Реферат: Телевидение: Страницы истории. Реферат телевидение


Доклад - Телевидение - Технология

ИССЛЕДОВАНИЯ в области телевидения заняли более чем 30 лет в жизни ученого и привели к открытию, принесшему ему мировую известность и послужившему основой для развития современного телевидения. Зарождение телевидения относится к 70-м годам прошлого столетия. Оно неразрывно связано с развитием электротехники и ее практическими применениями, в частности для связи на большие расстояния. Возможность бы строй передачи сообщений на большие расстояния в виде электрических сигналов наводила на мысль об использовании аналогичных принципов для передачи изображение на расстояние. Первые проекты систем для электрической передачи изображений были предложены вскоре после изобретения телеграфа и относились еще не к телевидению в современном понимании этого слова, а к фототелеграфии. т. е. передаче единичных неподвижных изображений (чертежей, рисунков и т. п.). Они основывались на использовании химического действия тока и применении различных механических устройств в передающем и приемном аппаратах. Передача сигналов осуществлялась по про водам, принимаемые изображения фиксировать на бумаге. Начало развития фототелеграфии связано с проектами А. Бейна (1842 г.), Ф. Бэйкуелла (1847 г.) и Дж. Казел- ли (1862г.). Фототелеграфия не давала возможности наблюдать удаленные объекты в движении в момент передачи независимо от расстояния и оптических препятствий. т. е. не решала в полной мере задачу видения на расстоянии. Различие между фототелеграфией и телевидением пример но такое же, как между фотографией и кино. Первые успехи в передаче неподвижных изображений по линиям связи привлекли внимание ученых и изобретателей к проблеме телевидения. Но для перехода от фототелеграфии к телевидению, т. е. к непосредственной пере даче движущихся изображений, требовались новые методы и технические средства, необходимо было преодолеть огромные технические трудности. Телевидение, или видение на расстоянии за пределами непосредственного зрительного восприятия объектов человеком, могло быть осуществлено на основе преобразования света в электрические сигналы. Принципиальная возможность осуществления телевидения появилась после того, как в 1873 г. английские ученые Дж. Мей и У. Смит открыли светочувствительность химического элемента селена, т. е. изменение его сопротивления под действием света. В результате изучения этого явления вскоре в различных странах были предложены многочисленные проекты «видения на расстоянии при по мощи электричества», в которых использовались свойства селена для светоэлектрического преобразования. В большинстве случаев эти проекты основывались не на каких-либо теоретических исследованиях и практических опытах, а на догадках и зачастую на неверных исходных положениях и поэтому не могли быть практически осуществлены. В некоторых проектах и предложениях со держалось рациональное зерно, но необходимые для их реализации элементы и приборы были еще несовершенны или вообще отсутствовали. Отдельные изобретатели пошли по известному в истории техники пути простого копирования явлений природы и пытались построить телевизионную систему по аналогии с устройством зрительного аппарата человека. Такая система была предложена в 1875 г. американцем Дж. Керн. Светочувствительной сетчатке глаза в ней соответствовала панель с большим количеством миниатюрных селеновых фотосопротивлений, составлявшая основу передающего устройства. Центры коры головного мозга, где создаются зри тельные восприятия, представлялись источниками света (например, лампочками накаливания), расположенными на второй панели в месте приема. Каждое фотосопротивление па панели передатчика было связано с соответствующим источником света на панели приемника парой электрических проводов, выполнявших роль зрительных нервов. Преобразование оптического изображения в электрические сигналы в системе Кери должно было осуществляться одновременно и непрерывно всеми фотосопротивлениями. Все изменения передаваемого изображения отражались бы в изменении яркости свечения источников света в приемном устройстве, что позволяло в принципе производить передачу движущихся изображений. Эта система, получившая название многоканальной, не могла быть осуществлена практически вследствие ее сложности даже при не большом числе элементов изображения. Для практического решения проблемы телевидения нужно было найти такой способ передачи изображений, который позволял бы заменить большое количество линий связи между передающим и приемным устройствами од ной линией, т. е. перейти от сложной многоканальной системы к более простой, одноканальной. Этот переход означал замену одновременной передачи всех элементов изображения поочередной. Такая замена оказалась возможной на основе применения развертки изображения и использования инерционности зрительного восприятия. Первые одноканальные системы передачи, основанные на этих принципах, были предложены в 1877-1878 гг. независимо французским инженером М. Санлеком, португальским физиком А. де Пайва и русским студентом, впоследствии известным физиком и биологом П. И. Бахметьевым. Переход от многоканальной системы передачи изображений к одноканальной был связан с введением в телевизионную систему механических элементов. В отличие от чисто электрической статической системы Кери, не содержавшей никаких механических движущихся частей, в системы Санлека, де Пайва и Бахметьева требовалось применение более или менее сложных механизмов для развертки или разложения изображения на элементы. В последующие годы было предложено еще много проектов телевизионных систем, основанных на использовании светочувствительности селена и применении различных механических устройств. Передающее устройство в большинстве этих систем представляло собой сочетание теленового светоэлектрического преобразователя и механизма для развертки изображения. Такое направление в построении телевизионных систем не случайно. Оно было обусловлено общей тенденцией промышленно-технического развития во второй половине прошлого века, характеризующегося изобретением остроумных механизмов и совершенствованием машин, и опиралось на хорошо развитые отрасли науки, техники и промышленности. Известно более ста проектов систем передачи изображений, появившихся в разных странах в период с 1880 по 1900 г. Однако лишь немногие из этих проектов имели практическое значение для развития телевидения. Важным шагом в деле практического решения проблемы телевидения явилось изобретение в 1884 г. П. Нипковым (Германия) простого оптико-механического устройства для построчной развертки и воспроизведения телевизионных изображений. Основным элементом в передатчике и приемнике его системы был развертывающий диск, получивший название диска Нипкова. Он представлял собой непрозрачный круг большого диаметра, у внешнего края которого расположены по спирали небольшие круглые отверстия на одинаковом угловом расстоянии одно от другого. Каждое последующее отверстие смещено на величину своего диаметра к центру диска. В передатчике диск находился между передаваемым объектом и селеновым фотосопротивлением. Изображение передаваемого объекта фокусировалось объективом на плоскость диска. При вращении диска сквозь его отверстия свет проходил на фотосопротивление поочередно от отдельных элементов изображения. Таким образом осуществлялось разложение светового потока изображения на элементарные световые потоки. Каждое отверстие давало одну строку изображения. За один оборот диска на фотосопротивление последовательно воздействовал свет от всех элементов изображения, что соответствовало передаче одного кадра. Число строк в кадре равнялось числу отверстий в диске. В приемке такой же диск располагался между глазом наблюдателя и источником света, модулируемым фототоком передатчика; этот диск вращался синхронно и синфазно с диском передатчика. При наблюдении источника света через отверстия вращающегося диска наблюдатель мог видеть передаваемое изображение в плоскости диска. Для модуляции источника света Нипков предполагал использовать открытое Фарадеем вращение плоскости поляризации света в магнитном поле, а также колебания мембраны телефона. Телевизионная система с дисками Нипкова содержит в себе основные элементы оптико-механических телевизионных систем. Проект Нинкова относится к немногим проектам начального периода истории телевидения, в которых имелись оригинальные идеи, приблизившие решение задачи видения на расстоянии, но он был неосуществим в то время из- за несовершенства отдельных элементов системы. Основная трудность состояла в невозможности получить достаточно сильный сигнал изображения вследствие невысокой чувствительности селенового фотосопротивления. В таком состоянии находилось телевидение, когда эта проблема привлекла внимание Б. Л. Розинга. Начало его практических исследований в области передачи изображений, которую он называл электрической телескопией, от носится к 1897 г. В Константиновском училище Борис Львович познакомился с преподавателем электротехники, капитаном артиллерии Константином Дмитриевичем Перским. Это был широко эрудированный человек, принадлежавший к числу передовых русских офицеров. Так же как и Борис Львович он интересовался вопросами передачи изображении на расстояние и следил за всеми новыми достижениями в этой области. К. Д. Перскому принадлежит приоритет на термин «телевидение», который он впервые употребил в докладе «Современное состояние вопроса об электровидении на расстоянии (телевизирование)», прочитанном им на 1-м Всероссийском электротехническом съезде в 1900 г., а за тем на Международном электротехническом конгрессе в Париже. Не достигнув положительных результатов с различными вариантами электрохимических систем передачи изображений и убедившись в их бесперспективности, Б. Л. Розинг настойчиво ищет новые пути и средства решения задачи. Быстрое развитие естествознания и физики и ряд важных научных открытий и изобретений, сделанных в конце ХIХи начале XX а., подготовили необходимую научно- техническую базу для разработки новых методов телевидения. Открытие внешнего фотоэффекта, изобретение электронно-лучевой трубки, изобретение радио оказали решающее влияние на развитие телевидения. Работая в лабораториях с осциллографическими трубками Брауна и наблюдая, как электронный луч вычерчивает на экране трубки сложные светящиеся фигуры, Б. Л. Розинг пришел к мысли использовать электронный луч для воспроизведения изображений в системе электрической телескопии. В 1902 г. Б. Л. Розинг применил электроннолучевую трубку в приемном устройстве системы с электрохимическими элементами на передающей стороне. Трубка имела две пары отклоняющих электромагнитов, расположенных взаимно, перпендикулярно и соединенных со стержнями электролитической ванны. Луч света был заменен металлическим штифтом. При движении штифта по слою медно го купороса пятно на экране трубки перемещалось в со ответствующую точку. Электронный луч чертил вензеля и буквы, выводимые металлическим штифтом на отправительной станции. Затем отклоняющие электромагниты трубки соединялись на передающей стороне с реостатами, движки которых перемещались по кругу. Одновременным изменением положений движков можно было получать такой же эффект, как и при перемещении штифта в электролитической ванне. Но таким способом можно было передавать не оптическое изображение, а только простые рисунки, буквы, цифры, тогда как целью изобретателя было осуществление передачи на расстояние живых сцен. Впоследствии стало известно, что аналогичный способ передачи рисунков и письменного текста с воспроизведением их на экране электроннолучевой трубки разрабатывался в то же время в.Германии М. Дикманом и Г. Глаге и был запатентован ими в 1906 г. Так шаг за шагом Борис Львович создавал свою систему электрической передачи изображений, настойчиво экспериментируя и проверяя практически каждое ее звено. И только после того как вся схема и все ее элементы были тщательно продуманы, он подал заявку на выдачу ему привилегии на изобретение «Способа электрической передачи изображений». Это было 25 июля 1907 г., т. е. спустя 10 лет после начала первых опытов. В том же 1907 г. Б. Л. Розинг подал патентные заявки на свое изобретение в Германии и в Англии. Интересно отметить, что патенты в этих странах он получил раньше, чем в России (в Англии — 25 июня 1908 г., в Германии — 24 апреля 1909 г., в России — 30 октября 1910 г.) Таким образом, приоритет Б. Л. Розинга на открытие нового способа приема изображений в телевидении был неоспоримо закреплен в полученных им русском и иностранных патентах. Новая схема телевизионной системы Розинга с использованием модуляции скорости движения электронного луча в приемной трубке была запатентована им в 1911 г. в России, а затем в Англии, Германии и США. Отмечая заслуги Б. Л. Розинга в области электрической телескопии. Русское техническое общество присудило ему в 1912 г. золотую медаль и премию имени почетного члена общества К. Ф. Сименса. Эта премия присуждалась один раз в два года за выдающееся изобретение, усовершенствование или исследование в области электротехники. Но несмотря на все это, работой Розинга не заинтересовались ни правительственные учреждения, ни военное ведомство, очевидно потому, что она не могла сразу дать конкретно ощутимые результаты. Поэтому ученому пришлось проводить свои эксперименты, не получая никакой поддержки. После первых успешных опытов передачи изображений Борис Львович продолжает кропотливую работу по усовершенствованию своей системы. Полученные результаты не удовлетворяли его. Он ясно отдавал себе отчет в том, что они только подтверждали правильность принципов построения системы, но не могли считаться приемлемыми с практической точки зрения. Однако эти результаты оказались настолько грубыми, -писал он,- что я решил вновь подвергнуть переработке на этот раз все части прибора: оптическую систему, фотоэлектрическую цепь, синхронные приспособления и брауновскую трубку». Большое внимание было обращено на совершенствование оптической системы передающего устройства. Нужно было добиться того, чтобы на зеркальную грань падал световой луч минимального сечения, а переход его с одной строки на другую совершался практически мгновенно. Оказалось, что эту задачу можно решить, направляя свет от передаваемого предмета на зеркало через оптическую трубу Кеплера с большой светосилой. Важным шагом в усовершенствовании приемного устройства, имевшим большое значение для дальнейшего раз вития электронного телевидения, был переход от газона полненной трубки с холодным катодом к вакуумной трубке с накаливаемым катодом и магнитной фокусировкой электронного пучка. В 1924 Б. Л. Розинг воссоздал свою систему и внес ряд усовершенствований в передающее и приемное устройства. Была разработана новая оптическая система для «по лучения неискаженного в отношении яркости, отчетливо сти и увеличения изображения». Для повышения четкости изображения число граней барабана, вращающегося вокруг горизонтальной оси, было увеличено до 48, а второй барабан замешан одним зеркалом. Это зеркало при помощи эксцентриков совершало колебательное движение, двигаясь равномерно в одну сторону в течение 0,1 сек., затем быстро возвращалось в исходное положение и снова начинало движение в прежнем на правлении. Такая система развертки обеспечивала правильное чередование строк без всяких перерывов. Изображение разлагалось на 2400 элементов. Была также изменена схема получения отклоняющего напряжения для электроннолучевой трубки. Оно снималось с конденсатора, соединенного через большое сопротивление с источником тока. Конденсатор заряжался за время поворота барабана на одну грань и разряжался практически мгновенно. Благодаря этому к трубке подводилось отклоняющее напряжение пилообразной формы. В другом варианте пилообразное отклоняющее напряжение получалось от схемы с катушкой индуктивности. Подверглась изменению и электроннолучевая трубка приемного устройства. Основное внимание Б. Л. Розинг сосредоточил на получении тонкого электронного пучка, уменьшении аберраций и устранении взаимодействия фокусирующего и отклоняющего полей. Опыты, проведенные С. Л. Розингом в ЛЭЭЛ в 1924- 1928 гг., показали полную работоспособность его телевизионной системы и правильность принципов, на которых она строилась. В лабораторных условиях можно было передавать простые изображения с четкостью 48 строк. Изображения на экране трубки получались вполне точные и настолько яркие, что их можно было фотографировать. В 1928 г. Б. Л. Розинг предложил новую телевизионную систему, интересную во многих отношениях. В середине 20-х годов телевидение сделало свои первые практические шаги. Некоторые изобретатели в США, Англии и СССР осуществили передачу на небольшие расстояния силуэтных движущихся изображений при помощи оптико-механических телевизионных систем. Сопоставляя два шути развития телевидения, Б. Л. Розинг выступает как убежденный сторонник и пропаган-дист электронного телевидения. В ряде статей, опубликованных в различных журналах, он доказывает, что задача телевидения может быть решена только при помощи электронных средств. «В отношении катодной телескопии предсказания являются несравненно более благоприятны- и, чем в отношении механической,- писал он в 1928 г.,- поэтому решение задачи электрической телескопии в смысле получения легкого и простого прибора для широкого пользования нужно ожидать скорей всего на этом пути» Развитие электронного телевидения в эти годы проходило в борьбе с противодействием сторонников механического телевидения, пессимистически оценивавших перспективы электронных систем из-за больших технических трудностей, связанных с их созданием. Но идея электронного телевидения, как самая прогрессивная, оказалась наиболее жизненной. В 20-х годах в ряде стран были предложены системы телевидения, являвшиеся вариантами системы Б. Л. Розин- га. Для передачи изображения в них применялось то или иное оптико-механическое устройство, а для приема — электроннолучевые трубки, аналогичные трубкам Розинга. Такие системы были запатентованы Никольсоном и Сэбба в США, Довийе и.Валенси во Франции, Дикманом в Германии и др. Некоторые из этих изобретателей построили свои системы и добились определенных практических результатов. Работавший в области телевидения французский ученый Фурнье, оценивая влияние Б. Л. Розинга на развитие телевидения, писал в 1926 г.: -Систему русского профессора Бориса Розинга можно рассматривать как прототип современных приборов телевидения. Передающая телевизионная трубка, в которой оказалось возможным практически использовать эффект накопления электрических зарядов, была изобретена в 1931 г. в СССР С. И. Катаевым. Несколько позже, в том же 1931 г. аналогичная трубка, названная иконоскопом, была разработана независимо от Катаева американским специалистом В. К. Зворыкиным бывшим учеником Б. Л. Розинга по Технологическому институту. Работы в области телевидения Зворыкин начал под влиянием Б. Л. Розинга. Сам он так говорит об этом: «Когда я был студентом, я учился у профессора физики Б. Розинга, который, как известно, первым применил электроннолучевую трубку для приема телевизионных изображений. Я очень, интересовался его работами и просил разрешения помочь ему. Много времени уходило у нас на беседы и обсуждение возможностей телевидения. В это время я полностью понял недостатки механического телевидения и необходимость применения электронных систем». Иконоскоп Зворыкина не имел каких-либо принципиальных отличий или технических преимуществ по сравнению с трубкой Катаева. В дальнейшем название иконоскоп стало применяться как к трубке Зворыкина, так и к трубке Катаева, и широко вошло в специальную литературу, как сама трубка вошла в технику телевидения. Изобретение иконоскопа явилось поворотным пунктом в истории телевидения, определившим направление его дальнейшего развития. Стало совершенно ясно, что никакая из существовавших в то время оптико-механических систем, несмотря на все усовершенствования, не может конкурировать с электронной телевизионной системой. Иконоскоп обеспечивал телевизионные передачи с большим числом строк. С появлением иконоскопа завершился период искания путей практического осуществления передачи изображений на расстояние и становления электронных телевизионных систем. Переход от смешанных телевизионных систем (оптико-механические передающие и электронные приемные устройства) к полностью электронным системам начался практически с 1934 г. и был завершен в разных странах в течение 3-4 лет.

В дальнейшем были разработаны другие, более чувствительные, чем иконоскоп, и более совершенные пере дающие телевизионные трубки. Важная роль в создании этих трубок принадлежит советским ученым П. В. Шмакову. П. В. Тимофееву, Г. В. Брауде, Л. А. Кубецкому, Б. В. Круссеру и др. На всех этапах развития телевидения ученые нашей страны находили самостоятельные, принципиально новые и правильные решения сложных задач, во многих случаях значительно опережавшие со ответствующие достижения зарубежных специалистов. В результате работ советских и иностранных специалистов, внесших свой вклад в решение отдельных задач телевидения, и благодаря быстрому развитию радиоэлектроники телевизионная техника достигла такого уровня раз вития, когда стало возможным создание систем цветного и объемного телевидения и широкое применение телевизионных установок в различных отраслях народного хозяйства, для научных исследований и т. д.

