всей энергии-массы будущей звездной системы в ее центральном теле, а момент количества движения — в протопланетном диске, в будущих планетах. Считается, что эволюция протопланетного диска происходила за 1 млн лет. Шло слипание частичек в центральной плоскости этого диска, которое в дальнейшем привело к образованию сгущений частиц, вначале небольших, затем — более крупных тел, которые геологи называют планетеземалеями. Из них, как полагают, образовались будущие планеты. Эта концепция основывается на результатах компьютерных моделей. Есть и другие концепции. Например, в одной из них говорится, что на рождение Солнца-звезды потребовалось 100 млн лет, когда в прото Солнце возникла реакция термоядерного синтеза. Согласно этой концепции планеты Солнечной системы, в частности земной группы, возникли за те же 100 млн лет, из массы, оставшейся после образования Солнца. Часть этой массы была удержана Солнцем, другая — растворилась в межзвездном пространстве.
В январе 2004 г. было сообщение в зарубежных изданиях об открытии в созвездии Скорпиона звезды, по размерам, светимости и массе подобной Солнцу. Астрономов интересует в настоящее время вопрос: есть ли у этой звезды планеты?
Существует несколько загадок в изучении Солнечной системы.
1. Гармония в движении планет. Все планеты Солнечной системы обращаются вокруг Солнца по эллиптическим орбитам. Движение всех планет Солнечной системы происходит в одной и той же плоскости, центр которой расположен в центральной части экваториальной плоскости Солнца. Плоскость, образованная орбитами планет, называется плоскостью эклиптики.
2. Все планеты и Солнце вращаются вокруг собственной оси. Оси вращения Солнца и планет, за исключением планеты Уран, направлены, грубо говоря, перпендикулярно плоскости эклиптики. Ось Урана направлена к плоскости эклиптики почти параллельно, т. е. он вращается лежа на боку. Еще его одна особенность — он вращается вокруг своей оси в другом направлении, как и Венера, в отличие от Солнца и остальных планет. Все остальные планеты и Солнце вращаются против направления движения стрелки часов. Уран имеет 15 спутников.
3. Между орбитами Марса и Юпитера существует пояс малых планет. Это так называемый астероидный пояс. Малые планеты имеют в диаметре от 1 до 1000 км. Их общая масса меньше 1/700 массы Земли.
4. Все планеты делятся на две группы (земную и неземную). Первые — это планеты с высокой плотностью, в их химическом составе главное место занимают тяжелые химические элементы. Они невелики по размерам и медленно вращаются вокруг своей оси. К этой группе относятся Меркурий, Венера, Земля и Марс. В настоящее время высказываются предположения о том, что Венера — это прошлое Земли, а Марс — ее будущее.
Ко второй группе относятся: Юпитер, Сатурн, Уран, Нептун и Плутон. Они состоят из легких химических элементов, быстро вращаются вокруг своей оси, медленно обращаются вокруг Солнца и получают меньше лучистой энергии от Солнца. Ниже (в таблице) приводятся данные о средней температуре поверхности планет по шкале Цельсия, продолжительности дня и ночи, длительности года, диаметре планет Солнечной системы и массы планеты по отношению к массе Земли (принятой за 1).
Расстояние между орбитами планет приблизительно удваивается при переходе от каждой из них к последующей. Это было отмечено еще в 1772 г. астрономами И. Тициусом и И. Боде, отсюда появилось название «Правило Тициуса — Боде», соблюдаемое в расположении планет. Если принять расстояние Земли до Солнца (150 млн км) за одну астрономическую единицу, то получается следующее расположение планет от Солнца по этому правилу:
Меркурий | — 0,4 а. е. |
Венера | — 0,7 а. е. |
Земля | — 1 а. е. |
Марс | — 1,6 а. е. |
Астероиды | — 2,8 а. е. |
Юпитер | — 5,2 а. е. |
Сатурн | — 10,0 а. е. |
Уран | — 19,6 а. е. |
Нептун | — 38,8 а. е. |
Плутон | — 77,2 а. е. |
Таблица. Данные о планетах Солнечной системы
Таблица. Данные о планетах Солнечной системы Планета | Средняя температура на поверхности по шкале Цельсия | Продолжительность дня и ночи | Длительность года | Диаметр, км | Масса (по отношению к земной принятой за 1) | Плотность, г/см3 | Состав атмосферы |
Меркурий | 90 | 58,65 дн. | 87,96 дн. | 4878 | 0,04 | 5,42 | Н, Не |
Венера | 462 | 243,01 дн. | 224,70 дн. | 12101 | 0,81 | 5,11 | СO2, N |
Земля | 14 | 23,93 ч | 365,25 дн. | 12756 | 1,00 | 5,52 | N, О, СО2, Ar |
Марс | -60 | 24,63 ч | 686,68 дн. | 6787 | 0,11 | 3,95 | N, CO2, Ar |
Юпитер | -150 | 9,90 ч | 11,86 г | 142984 | 316,94 | 1,33 | Η, ΝΗ3, СН4 |
Сатурн | -180 | 10,67 ч | 23,46 г. | 120536 | 94,9 | 0,69 | Nh4, Ch5 |
Уран | -210 | 17,90 ч | 84,02 г. | 51118 | 14,66 | 1,56 | СН4 |
Нептун | -220 | 19,2 ч | 164,77 г. | 49528 | 17,16 | 2,27 | Η, Не, СН4 |
Плутон | -230 | 6,39 дн. | 247,69 г. | 2300 | 0,7 | 4,00 | Ch5, N |
При рассмотрении истинных расстояний планет до Солнца оказывается, что Плутон в некоторые периоды находится ближе к Солнцу, чем Нептун, и, следовательно, он меняет свой порядковый номер по правилу Тициуса — Боде.
