|
||||||||||||||||||||||||||||||||||||||
|
Реферат: Тема №1. Множества и операции над ними. Реферат множествоРеферат - Множества и операции над нимиМИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ ТАВРИЧЕСКОЕ ПРДСТАВИТЕЛЬСТВО ОТКРЫТОГО МЕЖДУНАРОДНОГО УНИВЕРСИТЕТА РАЗВИТИЯ ЧЕЛОВЕКА (УКРАИНА) Реферат По дисциплине «Математические основы информационной деятельности» Тема: «Множества и операции над ними» студентки 2 курса З/0 Козловой Е.А. Преподаватель: Глушкова Л.В. Факультет документации и информационной деятельности Симферополь, 2004 Множеством именуется некоторая совокупность элементов, объединенных по какому-либо признаку. Если есть такая совокупность, разумеется, как единое целое, говорят, что имеют дело с множеством. Приведенное определение не может рассматриваться как математически строгое, поскольку понятие множества является исходным, на основе него строятся остальные понятия математики. Тем не менее, из при веденного определения ясно, как можно говорить с множестве, например, действительных чисел или множестве плоских фигур. Если множество состоит из конечного числа элементов, оно называется конечным. Остальные множества называются бесконечными. Для множества используются следующие обозначения: А = {а,b, с,d} Приведенное обозначение записано для множества А, состоящего из элементов а, Ь, с, d. Конечные множества можно задать перечнем их элементов, бесконечные — нельзя. Обычно бесконечное множество задают, указывая на свойства, которым обладают все элементы данного множества, при этом подчеркивают, что таким свойством не обладают никакие элементы, не входящие в это множество. Такое свойство называется характеристическим для рассматриваемого множества. Множество, в котором не содержится ни одного элемента, называется пустым. Обозначается оно знаком Æ. Множества, состоящие из одних и тех же элементов, называют совпадающими. Например, совпадают два конечных множества, которые отличаются друг от друга порядком их элементов. Если элемент а принадлежит множеству А, то пишут: а Î А. В противном случае пишут: а Ï А. Если одно множество является частью другого множества, говорят, что первое множество является подмножеством второго. Если первое множество обозначить А, а второе В, то обозначение такое: А Ì В. Для любого множества А справедливы высказывания: множество А является подмножеством самого себя. Пустое множество является подмножеством любого множества. В качестве примера можно привести высказывание о том, что множество всех ромбов является подмножеством множества параллелограммов. Над множествами определяют операции, во многом сходные с арифметическими. Рассмотрим понятие таких операций только над двумя множествами А и В, которые являются разнообразными подмножествами одного и того же множества U. Последнее назовем универсальным множеством. Операции над множествами удобно интерпретировать геометрически с помощью диаграмм Эйлера-Венна (рис. 1 — 4). Определение 1. Пересечением множеств А и В называют их общую часть С. Другими словами, пересечение множеств А и В образуют элементы, принадлежащие равно как А, так и В Такое множество обозначают: С = А Ç В Определение 2. Объединением множеств А и В, называют множество С, составленное из элементов, принадлежащих хотя бы одному из этих множеств Определение 3. Разностью множеств А и В называют множество С = В \ А, составленное из элементов, принадлежащих множеству В, но не принадлежащих множеству А Разность U \ A называется дополнением множества А до универсального множества U и обозначается:= U \ A Геометрическая интерпретация множества дана на следующем рисунке: Если применять операции объединения и пересечения- к подмножествам некоторого множества D, то снова получатся подмножества того же множества D. Операции объединения и пересечения обладают многими свойствами, похожими на свойства операций сложения и умножения чисел. Например, пересечение и объединение множеств обладают свойствами коммутативности и ассоциативности. Пересечение дистрибутивно относительно объединения, то есть для любых множеств А, В и С верно соотношение: А Ç (В и С) = (А Ç В)и (А Ç С). В то же время операции над множествами имеют ряд свойств, у которых нет аналогов в операциях над числами. Так, для любого множества А верны равен ства: А Ç А = А, а также А и А = А. И также А и (В Ç С) = (А и В) Ç (А и С) С помощью свойств операции над множествами можно преобразовывать выражения, содержащие множества, подобно тому, как с помощью свойств операций над числами преобразовывают выражения в алгебре. Подобные действия над множествами и изучает булева алгебра, которая названа по имени английского исследователя Дж. Буля (1815 — 1864). Какими характеристиками можно описывать множества? Основной характеристикой конечного множества Является число его элементов. Рассмотрим два множества А и В. Если в этих множествах находится одинаковое количество элементов, то из этих элементов можно составить пары таим образом, чтобы каждый элемент из множества, как и элемент из множества. В входил в одну и только в одну пару. Таким образом, между элементами множеств. А и В устанавливается так называемое взаимно однозначное соответствие. Считается истинным обратное утверждение: если между двумя конечными множествами А и В можно установить взаимно однозначное соответствие, то такие множества содержат равное количество элементов. Было предложено аналогичным образом сравнивать между собой бесконечные множества. Если между бесконечными множествами можно установить взаимно однозначное соответствие, значит, эти множества имеют одинаковую мощность. Один из создателей теории множеств немецкий математик Георг Кантор (1845 — 1918) сравнивал при помощи такого метода множества, составленные из чисел натуральных и чисел рациональных. Он показал, что между такими множествами существует взаимно однозначное соответствие, хотя множество натуральных чисел является лишь частью множества рациональных чисел. Таким образом, в теории бесконечных множеств утверждение «часть меньше целого» теряет свою силу. Множества, имеющие ту же мощность, что и множество натуральных чисел, называют счетными. Таким образом, множество рациональных чисел счетно. Есть несчетные множества. В качестве примера можно рассмотреть множество всех действительных чисел (это то же самое, что множество точек на прямой линии). Поскольку прямая непрерывна или континуальна, такую несчетную мощность называют мощностью континуума. Мощностью континуума обладает множество точек, например, прямоугольника, призмы, плоскости, всего пространства. Математики всего мира в течение долгих лет рассматривали проблему — существуют ли множества, мощность которых является промежуточной между счетной и мощностью континуума. В 60-х годах нашего столетия американский математик П. Коэн и чешский математик П. Вопенко независимо друг от друга доказали, что как существование такого множества, так и его отсутствие не