Химический состав клетки и обмен веществ на клеточном уровне. Реферат обмен веществ основа существования клетки


Сайт учителей биологии МБОУ Лицей № 2 города Воронежа

Обмен веществ – основа существования клетки

Для изучения клетки под микроскопом обычно ее фиксируют, окрашивают. На приготовленном микропрепарате рассматривают уже неживую клетку, поэтому создается впечатление, что все структурные части клетки неподвижны, статичны, а это не соответствует действительности. На самом деле в живой клетке все находится в движении: движется цитоплазма, увлекая за собой многие органоиды, вещества и включения; активно работают рибосомы и митохондрии, совершается множество химических превращений. Во всех этих процессах жизнедеятельности накапливается, тратится и преобразуется энергия. Из окружающей среды в клетку поступают различные вещества, а из клетки в окружающую среду удаляются ненужные продукты обмена. Так осуществляется обмен веществ, или метаболизм (греч. metabole – "превращение").

Обмен веществ и энергии (метаболизм) – это совокупность биохимических реакций, протекающих в клетке и обеспечивающих процессы ее жизнедеятельности.

Обмен веществ складывается из двух взаимосвязанных процессов – анаболизма и катаболизма.

Анаболизм (греч. anabole – "подъем"), или ассимиляция (лат. assimilatio – "слияние", "усвоение"), – совокупность химических процессов, направленных на образование и обновление структурных частей клеток. Поэтому анаболизм еще называют пластическим обменом. В ходе анаболизма происходит биосинтез сложных молекул из простых молекул–предшественников или из молекул веществ, поступивших из внешней среды. Важнейшими процессами анаболизма являются синтез белков и нуклеиновых кислот (свойствен всем организмам) и синтез углеводов (у растений, некоторых бактерий и цианобактерий).

Анаболизм является созидательным этапом обмена веществ. Он осуществляется всегда с потреблением энергии при участии ферментов.

В процессе анаболизма с образованием сложных молекул идет накопление энергии, главным образом, в виде химических связей. Поступление этой энергии в большинстве случаев обеспечивается реакциями биологического окисления веществ клетки – реакциями катаболизма.

Катаболизм (греч. katabole – "сбрасывание", "разрушение"), или диссимиляция, – совокупность реакций, в которых происходит распад органических веществ с высвобождением энергии. При разрыве химических связей молекул органических соединений энергия высвобождается и запасается, главным образом, в виде молекул аденозинтрифосфорной кислоты (АТФ), т. е. аденозинтрифосфата. Синтез АТФ у эукариот происходит в митохондриях и хлоропластах, а у прокариот – в цитоплазме, на мембранных структурах.

Катаболизм обеспечивает все биохимические процессы в клетке энергией, поэтому его еще называют энергетическим обменом.

В процессе эволюции клетки живых организмов выработали регуляторные системы, обеспечивающие упорядоченность и согласованность метаболических реакций. Это и позволяет им адаптироваться к изменяющимся условиям окружающей среды.

Аденозинтрифосфорная кислота, или АТФ, – это нуклеотид, содержащий аденин, рибозу и трифосфат (три остатка фосфорной кислоты).

Молекула АТФ очень энергоёмка. Она является универсальным переносчиком и накопителем энергии. Энергия заключена в связях между тремя остатками фосфорной кислоты.

Как происходит выделение энергии в клетке? Отделение от АТФ одного концевого фосфата (Ф) сопровождается выделением 40 кДж на 1 моль, тогда как при разрыве химических связей других соединений выделяется 12 кДж. Образовавшаяся при этом молекула аденозиндифосфата (АДФ) с двумя фосфатными остатками может быстро восстановиться до АТФ или, при необходимости отдав еще один концевой фосфат, превратиться в аденозинмонофосфат (АМФ).

Пара АТФ/АДФ служит основным механизмом выработки энергии в клетке. Присоединение фосфорных остатков к АМФ и АДФ сопровождается накоплением (аккумуляцией) энергии, а их отщепление от АТФ и АДФ приводит к выделению энергии. Благодаря богатым энергией химическим связям в молекулах АТФ клетка способна накапливать много энергии и расходовать ее по мере надобности на все жизненные процессы клетки и организма в целом.

< Предыдущая страница "Нуклеиновые кислоты"

Следующая страница "Биосинтез белков в живой клетке" >

biolicey2vrn.ru

Доклад - Метаболизм как основа жизнедеятельности клетки

Вертьянов С. Ю.

Под метаболизмом понимают постоянно происходящий в клетках живых организмов обмен веществ и энергии. Одни соединения, выполнив свою функцию, становятся ненужными, в других возникает насущная потребность. В различных процессах метаболизма из простых веществ при участии ферментов синтезируются высокомолекулярные соединения, в свою очередь сложные молекулы расщепляются на более простые.

Реакции биологического синтеза называются анаболическими (греч. anabole подъем), а их совокупность в клетке — анаболизмом, или пластическим обменом (греч. plastos вылепленный, созданный).

В клетке протекает огромное количество процессов синтеза: липидов в эндоплазматической сети, белков на рибосомах, полисахаридов в комплексе Гольджи эукариот и в цитоплазме прокариот, углеводов в пластидах растений. Структура синтезируемых макромолекул обладает видовой и индивидуальной специфичностью. Набор характерных для клетки веществ соответствует последовательности нуклеотидов ДНК, составляющих генотип. Для обеспечения реакций синтеза клетке требуются существенные затраты энергии, получаемой при расщеплении веществ.

Совокупность реакций расщепления сложных молекул на более простые носит название катаболизма (греч. katabole разрушение), или энергетического обмена. Примерами таких реакций является расщепление липидов, полисахаридов, белков и нуклеиновых кислот в лизосомах, а также простых углеводов и жирных кислот в митохондриях.

