Биоритмы как факторы естественного отбора и адаптации организмов. Воздействие на биоритмы факторов антропогенного происхождения реферат


Биоритмы и их роль в формировании патологической реактивности — реферат

ГБОУ ВПО «Волгоградский государственный медицинский университет»

                                     Министерства здравоохранения РФ

 

Кафедра Патологической Физиологии

                                            

                                               Реферат

 

 Биоритмы и их роль в формировании патологической реактивности

      

 

                                                     Выполнила: студентка

                                                      11 группы, 3 курса,

       педиатрического   факультета

       Центерадзе Э.Т.

                                    

                                              Волгоград – 2014 г.

 

                                   Содержание:

 

  1. Введение ……………………………………………………………. 3
  2. Реактивность организма …………………………………………... 3
  3. Биологические ритмы ……………………………………………... 3
    1. Виды биологических ритмов ………………………... 4

4. Изменения реактивности организма ……………………………… 7

5. Биоритмы и патологическая  реактивность ………………………. 9

6. Дополнительная информация  о биоритмах и реактивности 

     организма …………………………………………………………… 15

7. Заключение ………………………………………………………….. 18

8. Литература …………………………………………………………... 19

 

 

 

 

 

                                                     Введение

 

Реактивность присуща всему живому. От реактивности в большой степени зависит способность человека или животного приспосабливаться к условиям среды, поддерживать гомеостаз. От реактивности зависит – возникнет или не возникнет болезнь при встрече с болезнетворным фактором и то, как она будет протекать.

Реактивность организма – это его способность отвечать изменениями жизнедеятельности на воздействие внутренней и внешней среды.

Различают физиологическую и патологическую реактивность.

Физиологическая реактивность – это изменения жизнедеятельности организма, определенные формы реагирования на действие факторов окружающей среды, не нарушающие его гомеостаз; это реактивность здорового человека на непатогенные раздражители.

Патологическая реактивность проявляется при действии на организм болезнетворных факторов, вызывающих в организме повреждение и нарушение его гомеостаза. По сути, развитие болезни и есть проявление патологической реактивности.

Биологические ритмы (биоритмы) - периодически повторяющиеся изменения характера и интенсивности биологических процессов и явлений. Они свойственны живой материи на всех уровнях ее организации — от молекулярных и субклеточных до биосферы. Являются фундаментальным процессом в живой природе.

Адаптация организмов к окружающей среде в процессе эволюционного развития шла в направлении, как совершенствования их структурной организации, так и согласования во времени и пространстве деятельности различных функциональных систем. Исключительная стабильность периодичности изменения освещенности, температуры, влажности, геомагнитного поля и других параметров окружающей среды, обусловленных движением Земли и Луны вокруг Солнца, позволила живым системам в процессе эволюции выработать стабильные и устойчивые к внешним воздействиям временные программы, проявлением которых служат биоритмы. Такие ритмы, обозначаемые иногда как экологические, или адаптивные (например: суточные, приливные, лунные и годовые), закреплены в генетической структуре. В искусственных условиях, когда организм лишен информации о внешних природных изменениях (например, при непрерывном освещении или темноте, в помещении с поддерживаемыми на одном уровне влажностью, давлением и т. п.) периоды таких ритмов отклоняются от периодов соответствующих ритмов окружающей среды, проявляя тем самым свой собственный период.

 

Виды биологических ритмов:

Инфрадианные ритмы. Ритмы длительностью больше суток. Примеры: впадение в зимнюю спячку (животные), менструальные циклы у женщин (человек).

Существует тесная зависимость между фазой солнечного цикла и антропометрическими данными молодежи. Акселерация весьма подвержена солнечному циклу: тенденция к повышению модулируется волнами, синхронными с периодом «переполюсовки» магнитного поля Солнца (а это удвоенный 11-летний цикл, то есть 22 года). В деятельности Солнца выявлены и более длительные периоды, охватывающие несколько столетий. Важное практическое значение имеет также исследование других многодневных (околомесячных, годовых и пр.) ритмов, датчиком времени для которых являются такие периодические изменения в природе, как смена сезонов, лунные циклы и др.

Лунные ритмы. Влияние (отражение) лунных ритмов на отлив и прилив морей и океанов. Соответствуют по циклу фазам Луны (29.53 суток) или лунным суткам (24.8 часов). Лунные ритмы хорошо заметны у морских растений и животных, наблюдаются при культивировании микроорганизмов.

Психологи отмечают изменения в поведении некоторых людей, связанные с фазами луны, в частности, известно, что в новолуние растёт число самоубийств, сердечных приступов и пр. Возможно, менструальный цикл связан с лунным циклом.

Ультрадианные ритмы. Ритмы длительностью меньше суток. Примеры: концентрация внимания, изменение болевой чувствительности, процессы выделения и секреции, цикличность фаз, чередующихся на протяжении 6-8-часового нормального сна у человека. В опытах на животных было установлено, что чувствительность к химическим и лучевым поражениям колеблется в течение суток очень заметно.

Циркадианные (околосуточные) ритмы. Центральное место среди ритмических процессов занимает циркадианный ритм, имеющий наибольшее значение для организма. Понятие циркадианного (околосуточного) ритма ввел в 1959 году Халберг. Он является видоизменением суточного ритма с периодом 24 часа, протекает в константных условиях и принадлежит к свободно текущим ритмам. Это ритмы с не навязанным внешними условиями периодом. Они врожденные, эндогенные, то есть обусловлены свойствами самого организма. Период циркадианных ритмов длится у растений 23-28 часов, у животных 23-25 часов.

Впервые роль соответствия биоритмов клетки падающему на нее извне раздражению установил русский физиолог Н. Е. Введенский. Он в самом общем плане установил, что нормальное функционирование возбудимого субстрата связано с соответствием внутренних биоритмов клетки ритму падающего на нее раздражения.

Поскольку на организм воздействует целый ряд ритмических факторов (смена дня и ночи, времен года, гео- и гелиофизических процессов и т.д.), в клетках должны были выработаться механизмы, подстраивающие ритм их работы к этим факторам. Из внешней среды в клетку в кодированной форме поступает определенная информация. Одним из таких кодов является временной. Соответственно, в клетке должны быть рецепторы, воспринимающие этот код, и образования, дешифрующие и переводящие его в конкретные метаболические команды. Если бы в клетке таких систем не было, то она не смогла бы приспосабливать свое функционирование к меняющимся условиям внешней среды и неизбежно бы погибла. Естественный отбор закрепил те коды, которые лучше стабилизируют систему. В клетке элементами, воспринимающими временной код, являются, по-видимому, мембранные образования, которые обладают выраженной способностью к резонансу, а в силу сложности и многокомпонентности своей структуры - возможностями к передаче полученных временных сигналов в самых различных направлениях и в самой различной конкретной метаболической форме.

Отсюда следует, что несоответствие внешних ритмов внутренней частоте автоколебаний отдельных участков клеточной мембраны или повреждение мембран, ведущее к изменению их пространственно-временных функций, вызовет в клетке развитие патологического процесса. Вторую часть этого положения наглядно иллюстрирует следующий пример. Клетки организмов обладают строго ограниченной способностью к делению (деление клеток, как известно, процесс ритмический). Например, клетки человеческого организма могут делиться примерно пятьдесят раз. Ставился следующий эксперимент. В культуре тканей выращивали человеческие фибробласты и определяли число их делений, которое было около пятидесяти. Другие фибробласты замораживали после двадцатого деления и длительное время хранили в состоянии гипотермического анабиоза. После оттаивания и восстановления жизнеспособности они делились только тридцать раз (в сумме – пятьдесят).

А вот опухолевые клетки, у которых наблюдаются глубокие изменения в мембранах, способные делиться беспредельно.

Нарушение внутренних биоритмов клеточных структур или нарушение соответствия внутренних биоритмов внешним ритмическим стимулам может лежать в основе развития патологических процессов в клетке и организме в целом.

 

                                Изменения реактивности организма

 

Реактивность организма изменяется в течение индивидуальной жизни человека (т.е. в процессе онтогенезе). Это можно проследить в возрастном аспекте на многих примерах.

Так, способность к развитию воспаления в полном его объёме формируется у индивида постепенно по мере онтогенетического развития организма, протекая невыразительно во внутриутробном периоде и приобретая большую выраженность у новорождённых. У новорождённого более частые, чем у взрослых, болезни органов дыхания и пищеварительной системы обусловлены анатомо-физиологическими особенностями наиболее важных систем (дыхательной, пищеварительной, иммунной, эндокринной, нервной).

Меньшую приспособляемость организма к колебаниям температуры окружающей среды и, как результат, более быстрое возникновение перегревания или переохлаждения можно объяснить недоразвитием системы терморегуляции.

В возрасте от года до трёх лет ребёнок особо восприимчив к различным инфекциям (корь, скарлатина, коклюш, дифтерия) в силу функциональной незрелости иммунной системы и исчезновения к этому времени антител, полученных от матери через плаценту и при кормлении грудью, а также недоразвития барьерных систем организма.

Реактивность в пубертатном периоде (13-18 лет) обусловлена, главным образом, изменениями функционирования гормональной и иммунной систем. Повьппается восприимчивость к гнойничковым инфекциям — развиваются юношеские угри.

Наиболее оптимально выражена реактивность организма в молодом и зрелом возрасте, когда все системы сформированы и адекватно функционируют.

В старости индивидуальная реактивность вновь снижается, чему, по-видимому, способствует перемена в гормональной системе, ослабление функции барьерных систем, процессов регенерации, активности фагоцитов, уменьшение выработки антител, вялое течение воспаления и лихорадки и т.д.

Всё это приводит к повышению восприимчивости к кокковым и вирусным (грипп, энцефалит) инфекциям, увеличению частоты развития воспалений лёгких, гнойничковых заболеваний кожи и слизистых оболочек, опухолей тканей и органов.

Нарушения биоритмов различных уровней организации организма вызывают либо функциональные (десинхронозы), либо органические расстройства, что может привести как к возникновению того или иного заболевания или патологического процесса, так и к ускорению его развития, утяжелению течения и ухудшению исхода. Например, коклюш и корь чаще возникают и более тяжело протекают в конце зимы, число психических болезней увеличивается весной, заболеваемость полиомиелитом возрастает в августе и сентябре, обострение язвенной болезни двенадцатиперстной кишки бывают весной и осенью.