Мечта человека о возможности видеть на любые расстояния отражена в легендах и сказках многих на родов. Осуществить эту мечту удалось в наш век, когда общее развитие науки и техники подготовило основу для передачи изображения на любое расстояние. Первые передачи телевизионных изображений по радио в СССР произведены 29 апреля и 2 мая 1931 г. Они были осуществлены с разложением изображения на 30 строк. За несколько дней до передачи радиостанция Всесоюзного электротехнического института «ВЭИ» сообщила следующее: 29 апреля впервые в СССР будет произведена передача телевидения (дальновидения) по радио. Через коротковолновый передатчик РВЭИ-1 Всесоюзного электротехнического института (Москва) на волне 56,6 метра будут передаваться изображения живого лица и фотографии. Телевидение проводилось тогда по механической системе, т. е. развертка изображения на элементы (1200 элементов при 12,5 кадра в секунду) проводилась с по мощью вращающегося диска. По простоте устройства телевизор с диском Цинкова был доступен многим радиолюбителям. Прием телевизионных передач осуществлялся во многих отдаленных пунктах нашей страны. Однако механическое телевидение не обеспечивало удовлетворительного качества передачи изображения. Различные усовершенствования механической системы телевидения привели к созданию сложных конструкций с применением вращающегося зеркального винта и др. На смену механическим системам пришли электронно" лучевые системы телевидения, сделавшие возможным его подлинный расцвет. Первое предложение по электронному телевидению было сделано русским ученым Б. Л. Розингом, который 25 июля 1907 г. получил «Привилегию за № 18076» на приемную трубку для «электрической телескопии». Трубки, предназначенные для приема изображений, по лучили в дальнейшем название кинескопов. Создание электронно-лучевого телевидения стало возможным после разработки конструкции передающей электронно-лучевой трубки. В начале ЗО-х годов передающая телевизионная электронно-лучевая трубка с накоплением заряда была предложена в СССР С. И. Катаевым. Использование трубки с накоплением заряда открыло богатые перспективы для развития электронного телевидения. В 1936 г. П. В. Тимофееву и П. В. Шмакову было выдано авторское свидетельство на электронно-лучевую трубку с переносом изображения. Эта трубка была следующим важным шагом в развитии электронно го телевидения. Исследования в области передающих и приемных электронно-лучевых трубок, схем развертывающих устройств, широкополосных усилителей, телевизионных передатчиков и приемников, достижения в области радиоэлектроники подготовили переход к электронным системам телевидения, позволившим по лучить высокое качество изображения. В 1938 г. в СССР были пущены в эксплуатацию первые опытные телевизионные центры в Москве и Ленинграде. Разложение передаваемого изображения в Москве было 343 строки, а в Ленинграде — 240 строк при 25 кадрах в секунду. 25 июля 1940 г. был утвержден стандарт разложения на 441 строку. Первые успехи телевизионного вещания дали возможность приступить к разработке промышленных образцов телевизионных приемников. В 1938 г. начался серийный выпуск консольных приемников на 343 строки типа ТК-1 с размером экрана 14Х18 см. И хотя в период Великой Отечественной войны телевизионное вещание было прекращено, но научно-исследовательские работы в области создания более совершенной телевизионной аппаратуры не прекращалась. Большой вклад в развитие телевидения внесли советские ученые и изобретатели -С. И. Катаев, П. В. Шмаков, П. В. Тимофеев, Г. В. Брауде, Л. А. Кубецкий А. А. Чернышев и др. Во второй половине 40-х годов разложение изображения передаваемого Московским и Ленинградским центрами было увеличено до 625 строк, что существенно повысило качество телевизионных передач. Бурный рост передающей и приемной телевизионной сети начался в середине 50-х годов. Если в 1953 г. работали только три телевизионных центра, то в 1960 уже действовали 100 мощных телевизионных станций и 170 ретрансляционных станций малой мощности, а к концу 1970 г.- до 300 мощных и около 1000. телевизионных станций малой мощности. Накануне 50-летня Великой Октябрьской социалистической революции, 4 ноября 1967 г. вступила в строй Общесоюзная радиотелевизионная передающая станция министерства связи СССР, которая постановлением Совета Министров СССР названа имени «50-летия Октября». Основным сооружением Общесоюзной радио- телевизионной передающей станции в Останкино является свободно стоящая башня, имеющая общую высоту 540 м. Она превышает высоту знаменитой Эйфеле- вой башни в Париже на 240 м. Конструктивно она со стоит из фундамента, железобетонной части высотой 385 м и стальной трубчатой опоры для антенны высотой 155 м. Ввод в действие телевизионной башни в Останкине обеспечил: увеличение одновременно действующих телевизионных программ до четырех; увеличение радиуса меренного приема всех телевизионных программ от50 до 120 км и обеспечивает уверенный прием всех про грамм на территории с населением более 13 млн. чело век; значительное улучшение качества приема изображения; резкое увеличение напряженности электромагнитного поля телевизионного сигнала, что позволило устранить влияние различного рода помех при приеме телевизионных программ; дальнейшее развитие междугородного и международного обменов телевизионными программами по радиорелейным, кабельным магистралям и каналам космической связи; значительное увеличение объема внестудийных передач путем одновременного приема сигнала от десяти передвижных телевизионных станций и стационарных трансляционных пунктов: обеспечение передачи радиовещательных программ через УКВ радиостанций для населения и на радиотрансляционные узлы Московской области, а так же автоматическое включение и выключение радиоузлов путем подачи в эфир кодированных сигналов. Общесоюзная радиотелевизионная передающая станция в Останкино располагает мощным современным техническим оборудованием, позволяющим транслировать телевизионные передачи в черно-белом и цветном изображении в эфир и по кабельной, радиорелейной и космической сетям СССР. Одновременно с началом работы Общесоюзной радиотелевизионной передающей станции в Москве в Останкине начал работать Общесоюзный телевизионный центр, оснащенный совершенным телевизионным оборудованием. Общая площадь помещения телевизионно го центра составляет 155 тыс.кв. м. Он имеет в своем составе 21 студию: две студии площадью по 1 тыс.кв. м, семь студий по 700 кв. м, пять студий по 150 кв.м. и др. Все телевизионное оборудование рассчитано на создание передач, идущих как непосредственно на передатчики, так и для записи на магнитную ленту. Телевизионный центр в Останкино насыщен комплексом совершенной аппаратуры, позволяющей художественно оформлять передачи любых программ. Технический комплекс обеспечивает видеозапись цветных и черно-белых программ, производство телевизионных художественных фильмов и выпуск хроникально-документальных программ на кинопленке и в видео записи. Телецентр оснащен техническими средствами записи монтажа, озвучивания и тиражирования видеомагнитофильмов. Ведется строительство новых высотных телевизионных башен в Вильнюсе и Таллине. Каждая из этих башен имеет свою оригинальную архитектуру. Еще в 1925 г. наш соотечественник И. А. Адамяр предложил систему цветного телевидения с последова тельной передачей трех цветов: красного, синего и желтого. В 1954 г. Московским телевизионным центром на Шаболовке были осуществлены первые опытные передачи с поочередной передачей цветных составляющих. Турникетная антенна, предназначенная для пере дача сигналов цветного изображения и звукового сопровождения, была установлена на металлической башке, сооруженной рядом с Шуховской башней. Прием цветного телевидения производился на телевизоры «Радуга» с вращающимся светофильтром. Однако такая система требовала значительного расширения спектра видеочастот и была не совместима с существовав шей системой черно-белого телевидения. В 1956 г. в лаборатории Ленинградского электротехнического института связи им. М. А. Бонч-Бруевича разработали и изготовили под руководством П. В. Шмакова установку цветного телевидения с одновременной передачей цветов. В январе 1960 г. состоялась первая передача цветного телевидения в Ленинграде с опытной станции Ленинградского электротехнического института связи. В это же время для приема передач цветного телевидения были изготовлены опытные телевизоры. В течение- ряда лет в Советском Союзе и в других странах проводились испытания различных систем цветного телевидения. В марте 1965 г. было подписано соглашение между СССР и Францией о сотрудничестве в области цветного телевидения на основе системы СЕКАМ. 26 июня 1966 г. было принято решение избрать для внедрения в Советском Союзе совместную советско-французскую систему цветного телевидения СЕКАМ-111. Первые передачи по совместно советско-французской системе начались в Москве с 1 октября 1967 г., к этому же времени был приурочен выпуск первой партии цветных телевизоров. В день 50-летия Великой Октябрьской социалистической революции (7 ноября 1967 г.) состоялась первая цветная телевизионная передача с Красной площади парада и демонстрации трудящихся. Внедрение цветного телевидения открыло широкую возможность для повышения качества передач и позволило значительно повысить эмоциональность восприятия телевизионных передач и увидеть изображения в естественных красках.

Литература

1. Резников М.Р. Радио и телевидение вчера, сегодня, завтра.- М.: Связь,1977.-95с.

2. Джигит И.С. История развития и достижения советского телевидения.// Радиотехника.- 1947.- №9.- С.39-43.

3. Шамшин В.А. Телевидение.// Электросвязь.- 1975. — №9.- С.1.

4. Талызин Н.В. Связь, телевидение, радиовещание.// Радио.- 1976.- №3.- С.1-3.

5. Горохов П.К. Б.Л.Розинг — основоположник электронного телевидения.- М.: Наука,1964.- 120с.

6. Бурлянд В.А., Володарская В.Е., Яроцкий А.В. Советская радиотехника и электросвязь в датах.- М.: Связь, 1975.- 191с.

7.

Добровольский Е.Е. Основные направления научно-технического прогресса радиосвязи, радиовещания и телевидения.- М.: Связь, 1974.- 56с.

www.ronl.ru

Реферат - Телевидение - Технология

ИССЛЕДОВАНИЯ в области телевидения заняли более чем 30 лет в жизни ученого и привели к открытию, принесшему ему мировую известность и послужившему основой для развития современного телевидения. Зарождение телевидения относится к 70-м годам прошлого столетия. Оно неразрывно связано с развитием электротехники и ее практическими применениями, в частности для связи на большие расстояния. Возможность бы строй передачи сообщений на большие расстояния в виде электрических сигналов наводила на мысль об использовании аналогичных принципов для передачи изображение на расстояние. Первые проекты систем для электрической передачи изображений были предложены вскоре после изобретения телеграфа и относились еще не к телевидению в современном понимании этого слова, а к фототелеграфии. т. е. передаче единичных неподвижных изображений (чертежей, рисунков и т. п.). Они основывались на использовании химического действия тока и применении различных механических устройств в передающем и приемном аппаратах. Передача сигналов осуществлялась по про водам, принимаемые изображения фиксировать на бумаге. Начало развития фототелеграфии связано с проектами А. Бейна (1842 г.), Ф. Бэйкуелла (1847 г.) и Дж. Казел- ли (1862г.). Фототелеграфия не давала возможности наблюдать удаленные объекты в движении в момент передачи независимо от расстояния и оптических препятствий. т. е. не решала в полной мере задачу видения на расстоянии. Различие между фототелеграфией и телевидением пример но такое же, как между фотографией и кино. Первые успехи в передаче неподвижных изображений по линиям связи привлекли внимание ученых и изобретателей к проблеме телевидения. Но для перехода от фототелеграфии к телевидению, т. е. к непосредственной пере даче движущихся изображений, требовались новые методы и технические средства, необходимо было преодолеть огромные технические трудности. Телевидение, или видение на расстоянии за пределами непосредственного зрительного восприятия объектов человеком, могло быть осуществлено на основе преобразования света в электрические сигналы. Принципиальная возможность осуществления телевидения появилась после того, как в 1873 г. английские ученые Дж. Мей и У. Смит открыли светочувствительность химического элемента селена, т. е. изменение его сопротивления под действием света. В результате изучения этого явления вскоре в различных странах были предложены многочисленные проекты «видения на расстоянии при по мощи электричества», в которых использовались свойства селена для светоэлектрического преобразования. В большинстве случаев эти проекты основывались не на каких-либо теоретических исследованиях и практических опытах, а на догадках и зачастую на неверных исходных положениях и поэтому не могли быть практически осуществлены. В некоторых проектах и предложениях со держалось рациональное зерно, но необходимые для их реализации элементы и приборы были еще несовершенны или вообще отсутствовали. Отдельные изобретатели пошли по известному в истории техники пути простого копирования явлений природы и пытались построить телевизионную систему по аналогии с устройством зрительного аппарата человека. Такая система была предложена в 1875 г. американцем Дж. Керн. Светочувствительной сетчатке глаза в ней соответствовала панель с большим количеством миниатюрных селеновых фотосопротивлений, составлявшая основу передающего устройства. Центры коры головного мозга, где создаются зри тельные восприятия, представлялись источниками света (например, лампочками накаливания), расположенными на второй панели в месте приема. Каждое фотосопротивление па панели передатчика было связано с соответствующим источником света на панели приемника парой электрических проводов, выполнявших роль зрительных нервов. Преобразование оптического изображения в электрические сигналы в системе Кери должно было осуществляться одновременно и непрерывно всеми фотосопротивлениями. Все изменения передаваемого изображения отражались бы в изменении яркости свечения источников света в приемном устройстве, что позволяло в принципе производить передачу движущихся изображений. Эта система, получившая название многоканальной, не могла быть осуществлена практически вследствие ее сложности даже при не большом числе элементов изображения. Для практического решения проблемы телевидения нужно было найти такой способ передачи изображений, который позволял бы заменить большое количество линий связи между передающим и приемным устройствами од ной линией, т. е. перейти от сложной многоканальной системы к более простой, одноканальной. Этот переход означал замену одновременной передачи всех элементов изображения поочередной. Такая замена оказалась возможной на основе применения развертки изображения и использования инерционности зрительного восприятия. Первые одноканальные системы передачи, основанные на этих принципах, были предложены в 1877-1878 гг. независимо французским инженером М. Санлеком, португальским физиком А. де Пайва и русским студентом, впоследствии известным физиком и биологом П. И. Бахметьевым. Переход от многоканальной системы передачи изображений к одноканальной был связан с введением в телевизионную систему механических элементов. В отличие от чисто электрической статической системы Кери, не содержавшей никаких механических движущихся частей, в системы Санлека, де Пайва и Бахметьева требовалось применение более или менее сложных механизмов для развертки или разложения изображения на элементы. В последующие годы было предложено еще много проектов телевизионных систем, основанных на использовании светочувствительности селена и применении различных механических устройств. Передающее устройство в большинстве этих систем представляло собой сочетание теленового светоэлектрического преобразователя и механизма для развертки изображения. Такое направление в построении телевизионных систем не случайно. Оно было обусловлено общей тенденцией промышленно-технического развития во второй половине прошлого века, характеризующегося изобретением остроумных механизмов и совершенствованием машин, и опиралось на хорошо развитые отрасли науки, техники и промышленности. Известно более ста проектов систем передачи изображений, появившихся в разных странах в период с 1880 по 1900 г. Однако лишь немногие из этих проектов имели практическое значение для развития телевидения. Важным шагом в деле практического решения проблемы телевидения явилось изобретение в 1884 г. П. Нипковым (Германия) простого оптико-механического устройства для построчной развертки и воспроизведения телевизионных изображений. Основным элементом в передатчике и приемнике его системы был развертывающий диск, получивший название диска Нипкова. Он представлял собой непрозрачный круг большого диаметра, у внешнего края которого расположены по спирали небольшие круглые отверстия на одинаковом угловом расстоянии одно от другого. Каждое последующее отверстие смещено на величину своего диаметра к центру диска. В передатчике диск находился между передаваемым объектом и селеновым фотосопротивлением. Изображение передаваемого объекта фокусировалось объективом на плоскость диска. При вращении диска сквозь его отверстия свет проходил на фотосопротивление поочередно от отдельных элементов изображения. Таким образом осуществлялось разложение светового потока изображения на элементарные световые потоки. Каждое отверстие давало одну строку изображения. За один оборот диска на фотосопротивление последовательно воздействовал свет от всех элементов изображения, что соответствовало передаче одного кадра. Число строк в кадре равнялось числу отверстий в диске. В приемке такой же диск располагался между глазом наблюдателя и источником света, модулируемым фототоком передатчика; этот диск вращался синхронно и синфазно с диском передатчика. При наблюдении источника света через отверстия вращающегося диска наблюдатель мог видеть передаваемое изображение в плоскости диска. Для модуляции источника света Нипков предполагал использовать открытое Фарадеем вращение плоскости поляризации света в магнитном поле, а также колебания мембраны телефона. Телевизионная система с дисками Нипкова содержит в себе основные элементы оптико-механических телевизионных систем. Проект Нинкова относится к немногим проектам начального периода истории телевидения, в которых имелись оригинальные идеи, приблизившие решение задачи видения на расстоянии, но он был неосуществим в то время из- за несовершенства отдельных элементов системы. Основная трудность состояла в невозможности получить достаточно сильный сигнал изображения вследствие невысокой чувствительности селенового фотосопротивления. В таком состоянии находилось телевидение, когда эта проблема привлекла внимание Б. Л. Розинга. Начало его практических исследований в области передачи изображений, которую он называл электрической телескопией, от носится к 1897 г. В Константиновском училище Борис Львович познакомился с преподавателем электротехники, капитаном артиллерии Константином Дмитриевичем Перским. Это был широко эрудированный человек, принадлежавший к числу передовых русских офицеров. Так же как и Борис Львович он интересовался вопросами передачи изображении на расстояние и следил за всеми новыми достижениями в этой области. К. Д. Перскому принадлежит приоритет на термин «телевидение», который он впервые употребил в докладе «Современное состояние вопроса об электровидении на расстоянии (телевизирование)», прочитанном им на 1-м Всероссийском электротехническом съезде в 1900 г., а за тем на Международном электротехническом конгрессе в Париже. Не достигнув положительных результатов с различными вариантами электрохимических систем передачи изображений и убедившись в их бесперспективности, Б. Л. Розинг настойчиво ищет новые пути и средства решения задачи. Быстрое развитие естествознания и физики и ряд важных научных открытий и изобретений, сделанных в конце ХIХи начале XX а., подготовили необходимую научно- техническую базу для разработки новых методов телевидения. Открытие внешнего фотоэффекта, изобретение электронно-лучевой трубки, изобретение радио оказали решающее влияние на развитие телевидения. Работая в лабораториях с осциллографическими трубками Брауна и наблюдая, как электронный луч вычерчивает на экране трубки сложные светящиеся фигуры, Б. Л. Розинг пришел к мысли использовать электронный луч для воспроизведения изображений в системе электрической телескопии. В 1902 г. Б. Л. Розинг применил электроннолучевую трубку в приемном устройстве системы с электрохимическими элементами на передающей стороне. Трубка имела две пары отклоняющих электромагнитов, расположенных взаимно, перпендикулярно и соединенных со стержнями электролитической ванны. Луч света был заменен металлическим штифтом. При движении штифта по слою медно го купороса пятно на экране трубки перемещалось в со ответствующую точку. Электронный луч чертил вензеля и буквы, выводимые металлическим штифтом на отправительной станции. Затем отклоняющие электромагниты трубки соединялись на передающей стороне с реостатами, движки которых перемещались по кругу. Одновременным изменением положений движков можно было получать такой же эффект, как и при перемещении штифта в электролитической ванне. Но таким способом можно было передавать не оптическое изображение, а только простые рисунки, буквы, цифры, тогда как целью изобретателя было осуществление передачи на расстояние живых сцен. Впоследствии стало известно, что аналогичный способ передачи рисунков и письменного текста с воспроизведением их на экране электроннолучевой трубки разрабатывался в то же время в.Германии М. Дикманом и Г. Глаге и был запатентован ими в 1906 г. Так шаг за шагом Борис Львович создавал свою систему электрической передачи изображений, настойчиво экспериментируя и проверяя практически каждое ее звено. И только после того как вся схема и все ее элементы были тщательно продуманы, он подал заявку на выдачу ему привилегии на изобретение «Способа электрической передачи изображений». Это было 25 июля 1907 г., т. е. спустя 10 лет после начала первых опытов. В том же 1907 г. Б. Л. Розинг подал патентные заявки на свое изобретение в Германии и в Англии. Интересно отметить, что патенты в этих странах он получил раньше, чем в России (в Англии — 25 июня 1908 г., в Германии — 24 апреля 1909 г., в России — 30 октября 1910 г.) Таким образом, приоритет Б. Л. Розинга на открытие нового способа приема изображений в телевидении был неоспоримо закреплен в полученных им русском и иностранных патентах. Новая схема телевизионной системы Розинга с использованием модуляции скорости движения электронного луча в приемной трубке была запатентована им в 1911 г. в России, а затем в Англии, Германии и США. Отмечая заслуги Б. Л. Розинга в области электрической телескопии. Русское техническое общество присудило ему в 1912 г. золотую медаль и премию имени почетного члена общества К. Ф. Сименса. Эта премия присуждалась один раз в два года за выдающееся изобретение, усовершенствование или исследование в области электротехники. Но несмотря на все это, работой Розинга не заинтересовались ни правительственные учреждения, ни военное ведомство, очевидно потому, что она не могла сразу дать конкретно ощутимые результаты. Поэтому ученому пришлось проводить свои эксперименты, не получая никакой поддержки. После первых успешных опытов передачи изображений Борис Львович продолжает кропотливую работу по усовершенствованию своей системы. Полученные результаты не удовлетворяли его. Он ясно отдавал себе отчет в том, что они только подтверждали правильность принципов построения системы, но не могли считаться приемлемыми с практической точки зрения. Однако эти результаты оказались настолько грубыми, -писал он,- что я решил вновь подвергнуть переработке на этот раз все части прибора: оптическую систему, фотоэлектрическую цепь, синхронные приспособления и брауновскую трубку». Большое внимание было обращено на совершенствование оптической системы передающего устройства. Нужно было добиться того, чтобы на зеркальную грань падал световой луч минимального сечения, а переход его с одной строки на другую совершался практически мгновенно. Оказалось, что эту задачу можно решить, направляя свет от передаваемого предмета на зеркало через оптическую трубу Кеплера с большой светосилой. Важным шагом в усовершенствовании приемного устройства, имевшим большое значение для дальнейшего раз вития электронного телевидения, был переход от газона полненной трубки с холодным катодом к вакуумной трубке с накаливаемым катодом и магнитной фокусировкой электронного пучка. В 1924 Б. Л. Розинг воссоздал свою систему и внес ряд усовершенствований в передающее и приемное устройства. Была разработана новая оптическая система для «по лучения неискаженного в отношении яркости, отчетливо сти и увеличения изображения». Для повышения четкости изображения число граней барабана, вращающегося вокруг горизонтальной оси, было увеличено до 48, а второй барабан замешан одним зеркалом. Это зеркало при помощи эксцентриков совершало колебательное движение, двигаясь равномерно в одну сторону в течение 0,1 сек., затем быстро возвращалось в исходное положение и снова начинало движение в прежнем на правлении. Такая система развертки обеспечивала правильное чередование строк без всяких перерывов. Изображение разлагалось на 2400 элементов. Была также изменена схема получения отклоняющего напряжения для электроннолучевой трубки. Оно снималось с конденсатора, соединенного через большое сопротивление с источником тока. Конденсатор заряжался за время поворота барабана на одну грань и разряжался практически мгновенно. Благодаря этому к трубке подводилось отклоняющее напряжение пилообразной формы. В другом варианте пилообразное отклоняющее напряжение получалось от схемы с катушкой индуктивности. Подверглась изменению и электроннолучевая трубка приемного устройства. Основное внимание Б. Л. Розинг сосредоточил на получении тонкого электронного пучка, уменьшении аберраций и устранении взаимодействия фокусирующего и отклоняющего полей. Опыты, проведенные С. Л. Розингом в ЛЭЭЛ в 1924- 1928 гг., показали полную работоспособность его телевизионной системы и правильность принципов, на которых она строилась. В лабораторных условиях можно было передавать простые изображения с четкостью 48 строк. Изображения на экране трубки получались вполне точные и настолько яркие, что их можно было фотографировать. В 1928 г. Б. Л. Розинг предложил новую телевизионную систему, интересную во многих отношениях. В середине 20-х годов телевидение сделало свои первые практические шаги. Некоторые изобретатели в США, Англии и СССР осуществили передачу на небольшие расстояния силуэтных движущихся изображений при помощи оптико-механических телевизионных систем. Сопоставляя два шути развития телевидения, Б. Л. Розинг выступает как убежденный сторонник и пропаган-дист электронного телевидения. В ряде статей, опубликованных в различных журналах, он доказывает, что задача телевидения может быть решена только при помощи электронных средств. «В отношении катодной телескопии предсказания являются несравненно более благоприятны- и, чем в отношении механической,- писал он в 1928 г.,- поэтому решение задачи электрической телескопии в смысле получения легкого и простого прибора для широкого пользования нужно ожидать скорей всего на этом пути» Развитие электронного телевидения в эти годы проходило в борьбе с противодействием сторонников механического телевидения, пессимистически оценивавших перспективы электронных систем из-за больших технических трудностей, связанных с их созданием. Но идея электронного телевидения, как самая прогрессивная, оказалась наиболее жизненной. В 20-х годах в ряде стран были предложены системы телевидения, являвшиеся вариантами системы Б. Л. Розин- га. Для передачи изображения в них применялось то или иное оптико-механическое устройство, а для приема — электроннолучевые трубки, аналогичные трубкам Розинга. Такие системы были запатентованы Никольсоном и Сэбба в США, Довийе и.Валенси во Франции, Дикманом в Германии и др. Некоторые из этих изобретателей построили свои системы и добились определенных практических результатов. Работавший в области телевидения французский ученый Фурнье, оценивая влияние Б. Л. Розинга на развитие телевидения, писал в 1926 г.: -Систему русского профессора Бориса Розинга можно рассматривать как прототип современных приборов телевидения. Передающая телевизионная трубка, в которой оказалось возможным практически использовать эффект накопления электрических зарядов, была изобретена в 1931 г. в СССР С. И. Катаевым. Несколько позже, в том же 1931 г. аналогичная трубка, названная иконоскопом, была разработана независимо от Катаева американским специалистом В. К. Зворыкиным бывшим учеником Б. Л. Розинга по Технологическому институту. Работы в области телевидения Зворыкин начал под влиянием Б. Л. Розинга. Сам он так говорит об этом: «Когда я был студентом, я учился у профессора физики Б. Розинга, который, как известно, первым применил электроннолучевую трубку для приема телевизионных изображений. Я очень, интересовался его работами и просил разрешения помочь ему. Много времени уходило у нас на беседы и обсуждение возможностей телевидения. В это время я полностью понял недостатки механического телевидения и необходимость применения электронных систем». Иконоскоп Зворыкина не имел каких-либо принципиальных отличий или технических преимуществ по сравнению с трубкой Катаева. В дальнейшем название иконоскоп стало применяться как к трубке Зворыкина, так и к трубке Катаева, и широко вошло в специальную литературу, как сама трубка вошла в технику телевидения. Изобретение иконоскопа явилось поворотным пунктом в истории телевидения, определившим направление его дальнейшего развития. Стало совершенно ясно, что никакая из существовавших в то время оптико-механических систем, несмотря на все усовершенствования, не может конкурировать с электронной телевизионной системой. Иконоскоп обеспечивал телевизионные передачи с большим числом строк. С появлением иконоскопа завершился период искания путей практического осуществления передачи изображений на расстояние и становления электронных телевизионных систем. Переход от смешанных телевизионных систем (оптико-механические передающие и электронные приемные устройства) к полностью электронным системам начался практически с 1934 г. и был завершен в разных странах в течение 3-4 лет.

