works.tarefer.ru
СОДЕРЖАНИЕ
Введение
Глава 1. Перспективы применения водорода
Глава 2. Свойства водорода
Глава 3. Концепция энергоаккумулирующих веществ
Глава 4. Производство водорода
Глава 5. Потенциал применения водорода
Заключение
Литература
Введение
Сегодня многие передовые в экономическом отношении страны все более пристально рассматривают водород не только в упомянутых сферах его традиционного применения, но и как основу энергетики завтрашнего дня. На фоне катастрофического ухудшения экологического состояния планеты и истощения ресурсов углеводородного сырья, заманчиво использовать водород как абсолютно безвредное топливо для средств транспорта, обогрева жилищ в удаленных регионах, в автономных и стационарных источниках вторичной энергии. При этом наиболее заманчивым методом получения водорода является электролиз воды. Ведь сгорая, водород опять даст ту же воду. Поистине неисчерпаемый источник горючего! Но здесь встает другая проблема: для электролиза требуется электричество, а его получение из возобновляемых источников составляет сегодня ничтожную долю от общих объемов производства электроэнергии. И здесь вспомним про наше Солнце и другие звезды. Термоядерная реакция и вновь водород. Человек уже создал термоядерную (водородную) бомбу. Но в ней чудовищная по масштабам Земли энергия высвобождается в доли секунды, принося разрушения и смерть. На Солнце реакция идет миллиарды лет медленно и стабильно, принося жизнь и тепло. Ученые бьются над проблемой обуздания термояда, и не за горами то время, когда управляемая термоядерная энергия вкупе с экологически безопасным топливом навсегда избавит нас от опасений о конечности энергетических ресурсов нашей планеты и гибели окружающей среды.
Глава 1. Перспективы применения водорода
Решение проблем энергетики и энергоснабжения — ключ к решению очень многих экономических и хозяйственных проблем.
Прежде всего, рассмотрим источники, из которых человечество в настоящее время черпает энергию для своей хозяйственной деятельности:
Приведем данные нескольких исследователей.
По данным организации "Гринпис", структура мирового энергопотребления в начале 90-х годов выглядела следующим образом:
рис. 1. Структура мирового энергопотребления
По данным "Центра Кургиняна", на начало 1997г. доли различных источников в совокупном мировом энергопотреблении составляли: нефть — 38%, газ — 29%, уголь — 22%, и лишь около 10% приходилось на все остальные источники энергии вместе взятые
Российский журнал "Фактор" в №5 за 2001 год со ссылкой на World Energy Council представляет следующие данные на 2000 год: на ископаемые виды топлива приходится 90% мирового потребления энергоресурсов, в том числе на нефть — 40,1%, уголь — 27,8%, природный газ — 22,9%.
Итак, около 90% энергии мир получает, сжигая ископаемое топливо: нефть, газ, каменный уголь. Перед тем, как остановиться на водородном источнике энергии подробно, необходимо обсудить атомную энергию. Её апологеты утверждают, что она дешевая и (несколько неуверенно после апреля 1996 года) безопасная. Признаем, что обеспечить безопасность АЭС можно. А вот с дешевизной много сложнее. Скажем прямо: главным мотивом отказа от АЭС во всем мире является не вопрос безопасности, а вопрос стоимости.
Многие деятели атомной индустрии утверждают, что "стоимость электроэнергии АЭС уже сейчас меньше на 15% - 20% стоимости электроэнергии тепловых станций" (Инвестиционная программа атомной энергетики на 2002-2005 годы и на период до 2010 гoдa). Это не так. Методику расчета экономической эффективности "мирного атома" иначе как нечестной назвать трудно. "Расходы на реабилитацию мест радиоактивного загрязнения идут в России по другим статьям, нежели развертывание ядерных программ, — отмечает академик Яблоков — Если же подсчитать их все вместе, то эффективность развития ядерного комплекса окажется мизерной. Отходы приходится остекловывать или каким-то другим способом организовывать их длительное хранение. При этом стоимость проекта резко возрастает. В будущем нам надо находить средства на разборку отслуживших АЭС, на очистку больших территорий и акваторий от радиоактивного загрязнения".
Теперь рассмотрим менее очевидный вопрос: зачем искать альтернативы нефтегазовой энергетике?
Начнем с того, что нефть и газ не вечны. Существуют много оценок запасов нефти, которые колеблются от 30 до 100 лет использования.
Не удержусь и от повторения расхожей цитаты Дмитрия Ивановича Менделеева о том, что топить печь нефтью — это все равно, что топить ее ассигнациями: ведь нефть является уникальным, ценнейшим химическим сырьем, из которого делают даже чёрную икру.
Сжигание углеводородов создают заметные экологические проблемы, особенно при использовании для нужд транспорта. Но если совершенствованием технологий можно решить проблемы токсичных выбросов, то выбросы углекислоты, приводящие к изменению глобального климата, являются неизбежными спутниками использования ископаемого топлива.