У людей с заболеваниями сердечно-сосудистой системы выявлено извращение циркадной ритмики метаболизма липидов, электролитов (натрия, калия), активности свёртывающей системы крови, функционирования систем кровообращения и дыхания. Причём, наиболее неблагоприятные сдвиги у больных ишемической болезнью сердца (ИБС) и застойной сердечной недостаточностью выявляют в вечернее и, особенно, ночное время. Так, у больных с начальной стадией гипертонической болезни отмечено смещение акрофазы систолического и среднего давления с дневных часов на вечерние.

Ещё большие циркадные нарушения сердечно-сосудистой и симпато-адреналовой систем обнаруживают у больных, страдающих одновременно атеросклерозом, гипертонической болезнью III стадии и недостаточностью кровообращения. Смертность от сердечной недостаточности зимой выше утром и ниже вечером, а летом смещена на ранние утренние и поздние вечерние часы.

Выявлена и существенная зависимость измененной реактивности, в том числе чувствительности, больного организма к действию лекарственных препаратов.

Доказано также, что для профилактики аритмий и сердечной недостаточности препараты калия целесообразнее назначать в вечернее и ночное время. Сердечные гликозиды, используемые для лечения декомпенсированных пороков сердца и кардиосклероза, необходимо принимать в вечернее время и отказаться, таким образом, от традиционного применения их в первую половину суток.

 

                Биоритмы и патологическая реактивность

 

Циркадианные ритмы у человека. Все или почти все виды деятельности человека связаны с временем суток, циклом бодрствование — сон. Температура тела на протяжении суток изменяется на 0,6—1,0 ° С и не зависит от того, спит или бодрствует человек. Температура тела зависит от активности человека и влияет на продолжительность сна. В наблюдениях в условиях длительной изоляции человека (проживание в пещере) со свободнотекущими ритмами отмечено, что если засыпание совпадает с минимальной температурой тела, то сон длится 8 ч; если человек засыпал при относительно высокой температуре тела, то длительность сна могла достигать 14 ч. В нормальных условиях люди с нормальным 24-часовым циклом бодрствование — сон обычно засыпают с понижением и просыпаются с подъемом температуры тела, не замечая этого. Суточный ритм температуры тела является очень прочным стереотипом, закрепленным в эволюционном развитии сменой дня и ночи, с характерными для них разной освещенностью, температурой окружающей среды, движением воздуха, геомагнитным воздействием и наконец различной активностью человека, который со времени существования вида Homo sapiens имел высокую активность в дневное время суток. Этим можно объяснить то, что со временем суток связана интенсивность основного обмена — он выше днем, чем ночью.

yaneuch.ru

Государственное бюджетное образовательное учреждение высшего профессионального образования Волгоградский государственный медицинский университет Министерства здравоохранения Российской Федерации

Кафедра патологической физиологии

Заведующий кафедрой:

Д.м.н., профессор Рогова Людмила Николаевна

Реферат на тему:

Биоритмы и их роль в формировании патологической реактивности

Выполнила студентка 3 курса

лечебного факультета, 1 гр.

Кондратьева Е.А.

Волгоград

2014

Содержание

  1. Введение

  2. Изменения реактивности организма

  3. Биоритмы и патологическая реактивность

  4. Дополнительная информация о биоритмах и реактивности организма

  5. Литература

1.Введение

Реактивность присуща всему живому. От реактивности в большой степени зависит способность человека или животного приспосабливаться к условиям среды, поддерживать гомеостаз. От реактивности зависит – возникнет или не возникнет болезнь при встрече с болезнетворным фактором и то, как она будет протекать.

Реактивность организма – это его способность отвечать изменениями жизнедеятельности на воздействие внутренней и внешней среды.

Различают физиологическую и патологическую реактивность.

Физиологическая реактивность – это изменения жизнедеятельности организма, определенные формы реагирования на действие факторов окружающей среды, не нарушающие его гомеостаз; это реактивность здорового человека на непатогенные раздражители.

Патологическая реактивность проявляется при действии на организм болезнетворных факторов, вызывающих в организме повреждение и нарушение его гомеостаза. По сути, развитие болезни и есть проявление патологической реактивности.

Биологические ритмы (биоритмы) - периодически повторяющиеся изменения характера и интенсивности биологических процессов и явлений. Они свойственны живой материи на всех уровнях ее организации — от молекулярных и субклеточных до биосферы. Являются фундаментальным процессом в живой природе.

Адаптация организмов к окружающей среде в процессе эволюционного развития шла в направлении, как совершенствования их структурной организации, так и согласования во времени и пространстве деятельности различных функциональных систем. Исключительная стабильность периодичности изменения освещенности, температуры, влажности, геомагнитного поля и других параметров окружающей среды, обусловленных движением Земли и Луны вокруг Солнца, позволила живым системам в процессе эволюции выработать стабильные и устойчивые к внешним воздействиям временные программы, проявлением которых служат биоритмы. Такие ритмы, обозначаемые иногда как экологические, или адаптивные (например: суточные, приливные, лунные и годовые), закреплены в генетической структуре. В искусственных условиях, когда организм лишен информации о внешних природных изменениях (например, при непрерывном освещении или темноте, в помещении с поддерживаемыми на одном уровне влажностью, давлением и т. п.) периоды таких ритмов отклоняются от периодов соответствующих ритмов окружающей среды, проявляя тем самым свой собственный период.

Виды биологических ритмов:

Инфрадианные ритмы. Ритмы длительностью больше суток. Примеры: впадение в зимнюю спячку (животные), менструальные циклы у женщин (человек).

Существует тесная зависимость между фазой солнечного цикла и антропометрическими данными молодежи. Акселерация весьма подвержена солнечному циклу: тенденция к повышению модулируется волнами, синхронными с периодом «переполюсовки» магнитного поля Солнца (а это удвоенный 11-летний цикл, то есть 22 года). В деятельности Солнца выявлены и более длительные периоды, охватывающие несколько столетий. Важное практическое значение имеет также исследование других многодневных (околомесячных, годовых и пр.) ритмов, датчиком времени для которых являются такие периодические изменения в природе, как смена сезонов, лунные циклы и др.

Лунные ритмы. Влияние (отражение) лунных ритмов на отлив и прилив морей и океанов. Соответствуют по циклу фазам Луны (29.53 суток) или лунным суткам (24.8 часов). Лунные ритмы хорошо заметны у морских растений и животных, наблюдаются при культивировании микроорганизмов.

Психологи отмечают изменения в поведении некоторых людей, связанные с фазами луны, в частности, известно, что в новолуние растёт число самоубийств, сердечных приступов и пр. Возможно, менструальный цикл связан с лунным циклом.

Ультрадианные ритмы. Ритмы длительностью меньше суток. Примеры: концентрация внимания, изменение болевой чувствительности, процессы выделения и секреции, цикличность фаз, чередующихся на протяжении 6-8-часового нормального сна у человека. В опытах на животных было установлено, что чувствительность к химическим и лучевым поражениям колеблется в течение суток очень заметно.

Циркадианные (околосуточные) ритмы. Центральное место среди ритмических процессов занимает циркадианный ритм, имеющий наибольшее значение для организма. Понятие циркадианного (околосуточного) ритма ввел в 1959 году Халберг. Он является видоизменением суточного ритма с периодом 24 часа, протекает в константных условиях и принадлежит к свободно текущим ритмам. Это ритмы с не навязанным внешними условиями периодом. Они врожденные, эндогенные, то есть обусловлены свойствами самого организма. Период циркадианных ритмов длится у растений 23-28 часов, у животных 23-25 часов.

Впервые роль соответствия биоритмов клетки падающему на нее извне раздражению установил русский физиолог Н. Е. Введенский. Он в самом общем плане установил, что нормальное функционирование возбудимого субстрата связано с соответствием внутренних биоритмов клетки ритму падающего на нее раздражения.

Поскольку на организм воздействует целый ряд ритмических факторов (смена дня и ночи, времен года, гео- и гелиофизических процессов и т.д.), в клетках должны были выработаться механизмы, подстраивающие ритм их работы к этим факторам. Из внешней среды в клетку в кодированной форме поступает определенная информация. Одним из таких кодов является временной. Соответственно, в клетке должны быть рецепторы, воспринимающие этот код, и образования, дешифрующие и переводящие его в конкретные метаболические команды. Если бы в клетке таких систем не было, то она не смогла бы приспосабливать свое функционирование к меняющимся условиям внешней среды и неизбежно бы погибла. Естественный отбор закрепил те коды, которые лучше стабилизируют систему. В клетке элементами, воспринимающими временной код, являются, по-видимому, мембранные образования, которые обладают выраженной способностью к резонансу, а в силу сложности и многокомпонентности своей структуры - возможностями к передаче полученных временных сигналов в самых различных направлениях и в самой различной конкретной метаболической форме.

Отсюда следует, что несоответствие внешних ритмов внутренней частоте автоколебаний отдельных участков клеточной мембраны или повреждение мембран, ведущее к изменению их пространственно-временных функций, вызовет в клетке развитие патологического процесса. Вторую часть этого положения наглядно иллюстрирует следующий пример. Клетки организмов обладают строго ограниченной способностью к делению (деление клеток, как известно, процесс ритмический). Например, клетки человеческого организма могут делиться примерно пятьдесят раз. Ставился следующий эксперимент. В культуре тканей выращивали человеческие фибробласты и определяли число их делений, которое было около пятидесяти. Другие фибробласты замораживали после двадцатого деления и длительное время хранили в состоянии гипотермического анабиоза. После оттаивания и восстановления жизнеспособности они делились только тридцать раз (в сумме – пятьдесят).

А вот опухолевые клетки, у которых наблюдаются глубокие изменения в мембранах, способные делиться беспредельно.

Нарушение внутренних биоритмов клеточных структур или нарушение соответствия внутренних биоритмов внешним ритмическим стимулам может лежать в основе развития патологических процессов в клетке и организме в целом.