противоречат остальным аксиомам теории множеств. Современная математическая наука вводит понятие дискретное множество и само понятие множества звучит так: под множеством понимается набор, совокупность, собрание каких-либо объектов (которые называются элементами множества). Множество, все элементы которого изолированы друг от друга, называется дискретным. Для измерения степени изолированности элементов данного множества вводится понятие расстояния между элементами. Таким расстоянием для чисел может быть, например модуль разности между ними; для точек на плоскости — геометрическое расстояние; для двоичных наборов (чисел, кодов) одинаковой длины — число разрядов, в которых они различаются (например, расстояние между наборами 10110 и 11101). Дискретное множество определяется как множество объектов, расстояние между коне меньше некоторой наперед заданной величины e. Конечное множество всегда дискретно (в качестве e берется минимальное из расстояний между элементами этого множества). Дискретно любое множество целых чисел (для них e = 1) и любое множество дробей, имеющих общий знаменатель m (для которых e=1/m ). Всякое дискретное множество счетно, т. е. его элементы можно пронумеровать целыми числами. Однако не всякое счетное множество дискретно, например, счетное множество не дискретно, так как с ростом nрасстояние между соседними элементами стремится к нулю. Если задано дискретное множество точек прямой с минимальным расстоянием e любой отрезок длины l может содержать не более l/e +1 точек этого множества. Понятие дискретного множества и связанные с понятия дискретного сигнала и дискретного времени чрезвычайно важны для информатики, как они лежат в основе разделения всех устройств и систем обработки информации на два основных класса — дискретные (цифровые) и непрерывные (аналоговые) устройства и системы. Разница между дискретным и непрерывным представлением информации хорошо видна на примере часов. В электронных часах с цифровым циферблатом информация представляется дискретно — цифрами, каждая из которых четко отличает друг от друга. В механических часах со стрелочным циферблатом информация представляется непрерывно — положениями двух стрелок, причем два разных положения стрелки не всегда четко отличимы (особенно если на циферблате нет минутных делений). Вообще любое представление информации с помощью конечного множества символов (букв, цифр, знаков препинания, математических знаков) дискретно; графическое представление (рисунок, чертеж) непрерывно. Типичный пример дискретного устройства — ЭВМ, состояние памяти которой представляется последовательностью двоичных цифр — нулей и единиц, все операции в ней производятся с дискретными представлениями информации. Типичные примеры аналоговых устройств — измерительные приборы, представляющие информацию положением стрелки (вольтметр, спидометр), непрерывной кривой, выдаваемой на экран (осциллограф)или на бумагу (кардиограф) и т. д. Переход от аналоговых представлений информации к цифровым (например, ввод результатов измерений ЭВМ) и обратно в технике осуществляется специальными устройствами: аналого-цифровыми и цифро-аналоговыми преобразователями. Список использованных источников 1. Информатика/под общ. ред. Поспелова Д.А., М: Педагогика-пресс, 1994; 2. Математика и программирование (универсальная энциклопедия)/под ред. А.А. Щуплецова, — Мн: ТОО»Харвест», 1996; 3. Окно в мир информатики/под ред. Коляды М.Г., Днепропетровск: Сталкер, 1997. www.ronl.ru Множества и операции над нимиМИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ ТАВРИЧЕСКОЕ ПРДСТАВИТЕЛЬСТВО ОТКРЫТОГО МЕЖДУНАРОДНОГО УНИВЕРСИТЕТА РАЗВИТИЯ ЧЕЛОВЕКА (УКРАИНА)
Реферат По дисциплине «Математические основы информационной деятельности» Тема: «Множества и операции над ними»
студентки 2 курса З/0 Козловой Е.А. Преподаватель: Глушкова Л.В. Факультет документации и информационной деятельности
Симферополь, 2004 Множеством именуется некоторая совокупность элементов, объединенных по какому-либо признаку. Если есть такая совокупность, разумеется, как единое целое, говорят, что имеют дело с множеством. Приведенное определение не может рассматриваться как математически строгое, поскольку понятие множества является исходным, на основе него строятся остальные понятия математики. Тем не менее, из при веденного определения ясно, как можно говорить с множестве, например, действительных чисел или множестве плоских фигур. Если множество состоит из конечного числа элементов, оно называется конечным. Остальные множества называются бесконечными. Для множества используются следующие обозначения: А = {а,b,с,d} Приведенное обозначение записано для множества А, состоящего из элементов а, Ь, с, d. Конечные множества можно задать перечнем их элементов, бесконечные — нельзя. Обычно бесконечное множество задают, указывая на свойства, которым обладают все элементы данного множества, при этом подчеркивают, что таким свойством не обладают никакие элементы, не входящие в это множество. Такое свойство называется характеристическим для рассматриваемого множества. Множество, в котором не содержится ни одного элемента, называется пустым. Обозначается оно знаком Æ. Множества, состоящие из одних и тех же элементов, называют совпадающими. Например, совпадают два конечных множества, которые отличаются друг от друга порядком их элементов. Если элемент а принадлежит множеству А, то пишут: а Î А. В противном случае пишут: а Ï А. Если одно множество является частью другого множества, говорят, что первое множество является подмножеством второго. Если первое множество обозначить А, а второе В, то обозначение такое: А Ì В. Для любого множества А справедливы высказывания: множество А является подмножеством самого себя. Пустое множество является подмножеством любого множества. В качестве примера можно привести высказывание о том, что множество всех ромбов является подмножеством множества параллелограммов. Над множествами определяют операции, во многом сходные с арифметическими. Рассмотрим понятие таких операций только над двумя множествами А и В, которые являются разнообразными подмножествами одного и того же множества U. Последнее назовем универсальным множеством. Операции над множествами удобно интерпретировать геометрически с помощью диаграмм Эйлера-Венна (рис. 1 — 4). Определение 1. Пересечением множеств А и В называют их общую часть С. Другими словами, пересечение множеств А и В образуют элементы, принадлежащие равно как А, так и В
Такое множество обозначают: С = А Ç В
Определение 2. Объединением множеств А и В, называют множество С, составленное из элементов, принадлежащих хотя бы одному из этих множеств Определение 3. Разностью множеств А и В называют множество С = В \ А,
составленное из элементов, принадлежащих множеству В, но не принадлежащих множеству А Разность U \ A называется дополнением множества А до универсального множества U и обозначается: = U \ A Геометрическая интерпретация множества дана на следующем рисунке:
Если применять операции объединения и пересечения- к подмножествам некоторого множества D, то снова получатся подмножества того же множества D. Операции объединения и пересечения обладают многими свойствами, похожими на свойства операций сложения и умножения чисел. Например, пересечение и объединение множеств обладают свойствами коммутативности и ассоциативности. Пересечение дистрибутивно относительно объединения, то есть для любых множеств А, В и С верно соотношение: А Ç (В и С) = (А Ç В)и (А Ç С). В то же время операции над множествами имеют ряд свойств, у которых нет аналогов в операциях над числами. Так, для любого множества А верны равен ства: А Ç А = А, а также А и А = А. И также А и (В Ç С) = (А и В) Ç (А и С) С помощью свойств операции над множествами можно преобразовывать выражения, содержащие множества, подобно тому, как с помощью свойств операций над числами преобразовывают выражения в алгебре. Подобные действия над множествами и изучает булева алгебра, которая названа по имени английского исследователя Дж. Буля (1815 — 1864). Какими характеристиками можно описывать множества? Основной характеристикой конечного множества Является число его элементов. Рассмотрим два множества А и В. Если в этих множествах находится одинаковое количество элементов, то из этих элементов можно составить пары таим образом, чтобы каждый элемент из множества , как и элемент из множества. В входил в одну и только в одну пару. Таким образом, между элементами множеств. А и В устанавливается так называемое взаимно однозначное соответствие. Считается истинным обратное утверждение: если между двумя конечными множествами А и В можно установить взаимно однозначное соответствие, то такие множества содержат равное количество элементов. Было предложено аналогичным образом сравнивать между собой бесконечные множества. Если между бесконечными множествами можно установить взаимно однозначное соответствие, значит, эти множества имеют одинаковую мощность. Один из создателей теории множеств немецкий математик Георг Кантор (1845 — 1918) сравнивал при помощи такого метода множества, составленные из чисел натуральных и чисел рациональных. Он показал, что между такими множествами существует взаимно однозначное соответствие, хотя множество натуральных чисел является лишь частью множества рациональных чисел. Таким образом, в теории бесконечных множеств утверждение «часть меньше целого» теряет свою силу. Множества, имеющие ту же мощность, что и множество натуральных чисел, называют счетными. Таким образом, множество рациональных чисел счетно. Есть несчетные множества. В качестве примера можно рассмотреть множество всех действительных чисел (это то же самое, что множество точек на прямой линии). Поскольку прямая непрерывна или континуальна, такую несчетную мощность называют мощностью континуума. Мощностью континуума обладает множество точек, например, прямоугольника, призмы, плоскости, всего пространства. Математики всего мира в течение долгих лет рассматривали проблему — существуют ли множества, мощность которых является промежуточной между счетной и мощностью континуума. В 60-х годах нашего столетия американский математик П. Коэн и чешский математик П. Вопенко независимо друг от друга доказали, что как существование такого множества, так и его отсутствие не противоречат остальным аксиомам теории множеств. Современная математическая наука вводит понятие дискретное множество и само понятие множества звучит так: под множеством понимается набор, совокупность, собрание каких-либо объектов (которые называются элементами множества). Множество, все элементы которого изолированы друг от друга, называется дискретным. Для измерения степени изолированности элементов данного множества вводится понятие расстояния между элементами. Таким расстоянием для чисел может быть, например модуль разности между ними; для точек на плоскости — геометрическое расстояние; для двоичных наборов (чисел, кодов) одинаковой длины — число разрядов, в которых они различаются (например, расстояние между наборами 10110 и 11101). Дискретное множество определяется как множество объектов, расстояние между коне меньше некоторой наперед заданной величины e. Конечное множество всегда дискретно (в качестве e берется минимальное из расстояний между элементами этого множества). Дискретно любое множество целых чисел (для них e = 1) и любое множество дробей, имеющих общий знаменатель m (для которых e=1/m ). Всякое дискретное множество счетно, т. е. его элементы можно пронумеровать целыми числами. Однако не всякое счетное множество дискретно, например, счетное множество не дискретно, так как с ростом n расстояние между соседними элементами стремится к нулю. Если задано дискретное множество точек прямой с минимальным расстоянием e любой отрезок длины l может содержать не более l/e +1 точек этого множества. Понятие дискретного множества и связанные с понятия дискретного сигнала и дискретного времени чрезвычайно важны для информатики, как они лежат в основе разделения всех устройств и систем обработки информации на два основных класса — дискретные (цифровые) и непрерывные (аналоговые) устройства и системы. Разница между дискретным и непрерывным представлением информации хорошо видна на примере часов. В электронных часах с цифровым циферблатом информация представляется дискретно — цифрами, каждая из которых четко отличает друг от друга. В механических часах со стрелочным циферблатом информация представляется непрерывно — положениями двух стрелок, причем два разных положения стрелки не всегда четко отличимы (особенно если на циферблате нет минутных делений). Вообще любое представление информации с помощью конечного множества символов (букв, цифр, знаков препинания, математических знаков) дискретно; графическое представление (рисунок, чертеж) непрерывно. Типичный пример дискретного устройства — ЭВМ, состояние памяти которой представляется последовательностью двоичных цифр — нулей и единиц, все операции в ней производятся с дискретными представлениями информации. Типичные примеры аналоговых устройств — измерительные приборы, представляющие информацию положением стрелки (вольтметр, спидометр), непрерывной кривой, выдаваемой на экран (осциллограф)или на бумагу (кардиограф) и т. д. Переход от аналоговых представлений информации к цифровым (например, ввод результатов измерений ЭВМ) и обратно в технике осуществляется специальными устройствами: аналого-цифровыми и цифро-аналоговыми преобразователями. Список использованных источников