И тогда встает вопрос: если не углеводородное топливо и не АЭС — тогда что же?
Ответ: возобновляемые источники энергии.
На долю этого сегмента приходиться менее 10%. Эта цифра означает не скудость этих источников, а низкий уровень внедрения технологий их использования.
Что же это за источники? Это в первую очередь Солнце: в среднем 1 киловатт/м2 земной поверхности, что в сумме в 100 раз (!) превышает количество вырабатываемой человечеством энергии. Не следует забывать и производные энергии Солнца: гидроэнергия, энергия ветра, морских волн.
На втором месте по значимости и перспективности стоит геотермальная энергия. Она практически неисчерпаемая и вечная, но проблема ее стоимости стоит довольно остро. Отметим также энергию приливов и отливов, энергетическое использование биомассы.
Почему же такой богатейший потенциал дает менее 10% вырабатываемой энергии?
Потому что данные источники непостоянны во времени и неравномерно распределены пространстве. Поэтому прямое их использование целесообразно (на уровне сегодняшних технологий) только в децентрализованных малых источниках энергии. Например, гелиоустановки для нагрева воды. Так, в Крыму уже есть индустрия установки систем, за счет энергии Солнца нагревающих воду до 95 градусов Цельсия (хоть для этого мазут из Тюмени не надо везти…). Но для снабжения электричеством заводов (и других крупных предприятий народного хозяйства) прямое использование этих источников абсурдно.
Глава 2. Свойства водорода
В свободном состоянии и при нормальных условиях водород — бесцветный газ, без запаха и вкуса. Относительно воздуха водород имеет плотность 1/14. Он обычно и существует в комбинации с другими элементами, например, кислорода в воде, углерода в метане и в органических соединениях. Поскольку водород химически чрезвычайно активен, он редко присутствует как несвязанный элемент.
Охлажденный до жидкого состояния водород занимает 1/700 объема газообразного состояния. Водород при соединении с кислородом имеет самое высокое содержание энергии на единицу массы: 120.7 ГДж/т. Это — одна из причин, почему жидкий водород используется как топливо для ракет и энергетики космического корабля, для которой малая молекулярная масса и высокое удельное энергосодержание водорода имеют первостепенное значение.
При сжигании в чистом кислороде единственные продукты — высокотемпературное тепло и вода. Таким образом, при использовании водорода не образуются парниковые газы и не нарушается даже круговорот воды в природе.
Неисчерпаемость.
Отметим преимущества водорода как топлива.
В Мировом океане водорода содержится 1,2·1017 т, дейтерия - 2·1013 т. Суммарная масса водорода составляет 1% общей массы Земли, а число атомов - 16%. Особенно важен здесь тот фактор, что при сгорании водород превращается в воду и полностью возвращается в круговорот природы. В то же время, по самым оптимистическим прогнозам, ресурсы углеводородного топлива будут истощены примерно через 100 с лишним лет, в то время как угля — через многие столетия. Величина запасов угля важна и в контексте водородной энергетики: ближайшей промышленной перспективой производства водорода будет получение его при газификации углей.
Весовая теплотворная способность водорода (28630 ккал/кг) в 2.8 раза выше по сравнению с бензином.
Энергия воспламенения в 15 раз меньше, чем для углеводородного топлива.
Максимальная скорость распространения фронта пламени в 8 раз больше по сравнению с углеводородами.
Излучение пламени в 10 раз меньше по сравнению с пламенем углеводородов.
Экологичность
При использовании водорода как топлива исключается возможность усиления парникового эффекта, не выделяются вредные вещества (автомобильный двигатель выбрасывает 45 токсичных веществ, в том числе и канцерогены, нет опасности образования застойных зон водорода — он легко улетучивается.
Отметим и отрицательные качества водорода. Это низкие плотность и объемная теплотворная способность, более широкие пределы взрываемости и более высокая температура воспламенения по сравнению с углеводородами. Применение концепции энергоаккумулирующих веществ (ЭАВ), описанной ниже, позволит снизить негативное влияние этих недостатков водорода как топлива, которые заметно перекрываются его достоинствами.
www.coolreferat.com
Реферат на тему:
Водородная энергетика — развивающаяся отрасль энергетики, направление выработки и потребления энергии человечеством, основанное на использовании водорода в качестве средства для аккумулирования, транспортировки и потребления энергии людьми, транспортной инфраструктурой и различными производственными направлениями. Водород выбран как наиболее распространенный элемент на поверхности земли и в космосе, теплота сгорания водорода наиболее высока, а продуктом сгорания в кислороде является вода (которая вновь вводится в оборот водородной энергетики). Водородная энергетика относится к нетрадиционным видам энергетики.
В настоящее время существует множество методов промышленного производства водорода. Все цены приведены для США, 2004 год.