В результате процессов катаболизма высвобождается энергия. Существенная ее часть запасается в виде высокоэнергетичных химических связей АТФ. Запасы АТФ позволяют организму быстро и эффективно обеспечивать различные процессы жизнедеятельности.

Молекулы белков функционируют в организме от нескольких часов до нескольких дней. За этот период в них накапливаются нарушения, и белки становятся непригодными для выполнения своих функций. Они расщепляются и заменяются на вновь синтезируемые. Требуют постоянного обновления и сами клеточные структуры.

Пластический и энергетический обмены неразрывно взаимосвязаны. Процессы расщепления осуществляют энергетическое обеспечение процессов синтеза, а также поставляют необходимые для синтеза строительные вещества. Правильный обмен веществ поддерживает постоянство химического состава биологических систем, их внутренней среды. Способность организмов сохранять внутренние параметры неизменными носит название гомеостаза. Процессы метаболизма происходят в соответствии с генетической программой клетки, реализуя ее наследственную информацию.

Энергетический обмен в клетке. Синтез АТФ

Человек и животные получают энергию за счет окисления органических соединений, поступающих с пищей. Биологическое окисление веществ — это, по сути, медленное горение. Конечные продукты сгорания дров (целлюлозы) — углекислый газ и вода. Полное окисление органических веществ (углеводов и липидов) в клетках также происходит до воды и углекислого газа. В отличие от горения, процесс биологического окисления происходит постепенно. Высвобождающаяся энергия также постепенно запасается в виде химических связей синтезируемых соединений. Некоторая ее часть рассеивается в клетках, поддерживая необходимую для жизнедеятельности температуру.

Синтез АТФ происходит главным образом в митохондриях (у растений еще и в хлоропластах) и обеспечивается в основном энергией, выделяющейся при расщеплении глюкозы, но могут использоваться и другие простые органические соединения — сахара, жирные кислоты и пр.

Гликолиз. Процесс расщепления глюкозы в живых организмах носит название гликолиза (греч. glykys сладкий + lysis расщепление). Рассмотрим основные его этапы.

На первой, предварительной стадии в лизосомах происходит образование простых органических молекул путем расщепления ди- и полисахаридов. Выделяющееся при этом небольшое количество энергии рассеивается в виде тепла.

Второй этап гликолиза происходит в цитоплазме без участия кислорода и называется анаэробным (бескислородным — греч. ana без + aer воздух) гликолизом — неполным окислением глюкозы без участия кислорода.

Бескислородный гликолиз представляет собой сложный многоступенчатый процесс из десяти последовательных реакций. Каждая реакция катализируется специальным ферментом. В итоге глюкоза расщепляется до пировиноградной кислоты (ПВК):

С6Н12О6(глюкоза) + 2Н3РО4 + 2АДФ = 2С3Н4О3(ПВК) + 2АТФ + 2Н2О

Глюкоза в этом процессе не только расщепляется, но и окисляется (теряет атомы водорода). В мышцах человека и животных две молекулы ПВК, приобретая атомы водорода, восстанавливаются в молочную кислоту С3Н6О3. Этим же продуктом заканчивается гликолиз у молочнокислых бактерий и грибков, применяемый для приготовления кислого молока, простокваши, кефира, а также при силосовании кормов в животноводстве. Процесс превращения ПВК в клетках микроорганизмов и растений в устойчивые конечные продукты называют брожением.

Так, дрожжевые грибки расщепляют ПВК на этиловый спирт и углекислый газ. Этот процесс, называемый спиртовым брожением, используют для приготовления кваса, пива и вина. Брожение других микроорганизмов завершается образованием ацетона, уксусной кислоты и т.д.

Главным результатом анаэробного гликолиза во всех организмах является образование двух молекул АТФ. Высвобождающаяся при расщеплении глюкозы энергия относительно невелика — 200 кДж/моль. Высокоэнергетичные связи АТФ запасают 40% этой величины. Остальные 60% рассеиваются в виде тепла. Основной выход энергии и молекул АТФ происходит на третьем, кислородном этапе гликолиза, называемом еще аэробным дыханием.

Кислородный гликолиз. При наличии достаточного количества кислорода дальнейший процесс расщепления ПВК происходит уже не в цитоплазме, а в митохондриях, и включает несколько десятков последовательных реакций, каждая из которых обслуживается своим комплексом ферментов.

Молекулы ПВК под действием ферментов (и кофермента НАД — никотинамидадениндинуклеотида) поэтапно окисляются сначала до уксусной кислоты, а затем, в так называемом цикле Кребса (или трикарбоновых кислот), до углекислого газа и воды (медленное горение). В процессе окисления образуются сложные молекулярные соединения с присоединенными к ним атомами водорода. Молекулы-переносчики подхватывают и перемещают электроны этих атомов по длинной цепи ферментов от одного к другому. На каждом шаге электроны вступают в окислительно-восстановительные реакции и отдают свою энергию, которая идет на перемещение протонов на внешнюю сторону внутренней мембраны митохондрии.

В результате оставшиеся протоны и перемещенные электроны оказываются на разных сторонах внутренней мембраны. На мембране создается разность потенциалов.

Фермент, синтезирующий АТФ (АТФ-синтетаза), встроен во внутреннюю мембрану по всей ее толщине. Этот фермент имеет характерную особенность: небольшой каналец в молекулярной структуре. При накоплении на мембране разности потенциалов примерно в 200 мВ ионы Н+ начинают протискиваться через каналец в молекуле АТФ-синтетазы. В процессе энергичного продвижения ионов через фермент происходит синтез АТФ из АДФ с участием фосфорной кислоты.