1. Информатика/под общ. ред. Поспелова Д.А., М: Педагогика-пресс, 1994; 2. Математика и программирование (универсальная энциклопедия)/под ред. А.А. Щуплецова, - Мн: ТОО»Харвест», 1996; 3. Окно в мир информатики/под ред. Коляды М.Г., Днепропетровск: Сталкер, 1997. www.referatmix.ru Реферат - Множества Операции над множествамиРЕФЕРАТ Множества. Операции над множествами СОДЕРЖАНИЕ Способы задания множества Включение и равенство множеств Диаграммы Эйлера-Венна Операции над множествами а) Объединение множеств б) Пересечение множеств в) Разность множеств Дополнение множества Понятие множества принадлежит к числу основных, неопределяемых понятий математики. Оно не сводится к другим, более простым понятиям. Поэтому его нельзя определить, а можно лишь пояснить, указывая синонимы слова «множество» и приводя примеры множеств: множество – набор, совокупность, собрание каких-либо объектов (элементов), обладающих общим для всех их характеристическим свойством. Примеры множеств: 1) множество студентов в данной аудитории; 2) множество людей, живущих на нашей планете в данный момент времени; 3) множество точек данной геометрической фигуры; 4) множество чётных чисел; 5) множество корней уравнения х2 -5х+6=0; 6) множество действительных корней уравнения х2 +9=0; Основоположник теории множеств немецкий математик Георг Кантор (1845-1918) писал: «Множество есть многое, мыслимое нами как единое». И хотя это высказывание учёного не является в полном смысле логическим определением понятия множества, но оно верно поясняет, что когда говорят о множестве, то имеют в виду некоторое собрание объектов, причём само это собрание рассматривается как единое целое, как один (новый) объект. Объекты, составляющие данное множество, называют его элементами. Множество обычно обозначают большими латинскими буквами, а элементы множества − малыми латинскими буквам. Если элемент, а принадлежит множеству А, то пишут: а А, а если а не принадлежит А, то пишут: а А. Например, пусть N–множество натуральных чисел. Тогда 5N, но N, N. Если А — множество корней уравнения х2 -5х+6=0, то 3 А, а 4А. В математике часто исследуются так называемые числовые множества, т.е. множества, элементами которых являются числа. Для самых основных числовых множеств утвердились следующие обозначения: N- множество всех натуральных чисел; Z- множество всех целых чисел; Q- множество всех рациональных чисел; R- множество всех действительных чисел. Приняты также обозначения Z+, Q+, R+ соответственно для множеств всех неотрицательных целых, рациональных и действительных чисел, и ZЇ, QЇ, RЇ -для множеств всех отрицательных целых, рациональных и действительных чисел. Способы задания множества Множество А считается заданным, если относительно любого объекта а можно установить, принадлежит этот объект множеству А или не принадлежит; другими словами, если можно определить, является ли а элементом множества А или не является. Существуют два основных способа задания множества: 1) перечисление элементов множества; 2) указание характеристического свойства элементов множества, т.е. такого свойства, которым обладают все элементы данного множества и только они. Первым способом особенно часто задаются конечные множества. Например, множество студентов учебной группы задаётся их списком. Множество, состоящее из элементов a, b, c, … ,d, обозначают с помощью фигурных скобок: А={a; b; c; …;d}. Множество корней уравнения х2 -5х+6=0 состоит из двух чисел 2 и 3: А={2; 3}. Множество В целых решений неравенства -2 < х < 3 состоит из чисел –1, 0, 1, 2, поэтому В={–1; 0; 1; 2}. Второй способ задания множества является более универсальным. Множество элементов х, обладающих данным характеристическим свойством Р(х), также записывают с помощью фигурных скобок: Х={х | Р (х)}, и читают: множество Х состоит из элементов х, таких, что выполняется свойство Р(х). Например, А={х | х2 -5х+6=0}. Решив уравнение х2 -5х+6=0, мы можем записать множество А первым способом: А={2; 3}. Другой пример: Х={х | -1 ≤ х < 4, х Z}, т.е. Х есть множество целых чисел х, таких, что –1 ≤ х < 4, значит, по-другому: Х={-1; 0; 1; 2; 3}. Рассмотрим и такой пример: F={f | │fґ(x)│≤ 1, 1 < x < 2}, т.е. F- множество функций f, производная которых в интервале (1; 2) не превосходит по абсолютной величине числа 1. Может случиться, что характеристическим свойством, определяющим множество А, не обладает ни один объект. Тогда говорят, что множество А — пустое (не содержит ни одного элемента) и пишут: А= Ш. Например, А={х | хІ+9=0, хR} –множество действительных чисел х, таких, что хІ+9=0- пустое множество, т.к. таких действительных чисел нет. Включение и равенство множеств Пусть Х и У – два множества. Если каждый элемент х множества Х является элементом множества У, то говорят, что множество Х содержится во множестве У и пишут: Х У или У Х. Говорят также, что Х включено в У или У включает Х, или что Х является подмножеством множества У. Знаки включения или относятся только ко множествам и их не следует смешивать со знаками принадлежности Î и . Если, например, А — множество всех студентов вуза, а В – множество студентов-первокурсников этого вуза, то В есть подмножество А, т.е. В А. Пустое множество считают подмножеством любого множества Х, т.е. Ш Х, каким бы ни было множество Х. Ясно также, что каждое множество является подмножеством самого себя: Х Х. Если для двух множеств Х и У одновременно имеют место два включения Х У и У Х, т.е. Х есть подмножество множества У и У есть подмножество множества Х, то множества Х и У состоят из одних и тех же элементов. Такие множества Х и У называют равными и пишут: Х=У. Например, если А={2; 3}, а В={х | хІ –5х+6=0}, то А=В. Если Х У, но Х≠ У, т.е. существует хотя бы один элемент множества У, не принадлежащий Х, то говорят, что Х есть собственное подмножество множества У, и пишут: Х У. Например: NZ, ZQ, QR. Далее нам потребуется множество, которое содержит в качестве своего подмножества любое другое множество. Такое «всеобъемлющее» множество будем называть универсальным и обозначать буквой U . Диаграммы Эйлера-Венна Для наглядного представления множеств используют диаграммы Эйлера-Венна. В этом случае множества обозначают областями на плоскости и внутри этих областей условно располагают элементы множества. Часто все множества на диаграмме размещают внутри прямоугольника, который представляет собой универсальное множество U. Если элемент принадлежит более чем одному множеству, то области, отвечающие таким множествам, должны перекрываться, чтобы общий элемент мог одновременно находиться в соответствующих областях. Выбор формы областей, изображающих множества на диаграммах, может быть произвольным (круги, внутренности эллипсов, многоугольники и т.п.). Покажем, например, с помощью диаграммы Эйлера-Венна, что множество А является подмножеством множества В: С помощью такой диаграммы становиться наглядным, например, такое утверждение: если АВ, а В С, то АС. Строгое доказательство этого утверждения, не опирающееся на диаграмму, можно провести так: пусть х А; так как А В, то х В, а так как В С, то из х В следует, что х С; значит, из того, что х А, следует хС, а поэтому А С. Операции над множествами С помощью нескольких множеств можно строить новые множества или, как говорят, производить операции над множествами. Мы рассмотрим следующие операции над множествами: объединение, пересечение, разность множеств, дополнение множества. Все рассматриваемые операции над множествами мы будем иллюстрировать на диаграммах Эйлера-Венна. Объединение множеств Объединением АВ множеств А и В называется множество, состоящее из всех элементов, принадлежащих хотя бы одному из множеств А или В. Символическая запись этого определения: А В={х | хА или хВ}. Здесь союз «или» понимается в смысле «неразделительного или», т.