В настоящее время данным способом производится примерно половина всего водорода. Водяной пар при температуре 700—1000 °C смешивается с метаном под давлением в присутствии катализатора. Себестоимость процесса $2–5 за килограмм водорода. В будущем возможно снижение цены до $2–2,50, включая доставку и хранение.
Старейший способ получения водорода. Уголь нагревают с водяным паром при температуре 800—1300 °C без доступа воздуха. Первый газогенератор был построен в Великобритании в 40-х годах XIX века. США предполагают построить электростанцию по проекту FutureGen, которая будет работать на продуктах газификации угля. Впервые о планах подобного строительства заявил еще в 2003 году министр энергетики США Спенсер Абрахам. Электричество будут вырабатывать топливные элементы, используя в качестве горючего водород, получающийся в процессе газификации угля.
В декабре 2007 года была определена площадка для строительства первой пилотной электростанции проекта FutureGen. В Иллинойсе будет построена электростанция мощностью 275 МВт. Общая стоимость проекта $1,2 млрд. На электростанции будет улавливаться и храниться до 90 % СО2.
Аналогичный проект под названием «GreenGen» создан в Китае. Строительство первой очереди электростанции мощностью 250 МВт начнётся в 2008 году. Общая мощность электростанции составит 650 МВт.
Себестоимость процесса $2–2,5 за килограмм водорода. В будущем возможно снижение цены до $1,50, включая доставку и хранение.
Использование атомной энергии для производства водорода возможно в различных процессах: химических, электролиз воды, высокотемпературный электролиз. Себестоимость процесса $2,33 за килограмм водорода. Ведутся работы по созданию атомных электростанций следующего поколения. Исследовательская лаборатория INEEL (Idaho National Engineering Environmental Laboratory) (США) прогнозирует, что один энергоблок атомной электростанции следующего поколения будет производить ежедневно водород, эквивалентный 750 тыс. литров бензина.
2h3O+энергия = 2h3+O2. Обратная реакция происходит в топливном элементе. Себестоимость процесса $6–7 за килограмм водорода при использовании электричества из промышленной сети. В будущем возможно снижение до $4 за килограмм.
$7–11 за килограмм водорода при использовании электричества, получаемого от ветрогенераторов. В будущем возможно снижение до $3 за килограмм.
$10–30 за килограмм водорода при использовании солнечной энергии. В будущем возможно снижение до $3–4 за килограмм.
Водород из биомассы получается термохимическим или биохимическим способом. При термохимическом методе биомассу нагревают без доступа кислорода до температуры 500—800 °C (для отходов древесины), что намного ниже температуры процесса газификации угля. В результате процесса выделяется h3, CO и Ch5.
Себестоимость процесса $5–7 за килограмм водорода. В будущем возможно снижение до $1,0—3,0.
В биохимическом процессе водород вырабатывают различные бактерии, например, Rodobacter speriodes.
Снижение цены водорода возможно при строительстве инфраструктуры по доставке и хранению водорода. В США действует 750 километров, а в Европе — 1500 километров водородных трубопроводных систем. Трубопроводы действуют при давлении 10—20 бар, изготовлены из стальных труб диаметром 25—30 см. Старейший водородный трубопровод действует в районе германского Рура. 210 километров трубопровода соединяют 18 производителей и потребителей водорода. Трубопровод действует более 50 лет без аварий. Самый длинный трубопровод длиной 400 километров проложен между Францией и Бельгией.
После небольших изменений водород может передаваться по существующим газопроводам природного газа.
Водород в настоящее время, в основном, применяется в технологических процессах производства бензина и для производства аммиака. США ежегодно производят около 11 миллионов тонн водорода, что достаточно для годового потребления примерно 35—40 миллионов автомобилей.
Департамент Энергетики США (DoE) прогнозирует, что стоимость водорода сравняется со стоимостью бензина к 2015 году.
Производство электрической и тепловой энергии в топливных элементах мощностью от 0,75 кВт до 10 кВт.
Домашние энергетические станции имеют мощность 0,75—1 кВт, предназначены для выработки электроэнергии в течение 8 часов в сутки и выработки тепла и горячей воды 24 часа в сутки. Установки мощностью 5 кВт предназначаются для нескольких коттеджей. Они зачастую предназначаются только для выработки электроэнергии.
Популярность малых домашних комбинированных (электричество + тепло) установок связана с тем, что они имеют высокий КПД, малые выбросы СО2, легко могут быть встроены в существующую инфраструктуру. Такая энергетическая установка занимает размер не больше домашнего бойлера, может работать на природном газе.
В 2005 году во всём мире было установлено более 900 новых малых стационарных водородных энергетических установок (На 30 % больше, чем в 2004 году). За 2006 год во всём мире установлено около 1500 новых малых энергетических станций. В конце 2006 года во всём мире эксплуатировалось около 5000 малых стационарных водородных электростанций.
Технологии
Доминируют две технологии: PEM (протон-обменная) и SOFC (твёрдо-оксидная). Около 75 % установок в 2005 году были изготовлены по PEM технологии, около 25 % — SOFC.