В дальнейшем были разработаны другие, более чувствительные, чем иконоскоп, и более совершенные пере дающие телевизионные трубки. Важная роль в создании этих трубок принадлежит советским ученым П. В. Шмакову. П. В. Тимофееву, Г. В. Брауде, Л. А. Кубецкому, Б. В. Круссеру и др. На всех этапах развития телевидения ученые нашей страны находили самостоятельные, принципиально новые и правильные решения сложных задач, во многих случаях значительно опережавшие со ответствующие достижения зарубежных специалистов. В результате работ советских и иностранных специалистов, внесших свой вклад в решение отдельных задач телевидения, и благодаря быстрому развитию радиоэлектроники телевизионная техника достигла такого уровня раз вития, когда стало возможным создание систем цветного и объемного телевидения и широкое применение телевизионных установок в различных отраслях народного хозяйства, для научных исследований и т. д.

Мечта человека о возможности видеть на любые расстояния отражена в легендах и сказках многих на родов. Осуществить эту мечту удалось в наш век, когда общее развитие науки и техники подготовило основу для передачи изображения на любое расстояние. Первые передачи телевизионных изображений по радио в СССР произведены 29 апреля и 2 мая 1931 г. Они были осуществлены с разложением изображения на 30 строк. За несколько дней до передачи радиостанция Всесоюзного электротехнического института «ВЭИ» сообщила следующее: 29 апреля впервые в СССР будет произведена передача телевидения (дальновидения) по радио. Через коротковолновый передатчик РВЭИ-1 Всесоюзного электротехнического института (Москва) на волне 56,6 метра будут передаваться изображения живого лица и фотографии. Телевидение проводилось тогда по механической системе, т. е. развертка изображения на элементы (1200 элементов при 12,5 кадра в секунду) проводилась с по мощью вращающегося диска. По простоте устройства телевизор с диском Цинкова был доступен многим радиолюбителям. Прием телевизионных передач осуществлялся во многих отдаленных пунктах нашей страны. Однако механическое телевидение не обеспечивало удовлетворительного качества передачи изображения. Различные усовершенствования механической системы телевидения привели к созданию сложных конструкций с применением вращающегося зеркального винта и др. На смену механическим системам пришли электронно" лучевые системы телевидения, сделавшие возможным его подлинный расцвет. Первое предложение по электронному телевидению было сделано русским ученым Б. Л. Розингом, который 25 июля 1907 г. получил «Привилегию за № 18076» на приемную трубку для «электрической телескопии». Трубки, предназначенные для приема изображений, по лучили в дальнейшем название кинескопов. Создание электронно-лучевого телевидения стало возможным после разработки конструкции передающей электронно-лучевой трубки. В начале ЗО-х годов передающая телевизионная электронно-лучевая трубка с накоплением заряда была предложена в СССР С. И. Катаевым. Использование трубки с накоплением заряда открыло богатые перспективы для развития электронного телевидения. В 1936 г. П. В. Тимофееву и П. В. Шмакову было выдано авторское свидетельство на электронно-лучевую трубку с переносом изображения. Эта трубка была следующим важным шагом в развитии электронно го телевидения. Исследования в области передающих и приемных электронно-лучевых трубок, схем развертывающих устройств, широкополосных усилителей, телевизионных передатчиков и приемников, достижения в области радиоэлектроники подготовили переход к электронным системам телевидения, позволившим по лучить высокое качество изображения. В 1938 г. в СССР были пущены в эксплуатацию первые опытные телевизионные центры в Москве и Ленинграде. Разложение передаваемого изображения в Москве было 343 строки, а в Ленинграде — 240 строк при 25 кадрах в секунду. 25 июля 1940 г. был утвержден стандарт разложения на 441 строку. Первые успехи телевизионного вещания дали возможность приступить к разработке промышленных образцов телевизионных приемников. В 1938 г. начался серийный выпуск консольных приемников на 343 строки типа ТК-1 с размером экрана 14Х18 см. И хотя в период Великой Отечественной войны телевизионное вещание было прекращено, но научно-исследовательские работы в области создания более совершенной телевизионной аппаратуры не прекращалась. Большой вклад в развитие телевидения внесли советские ученые и изобретатели -С. И. Катаев, П. В. Шмаков, П. В. Тимофеев, Г. В. Брауде, Л. А. Кубецкий А. А. Чернышев и др. Во второй половине 40-х годов разложение изображения передаваемого Московским и Ленинградским центрами было увеличено до 625 строк, что существенно повысило качество телевизионных передач. Бурный рост передающей и приемной телевизионной сети начался в середине 50-х годов. Если в 1953 г. работали только три телевизионных центра, то в 1960 уже действовали 100 мощных телевизионных станций и 170 ретрансляционных станций малой мощности, а к концу 1970 г.- до 300 мощных и около 1000. телевизионных станций малой мощности. Накануне 50-летня Великой Октябрьской социалистической революции, 4 ноября 1967 г. вступила в строй Общесоюзная радиотелевизионная передающая станция министерства связи СССР, которая постановлением Совета Министров СССР названа имени «50-летия Октября». Основным сооружением Общесоюзной радио- телевизионной передающей станции в Останкино является свободно стоящая башня, имеющая общую высоту 540 м. Она превышает высоту знаменитой Эйфеле- вой башни в Париже на 240 м. Конструктивно она со стоит из фундамента, железобетонной части высотой 385 м и стальной трубчатой опоры для антенны высотой 155 м. Ввод в действие телевизионной башни в Останкине обеспечил: увеличение одновременно действующих телевизионных программ до четырех; увеличение радиуса меренного приема всех телевизионных программ от50 до 120 км и обеспечивает уверенный прием всех про грамм на территории с населением более 13 млн. чело век; значительное улучшение качества приема изображения; резкое увеличение напряженности электромагнитного поля телевизионного сигнала, что позволило устранить влияние различного рода помех при приеме телевизионных программ; дальнейшее развитие междугородного и международного обменов телевизионными программами по радиорелейным, кабельным магистралям и каналам космической связи; значительное увеличение объема внестудийных передач путем одновременного приема сигнала от десяти передвижных телевизионных станций и стационарных трансляционных пунктов: обеспечение передачи радиовещательных программ через УКВ радиостанций для населения и на радиотрансляционные узлы Московской области, а так же автоматическое включение и выключение радиоузлов путем подачи в эфир кодированных сигналов. Общесоюзная радиотелевизионная передающая станция в Останкино располагает мощным современным техническим оборудованием, позволяющим транслировать телевизионные передачи в черно-белом и цветном изображении в эфир и по кабельной, радиорелейной и космической сетям СССР. Одновременно с началом работы Общесоюзной радиотелевизионной передающей станции в Москве в Останкине начал работать Общесоюзный телевизионный центр, оснащенный совершенным телевизионным оборудованием. Общая площадь помещения телевизионно го центра составляет 155 тыс.кв. м. Он имеет в своем составе 21 студию: две студии площадью по 1 тыс.кв. м, семь студий по 700 кв. м, пять студий по 150 кв.м. и др. Все телевизионное оборудование рассчитано на создание передач, идущих как непосредственно на передатчики, так и для записи на магнитную ленту. Телевизионный центр в Останкино насыщен комплексом совершенной аппаратуры, позволяющей художественно оформлять передачи любых программ. Технический комплекс обеспечивает видеозапись цветных и черно-белых программ, производство телевизионных художественных фильмов и выпуск хроникально-документальных программ на кинопленке и в видео записи. Телецентр оснащен техническими средствами записи монтажа, озвучивания и тиражирования видеомагнитофильмов. Ведется строительство новых высотных телевизионных башен в Вильнюсе и Таллине. Каждая из этих башен имеет свою оригинальную архитектуру. Еще в 1925 г. наш соотечественник И. А. Адамяр предложил систему цветного телевидения с последова тельной передачей трех цветов: красного, синего и желтого. В 1954 г. Московским телевизионным центром на Шаболовке были осуществлены первые опытные передачи с поочередной передачей цветных составляющих. Турникетная антенна, предназначенная для пере дача сигналов цветного изображения и звукового сопровождения, была установлена на металлической башке, сооруженной рядом с Шуховской башней. Прием цветного телевидения производился на телевизоры «Радуга» с вращающимся светофильтром. Однако такая система требовала значительного расширения спектра видеочастот и была не совместима с существовав шей системой черно-белого телевидения. В 1956 г. в лаборатории Ленинградского электротехнического института связи им. М. А. Бонч-Бруевича разработали и изготовили под руководством П. В. Шмакова установку цветного телевидения с одновременной передачей цветов. В январе 1960 г. состоялась первая передача цветного телевидения в Ленинграде с опытной станции Ленинградского электротехнического института связи. В это же время для приема передач цветного телевидения были изготовлены опытные телевизоры. В течение- ряда лет в Советском Союзе и в других странах проводились испытания различных систем цветного телевидения. В марте 1965 г. было подписано соглашение между СССР и Францией о сотрудничестве в области цветного телевидения на основе системы СЕКАМ. 26 июня 1966 г. было принято решение избрать для внедрения в Советском Союзе совместную советско-французскую систему цветного телевидения СЕКАМ-111. Первые передачи по совместно советско-французской системе начались в Москве с 1 октября 1967 г., к этому же времени был приурочен выпуск первой партии цветных телевизоров. В день 50-летия Великой Октябрьской социалистической революции (7 ноября 1967 г.) состоялась первая цветная телевизионная передача с Красной площади парада и демонстрации трудящихся. Внедрение цветного телевидения открыло широкую возможность для повышения качества передач и позволило значительно повысить эмоциональность восприятия телевизионных передач и увидеть изображения в естественных красках.

Литература

1. Резников М.Р. Радио и телевидение вчера, сегодня, завтра.- М.: Связь,1977.-95с.

2. Джигит И.С. История развития и достижения советского телевидения.// Радиотехника.- 1947.- №9.- С.39-43.

3. Шамшин В.А. Телевидение.// Электросвязь.- 1975. — №9.- С.1.

4. Талызин Н.В. Связь, телевидение, радиовещание.// Радио.- 1976.- №3.- С.1-3.

5. Горохов П.К. Б.Л.Розинг — основоположник электронного телевидения.- М.: Наука,1964.- 120с.

6. Бурлянд В.А., Володарская В.Е., Яроцкий А.В. Советская радиотехника и электросвязь в датах.- М.: Связь, 1975.- 191с.

7.

Добровольский Е.Е. Основные направления научно-технического прогресса радиосвязи, радиовещания и телевидения.- М.: Связь, 1974.- 56с.

www.ronl.ru

Реферат - История создания и перспективы развития телевидения

РЕФЕРАТ

По физике

На тему:

История создания и перспективы развития телевидения

Содержание

Введение

Открытие Столетова. Фотоэффект и фотоэлемент

Принцип отображения изображения

Механическая развертка

Изобретение электронной развертки

В.К. Зворыкин

Кинескоп и Иконоскоп

Изобретение «анализатора изображения». Файло Фарнсуорт

Радиовизионный передатчик

Передачи BBS

Разработка телевидения в СССР

Перспективы развития телевидения

Список литературы

Введение

В настоящее время телевидение стало очень важным средством информации населения о событиях в стране и за рубежом, могучим средством воздействия на духовную жизнь общества.

Телевидением называется обширная область современной радиоэлектроники, занимающаяся вопросами передачи и приема изображений различных предметов на расстояние по электрическим каналам связи.

Первое время после своего появления телевидение использовалось в основном для телевизионного вещания, то есть для передачи населению известий о последних событиях в стране и мире. Подобная визуальная информация настолько привлекательна, интересна и пользуется всеобщим вниманием, что началось бурное распространение телевизионного вещания.

Телевизионное вещание стало неотъемлемым спутником нашей жизни. Для междугородной передачи телевизионных программ страна охвачена сетью радиорелейных, спутников и кабельных линей связи. В космическом пространстве работают спутники-ретрансляторы телевизионных программ позволяющие передавать программы телевидения в отдаленные районы страны, где установлены наземные приемные станции.

В современном телевидении можно выделить два в известной степени самостоятельных, направления: телевизионное вещание и прикладное телевидение.

Освоение космического пространства, начатое запуском в Советском Союзе 4 октября 1957 года искусственного спутника Земли, привело к возникновению и быстрому развитию особой области телевизионной техники – космического телевидения. Назначение телевизионной аппаратуры, используемой в космосе весьма, многообразно, однако оно быть сведено к следующим основным направлениям:

1. Передача изображения с космических кораблей и спутников для получения визуальной информации о поведении экипажа или аппаратуры, о ходе процесса стыковки космических кораблей и т.п.

2. Наблюдение с космических объектов за различными участками земной поверхности с целью осуществления научных исследований, метеорологии, картографии и т.п.

3. Получение изображения поверхности Луны, Марса, Венеры и других планет.

4. Ретрансляция телевизионных программ на большие расстояния помощью искусственных спутников Земли для охвата телевизионным вещанием больших территорий.

Телевидение, несомненно, следует отнести к одному из самых значительных достижений человеческого разума. Наука о телевидении и телевизионная техника представляет собой сложный комплекс сведений и технических решений из самых различных областей знаний – светотехника, световой (геометрической) и электронной оптики, учения о фотоэлектричестве, электровакуумной и импульсной техники, техники радио и проводной связи и других областей знаний.