е. не исключается, что х может принадлежать и А и В. Отметим, что в таком случае элемент х, входящий в оба множества А и В, входит в их объединение только один раз (поскольку для множества не имеет смысла говорить о том, что элемент входит в него несколько раз). Поясним определение объединения множеств с помощью диаграммы Эйлера-Венна: На диаграмме объединение множеств А и В выделено штриховкой. Если множество А определяется характеристическим свойством Р (х), а множество В — характеристическим свойством Q(х), то А В состоит из всех элементов, обладающих, по крайней мере, одним из этих свойств. Примеры объединений двух множеств: 1) Пусть А={2; 5; 7}, В={3; 5; 6}. Тогда А В ={2; 3; 5; 6; 7}. 2) Пусть А=[-1/4; 2], В=[ -2/3; 7/4]. Тогда А В=[-2/3; 2] . 3) Пусть А= {х | х=8k, k Z}, B={x | x=8n-4, n Z}. Тогда A B ={x | 4m, mZ}. Операция объединения множеств может проводиться не только над двумя множествами. Определение объединения множеств можно распространить на случай любого количества множеств и даже – на систему множеств. Система множеств определяется так: если каждому элементу α множества М отвечает множество Аα, то совокупность всех таких множеств мы будем называть системой множеств. Объединением системы множеств {Аα } называется множество , состоящее из всех элементов, принадлежащих хотя бы одному из множеств Аα. При этом общие элементы нескольких множеств не различаются. Таким образом, элемент хтогда и только тогда, когда найдется такой индекс α0 М, что х A α0. В случае, когда М конечно и состоит из чисел 1, 2, …, n, применяется запись Если M=N, то имеем объединение последовательности множеств . Рассмотрим ещё один пример: пусть М=(1; 2) и для каждого α є М определим множество Аα =[0;α]; тогда = [0;2). Из определения операции объединения непосредственно следует, что она коммутативна, т.е. А1A2 = A2 А1, и ассоциативна, т.е. (А1A2 ) А3 = А1(A2 А3 ). Пересечение множеств Пересечением А ∩ В множеств А и В называется множество, состоящее из всех элементов, принадлежащих одновременно каждому из множеств А и В. Символическая запись этого определения: А ∩ В={х | хА и х В}. Поясним определение пересечения множеств с помощью диаграммы Эйлера-Венна: А ∩ В На диаграмме пересечение множеств А и В выделено штриховкой. Если множество А задается характеристическим свойством Р(х), a множество В-свойством Q(х), то в А ∩ В входят элементы, одновременно обладающие и свойством Р(х), и свойством Q(х). Примеры пересечений двух множеств: 1) Пусть А={2; 5; 7; 8}, В={3; 5; 6; 7}.Тогда А ∩ В={5; 7}. 2) Пусть А=[-1/4; 7/4], В=[-2/3; 3/2]. Тогда А ∩ В= [-1/4; 3/2]. 3) Пусть А= {х | х=2k, k є Z}, B={x | x=3n, n є Z}. Тогда А ∩ В ={x | x=6m, m Z}. 4) Пусть А- множество всех прямоугольников, В-множество всех ромбов. Тогда А ∩ В -множество фигур, одновременно являющихся и прямоугольниками, и ромбами, т.е. множество всех квадратов. Операцию пересечения можно определить и для произвольной системы множеств {Аα }, где α М. Пересечением системы множеств {Аα }, называется множество , состоящее из всех элементов, принадлежащих одновременно каждому из множеств Аα, α М, т.е. = {x | xАα для каждого α М}. В случае, когда М конечно и состоит из чисел 1, 2, …, n, применяется запись . Если M=N, то имеем пересечение последовательности множеств . В рассмотренном выше примере системы множеств Аα =[0; α], αМ =(1; 2) получим:=[0;1]. Операция пересечения множеств, как и операция объединения, очевидно, коммутативна и ассоциативна, т.е. А1 ∩A2 = A2 ∩А1 и (А1 ∩A2 )∩ А3 = А1 ∩(A2 ∩ А3 ). Разность множеств Разностью А\В множеств А и В называется множество, состоящее из всех элементов множества А, которые не принадлежат множеству В, т.е. А\В={х | х А и хВ}, что можно пояснить на диаграмме Эйлера-Венна следующим образом: На диаграмме разность А\В выделена штриховкой. Примеры разностей множеств: 1. Пусть А={1; 2; 5; 7}, В={1; 3; 5; 6}. Тогда А\В ={2;7}, а В\А={3; 6}. 2. Пусть А=[-1/4;2], В=[-2/3; 7/4]. Тогда А\В=(7/4;2], а В\А=[-2/3; -1/4). 3. Пусть А — множество всех четных целых чисел, В — множество всех целых чисел, делящихся на 3. тогда А\В — множество всех четных целых чисел, которые не делятся на 3, а В\А –множество всех нечетных целых чисел, кратных трем. Дополнение множества Пусть множество А и В таковы, что АВ. Тогда дополнением множества А до множества В называется разность В\А. В этом случае применяется обозначение СB А=В\А. Если в качестве множества В берётся универсальное множество U, то применяется обозначение СА=СU А=U\А и такое множество просто называют дополнением множества А. Таким образом, символическая запись определения дополнения множества будет следующей: СА={x | x A}. На диаграммах Эйлера-Венна можно так пояснить определения СВ А и СА: www.ronl.ru Реферат - Тема №1. Множества и операции над нимиТЕМА №1. Множества и операции над ними.§1. Основные понятия о множествах. Основные определения. Одним из основных понятий математики является понятие множества, и, как каждое основное понятие, не поддаётся точному определению (например, понятия “точка”, “прямая” являются одними из основных понятий геометрии). МНОЖЕСТВОМ называется собрание, совокупность объектов, объединенных по какому-нибудь общему признаку, свойству. Примеры: Множество студентов данной учебной группы. Множество планет солнечной системы. Множество букв русского алфавита. Множество натуральных чисел. Математический смысл слова “множество” отличается от того, как оно используется в обычной речи. Так, в обычной речи понятие “множество” связывают с большим числом предметов, в математике же этого не требуется. Здесь могут рассматриваться множества, содержащие один объект, много объектов, несколько объектов или не содержащие ни одного объекта. Объекты, из которых состоит множество, называются его ЭЛЕМЕНТАМИ. Остановимся на символике, обычно использующейся при обращении с множествами. Множества обозначаются прописными (заглавными) буквами латинского алфавита (без индексов или с индексами). Например: B, C,…,X,Y,…,A1,B1,… Элементы множества обозначаются строчными (малыми) буквами латинского алфавита. Например: b,c,…,x,y,…,a1,b1,… В математике особую роль играют множества, элементами которых являются числа. Такие множества называются ЧИСЛОВЫМИ. Некоторые числовые множества имеют специальные обозначения, вводимые для удобства пользования. Один из вариантов этих обозначений, которыми мы будем пользоваться в дальнейшем, выглядит следующим образом: N – множество всех натуральных чисел; Zc(или Z+ или C+) – множество всех целых неотрицательных чисел; Z (или C) – множество всех целых чисел; Q – множество всех рациональных чисел; R – множество всех действительных чисел; R+ - множество всех действительных положительных чисел. По числу элементов, входящих в множество, множества делятся на три класса: 1 – конечные, 2 – бесконечные, 3 – пустые. 