Топливо
Большая часть домашних станций разработана для применения природного газа, пропана, очень немногие могут работать со сжиженным нефтяным газом (LPG). Многие производители работают с керосином.
Перспективы
В 2006, как и в 2005 году большая часть малых приложений была установлена в Японии. Японская NEF (New Energy Foundation) объявила о начале многолетнего демонстрационного проекта применения малых стационарных топливных элементов. Будет субсидирована установка 6400 топливных элементов. В 2005 году стоимость 1 кВт водородной бытовой станции в Японии составляла 10 млн ¥ (примерно $87 000), работы по ее установке стоили еще 1 млн ¥. К середине 2008 года в Японии было установлено около 3000 бытовых энергетических установок на водородных топливных элементах, а их стоимость снизилась до 2 млн ¥ (примерно $19 000)[1].
Япония уже имеет опыт использования подобных программ. В 1994 году была принята программа развития солнечной энергетики. Японское правительство ежегодно вкладывало $115 млн в установку фотоэлектрических элементов на крышах домов. С тех пор установленные мощности солнечной энергетики выросли в 35 раз. Средняя стоимость фотоэлектрических элементов снизилась на 75 %.
Компании — основные производители:
Ballard Power Systems | Канада | PEMFC | 1 кВт. |
Acumentrics | США | SOFC | 2—10 кВт |
Ceramic Fuel Cells | Австралия — Великобритания | SOFC | 1 кВт. Общий КПД более 80 % |
Cosmo Oil | Япония | PEMFC | 0,7 кВт |
European Fuel Cells | Германия | PEMFC | 1,5 кВт |
Fuel Cell Technologies | США | SOFC | 5 кВт. |
Hitachi Zosen | Япония | - | от 10 кВт до сотен кВт. КПД 86 % |
Idatech | США | - | 3—15 кВт. UPS для промышленных, телекоммуникационных, электронных приложений. |
Idemitsu Kosan | Япония | - | 1—5 кВт |
Kyocera | Япония | SOFC | 1 кВт |
Mitsubishi Heavy Industries | Япония | PEMFC | 10 кВт |
Nippon Oil Corporation | Япония | технологии Ebara Ballard | 1—6—10кВт. Планирует к 2013 году ежегодно продавать 100 тыс. бытовых систем |
Plug Power | США] | PEMFC | 5 кВт |
Sanyo Electric | Япония | PEMFC | 1 кВт. Общий КПД 92 % при производстве тепловой и электрической энергии |
Shanghai-Shen Li | Китай | PEMFC | 3—10 кВт |
Sharp Corporation | Япония | PEMFC | 10 кВт. Гибридные системы, совмещенные с фотоэлектрическими элементами |
Toyota Motor Corporation совместно с Aishin Seiki | Япония | PEMFC, SOFC | В 2006 году начали испытания нескольких установок мощностью 1 кВт. КПД 90%. Мощность SOFC установок 0,7 кВт[2]. |
Panasonic (Matsushita Electric Industrial Co) | Япония | PEMFC | 0,5—1 кВт. Планирует продавать 700 тысяч установок в год к 2020 году.[3] |
и др.
Подводная лодка класса U212 (Германия) с силовой установкой на водородных топливных элементах.
Производство электрической и тепловой энергии в топливных элементах мощностью более 10 кВт.
К концу 2006 года во всём мире было установлено более 800 стационарных энергетических установок на топливных элементах мощностью более 10 кВт. Их суммарная мощность — около 100 МВт. За 2006 год построено более 50 установок суммарной мощностью более 18 МВт.
Технологии
В 2005 году среди новых установок лидировали Расплавные Карбонатные Топливные Элементы (MCFC). На втором месте по числу новых установок были Фосфорнокислые технологии (PAFC). Протонобменные технологии (PMFC) применялись, в основном, в установках мощностью до 10 кВт и в автомобильных приложениях.
Топливо
Хотя большая часть стационарных топливных элементов в настоящее время работает на природном газе, всё большее количество установок использует альтернативные виды топлива. В 2005 году усилился тренд применения сингаза и биогаза. В 2005 году биогаз вышел на второе место после природного газа. В 2005 году были построены электростанции (Япония, Германия), работающие на биогазе, получаемом из древесных отходов, пластика, муниципальных сточных вод. Водород и керосин и в будущем будут занимать значительную долю в нише малых стационарных установок мощностью более 10 кВт.
Гибридные установки: топливный элемент/газовая турбина.
Для повышения эффективности, снижения себестоимости энергии и для утилизации тепловой энергии применяются установки, совмещающие топливные элементы и газовые турбины.
Компания FuelCell Energy (США) разработала гибридную версию SOFC топливного элемента и газовой турбины. В этой схеме топливный элемент производит 4/5 энергии, а остальную часть из тепловой энергии — турбина. КПД данной схемы приближается к 70 %. Испытывается электростанция мощностью 40 МВт, состоящая из 10 топливных элементов и одной турбины мощностью 10 МВт.