Изменение некоторых биологических процессов в сопоставлении с ритмом солнечной активности (по В. Н. Ягодинскому, 1975): А – прирост деревьев в разных странах Европы (1) и солнечная активность (2); Б – солнечная активность (3) и средний урожай ржи (1) и картофеля (2) по данным опытной полевой станции ТСХА

studfiles.net

Влияние биоритмов на организм человека

Введение

биоритм медицинский работоспособность спортсмен

О существовании биологических ритмов людям известно с древних времен. Уже в Ветхом Завете даны указания о правильном образе жизни, питании, чередовании фаз активности и отдыха. О том же писали ученые древности: Гиппократ, Авиценна и другие.

Наука, изучающая роль фактора времени в осуществлении биологических явлений и в поведении живых систем, временную организацию биологических систем, природу, условия возникновения и значение биоритмов для организмов называется - хронобиология. Она является одним из направлений сформировавшегося в 1960-е гг. раздела биологии-хронобиологии. На стыке хронобиологии и клинической медицины находится так называемая хрономедицина, изучающая взаимосвязи биоритмов с течением различных заболеваний, разрабатывающая схемы лечения и профилактики болезней с учетом биоритмов и исследующая другие медицинские аспекты биоритмов и их нарушений.

Основателем хронобиологии - науки о биоритмах, принято считать немецкого врача Христофора Вильяма Гуфелянда, который в 1797 году обратил внимание коллег на универсальность ритмических процессов в биологии: каждый день жизнь повторяется в определенных ритмах, а суточный цикл, связанный с вращением Земли вокруг своей оси регулирует жизнедеятельность всего живого, включая организм человека.

Первые серьезные научные исследования в этой области начали проводиться в начале XX века, в том числе российскими учеными И. П. Павловым, В. В. Вернадским, А. Л. Чижевским и другими. К концу XX века факт ритмичности биологических процессов живых организмов по праву стал считаться одним из фундаментальных свойств живой материи и сущностью организации жизни. Но до последнего времени природа и все физиологические свойства биологических ритмов не выяснены, хотя понятно, что они имеют в процессах жизнедеятельности живых организмов очень большое значение.

В частности недавняя отмена перехода на летнее время произошла вследствие того, что после перевода часов большая часть населения имела жалобы на состояние здоровья. Из этого следует вывод, что изменение биоритмов человека даже на 1час несут за собой отрицательные последствия для здоровья.

Также в работе рассмотрены исследования многих российских и зарубежных ученых по выявлению влияния биологических ритмов на работоспособность спортсменов, а именно: почему в один сезон высоквалифицированные спортсмены устанавливают мировые рекорды, а в следующем их результаты значительно ниже? Следует заметить, что эксперименты велись не в течение одной тренировки или одного дня, а в течение многих лет, что говорит о высокой точности исследований.

Объектом исследования являются биологические ритмы человека.

Предметом исследования - влияние биоритмов на здоровье и организм человека.

Цель работы - изучить влияние биологических ритмов на жизнедеятельность людей.

Задачи:

.Рассмотреть сущность понятия биоритмы;

.Изучить различные классификации биоритмов;

.Исследовать влияние биоритмов на работоспособность спортсменов;

.Сделать выводы о значении биоритмов в жизни человека.

 

1.Понятие биоритмы

 

Биологические ритмы - (биоритмы) периодически повторяющиеся изменения характера и интенсивности биологических процессов и явлений. Они свойственны живой материи на всех уровнях ее организации - от молекулярных и субклеточных до биосферы. Являются фундаментальным процессом в живой природе. Одни биологические ритмы относительно самостоятельны (например, частота сокращений сердца, дыхания), другие связаны с приспособлением организмов к геофизическим циклам-суточным (например, колебания интенсивности деления клеток, обмена веществ, двигательной активности животных), приливным (например, открывание и закрывание раковин у морских моллюсков, связанные с уровнем морских приливов), годичным (изменение численности и активности животных, роста и развития растений и др.)

Биоритмы подразделяются на физиологические и экологические. Физиологические ритмы, как правило, имеют периоды от долей секунды до нескольких минут. Это, например, ритмы давления, биения сердца и артериального давления. Экологические ритмы по длительности совпадают с каким-либо естественным ритмом окружающей среды.

Биологические ритмы описаны на всех уровнях, начиная от простейших биологических реакций в клетке и кончая сложными поведенческими реакциями. Таким образом, живой организм является совокупностью многочисленных ритмов с разными характеристиками. По последним научным данным в организме человека выявлено около 300 суточных ритмов.

Адаптация организмов к окружающей среде в процессе эволюционного развития шла в направлении как совершенствования их структурной организации, так и согласования во времени и пространстве деятельности различных функциональных систем. Исключительная стабильность периодичности изменения освещенности, температуры, влажности, геомагнитного поля и других параметров окружающей среды, обусловленных движением Земли и Луны вокруг Солнца, позволила живым системам в процессе эволюции выработать стабильные и устойчивые к внешним воздействиям временные программы, проявлением которых служат биоритмы. Такие ритмы, обозначаемые иногда как экологические, или адаптивные (например: суточные, приливные, лунные и годовые), закреплены в генетической структуре. В искусственных условиях, когда организм лишен

www.studsell.com

Хроноструктура биоритмов сердца и факторы внешней среды — реферат

Государственное бюджетное  образовательное учреждение высшего  профессионального образования

«Волгоградский государственный  медицинский университет»

Министерства здравоохранения  и социального развития Российской Федерации

Кафедра патологической физиологии

 

 

 

 

 

 

Реферат

на тему:

«Хроноструктура биоритмов сердца и факторы внешней  среды»

 

 

 

 

Выполнила:

Студентка 3 курса 3 группы

Лечебного факультета

Демиденко Алена Евгеньевна

 

 

 

 

Волгоград 2012

 

Содержание:

  1. Введение
  2. Десинхроноз и адаптация к воздействию внешних факторов
  3. Десинхроноз, связанный с эктремальными природными условиями
  4. Заключение

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Введение

 

Формирование биологических ритмов неразрывно связано с эволюционным процессом живых организмов, происходившим с самого же начала зарождения и становления жизни в условиях одновременно развивающихся пространственно-временных закономерностей среды обитания. Элементарные живые структуры могли быть жизнеспособными только при возникновении у них динамически устойчивой временной организации, способной адаптироваться к ритмическим изменениям внешней среды. Возникшая временная структура живого организма, имея широкий диапазон реакций, могла противостоять также и влиянию апериодических  изменений факторов внешней среды, которые, в свою очередь, способствовали поддержанию системы в активном состоянии.

Ритмические воздействия внешней  среды являются главными стимуляторами биоритмов организма, играющими важнейшую роль в их формировании на ранних этапах онтогенеза и определяющими уровень их интенсивности в течение всей последующей жизни. Собственные эндогенные биоритмы организма – это фон, на котором развертывается картина жизнедеятельности и который не обеспечивает последней, если она непрерывно не активируется импульсами из окружающей среды. Последние, таким образом, являются теми силами, которые заводят биологические часы и определяют интенсивность их хода.

В настоящее время общепризнанно, что наиболее мощным фактором, формирующим биологическую ритмичность, было собственное вращение Земли с сопутствующим ритмом  изменений освещенности и температуры. Еще в 1797 году Христофер Гуфелянд, рассматривая суточные колебания различных медицинских показателей у здоровых и больных пациентов, пришел к выводу, что в организме существуют “внутренние часы, ход которых определяется вращением Земли вокруг своей оси”, поэтому многие считают Гуфелянда основателем учения о биологических ритмах. Он впервые обратил внимание на универсальность ритмических процессов и подчеркнул, что “наша жизнь, очевидно, повторяется в определенных ритмах, а каждый день представляет маленькое изложение нашей жизни”. Правда, некоторые исследователи отдают в этом вопросе пальму первенства французскому астроному, математику и физику Жан Жаку Де Мерану, который, изучая особенности солнечного света и вращения Земли, еще в 1729 году установил, что в условиях темноты и постоянной температуры растения сохраняют свойственную им  двадцатичетырехчасовую периодичность движения листьев, связав тем самым этот феномен не с освещенностью, а с вращением нашей планеты.

    По мере увеличения продолжительности жизни живых организмов  происходил естественный отбор особей, способных приспосабливаться к ритмам внешней среды, имеющим различные периоды. Эволюционные преобразования создали сложную интегральную иерархию  временной упорядоченности биологических ритмов различных видов, в которой ключевую роль по-видимому играла суточная ритмика.

Биологические ритмы — фундаментальное  свойство органического мира, обеспечивает его способность адаптации и  выживания в циклически меняющихся условиях внешней среды. Проблемы, которые  решает биоритмология, важны для  познания жизни как особой формы  движения материи во времени и  имеют существенной значение для  теоретической и практической медицины. Поскольку в биоритмологическом аспекте здоровье представляет собой  оптимальное соотношение взаимосвязанных  ритмов физиологических функций  организма и их соответствие закономерным колебаниям условий среды обитания, анализ изменений этих ритмов и их рассогласования помогает глубже понять механизмы возникновения и развития патологических процессов, улучшить раннюю диагностику болезней и определить наиболее целесообразные временные  схемы терапевтических мероприятий.

Поскольку практически все  показатели жизнедеятельности (биохимические, физиологические и поведенческие) обнаруживают ритмичность, и прежде всего циркадианные околосуточные  ритмы, встает вопрос о том, как изменяются в онтогенезе временная организация  различных функций и состояний  организма и не могут ли эти  изменения послужить критериями возрастных этапов? Нельзя ли посредством  анализа ритмической организации  биологических процессов на разных этапах онтогенеза подойти к изучению таких централизованных понятий биологии, как гомеостаз и адаптация.

 

Основными параметрами, характеризующими биологический ритм, являются следующие величины:

Накопленные в настоящее время  экспериментальные и клинические данные не вызывают сомнения в том, что изменения ритмов внешней среды являются факторами, обуславливающими морфологические и физиологические изменения в организме.

 

1.Десинхроноз и адаптация к воздействию внешних факторов

 В естественной среде организм  всегда подвержен влиянию сложного  динамического комплекса факторов, причем действие одних факторов изменяет (усиливает, ослабляет, деформирует) действие других, что создает проблемы для определения их роли и степени биотропности. Нарушения временной структуры организма возникают при рассогласовании  упорядоченности структуры его внутренних ритмов, причем причины этого рассогласования могут быть различными – внутренними (например, патология систем или органов)  и внешними (воздействие факторов окружающей среды).