В химических реакциях кислородного гликолиза освобождается большое количество энергии — 2600 кДж/моль. Существенная ее часть (55%) запасается в высокоэнергетичных связях образующихся молекул АТФ. Остальные 45% рассеиваются в виде тепла (поэтому при выполнении физической работы нам жарко). Итоговое уравнение кислородной стадии выглядит следующим образом:

2С3Н6О3(молочн.кислота) + 6О2 + 36Н3РО4 + 36АДФ = 6СО2 + 42Н2О + 36АТФ

Таким образом, кислородное расщепление резко увеличивает эффективность энергетического обмена и играет основную роль в аккумулировании энергии. Если гликолиз без участия кислорода дает только 2 молекулы АТФ, то кислородный гликолиз обеспечивает синтез 36 молекул АТФ. В итоге в полном цикле гликолиза на каждую молекулу глюкозы образуется 38 молекул АТФ.

При среднесуточных энергетических затратах в 10 тыс. кДж в организме человека ежедневно синтезируется около 170 кг АТФ, а содержится всего около 50 г АТФ, следовательно, возобновление запаса происходит с частотой 3400 раз в сутки!

При интенсивной физической работе клетки организма не успевают насытиться кислородом, и расщепление глюкозы ограничивается бескислородным гликолизом. В результате быстро накапливается молочная кислота — токсичное для нервных и мышечных клеток соединение (вспомним мышечные боли после тяжелой работы). Появление молочной кислоты возбуждает дыхательный центр и заставляет нас усиленно дышать. Насыщение клеток кислородом позволяет организму возобновить процесс кислородного расщепления, обеспечивающий необходимое количество энергии в виде молекул АТФ. Наступает «второе дыхание». Гепардам после интенсивного бега требуется продолжительный отдых, порой они оказываются не в состоянии защитить свою добычу от менее сильных хищников. В большой скорости восстановления кислородного запаса, а значит, в лучшей приспособленности к длительной мышечной активности — преимущество многих мелких животных.

Митохондрии способны использовать для синтеза АТФ не только расщепление глюкозы. В их матриксе содержатся также ферменты, расщепляющие жирные кислоты. Особенностью этого цикла является большой энергетический выход — 51 молекула АТФ на каждую молекулу жирной кислоты. Не случайно медведи и другие животные, впадая в спячку, запасают именно жиры. Любопытно, что часть запасаемого жира имеет у них бурый цвет. Такие жировые клетки содержат множество митохондрий необычного строения: их внутренние мембраны пронизаны порами. Ионы водорода свободно проходят через эти поры, и синтез АТФ в клетках бурого жира не происходит. Вся энергия, освобождающаяся в процессе кислородного расщепления жирных кислот, выделяется в виде большого количества тепла, согревающего животных во время долгой зимней спячки.

Бурый жир составляет не более 1-2% массы тела, но повышает производство тепла до 400 Вт на каждый килограмм веса (теплопроизводство человека в состоянии покоя составляет 1 Вт/кг). Запасают жир и верблюды. При постоянном дефиците влаги это вдвойне выгодно, поскольку расщепление жиров дает еще и большое количество воды.

Кроме глюкозы и жирных кислот, митохондрии способны расщеплять аминокислоты, но они — дорогое топливо. Аминокислоты являются важным строительным материалом, из них организм синтезирует свои белки. К тому же использование аминокислот для синтеза АТФ требует предварительного удаления аминогруппы NН2 с образованием токсичного аммиака. Белки и составляющие их аминокислоты используются клеткой для получения энергии только в крайнем случае.

Этиловый спирт тоже может использоваться митохондриями для синтеза АТФ. Но спирт как «топливо» имеет для организма человека свои недостатки, постоянное употребление алкоголя приводит к тяжелым расстройствам, например, к жировому перерождению печени — циррозу.

Фотосинтез — превращение энергии света в энергию химических связей

Автотрофные организмы. В отличие от человека и животных, все зеленые растения и часть бактерий способны синтезировать органические вещества из неорганических соединений. Такой тип обмена веществ называется автотрофным (греч. autos сам + trophe пища). В зависимости от вида энергии, используемой автотрофами для синтеза органических молекул, их делят на фототрофов и хемотрофов. Фототрофы используют энергию солнечного света, а хемотрофы — химическую энергию, высвобождающуюся при окислении ими различных неорганических соединений.

Зеленые растения являются фототрофами. Их хлоропласты содержат хлорофилл, позволяющий растениям осуществлять фотосинтез — преобразование энергии солнечного света в энергию химических связей синтезируемых органических соединений. Из всего спектра солнечного излучения молекулы хлорофилла поглощают красную и синюю часть, а зеленая составляющая достигает сетчатки наших глаз. Поэтому большинство растений мы видим зелеными.

Для осуществления фотосинтеза растения поглощают из атмосферы углекислый газ, а из водоемов и почвы — воду, неорганические соли азота и фосфора. Итоговое уравнение фотосинтеза выглядит довольно просто:

6СО2 + 6Н2О = С6Н12О6(глюкоза) + 6О2,

но всем хорошо известно, что при смешивании углекислого газа и воды глюкоза не образуется. Фотосинтез — сложный многоступенчатый процесс, для прохождения которого необходим не только солнечный свет и хлорофилл, но и ряд ферментов, энергия АТФ и молекулы-переносчики. Выделяют две фазы фотосинтеза — световую и темновую.

С в е т о в а я ф а з а фотосинтеза начинается с освещения растений светом. Солнечные фотоны, передавая свою энергию молекуле хлорофилла, переводят молекулу в возбужденное состояние: ее электроны, получая дополнительную энергию, переходят на более высокие орбиты. Отрыв таких возбужденных электронов может происходить значительно легче, чем невозбужденных. Молекулы-переносчики захватывают их и перемещают на другую сторону мембраны тилакоида.