Финансирование
В 2005 году в США был принят Энергетический Билль. Билль предусматривает 30 % инвестиционные налоговые кредиты до уровня $1000 за кВт установленной мощности. Налоговые кредиты будут выдаваться с 1 января 2006 по 1 января 2008 года. В Японии и Ю. Корее субсидируются не конкретные проекты, а стоимость электроэнергии, выработанной топливными элементами в размере $0,015—0,02 за кВт·ч.
Компании — основные производители
Ansaldo Fuel Cells | Италия | MCFC | 500 кВт — 5МВт |
FuelCell Energy | США | MCFC | 250 кВт — 1МВт |
GenCell | США | MCFC | 40—100 кВт |
Ishikawajima-Harima Heavy Industries | Япония | MCFC | 300 кВт — 1 МВт |
MTU CFC Solutions | Германия | MCFC | 200 кВт — 3 МВт |
Fuji Electric | Япония | PAFC | 100 кВт — 1 МВт |
Korea Gas | Корея | PAFC | 40 кВт |
UTC Fuel Cells | США | PAFC, MCFC, PEMFC | 200 кВт, транспортные приложения |
Ballard Power Systems | Канада | PEMFC | 1—250 кВт |
General Motors | США | PEMFC | 75—300 кВт |
Hydrogenics | Канада | PEMFC | 7—65 кВт |
J-Power | Япония | SOFC | разрабатывает тройные системы: топливные элементы, газовые турбины и паровые турбины |
Mitsubishi Materials | Япония | SOFC | 10 кВт |
Mitsubishi Heavy Industries | Япония | SOFC,PEMFC | 200 кВт. Также разрабатывается 700 МВт SOFC электростанция тройного цикла |
Rolls-Royce Group plc | Великобритания | SOFC | 80 кВт |
Siemens AG Power Generation | Германия | SOFC | 125 кВт |
Ztek | США | SOFC | 25 кВт — 1 МВт |
Cummins Power Generation | США | SOFC | 3 кВт[4]. |
В США и Японии планируется строительство крупных тепло-электростанций мощностью 40—700 МВт двойного и тройного цикла с общим КПД более 80 % и выбросами СО2 на 30 % меньше, чем на традиционных угольных электростанциях.
Производство электрической энергии для автомобилей, водного транспорта, и т. д.
К концу 2008 года во всём мире функционировало 2000 водородных автомобильных заправочных станций. Из общего количества заправочных станций, построенных 2004—2005 году, всего 8 % работают с жидким водородом, остальные с газообразным.
Северная Америка | 46 % | 65 % | 59 % |
Япония | 14 % | 15 % | 7 % |
Германия | 13 % | 0 | 7 % |
Остальная Европа | 14 % | 15 % | 0 |
Другие страны | 13 % | 5 % | 27 % |
Таблица. Водородные заправочные станции по регионам мира
Планируется строительство
General Motors заявлял о возможных планах строительства 12000 водородных заправочных станций в городах США и вдоль главных автострад. Стоимость проекта компания оценивает в $12 млрд.
Отсутствие водородной инфраструктуры является одним из основных препятствий развития водородного транспорта.
Решением проблемы может стать применение водорода в качестве топлива для двигателя внутреннего сгорания, или смесей топлива с водородом, например, HCNG. В январе 2006 года Mazda начала продажи битопливного автомобиля Mazda RX-8 с роторным двигателем, который может потреблять и бензин, и водород.
В июле 2006 года транспортная компания BVG (Berliner Verkehrsbetriebe) из Берлина объявила о закупках к 2009 году 250 автобусов MAN с двигателями внутреннего сгорания, работающими на водороде, что составит 20 % от автопарка компании.
В 2006 году Ford Motor Company начал выпуск автобусов с двигателями внутреннего сгорания, работающими на водороде. (см. Автобусы Ford)
Компании — основные игроки
Mercedes Benz Citaro на водородных топливных элементах в Лондоне
Производители водорода:
Ёмкости для хранения водорода:
Оборудование для производства водорода:
BP — ключевой игрок в демонстрационных водородных проектах по всему миру.
Автомобильный транспорт
В 2006 году было запущено в эксплуатацию около 100 новых автомобилей, автобусов, мотоциклов и т. д. на топливных элементах. К концу 2007 году в мире будет эксплуатироваться около 900 транспортных средств.
В автомобильных приложениях преобладают PEM технологии. В 2005 году был изготовлен всего один автомобиль с PAFC топливным элементом — остальные на PEM-технологиях.
Разработчики смогли снизить стоимость автомобильных водородных топливных элементов с $275 за кВт мощности в 2002 году до $110 за кВт в 2005. Департамент Энергетики США (DoE) планирует снизить стоимость до $30 за кВт мощности к 2020 году.