В основе телевизионной передачи лежат три важнейших физических процесса:

1. Преобразование световой энергии оптического изображения в электрические сигналы. Для этого преобразования используют явление фотоэффекта открытого Г. Герцем в 1887 году и фундаментально исследованного в 1888 – 1890 годах профессором Московского университета А. Г. Столетовым.

2. Передача полученных электрических сигналов по каналам связи.

3. Обратное преобразование принятых электрических сигналов в оптическое изображение. Это преобразование впервые осуществил с помощью электронно-лучевой трубки преподаватель Петербургского технологического института Б. Л. Розинг (1907 – 1911 годах).

Таким образом, в изобретении и создании важнейших узлов телевизионных систем весьма большой вклад внесли русские ученые П. И. Бахметьев, Б. Л. Розинг, П. В. Шмаков, С. И. Катаев, а также американцы Ч. Дженкинс и В. К. Зворыкин, англичанин Дж. Л. Берд, немец Ф. Шретер, француз Р. Бартлеми, поляк П. Нипков и многие другие.

В октябре 1967 года телевизионное вещание перешло к новому этапу своего развития – начались регулярные передачи цветного телевидения.

Цветное изображение содержит значительно больше полезной информации, чем черно-белое. Цвет повышает художественную ценность изображения, уменьшает его отличие от оригинала, помогает зрителю полнее и быстрее воспринимать содержание изображения, повышает эмоциональность восприятия.

Цветное телевидение появилось, и начало развиваться, когда черно-белое телевидение уже получило широкое распространение – в эксплуатации у населения находились десятки миллионов черно-белых телевизоров. Поэтому перед разработчиками системы цветного телевидения была поставлена задача – создать такую систему, которая была бы совместимой с существующей системой черно-белого телевидения. То есть, чтобы имелась возможность приема передаваемых цветных передач в черно-белом виде существующими черно-белыми телевизорами и наоборот черно-белые программы принимать цветными телевизорами естественно в черно-белом виде.

В процессе решения поставленной задачи было предложено около трех десятков различных систем цветного телевидения. Однако были стандартизованы и получили практическое применение только три системы:

1. NTSC (NationalTelevisionSystemCommittee – национальный комитет телевизионной системы).

2. PAL (Phase Alternation Line – построчная перемена фазы).

3. CEKAM (от французского слова Secam-SequencedeCouleursAvecMemoire – последовательная передача цветов с запоминанием).

Преобразование оптического сигнала в электрический основывается на явлении фотоэффекта. Впервые прямое влияние света на электричество было обнаружено немецким физиком Г. Герцем во время его опытов с электроискровыми вибраторами. Герц установил, что заряженный проводник, будучи освещен ультрафиолетовыми лучами, быстро теряет свой заряд, а электрическая искра возникает в искровом промежутке при меньшей разности потенциалов. Замеченное явление было описано Герцем в его статьях 1887-1888 годов, но оставлено им без объяснения, так как физическую природу его он не знал. Не сумели правильно объяснить действие света на заряды и немецкий физик Гальвакс, и итальянский физик Риги, и английский физик Лодж, который, демонстрируя в 1894 году опыты Герца в своей знаменитой лекции «Творение Герца», лишь предположил химическую природу явления. И это неудивительно: электрон будет открыт Джозефом Джоном Томсоном лишь в 1897 году, а без упоминания об электроне объяснить фотоэффект невозможно.

Однако 26 февраля 1888 года заслужено считается одним из замечательнейших дней в истории науки и техники и, в частности, телевидения. В этот день великий русский ученый Александр Григорьевич Столетов (1839-1896) блестяще осуществил опыт, наглядно продемонстрировавший внешний фотоэффект и показавший истинную природу и характер влияния света на электричество.

Первые опыты со светом А.Г. Столетов проводил с обычным электроскопом. Освещая электрической дугой Петрова цинковую пластину, заряженную отрицательно и соединенную с электроскопом, он обнаружил, что заряд быстро исчезал. Положительный же заряд не уничтожался, вопреки имевшемуся утверждению Риги.

Для постановки точных опытов Столетов создал экспериментальный прибор, ставший прообразом современных фотоэлементов.

Экспериментальный прибор Столетова

Прибор состоял из двух плоскопараллельных дисков, один из которых был сетчатый и пропускал световые лучи. К дискам подводилось напряжение от 0 до 250В, причем к сплошному диску подключался отрицательный полюс батареи. При освещении сплошного диска ультрафиолетовым светом включенный в цепь чувствительный гальванометр отмечал протекание тока, несмотря на наличие воздуха между дисками. Продолжая опыты, А. Г. Столетов установил зависимость фототока от величины напряжения батареи и интенсивности светового пучка. Дальнейшие работы привели к созданию первого в мире фотоэлемента, представлявшего собой стеклянный баллон с кварцевым окном для пропускания ультрафиолетовых лучей. Внутрь баллона помещались электроды, один из которых был чувствителен к свету, газ откачивался. Современные фотоэлементы отличаются от первого лишь конструкцией электродов и их структурой.

Фотоэффект — явление вырывания электронов с поверхности вещества под действием света — был назван А.Г. Столетовым актиноэлектрическим разрядом. Электронная природа фотоэффекта была показана в 1899 году Дж. Дж. Томсоном и в 1900 году Ленардом, а полное объяснение было дано лишь в 1905 году А. Эйнштейном на основе квантовой теории. Сам же чувствительный к свету фотоэлемент был назван современниками «электрическим глазом».

Как развитие фотоэлемента в 1934 году советским инженером Кубецким и, независимо, американцем Фарнсвортом был сконструирован фотоэлектронный умножитель (ФЭУ), работа которого основана на использовании вторичных электронов, выбиваемых с анодов прибора вначале светом, а затем падающими на аноды первичными электронами. Таким образом, ФЭУ сочетает в себе фотоэлемент и усилитель с коэффициентом усиления в несколько миллионов единиц.

От «электрического глаза» до современного телевизора огромный путь, на котором нужно было решить три задачи: преобразовать изображение в последовательность электрических сигналов, передать их на большое расстояние и сделать обратное преобразование в приемном устройстве. Для передачи сигналов на большие расстояния идеально подошло радио, достигшее в 20 веке высокого уровня развития, а вот по созданию преобразовательных систем путь был пройден длинный и сложный.

Принцип отображения изображения

Шведскому химику Йёнсу Якобу Берцелиусу, открывшему в 1817 году элемент селен, и в голову не могло прийти, что его открытие станет первой вехой на пути к телевидению. Между тем, это именно так: спустя 50 лет было замечено особое свойство селена и некоторых других материалов изменять свое электрическое сопротивление при освещении. Чем ярче свет, падающий на селеновую пластинку, тем легче она проводит ток.

Если из маленьких кусочков селена сделать мозаику, соединить проводами каждый кусочек с маленькой лампочкой, спроецировать на мозаику изображение и пустить по проводам ток, то лампочки, соединенные с более освещенными кусочками мозаики, будут гореть ярче, а соединенные с затемненными участками — тусклее. Получим изображение, удаленное от оригинала на длину проводов. Впервые такое решение предложил американец Джордж Кэрри в 1880 году, но оно никогда не было осуществлено: уж больно громоздким было бы сооружение при более или менее значительном количестве элементов мозаики. Нужно было искать какой-то другой путь.

Еще в 1833 году бельгийский физик Жозеф Плато наклеил на периферию диска рисунки, запечатлевшие последовательные позы танцующей балерины, и стал вращать диск перед окошком, в котором помещалось лишь одно изображение. Когда диск вращался с какой-то определенной скоростью, зритель видел в окошке балерину, плавно исполнявшую свой танец. Так была открыта важная особенность человеческого зрения — его инерционность, то есть свойство «видеть» какое-то короткое время изображение, когда его уже на самом деле не существовало: предыдущее изображение балерины «сцеплялось» с последующим без зазора, глаз не успевал заметить промежутка между ними.

Инерционность зрения использовали создатели кинематографа: сидя в кинотеатре, мы не замечаем, что на экране каждую секунду сменяют друг друга 24 неподвижных изображений, а напряженно следим за погоней или сочувствуем страданиям любимой актрисы. А для того, чтобы на экране все было так, как в жизни, нужно, чтобы съемка происходила с той же скоростью 24 кадра в секунду.

Механическая развертка

Схема построчной развертки

Чтобы выйти из тупика, изобретатели, работавшие над созданием «дальновидения», тоже воспользовались инерционностью зрения, но пошли еще дальше, применив принцип «развертывания» изображения.

Представьте себе, что вы сидите перед экраном в том же зале, но на экран падает не тот широкий пучок света, который несет изображение кадра целиком, а тонкий луч, который с огромной скоростью пробегает по экрану так же, как взгляд наших глаз пробегает страницу книги, строчку за строчкой. Луч все время меняет свою яркость: в одних местах экрана светлеет, в других темнеет, и из-за инерционности зрения мы увидим то же, что и в кино: изображение во весь экран. А если скорость пробегания луча по экрану намного больше, чем скорость смены кадров, эффект движения тоже сохранится.

Вырисовывалась такая схема телепередачи: изображение оптически проецируется на селеновую пластинку, но не все сразу, а лучом построчно; через пластинку проходит ток, который пульсирует в соответствии с изменением освещенности пластинки; пульсирующий ток передается на источник света, яркость которого меняется при пульсации тока; луч от этого источника «бегает» по экрану с той же скоростью и по такому же шаблону, что и луч, «развертывающий» изображение-оригинал.

Преимущества такой схемы были очевидны, остановка была за малым: перейти от идеи к ее реальному воплощению. В 1884 году немецкий инженер (вернее, будущий инженер — тогда он был еще студентом) Пауль Нипков запатентовал устройство «электрический телескоп», в котором для «развертывания» изображения были применены диски с отверстиями, расположенными по спирали. При вращении диска отверстие у периферии пробегало верхнюю «строчку» изображения, следующее отверстие, расположенное чуть ближе к центру, — вторую строчку и т. д. За один оборот диска «разворачивалось» все изображение.

Когда Пауль Нипков сделал свое открытие, он был студентом, совсем молодым человеком. Патент на изобретение ему удалось получить не сразу. По окончании университета он начал работать в управлении железных дорог, где занимался конструированием сигнальных систем. И многие из его изобретений в этой области также были запатентованы, прежде всего — системы аварийной сигнализации. Но главным его открытием, безусловно, оказалось, как потом называли, механическое телевидение.

Принцип сканирования с помощью диска Нипкова стал основой для телевизионной системы шотландского ученого Джона Бэрда, который в 1926 году впервые продемонстрировал публике передачу изображения и воспроизведения его на экране. Телевизионная система шотландского ученого Джона Бэрда очень отличалась от современного телевидения. Она была основана на механической системе сканирования с использованием металлического диска с отверстиями — изобретения Пауля Нипкова. Достоинство системы Бэрда заключалось в том, что из-за очень малой разрешающей способности экрана можно было передавать телевизионное изображение, используя обычную средневолновую радиосистему. Бэрд мог передавать изображение, используя радиосистему компании BBS. И все это происходило в середине 20-х годов.

Бэрд первым в мире продемонстрировал телевизионное изображение, которое, однако, было размером примерно с почтовую марку. Оно было очень слабым и мерцающим, с очень невысокой разрешающей способностью. Многие ученые, знакомые с системой Бэрда, отмечали, что ее нельзя было усовершенствовать в рамках самой этой системы без изменения фундаментальных технологических принципов работы телевидения.

Любопытно, что Бэйрд назвал свой прибор «телевизором», и это воистину был телевизор (в смысле — передатчик изображения), а не современный «телеприемник». Бэйрд продемонстрировал свой прибор в одном из лондонских универмагов в Сохо. Но изобретателю не удалось добиться передачи полутонов, и на экране были видны лишь силуэты вместо лиц. В 1926 году неутомимый шотландец сделал повторную попытку — на сей раз публика, присутствовавшая на первом публичном телесеансе в истории, была потрясена. Спустя еще два года Бэйрд впервые создал действующую модель цветного телевизора — за 30 лет до его широкого практического использования (в 1929 году экспериментальная телевизионная передача в цвете была проведена и сотрудниками американской компании Bell).

Диски Нипкова оказались удивительно живучими: они использовались в ранних телевизионных передачах вплоть до начала 30-х годов. В дисках было 30 отверстий, что соответствовало 30 строкам развертки, а для того, чтобы получить четкое изображение, необходимо иметь в 20 раз больше строк. Поскольку при этом диск увеличивался до совершенно неприемлемых размеров, все отчетливей проявлялась тупиковасть направления, базировавшегося на механической развертке изображения.

Изобретение электронной развертки

Между тем еще в 1907 году российский ученый Борис Львович Розинг предложил использовать для развертки катодно-лучевую трубку, изобретенную за 10 лет до этого немецким физиком Карлом Брауном и применявшуюся в осциллографах. Невесомый электронный луч в этой трубке можно было заставить «пробегать» по «строчкам» изображения с огромной скоростью. Будучи преподавателем Петербургского Технологического института, Борис Львович Розинг запатентовал систему «катодной телескопии», предложив для преобразования электрических сигналов в видимое изображение электронно-лучевую трубку. 9 мая 1911 года Розинг продемонстрировал свое изобретение коллегам и вскоре был удостоен Золотой медали Российского технического общества. Историки телевидения, в том числе и американские, единодушно утверждают, что патент Розинга сыграл основополагающую роль в создании современного телевидения, а его приоритет признан во всем мире.

Принцип работы катодной трубки Розинга стал основой для изобретения более совершенных устройств передачи изображений. В этой трубке вместо механического диска, который, как предвидел Розинг, не мог позволить увеличить качество изображения, то есть разрешение или количество строк на экране, использовался электронный луч (или электронный пучок), который направлялся системой электродов – катодов, отклоняющих электронный пучок на нужное расстояние. Что позволяло засветить лучом мишень с большей точностью и за меньший промежуток времени.

Выдающийся ученый, профессор Розинг разделил участь многих замечательных российских интеллигентов: в 1931 году во время очередной сталинской «чистки» он был арестован и выслан на 3 года в Архангельск, но не дожил до окончания срока и умер в 1933 году от кровоизлияния в мозг. Ему не удалось довести до конца задуманное. Это сделал в Соединенных Штатах его ученик Владимир Зворыкин.

Схема трубки Розинга В.К. Зворыкин

Идея создания телевизора, в котором изображение будет «рисоваться» электронным лучом, возникла у Зворыкина уже во время учебы в Петербургском технологическим институте. Окончил его Владимир Зворыкин в 1912 году, а спустя два года началась Первая мировая война, и молодому радиоспециалисту пришлось надеть военную форму. После Октябрьской революции Зворыкину тоже было не до научных опытов: ему, как бывшему белому офицеру, грозил арест. В 1918 году В. К. Зворыкин уехал из страны, а в 1919 году поселился в США.

Только спустя год после приезда в Америку Зворыкин был принят на работу в фирму WestinghouseElectric. В 1923 году новый сотрудник собрал, весьма далекий от совершенства образец системы электронного телевидения. Однако убедить русского инженера в бесперспективности электронного телевидения оказалось невозможно. Каждый день до позднего вечера он упорно трудился в лаборатории над совершенствованием своего изобретения.

В 1929 году Зворыкин перешел в «Радио корпорацию Америки» и здесь его идеи нашли понимание и необходимую финансовую поддержку. С помощью сотрудников талантливый ученый изготовил катод со сложной фотомозаичной структурой, нашел способ усиления малых токов, возникающих миниатюрных фотоэлементах, решил множество других технических проблем. В результате кропотливых экспериментов в 1931 году была создана работоспособная приемная телевизионная трубка – иконоскоп . Вскоре компания наладила серийное производство аппаратуры, и в 1936 году в США начались первые телевизионные передачи.

Кинескоп и Иконоскоп

Америка до сих пор спорит о том, кого считать «отцом телевидения», и многие полагают, что это звание вполне заслужил Дэвид Сарнов. Он предложил Зворыкину перейти в RCA и, когда тот согласился, создал ему прекрасные условия для работы, назначив его руководителем исследовательской лаборатории. Генеральный менеджер, а через год — президент RCA, Сарнов регулярно наведывался в лабораторию Зворыкина в Нью-Джерси, и не как босс, а как человек, способный работать рядом с исследователями.

Кинескоп Зворыкина

Зворыкинская приемная трубка – кинескоп – работала удовлетворительно, а вот с передающей трубкой были проблемы. Трудность состояла в том, что при развертке передаваемого изображения свет воздействует на светочувствительный слой очень кратковременно — миллионные доли секунды. Возбуждаемый при этом заряд оказывается ничтожно малым, усилить его до величины, необходимой для передачи, было чрезвычайно трудно. Зворыкин задался целью создать трубку с накоплением заряда, и в 1931 году такая трубка была создана.

В этом Зворыкину помог еще один эмигрант, Григорий Оглоблинский, работавший над той же проблемой в Париже. Зворыкин пригласил его в Америку, и они вместе довели до ума идею передающего электронно-лучевого прибора с накоплением электрического заряда на мозаичных светочувствительных мишенях. Изобретатель назвал ее «иконоскопом», от греческих слов «икон» – «образ» и «скоп» – «видеть». Иконоскоп и кинескоп стали основными узлами работоспособной электронной системы телевидения.

Изобретение «анализатора изображения». Файло Фарнсуорт

В это же время в Сан-Франциско над электронным телевидением работал другой американский изобретатель, которого звали Файло Тэйлор Фарнсуорт. Он родился в 1906 году в Юте в семье мормонов и еще в детстве решил стать изобретателем. Он мечтал о том, чтобы так же, как звук, передавать по радио изображение. Судьба была неблагосклонна к нему, он не смог получить основательного образования, но имел хорошие руки и светлую голову. Перебравшись из родного штата в Калифорнию, он уговорил нескольких банкиров ссудить ему денег на создание телевизионной системы. В 1927 году молодой изобретатель разработал передающую электронно-лучевую трубку «анализатор изображения» (imagedissector), которую он присоединил к уже существовавшему приемному устройству и пригласил банкиров посмотреть чудо телевидения. Все, что они увидели, было слабое изображение треугольника на светлом фоне. Банкиры не пришли в восторг: они вложили в дело большие деньги и хотели знать, когда они смогут продавать систему и получать прибыль. «Мы когда-нибудь увидим на экране хотя бы доллар?» — спросил один из них. Через несколько месяцев Фарнсуорт показал им четкое изображение доллара, а еще позже — кинематографическую версию шекспировской пьесы «Укрощение строптивой».

В 1930 году к Фарнсуорту приехал Зворыкин. Хозяин продемонстрировал гостю свой анализатор, и тот, к большому удовольствию автора, признал его превосходным. Однако впоследствии, когда Фарнсуорт ознакомился с иконоскопом, он нашел в себе мужество признать, что разработка Зворыкина была лучше, чем его собственная: анализатор не накапливал заряд, при очень хорошей освещенности изображение было прекрасным, но по чувствительности анализатор значительно уступал иконоскопу. Тем не менее, корпорация RCA, видя в Фарнсуорте конкурента, предложила ему продать ей его патентные права. Фарнсуорт был зажат в долговых тисках и пошел на продажу лицензии. Обе передающие трубки применялись в телевизионных системах еще долго, до создания более совершенных устройств: иконоскоп – в передачах кинофильмов, анализатор –в промышленном телевидении.

Радиовизионный передатчик. Передачи BBS

В 1928 году продемонстрировала “радиовизионный” передатчик W3XK и фирма JenkinsLaboratories, основанная переехавшим из Англии Дженкинсом: 2 июля начались первые регулярные передачи “радиофильмов” на города Восточного побережья США. В том же году в Германии Нипков осуществил первую передачу изображения по проводам, а еще через два года на выставке в Берлине изобретатель обошелся без них.