Загадка планеты Венера. В древних астрономических источниках возрастом в 3,5 тыс. лет (китайские, вавилонские, индийские) нет упоминаний о Венере. Американский ученый И. Великовский в книге «Сталкивающиеся миры», появившейся в 50-х гг. ХХ в., высказал гипотезу о том, что планета Венера заняла свое место всего лишь недавно, в период формирования древних цивилизаций. Приблизительно раз в 52 года Венера подходит близко к Земле, на расстояние 39 млн км. В период великого противостояния, каждые 175 лет, когда все планеты выстраиваются друг за другом в одном направлении, на расстояние 55 млн км Марс приближается к Земле.
Астрономы пользуются сидерическим временем для наблюдения положения звезд и других объектов неба, поскольку они появляются в ночном небе в одно и то же сидерическое время. Солнечное время — время, измеряемое относительно Солнца. Когда Земля де. лает полный оборот вокруг своей оси относительно Солнца, проходят одни сутки. Если же оборот Земли рассматривать относительно звезд, то за этот оборот Земля сдвинется по своей орбите на 1/365 часть пути вокруг Солнца, т. е. на 3 мин 56 с. Это время называется сидерическим (лат. siederis — звезда).[9]
Заключение
После Большого взрыва образовавшееся вещество и электромагнитное поле были рассеяны и представляли собой газопылевое облако и электромагнитный фон. Спустя I млрд. лет после начала образования Вселенной стали появляться галактики и звезды. К этому времени вещество уже успело охладиться, и в нем стали возникать стабильные флуктуации плотности, равномерно заполнявшие космос. В сформировавшейся материальной среде появлялись и получали развитие случайные уплотнения вещества. Силы тяготения внутри таких уплотнений проявляют себя заметнее, чем за их границами. Поэтому, несмотря на общее расширение Вселенной, вещество в уплотнениях притормаживается, а его плотность начинает постепенно возрастать. Продолжая сжиматься и теряя при этом энергию на излучение, уплотнившееся вещество в результате своей эволюции превращалось в современные галактики. Появление подобных уплотнений и стало началом рождения крупномасштабных космических структур — галактик, а затем и отдельных звезд.
Развитие современной астрономии постоянно расширяет знание о строении и объектах доступной для исследования Вселенной. Этим объясняется различие данных о количестве звезд, галактик и других объектах, которые приводятся в литературе.
Открыто несколько десятков планет, находящихся в нашей Галактике и вне ее.
Открытие Седны в качестве 10-й планеты Солнечной системы существенно изменяет наши представления о размерах Солнечной системы и ее взаимодействии с другими объектами нашей Галактики.
В целом следует сказать, что астрономия лишь со второй половины прошлого века стала изучать самые далекие объекты Вселенной на основе более современных средств наблюдения и исследования.
Современную астрономию интересует объяснение наблюдаемого эффекта движения (дрейфа) значительных масс вещества с большой скоростью относительно реликтового излучения. Речь идет о так называемой Великой стене. Это гигантское скопление галактик, находящееся на расстоянии 500 млн световых лет от нашей Галактики. К сожалению, в изучении космоса снова проявляются военные интересы ряда стран. Например, космическая программа США.
Список использованной литературы
1. Дубнищева Т.Я. Концепции современного естествознания: учеб. пособие для студ. вузов / Татьяна Яковлевна Дубнищева. — 6-е изд., испр. и доп. — М.: Издательский центр «Академия», 2006. — 608 с.
2. Лихин А. Ф. Концепции современного естествознания: учеб. — ТК Велби, Изд-во Проспект, 2006. — 264 с.
3. Найдыш В.М. Концепции современного естествознания: Учебник. — Изд. 2-е, перераб. и доп. – М.: Альфа-М; ИНФРА-М, 2004. — 622 с.
4. Садохин, Александр Петрович. Концепции современного естествознания: учебник для студентов вузов, обучающихся по гуманитарным специальностям и специальностям экономики и управления / А.П. Садохин. — 2-е изд., перераб. и доп. — М.: ЮНИТИ-ДАНА, 2006. — 447 с.
[1] Найдыш В.М. Концепции современного естествознания: Учебник. — Изд. 2-е, перераб. и доп. – М.: Альфа-М; ИНФРА-М, 2004. — 622 с.М; ИНФРА-М, 2004. — 622 с.
[2] Лихин А. Ф. Концепции современного естествознания: учеб. — ТК Велби, Изд-во Проспект, 2006. — 264 с.
[3] Дубнищева Т.Я. Концепции современного естествознания: учеб. пособие для студ. вузов / Татьяна Яковлевна Дубнищева. — 6-е изд., испр. и доп. — М.: Издательский центр «Академия», 2006. — 608 с.
[4] Гигантские молекулярные облака
[5] Межзвездная среда
[6] Лихин А. Ф. Концепции современного естествознания: учеб. — ТК Велби, Изд-во Проспект, 2006. — 264 с.
[7] Найдыш В.М. Концепции современного естествознания: Учебник. — Изд. 2-е, перераб. и доп. – М.: Альфа-М; ИНФРА-М, 2004. — 622 с.
[8] Садохин, Александр Петрович.Концепции современного естествознания: учебник для студентов вузов, обучающихся по гуманитарным специальностям и специальностям экономики и управления / А.П. Садохин. — 2-е изд., перераб. и доп. — М.: ЮНИТИ-ДАНА, 2006. — 447 с.
[9] Лихин А. Ф. Концепции современного естествознания: учеб. — ТК Велби, Изд-во Проспект, 2006. — 264 с.
www.ronl.ru