Планы автопроизводителей
Daimler | Германия | 2009 | 200 шт в начале 2010 года[5] | начало производства Mercedes B-class[6] |
Ford | США | 2015 | - | коммерческая готовность |
GM | США | 2012 | - | коммерческая готовность[7] |
GM | США | 2025 | - | массовый рынок |
Honda | Япония | 2008 | - | начало продаж в Калифорнии автомобиля Honda FCX |
Honda | Япония | 2010 | 12000 (в США) | начало производства |
Honda | Япония | 2020 | 50000 (в США) | производство |
Hyundai Motor | Корея | 2012 | - | начало продаж[8] |
Toyota | Япония | 2015 | - | начало продаж[9] |
Fiat | Италия | 2020-2025 | - | полная коммерциализация |
SAIC | Китай | 2010 | 1000 | коммерческая готовность |
Shanghai VW | Китай — Германия | 2010 | - | начало производства Lingyu[10] |
В марте 2006 года германский HyWays проект опубликовал прогнозы проникновения водородного автотранспорта на европейский рынок.
Высокое проникновение | 3,3 % | 23,7 % | 54,4 % | 74,5 % |
Низкое проникновение | 0,7 % | 7,6 % | 22,6 % | 40,0 % |
Таблица: прогноз проникновения водородного автотранспорта на европейский рынок в % от общего количества автомобилей.
Воздушный транспорт
Корпорация Boeing прогнозирует, что топливные элементы постепенно заменят в авиации вспомогательные энергетические установки. Они смогут генерировать электроэнергию, когда самолет находится на земле, и быть источниками бесперебойного питания в воздухе. Топливные элементы будут постепенно устанавливаться на новое поколение Боингов 7E7, начиная с 2008 года.
Железнодорожный транспорт
Для данных приложений требуется большая мощность, а размеры силовой установки имеют малое значение.
Железнодорожный исследовательский технологический институт (Япония) планирует запустить поезд на водородных топливных элементах в эксплуатацию к 2010 году. Поезд сможет развивать скорость 120 км/ч, и проезжать 300—400 км без заправки. Прототип был испытан в феврале 2005 года.
В США эксплуатация локомотива с водородным топливным элементом мощностью 2 тысячи л. с. начнётся в 2009 году[11].
Водный транспорт
В Германии производятся подводные лодки класса U-212 с топливными элементами производства Siemens AG. U-212 стоят на вооружении Германии, поступили заказы из Греции, Италии, Кореи, Израиля. Под водой лодка работает на водороде и практически не производит шумов.
В США поставки SOFC топливных элементов для подводных лодок могут начаться в 2006 году. Компания FuelCell Energy разрабатывает 625 кВт топливные элементы для военных кораблей.
Японская подводная лодка Urashima с топливными элементами PEMFC производства Mitsubishi Heavy Industries была испытана в августе 2003 года.
Складские погрузчики
Чуть менее половины новых топливных элементов, установленных в 2006 году на транспортные средства, были установлены на складские погрузчики. Замена аккумуляторных батарей на топливные элементы позволит значительно сократить площади, занимаемые аккумуляторными цехами. Wal-Mart в январе 2007 года завершил вторую серию испытаний складских погрузчиков на топливных элементах.
Производство электрической энергии для мобильных устройств: мобильных телефонов, ноутбуков и т. д.
В 2006 году (как и в 2005) во всём мире было изготовлено около 3000 штук мобильных приложений. В 2008 году мировое производство выросло до 9000 штук[12]. Одним из основных потребителей была армия США. Армии требуются легкие, ёмкие, бесшумные источники энергии.
Благодаря спросу со стороны военных, США заняли первое место в мире по количеству разработок в портативных приложениях. На Японию приходилось всего 13 % новых разработок в 2005 году. Наиболее активными были компании — производители электроники: Casio, Fujitsu Hitachi, Nec, Sanyo и Toshiba.
Весной 2007 года компания Medis Technologies начала продажи водородных топливных элементов для мобильных устройств.
Технологии
В портативных и электронных приложениях доминируют PEM и DMFC топливные элементы.
В 1941 году техник-лейтенант войск противовоздушной обороны (ПВО)защищавших Ленинград во время Великой Отечественной войны Борис Шелищ предложил использовать "отработанный" водород из заградительных аэростатов войск ПВО в качестве топлива для двигателей автомобилей ГАЗ-АА. Полуторки использовались в качестве транспортно-энергетической единицы поста противовоздушной обороны. Лебедка автомобиля, приводимая в движение от двигателя ГАЗ-АА позволяла осуществлять подъем-спуск аэростатов. Это предложение было внедрено в 1941-1944 годах в блокадном Ленинграде. Было оборудовано 400 водородных постов ПВО. В условиях блокады и отсутствия бензина перевод автомобилей с бензина на водород позволил эффективно защитить город от прицельного бомбометания самолетами вражеской авиации.