Нарушение естественного хода биологических  ритмов, их взаимной согласованности, т.е. десинхроноз, является обязательным компонентом общего адаптационного синдрома и в этом отчетливо видна связь проблемы биологических ритмов с проблемой адаптации.

Адаптацию - непрерывно текущий процесс, не прекращающийся ни на одно мгновение от момента зарождения организма до момента смерти. Она рассматривается как процесс, имеющий как внешние, так и внутренние противоречия. Внешние противоречия адаптационного процесса заключаются в том, что организм находится в двойственных отношениях со средой: с одной стороны он стремится достичь согласованности с ней, а с другой - сохраняет некоторую рассогласованность, никогда не достигая идеальной гармонии,  “пригнанности” к среде. Это и позволяет ему, в конечном счете,  приспосабливаться, поскольку пребывание в некотором разладе со средой тренирует защитные механизмы организма, поддерживая их в активном “рабочем” состоянии, обеспечивая тем самым эффективную мобилизацию  сил в случае резкого изменения внешних условий.

Иногда адаптацией называют только одну из двух сторон этого процесса, а именно, только согласование с  ритмами внешней среды. Если придерживаться такой терминологической трактовки, то вторую сторону этого процесса, т.е. рассогласование, следует называть дезадаптацией, и таким образом феномен адаптации выступает как единство адаптации и дезадаптации,  и этот процесс имеет ритмическое течение.

Заметим, что закон ритмичности  адаптационного процесса имеет также  большое практическое значение, ибо открывает надежный путь к прогнозированию динамики состояния организма при остром и хроническом стрессе, вызванном как внутренними, так и внешними причинами.

Например, он позволяет  предвидеть особенности течения хронических  заболеваний (периоды ремиссий и обострений), ход процессов восстановления после острых заболеваний и травм, смену периодов улучшений и ухудшений  состояния в процессе приспособления к экстремальным условиям существования, в том числе и к условиям космических полетов. Он также позволяет принимать своевременные меры, направленные на поддержание благополучия организма.

Итак, приспособленность организма  к условиям среды обитания не бывает  абсолютной, так как его слишком  тесная связь  со средой может стать  причиной вымирания (гибели не только отдельной особи, но и исчезновения вида) при внезапном изменении среды.

Предельное  развитие адаптивности (гиперадаптация) может привести к  своей противоположности, к “гипертермии”  и безвозвратной утере адаптивности, т.е. к анадаптации.

Большинству людей, в равной мере не нравится как отсутствие стресса, так  и избыток его. Поэтому каждый должен тщательно изучить самого себя и найти тот уровень стресса, при котором он чувствует себя наиболее “комфортно”, какое бы занятие он не избрал. В последнее время получает все большее признание точка зрения о полезности умеренного стресса, в частности о том, что умеренный стресс сопровождается повышением продуктивности человека в различных видах деятельности. Так, водители автомобилей выполняют предъявляемые им экспериментальные задания значительно лучше при воздействии умеренных стрессов, нежели в спокойной обстановке. Громова Е.А. и др. выявили благоприятное влияние умеренного стресса (ситуации международных соревнований) на кратковременную память у спортсменов.

Следующие друг за другом циклы жизненных  процессов различаются по своим  параметрам - длительности периода, амплитуде, фазе. В тех случаях, когда адаптационный процесс протекает спокойно, без особых потрясений организма, когда действующие на организм стресс-факторы не выходят за рамки умеренного уровня, их воздействия на циркадианные ритмы невелики. Если же адаптационный процесс протекает бурно, с выраженными и быстро развивающимися изменениями в организме, что может быть обусловлено действием сильных раздражителей, либо особой динамичностью организма в некоторые периоды его индивидуального развития, в этих случаях состояние организма от цикла к циклу изменяется очень заметно, и колебательные процессы утрачивают свою правильность, регулярность. Искажение биологического ритма, трансформация его в непериодические колебания свидетельствует о резком обострении внутренних противоречий адаптационного процесса. Изменения исходной периодичности при стрессе характеризуются не только нарушением постоянства периода, но и увеличением амплитуды колебательного процесса, изменениями акрофазы.

 

Десинхроноз подразделяется на острый  и  хронический. Острый десинхроноз возникает при внезапном рассогласовании ритмов датчиков времени и организма. Например, при трансконтинентальных перелетах на современных авиалайнерах, пересекающих за довольно короткое время несколько часовых поясов, возникает резкое нарушение взаимоотношения фаз ритма сон-бодрствование. В случае, если воздействие фактора, вызвавшего острый десинхроноз, длительное время не прекращается, развивается хронический десинхроноз.

Хронический десинхроноз – патологическое состояние, в основе которого лежит перманентная десинхронизация функций организма.

Десинхроноз может быть вызван целым рядом внешних причин, как социальных, так и природных. К числу социальных причин относятся,  например:

биотропные факторы антропогенного происхождения, такие как 

а) токсические вещества, например, алкоголь, физические и другие воздействия;

б) совокупные социальные стрессы больших промышленных городов, связанные с напряженной работой или управлением транспортом, обилием информации и т.д.; 

 длительное рассогласование  ритма сон-бодрствование, например,  при сменной и ночной работе;

3) рассогласование между суточным  стереотипом организма и дискретным  временем, возникающим при трансмеридиональных  перелетах; 

4) десинхроноз, вызванный орбитальными и межпланетными космическими полетами;

 

     К числу десинхронозов,  вызванных природными внешними факторами относятся, например, десинхронозы, связанные с:

5)  эктремальными природными  условиями,

         6) изменениями  ритмов действующих гелио-геофизических датчиков времени, таких как циклы солнечной активности, суточные и сезонные вариации погоды, изменения климата, 

          7) ритмами  геомагнитного поля Земли, вызванными  вращением Солнца,

           8) апериодическими  изменениями гелио-геофизических факторов, возникающими при солнечных вспышках и геомагнитных бурях.

Данная систематизация причин, вызывающих десинхроноз, условна, как всегда, когда речь идет о любой многофакторной системе. В реальности действие многих из перечисленных факторов может быть тесно переплетено, взаимосвязано, и один фактор может усиливать отрицательное действие другого. Так, например, на орбитальной станции  космонавт пребывает в условиях, когда время “естественных” суток составляет всего примерно 90 минут (время облета станцией земного шара),  и на него постоянно воздействует такой сильнейший и необычный стресс-фактор, как  невесомость.

referat911.ru

Биоритмы как факторы естественного отбора и адаптации организмов

Министерство образования и науки Российской Федерации

Российская Академия Предпринимательства

Новосибирский филиал

Реферат по курсу

Концепция современного естествознания

Тема:

“Биоритмы как факторы естественного отбора и адаптации организмов”

Выполнил: студент гр. М29з

Минченко Я.А.

г. Новосибирск

2010г.

Содержание

Введение

История и развитие хронобиологии

Классификация биоритмов

Природа биоритмов

Циркадные биоритмы

Лунные биоритмы

Годичные биоритмы

Литература

Введение

Одним из принципов современного материалистического естествознания является принцип единства организма и среды. Составляя единство со средой обитания, все живые организмы и надорганизменнные системы обладает ритмичностью всех процессов. Их жизнедеятельность подчинена периодическим ритмам, отражающим реакции биосистем на ритмы природы и в целом всей Вселенной (астрономические, геофизические). «Весь растительный и животный мир, а с ним и человек, извечно и непрестанно испытывает на себе ритмические воздействия внешнего физического мира и извечно отвечает на биение мирового пульса ритмическими пульсирующими реакциями», писал русский социолог П. Я. Соколов.

Биологические ритмы – периодически повторяющиеся изменения интенсивности и характера биологических процессов и явлений.1

Эти периодические процессы существуют на всех уровнях организации живых систем и охватывают широкий диапазон частот. Чем сложнее биосистема, тем большее количество биоритмов она имеет. Биологические ритмы закреплены на генетическом уровне и являются важными факторами естественного отбора и адаптации организмов.

Наличие биоритмов обусловлено синхронизацией биохимических процессов в организме. Поскольку живой организм является иерархической системой, то он должен соразмерять ее функционирование с синхронизацией всех подуровней и подсистем не только во времени, но и в биологическом пространстве. Такая синхронизация связана с наличием биоритмов в системе. Чем сложнее система, тем больше у нее биоритмов.

История и развитие хронобиологии

Хронобиология – наука, изучающая биоритмы.

С древних времен хорошо известно, что в зависимости от времени суток листья и лепестки растений могут совершать определенные движения. Еще в 1745 году Карл Линней опубликовал свои «цветочные часы», которые позволяют по времени распускания и закрытия цветов определять время суток.

Рис. 1 Цветочные часы К. Линнея (1745)

Первые исследования суточных ритмов у человека (частота сердечных сокращений, частота мочеиспусканий, температура тела) были проведены в первой половине XIX века. В учебниках этого периода по физиологии человека можно встретить указания на существование эндогенных (возникающих в самом организме) ритмических функций. В 1928 году Forsgren открыл суточный ритм секреции желчи и накопления глюкозы в печени. В 1936 году была окончательно установлена эндогенная природа суточных ритмов цветов и растений, для чего были исключены любые внешние воздействия. Другими вехами развития хронобиологии стали открытие ориентации пчел и птиц в полете по солнцу, анализ координации ритмических функций, а также подтверждение эндогенных циркадианных ритмов человека. За счет исследований космоса, особенно за счет исключения влияния земного времени был дан новый импульс становлению хронобиологии как науки. Основной интерес при изучении биологических ритмов по-прежнему уделяется суточным, лунным и годовым ритмам, особенно с точки зрения экзогенной и эндогенной регуляции «внутренних часов».2

Классификация биоритмов

Существует несколько классификаций биоритмов.

Так, с точки зрения взаимодействия организма и среды выделяют:

Адаптивные ритмы (собственно биоритмы) – колебания с периодами, близкими к основным геофизическим циклам, роль которых заключается в адаптации организма к периодическим изменениям внешней среды. Их частота стабильна.

Физиологические (рабочие ритмы) – колебания, отражающие деятельность физиологических систем организма3. Их частота сильно варьирует в зависимости от состояния организма.