1. Если элементы множества можно сосчитать, то множество является КОНЕЧНЫМ. Пример 1. Множество гласных букв в слове “математика” состоит из трёх элементов – это буквы “а”, “е”, “и”, причем, гласная считается только один раз, т.е. элементы множества при перечислении не повторяются. 2. Если элементы множества сосчитать невозможно, то множество БЕСКОНЕЧНОЕ. Пример 2. Множество натуральных чисел бесконечно. Пример 3. Множество точек отрезка [0;1] бесконечно. 3. Множество, не содержащее ни одного элемента, называется ПУСТЫМ. Символически оно обозначается знаком . Пример 4. Множество действительных корней уравнения x2 +1=0. Пример 5. Множество людей, проживающих на Солнце. В математике часто приходится определять принадлежность данного элемента конкретному множеству. Пример 6. Мы говорим, что число 5 натуральное, т.е. утверждаем, что число 5 принадлежит множеству натуральных чисел. Символически принадлежность множеству записывается с помощью знака . В данном случае символическая запись будет такой: 5 N. Читается: “5 принадлежит множеству натуральных чисел”. Число 5,2 не принадлежит множеству натуральных чисел, т.к. не является натуральным числом. Символически отношение “не принадлежит” записывается с помощью знака (реже ). Таким образом, здесь имеем: 5,2 N Читается: “5,2 не принадлежит множеству натуральных чисел”. ^ 1.2 Способы задания множеств. Множество считается заданным, если мы владеем способом, позволяющим для любого данного элемента определить, принадлежит он данному множеству или не принадлежит. Множество можно задать, непосредственно перечислив все его элементы, причём, порядок следования элементов может быть произвольным. В этом случае названия всех элементов множества записываются в строчку, отделяются точкой с запятой и заключаются в фигурные скобки. Пример 7. Множество всех гласных букв русского алфавита: A={а; я; у; ю; э; е;о; ё; и; ы}. Пример 8. Множество цифр десятичной системы счисления: B={1; 2; 3; 4; 5; 6; 7; 8; 9; 0}. Очевидно, что такой способ задания множеств удобно применять для конечных множеств с небольшим количеством элементов. Конечные и бесконечные множества могут быть заданы другим способом: указанием ХАРАКТЕРИСТИЧЕСКОГО СВОЙСТВА, т.е. такого свойства, которым обладает любой элемент данного множества и не обладает ни один элемент, не принадлежащий ему. Пусть P обозначает некоторое свойство, которым обладают все элементы множества А и не обладают элементы никакого другого множества. Тогда множество всех элементов, обладающих свойством Р, обозначим так: А={х│х обладает свойством Р}={ х│Р(х)}={х : Р(х)}. Свойство Р, задающее множество А, есть характеристическое свойство множества А. Пример 9. Множество чётных натуральных чисел. Зададим его с помощью характеристического свойства: В={х │х – чётное натуральное число}={х │ х=2k, k Є N}. Пример 10. Множество всех действительных чисел на отрезке от 1 до 3 включительно запишется следующим образом: R1-3={y│1≤ y≤ 3, y Є R}. Следует заметить, что в ряде случаев одно и то же множество может быть задано как первым, так и вторым способом. Пример 11. Множество натуральных чисел, меньших, чем 10. Первый способ: N<10={1; 2; 3; 4; 5; 6; 7; 8; 9}. Второй способ: N<10={z│z<10, z Є N}. Случается, что одно и то же множество может быть задано с помощью различных характеристических свойств. Пример 12. Множество квадратов. Первый способ: A={x│x – ромб с прямыми углами}. Второй способ: A={ x│x – прямоугольник с равными сторонами}. ^ 1.3 Отношения между множествами. Наглядно отношения между множествами изображают при помощи особых чертежей, называемых КРУГАМИ ЭЙЛЕРА (или диаграммами Эйлера – Венна). Для этого множества, сколько бы они ни содержали элементов, представляют в виде кругов или любых других замкнутых кривых (фигур) – рис.1. Рис. 1. 1. Пусть даны два множества: X={a; b; c; d} иY={l; k; m; b; c}. Множества Х и Y содержат некоторые одинаковые элементы, а именно “b” и “c” . В данном случае говорят, что множества X иY находятся в отношении ПЕРЕСЕЧЕНИЯ. С помощью кругов Эйлера данное отношение можно представить в виде рис. 2. X Y B1 B2 Рис. 2. Рис. 3. Пусть даны множества B1={1; 2; 3} и B2={4; 5; 6}. Данные множества различны, у них нет одинаковых элементов. В таком случае говорят, что множества B1 и B2 находятся в отношении НЕПЕРЕСЕЧЕНИЯ. С помощью кругов Эйлера данное отношение показано на рис. 3. Пусть даны множества A={a; b; c; d; e} и B={a; b; c}. Очевидно, что эти множества пересекаются; кроме того, каждый элемент множества В является в то же время (одновременно) и элементом множества А. Тогда говорят, что множество В ВКЛЮЧЕНО в множество А, или что В есть ПОДМНОЖЕСТВО множества А.Определение 1.1 Множество В является подмножеством множества А тогда и только тогда, когда каждый элемент множества В является элементом множества А. Отношение “включено” обозначается знаком . Соответственно отношение “включает” – знаком . Определение 1.1 символически записывается так: ВА или АВ. С помощью кругов Эйлера данное отношение между множествами показано на рис.4. Из определения подмножества следует, что всякое непустое множество А содержит по крайней мере два множества: Ø и А, которые называются НЕСОБСТВЕННЫМИ ПОДМНОЖЕСТВАМИ МНОЖЕСТВА. Все остальные подмножества (если они существуют) называются СОБСТВЕННЫМИ ПОДМНОЖЕСТВАМИ МНОЖЕСТВА. То есть, если В – собственное подмножество множества А, то имеем: Ø ВА, или иначе: АВ Ø. 4. Пусть даны множества C={x; y; z}, D={x; y; z}, которые состоят из одних и тех же элементов. В таком случае говорят, что множества С и D равны и пишут C=D.Определение 1.2 Множества С и D называются равными, если они состоят из одних и тех же элементов. Используя понятие “включено”, можно дать другое определение равенства множеств.