В 1979 году под научным руководством Шатрова Е.В. творческим коллективом работников НАМИ в составе Кузнецова В.М. ( руководитель группы НАМИ), Раменского А.Ю. (аспирант НАМИ), Козлова Ю.А. (механик) был разработан и испытан опытный образец микроавтобуса РАФ, работающий на водороде и бензине.
В 1982 году Совет Московского автомеханического института (МАМИ) рассмотрел диссертацию Раменского А.Ю. (научный руководитель Шатров Е.В.) на соискание ученой степени кандидата технических наук по теме "Исследование рабочих процессов автомобильного двигателя на бензино-водородных топливных композициях".В России это по-видимому первая диссертация, в которой подробно изучались вопросы теории рабочих процессов ДВС, работающего на водороде [1].
В конце 1980х-начале 90х проходил испытания авиационный реактивный двигатель на жидком водороде, установленный на самолёте ТУ-154.
В 2003 году создана Национальная ассоциация водородной энергетики (НП НАВЭ). В 2004 году президентом ассоциации избран П. Б. Шелищ сын легендарного "Водородного лейтенанта".
В 2003 году компания «Норильский никель» и Российская академия наук подписали соглашение о ведении научно-исследовательских работ в сфере водородной энергетики. «Норильский никель» вложил в исследования 40 млн долларов.
В 2006 году «Норильский никель» приобрел контрольный пакет американской инновационной компании Plug Power, являющейся одним из лидеров в сфере разработок, связанных с водородной энергетикой.
Глава «Норильского никеля» Михаил Прохоров заявил в феврале 2007 года, что компания вложила в разработку водородных установок $70 млн и уже есть «не просто лабораторные, а действующие образцы», на внедрение которых уйдёт несколько лет. Начало промышленной реализации «водородного проекта», по его словам, намечено на 2008 год.[13]
В июне 2008 года компания Matsushita Electric Industrial Co Ltd (Panasonic) начала производство в Японии водородных топливных элементов. Компания планирует продать к 2015 году 200 тысяч бытовых энергетических систем на водородных топливных элементах[14].
В сентябре корейская компания POSCO завершила строительство завода по производству стационарных энергетических установок на водородных топливных элементах. Мощность завода 50 МВт. оборудования в год[15].
В октябре 2008 года продажи DMFC установок компании германской Smart Fuel Cell AG для домов на колёсах достигли 10 000 штук. Мощность установок от 0,6 кВт. до 1,6 кВт. В качестве топлива используется метанол. Канистры с метанолом продаются 800 магазинах Европы[16].
Первые лётные испытания установки для бортового питания на водородных топливных элементах мощностью 20 кВт. проведены компанией Airbus в феврале 2008 года на самолёте Airbus A320 [17].
В марте 2008 года во время экспедиции STS-123 шаттла Endeavour топливные элементы производства компании UTC Power преодолели рубеж в 100 тысяч операционных часов в космосе[18]. Водородные топливные элементы производят энергию на борту шаттлов с 1981 года.
3 апреля 2008 года компания Boeing провёла лётные испытания лёгкого двухместного самолёта Dimona с силовой установкой на водородных топливных элементах[19].
Компания Mercedes в марте 2008 года завершила зимние испытания автомобиля B-Class с силовой установкой на водородных топливных элементах[20].
Шанхайская компания Shanghai Volkswagen Automotive Company для Олимпийских игр в Пекине поставила 20 легковых автомобилей с силовой установкой на водородных топливных элементах[21].
В августе 2008 года в США состоялся демонстрационный пробег водородных автомобилей. Автомобили компаний BMW, Daimler, General Motors, Honda, Nissan, Toyota, Hyundai и Volkswagen за 13 дней преодолели 7000 км [22].
Компания Honda начала продажи в лизинг автомобилей Honda FCX Clarity в США летом 2008 года[23]. В Японии — в ноябре 2008 года[24].
В декабре германский институт Deutsches Zentrum für Luft- und Raumfahrt (DLR) завершил строительство пилотной установки по производству водорода из воды в солнечных концентраторах. Мощность установки 100 кВт[25].
Разрабатывались технологии производства водорода из мусора, этанола, металлургического шлака[26], биомассы[27] и другие технологии.
Успехи в развитии ряда водородных технологий показали, что использование водорода приводит к качественно новым показателям работы систем и агрегатов, а результаты многочисленных технико-экономических исследований говорят о том, что водород, несмотря на свою вторичность в качестве энергоносителя[28], то есть стоит дороже, чем природное топливо, его применение во многих случаях экономически целесообразно уже сейчас. Поэтому работы в области водородной энергетики во многих, особенно в промышленно развитых странах, относятся к приоритетным направлениям развития науки и техники и находят всё большую поддержку со стороны как государственных структур, так и частного капитала[29].
Министерство Коммерции, Индустрии и Экономики Ю. Кореи в 2005 году приняло план строительства водородной экономики к 2040 году. Цель — производить на топливных элементах 22 % всей энергии и 23 % электричества, потребляемого частным сектором.