Молекулы хлорофилла восполняют потерю электронов, отрывая их от молекул воды. В результате вода расщепляется на протоны и молекулярный кислород:

2Н2О – 4е = 4Н+ + О2

Процесс расщепления молекул воды до молекулярного кислорода, протонов и электронов под действием света называют фотолизом. Молекулярный кислород легко диффундирует сквозь мембраны тилакоидов и выделяется в атмосферу. Протоны неспособны к проникновению через мембрану и остаются внутри.

Таким образом, снаружи мембраны накапливаются электроны, доставленные молекулами-переносчиками с возбужденных молекул хлорофилла, а внутри — протоны, образовавшиеся в результате фотолиза воды. Возникает разность потенциалов. В мембраны тилакоидов хлоропласта, так же как и во внутренние мембраны митохондрий, встроены ферменты-синтетазы, осуществляющие синтез АТФ. В молекулярной структуре синтетаз растений также имеется каналец, через который могут проходить протоны. При достижении на мембране критической разности потенциалов протоны, влекомые силой электрического поля, протискиваются по канальцу АТФ-синтетазы, затрачивая энергию на синтез АТФ. Соединяясь на другой стороне мембраны с электронами, протоны образуют атомарный водород.

Фотосинтез в хлоропластах весьма эффективен: он дает в 30 раз больше АТФ, чем кислородный гликолиз в митохондриях тех же растений.

Таким образом, во время световой фазы фотосинтеза происходят следующие главные процессы: выделение в атмосферу свободного кислорода, синтез АТФ и образование атомарного водорода.

Протекание дальнейших реакций может происходить и в темноте, потому носит название темновой фазы.

Т е м н о в а я ф а з а. Реакции этой фазы происходят в строме хлоропласта при участии атомарного водорода и АТФ, образовавшихся в световой фазе, а также ферментов, восстанавливающих СО2 до простого сахара — триозы (глицеральдегида) — и синтезирующих из нее глюкозу:

6СО2 + 24Н = С6Н12О6(глюкоза) + 6Н2О

Для образования одной молекулы глюкозы требуется 18 молекул АТФ. Комплекс реакций темновой фазы, осуществляемых ферментами (и коферментом НАД), носит название цикла Кальвина.

Кроме глюкозы, из триозы могут синтезироваться жирные кислоты, аминокислоты и пр. Углеводы и жирные кислоты далее транспортируются в лейкопласты, где из них формируются запасные питательные вещества — крахмал и жиры.

С наступлением темноты растения продолжают процесс фотосинтеза, используя запасенные на свету соединения. Когда этот запас исчерпывается, прекращается и фотосинтез. В ночной темноте растения напоминают по типу обмена веществ животных: они поглощают кислород из атмосферы (дышат) и окисляют при помощи его запасенные днем питательные вещества. На дыхание растения используют в 20-30 раз меньше кислорода, чем выделяют в атмосферу в процессе фотосинтеза.

Количество энергии, производимой растениями, значительно превышает количество тепла, выделяющегося при сжигании всем населением планеты горючих полезных ископаемых. Ежегодно растительность планеты дает 200 млрд. т кислорода и 150 млрд. т органических соединений, необходимых человеку и животным.

Хемосинтез. Большинство бактерий лишены хлорофилла. Некоторые из них являются хемотрофами: для синтеза органических веществ они используют не энергию света, а энергию, высвобождающуюся при окислении неорганических соединений. Такой способ получения энергии и синтеза органических веществ назвали хемосинтезом (греч. chemia химия). Явление хемосинтеза открыто в 1887 г. русским микробиологом С. Н. Виноградским.

Н и т р и ф и ц и р у ю щ и е б а к т е р и и. В корневищах растений, главным образом, бобовых, живут особые клубеньковые бактерии. Они способны усваивать недоступный растениям атмосферный азот и обогащать почву аммиаком. Нитрифицирующие бактерии окисляют аммиак клубеньковых бактерий до азотистой кислоты и далее — азотистую до азотной. В результате растения получают соли азотной кислоты, необходимые для синтеза аминокислот и азотистых оснований.

В о д о р о д н ы е б а к т е р и и также широко распространены в почвах. Они окисляют молекулы водорода, образующиеся в результате бескислородного окисления органических останков различными микроорганизмами:

2Н2 + О2 = 2Н2О

Ж е л е з о б а к т е р и и используют энергию, высвобождающуюся при окислении двухвалентного железа до трехвалентного (закисные соли до окисных).

С е р о б а к т е р и и обитают в болотах и «питаются» сероводородом. В результате окисления сероводорода выделяется необходимая для жизнедеятельности бактерий энергия и накапливается сера. При окислении серы до серной кислоты высвобождается еще часть энергии. Суммарный выход энергии составляет существенную величину — 666 кДж/моль. Огромное количество серобактерий обитает в Черном море. Его воды, начиная со стометровой глубины, насыщены сероводородом.

Гетеротрофный тип обмена веществ. Человек и животные не способны синтезировать необходимые для жизнедеятельности органические вещества из неорганических и вынуждены поглощать их с пищей. Такие организмы называют гетеротрофами (греч. heteros другой). К гетеротрофам относятся также большинство бактерий и грибы. Вещества, поступившие с пищей, разлагаются в организмах животных на простые углеводы, аминокислоты, нуклеотиды, из которых далее синтезируются высокомолекулярные соединения, необходимые для конкретного вида существ в конкретной фазе жизненного цикла. Часть поступивших с пищей молекул расщепляется до конечных продуктов, а высвобождающаяся энергия используется в процессах жизнедеятельности. Некоторое количество энергии рассеивается в виде теплоты, служащей для поддержания температуры тела.