По природе возникновения:

Экзогенные ритмы – возникают как реакция на периодические изменения окружающей среды.

Эндогенные ритмы – возникают на основе саморегулирующихся процессов с запаздывающей обратной связью, при этом они подвержены воздействиям внешней среды, которые могут сдвигать фазу биоритмов и воздействовать на их амплитуду.

По уровням организации биосистемы:

клеточный

органный

организменный

популяционный

биосферный

По частоте:

1. Ритмы высокой частоты (доли секунды — 30 минут)

2. Ритмы средней частоты (30 минут — 28 ч):

3. Мезоритмы (28 ч — 7 суток)

4. Макроритмы (20 дней — 1 год)

5. Мегаритмы (десятки лет)

Наиболее распространенная в настоящее классификация F.Halberg (1969) отражает периодичность биоритмов:

Коротковолновые ритмы затрагивают отдельные клетки (например, ритм нервной деятельности) и ткани (например, ритмы электроэнцефалограммы, колебания реснитчатого эпителия и пр.).

В средневолновом диапазоне биоритмы затрагивают целые органами (например, сердце) и системы (кровообращения, дыхания, гладкой мускулатурой).

В длинноволновом диапазоне наблюдается воздействие на весь организм (ритм сна/бодрствования). Более длительный диапазон затрагивает весь организм (менструальный ритм у женщин) или целую популяцию («волны жизни»).

В зависимости от постоянной частот и их модуляции в длинно- и средневолновом диапазоне ритмы можно обозначать по их периодичности (суточные, месячные, годовые), если они являются постоянными и поддерживаются синхронизированным действием или не выходят из определенного диапазона. В коротковолновом диапазоне ритмические функции подвержены выраженной частотной модуляции, поэтому их обозначают по выполняемым им функциям (дыхательный, сердечный ритм, ритмика нервной деятельности).

В длинноволновом диапазоне ритмические процессы протекают между двумя противоположными полюсами функций, напоминая колебания маятника. В коротковолновом диапазоне на первый план выходят импульсные (релаксационные) колебания. Маятниковые колебания на графике показывают стабильную синусоиду и имеют единственную частоту. В импульсных колебаниях присутствуют высокочастотные компоненты и внезапные изменения графика.

Природа биоритмов

Согласно наиболее распространенной гипотезе, живой организм является независимой колебательной системой, которая характеризуется целым набором внутренне связанных ритмов.

Циклы обмена веществ (метаболизм и катаболизм) непрерывно происходят в клетках и представляют собой комплексы разнообразных биохимических реакций — расщепления и синтеза веществ. Вследствие этого в клетках в соответствии с метаболическими циклами постоянно происходят периодические изменения концентраций веществ (ферментов, продуктов обмена, транспортной и матричной РНК и др.), которые участвуют в многочисленных биохимических реакциях. В результате этих реакций все параметры внутренней среды живых систем находятся в состоянии непрерывных колебаний относительно соответствующих средних значений.

Датчиками, определяющими скорость и характер метаболических процессов, в живых организмах являются аллостерические модуляторы и гормоны, непрерывно контролирующие состояние организма. Организм постоянно стремится к поддержанию гомеостаза (постоянства) внутренней среды –температуры, pH, концентрации веществ, осмотического давления и др. В поддержании гомеостаза задействованы многие механизмы, в основном построенные по принципу «обратной связи». Так, избыток глюкозы в крови запускает механизм ее запасания (в виде гликогена), а недостаток – к усилению расщепления гликогена.

Из этого следует, что ни один процесс в живых организмах не может происходить непрерывно, а должен чередоваться с противоположно направленным: вдох с выдохом, работа с отдыхом, бодрствование со сном, синтез с расщеплением и т.д. Таким образом, состояние живого организма никогда не бывает статическим, а все его физиологические и энергетические параметры всегда находятся в состоянии непрерывных колебаний относительно средних значений как по частоте, так и по амплитуде.

Эти колебания и являются биоритмами. С помощью биоритмов живые организмы с помощью биоритмов обеспечивают устойчивость своего неравновесного термодинамического состояния. Отсюда можно считать, что биоритмы являются способом существования всех живых организмов. Они позволяют организму успешно приспособиться к циклическим изменениям окружающей среды.

Циркадианная система включает множество отдельных подсистем, каждая из которых, вероятно, способна самостоятельно, независимо от других подсистем периодически изменяться. Формирование единой циркадианной системы обеспечивается, с одной стороны, за счет четкой внутренней упорядоченности фазовых соотношений составляющих ее ритмов, с другой — за счет синхронизирующего действия внешних датчиков времени. По мнению большинства исследователей, регуляцию ритмов циркадианной системы обеспечивает гипоталамо-гипофизарная система.

При высокой степени сопряженности подсистем для синхронизации всей системы в целом не обязателен внешний датчик времени. Врожденная программа временной упорядоченности функций в процессе развития организма модифицируется в направлении приспособления к временному профилю среды. Способность «предсказывать» время суток позволяет организму опережающе предвидеть требования к гомеостатическим системам и заранее подключать для получения приспособительного результата те эффекторы, включение которых в ответную реакцию требует значительного времени. например, при нормальном сне температура тела и содержание кортикостероидов в плазме начинают повышаться задолго до окончания сна и пробуждение может наступить раньше, чем будет включен свет. Считают, что упорядоченность функций во времени позволяет организму разделять не только в пространстве, но и во времени несовместимые процессы, использовать одни и те же структуры, требующие в разное время различных локальных значений биохимических или физико-химических показателей (например, рН). Примерами высокоскоординированных во времени систем могут быть гипоталамо-гипофизарно-тиреоидная система, гипоталамо-гипофизарно-надпочечниковая система, система поддержания оптимальной концентрации калия в плазме и межклеточном пространстве.

В процессе естественного отбора выживали лишь те организмы, которые могли не только уловить те или иные изменения в природных условиях, но и настроить ритмический аппарат в такт внешних колебаний. А это означало наилучшее приспособление к окружающей среде. Так, животные чередуют ритмы сна и бодрствования в соответствии с наиболее выгодными для них условиями для добывания пищи. Репродуктивные ритмы (периоды плодородия и бесплодия) также приспособлены к таким условиям среды, которые наиболее оптимальны для выращивания потомства. Осенью многие птицы улетают на юг, а некоторые животные впадают в спячку, что помогает им выжить, несмотря на внешние экстремальные природные условия.

Циркадные биоритмы

К циркадным (суточным) биоритмам относятся изменение интенсивности и характера биологических процессов и явления, которые повторяются с периодичностью с периодом 24±4 часов. Этим ритмам, обусловленным суточным (циркадным) ритмом внешней среды, связанным с вращением Земли вокруг своей оси, подвержено большинство биохимических и физиологических процессов роста, развития, движения и обмена веществ: частота деления клеток, колебания и температуры тела, интенсивность обмена веществ.

Так, у растений хорошо известны ритмические циклы закрытия цветков и опускания листьев в ночное время и раскрытия их в дневное время. При этом ритмы сохраняются даже в отсутствии солнечного света, что было подтверждено опытами российского биофизика С. Э. Шноля, который приводит пример с фасолью Мэрана, листья которой опускались и поднимались вечером и утром, даже если она находилась в полностью темной комнате. Таким образом, растение как бы «чувствовало» время и определяло его своими внутренними физиологическими часами. Обычно растения определяют длительность дня по переходу пигмента фитохрома из одной формы в другую при изменении спектрального состава солнечного света. Так, на закате солнце имеет красный цвет вследствие того, что красный свет имеет большую длину волны и меньше рассеивается, чем синий. В этом закатном или сумеречном свете много красного и инфракрасного излучений, и растения это воспринимают.4

К суточным ритмам относится чередование периодов активности покоя и активности животных (дневных и ночных). Для животных важно не абсолютное определение времени, а относительное — когда взойдет солнце и когда оно сядет, так как дневные существа используют для поиска пищи светлую часть дня, а ночные темную.

Интересен суточный ритм манящего краба (побережье Атлантического океана) – это изменение окраски: с утра краб более светлый, но по мере того, как солнце поднимается все выше над горизонтом, он темнеет. Пигмент, играя защитную роль, предохраняет его от палящих солнечных лучей. Если же это время совпадает с отливом, то более темная окраска помогает ему оставаться незамеченным на прибрежном песке, куда краб отправляется в поисках пищи.

Четко выражены суточные ритмы у пчел, муравьев.

Суточные ритмы человека

У человека отмечается около трехсот физиологических функций, имеющих суточные ритмы.

Согласно «циркадианной системе человека», масса тела является максимальной в 18—19 ч, частота сердечных сокращений — в 15—16 ч. частота дыхания — в 13—16 ч, систолическое артериальное давление — в 15—18 ч, уровень эритроцитов в крови — в 11—12 ч, лейкоцитов — в 21—23 ч, гормонов в плазме крови (АКТГ, кортизол, 17-гидроксикортикостерон), циклического аденозинмонофосфата — в 8—12 ч, инсулина, ренина — в 18 ч, тестостерона — в 8—9 ч, тироксина — в 14—15 ч, общего белка крови — в 17—19 ч, фибриногена —в 18 ч, билирубина (общего) — в 10 ч, трансаминазы — в 8—9 ч, холестерина — в 18 ч, азота мочевины — в 22—23 ч.

Утром замедляются, а вечером ускоряются психические процессы. В свою очередь, на ритмы физиологических и психических функций влияют смены сна и бодрствования, активности и покоя. Параметры суточной кривой работоспособности в период бодрствования (фаза, амплитуда, акрофаза) зависят от множества факторов: типа личности, общей обстановки, приема пищи, уровня мотивации и т.д.

Нарушение временной упорядоченности ритмов биологической системы обозначают термином десинхроноз. Изучение механизмов возникновения десинхроноза имеет большое значение при организации режимов труда и отдыха у представителей различных специальностей, при проведении профилактических мероприятий с целью охраны здоровья. Десинхроноз может возникать как результат фазового рассогласования между ритмами биологической системы и теми периодическими изменениями в окружающей среде, которые для организма выступают как датчики времени (внешнеобусловленный десинхроноз, внешний десинхроноз), либо вследствие нарушения координации между ритмами в самой системе. Внешний десинхроноз можно наблюдать у лиц, совершивших перелет через 4—5 часовых поясов, у космонавтов во время космических полетов, при смене дневного режима работы на ночной.

