Силы в Природе. Силы в природе реферат физика


Силы в Природе

Силы в Природе

Несмотря на разнообразие сил, имеется всего четыре типа взаимодействий: гравитационное, электромагнитное, сильное и слабое.

Гравитационные силы заметно проявляются в космических масштабах. Одним из проявлений гравитационных сил является свободное падение тел. Земля сообщает всем телам одно и то же ускорение, которое называют ускорением свободного падения g. Оно незначительно меняется в зависимости от географической широты. На широте Москвы оно равно 9,8 м/с2.

Электромагнитные силы действуют между частицами, имеющими электрические заряды. Сильные и слабые взаимодействия проявляются внутри атомных ядер и в ядерных превращениях.

Гравитационное взаимодействие существует между всеми телами, обладающими массами. Закон всемирного тяготения, открытый Ньютоном, гласит:

Сила взаимного притяжения двух тел, которые могут быть принятыми за материальные точки, прямо пропорциональна произведению их масс и обратно пропорциональна квадрату расстояния между ними:

sili_v_prirode_renamed_18260.jpg

Коэффициент пропорциональности у называют гравитационной постоянной. Она равна 6,67 • 10-11 Н•м2/кг2.

Если на тело действует лишь гравитационная сила со стороны Земли, то она равна mg. Это и есть сила тяжести G (без учета вращения Земли). Сила тяжести действует на все тела, находящиеся на Земле, вне зависимости от их движения.

При движении тела с ускорением свободного падения (или даже с меньшим ускорением, направленным вниз) наблюдается явление полной или частичной невесомости.

Полная невесомость - отсутствие давления на подставку или на подвес. Вес - сила давления тела на горизонтальную опору или сила растяжения нити со стороны подвешенного к ней тела, которая возникает в связи с гравитационным притяжением данного тела к Земле.

Силы притяжения между телами неуничтожимы, тогда как вес тела может исчезнуть. Так, в спутнике, который двигается с первой космической скоростью вокруг Земли, вес отсутствует так же, как в лифте, падающем с ускорением g.

Примером электромагнитных сил являются силы трения и упругости. Различают силы трения скольжения и силы трения качения. Сила трения скольжения намного больше силы трения качения.

Сила трения зависит в некотором интервале от приложенной силы, которая стремится сдвинуть одно тело относительно другого. Прикладывая различную по величине силу, увидим, что небольшие силы не могут сдвинуть тело. При этом возникает компенсирующая сила трения покоя.

При отсутствии сил, сдвигающих тело, сила трения покоя равна нулю. Наибольшее значение сила трения покоя приобретает в момент, когда одно тело начинает двигаться относительно другого. В этом случае сила трения покоя становится равной силе трения скольжения:

sili_v_prirode.jpg

где n - коэффициент трения, N - сила нормального (перпендикулярного) давления. Коэффициент трения зависит от вещества трущихся поверхностей и их шероховатости.

sfiz.ru

Силы в природе

Занимательные фишки - 7 класс Занимательные фишки - 8 класс Занимательные фишки - 9 класс 10-11 класс Диафильмы по физике

«Физика - 10 класс»

В главе 2 мы ввели понятие силы как количественной меры действия одного тела на другое. В этой главе мы рассмотрим, какие силы рассматриваются в механике, чем определяются их значения.

Много ли видов сил существует в природе?Перечислите известные вам силы. Какую природу они имеют — гравитационную или электромагнитную?

На первый взгляд кажется, что мы взялись за непосильную и неразрешимую задачу: тел на Земле и вне её бесконечное множество. Они взаимодействуют по-разному.

Так, например, камень падает на Землю; электровоз тянет поезд; нога футболиста ударяет по мячу; потёртая о мех эбонитовая палочка притягивает лёгкие бумажки, магнит притягивает железные опилки; проводник с током поворачивает стрелку компаса; взаимодействуют Луна и Земля, а вместе они взаимодействуют с Солнцем; взаимодействуют звёзды и звёздные системы, луч света отражается от зеркала и т. д. Подобным примерам нет конца.