Однако жители Великобритании еще долго хранили верность Бэйрду. В 1928 году он провел первую трансатлантическую телевизионную передачу, в сентябре следующего начала регулярные телепередачи, вещательная корпорация ВВС, используя, передатчики Бэйрда. Телевидение признали быстро.

Разработка телевидения в СССР

Еще одна страна с самого начала очень серьезно отнеслась к новому СМИ — СССР. Почему, объяснять не нужно. И если говорить только о технической стороне дела, то советское телевидение долгое время шло вровень с наиболее передовым западным. Начать с того, что менее чем за два месяца до получения Зворыкиным патента на иконоскоп аналогичную заявку (“на трубку с трехслойной мишенью и накоплением зарядов”) в СССР подал инженер С.И. Катаев, впоследствии — один из ведущих советских специалистов в этой области. И хотя приоритет остался за Зворыкиным, чьи заслуги перед телевидением не подвергали сомнению и у него на родине, этот факт доказывает, что мысль ученых разных стран двигалась параллельно. Кстати, до середины 1930-х годов Зворыкин поддерживал тесные контакты с коллегами на родине — с тем же С. Катаевым, С. Векшинским, Л. Кубецким, А. Шориным и другими. Удивительно другое: авторы некоторых публикаций утверждают, что «отец телевидения» даже сам побывал в Москве в 1933 году, читал лекции и лично общался, в частности с Катаевым. Но затем такое сотрудничество было по понятным причинам свернуто. Вначале советское телевидение было «малострочным» (имеется в виду количество строк развертки), а, кроме того, механическим, с использованием тех же дисков Нипкова. Кроме того, даже после того, как в конце 1931 года началось опытное вещание из Москвы, поступавшая из студии картинка не всегда сопровождалась звуком. Затем начался период так называемого малокадрового электронного телевидения, заметно улучшившего качество изображения. Впервые идею предложил в 1936 году тот же Катаев, и много позже, в 1959-м, с помощью его метода удалось добиться сенсационного успеха: получить снимки обратной стороны Луны.

Пока же, в конце 30-х, Москва обзавелась первым телецентром — его построили на Шаболовке, рядом со знаменитой радиобашней Шухова. На ее вершине советские специалисты установили передающую антенну УКВ-передатчиков изображения и звука, а основное оборудование было закуплено заграницей. Поначалу Московский телецентр обладал единственной студией площадью 300 кв. м и единственной же камерой (фильмы передавали с помощью двух телекинокамер). В марте 1938 года состоялась первая пробная передача, и в новогоднюю ночь все работники центра могли разливать шампанское дважды: МТЦ был торжественно сдан в эксплуатацию. А уже в марте следующего года начались регулярные передачи.

Работы по усовершенствованию телевизионной техники не прекращались даже во время войны. Так, в 1940 году был разработан телевизионный стандарт на 441 строку, годом позже достигнут американский (525 строк), а в 1944 — рекордный 625-строчный. В октябре следующего года правительство приняло постановление перевести на него МТЦ. Реконструкцию осуществляло закрытое КБ во Фрязине, а помогали ему немецкие специалисты, недостатка в которых СССР в 1945 году не испытывал. 3 сентября 1948 года состоялась первая передача в новом стандарте, и впоследствии его приняли все страны с частотой питания в сети 50 герц.

Примерно в то же время был выпущен первый советский массовый телевизор – КВН-49 (первый опытный телевизионный приемник ТК-1 создали на Ленинградском заводе имени Козицкого еще в 1934-м), который народ тут же расшифровал как “купил, включил, не работает”. Объемам продаж КВНа в послевоенные годы могли бы позавидовать многие западные производители.

До появления спутников связи передача сигнала из Москвы в другие населенные пункты осуществлялась по кабельным или радиорелейным линиям связи. Однако использовали и более хитроумные средства, например, установку ретрансляторов на самолетах: именно так, в частности, передавали репортажи с фестиваля 1957 года в Ленинград, Смоленск, Киев и Минск.

Перспективы развития телевидения

В мире используют три системы цветного телевидения. Однако в Бразилии, например, наряду со стандартом М (525 строк) применяют видоизмененную систему PAL, отличающуюся от европейской значением цветовой под несущей. В Люксембурге и Монако телецентры работают по стандартам SECAM и PAL, во Вьетнаме — по системам NTSC и SECAM. В Бельгии, Голландии и других западноевропейских странах принята система PAL, но на территориях, где дислоцируются войска США, используется и система NTSC-M.

Применение стандартов разложения и систем цветного телевидения в регионах Земли показано в таблице. Следует иметь в виду, что в Китае и Индии, использующих систему PAL, проживает около 40 % всего населения планеты. Поэтому можно считать, что все три системы цветного телевидения примерно равнозначно применяются всеми странами мира.

Таблица 3
Регион Число стран/людей (млн.), использующих/принимающих в них
Стандарт разложения Систему цветного телевидения
625 525 SECAM PAL NTSC
Европа 40/730 16/370 25/360
Африка 50/610 24/205 26/405
Ближний и Средний Восток 19/200 9/120 10/80
Азия 24/2350 8/340 7/65 17/2474 8/340
Тихий океан 8/25 8/5 2/0,5 6/24 8/5
Северная Америка 2/0,2 4/280 1/0,1 1/0,1 4/280
Центральная Америка 2/1 26/149 2/1 26/150
Южная Америка 6/60 8/240 2/0,2 4/190 8/100
Итого 151/4156 54/1014 63/762 89/3533 54/875

Хотя в новых телевизорах качество изображения сейчас оценивается весьма высоко, спрос на них (основного источника доходов производителей телевизионного оборудования), случалось, не рос, а в отдельные периоды даже снижался. Надежды, что это положение изменится в связи с ростом числа принимаемых программ при внедрении кабельных и спутниковых распределительных сетей, к сожалению, не оправдались. Отчасти это объясняется увеличением платы за многопрограммность.

В свое время преобладало мнение, кстати, сохранившееся до наших дней, что привлечь телезрителей может только наибольшее подобие изображения передаваемым объектам съемки, повышение физиологического и эмоционального его воздействия. Одним из таких направлений, пока нереализованных, можно считать объемность (стереоскопичность). Наиболее удачной для ее реализации оказалась идея использования известных особенностей зрительного восприятия изображения. Основное его содержание воспринимается в пределах телесного угла 15x10° («изображение наблюдения»). Ему соответствует формат экрана 4:3, применяемый в телевидении, кино, живописи. Реальное же поле зрения существенно больше — 200x125°. Причем при наблюдении основного события в пределах узкого угла наличие изображения в большем угле создает впечатление стереоскопичности. Практически оно сохраняется при уменьшении его до значения 30x20°.

Другой особенностью восприятия изображения считается необходимое расстояние до экрана, которое должно быть не менее двух метров. При меньших расстояниях могут возникать головные боли, особенно от движущихся объектов.

Учитывая сказанное, минимальный размер телевизионного изображения должен быть 1x0,7 м. В результате в новых стандартах предусматривается увеличение числа строк разложения примерно вдвое (при формате изображения 16:9). Они получили название телевидения высокой четкости (ТВЧ или ТВВЧ). При этом в странах, где используется частота сети 50 Гц (Европа и др.), уже рекомендовано разложение на 1250 строк и 50 полей, а в странах, где частота сети равна 60 Гц (Америка, Япония и др.), — 1125 строк и 60 полей.

Разработка, испытание и частичное использование таких систем вещания, способов передачи и распределения их сигналов ведутся очень интенсивно. Причем в последнее время заметно стремление перейти на цифровые сигналы, позволяющие передавать в одном стандартном канале сигналы нескольких телевизионных программ и другой различной информации. Это будет способствовать также внедрению интерактивных систем, обеспечивающих потребителю получение по запросу интересующих его программ и другой информации.

Об интенсивности работ в этом направлении свидетельствует то, что в отдельные периоды последних лет в международных организациях изучалось до 40 предлагаемых новых стандартов телевидения: варианты систем телевидения повышенного качества, МАС, PAL-плюс и др. Следует сказать, что до начала их практического использования осталось совсем немного времени. Однако поиски новых идей, конечно, продолжаются.

Список литературы

1. В. Д. Крыжановский, Ю. В. Костыков: Телевидение цветное и черно-белое

2. www. referat. Ru

www.ronl.ru

Реферат - Создание телевидения - История техники

Георгий Члиянц

Долгое время люди мечтали о возможности передачи изображения и звука на расстояние. Одной из важной и первой вехой на пути развития телевидения или, как его тогда называли, радиовидения можно считать выделение в 1817 г селена шведским химиком Йенсом Якобом Берцелиусом [1779-1848], открытое в 1873 г американским ученым У.Смитом явление внутреннего фотоэффекта (впоследствии был использован при создании видикона) и установление в 1888 г русским физиком Александром Григорьевичем Столетовым [1839-1896] основных закономерностей внешнего фотоэффекта (впоследствии был использован при создании суперортиконов). Попытки передать изображение на расстояние при помощи электричества относится к 1876 г, когда Александр Грэхем Белл изобрел телефон. К этому времени было уже известно, что сопротивление селена изменяется в зависимости от количества падающей на него световой энергии. Поскольку А.Белл доказал возможность передачи на расстояние сложного сигнала, множество изобретателей начали разрабатывать способы «электрического видения» (как гласил один из заголовков статьи того времени).

В одних способах использовалась мозаика селеновых детекторов, в других изображение сканировалось механически одним или несколькими селеновыми датчиками. Для воспроизведения изображений также предлагались разнообразные методы от перемещения карандаша до электромеханического воздействия на лист бумаги, размещенный в приемнике и пропитанный химическим составом. Светочувствительные свойства селена на практике были использованы лишь в 1892 г, когда Элстер и Гейтл изобрели фотоэлемент. Именно такие элементы и явились принципиальной основой современного телевидения. Второй важной вехой в развитии телевидения стало изобретение, принесшее практическую пользу, созданного в 1882 г немецким экспериментатором Паулем Нипковым [1860-1940] «электрического телескопа» и запатентованного им в 1884 г. Идея Нипкова состояла в том, что на передающем конце линии изображение разлагается на отдельные электрические сигналы, затем осуществляется последовательная передача этих сигналов и восстановление этого полного изображения на приемном конце. Такой способ давал возможность передавать телевизионное изображение по одному телефонному или радиоканалу. Основу камеры составлял широко известный сейчас диск Нипкова. Он имел 24 отверстия, расположенных на равном расстоянии по спирали у периферии диска. Передаваемое изображение фокусировалось на небольшом участке периферии диска, а сам диск вращался с частотой 600 об/мин. При вращении диска изображение последовательно сканировалось отверстиями по прямым линиям. Линза, установленная за проецируемым изображением, собирала последовательные световые выборки и фокусировала их на одном селеновом элементе. При этом, селеновый элемент формировал последовательность токовых сигналов, каждый из которых был пропорционален яркости отдельных элементов изображения. На приемной стороне Нипков предложил использовать магнитооптический (основанный на эффекте Фарадея) модулятор света, изменяющий яркость восстанавливаемого изображения. Для формирования изображения был необходим другой диск, аналогичный диску передатчика и вращающийся синхронно с ним.

Нипков не занимался созданием аппаратуры, что было не столь важно, поскольку технология того времени не позволяла создать подобную систему (только один модулятор света потребовал бы управляющего сигнала мощностью 10 Вт). Однако его диск послужил моделью для нескольких более поздних телевизионных систем. В начале 20-х годов Джон Лодж Бэрд в Англии и Дженкинс в США совершенно независимо друг от друга провели целый ряд экспериментов по передаче телевидения с использованием механической развертки. Причем, Джона Бэрда больше интересовала проверка реализации своих идей, чем их промышленное внедрение.

В 1889 г в Санкт-Петербурге на Первом Всероссийском съезде Константин Дмитриевич Перский (преподаватель электротехники в Константиновском артиллерийском училище, капитан артиллерии) выступил с докладом «Современное состояние вопроса об электровидении на расстоянии (телевизирование)». Затем он повторил его 24 августа 1900 г в Париже на Международном электротехническом конгрессе, где впервые применил термин «телевидение» («television»). До этого (как впрочем и до середины 30-х годов) в отношении телевидения в зарубежной и отечественной литературе применялись термины: «электрическая телескопия», «радиотелескопия» и «дальновидение».

Механическая система развертки накладывала вполне определенные ограничения на объем передаваемой информации, качество и размеры воспроизводимого изображения. Поэтому даже в более ранних работах, чем приведено выше, некоторых первых исследователей наблюдалась тенденция к использованию электронного оборудования, свободного от указанных выше недостатков. В 1906 г Дикман и Глейс в Германии, а в 1907 г петербургский электрофизик Борис Львович Розинг [1869-1933] получили патенты на системы телевидения, использующие приемник с электронно-лучевой трубкой (ЭЛТ). Первое предложение о телевизионной системе, полностью построенной на основе электронного оборудования было сделано Аланом Арчибальдом Кемпбеллом-Свинтоном в 1908 г. Как и П. Нипков, А.Кемпбелл-Свинтон не изготовил аппаратуру, но очень подробно описал свою идею в июньском номере журнала «Nature». Его система была основана на ЭЛТ, изобретенной в 1897 г Карлом Фердинандом Брауном в Страссбурге (трубка с множеством фотоэлементов, соединенных впараллель, каждый их которых до развертки записал определенный заряд и за каждый период развертки мог отдать только один импульс). А. Кемпбелл-Свинтон предложил использовать ЭЛТ как в передатчике, так и в приемнике. При этом он тогда отмечал, что главной проблемой является «создание эффективного передатчика, который под влиянием светлых и темных участков будет в достаточной степени изменять передаваемый электрический ток, чтобы обеспечить необходимую модуляцию электронного луча в приемном устройстве».

В 1911 г Б.Л.Розинг продемонстрировал в лабораторных условиях передачу телевизионных изображений простых геометрических фигур и прием их с воспроизведением на экране ЭЛТ.

В 1923 г американский инженер и изобретатель Владимир Кузьмич Зворыкин [1889-?] (русский по происхождению — в 1917 г эмигрировал из России в США, ученик Б.Л.Розинга) зарегистрировал патент на передающую телевизионную ЭЛТ, названную иконоскопом. Она отличалась от ранних образцов применением модуляции интенсивности электронного луча с помощью осесимметричной сетки. Принципиально важным в этой ЭЛТ было то, что фотокатоды из посеребренной слюды «запоминали» заряды, образуемые фокусируемым на них изображением, а сканирующий электронный луч нейтрализовывал заряды и одновременно модулировался. Следует отметить, что появившееся примерно в тот же период устройства без «запоминания» зарядов (например диссектор изображения Фила Фарнсуорта) были менее удачными. Через год после изобретения иконоскопа В.К.Зворыкин изобрел кинескоп — приемную телевизионную ЭЛТ с электростатическим отклонением и фокусировкой луча, став тем самым создателем основных передающего и приемного элементов электронного телевидения.

Одна из первых публичных демонстраций телевидения была осуществлена Дженкинсом 13 июня 1925 г, когда он передал изображение между аиационной станцией ВМС в Анакосте (шт. Мэриленд) и своей лабораторией в Вашингтоне (окр. Колумбия), т.е. на расстоянии в несколько км. При проведении этого эксперимента использовалась механическая система развертки.

В начале 30-х годов усилия ученых и изобретателей были направлены на разработку электронных систем развертки, т.е. развитие телевидения вступило в свой следующий этап развития — период совершенствования.

Список литературы

1. «Электроника: прошлое, настоящее, будущее» (Пер. с анг. под ред. чл.-кор. АН СССР В.И.Сифорова [«Мир»; М.; 1980 (296 с.)].

2. «Труды Института радиоинженеров — ТИРИ» (Proceedings of the IRE) [«ИЛ»; М.; 1962, две части (1517 c.)].

3. БСЭ (третье издание) [«СЭ»; М.; т.3 (с.259-260), т.9 (с.432), т.18 (с.27), т.22 (с.178), т.24 (с.532-533), т.25 (с.377)].

4. Л.Лейтис. «К 100-летию термина „телевидение“ [»РАДИО"; #8/2000 (c.13)].

5. Георгий Члиянц (UY5XE). «История создания телевидения» [«РАДИОхобби»; #5/2000 (c.2-3)].