В природе суточные ритмы складываются из процессов, обусловленных эндогенными ритмами, и реакции на суточные изменения окружающей среды. При нарушении естественного ритма среды суточные ритмы разных физиологических функций теряют синхронность. Такие явления (десинхронизация) возникает, например, при разведении животных и растений в искусственных условиях, при смене часовых поясов, при переходе на летнее/зимнее время и др. Десинхронизация может явиться причиной возникновения патологических изменений в организме, снижению иммунитета, ухудшению адаптивных возможностей организма.

Таким образом, циркадная временная программа реализует две различные задачи: с одной стороны, она сохраняет свою автономию независимо от воздействия внешних факторов. С другой стороны, она способна переставлять внутренние часы организма, чтобы цикл, несмотря на свою автономию, не был десинхронизирован с окружающим миром.

Отмечено, что суточные биоритмы наиболее выражены у обитателей высоких широт, где четко выражены отличия «дневного» и «ночного» состояния окружающей среды.

Лунные биоритмы

Лунные (циркулунарные) ритмы – их период в среднем 29,53 суток ѿ соответствуют циклу фаз луны, т.е. лунно-месячному циклу.

Средняя периодичность вращения Луны вокруг Земли влияет на многочисленные геофизическими изменения: например, изменение освещенности по ночам, давления воздуха, температуры, направления ветра, изменение магнитных полей Земли, и эти явления являются временными указателями для циркалунарных ритмов.

Наиболее впечатляющие примеры ориентации жизненных процессов на циркалунарные ритмы мы обнаруживаем у морских организмов. Например, обитающий на коралловых рифах морской червь Палоло в определенное время суток в последнюю декаду лунного цикла в октябре и ноябре отделяет свою подвижную заднюю часть, наполненную продуктами половой системы, в воду для продолжения рода. Высочайшая точность синхронизации по лунарному ритму характерна и для одного из вида насекомых, которые синхронно выходят на морской берег для спаривания и откладывания яиц (нужно учитывать, что продолжительность жизни самки в этом случае составляет не более 20 минут).

Лунные циклы периодов оплодотворения и рождаемости бывают не только синодическими, но и сизигическими с периодом в 14,7 суток. Один вид рыб, живущих на берегу Калифорнийского залива, откладывает в новолуние и полнолуние (во время прилива) на пляж икру, которая развивается на берегу в течение 14 суток и попадает в воду со следующим большим приливом. Для некоторых эндогенных циркалунарных ритмов в лабораторных условиях была установлена синхронизация с лунным светом.

Лунный свет обусловливает различия в ночной освещенности, что способствует изменению активности животных, ведущих ночной или вечерний образ жизни. Даже если в условиях лаборатории исключить действие лунного света, циркалунарные процессы сохраняют свою периодичность. Она может быть обусловлена синхронизацией с другими связанными с лунным циклом факторами, например, с колебаниями магнитного поля Земли. Сюда же нужно отнести колебания чувствительности глаза к уровню и спектру освещенности. У рыбок гуппи наибольшая чувствительность к свету смещается от фиолетового спектра в полнолуние в желтый спектр в новолуние. У людей также наблюдаются сходные изменения в чувствительности зрения, причем она смещается в том же цветовом диапазоне. Кроме того, отмечаются колебания в суточном объеме мочи у человека, которые совпадают с лунным циклом. В последнее время было также выявлено, что имеются связанные с лунным ритмом колебания склонности к инфекциям.

В то время как причины упомянутых выше феноменов и их связь с окружающей средой еще не выявлены, можно точно сказать, что менструальный цикл женщин в цивилизованных странах имеет эндогенный характер и, хотя и совпадает по продолжительности с лунным циклом, но более не синхронизирован с ним. А у обезьян, живущих в области экватора, цикл овуляции синхронизирован с лунными фазами.

Рост растений также связан с лунным циклом, что можно показать по колебаниям урожайности бобовых, картофеля и редиса. Уже давно широко используются «Лунные календари», по которым определяют оптимальное время посадки и других агротехнических мероприятий.

Годичные биоритмы

Годичные, или цирканнуальные биологические ритмы имеют период колебания 1 год ± 2 месяца и связаны с вращением Земли вокруг Солнца.

Эти ритмы наблюдаются у всех организмов от полярной до тропической зоны. Выраженность годовых (сезонных) ритмов нарастает по мере увеличения географической широты и отчетливо проявляется у организмов, населяющих умеренные и полярные зоны, где сезонные различия наиболее отчетливы. В основе колебательных функций организма с годовым периодом лежат, во-первых, приспособительные реакции в ответ на изменение основных параметров внешней среды (температуры, качественного и количественного состава пищи, изменения водного режима), во-вторых, реакция на сигнальные факторы среды, такие, как изменения фотопериода, напряженности геомагнитного поля, появление некоторых химических компонентов. Годичные биоритмы проявляются, например, в явлениях миграций, кочевок, зимней и летней спячки, репродуктивных процессах.

Зимняя спячка помогает многим животным пережить неблагоприятный период. Животные удивительно точно определяют время для спячки. Например, медведь укладывается в свою берлогу всегда накануне снегопада. И потом 5,5 мес до апрельской температуры в 12° зверь спит, существуя за счет накопленного с осени жира (запас его составляет почти 1/3 массы тела). Во время зимней спячки температура тела медведя снижается почти на 10°С, а частота дыхания уменьшается в 3 раза. Все это помогает ему экономно расходовать накопленные в теплое время жизненныe ресурсы. Если же этот ритм нарушен и зверь по каким-либо причинам не залег в берлогу или вдруг «неожиданно» проснулся в середине зимы, он практически обречен на гибель. Медведь-шатун гибнет от голода, одолеваемый множеством паразитов, бурно размножающихся в слабеющем организме.

Таких примеров разлада биологических часов достаточно много. Иногда, при резком осеннем потеплении, некоторые растения могут начать цвести. Однако это отрицательно сказывается на последующей жизнедеятельности растения.5

Известны сезонные изменения заболеваемости и смертности от некоторых заболеваний (в частности, туберкулеза – весна, осень).

Таким образом, биоритмы являются определяющим условием существования живых организмов, наблюдаются на всех уровнях организации живых систем и являются адаптацией организмов к поддержанию оптимального функционирования в условиях окружающей среды.

Использование знаний о биоритмах человека является важным для улучшения здоровья (хрономедицина), работоспособности, выживаемости в экстремальных условиях.

Литература

  1. Гиляров, М.С. Биологический энциклопедический словарь/ М.С.Гиляров. — М., 1986. — 893 с.

  2. Горбачев, В.В. Концепции современного естествознания / В.В. Горбачев. — М., 2005. — 672 с.

  3. Деряпа, Н.Р. Проблемы медицинской биоритмологии / Н.Р.Деряпа, М.П.Мошкин, В.С.Посный. — М.: Медицина, 1985. — 208 с.

  4. Доброборский, Б.С Биологические ритмы как способ существования живой материи Интернет-источник: http://www.neuch.ru/referat/80650.html

  5. Доскин, В.А. Ритмы жизни/ В.А.Доскин, Н.А.Лавреньева. — М.: Медицина, 1991. — 176 с.

  6. Хильдебрандт, Г. Хронобиология и хрономедицина/ Г. Хильдебрандт, М. Мозер, М. Лехофер. — М.: Арнебия, 2006. — 144 с.

baza-referat.ru

Тема: «Биоритмы и хронопатология»

Технологическая карта для самостоятельного изучения теоретического материала
  1. Тема: «Биоритмы и хронопатология»
  2. Основные вопросы для изучения
  1. История вопроса универсальности феномена ритмичности в природе.
  2. Терминология в биоритмологии. Классификация биологических ритмов.
  3. Хронобиологические аспекты адаптации.
  4. Экзогенные и эндогенные процессы регуляции биологических ритмов.
  5. Биоритмы и их роль в формировании патологической реактивности.
  6. Воздействия на биоритмы факторов антропогенного происхождения.
  7. Десинхроноз как обязательный компонент при любом патологическом процессе.
  8. Экспериментальные методы исследования десинхроноза.
  9. Изменение циркадианного ритма под влиянием стресса.
  1. Функциональное состояние сердечно-сосудистой системы в различные фазы 11-летнего цикла солнеч­ной активности.
  1. Хроноструктура биоритмов сердца и факторы внешней среды.
  2. Нарушение хроноструктуры ритмов сердца как типовая реакция на стресс.
  1. Влияние геомагнитных возмущений на функциональное состояние человека в условиях космическогополета.
  1. Сезонные колебания смертей от цереброваскулярных заболеваний и инфаркта миокарда.
  2. Хронопатология обмена железа в формировании анемического синдрома.
  1. Целевая установка: Изучить причины и механизмы развития хронопатологии.
  2. Формулируемые понятия.
Способность организма отвечать на естественные циклические экологические явления колебаниями параметров реактивности называется биологическими ритмами. Насчитывают около 300 ритмически колеблющихся па­раметров реактивности. Наиболее хорошо изучены циркадные (околосуточные) ритмы с периодом 20-28 ча­сов. Важную роль в динамике реактивности организма играют околомесячные ритмы. В частности, лунно-месячному ритму следует менструальный цикл женщин. В естественной среде организм подвержен влиянию сложного динамического комплекса ритмических факторов. Нарушение естественного хода биологических ритмов, их взаимной согласованности, т.е. десинхроноз, является обязательным компонентом общего адапта­ционного синдрома, поэтому очевидна связь проблемы биологических ритмов с проблемой адаптации. Пони­мание закономерностей ритмичности адаптационного процесса имеет большое практическое значение, по­скольку позволяет прогнозировать динамику состояния организма при остром и хроническом стрессе, вызван­ном как внутренними, так и внешними причинами. Например, прогнозирование течения хронических заболева­ний, ход процессов восстановления после острых заболеваний, смену процессов периодов улучшения и ухуд­шения состояния в процессе приспособления к экстремальным условиям существования (длительный космиче­ский полет). Знания о закономерностях ритмичности адаптационного процесса позволяют принимать своевре­менные меры, направленные на поддержание благополучия организма человека. Изучением закономерностей биоритмов и их значения для здоровья человека занимается хрономедицина. Хрономедицина включает в себя хронофизиологию, хронопатологию и хронотерапиию. Хрономедицина ставить целью использование законо­мерностей биоритмов для улучшения профилактики, диагностики и лечения заболеваний человека. Для исполь­зования законов биоритмов необходимо ввести понятие хронобиологической нормы. Хронобиологическая норма включает в себя индивидуальный хронотип, хроноадаптацию, хронореактивность. Отклонение от этих норм называют хронопатологиией. Если учесть, что любое патологическое состояние или болезнь сопро­вождается нарушением течения физиологических функций, то можно выделить целое направление - хронопа­тологию. Хронотерапия имеет большой фактический материал о зависимости действия лекарственных веществ на организм человека от фазы биоритма.
  1. Значение изучаемого материала для последующего использования.Сохранение естественных биоритмов важно для сохранения нормальной реактивности.
  2. Медицинские аспекты. Циклические изменения в нейроэндокринной системе являются основой циркадногоритма функций такого важного звена неспецифической резистентное™, как секреция гормонов стресса - кор-тикостероидов, АКТГ, кортиколиберина. Изменение цикличности секреции гормонов стресса отражается настрессоустойчивое™ индивидов в различное время суток и может стать патогенетической основой развитияболезней.
7. Ученые, работавшие (работающие) в данном направлении, их заслуги. А.А. Богомолец считал, что ритм жизненных процессов в организме определен его конституцией. А.Л. Чижевский установил, что в основе цир-кадных (околосуточных) и сезонных ритмов лежит чувствительность организма к фотопериодическим явлени­ям. А.С. Пересман (1971), Б.В. Алешин (1974), Дж. Рейтер (!990) выявили, что главным фото-пейсмейкером в нейроэндокринной системе выступает эпифиз. Н.А. Агаджаиян, И.В. Радыш, СИ. Краюшкин (1996) - совре­менная разработка вопросов по изучению механизмов хронопатологии. Комаров Ф.И., Рапопорт СИ. (2000) -разработка вопросов хронопатологии и хрономедицины. Заславская P.M. (I991) - вопросы хронодигностики и хронотерапии сердечно-сосудистой системы.