Похоже, что в природе существует бесконечное множество взаимодействий (сил)? Оказывается, нет!

Четыре типа сил.

В безграничных просторах Вселенной, на нашей планете, в любом веществе, в живых организмах, в атомах, в атомных ядрах и в мире элементарных частиц мы встречаемся с проявлением всего лишь четырёх типов сил: гравитационных, электромагнитных, сильных (ядерных) и слабых.

Гравитационные силы, или силы всемирного тяготения, действуют между всеми телами, имеющими массу, — все тела притягиваются друг к другу.

Но это притяжение существенно обычно лишь тогда, когда хотя бы одно из взаимодействующих тел так же велико, как Земля или Луна. Иначе эти силы столь малы, что ими можно пренебречь.

Электромагнитные силы действуют между частицами, имеющими электрические заряды.

Сфера их действия особенно обширна и разнообразна.

В атомах, молекулах, твёрдых, жидких и газообразных телах, живых организмах именно электромагнитные силы являются главными. Такие, казалось бы, чисто механические силы, как силы трения и упругости, имеют электромагнитную природу. Велика их роль в атомах.

Ядерные силы действуют между частицами в атомных ядрах и определяют свойства ядер.

Область действия ядерных сил очень ограничена.

Они заметны только внутри атомных ядер (т. е. на расстояниях порядка 10-15 м). Уже на расстояниях между частицами порядка 10-13 м (в тысячу раз меньших размеров атома — 10-10 м) они не проявляются совсем.

Слабые взаимодействия вызывают взаимные превращения элементарных частиц, определяют радиоактивный распад ядер, реакции термоядерного синтеза.

Они проявляются на ещё меньших расстояниях, порядка 10-17 м.

Ядерные силы — самые мощные в природе.

Если интенсивность ядерных сил принять за единицу, то интенсивность электромагнитных сил составит 10-2, гравитационных — 10-40, слабых взаимодействий — 10-16.

Сильные (ядерные) и слабые взаимодействия проявляются на таких малых расстояниях, когда законы механики Ньютона, а с ними вместе и понятие механической силы теряют смысл.

Интенсивность сильного и слабого взаимодействий измеряется в единицах энергии (в электрон-вольтах), а не единицах силы, и потому применение к ним термина «сила» объясняется многовековой традицией все явления в окружающем мире объяснять действием характерных для каждого явления «сил».

В механике мы будем рассматривать только гравитационные и электромагнитные взаимодействия.

Силы в механике.

В механике обычно имеют дело с тремя видами сил — силами тяготения, силами упругости и силами трения.

Источник: «Физика - 10 класс», 2014, учебник Мякишев, Буховцев, Сотский

Динамика - Физика, учебник для 10 класса - Класс!ная физика

Основное утверждение механики --- Сила --- Инертность тела. Масса. Единица массы --- Первый закон Ньютона --- Второй закон Ньютона --- Принцип суперпозиции сил --- Примеры решения задач по теме «Второй закон Ньютона» --- Третий закон Ньютона --- Геоцентрическая система отсчёта --- Принцип относительности Галилея. Инвариантные и относительные величины --- Силы в природе --- Сила тяжести и сила всемирного тяготения --- Сила тяжести на других планетах --- Примеры решения задач по теме «Закон всемирного тяготения» --- Первая космическая скорость --- Примеры решения задач по теме «Первая космическая скорость» --- Вес. Невесомость --- Деформация и силы упругости. Закон Гука --- Примеры решения задач по теме «Силы упругости. Закон Гука» --- Силы трения --- Примеры решения задач по теме «Силы трения» --- Примеры решения задач по теме «Силы трения» (продолжение) ---

Устали? - Отдыхаем!