Многие одноклеточные водоросли имеют миксотрофное (смешанное) питание. На свету они фотосинтезируют, а в темноте переходят к фагоцитозу, т.е. становятся гетеротрофами.

Пластический обмен. Биосинтез белков. Синтез и РНК

В процессах метаболизма реализуется наследственная информация. Клетка синтезирует только те вещества, которые записаны в ее генетической программе. Каждой группе клеток присущ свой комплекс химических соединений. Среди них особенно важными для организма являются белки.

Многие функции и признаки организма определяются его набором белков. Белки-ферменты расщепляют пищу, отвечают за поглощение и выделение солей, синтезируют жиры и углеводы, производят множество других биохимических превращений. Белки определяют цвет глаз, рост — словом, внешнюю специфичность организмов. Большинство белков, выполняющих одни и те же функции, несколько различны даже у особей одного и того же вида (к примеру, белки групп крови). Но некоторые однофункциональные белки могут иметь сходное строение у далеких групп организмов (к примеру, инсулин собаки и человека).

В процессе жизнедеятельности белковые молекулы постепенно разрушаются, теряют свою структуру — денатурируют. Их активность падает, и клетки заменяют их новыми. В организмах постоянно происходит синтез необходимых белков.

иосинтез белковых молекул — сложный ферментативный процесс, начинающийся в ядре и заканчивающийся на рибосомах. Центральную функцию в нем выполняют носители генетической информации — нуклеиновые кислоты ДНК и РНК.

Генетический код. Последовательность нуклеотидов ДНК задает последовательность аминокислот в белках — их первичную структуру. Молекулы ДНК являются матрицами для синтеза всех белков.

Отрезок ДНК, несущий информацию о первичной структуре конкретного белка, называют геном. Соответствующую последовательность нуклеотидов — генетическим кодом белка.

Идею о том, что наследственная информация записана на молекулярном уровне, а синтез белков идет по матричному принципу, впервые высказал еще в 1920-х годах русский биолог Н. К. Кольцов. В настоящее время код ДНК полностью расшифрован. В этом заслуга известных ученых: Г. Гамова (1954), а также Ф. Крика, С. Очоа, М. Ниренберга, Р. Холи и К. Хорана (1961-65). Значительную часть свойств генетического кода установил английский физик Ф. Крик, исследуя бактериофагов.

К о д т р и п л е т е н. Каждая аминокислота в генетическом коде задается последовательностью трех нуклеотидов — триплетом, или кодоном. Различных нуклеотидов в ДНК четыре, следовательно, теоретически возможных кодонов — 64 (43). Большинству аминокислот соответствует от 2 до 6 кодонов — код, как говорят, вырожден. Чем чаще аминокислота встречается в белках, тем, как правило, большим числом кодонов она кодируется. Оставшиеся три кодона вместе с кодоном метионина (АУГ) служат знаками препинания при считывании информации — указывают начало и конец матриц конкретных белков. Если белок имеет несколько полимерных цепей (образующих отдельные глобулы), то знаки препинания выделяют полипептидные звенья. Считывание каждого звена происходит непрерывно, без знаков препинания и пропусков — триплет за триплетом.

К о д о д н о з н а ч е н. Кроме триплетности, генетический код наделен рядом других характерных свойств. Его кодоны не перекрываются, каждый кодон начинается с нового нуклеотида, и ни один нуклеотид не может прочитываться дважды. Любой кодон соответствует только одной аминокислоте.

К о д у н и в е р с а л е н. Генетическому коду свойственна универсальность для всех организмов на Земле. Одинаковые аминокислоты кодируются одними и теми же триплетами нуклеотидов у бактерий и слонов, водорослей и лягушек, черепах и лошадей, птиц и даже человека. Несколько отличаются (на 1-5 кодонов) только коды митохондрий некоторых организмов, ряда дрожжей и бактерий.

Ошибка хотя бы в одном триплете приводит к серьезным нарушениям в организме. У больных серповидной анемией (их эритроциты имеют не дисковую, а серповидную форму) из 574 аминокислот белка гемоглобина одна аминокислота заменена другой в двух местах. В результате белок имеет измененную третичную и четвертичную структуру. Нарушенная геометрия активного центра, присоединяющего кислород, не позволяет гемоглобину эффективно справляться со своей задачей — связывать кислород в легких и снабжать им клетки организма.

Транскрипция. Синтез белка происходит в цитоплазме на рибосомах. Генетическую информацию от хромосом ядра к месту синтеза переносят иРНК:

ДНК – и РНК — белок

Информационная РНК синтезируется на отрезке одной из нитей ДНК как на матрице, хранящей информацию о первичной структуре конкретного белка или группы белков, выполняющих одну функцию. В основе синтеза лежит принцип комплементарности: напротив Цднк встает Грнк, напротив Гднк — Црнк, напротив Аднк — Урнк, напротив Тднк — Арнк. Затем мономерные звенья связываются в полимерную цепь. Таким образом, иРНК становится точной копией второй нити ДНК (с учетом замены Т- У). Молекула иРНК имеет одноцепочечную структуру, она в сотни раз короче ДНК.

Процесс перенесения генетической информации на синтезируемую иРНК носит название транскрипции. Перед началом каждого гена или группы однофункциональных генов расположена последовательность нуклеотидов, называемая инициатором (содержит кодон АУГ). В этой последовательности есть участок (промотор) для присоединения фермента РНК-полимеразы, осуществляющего транскрипцию. Полимераза распознает промотор благодаря химическому сродству. В конце матрицы синтеза находится стоп-кодон (один из трех в таблице), или терминатор.

В ходе транскрипции РНК-полимераза в комплексе с другими ферментами разрывает водородные связи между азотистыми основаниями двух нитей ДНК, частично раскручивает ДНК и производит синтез иРНК по принципу комплементарности. На одной ДНК «работают» сразу несколько полимераз.