Определение 1.3 Множества C и D называются равными тогда и только тогда, когда множество С является подмножеством множества D, и наоборот. Символически данное определение можно записать так:С = D С D и D С, или С = D С D D С,где знак означает “эквивалентность” (равнозначность), а знак (конъюнкция) означает одновременность (совместность) осуществления тех операций (или событий), которые он соединяет. С помощью кругов Эйлера отношение “равенство” показано на рис.5. u Рис.5. рис.6. Универсальное множество. Пусть U (или T – total) – некоторое фиксированное множество. Рассмотрим только такие множества А, В, С,…, которые являются подмножествами множества U. В этом случае множество U называется универсальным множеством всех множеств А, В, С,… Примером универсального множества может служить множество действительных чисел, множество людей на планете Земля… Мы его будем изображать прямоугольником с буквой U в правом верхнем углу (рис.6), внутри которого будут размещаться те или иные множества. www.ronl.ru Читать реферат по математике: "Множества Операции над множествами"(Назад) (Cкачать работу) Функция "чтения" служит для ознакомления с работой. Разметка, таблицы и картинки документа могут отображаться неверно или не в полном объёме! РЕФЕРАТ Множества. Операции над множествами СОДЕРЖАНИЕ Способы задания множества Включение и равенство множеств Диаграммы Эйлера-Венна Операции над множествами а) Объединение множеств б) Пересечение множеств в) Разность множеств Дополнение множества Понятие множества принадлежит к числу основных, неопределяемых понятий математики. Оно не сводится к другим, более простым понятиям. Поэтому его нельзя определить, а можно лишь пояснить, указывая синонимы слова «множество» и приводя примеры множеств: множество – набор, совокупность, собрание каких-либо объектов (элементов), обладающих общим для всех их характеристическим свойством. Примеры множеств: множество студентов в данной аудитории;множество людей, живущих на нашей планете в данный момент времени;множество точек данной геометрической фигуры;множество чётных чисел;множество корней уравнения х2-5х+6=0;множество действительных корней уравнения х2+9=0; Основоположник теории множеств немецкий математик Георг Кантор (1845-1918) писал: «Множество есть многое, мыслимое нами как единое». И хотя это высказывание учёного не является в полном смысле логическим определением понятия множества, но оно верно поясняет, что когда говорят о множестве, то имеют в виду некоторое собрание объектов, причём само это собрание рассматривается как единое целое, как один (новый) объект. Объекты, составляющие данное множество, называют его элементами. Множество обычно обозначают большими латинскими буквами, а элементы множества − малыми латинскими буквам. Если элемент, а принадлежит множеству А, то пишут: а А, а если а не принадлежит А, то пишут: а А. Например, пусть N–множество натуральных чисел. Тогда 5N , но N, N. Если А - множество корней уравнения х2-5х+6=0, то 3А, а 4А. В математике часто исследуются так называемые числовые множества, т.е. множества, элементами которых являются числа. Для самых основных числовых множеств утвердились следующие обозначения: N- множество всех натуральных чисел; Z- множество всех целых чисел; Q- множество всех рациональных чисел; R- множество всех действительных чисел. Приняты также обозначения Z+ , Q+, R+ соответственно для множеств всех неотрицательных целых, рациональных и действительных чисел, и Z , Q , R -для множеств всех отрицательных целых, рациональных и действительных чисел.Способы задания множества Множество А считается заданным, если относительно любого объекта а можно установить, принадлежит этот объект множеству А или не принадлежит; другими словами, если можно определить, является ли а элементом множества А или не является. Существуют два основных способа задания множества: перечисление элементов множества;указание характеристического свойства элементов множества, т.е. такого свойства, которым обладают все элементы данного множества и только они. Первым способом особенно часто задаются конечные множества. Например, множество студентов учебной группы задаётся их списком. Множество, состоящее из элементов a, b, c, … ,d ,обозначают с помощью фигурных скобок: А={a; b; c; …;d} . Множество корней уравнения х2-5х+6=0 состоит из двух чисел 2 и 3: А={2; 3}. Множество В целых решений неравенства -2 Второй способ задания множества является более универсальным. Множество элементов х, обладающих данным характеристическим свойством Р(х), также записывают с помощью фигурных скобок: Х={х | Р (х)}, и читают: множество Х состоит из элементов х, таких, что выполняется свойство Р(х). Например, А={х | х2-5х+6=0}. Решив уравнение х2-5х+6=0, мы можем записать множество А первым способом: А={2; 3}. Другой пример: Х={х | -1 ≤ х Рассмотрим и такой пример: F={f | │fґ(x)│≤ 1 , 1 Может случиться, что характеристическим свойством, определяющим множество А, не обладает ни один объект. Тогда говорят, что множество А - пустое (не содержит ни одного элемента) и пишут: А= Ш. Например, А={х | хІ+9=0, хR} –множество действительных чисел х, таких, что хІ+9=0- пустое множество, т.к. таких действительных чисел нет.Включение и равенство множеств Пусть Х и У – два множества. Если каждый элемент х множества Х является элементом множества У, то говорят, что множество Х содержится во множестве У и пишут: ХУ или У Х. Говорят также, что Х включено в У или У включает Х, или что Х является подмножеством множества У. Знаки включенияилиотносятся только ко множествам и их не следует смешивать со знаками принадлежности и. Если, например, А - множество всех студентов вуза, а В – множество студентов-первокурсников этого вуза, то В есть подмножество А, т.е. ВА. Пустое множество считают подмножеством любого множества Х, т.е. ШХ, каким бы ни было множество Х. Ясно также, что каждое множество является подмножеством самого себя: Х Х. Если для двух множеств Х и У одновременно имеют место два включения Х У и УХ, т.е. Х есть подмножество множества У и У есть подмножество множества Х, то множества Х и У состоят из одних и тех же элементов. Такие множества Х и У называют равными и пишут: Х=У. Например, если А={2; 3}, а В={х | хІ –5х+6=0}, то А=В. Если Х У, но Х≠ У, т.е. существует хотя бы один элемент множества У, не принадлежащий Х, то говорят, что Х есть собственное подмножество множества У, и пишут: ХУ. Например: NZ, ZQ, QR. Далее нам потребуется множество, которое содержит в качестве своего подмножества любое другое множество. Такое «всеобъемлющее» множество будем называть универсальным и обозначать буквой U . Диаграммы Эйлера-Венна Для наглядного представления множеств используют диаграммы Эйлера-Венна. В этом случае множества обозначают областями на плоскости и внутри этих областей условно располагают элементы множества. Часто все множества на диаграмме размещают внутри прямоугольника, который представляет собой универсальное множество U. Если элемент принадлежит более чем одному множеству, то области, отвечающие таким множествам, должны перекрываться, чтобы общий элемент мог одновременно находиться в соответствующих областях. Выбор формы областей, изображающих множества на диаграммах, может быть произвольным (круги, внутренности эллипсов, многоугольники и т.