8. Вопросы, подлежащие проверке при промежуточной и экзаменационной аттестации.

  1. Классификация биологических ритмов.
  2. Экзогенные и эндогенные процессы регуляции биологических ритмов.
  3. Хронобиологические аспекты адаптации.
  4. Биоритмы и их роль в формировании патологической реактивности.
  5. Изменение циркаднамного ритма под влиянием стресса.
  6. Десинхроыоз как обязательный компонент при любом патологическом процессе.
9. Литература
  1. Агаджанян Н.А., Радыш И.В., Краюшкин СИ. Хроноструктура репродуктивной функции. - М.: Круг,1996.-243с.
  2. АсланянН.Л., Чибисов СМ., Халаби Г. Методические рекомендации к изучению курса «Патологиче­ская физиология», тема «Патофизология биоритмов». М.: РУДН.- 1989. ~46с.
  3. Баркова Э.Н., Жданова Е.В., Курлович Н.А. Хронофизиология и хронопатология обмена железа // ОАО«Полиграфист». - 2001. - Екатеринбург.-293с.
  4. Бедненко B.C., Ступаков Г.П. Изменение состояния внутренних органов в длительных космическихполетах // Первый Российский конгресс по патофизиологии. Москва, 17-19 октября 1996. - М.: РГМУ,1996.-С. 326-327.
  5. Биленко НЛ.//Клин. мед.-2003. -№б.-Т81. С 19-23.
  6. Бреус Т.К., Чибисов СМ., Баевский P.M., Шебзухов К.В. Хроностуктура биоритмов сердца и фактороввнешней среды // «Полиграф сервис», Москва. - 2002. - 230с.
  7. Бродский В.Я. Околочасовые биологичесские ритмы. Распространение, природа, значение, связи сциркадианной ритмикой // Хронопатология и хрономедицина (под. ред. Комарова Ф.И. и РапопортаСИ.)-С. 91-101.
  8. Верещагин Н.В., Пирадов М.А. // Неврологич. журнал. - 1999. -№5. -С4-6.
  9. Владимирский Б.М., Кисловский А.Д. Солнечная активность и биосфера. - М., 1982.
  10. Гехт К., Вахтель Е, Взаимоотношения циркадианных и минутных ритмов у крыс линии Вистар послекосмического полета на биоспутнике «Космос-1129» // Проблемы космической биологии. - М.: Наука.1989.-Т. 64.-С. 124-140.
  11. Горбунов В.М. Значение 24-часового мониторирования в выявлении и лечении артериальной гиперто­нии//Кардиология. - 1995.-Т. 35. -№6.-С.64-70.
  12. Долгов В.В., Луговская С.А., Почтарь М.Е, Лабораторная диагностика нарушений обмена железа // Vi­tal Diagnostics, Санкт-Петербург. - 2002. - 51 с.
  13. Дряпа Н.Р., Мошкин М.П., Поеный B.C. // Проблемы медицинской биоритмологии. - М.: Медицина,1989.-207с.
  14. Зайчик А.Ш., Чурилов Л.П. Обшая патофизиология. Учебник для медицинских ВУЗов, второе издание.- ЭЛБИ-СЛБ. - 2001. С. 80-82.
  15. Заславская P.M. Хронодиагностика и хронотерапия заболеваний сердечно-сосудистой системы. -1991.-319с.
  16. Комаров Ф.И. и соавт. Медико-биологические эффекты солнечной активности // Вестниик академиимед. наук. - М., 1994. - №9. -Вып. 11.-С. 37-50.
  17. Комаров Ф.И., Загускин С.Л. Рапопорт СИ. Хронобиологическое направление в медицине // Тер. ар­хив., 1994-№8.-С 3-9.
  18. Комаров Ф.И., Рапопорт СИ. Хронопатология и хрономедицина. - М.: ТриадаХ, 2000. - 488с.
  19. Романов Е.А., Еременко Л.Л., Левина А. А., Зарецкая Ю.М. // Проблемы гематологи и,№2. - 1999. - С34-38.
  20. ПейдтТ.Л. Биологические ритмы (под ред. 10. Атофда). - М.: Мир, 1984. -Т. 1.- С. 152-187.
  21. Рапопорт СИ., Большакова Т.Д., Ораевский В.Н., Бреус Т.К. Магнитная буря как стресс // биофизика. -1998. - Т. 43. - Вып 4. - С. 632- 639.
  22. Селье Г. Стресс без дистресса. - М.: Пргресс, 1979. - 129 с.
  23. Степанова СИ. Стресс и биологические ритмы // Космич.биология. - 1982. -№1. -С. 16-20.
  24. Чибисов СМ., Овчинникова Л.К., Бреус. Т.К. Биологические ритмы сердца и «внешний стресс».- М.,1998,250 с.
  25. Чижевский А.Л. Космический пульс жизни: Земля в объятиях Солнца. Гелиотараксия. - М: Мысль,1995.- 756с.
  26. Яковлев В.А. Суточный ритм гемодинамики у больных гипертонической болезнью // Военно-мед. жур­нал. - 1978, №6.-С 75-78.
10. Вопросы для самоконтроля.
  1. Классификация биологических ритмов.
  2. Экзогенные и эндогенные процессы регуляции биологических ритмов.
  3. Хронобиологические аспекты адаптации.
  4. Биоритмы и их роль в формировании патологической реактивности.
  5. Изменение циркадианного ритма под влиянием стресса.
  6. Десинхроноз как обязательный компонент при любом патологическом процессе.
Зав.кафедрой Рогова Л.Н.

lib2.znate.ru

Хроноструктура биоритмов сердца и факторы внешней среды — реферат

Государственное бюджетное образовательное учреждение высшего

профессионального образования

«Волгоградский государственный  медицинский университет»

Министерства здравоохранения и социального развития Российской Федерации

Кафедра патологической физиологии

 

 

 

 

 

 

Реферат

на тему:

«Хроноструктура биоритмов сердца и факторы внешней среды»

 

 

 

 

Выполнил:

Студент 3 курса 7 группы

Лечебного факультета

Васильев Олег Анатольевич

 

 

 

 

Волгоград 2014

 

Содержание:

  1. Введение
  2. Десинхроноз и адаптация к воздействию внешних факторов
  3. Десинхроноз, связанный с эктремальными природными условиями
  4. Заключение

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Введение

 

Формирование биологических ритмов неразрывно связано с эволюционным процессом живых организмов, происходившим с самого же начала зарождения и становления жизни в условиях одновременно развивающихся пространственно-временных закономерностей среды обитания. Элементарные живые структуры могли быть жизнеспособными только при возникновении у них динамически устойчивой временной организации, способной адаптироваться к ритмическим изменениям внешней среды. Возникшая временная структура живого организма, имея широкий диапазон реакций, могла противостоять также и влиянию апериодических  изменений факторов внешней среды, которые, в свою очередь, способствовали поддержанию системы в активном состоянии.

Ритмические воздействия внешней среды являются главными стимуляторами биоритмов организма, играющими важнейшую роль в их формировании на ранних этапах онтогенеза и определяющими уровень их интенсивности в течение всей последующей жизни. Собственные эндогенные биоритмы организма – это фон, на котором развертывается картина жизнедеятельности и который не обеспечивает последней, если она непрерывно не активируется импульсами из окружающей среды. Последние, таким образом, являются теми силами, которые заводят биологические часы и определяют интенсивность их хода.

В настоящее время общепризнанно, что наиболее мощным фактором, формирующим биологическую ритмичность, было собственное вращение Земли с сопутствующим ритмом  изменений освещенности и температуры. Еще в 1797 году Христофер Гуфелянд, рассматривая суточные колебания различных медицинских показателей у здоровых и больных пациентов, пришел к выводу, что в организме существуют “внутренние часы, ход которых определяется вращением Земли вокруг своей оси”, поэтому многие считают Гуфелянда основателем учения о биологических ритмах. Он впервые обратил внимание на универсальность ритмических процессов и подчеркнул, что “наша жизнь, очевидно, повторяется в определенных ритмах, а каждый день представляет маленькое изложение нашей жизни”. Правда, некоторые исследователи отдают в этом вопросе пальму первенства французскому астроному, математику и физику Жан Жаку Де Мерану, который, изучая особенности солнечного света и вращения Земли, еще в 1729 году установил, что в условиях темноты и постоянной температуры растения сохраняют свойственную им  двадцатичетырехчасовую периодичность движения листьев, связав тем самым этот феномен не с освещенностью, а с вращением нашей планеты.