Готовая молекула иРНК после небольшой перестройки связывается в комплекс со специальными белками и транспортируется ими через ядерную оболочку на рибосомы. Эти белки выполняют и другую функцию — они защищают иРНК от действия различных ферментов цитоплазмы. В прокариотической клетке ДНК не отделена от цитоплазмы, и синтез белков рибосомы начинают еще во время транскрипции.

Транспортные РНК. Необходимые для синтеза белков аминокислоты всегда имеются в составе цитоплазмы. Они образуются в процессе расщепления лизосомами белков. Транспортные РНК связывают аминокислоты, доставляют их на рибосомы и производят точную пространственную ориентацию аминокислот на рибосоме.

Рассмотрим устройство тРНК, позволяющее ей успешно выполнять свои сложные функции. В цепочке, состоящей из 70-90 звеньев, имеется 4 пары комплементарных отрезков из 4-7 нуклеотидов — А, Б, В и Г. Комплементарные участки связываются водородными связями попарно (как в молекуле ДНК). В результате нить тРНК «слипается» в четырех местах с образованием петлистой структуры, напоминающей лист клевера. В верхушке «листа» располагается триплет, код которого комплементарен кодону иРНК, соответствующему транспортируемой аминокислоте. Так, если в иРНК код аминокислоты валина ГУГ, то на вершине валиновой тРНК ему будет соответствовать триплет ЦАЦ. Комплементарный триплет в тРНК называют антикодоном.

Специальный фермент распознает антикодон тРНК, присоединяет к «черенку листа» определенную аминокислоту (в нашем примере — валин), и затем тРНК перемещает ее к рибосоме. Каждая тРНК транспортирует только свою аминокислоту.

Синтез белковой цепи на рибосоме

Матричные процессы составляют основу способности живых организмов к воспроизведению. В клеточном ядре происходит удвоение ДНК. Новая молекула воспроизводится на матрице старой и представляет собой ее точную копию. Информационная РНК синтезируется на матрице ДНК в виде точной копии одного из участков ДНК. Далее на матрице иРНК происходит синтез белков.

Трансляция. Перевод последовательности нуклеотидов иРНК в последовательность аминокислот синтезируемых белков называют трансляцией.

В активном центре рибосомы размещаются два триплета иРНК и соответственно две тРНК. Рибосома перемещается по иРНК не плавно, а прерывисто, триплет за триплетом. На каждом шаге присоединяется новая аминокислота. Транспортные РНК перемещаются со своей аминокислотой к рибосоме и «примеряют» свой антикодон к очередному кодону иРНК, находящемуся в активном центре (комплементарные нуклеотиды хорошо подходят друг другу, между ними возникают водородные связи). Если антикодон оказывается не комплементарным, то тРНК удаляется в цитоплазму к другим рибосомам. Если же он оказывается комплементарным, то тРНК присоединяется к кодону водородными связями.

Далее особый фермент рибосомы подсоединяет синтезируемую полипептидную цепь к «прибывшей» аминокислоте. Ее транспортная РНК продолжает удерживать всю формирующуюся белковую цепь на кодоне иРНК до прихода следующей тРНК. Освободившаяся тРНК перемещается в цитоплазму «на поиск» аминокислот. Рибосома перескакивает на следующий триплет иРНК, и процесс повторяется. Интервал между перескакиваниями продолжается не более 1/5 — 1/6 с, а вся трансляция среднего белка — 1-2 минуты.

На одной нити иРНК «трудятся» сразу несколько рибосом. На иРНК, содержащей информацию о белке гемоглобине, размещается до 5 рибосом, на некоторых других иРНК — до 20 рибосом. Когда в активном центре рибосомы оказывается один из трех триплетов, кодирующих знаки препинания между генами, синтез белка завершается.

Освободившаяся рибосома отправляется на другую иРНК. Рибосомы универсальны и могут синтезировать полипептиды по любой матрице иРНК. Субъединицы рибосом соединяются только для синтеза белка, после окончания синтеза они вновь разъединяются.

Сворачивание в спираль и приобретение третичной структуры происходит по мере синтеза белковой цепи, поэтому зачастую невозможно восстановление денатурированных белков со сложной пространственной структурой, даже если их первичная структура сохранена. Сворачивание белковой цепи целой молекулы происходит по-иному, и белок оказывается неактивным.

Многие белки — например, пищеварительные ферменты — очень активны и способны переварить саму клетку, поэтому синтезируемые молекулы белков сразу попадают в эндоплазматическую сеть (к мембране которой прикреплены синтезирующие белки рибосомы) и по ее каналам перемещаются к комплексу Гольджи, а от него в тот участок клетки или в ту часть организма, где требуется этот вид белков. Синтез небелковых соединений клетка осуществляет в два этапа. Сначала рибосомы производят трансляцию специфического белка-фермента. Затем при его участии образуется молекула необходимого соединения — углевода, жиров и т.д. Сходным образом синтезируются и другие соединения: витамины, небелковые гормоны и пр.

Процесс синтеза белков требует затрат большого количества специфической энергии АТФ, которую нельзя заменить иным источником. Только на присоединение каждой аминокислоты к тРНК расходуется энергия одной молекулы АТФ, а в среднем белке 400-500 аминокислот. Общее количество затрачиваемой энергии существенно превышает суммарную химическую энергию образующихся пептидных связей между молекулами аминокислот. По этой причине белки редко используются клеткой в качестве топлива: слишком велики затраты на их изготовление.

Регуляция транскрипции и трансляции. Клетки различных тканей живых организмов сильно отличаются друг от друга по строению и функциям, но все они произошли от единственной зиготы (оплодотворенной яйцеклетки) в результате многократного деления.