п.). Покажем, например, с помощью диаграммы Эйлера-Венна, что множество А является подмножеством множества В: С помощью такой диаграммы становиться наглядным, например, такое утверждение:если АВ, а В С, то АС. Строгое доказательство этого утверждения, не опирающееся на диаграмму, можно провести так: пусть х А; так как АВ, то хВ, а так как ВС, то из хВ следует, что хС; значит, из того, что хА, следует хС, а поэтому АС. Операции над множествами С помощью нескольких множеств можно строить новые множества или, как говорят, производить операции над множествами. Мы рассмотрим следующие операции над множествами: объединение, пересечение, разность множеств, дополнение множества. Все рассматриваемые операции над множествами мы будем иллюстрировать на диаграммах Эйлера-Венна. Объединение множеств Объединением АВ множеств А и В называется множество, состоящее из всех элементов, принадлежащих хотя бы одному из множеств А или В. Символическая запись этого определения: А В={х | хА или хВ}. Здесь союз «или» понимается в смысле «неразделительного или», т.е. не исключается, что х может принадлежать и А и В. Отметим, что в таком случае элемент х, входящий в оба множества А и В, входит в их объединение только один раз (поскольку для множества не имеет смысла говорить о том, что элемент входит в него несколько раз). Поясним определение объединения множеств с помощью диаграммы Эйлера-Венна: На диаграмме объединение множеств А и В выделено штриховкой. Если множество А определяется характеристическим свойством Р (х), а множество В - характеристическим свойством Q(х), то АВ состоит из всех элементов, обладающих, по крайней мере, одним из этих свойств. Примеры объединений двух множеств: 1) Пусть А={2; 5; 7}, В={3; 5; 6}. Тогда АВ ={2; 3; 5; 6; 7}. 2) Пусть А=[-1/4; 2], В=[ -2/3; 7/4]. Тогда А В=[-2/3; 2] . 3) Пусть А= {х | х=8k, kZ}, B={x | x=8n-4, nZ}. Тогда A B ={x | 4m, mZ}. referat.co Реферат - Теория множеств - ФилософияТеория множествПервоначальному понятию теории множеств — множеству нельзя дать определения. Его можно только пояснить. Под множеством в дальнейшем мы будем иметь в виду совокупность объектов, которые мы по тем или иным основаниям способны мыслить вместе. Люди, студенты, звезды, понятия — все эти предметы, мыслимые вместе, образуют множества. Коллектив, созвездие, полк — это тоже множества людей или звезд. Множество может быть задано двояко: 1) при помощи некоторого признака или 2) списком. В предложении — «Студенты Лебединская, Жевако и Цисар могут покинуть аудиторию» — множество задается списком. В предложении — «Студенты, сдавшие контрольную работу, могут покинуть аудиторию» — множество задается при помощи общего признака. Таким образом, любые объекты, которые мы мыслим вместе и которые мы можем объединить либо списком, либо при помощи общего признака, будут составлять множество. Об отдельном объекте, из числа тех, что образуют данное множество, мы будем говорить, что этот объект входит в данное множество. Объект а будем называть элементом множества А, если он входит в множество А. Множество В будем называть подмножеством множества А, если каждый элемент А в то же время является элементом В. Множество В будем называть собственным подмножеством множества А, если А — подмножество В и существует хотя бы один элемент В, который не является элементом множества А. Для обозначения множеств мы будем использовать те же прописные буквы начала латинского алфавита, набранные курсивом, что и для обозначения понятий. Основанием для этого служит тот факт, что содержание понятия есть признак, по которому можно образовать множество. К тому же из контекста употребления этих обозначений всегда будет ясно, о чем идет речь; о понятии или о множестве. Для понимания теории понятия нам понадобится некоторое представление о простых операциях с множествами таких, как пересечение, объединение множеств и дополнение к множеству. Пересечением множеств А и В будем называть множество тех элементов, которые одновременно входят в А и В. Объединением множеств А и В будем называть множество элементов, которые входят в А или в В. Так, пересечением множеств студентов и отличников будет множество студентов-отличников, а пересечением множеств греческих богов и кузнецов будет множество, состоящее из единственного элемента — Гефеста. Пересечением множества книг и учебных пособий будет множество учебников. Объединением множеств газет и журналов будет множество периодических изданий, а объединением множеств четных и нечетных чисел — множество натуральных чисел. Операции с множествами удобно иллюстрировать при помощи графических схем, в которых множества представляются в виде кругов, и предполагается, что в этих кругах заключены все элементы данного множества. Такие круги называются кругами Эйлера, по имени немецкого математика Леонарда Эйлера, который в 1762 году приспособил эту геометрическую фигуру для логических целей. Отдельный элемент будем обозначать точкой в круге, единичное множество — кругом. Заштрихованная часть — это множество тех элементов, которые одновременно принадлежат множествам А и В. Заштрихованная часть представляет собой объединение этих множеств, т.е. множество студентов или отличников. Чтобы ввести еще одну важную операцию с множествами, нам понадобится одно новое понятие. Представим себе множество всех объектов, т.е. такое множество, для которого любое другое множество объектов, кроме его самого, является его собственным подмножеством. Такое множество U назовем универсальным множеством. Поскольку любое множество А является подмножеством этого множества, то мы для любого множества можем рассмотреть операцию, дополняющую это множество до универсального. Эта операция так и называется — дополнение. Заштрихованная часть представляет собой дополнение А. Символически дополнение будем изображать так — А Кроме универсального, существует еще одно специальное и единственное множество, которое не содержит ни одного элемента. Это множество мы назовем пустым, и будем обозначать его Операции пересечения и объединения могут быть, как в арифметике операции умножения и сложения обобщены на случай более чем двух множеств. То же самое и для объединения. Познакомившись с первоначальными понятиями теории множеств, перейдем к объему понятий. Пусть множество А составляет объем понятия А. Тогда собственное подмножество В множества А будем называть частью объема понятия А. Проще говоря, часть объема понятия — это более одного элемента объема понятия, но не все. Элементом объема понятия будем называть элемент множества, составляющего объем понятия. Каждый элемент объема понятия имеет все признаки, перечисленные в содержании понятия. Итак, если вы хотите установить, является ли некоторый предмет элементом объема данного понятия, проверьте, имеет ли он все признаки, которые вы мыслите в (основном) содержании данного понятия. Это правило особенно существенно для понятий типа: коллектив, созвездие, преступная группа, множество, лес и т.п. Обратите внимание, что пользуясь этим правилом, можно объяснить, почему отдельные люди, звезды, преступники, предметы, деревья не являются элементами объема этих понятий, и заодно понять, что же является элементами их объема. При подготовке этой работы были использованы материалы с сайта www.studentu.ru www.ronl.ru |
|
||||||||||||||||||||||||||||||||||||
|
|