    По мере увеличения продолжительности жизни живых организмов  происходил естественный отбор особей, способных приспосабливаться к ритмам внешней среды, имеющим различные периоды. Эволюционные преобразования создали сложную интегральную иерархию  временной упорядоченности биологических ритмов различных видов, в которой ключевую роль по-видимому играла суточная ритмика.

Биологические ритмы — фундаментальное свойство органического мира, обеспечивает его способность адаптации и выживания в циклически меняющихся условиях внешней среды. Проблемы, которые решает биоритмология, важны для познания жизни как особой формы движения материи во времени и имеют существенной значение для теоретической и практической медицины. Поскольку в биоритмологическом аспекте здоровье представляет собой оптимальное соотношение взаимосвязанных ритмов физиологических функций организма и их соответствие закономерным колебаниям условий среды обитания, анализ изменений этих ритмов и их рассогласования помогает глубже понять механизмы возникновения и развития патологических процессов, улучшить раннюю диагностику болезней и определить наиболее целесообразные временные схемы терапевтических мероприятий.

Поскольку практически все показатели жизнедеятельности (биохимические, физиологические и поведенческие) обнаруживают ритмичность, и прежде всего циркадианные околосуточные ритмы, встает вопрос о том, как изменяются в онтогенезе временная организация различных функций и состояний организма и не могут ли эти изменения послужить критериями возрастных этапов? Нельзя ли посредством анализа ритмической организации биологических процессов на разных этапах онтогенеза подойти к изучению таких централизованных понятий биологии, как гомеостаз и адаптация.

 

Основными параметрами, характеризующими биологический ритм, являются следующие величины:

Накопленные в настоящее время экспериментальные и клинические данные не вызывают сомнения в том, что изменения ритмов внешней среды являются факторами, обуславливающими морфологические и физиологические изменения в организме.

 

1.Десинхроноз и адаптация к воздействию внешних факторов

 В естественной среде организм  всегда подвержен влиянию сложного  динамического комплекса факторов, причем действие одних факторов  изменяет (усиливает, ослабляет, деформирует) действие других, что создает  проблемы для определения их  роли и степени биотропности. Нарушения временной структуры  организма возникают при рассогласовании  упорядоченности структуры его  внутренних ритмов, причем причины  этого рассогласования могут  быть различными – внутренними (например, патология систем или  органов)  и внешними (воздействие  факторов окружающей среды).

Нарушение естественного хода биологических ритмов, их взаимной согласованности, т.е. десинхроноз, является обязательным компонентом общего адаптационного синдрома и в этом отчетливо видна связь проблемы биологических ритмов с проблемой адаптации.

Адаптацию - непрерывно текущий процесс, не прекращающийся ни на одно мгновение от момента зарождения организма до момента смерти. Она рассматривается как процесс, имеющий как внешние, так и внутренние противоречия. Внешние противоречия адаптационного процесса заключаются в том, что организм находится в двойственных отношениях со средой: с одной стороны он стремится достичь согласованности с ней, а с другой - сохраняет некоторую рассогласованность, никогда не достигая идеальной гармонии,  “пригнанности” к среде. Это и позволяет ему, в конечном счете,  приспосабливаться, поскольку пребывание в некотором разладе со средой тренирует защитные механизмы организма, поддерживая их в активном “рабочем” состоянии, обеспечивая тем самым эффективную мобилизацию  сил в случае резкого изменения внешних условий.

Иногда адаптацией называют только одну из двух сторон этого процесса, а именно, только согласование с ритмами внешней среды. Если придерживаться такой терминологической трактовки, то вторую сторону этого процесса, т.е. рассогласование, следует называть дезадаптацией, и таким образом феномен адаптации выступает как единство адаптации и дезадаптации,  и этот процесс имеет ритмическое течение.

Заметим, что закон ритмичности адаптационного процесса имеет также большое практическое значение, ибо открывает надежный путь к прогнозированию динамики состояния организма при остром и хроническом стрессе, вызванном как внутренними, так и внешними причинами.

Например, он позволяет  предвидеть особенности течения хронических заболеваний (периоды ремиссий и обострений), ход процессов восстановления после острых заболеваний и травм, смену периодов улучшений и ухудшений  состояния в процессе приспособления к экстремальным условиям существования, в том числе и к условиям космических полетов. Он также позволяет принимать своевременные меры, направленные на поддержание благополучия организма.

Итак, приспособленность организма к условиям среды обитания не бывает  абсолютной, так как его слишком тесная связь  со средой может стать причиной вымирания (гибели не только отдельной особи, но и исчезновения вида) при внезапном изменении среды.

Предельное  развитие адаптивности (гиперадаптация) может привести к своей противоположности, к “гипертермии” и безвозвратной утере адаптивности, т.е. к анадаптации.

Большинству людей, в равной мере не нравится как отсутствие стресса, так  и избыток его. Поэтому каждый должен тщательно изучить самого себя и найти тот уровень стресса, при котором он чувствует себя наиболее “комфортно”, какое бы занятие он не избрал. В последнее время получает все большее признание точка зрения о полезности умеренного стресса, в частности о том, что умеренный стресс сопровождается повышением продуктивности человека в различных видах деятельности. Так, водители автомобилей выполняют предъявляемые им экспериментальные задания значительно лучше при воздействии умеренных стрессов, нежели в спокойной обстановке. Громова Е.А. и др. выявили благоприятное влияние умеренного стресса (ситуации международных соревнований) на кратковременную память у спортсменов.

Следующие друг за другом циклы жизненных процессов различаются по своим параметрам - длительности периода, амплитуде, фазе. В тех случаях, когда адаптационный процесс протекает спокойно, без особых потрясений организма, когда действующие на организм стресс-факторы не выходят за рамки умеренного уровня, их воздействия на циркадианные ритмы невелики. Если же адаптационный процесс протекает бурно, с выраженными и быстро развивающимися изменениями в организме, что может быть обусловлено действием сильных раздражителей, либо особой динамичностью организма в некоторые периоды его индивидуального развития, в этих случаях состояние организма от цикла к циклу изменяется очень заметно, и колебательные процессы утрачивают свою правильность, регулярность. Искажение биологического ритма, трансформация его в непериодические колебания свидетельствует о резком обострении внутренних противоречий адаптационного процесса. Изменения исходной периодичности при стрессе характеризуются не только нарушением постоянства периода, но и увеличением амплитуды колебательного процесса, изменениями акрофазы.

 

Десинхроноз подразделяется на острый  и  хронический. Острый десинхроноз возникает при внезапном рассогласовании ритмов датчиков времени и организма. Например, при  трансконтинентальных перелетах на современных авиалайнерах, пересекающих за довольно короткое время несколько часовых поясов, возникает резкое нарушение взаимоотношения фаз ритма сон-бодрствование. В случае, если воздействие фактора, вызвавшего острый десинхроноз, длительное время  не прекращается, развивается хронический десинхроноз.

Хронический десинхроноз – патологическое состояние, в основе которого лежит перманентная десинхронизация функций организма.

Десинхроноз может быть вызван целым рядом внешних причин, как социальных, так и природных. К числу социальных причин относятся,  например:

биотропные факторы антропогенного происхождения, такие как

а) токсические вещества, например, алкоголь, физические и другие воздействия;

б) совокупные социальные стрессы больших промышленных городов, связанные с напряженной работой или управлением транспортом, обилием информации и т.д.; 

 длительное рассогласование  ритма сон-бодрствование, например,  при сменной и ночной работе;

3) рассогласование между суточным  стереотипом организма и дискретным  временем, возникающим при трансмеридиональных  перелетах;

4) десинхроноз, вызванный орбитальными  и межпланетными космическими  полетами;

 

     К числу десинхронозов, вызванных природными внешними  факторами относятся, например, десинхронозы, связанные с:

5)  эктремальными природными  условиями,

         6) изменениями  ритмов действующих гелио-геофизических  датчиков времени, таких как циклы  солнечной активности, суточные  и сезонные вариации погоды, изменения  климата, 

          7) ритмами  геомагнитного поля Земли, вызванными  вращением Солнца,

           8) апериодическими  изменениями гелио-геофизических  факторов, возникающими при  солнечных  вспышках и геомагнитных бурях.

Данная систематизация причин, вызывающих десинхроноз, условна, как всегда, когда речь идет о любой многофакторной системе. В реальности действие многих из перечисленных факторов может быть тесно переплетено, взаимосвязано, и один фактор может усиливать отрицательное действие другого. Так, например, на орбитальной станции  космонавт пребывает в условиях, когда время “естественных” суток составляет всего примерно 90 минут (время облета станцией земного шара),  и на него постоянно воздействует такой сильнейший и необычный стресс-фактор, как  невесомость.

В настоящей книге предлагается следующая “рабочая” классификация нарушений организации временной структуры организма:

Изменение структуры ритма или десинхронизация:    

а) увеличение (уменьшение) амплитуды;

б) изменение периода.

2) Десинхроноз.

Данная классификация приводится лишь для правильности восприятия материала, поскольку в действительности  структурные изменения ритма обычно сопутствуют дисинхронозу. В то же время,  при проведении хронодиагностики, удается проследить зачастую за изменениями структуры ритма лишь одного или нескольких отдельных показателей, и поэтому, строго говоря, не следует говорить о десинхронозе организма.  Наблюдаемые изменения в таких случаях следует определять как десинхронизацию, характеризующуюся рассогласованием существующих в норме соотношений периодов и фаз ритмов исследуемых показателей организма и внешней среды. Тем не менее,  в дальнейшем для удобства изложения мы сами не будем строго придерживаться приведенной здесь классификации, считая, что читатель правильно поймет нас после сделанного выше комментария. 

referat911.ru


Смотрите также