www.ronl.ru

Реферат: Телевидение

ИССЛЕДОВАНИЯ в области телевидения заняли более чем 30 лет в жизни ученого и привели к открытию, принесшему ему мировую известность и послужившему основой для развития современного телевидения. Зарождение телевидения относится к 70-м годам прошлого столетия. Оно неразрывно связано с развитием электротехники и ее практическими применениями, в частности для связи на большие расстояния. Возможность бы строй передачи сообщений на большие расстояния в виде электрических сигналов наводила на мысль об использовании аналогичных принципов для передачи изображение на расстояние. Первые проекты систем для электрической передачи изображений были предложены вскоре после изобретения телеграфа и относились еще не к телевидению в современном понимании этого слова, а к фототелеграфии. т. е. передаче единичных неподвижных изображений (чертежей, рисунков и т. п.). Они основывались на использовании химического действия тока и применении различных механических устройств в передающем и приемном аппаратах. Передача сигналов осуществлялась по про водам, принимаемые изображения фиксировать на бумаге. Начало развития фототелеграфии связано с проектами А. Бейна (1842 г.), Ф. Бэйкуелла (1847 г.) и Дж. Казел- ли (1862г.). Фототелеграфия не давала возможности наблюдать удаленные объекты в движении в момент передачи независимо от расстояния и оптических препятствий. т. е. не решала в полной мере задачу видения на расстоянии. Различие между фототелеграфией и телевидением пример но такое же, как между фотографией и кино. Первые успехи в передаче неподвижных изображений по линиям связи привлекли внимание ученых и изобретателей к проблеме телевидения. Но для перехода от фототелеграфии к телевидению, т. е. к непосредственной пере даче движущихся изображений, требовались новые методы и технические средства, необходимо было преодолеть огромные технические трудности. Телевидение, или видение на расстоянии за пределами непосредственного зрительного восприятия объектов человеком, могло быть осуществлено на основе преобразования света в электрические сигналы. Принципиальная возможность осуществления телевидения появилась после того, как в 1873 г. английские ученые Дж. Мей и У. Смит открыли светочувствительность химического элемента селена, т. е. изменение его сопротивления под действием света. В результате изучения этого явления вскоре в различных странах были предложены многочисленные проекты «видения на расстоянии при по мощи электричества», в которых использовались свойства селена для светоэлектрического преобразования. В большинстве случаев эти проекты основывались не на каких-либо теоретических исследованиях и практических опытах, а на догадках и зачастую на неверных исходных положениях и поэтому не могли быть практически осуществлены. В некоторых проектах и предложениях со держалось рациональное зерно, но необходимые для их реализации элементы и приборы были еще несовершенны или вообще отсутствовали. Отдельные изобретатели пошли по известному в истории техники пути простого копирования явлений природы и пытались построить телевизионную систему по аналогии с устройством зрительного аппарата человека. Такая система была предложена в 1875 г. американцем Дж. Керн. Светочувствительной сетчатке глаза в ней соответствовала панель с большим количеством миниатюрных селеновых фотосопротивлений, составлявшая основу передающего устройства. Центры коры головного мозга, где создаются зри тельные восприятия, представлялись источниками света (например, лампочками накаливания) , расположенными на второй панели в месте приема. Каждое фотосопротивление па панели передатчика было связано с соответствующим источником света на панели приемника парой электрических проводов, выполнявших роль зрительных нервов. Преобразование оптического изображения в электрические сигналы в системе Кери должно было осуществляться одновременно и непрерывно всеми фотосопротивлениями. Все изменения передаваемого изображения отражались бы в изменении яркости свечения источников света в приемном устройстве, что позволяло в принципе производить передачу движущихся изображений. Эта система, получившая название многоканальной, не могла быть осуществлена практически вследствие ее сложности даже при не большом числе элементов изображения. Для практического решения проблемы телевидения нужно было найти такой способ передачи изображений, который позволял бы заменить большое количество линий связи между передающим и приемным устройствами од ной линией, т. е. перейти от сложной многоканальной системы к более простой, одноканальной. Этот переход означал замену одновременной передачи всех элементов изображения поочередной. Такая замена оказалась возможной на основе применения развертки изображения и использования инерционности зрительного восприятия. Первые одноканальные системы передачи, основанные на этих принципах, были предложены в 1877-1878 гг. независимо французским инженером М. Санлеком, португальским физиком А. де Пайва и русским студентом, впоследствии известным физиком и биологом П. И. Бахметьевым. Переход от многоканальной системы передачи изображений к одноканальной был связан с введением в телевизионную систему механических элементов. В отличие от чисто электрической статической системы Кери, не содержавшей никаких механических движущихся частей, в системы Санлека, де Пайва и Бахметьева требовалось применение более или менее сложных механизмов для развертки или разложения изображения на элементы. В последующие годы было предложено еще много проектов телевизионных систем, основанных на использовании светочувствительности селена и применении различных механических устройств. Передающее устройство в большинстве этих систем представляло собой сочетание теленового светоэлектрического преобразователя и механизма для развертки изображения. Такое направление в построении телевизионных систем не случайно. Оно было обусловлено общей тенденцией промышленно-технического развития во второй половине прошлого века, характеризующегося изобретением остроумных механизмов и совершенствованием машин, и опиралось на хорошо развитые отрасли науки, техники и промышленности. Известно более ста проектов систем передачи изображений, появившихся в разных странах в период с 1880 по 1900 г. Однако лишь немногие из этих проектов имели практическое значение для развития телевидения. Важным шагом в деле практического решения проблемы телевидения явилось изобретение в 1884 г. П. Нипковым (Германия) простого оптико-механического устройства для построчной развертки и воспроизведения телевизионных изображений. Основным элементом в передатчике и приемнике его системы был развертывающий диск, получивший название диска Нипкова. Он представлял собой непрозрачный круг большого диаметра, у внешнего края которого расположены по спирали небольшие круглые отверстия на одинаковом угловом расстоянии одно от другого. Каждое последующее отверстие смещено на величину своего диаметра к центру диска. В передатчике диск находился между передаваемым объектом и селеновым фотосопротивлением. Изображение передаваемого объекта фокусировалось объективом на плоскость диска. При вращении диска сквозь его отверстия свет проходил на фотосопротивление поочередно от отдельных элементов изображения. Таким образом осуществлялось разложение светового потока изображения на элементарные световые потоки. Каждое отверстие давало одну строку изображения. За один оборот диска на фотосопротивление последовательно воздействовал свет от всех элементов изображения, что соответствовало передаче одного кадра. Число строк в кадре равнялось числу отверстий в диске. В приемке такой же диск располагался между глазом наблюдателя и источником света, модулируемым фототоком передатчика; этот диск вращался синхронно и синфазно с диском передатчика. При наблюдении источника света через отверстия вращающегося диска наблюдатель мог видеть передаваемое изображение в плоскости диска. Для модуляции источника света Нипков предполагал использовать открытое Фарадеем вращение плоскости поляризации света в магнитном поле, а также колебания мембраны телефона. Телевизионная система с дисками Нипкова содержит в себе основные элементы оптико-механических телевизионных систем. Проект Нинкова относится к немногим проектам начального периода истории телевидения, в которых имелись оригинальные идеи, приблизившие решение задачи видения на расстоянии, но он был неосуществим в то время из- за несовершенства отдельных элементов системы. Основная трудность состояла в невозможности получить достаточно сильный сигнал изображения вследствие невысокой чувствительности селенового фотосопротивления. В таком состоянии находилось телевидение, когда эта проблема привлекла внимание Б. Л. Розинга. Начало его практических исследований в области передачи изображений, которую он называл электрической телескопией, от носится к 1897 г. В Константиновском училище Борис Львович познакомился с преподавателем электротехники, капитаном артиллерии Константином Дмитриевичем Перским. Это был широко эрудированный человек, принадлежавший к числу передовых русских офицеров. Так же как и Борис Львович он интересовался вопросами передачи изображении на расстояние и следил за всеми новыми достижениями в этой области. К. Д. Перскому принадлежит приоритет на термин «телевидение», который он впервые употребил в докладе «Современное состояние вопроса об электровидении на расстоянии (телевизирование)», прочитанном им на 1-м Всероссийском электротехническом съезде в 1900 г., а за тем на Международном электротехническом конгрессе в Париже. Не достигнув положительных результатов с различными вариантами электрохимических систем передачи изображений и убедившись в их бесперспективности, Б. Л. Розинг настойчиво ищет новые пути и средства решения задачи. Быстрое развитие естествознания и физики и ряд важных научных открытий и изобретений, сделанных в конце ХIХи начале XX а., подготовили необходимую научно- техническую базу для разработки новых методов телевидения. Открытие внешнего фотоэффекта, изобретение электронно-лучевой трубки, изобретение радио оказали решающее влияние на развитие телевидения. Работая в лабораториях с осциллографическими трубками Брауна и наблюдая, как электронный луч вычерчивает на экране трубки сложные светящиеся фигуры, Б. Л. Розинг пришел к мысли использовать электронный луч для воспроизведения изображений в системе электрической телескопии. В 1902 г. Б. Л. Розинг применил электроннолучевую трубку в приемном устройстве системы с электрохимическими элементами на передающей стороне. Трубка имела две пары отклоняющих электромагнитов, расположенных взаимно, перпендикулярно и соединенных со стержнями электролитической ванны. Луч света был заменен металлическим штифтом. При движении штифта по слою медно го купороса пятно на экране трубки перемещалось в со ответствующую точку. Электронный луч чертил вензеля и буквы, выводимые металлическим штифтом на отправительной станции. Затем отклоняющие электромагниты трубки соединялись на передающей стороне с реостатами, движки которых перемещались по кругу. Одновременным изменением положений движков можно было получать такой же эффект, как и при перемещении штифта в электролитической ванне. Но таким способом можно было передавать не оптическое изображение, а только простые рисунки, буквы, цифры, тогда как целью изобретателя было осуществление передачи на расстояние живых сцен. Впоследствии стало известно, что аналогичный способ передачи рисунков и письменного текста с воспроизведением их на экране электроннолучевой трубки разрабатывался в то же время в .Германии М. Дикманом и Г. Глаге и был запатентован ими в 1906 г. Так шаг за шагом Борис Львович создавал свою систему электрической передачи изображений, настойчиво экспериментируя и проверяя практически каждое ее звено. И только после того как вся схема и все ее элементы были тщательно продуманы, он подал заявку на выдачу ему привилегии на изобретение «Способа электрической передачи изображений». Это было 25 июля 1907 г., т. е. спустя 10 лет после начала первых опытов. В том же 1907 г. Б. Л. Розинг подал патентные заявки на свое изобретение в Германии и в Англии. Интересно отметить, что патенты в этих странах он получил раньше, чем в России (в Англии - 25 июня 1908 г., в Германии - 24 апреля 1909 г., в России - 30 октября 1910 г.) Таким образом, приоритет Б. Л. Розинга на открытие нового способа приема изображений в телевидении был неоспоримо закреплен в полученных им русском и иностранных патентах. Новая схема телевизионной системы Розинга с использованием модуляции скорости движения электронного луча в приемной трубке была запатентована им в 1911 г. в России, а затем в Англии, Германии и США. Отмечая заслуги Б. Л. Розинга в области электрической телескопии. Русское техническое общество присудило ему в 1912 г. золотую медаль и премию имени почетного члена общества К. Ф. Сименса. Эта премия присуждалась один раз в два года за выдающееся изобретение, усовершенствование или исследование в области электротехники. Но несмотря на все это, работой Розинга не заинтересовались ни правительственные учреждения, ни военное ведомство, очевидно потому, что она не могла сразу дать конкретно ощутимые результаты. Поэтому ученому пришлось проводить свои эксперименты, не получая никакой поддержки. После первых успешных опытов передачи изображений Борис Львович продолжает кропотливую работу по усовершенствованию своей системы. Полученные результаты не удовлетворяли его. Он ясно отдавал себе отчет в том, что они только подтверждали правильность принципов построения системы, но не могли считаться приемлемыми с практической точки зрения. Однако эти результаты оказались настолько грубыми, -писал он,- что я решил вновь подвергнуть переработке на этот раз все части прибора: оптическую систему, фотоэлектрическую цепь, синхронные приспособления и брауновскую трубку» . Большое внимание было обращено на совершенствование оптической системы передающего устройства. Нужно было добиться того, чтобы на зеркальную грань падал световой луч минимального сечения, а переход его с одной строки на другую совершался практически мгновенно. Оказалось, что эту задачу можно решить, направляя свет от передаваемого предмета на зеркало через оптическую трубу Кеплера с большой светосилой. Важным шагом в усовершенствовании приемного устройства, имевшим большое значение для дальнейшего раз вития электронного телевидения, был переход от газона полненной трубки с холодным катодом к вакуумной трубке с накаливаемым катодом и магнитной фокусировкой электронного пучка. В 1924 Б. Л. Розинг воссоздал свою систему и внес ряд усовершенствований в передающее и приемное устройства. Была разработана новая оптическая система для «по лучения неискаженного в отношении яркости, отчетливо сти и увеличения изображения». Для повышения четкости изображения число граней барабана, вращающегося вокруг горизонтальной оси, было увеличено до 48, а второй барабан замешан одним зеркалом. Это зеркало при помощи эксцентриков совершало колебательное движение, двигаясь равномерно в одну сторону в течение 0,1 сек., затем быстро возвращалось в исходное положение и снова начинало движение в прежнем на правлении. Такая система развертки обеспечивала правильное чередование строк без всяких перерывов. Изображение разлагалось на 2400 элементов. Была также изменена схема получения отклоняющего напряжения для электроннолучевой трубки. Оно снималось с конденсатора, соединенного через большое сопротивление с источником тока. Конденсатор заряжался за время поворота барабана на одну грань и разряжался практически мгновенно. Благодаря этому к трубке подводилось отклоняющее напряжение пилообразной формы. В другом варианте пилообразное отклоняющее напряжение получалось от схемы с катушкой индуктивности. Подверглась изменению и электроннолучевая трубка приемного устройства. Основное внимание Б. Л. Розинг сосредоточил на получении тонкого электронного пучка, уменьшении аберраций и устранении взаимодействия фокусирующего и отклоняющего полей. Опыты, проведенные С. Л. Розингом в ЛЭЭЛ в 1924- 1928 гг., показали полную работоспособность его телевизионной системы и правильность принципов, на которых она строилась. В лабораторных условиях можно было передавать простые изображения с четкостью 48 строк. Изображения на экране трубки получались вполне точные и настолько яркие, что их можно было фотографировать. В 1928 г. Б. Л. Розинг предложил новую телевизионную систему, интересную во многих отношениях. В середине 20-х годов телевидение сделало свои первые практические шаги. Некоторые изобретатели в США, Англии и СССР осуществили передачу на небольшие расстояния силуэтных движущихся изображений при помощи оптико-механических телевизионных систем. Сопоставляя два шути развития телевидения, Б. Л. Розинг выступает как убежденный сторонник и пропаган-дист электронного телевидения. В ряде статей, опубликованных в различных журналах, он доказывает, что задача телевидения может быть решена только при помощи электронных средств. «В отношении катодной телескопии предсказания являются несравненно более благоприятны- и, чем в отношении механической,- писал он в 1928 г.,- поэтому решение задачи электрической телескопии в смысле получения легкого и простого прибора для широкого пользования нужно ожидать скорей всего на этом пути» Развитие электронного телевидения в эти годы проходило в борьбе с противодействием сторонников механического телевидения, пессимистически оценивавших перспективы электронных систем из-за больших технических трудностей, связанных с их созданием. Но идея электронного телевидения, как самая прогрессивная, оказалась наиболее жизненной. В 20-х годах в ряде стран были предложены системы телевидения, являвшиеся вариантами системы Б. Л. Розин- га. Для передачи изображения в них применялось то или иное оптико-механическое устройство, а для приема - электроннолучевые трубки, аналогичные трубкам Розинга. Такие системы были запатентованы Никольсоном и Сэбба в США, Довийе и .Валенси во Франции, Дикманом в Германии и др. Некоторые из этих изобретателей построили свои системы и добились определенных практических результатов. Работавший в области телевидения французский ученый Фурнье, оценивая влияние Б. Л. Розинга на развитие телевидения, писал в 1926 г.: -Систему русского профессора Бориса Розинга можно рассматривать как прототип современных приборов телевидения. Передающая телевизионная трубка, в которой оказалось возможным практически использовать эффект накопления электрических зарядов, была изобретена в 1931 г. в СССР С. И. Катаевым. Несколько позже, в том же 1931 г. аналогичная трубка, названная иконоскопом, была разработана независимо от Катаева американским специалистом В. К. Зворыкиным бывшим учеником Б. Л. Розинга по Технологическому институту. Работы в области телевидения Зворыкин начал под влиянием Б. Л. Розинга. Сам он так говорит об этом: «Когда я был студентом, я учился у профессора физики Б. Розинга, который, как известно, первым применил электроннолучевую трубку для приема телевизионных изображений. Я очень, интересовался его работами и просил разрешения помочь ему. Много времени уходило у нас на беседы и обсуждение возможностей телевидения. В это время я полностью понял недостатки механического телевидения и необходимость применения электронных систем» . Иконоскоп Зворыкина не имел каких-либо принципиальных отличий или технических преимуществ по сравнению с трубкой Катаева. В дальнейшем название иконоскоп стало применяться как к трубке Зворыкина, так и к трубке Катаева, и широко вошло в специальную литературу, как сама трубка вошла в технику телевидения. Изобретение иконоскопа явилось поворотным пунктом в истории телевидения, определившим направление его дальнейшего развития. Стало совершенно ясно, что никакая из существовавших в то время оптико-механических систем, несмотря на все усовершенствования, не может конкурировать с электронной телевизионной системой. Иконоскоп обеспечивал телевизионные передачи с большим числом строк. С появлением иконоскопа завершился период искания путей практического осуществления передачи изображений на расстояние и становления электронных телевизионных систем. Переход от смешанных телевизионных систем (оптико-механические передающие и электронные приемные устройства) к полностью электронным системам начался практически с 1934 г. и был завершен в разных странах в течение 3-4 лет.

В дальнейшем были разработаны другие, более чувствительные, чем иконоскоп, и более совершенные пере дающие телевизионные трубки. Важная роль в создании этих трубок принадлежит советским ученым П. В. Шмакову. П. В. Тимофееву, Г. В. Брауде, Л. А. Кубецкому, Б. В. Круссеру и др. На всех этапах развития телевидения ученые нашей страны находили самостоятельные, принципиально новые и правильные решения сложных задач, во многих случаях значительно опережавшие со ответствующие достижения зарубежных специалистов. В результате работ советских и иностранных специалистов, внесших свой вклад в решение отдельных задач телевидения, и благодаря быстрому развитию радиоэлектроники телевизионная техника достигла такого уровня раз вития, когда стало возможным создание систем цветного и объемного телевидения и широкое применение телевизионных установок в различных отраслях народного хозяйства, для научных исследований и т. д.

Мечта человека о возможности видеть на любые расстояния отражена в легендах и сказках многих на родов. Осуществить эту мечту удалось в наш век, когда общее развитие науки и техники подготовило основу для передачи изображения на любое расстояние. Первые передачи телевизионных изображений по радио в СССР произведены 29 апреля и 2 мая 1931 г. Они были осуществлены с разложением изображения на 30 строк. За несколько дней до передачи радиостанция Всесоюзного электротехнического института "ВЭИ" сообщила следующее: 29 апреля впервые в СССР будет произведена передача телевидения (дальновидения) по радио. Через коротковолновый передатчик РВЭИ-1 Всесоюзного электротехнического института (Москва) на волне 56,6 метра будут передаваться изображения живого лица и фотографии. Телевидение проводилось тогда по механической системе, т. е. развертка изображения на элементы (1200 элементов при 12,5 кадра в секунду) проводилась с по мощью вращающегося диска. По простоте устройства телевизор с диском Цинкова был доступен многим радиолюбителям. Прием телевизионных передач осуществлялся во многих отдаленных пунктах нашей страны. Однако механическое телевидение не обеспечивало удовлетворительного качества передачи изображения. Различные усовершенствования механической системы телевидения привели к созданию сложных конструкций с применением вращающегося зеркального винта и др. На смену механическим системам пришли электронно" лучевые системы телевидения, сделавшие возможным его подлинный расцвет. Первое предложение по электронному телевидению было сделано русским ученым Б. Л. Розингом, который 25 июля 1907 г. получил «Привилегию за № 18076» на приемную трубку для «электрической телескопии». Трубки, предназначенные для приема изображений, по лучили в дальнейшем название кинескопов. Создание электронно-лучевого телевидения стало возможным после разработки конструкции передающей электронно-лучевой трубки. В начале ЗО-х годов передающая телевизионная электронно-лучевая трубка с накоплением заряда была предложена в СССР С. И. Катаевым. Использование трубки с накоплением заряда открыло богатые перспективы для развития электронного телевидения. В 1936 г. П. В. Тимофееву и П. В. Шмакову было выдано авторское свидетельство на электронно-лучевую трубку с переносом изображения. Эта трубка была следующим важным шагом в развитии электронно го телевидения. Исследования в области передающих и приемных электронно-лучевых трубок, схем развертывающих устройств, широкополосных усилителей, телевизионных передатчиков и приемников, достижения в области радиоэлектроники подготовили переход к электронным системам телевидения, позволившим по лучить высокое качество изображения. В 1938 г. в СССР были пущены в эксплуатацию первые опытные телевизионные центры в Москве и Ленинграде. Разложение передаваемого изображения в Москве было 343 строки, а в Ленинграде - 240 строк при 25 кадрах в секунду. 25 июля 1940 г. был утвержден стандарт разложения на 441 строку. Первые успехи телевизионного вещания дали возможность приступить к разработке промышленных образцов телевизионных приемников. В 1938 г. начался серийный выпуск консольных приемников на 343 строки типа ТК-1 с размером экрана 14Х18 см. И хотя в период Великой Отечественной войны телевизионное вещание было прекращено, но научно-исследовательские работы в области создания более совершенной телевизионной аппаратуры не прекращалась. Большой вклад в развитие телевидения внесли советские ученые и изобретатели -С. И. Катаев, П. В. Шмаков, П. В. Тимофеев, Г. В. Брауде, Л. А. Кубецкий А. А. Чернышев и др. Во второй половине 40-х годов разложение изображения передаваемого Московским и Ленинградским центрами было увеличено до 625 строк, что существенно повысило качество телевизионных передач. Бурный рост передающей и приемной телевизионной сети начался в середине 50-х годов. Если в 1953 г. работали только три телевизионных центра, то в 1960 уже действовали 100 мощных телевизионных станций и 170 ретрансляционных станций малой мощности, а к концу 1970 г.- до 300 мощных и около 1000. телевизионных станций малой мощности. Накануне 50-летня Великой Октябрьской социалистической революции, 4 ноября 1967 г. вступила в строй Общесоюзная радиотелевизионная передающая станция министерства связи СССР, которая постановлением Совета Министров СССР названа имени «50-летия Октября». Основным сооружением Общесоюзной радио- телевизионной передающей станции в Останкино является свободно стоящая башня, имеющая общую высоту 540 м. Она превышает высоту знаменитой Эйфеле- вой башни в Париже на 240 м. Конструктивно она со стоит из фундамента, железобетонной части высотой 385 м и стальной трубчатой опоры для антенны высотой 155 м. Ввод в действие телевизионной башни в Останкине обеспечил: увеличение одновременно действующих телевизионных программ до четырех; увеличение радиуса меренного приема всех телевизионных программ от50 до 120 км и обеспечивает уверенный прием всех про грамм на территории с населением более 13 млн. чело век; значительное улучшение качества приема изображения; резкое увеличение напряженности электромагнитного поля телевизионного сигнала, что позволило устранить влияние различного рода помех при приеме телевизионных программ; дальнейшее развитие междугородного и международного обменов телевизионными программами по радиорелейным, кабельным магистралям и каналам космической связи; значительное увеличение объема внестудийных передач путем одновременного приема сигнала от десяти передвижных телевизионных станций и стационарных трансляционных пунктов: обеспечение передачи радиовещательных программ через УКВ радиостанций для населения и на радиотрансляционные узлы Московской области, а так же автоматическое включение и выключение радиоузлов путем подачи в эфир кодированных сигналов. Общесоюзная радиотелевизионная передающая станция в Останкино располагает мощным современным техническим оборудованием, позволяющим транслировать телевизионные передачи в черно-белом и цветном изображении в эфир и по кабельной, радиорелейной и космической сетям СССР. Одновременно с началом работы Общесоюзной радиотелевизионной передающей станции в Москве в Останкине начал работать Общесоюзный телевизионный центр, оснащенный совершенным телевизионным оборудованием. Общая площадь помещения телевизионно го центра составляет 155 тыс.кв. м. Он имеет в своем составе 21 студию: две студии площадью по 1 тыс.кв. м, семь студий по 700 кв. м, пять студий по 150 кв.м. и др. Все телевизионное оборудование рассчитано на создание передач, идущих как непосредственно на передатчики, так и для записи на магнитную ленту. Телевизионный центр в Останкино насыщен комплексом совершенной аппаратуры, позволяющей художественно оформлять передачи любых программ. Технический комплекс обеспечивает видеозапись цветных и черно-белых программ, производство телевизионных художественных фильмов и выпуск хроникально-документальных программ на кинопленке и в видео записи. Телецентр оснащен техническими средствами записи монтажа, озвучивания и тиражирования видеомагнитофильмов. Ведется строительство новых высотных телевизионных башен в Вильнюсе и Таллине. Каждая из этих башен имеет свою оригинальную архитектуру. Еще в 1925 г. наш соотечественник И. А. Адамяр предложил систему цветного телевидения с последова тельной передачей трех цветов: красного, синего и желтого. В 1954 г. Московским телевизионным центром на Шаболовке были осуществлены первые опытные передачи с поочередной передачей цветных составляющих. Турникетная антенна, предназначенная для пере дача сигналов цветного изображения и звукового сопровождения, была установлена на металлической башке, сооруженной рядом с Шуховской башней. Прием цветного телевидения производился на телевизоры «Радуга» с вращающимся светофильтром. Однако такая система требовала значительного расширения спектра видеочастот и была не совместима с существовав шей системой черно-белого телевидения. В 1956 г. в лаборатории Ленинградского электротехнического института связи им. М. А. Бонч-Бруевича разработали и изготовили под руководством П. В. Шмакова установку цветного телевидения с одновременной передачей цветов. В январе 1960 г. состоялась первая передача цветного телевидения в Ленинграде с опытной станции Ленинградского электротехнического института связи. В это же время для приема передач цветного телевидения были изготовлены опытные телевизоры. В течение- ряда лет в Советском Союзе и в других странах проводились испытания различных систем цветного телевидения. В марте 1965 г. было подписано соглашение между СССР и Францией о сотрудничестве в области цветного телевидения на основе системы СЕКАМ. 26 июня 1966 г. было принято решение избрать для внедрения в Советском Союзе совместную советско-французскую систему цветного телевидения СЕКАМ-111. Первые передачи по совместно советско-французской системе начались в Москве с 1 октября 1967 г., к этому же времени был приурочен выпуск первой партии цветных телевизоров. В день 50-летия Великой Октябрьской социалистической революции (7 ноября 1967 г.) состоялась первая цветная телевизионная передача с Красной площади парада и демонстрации трудящихся. Внедрение цветного телевидения открыло широкую возможность для повышения качества передач и позволило значительно повысить эмоциональность восприятия телевизионных передач и увидеть изображения в естественных красках.