Вверх

class-fizika.ru

Реферат по физике тема «пять сил природы»

Муниципальное общеобразовательное учреждение –

средняя общеобразовательная школа пос. Чайковского

Клинского муниципального района московской областиРЕФЕРАТ ПО ФИЗИКЕТЕМА «ПЯТЬ СИЛ ПРИРОДЫ»

Выполнила: ученица 9 а класса

Тамахина Анастасия Вячеславовна

Проверила: учитель физики

Шашлова Татьяна Александровна

пос. Чайковского

2008 год

Содержание

I. Введение 3
II. Основная часть 5
1. Пять основных сил в природе 5
2. Сила трения 6
3. Сила всемирного тяготения 10
3.1. Сила тяжести на других планетах 19
4. Сила упругости 22
5. Сила Архимеда 24
6. Сила Ампера 26
III. Заключение 34
IV. Список литературы 35

I. ВведениеСуществует пять сил природы: сила трения, сила всемирного тяготения, сила упругости, сила Архимеда и сила Ампера.

С трением мы сталкиваемся на каждом шагу. Вернее было бы сказать, что без трения мы и шагу ступить не можем. Но, несмотря на ту большую роль, которую играет трение в нашей жизни, до сих пор не создана достаточно полная картина возникновения трения. Это связано даже не с тем, что трение имеет сложную природу, а скорее с тем, что опыты с трением очень чувствительны к обработке поверхности и поэтому трудно воспроизводимы.

Хорошо известен и рассказ о жертвенном венце Гиерона. Архимеду поручили проверить честность ювелира и определить, сделан венец из чистого золота или с примесями других ме­таллов и нет ли внутри него пустот. Однажды, размышляя об этом, Архимед погрузился в ванну, и заметил, что вытесненная его телом вода пролилась через край. Гениального учёно­го тут же осенила яркая идея, и с криком «Эврика, эврика!» он, как был нагой, бросился проводить эксперимент. Идея Архимеда очень проста. Тело, погру­жённое в воду, вытесняет столько жидкости, каков объём самого тела. Поместив венец в цилиндрический сосуд с водой, можно опре­делить, какое количество жидкости он вытес­нит, т. е. узнать его объём. А, зная объём и взве­сив венец, легко вычислить удельную массу. Это и даст возможность установить истину: ведь золото — очень тяжёлый металл, а более лёгкие примеси, и тем более пустоты, умень­шают удельную массу изделия.1

Говоря о силе всемирного тяготения, сразу же вспоминается легенда об упавшем яблоке. Согласно этой легенде, мысль о всемирном тяготении осенила Ньютона в тот момент, когда он, отдыхая в своем саду, увидел падающее яблоко. Рассказывают даже, что знаменитой яблоне, чей плод так сумел вовремя упасть к ногам Ньютона, не дали исчезнуть без следа и кусочки этого дерева якобы хранятся в Англии до сих пор.2

Сила упругости возникает в теле благодаря различным видам деформации. Впервые к такому выводу пришел английский ученый Роберт Гук, а потом этот вывод стали называть законом Гука.

В протоколе Академии наук от 18 сентября 1820 года, через неделю после того, как Амперу стало известно об опытах Эрстеда, были записаны следующие слова Ампера: “Я свёл явления, наблюдавшиеся Эрстедом, к двум общим фактам. Я показал, что ток, который находится в столбе, действует на магнитную стрелку, как и ток в соединительной проволоке. Я описал опыты, посредством которых констатировал притяжение или отталкивание всей магнитной стрелки соединительным проводом. Я описал приборы, которые я намереваюсь построить, и, среди прочих, гальванические спирали и завитки. Я высказал ту мысль, что эти последние должны производить во всех случаях такой же эффект, как магниты. Я занимался также некоторыми подробностями поведения, приписываемого мною магнитам, как исключительного свойства, происходящего от электрических токов в плоскостях, перпендикулярных к их оси, и от подобных же токов, существование которых я допускаю в земном шаре, в связи с этим я свёл все магнитные явления к чисто электрическим эффектам”.3

Таким образом, целью моего реферата является проанализировать пять основных сил, которые встречаются в природе и наиболее часто находят свое применение на практике.