Перед каждым актом деления ДНК реплицируется в две точные копии. Ученым удалось экспериментально доказать, что дифференцированные клетки организма имеют одинаковый набор ДНК, не утрачивая ни одной из его частей в процессе делений.

В 1958 г. Ф. Стюарт впервые вырастил из единственной клетки взрослой моркови целое растение. В 1968 г. Дж. Гордону удалось пересадить ядра из клеток кишечника головастика в яйцеклетки лягушки, лишенные собственных ядер, и вырастить из них нормальных лягушек. Следовательно, клетки всех тканей организма имеют один и тот же набор генов, одну и ту же информацию о строении белков.

Однако клетки каждой ткани производят свои белки, свои ферменты. Гемоглобин образуется только в эритроцитах, белковый гормон роста синтезируется только в клетках гипофиза, зрительный белок опсин — в клетках сетчатки глаза, а инсулин — в клетках поджелудочной железы.

Такое разнообразие происходит по причине того, что клетки каждой ткани реализуют только свою часть информации ДНК. В разных клетках происходит транскрипция разных участков ДНК, синтезируются разные иРНК, по которым воспроизводятся разные белки. Более того, специфичные для клеток белки производятся не все сразу, а по мере необходимости. В организмах имеются удивительно точные механизмы «включения» и «выключения» генов на разных этапах жизненного цикла клетки от ее появления до деления.

Геном эукариот устроен намного сложнее генома прокариот. Это связано с увеличением сложности регуляции генетических процессов, а не с увеличением количества структурных белков и ферментов. В клетках высокоразвитых организмов только 10% всех генов ответственны за синтез ферментов и структурных белков, остальные 90% составляют «административный аппарат» клетки.

Кроме того, существуют системы, регулирующие синтез веществ в организме как едином целом. В клетках желез внутренней секреции вырабатываются гормоны, которые разносятся с кровью по всему телу. Эти гормоны регулируют процессы синтеза иРНК и трансляцию именно в тех клетках, для которых они предназначены. На поверхности мембраны клеток есть рецепторы для «своих» гормонов. Связываясь с рецепторами, гормоны управляют активностью различных систем клетки, регулирующих обмен. В результате может изменяться как транскрипция конкретных генов, так и синтез белков на рибосомах.

Даже синтезированные иРНК могут долгое время не транслироваться, если нет «команды» от гормонов. Каждый гормон через определенные системы клеток активирует свои гены. Так, адреналин дает сигнал на синтез ферментов, расщепляющих гликоген до глюкозы, интенсивно потребляемой мышцами при физической нагрузке. Инсулин выполняет обратную функцию, он участвует в синтезе гликогена из глюкозы в клетках печени.

Как транскрипция, так и трансляция могут подавляться различными химическими веществами, относящимися к классу антибиотиков (греч. anti против + bios жизнь). Например, эритромицин и стрептомицин подавляют синтез белка на рибосомах инфекционных бактерий, а бледная поганка содержит вещество, подавляющее функционирование РНК-полимеразы человека. Прекращение полимеразой синтеза иРНК приводит к тяжелейшим последствиям.

Подведем итоги. В воспроизведении белков в живых существах участвует ДНК, информационная РНК, транспортные РНК для 20 аминокислот (всего 61, по количеству кодонов), рибосомы, состоящие из нескольких рибосомных РНК (3 у прокариот и 4 у эукариот) и десятков различных молекул белка, а также целый комплекс ферментов. Для осуществления синтеза одной белковой молекулы необходим тонкий, специфический подвод энергии посредством более чем 1000 молекул АТФ. Практически вся клетка участвует в синтезе, нарушение строения хотя бы одного из компонентов нарушает процесс воспроизведения белковых молекул.

Для современных ученых удивителен сам факт функционирования этой сложной системы в организме. Доказана абсолютная невозможность самообразования молекул РНК и даже ее более простой составляющей — рибозы. Возможность же самосборки белков в гипотетическом первобытном океане при возникновении в нем жизни квалифицированные биохимики совершенно исключают. Так познание внутриклеточных процессов приводит к мысли о богосотворенности мира и приближает нас к очевидности Божия бытия.

www.ronl.ru

Обмен веществ и энергии в клетке — реферат

Обмен веществ и  превращение энергии в клетке — основа всех проявлений ее жизнедеятельности

Опубликовано 27 Апр 2010 в рубрике «Биология 10 Класс, Цитология»  

СОДЕРЖАНИЕ 

Введение

1. Молекулярный транспорт  через биологическую мембрану

2. Энергетический  обмен

Заключение

Список литературы 

ВВЕДЕНИЕ 

Главным условием жизни  как отдельной клетки, так и  организма в целом является обмен  веществ и энергией с окружающей средой. Энергия необходима для осуществления  множества различных жизненно важных процессов.

В клетке непрерывно идут процессы биологического синтеза, или биосинтеза. С помощью ферментов  образуются сложные высокомолекулярные соединения: из аминокислот синтезируются  белки, из моносахаридов — сложные  углеводы, из азотистых оснований  — нуклеотиды, а из них — нуклеиновые  кислоты.

Разнообразные жиры и масла возникают путем химических превращений сравнительно простых  веществ, источником которых служит остаток уксусной кислоты — ацетат. При этом биосинтетические реакции  отличаются видовой и индивидуальной специфичностью. Например, клетки наружных покровов членистоногих синтезируют  хитин — сложный полисахарид, а у наземных позвоночных —  рептилий, птиц, млекопитающих —  роговое вещество, основой которого является белок кератин. В конечном счете, структура синтезируемых  крупных органических молекул определяется последовательностью нуклеотидов  в ДНК, т. е. генотипом. Синтезируемые  вещества используются в процессе роста  для построения клеток и их органоидов и для замены израсходованных  или разрушенных молекул. Все  реакции синтеза идут с поглощением  энергии.