С 2010 года правительство Южной Кореи будет дотировать покупателю 80 % от стоимости стационарной энергетической установки на водородных топливных элементах. С 2013 года по 2016 году будет дотироваться 50 % стоимости, а с 2017 года до 2020 года — 30 %[30].
В Индии создан Индийский Национальный Комитет Водородной Энергетики. В 2005 году комитет разработал «Национальный План Водородной Энергетики». Планом предусмотрены инвестиции в размере 250 млрд рупий (примерно $5,6 млрд) до 2020 года. Из них 10 млрд рупий будет выделено на исследования и демонстрационные проекты, а 240 млрд рупий на строительство инфраструктуры по производству, транспортировке, хранению водорода. Планом поставлена цель — к 2020 году вывести на дороги страны 1 миллион автотранспортных средств, работающих на водороде. Также к 2020 году будет построено 1000 МВт водородных электростанций[31].
Департамент Энергетики США (DOE) в январе 2006 года принял план развития водородной энергетики «Roadmap on Manufacturing R&D for the Hydrogen Economy» [2] [3].
Планом предусмотрено:
8 августа 2005 года Сенат США принял Energy Policy Act of 2005. Законом предусмотрено выделение более $3 млрд на различные водородные проекты. И $1,25 млрд на строительство новых атомных реакторов, производящих электроэнергию и водород.
Исландия планирует построить водородную экономику к 2050 году[32].
Правительство Южно-Африканской Республики в 2008 году приняла водородную стратегию. К 2020 году ЮАР планирует занять 25% мирового рынка катализаторов для водородных топливных элементов[33].
www.wreferat.baza-referat.ru
Водородная энергетика
План
Введение
1.Использование водорода
2.Перспективы развития водородной энергетики
Введение
Сейчас начала свое развитие новая отрасль промышленности - водородная энергетика и технология. Потребность экономики в водороде идет возрастает, потому что это простейшее и легчайшее вещество может использоваться не только как топливо, но и как необходимый сырьевой элемент во многих технологических процессах .Он незаменим в нефтехимии для глубокой переработки нефти, без него не обойтись, скажем в химии при получении аммиака и азотных удобрений, а в черной металлургии с его помощью восстанавливается железо из руд.
1.Использование водорода
Органические топлива (газ, нефть и уголь), тоже служат сырьем в этих или подобных процессах, но еще полезнее извлечь из них самый экономный и чистый энергоноситель- тот же водород. Водород - идеальный экофильный вид топлива. Очень высока и его калорийность - 33 тыс .К кал/кг, что в 3 раза выше калорийности бензина. Он легко транспортируется по газопроводам, потому что у него очень малая вязкость . По трубопроводу диаметром 1,5м с ним передается 20тыс. Мегаватт мощности. Перекачка легчайшего газа на расстояние в 500км. почти вдесятеро дешевле, чем передача такого же количества электроэнергии по линиям электропередачи . Как и природный газ, водород можно использовать на кухне для приготовления пищи, для отопления и освещения зданий. Чтобы показать его возможности, американские ученые построили "водородный дом" ,в котором для освещения использовался водород. Передавать водород в жидком виде очень дорого, т.к. для его сжижения нужно потратить почти половину энергии, содержащейся в нем самом. Кроме того, должна быть обеспечена идеальная теплоизоляция трубопровода, так как температура жидкого водорода очень низка.
В качестве топлива водород сжигается в двигателях ракет и в топливных элементах для непосредственного получения электроэнергии при соединении водорода и кислорода. Его можно использовать и как топливо для авиационного транспорта.
Использование водорода в энергетике выгодно, поэтому появилось много интереса к развитию водородной энергетики, возникли ассоциации, в том числе международная . Сейчас в мире получают около 30 миллионов тонн водорода в год, причем в основном из природного газа. Согласно прогнозам за 40 лет производство водорода должно увеличиться в 20-30 раз.
2.Перспективы развития водородной энергетики
С помощью атомной энергетики предстоит заменить нынешний источник водорода - природный га з- на более дешевое и доступное сырье - на воду. Здесь возможны два пути.
Первый путь - традиционный, с помощью электрохимического разложения воды. Второй путь менее известен. Если нагреть пары воды до 3000-3500 C, то водные молекулы развалятся сами собой. Оба способа получить водород из воды пока дороже, чем из природного газа. Однако природный газ дорожает, а методы разложения воды совершенствуются. Через какое-то время водород из воды станет дешевле. В отдельных случаях и сейчас выгодно получать водород с помощью электролиза в ночные часы, когда имеется лишняя и дешевая электроэнергия.
Водородная энергетика бурно развивается, но сейчас все чаще говорят об атомно-водородной энергетике. Требуются большие энергетические расходы для получения водорода. В будущем "ядерный реактор - водородный генератор"- претендует на роль энергетического лидера в экономике XXI века.
referat.store