Литература

1. Резников М.Р. Радио и телевидение вчера, сегодня, завтра.- М.:Связь,1977.-95с.

2. Джигит И.С. История развития и достижения советского телевидения.// Радиотехника.- 1947.- №9.- С.39-43.

3. Шамшин В.А. Телевидение.// Электросвязь.- 1975. - №9.- С.1.

4. Талызин Н.В. Связь, телевидение, радиовещание.// Радио.- 1976.- №3.- С.1-3.

5. Горохов П.К. Б.Л.Розинг - основоположник электронного телевидения.- М.:Наука,1964.- 120с.

6. Бурлянд В.А., Володарская В.Е., Яроцкий А.В. Советская радиотехника и электросвязь в датах.- М.:Связь, 1975.- 191с.

7.

Добровольский Е.Е. Основные направления научно-технического прогресса радиосвязи, радиовещания и телевидения.- М.:Связь, 1974.- 56с.

superbotanik.net

Реферат - Телевидение: Страницы истории

Егоров В.В. Телевидение. Страницы истории. М.: Аспект пресс, 2004. 202 с.

В.В.Егоров

Телевидение: Страницы истории

Становление и развитие отечественного телевидения в воспоминаниях одного из его многолетних руководителей. Автор полутора десятков монографий и учебных пособий по теории и истории тележурналистики впервые выступает как мемуарист, и его новая работа наверняка найдет своих благодарных читателей. Шаболовка и Останкино, малоизвестные страницы истории общественно-политического, литературно-драматического и научно-популярного разделов вещания. Профессор В.В. Егоров увлекательно рассказывает об известных телевизионных персонажах и собственном практическом опыте, отмеченном престижными журналистскими наградами и Государственной премией СССР.

Егоров Вилен Васильевич

Телевидение: Страницы истории

М.: Аспект Пресс, 2004. 202 с.

ОГЛАВЛЕНИЕ

Об авторе книги

Глава I. Уроки «оттепели» в Политехническом

Глава II. Публицистика на телевидении рождалась из пропаганды

Глава III. Репортаж с партийной петлей на шее

Глава IV. Взгляд по верхам... телевидения

Глава V. АБВГДейка и другие

Глава VI. Я в писатели пошел

Глава VII. По ту сторону экрана

Глава VIII. Телевидение и парламент

Глава IX. Прости и помоги нам, боже!

Глава X. Шаг вперед – два шага в сторону

Глава XI. Парадоксы будущего телевидения

^ Об авторе книги

Когда в середине 60-х годов Вилен Васильевич Егоров в команде нового председателя Госкомитета по радиовещанию и телевидению Н. Н. Месяцева появился на ТВ, старожилы отнеслись к пополнению с недоверием и, надо признаться, с ревностью. Но «десант» быстро развеял сомнения — и размахом свежих идей, и решительностью их воплощения. Было еще одно: то, что потом стало называться человеческим фактором. Вот об авторе интересной и поучительной книги, о масштабе и значении его личности в истории отечественного телевидения хочу поделиться с читателем своими впечатлениями.

Казалось бы, из партийных кадров, человек номенклатуры. И секретарем парткома, и членом коллегии Гостелерадио, и главным редактором пропаганды побывал. Но сделал так много для развития нашего телевидения, что рядом с ним поставить кого-либо трудно. Организационный талант, умение угадывать людей способных, полезных делу, и главное! — беречь их, а если надо, то и бороться за их судьбы, — это дорогого стоило. Рисковал, балансировал на грани. Знаю, что подчас он и страх испытывал, но был упрям в достижении задуманного. Напрасно голову не подставлял, но, себя оберегая, сохранял и дело.

Три проекта, которые возглавил и довел до завершения В. В. Егоров, убежден, останутся в истории нашего ТВ.

Первый проект — создание из небольшой третьестепенной редакции самостоятельного программного канала. Начальный замысел — организация учебно-образовательного направления — постепенно перерос в двухуровневое взаимодополняющее вещание образовательного и культурно-просветительского содержания. От телеуроков в помощь школе, лекций выдающихся ученых до литературного театра Анатолия Эфроса, историко-литературных циклов Владимира Лакшина и т.д.

Второй проект был связан с идеей создать специальную программу «повышенного интеллектуального уровня» — программу для «высоколобых» с их особыми запросами и вкусами. Конечно, В. В. Егоров и его команда не были настолько наивны, чтобы не понимать, чем такой проект может завершиться в «рабоче-крестьянском» государстве. Нужен был камуфляж. Им, отчасти, стала тематика, заявленная в проспекте, и некоторая туманность пояснений. Лицензию на вещание, как сказали бы сегодня, удалось получить благодаря тому, что в заявке удачно отделили «что» — тему, содержание от «как» — формы, жанра: способа экранного воплощения. Например, в сериале по книге Ленина «Материализм и эмпириокритицизм» — работе сложной, не многим понятной — предполагались инсценировки, разыгранные актерами. По признанию значительной части зрителей, замысел и его решение оказались настолько удачными, что пробудили интерес к этому сочинению (напомню, что оно стояло в списке обязательной литературы в сети партучебы, охватывавшей миллионы людей).

Под таким прикрытием была определена структура всей программы четвертого канала: искусствоведческие циклы о кино и театре, передачи из области литературоведения и истории культуры и пр. Рубрики четвертой «кнопки» дразнили необычностью, пытались уйти от идеологического прессинга и масскультовской рутины. Адресовались они, как уже было сказано, просвещенной аудитории. На чем организаторы и споткнулись. Комиссия из горкомовских политкомиссаров и парт-профессуры обвинила нас (был и я причастен к этим экспериментам) в элитарности, в «расслоении единого советского народа» и других смертных грехах. Редакцию, к счастью, не разогнали, но передачи с эфира сняли.

Осмотрительная смелость Вилена Васильевича, его склонность к новациям и облекаемая в самоиронию боязнь провала превращали деловое общение с ним в некое подобие игры. Юмор, только ему присущий, каждый раз неожиданный, вообще был нередко спасательным кругом, который помогал держаться на плаву в самых, казалось бы, безвыходных ситуациях.

Как-то предложил я, дабы расшевелить коллег и посмотреть, кто на что горазд, конкурс. Каждый из ста с лишним работников главной редакции пропаганды должен был в месячный срок представить заявку (2—3 страницы машинописного текста): тема, набросок сюжета, экранное воплощение. Поощрение в случае одобрения редколлегией — творческая командировка и гонорар по высшей ставке. Помню, В. В. Егоров хохотнул: «Не получится ли так, что полредакции окажется в положении «голого короля»?» И все мы словно попали на предметное стеклышко микроскопа: кто вообще ничего не надумал, кто сочинил благоглупости, но с десяток стоящих предложений обнаружилось. И это вовсе не так уж мало, если учесть прожорливость телевизионного конвейера, дефицит притока новых идей и худосочность редакционных портфелей.

Третий проект Вилена Васильевича и едва ли не самое любимое его детище — Всесоюзный (Всероссийский) институт повышения квалификации работников телевидения и радиовещания. О значении ВИПК в масштабах телевидения страны говорить не стану — общеизвестно. Отмечу одно только обстоятельство: В. В. Егорову удалось сначала, в пору всеобщего развала, спасти достойных людей, а потом организовать их и сцементировать в серьезный дееспособный коллектив.

Капитан по-прежнему на мостике и уверенно держит штурвал. Так держать!

Рудольф Борецкий

8 февраля 2004 г.

Глава I

^ УРОКИ «ОТТЕПЕЛИ»

В ПОЛИТЕХНИЧЕСКОМ

В начале шестидесятых годов — теперь уже прошлого века — комсомольская юность вынесла меня на самую стремнину начавшихся перемен в общественной жизни: попал я на должность директора Центрального лектория Всесоюзного общества «Знание» — знаменитого Большого зала Политехнического музея.

Слава об этом зале шла еще со времени выступлений здесь Маяковского и других поэтов, от дискуссий владыки Введенского с наркомом Луначарским. К моему же приходу лекторий больше напоминал вечно пустующий сельский клуб, едва собирающий вокруг себя благодаря теплу затухающего огня прежней славы пенсионеров из ближайшей округи.

Можно сказать, что директором лектория я стал не случайно: первый заместитель председателя правления Всесоюзного общества «Знание» Николай Николаевич Месяцев знал меня по комсомольской работе, когда он был секретарем ЦК ВЛКСМ, а я — заведующим лекторской группой Московского горкома комсомола. Надо было собраться с духом, создать команду единомышленников из комсомольских активистов, референтов лектория и общества «Знание», чтобы воссоздать прежнюю славу Политехнического музея и, возможно, продвинуться вперед в русле тех перемен, которые впоследствии назовут «оттепелью». Забегая вперед, скажу, что задачу эту мы выполнили за три-четыре года. Когда я уходил из лектория на другую работу, он имел полумиллионную годовую прибыль при цене билета на лекцию 10 копеек, а перед моим приходом получал полумиллионную дотацию. Этот довод, пожалуй, будет особенно убедительным для сегодняшнего поколения меркантильных молодых людей.

Мой опыт работы в комсомоле был связан с удивительным, редким по тем временам «учреждением» — Домом молодежного лектора, который занимался подготовкой комсомольских лекторов и организаторов молодежных вечеров. Работал он на общественных началах, на энтузиазме своих активистов, многие из которых стали затем организаторами знаменитых вечеров в Центральном лектории.

Что же это был за «дом»? В Положении о нем, утвержденном городским руководством комсомола и общества «Знание», указывалось, что цели его деятельности — изучение и обобщение опыта лекционной пропаганды для оказания помощи комитетам ВЛКСМ в подготовке квалифицированных лекторов, выступающих перед молодежью.

Методический кабинет Дома молодежного лектора решено было создать на базе Государственной публичной исторической библиотеки. Организаторы исходили из того, что библиотека удобно расположена территориально, в самом центре города, и в необходимых случаях ее клуб можно будет использовать для выставок книг, обзоров литературы в помощь лекторам. К их услугам были также читальные залы и абонемент библиотеки.

Всю эту работу организовывал совет во главе с бывшим руководителем лекторской группы МГК ВЛКСМ — автором этой книги и референтом городского отделения общества «Знание». Членами совета были сотрудники издательства «Молодая гвардия», Союза кинематографистов, Центрального выставочного зала, Всесоюзной государственной библиотеки иностранной литературы, Политехнического музея, молодые ученые, старые коммунисты, комсомольские работники.

При Доме лектора были созданы две школы: по пропаганде вопросов коммунистического воспитания и школа молодых атеистов. Программа школ была рассчитана на один год, а основной формой занятий с будущими лекторами мы избрали творческие встречи со знающими интересными людьми, и прежде всего диспуты.

Вот как проходил, к примеру, диспут на очень злободневную в конце 50-х — начале 60-х годов тему «О хороших и плохих вкусах». В кратком вступительном слове перед слушателями был поставлен ряд вопросов. Наиболее острый спор разгорелся вокруг вопроса: «Почему говорится, что о вкусах не спорят?». Выступавшие очень интересно рассуждали о том, что мы называем плохим вкусом, безвкусицей, о воспитании хорошего вкуса, о моде, стиле и стилягах и т.п.

Жаркие дискуссии возникали во время обсуждения лекций, подготовленных самими слушателями. Каждый из них, прежде чем отправиться на завод или в общежитие, должен был выступить со своей лекцией перед группой однокашников, выслушать их дружеские советы и критические замечания преподавателя, руководившего подготовкой юного мастера слова. Во время обсуждения выявлялся уровень теоретической подготовки слушателя, по достоинству оценивались яркие, живые примеры или указывалось на сухость материала, безликие выражения. Обсуждение приносило пользу всем, так как на таких наглядных примерах будущие лекторы учились выстраивать свои лекции, избегать уже проанализированных ошибок. Не менее оживленно проходили занятия после просмотра художественных кинофильмов, когда каждый должен был определить свое отношение к проблемам, поднятым в картине, оценить режиссерские приемы и игру актеров.

Все это помогало слушателям приобретать умение четко формулировать мысли, рассуждать логично, отстаивая свои убеждения. Вместе с тем в процессе обсуждения руководители школы выявляли, в каких именно областях знаний слушателям следует усиленно заниматься, к чему у них проявляется наибольший интерес.

И вот позади месяцы учебы. 18 мая 1961 года состоялся торжественный выпускной вечер. В притихшей аудитории зачитывается приказ об успешном окончании школы 35 комсомольцами. Выпускники взволнованно говорили, что они очень многое узнали, многому научились, а творческая обстановка на занятиях сдружила их; к концу учебы они почувствовали себя более зрелыми, уверенными в своих убеждениях.

В начале июня 1961 года президиум правления московского отделения общества «Знание» под председательством академика А. В. Топчиева рассмотрел итоги работы Дома молодежного лектора и принял постановление о его работе. В нем отмечалось, что актив Дома лектора проводил на общественных началах теоретическую и методическую подготовку молодых лекторов, привлек к занятиям высококвалифицированные кадры научных работников и лучших лекторов Москвы. Вместе с тем были подвергнуты критике работа по набору слушателей, слабое отражение в программах занятий вопросов политэкономии социализма.

Создание на основе нашего опыта домов, школ, семинаров молодежных лекторов становилось основой организации системы подготовки и воспитания лекторских кадров. Активно участвовали в этом деле молодежные комиссии общества «Знание», работавшие, в частности, на базе Центрального лектория.

Из всего этого родились «Молодежные субботы» — ежемесячные устные журналы с тремя-четырьмя самостоятельными темами из разных областей культуры, науки, искусства. Каждой теме посвящалась одна «страница», последняя, как правило, была связана с проблемами музыкального творчества, поэзией и эстрадой.

«Молодежные субботы» быстро завоевали огромную популярность у студенчества, молодых специалистов, у интеллигенции. Дирекции лектория даже пришлось планировать ежемесячный ремонт дверей, так как после каждой «Молодежной субботы» старинный вход в Политехнический не выдерживал напора молодой энергии — столько людей стремились стать слушателями, зрителями, а возможно, и участниками будущих глубоких общественных перемен, надежды на которые давала послесталинская «оттепель». У лектория всегда был полный аншлаг, и многие молодые люди пытались попасть в зал без билета, они готовы были сидеть на ступеньках, стоять в проходах.

Итак, в залах Политехнического вечера молодежи стали регулярными. Вместо традиционных лекций и политзанятий мы все чаще проводили встречи с удивительно интересными, яркими, талантливыми представителями творческой интеллигенции, с учеными. Одни имена чего стоят: Илья Эренбург, Назым Хикмет, Андрей Вознесенский, Евгений Евтушенко, Булат Окуджава, Белла Ахмадулина, Римма Казакова, академики А. Н. Колмогоров, Н. Н. Семенов, Я. Б. Зельдович, И. Е. Тамм и другие.

Никогда не забуду, как академик, дважды Герой Социалистического Труда Я. Б. Зельдович, придя на свою лекцию, долго не мог попасть в зал: у входа столпилось множество народа, в основном студенты (как всегда, желающих попасть на лекцию было больше, чем билетов в кассе). Пришлось мне просить их помочь знаменитому физику добраться до кафедры. Молодые люди подняли его на руки и, передавая друг другу, перенесли в зал. Оказавшись в безопасности, Зельдович обнаружил, что на его пальто не осталось ни одной пуговицы. «Ну, — подумал я, — сейчас будет мне разгон за неумение организовать цивилизованную встречу академика». Но Яков Борисович улыбался: «Боже мой! Какая прелесть! Последний раз мне так обрывали пуговицы в далекие студенческие годы!» Лекция академика прошла в удивительно дружеской обстановке, в теснейшем контакте с аудиторией.