II. Основная часть

1. Пять основных сил в природеДействие одного тела на другое, в результате которого возникает ускорение тела или отдельных его частей, называют силой.

Говорят, что к телу приложена сила или на тело действует сила. И. Ньютоном было выяснено, что причиной ускорения тела является действующая на тело сила. Сила векторная величина, действие которой на тело зависит от ее модуля, направления, точки приложения. Например, попытаемся открыть дверь, толкая ее близко от петель, а потом откроем ее за ручку. Мы легко убедимся, что в первом случае нужна большая сила, чем во втором случае. В этих случаях сила прикладывалась к разным точкам, что и определило необходимость разных по модулю сил для открывания одной и той же двери. А если попробовать открывать дверь, действуя на нее вдоль поверхности двери, - дверь не откроется: не то направление силы. Дверь открывается или закрывается в зависимости от направления действующей силы.

Итак, сила связана с ускорением, зависимость между которыми определил И. Ньютон.

Существуют основные силы, которые находят большое применение: сила тяжести, сила упругости, сила трения. Немаловажную роль играет сила Архимеда и часто применяемая в электротехнике сила Ампера.

2. Сила тренияТрение в природе и технике играет двоякую роль – положительную и отрицательную. Трение может быть как полезным, так и вредным. В первом случае его стараются усилить, а во втором – ослабить.

Когда говорят о трении, различают три несколько отличных физических явления: сопротивление при движении тела в жидкости или газе – его называют жидким трением; сопротивление, возникающее, когда тело скользит по какой-нибудь поверхности, – трение скольжения, или сухое трение; сопротивление, возникающее при качении тела, – трение качения.

Движению тела обычно препятствуют силы трения. Если соприкасаются поверхности твёрдых тел, их относительному движению мешают силы сухого трения. Характерной особенностью сухого трения является существование зоны застоя. Тело нельзя сдвинуть с места, пока абсолютная величина внешней силы не превысит определённого значения. Пока тело не начало скользить, действующая на него сила трения равна касательной составляющей приложенной силы и направлена в противоположную сторону. До этого момента между поверхностями соприкасающихся тел действует сила трения покоя, которая уравновешивает внешнюю силу и растёт вместе с ней. Максимальное значение силы трения покоя определяется формулой: Fтр. max= µ |N |, где µ - коэффициент трения, зависящий от свойств соприкасающихся поверхностей; N – сила нормального давления.

Когда абсолютная величина внешней силы превышает значение Fтр. max, возникает относительное движение – проскальзывание. Сила трения скольжения обычно слабо зависит от скорости относительного движения, и при малых скоростях её можно считать равной Fтр. max.

Движению тела в жидкости и газе препятствует сила жидкого трения. Главное отличие жидкого трения от сухого – отсутствие зоны застоя. В жидкости или газе не возникает силы трения покоя, и поэтому даже малая внешняя сила способна вызвать движение тела.

Первые исследования трения, о которых мы знаем, были проведены Леонардо да Винчи примерно 500 лет назад. Он измерял силу трения, действующую на деревянные параллелепипеды, скользящие по доске, причём, ставя бруски на разные грани, определял зависимость силы трения от площади опоры. Но работы Леонардо да Винчи стали известны уже после того, как классические законы трения были вновь открыты французскими учёными Амонтоном и Кулоном в XVII – XVIII веках. Вот эти законы:

1. Величина силы трения F прямо пропорциональна величине силы нормального давления N тела на поверхность, по которой движется тело, т.е. F = µN;

2. Сила трения не зависит от площади контакта между поверхностями;

3. Коэффициент трения зависит от свойств трущихся поверхностей;

4. Сила трения не зависит от скорости движения тела.