В такой же доверительной атмосфере проходили лекции выдающегося математика Андрея Николаевича Колмогорова. Во время одной из них он неожиданно выдвинул тезис, согласно которому современная наука вносит поправку в утверждение Энгельса о том, что жизнь есть существование белковых тел. «Нет, — говорил ученый, — жизнь есть существование белковых тел, а также систем машин, компьютеров, роботов». Присутствовавшие в зале работники отдела пропаганды ЦК КПСС после этого выступления терзали меня вопросами: почему, дескать, в Центральном лектории допускаются утверждения, что марксизм устарел?

Но особый всплеск эмоций и критики ответственных партийных товарищей вызвали выступления писателя И. Г. Эренбурга, который по договоренности с председателем правления Всесоюзного общества «Знание» академиком Н. Н. Семеновым решил прочитать у нас страницы своей новой книги «Люди. Годы. Жизнь». Зная непростой нрав, неуправляемость писателя, цековские работники засуетились, засомневались: а стоит ли такое разрешать? Но все-таки разрешили.

Зал был переполнен. Илья Григорьевич за кулисами говорит мне: «Знаю я вас. Наверное, собрали аудиторию из одной партноменклатуры!» — «Нет, — отвечаю. — Вот увидите, как вас встретят». И действительно, когда Эренбург вошел в зал, все встали и устроили ему овацию. Матерый публицист был растроган. «Вы думаете, я буду читать страницы, посвященные Москве 1937-го года?» Зал кричит: «Да!» — «Нет, — говорит Эренбург. — Я почитаю главы, посвященные военным событиям в Испании».

Встреча проходила довольно спокойно, пока писатель не начал отвечать на вопросы. Его ошеломил вопрос из зала: «А где сейчас Борис Пастернак?» «Как! — возмутился Эренбург. — Вы не знаете, что Пастернак умер? Об этом было сообщение, правда, позорно краткое, в «Литературной газете». Но я отношу это к тем нравам, которые все больше уходят из нашей жизни». Слова эти вызвали бурю аплодисментов.

Через два-три дня меня вызвали в отдел пропаганды ЦК «на довольно высокий уровень», показали разворот газеты «Вашингтон пост» с напечатанной там статьей ее московского корреспондента, который подробно описывал вечер Эренбурга в нашем лектории. В газете подчеркивалось, что сообщение об этой встрече — самая приятная в этом году (дело происходило в январе 1962-го) новость из Москвы: наконец-то в зале Политехнического музея, прямо напротив здания ЦК КПСС, прозвучало, что Пастернак — великий русский писатель, значит, происходит переоценка творчества лауреата Нобелевской премии. «Вы знаете, товарищ Егоров, как это называется? — сурово спрашивали меня товарищи из ЦК. — Можно сказать, что вы проделали брешь в идеологической работе партии». Один из них поинтересовался: «Вы давно работаете директором лектория?» — «Шесть месяцев», — бодро ответил я.

Может быть, это и спасло меня от расправы: я был почти вдвое моложе своих собеседников. Напоследок заведующий лекторской группой ЦК В. Михайлов посоветовал: «Не думаете о себе, о своих детях — так подумайте о судьбе моих! Ведите себя более осмотрительно!»

Но на дворе стояла оттепель, и отдельные ночные заморозки лишь поддерживали веру в возможность дальнейшего потепления.

Через месяц после этой беседы, когда в ЦК вроде бы решили, что впредь я буду более бдительным в деле партийной пропаганды, случился новый конфликт. Всемирный конгресс сторонников мира решил провести в нашем лектории вечер, посвященный творчеству великого турецкого поэта и борца за мир Назыма Хикмета, а тот поставил одним из условий, чтобы вечер вел его коллега, член бюро конгресса, писатель Илья Эренбург.

Ответственные товарищи опять задергались: «Как, — говорили мне, — он совсем недавно выступал у вас, а теперь целый вечер будет руководить всеми выступлениями? О чем вы думаете, товарищ директор?»

Но другое условие Хикмета оказалось еще суровее: он настаивал, чтобы в фойе была развернута выставка работ скульптора Эрнста Неизвестного, только что жестоко раскритикованного самим Н. С. Хрущевым в Манеже. Устроить после такого разгрома на высшем партийном уровне подобную выставку означало бы не только мою личную политическую кончину, но и «организацию еще одного провала в системе идеологической обработки населения».

В день начала «мероприятия, имеющего крупное международное значение», какие-то посторонние люди стали устанавливать скульптуры Неизвестного, ссылаясь при этом на указания Хикмета и самого автора. Мне пришлось — каюсь! — пойти на крайние меры: вслед за чужими мужиками шли мужики из нашего лектория, снимали скульптуры и осторожно убирали их в комнату, ключ от которой я хранил у себя. Кто-то сообщил Хикмету, что директор лектория запретил выставку, и поэт отказался приехать к нам. Мои доводы, что все билеты проданы, интерес в Москве к встрече с ним огромен, а Эренбург и другие приглашенные им поэты уже в пути, не возымели результата. И только благодаря усилиям гостившего у Хикмета секретаря ЦК КП Турции вечер состоялся.

Но для меня на этом неприятности еще не кончились. Выступавший на вечере поэт Борис Слуцкий в конце своей речи неожиданно призвал присутствующих отправиться на поиски спрятанных администрацией скульптур Эрнста Неизвестного. Этого я не ожидал! Но выход из положения нашелся быстро: я зазвал инициатора похода против администрации в свой кабинет и, пока толпа слушателей искала своего предводителя, напомнил, кто здесь хозяин. Когда звонок пригласил всех в зал, народ кинулся занимать места. Поход за скульптурами не состоялся, а поэт был препровожден к ближайшей станции метро. Обиженный Борис Абрамович пообещал никогда больше не приходить в Политехнический.

Председательствующий на вечере Эренбург предупредил, что все поэты — Вознесенский, Евтушенко, Ахмадулина, Слуцкий — будут читать не свои стихи, а произведения Хикмета в переводе. Однако Андрей Вознесенский стал читать свои стихи о Хикмете. «Хоть мы и договорились читать только стихи Назыма, но я знаю, Андрей, ты пишешь хорошие стихи. А о том, что ты будешь читать стихи о Хикмете, мне только что написали здесь в записке», — сказал Эренбург, повернувшись к сидевшей рядом О. А. Хвалебновой, заместителю председателя Всесоюзного общества «Знание», также активной участнице Всемирного конгресса сторонников мира. Та обомлела и не нашлась что сказать аудитории, зато потом долго возмущалась «бесцеремонностью» писателя.

В целом же вечер прошел интересно и запомнился надолго. Столько встреч — светлых и прекрасных — дарил нам, шестидесятникам, знаменитый Политехнический!

Спустя сорок лет А. Н. Яковлев, бывший в шестидесятые годы одним из руководителей отдела пропаганды ЦК, скажет, что ходил в Политехнический на упоительные вечера поэзии учиться тому, чем стала для нашего общества «оттепель». «Но сознание продолжало быть раздвоенным. В известной мере я стал роботом мучительного притворства, но все же старался не потерять самого себя, не опоганиться».

А я-то думал: что это зачастили к нам в лекторий работники ЦК, почему все больше ужесточается контроль за нашей деятельностью? Оказывается, это они ходили учиться «новым подходам к пропаганде». Как показали последующие годы, кое-кому из бывших руководителей партии уроки эти пошли впрок.

Летом 1962 года после трудов праведных я ушел в отпуск, лекторий был на каникулах. И вдруг однажды вечером к нам на дачу заходит соседка и рассказывает: «Проходила я мимо вашего лектория, а там полно народу и даже конная милиция». Я тут же помчался на работу. Оказалось, что Марлен Хуциев — один из любимых моих режиссеров — решил снять главную сцену своего нового фильма «Застава Ильича» (на экраны он вышел под названием «Нам 20 лет») в Большом зале Политехнического.

Так навечно были запечатлены на кинопленке выступления у нас Рождественского, Ахмадулиной, Окуджавы, Евтушенко, Вознесенского. И переполненный молодежью зал. И люди, восторженно встречавшие новые стихи и песни, родившиеся в «оттепель».

Такие встречи становились вершиной работы по-новому и начинали серьезно беспокоить тогдашнее правление Союза писателей СССР, другие организации, стоявшие на позициях партийного и государственного контроля за инакомыслием. Было очевидно, что дальнейшее продвижение вперед в области демократизации культурной жизни для общества «Знание» и его лектория становится невозможным.

«Оттепель» закончилась. Н. С. Хрущев, по выражению Василия Аксенова, «спустил с цепи свою свору». Общее настроение, царившее тогда среди наиболее демократичной части интеллигенции, звучит в стихотворении Андрея Вознесенского «Прощание с Политехническим»:

В Политехнический!

В Политехнический!

По снегу фары шипят яичницей.

Милиционеры свистят панически.

Кому там хнычется?!

В Политехнический!

Ура, студенческая шарага!

А ну, шарахни

по совмещанам свои затрещины!Как нам мещане мешали встретиться!..

Нам жить недолго. Суть не в овациях.

Мы растворяемся в людских количествах

в твоих просторах,

Политехнический.

Невыносимо нам расставаться.

Я ненавидел тебя вначале.

Как ты расстреливал меня молчаньем!

Я шел как смертник в притихшем зале,

Политехнический, мы враждовали!

Ах, как я сыпался! Как шла на помощь

записка искоркой электрической

Политехнический,

ты это помнишь?

Мы расстаемся, Политехнический.

Ты на кого-то меня сменяешь,

но, понимаешь,

пообещай мне, не будь чудовищем,

забудь

со стоющим!

Ты ворожи ему, храни разиню.

Политехнический —

моя Россия! —

ты очень бережен и добр, как бог,лишь Маяковского не уберег.

Мне посоветовали в 1965 году перейти на другую работу, и я стал руководить организационно-методическим отделом правления Всесоюзного общества «Знание». Ученые-лекторы, члены правления избрали меня членом президиума правления, где я и заседал вместе с известными академиками, «решая судьбы распространения знаний среди населения».

Но и здесь мне мирно не сиделось. Пришлось вступить в дискуссию с тогдашним первым заместителем председателя правления В. И. Снастиным, которого в 1964 году освободили от должности первого заместителя заведующего отделом пропаганды ЦК КПСС. Василий Иванович был горячим сторонником увеличения числа лекций по марксистско-ленинской тематике. Ну а я на собраниях и в личных беседах с друзьями говорил о том, что пропагандой этих знаний и так занимаются и система партийного просвещения, и комсомольская политическая сеть, и лекторские группы партийных комитетов. Обществу «Знание», как мне представлялось, надо было сосредоточиться на распространении современных научно-технических и естественно-научных знаний.

Становилось все очевиднее, что пора менять сферу своей деятельности, что надо было раньше понять: «оттепель» кончается, необыкновенный взлет свободного творчества, радость живого общения, открытых дискуссий уходят в прошлое. Оставались лишь теплые воспоминания о четырех годах одной большой московской весны.

«Прощай, Политехнический», — с грустью говорили мы, теперь уже бывшие сотрудники Всесоюзного общества «Знание» и лектория — умница и эрудит, впоследствии доктор наук и академик Ю. У. Фохт-Бабушкин, глубокий знаток русской словесности, прекрасный товарищ Борис Каплан, его супруга, референт молодежной секции Екатерина Чухман, активисты-организаторы лекционной работы по всей стране Юрий Замыслов, Владислав Карижский и другие единомышленники.

Прощай, Политехнический! Спасибо тебе за твою решающую роль в формировании моего мировоззрения, приверженности идеалам шестидесятников.

Впереди меня ждало телевидение, по сути, та же просветительская сфера деятельности, но уже в иных масштабах, в иных идеологических условиях, под руководством людей, ставших на пути у «оттепели».

Знающие люди предупреждали меня, что на советском телевидении царят худшие традиции театра и кино, что здесь немало случайных людей, неспособных к творчеству, но жаждущих славы и денег. Я отнесся к этим предупреждениям не очень серьезно, но, став секретарем парткома Центрального телевидения, вынужден был признать справедливость этих слов. Мне говорили: на телевидении будут проверять, как ты относишься к трем вещам — к деньгам, вину и женщинам. И в первые же месяцы на новой работе я испытал все эти искушения.

Эффектная и красивая молодая актриса, пришедшая незадолго до этого на работу в музыкальную редакцию, жаждала получить квартиру в Москве, а для этого требовалось ходатайство от руководства и общественных организаций. Она явилась в партком, показала подписанные всеми начальниками документы и попросила меня их подписать. Так как ее просьбу поддержало руководство Госкомитета, я поставил свою подпись. Через месяц она получила квартиру и, решив отблагодарить секретаря парткома, пригласила меня на новоселье. Я поинтересовался, когда оно состоится и много ли будет народа. А в ответ услышал: зачем нам нужен еще кто-то в квартире одинокой женщины? Я был страшно смущен, пообещал подумать. Стоит ли говорить, что на этом мы и расстались.

Как-то пришел ко мне в партком спортивный комментатор и предложил: я помогаю ему доставать из Госфильмофонда кадры спортивной хроники, он делает новую программу, а гонорар пополам. Надо сказать, что я всячески поддерживал этого молодого журналиста, оберегал от незаслуженной критики за его выступления в эфире, но тут не сдержался и выразил свое отношение к предложенной сделке фразами, далекими от языка протоколов. Каким-то образом об этом узнали все. Больше никто за десятилетия моей работы в редакциях ЦТ не смел заговорить со мной на «денежную» тему.

А однажды я был приглашен на юбилейный вечер одного из руководителей телевидения. За столом, где я сидел, раза три менялись соседи, и каждая новая смена предлагала мне поднять бокал за партию, за юбиляра и т.д. Наивные люди! Они не знали о той закалке, что дали мне годы водолазной службы в армии и работы в комсомоле: я мог «принять на душу» не один и не два бокала. Похоже, все гости это заметили, а наутро позвонил инструктор отдела пропаганды ЦК и поздравил: «Ну ты даешь! Всех перепил, выдержал третье испытание!». Откуда они там все узнавали — неизвестно. Знаю только, что на банкете инструктора этого не было...

Так выдержал я все три испытания, и меня на телевидении, кажется, зауважали, дружно голосовали «за» при выборах нового состава парткома. Кто знает, может быть, парткомовское начало в работе на телевидении дало мне уверенность в будущей деятельности, придало смелости, азарта, что помогало преодолевать страх за свое будущее и будущее своей семьи, детей и внуков.

Глава II

^ ПУБЛИЦИСТИКА НА ТЕЛЕВИДЕНИИ

РОЖДАЛАСЬ ИЗ ПРОПАГАНДЫ

В 1966 году ЦК КПСС утвердил ставку освобожденного секретаря парткома Центрального телевидения — в связи с бурным ростом коллектива телевизионщиков на Шаболовке. Н. Н. Месяцев, с которым в предыдущие годы мы работали в обществе «Знание», решил рекомендовать меня на новую должность. Я без колебаний согласился в предвкушении новой, неизведанной ранее работы на этом загадочном телевидении с его неиссякаемыми творческими возможностями и фантастических размеров аудиторией. Здесь можно было использовать тот опыт духовной жизни и деятельности, что был приобретен за годы работы в Политехническом.

На общем партийном собрании Центрального телевидения мне пришлось рассказать свою биографию. К тому времени я был кандидатом наук, но, конечно, не это больше всего заинтересовало коммунистов, а то, что после окончания юридического факультета МГУ я служил в армии и был там водолазом. Когда я упомянул об этом, Г. А. Иванов, заместитель председателя Комитета, бросил: «Нам на телевидении только водолаза и не хватало». Эта реплика сняла напряженность в зале и вызвала доброжелательные улыбки. В итоге я был избран большинством голосов секретарем парткома Центрального телевидения, первым в его истории.

В то время коллектив самого современного средства массовой информации складывался во многом стихийно. На телевидение шли и режиссеры-неудачники из театра, кино, музыкальных и цирковых учреждений, и журналисты-авантюристы, но большинство все-таки составляли энтузиасты нового дела, люди, решившие поменять профессию, сферу своей деятельности, можно сказать, всю жизнь. Так что водолаз попал в благоприятную, хотя и несколько бесшабашную пока еще среду. Нам предстояло вместе готовиться к новым рубежам развития телевидения, которое собиралось переехать с Шаболовки в строящийся в Останкине новый телецентр, заметно увеличить количество программ и значительно повысить их художественный уровень. Так и произошло. К концу 1967 года коллектив Центрального телевидения вырос сначала вдвое, а позже и втрое по сравнению с предыдущим годом.

К партийной работе, собраниям и политзанятиям отношение у нашего телевизионного сообщества было наплевательское, дисциплины — никакой. Надо было начинать все заново, искать и находить людей, способных верно оценить состояние творческого коллектива, определить границы свободы творчества и морального поведения на работе и дома. Спустя месяца два после моего избрания секретарем парткома на Шаболовке состоялось первое собрание партийных активистов — партактив, как тогда говорили (в отличие от партийного собрания на нем присутствовали не все коммунисты, а лишь те, кого пригласил партком; среди приглашенных могли быть и беспартийные, на телевидении, например, режиссеры, художники, инженеры). На собрание пришли председатель комитета и его заместители. Я уже довольно непринужденно приглашал людей рассаживаться и записываться в прения. Многих называл по имени-отчеству. Слышу рядом со мной в президиуме Н. Н. Месяцев говорит соседу: «Вот посмотрим: если Егоров назовет первого, кто войдет в зал, по имени-отчеству, значит, мы не ошиблись в его способности работать с людьми». Вошел Моисеев, начальник художественных мастерских ЦТ, с которым мы уже не раз беседовали. Я пригласил Бориса Петровича присесть, так как собрание уже началось.

Этот эпизод и тот первый партактив во многом укрепили мой авторитет в таком сложном коллективе, как Центральное телевидение, где трудились редакторы, режиссеры, операторы, инженеры, художники, звукотехники, осветители и представители других профессий. Партком должен был их всех объединить, поставить перед ними общие первоочередные задачи и наметить перспективы развития. Над этим мы и работали до осени 1967 года, когда по решению ЦК КПСС я был утвержден главным редактором главной редакции пропаганды ЦТ.

Из всех редакций и отделов телевидения мне ближе была деятельность именно главной редакции пропаганды. Под этим «кодовым названием» сосредоточилась политическая, экономическая и научная публицистика. В 1967 году редакция насчитывала почти 300 сотрудников, 12 отделов. Вещание велось по трем телеканалам. И только что, в преддверии открытия Останкинского телецентра, заработала четвертая программа, на которой много передач также готовилось нашей редакцией.

Была введена новая должность заместителя главного редактора по четвертой программе. Эту должность занимал Леонид Антонович Дмитриев, блестяще образованный журналист, окончивший МГИМО, успевший поработать не только в нашей стране, но и за рубежом. По моим представлениям, Л. А. Дмитриев был и остается идеальным тележурналистом, образцом творческого отношения к делу. Сколько им было придумано новых программ, сколько написано интересных сценариев передач и фильмов — каждый с неожиданным поворотом сюжета, с оригинальной концепцией.

Работать рядом с такими людьми — счастье. Но таких в редакции тогда было немного. Нравы в коллективе царили странные: действовала налаженная система доносов, подслушивания, подхалимских услуг и т.п. Как-то я ушел на репетицию одной передачи, она не состоялась, пришлось неожиданно вернуться. Вхожу в свой кабинет и вижу: сидят все двенадцать заведующих отделами, а бывший главный редактор им говорит: «Итак, договорились: Егорову не помогать, сам он скоро завалится». И все, похоже, согласились. Пришлось мне в короткий срок поменять весь командный состав редакции.

Или еще такой эпизод. Входит в кабинет одна редакторша и спрашивает: «Можно запереть дверь?». Говорю: можно. Она продолжает: «Вы же бывший секретарь парткома, почему же вы в своей работе в редакции не опираетесь на мнение коллектива! До вас мы все, что услышим в отделах, рассказывали главному редактору, и она была в курсе всех дел». Я понял, что надо действовать решительно и сказал, что как бывший секретарь с

www.ronl.ru


Смотрите также