Вот пример. Английский физик Гарди исследовал зависимость силы трения между стеклянными пластинками от температуры. Он тщательно обрабатывал пластинки хлорной известью и обмывал их водой, удаляя жиры и загрязнения. Трение увеличивалось с температурой. Опыт был повторён много раз, и каждый раз получались примерно одни и те же результаты. Но однажды, омывая пластинки, Гарди протер их пальцами – трение перестало зависеть от температуры. Протерев пластинки, Гарди, как он сам считал, удалил с них очень тонкий слой стекла, изменивший свои свойства из-за взаимодействия с хлоркой и водой.4

Механизм трения очень сложен. Из-за неровностей поверхностей тела касаются друг друга только в отдельных точках на вершинах выступов. Здесь молекулы соприкасающихся тел подходят на расстояния, соизмеримые с расстоянием между молекулами в самих телах, и сцепляются. Образуется прочная связь, которая рвётся при нажиме на тело. При движении тела связи постоянно возникают и рвутся.

При этом возникают колебания молекул. На эти колебания и тратится энергия. Площадь действительного контакта обычно равна порядка тысяч квадратных микронов. Она практически не зависит от размеров тела и определяется природой поверхностей, их обработкой, температурой и силой нормального давления. Если на тело надавить, то выступы сминаются, и площадь действительного контакта увеличивается. Увеличивается и сила трения.

При значительной шероховатости поверхностей большую роль в увеличении силы трения начинает играть механическое зацепление между «холмами». Они при движении сминаются, и при этом тоже возникают колебания молекул.

Теперь понятен опыт с полированными стеклянными пластинками. Пока поверхности были «грубые», число контактов было невелико, а после хорошей полировки оно возросло. Можно привести ещё пример увеличения трения с улучшением поверхности. Если взять два металлических бруска с чистыми полированными поверхностями, то они слипаются. Трение здесь становится очень большим, так как площадь действительного контакта велика. Силы молекулярного сцепления, которые ответственны за трение, превращают два бруска в монолит.

Вот ещё примеры сухого трения, когда хотят вытащить гвоздь из стенки без помощи клещей, его сгибают и тащат, поворачивая одновременно вокруг оси. По той же причине при резком торможении автомобиль теряет управление и машину «заносит»: колёса скользят по дороге, за счёт неровностей дороги возникает боковая сила.

Обычно считают, что, для того чтобы сдвинуть тело с места, к нему нужно приложить большую силу, чем для того, чтобы тащить тело по поверхности. В большинстве случаев это связано с загрязнениями поверхностей трущихся тел. Так, для чистых металлов такого скачка силы трения не наблюдается.

При равномерном движении смычка скрипки струна увлекается им и натягивается. Вместе с натяжением струны увеличивается сила трения между смычком и струной. Когда величина силы трения становится максимально возможной, струна начинает проскальзывать относительно смычка. Если бы сила трения не зависела от относительной скорости смычка и струны, то, очевидно, отклонение струны от положения равновесия не изменялось бы. Но при проскальзывании трение уменьшается, поэтому струна начинает двигаться к положению равновесия. При этом относительная скорость струны увеличивается, а это ещё уменьшает силу трения.

Когда же струна, совершив колебания, движется в обратном направлении, её скорость относительно смычка уменьшается, смычёк опять захватывает струну, и всё повторяется сначала. Так возбуждаются колебания струны. Эти колебания незатухающие, поскольку энергия, потерянная струной при её движении, каждый раз восполняется работой силы трения, подтягивающей струну до положения, при котором струна срывается.

Таким образом, я узнала, что сила трения – это сила, возникающая при движении или попытке вызвать движение одного тела по поверхности другого и направленная вдоль соприкасающихся поверхностей против движения. Различают три вида силы трения: сила трения покоя, сила трения качения, сила трения скольжения. Самая максимальная из всех, это сила трения покоя.

100-bal.ru


Смотрите также