Большое количество энергии необходимо для построения органелл клетки и создания новых  клеток при делении; активного транспорта веществ в клетку и из клетки; энергетической передачи нервных импульсов; сокращения мышц; поддержания постоянной температуры тела у птиц и млекопитающих  и т. д. При этом живым организмам необходим постоянный приток энергии  как для осуществления этих процессов, так и для восполнения неизбежных потерь энергии в виде тепла. Источником энергии в этих случаях служит расщепление органических веществ. Совокупность реакций расщепления высокомолекулярных соединений, сопровождающихся выделением энергии, называется энергетическим обменом, или диссимиляцией.

Запас органических веществ, расходуемых в процессе диссимиляции, должен непрерывно пополняться  либо за счет пищи (животные), либо путем  синтеза из неорганических веществ  при использовании света (зеленые  растения). Совокупность всех процессов  биосинтеза называется пластическим обменом, или ассимиляцией. Пластический обмен  всегда сопровождается поглощением  энергии.

Реакции пластического  и энергетического обменов находятся  в неразрывной связи и дополняют  друг друга, составляя в совокупности обмен веществ и энергии в  клетке.

Совокупность реакций  синтеза (анаболические реакции) и  распада (катаболические реакции), протекающих  в клетке в любой данный момент, составляют ее обмен веществ (метаболизм).

Анаболизм + катаболизм = метаболизм. Обмен веществ может  осуществляться, если организм получает нужные ему вещества из внешней среды  и выводит в окружающую среду  продукты обмена, т. е. обмен веществ  как форма существования живого возможен лишь при условии неразрывной  связи организма со средой.

Связь организма  с окружающей средой, с физико-химической точки зрения, представляет собой  открытую систему, т. е. систему, где  биохимические процессы идут постоянно. Исходные вещества поступают из окружающей среды, а вещества, образующиеся также  непрерывно, выносятся вовне. Равновесие между скоростью и концентрацией  продуктов разнонаправленных реакций  в организме является условным, мнимым, т. к. поступление и вынос веществ  не прекращаются. Непрерывная связь  с окружающей средой и позволяет  рассматривать живой организм как  открытую систему. 

1. МОЛЕКУЛЯРНЫЙ ТРАНСПОРТ  ЧЕРЕЗ БИОЛОГИЧЕСКУЮ МЕМБРАНУ 

Одна из главных  задач любого живого существа, будь то одиночная клетка или многоклеточный организм, — получение необходимых  для жизни веществ, т. е. пищи, воды и кислорода. Одновременно организм должен избавиться от различных отходов  жизнедеятельности (например, от двуокиси углерода). Обмен веществами со средой идет через клеточную мембрану (ее называют также плазматической мембраной) — тонкую пленку, покрывающую всю  клетку. Существует четыре основных механизма  поступления веществ в клетку или выхода из клетки наружу: диффузия, осмос, активный транспорт и экзо- или эндоцитоз.

Молекулы любого вещества находятся в непрерывном  беспорядочном движении. При этом они стремятся переходить из области  с более высокой их концентрацией  в область более низкой концентрации, так что реальное их перемещение  происходит по градиенту концентрации. Такое движение носит название диффузии.

Многие вещества способны диффундировать в клетки или  из клеток по градиентам концентрации. Предоставленные самим себе, такие  вещества вскоре равномерно распределились бы между клеткой и средой, т. е. их концентрации в клетке и среде  сравнялись бы. Однако чтобы клетка оставалась живой, ее химический состав должен быть относительно постоянным, что сопряжено с большими трудностями, т. к. клетке приходится непрерывно поглощать новые молекулы — питательные вещества и кислород — и непрерывно удалять отходы. Клетка должна, следовательно, поддерживать оживленный, но строго регулируемый обмен со средой! Регулирование этого обмена осуществляет клеточная мембрана.

Клеточная мембрана настолько тонка, что она не видна  в световом микроскопе, но о ее существовании  исследователи узнали задолго до того, как она была выявлена в  трансмиссионном электронном микроскопе. В начале ХХ в. обнаружили, что скорость проникновения многих веществ в  эритроциты прямо пропорциональна  их растворимости в липидах. Исходя из этого предположили, что клеточная  мембрана содержит большое количество липидов; вещества растворяются в ней, проходят сквозь нее и оказываются  по другую сторону мембраны.

Однако растворимость  в липидах не объясняет всех характеристик  проницаемости клеточной мембраны. Вода и ряд водорастворимых (полярных) веществ проникают в клетки гораздо  быстрее, чем следовало бы ожидать, исходя из их растворимости в липидах.

В 1925 г. на основании  проведенных опытов пришли к выводу, что клеточная мембрана состоит  из двойного слоя липидных молекул (биомолекулярного слоя, бислоя). Изучение поверхностного натяжения и гибкости пограничного слоя клетки позволило заключить, что  в клеточной мембране содержится и белок.

Клеточная мембрана обладает избирательной проницаемостью, т. е. одни вещества проходят через нее  легче, чем другие. Как уже отмечалось выше, вещества, способные растворяться в липидах, могут проходить через  мембрану, просто-напросто растворяясь  в ней. Однако перемещение ионов  и больших органических мономеров, вроде глюкозы и аминокислот, происходит гораздо быстрее, чем  можно было бы ожидать от полярных молекул, растворяющихся в тонком слое липида. Имеются неоспоримые доказательства, что эти вещества вводятся в клетки (или выводятся из них) специальными переносчиками, содержащимися в  клеточной мембране.

Переносчиками являются мембранные транспортные белки. Каждый конкретный белок предназначен для  транспорта строго определенного химического  соединения. Такие белки-переносчики  способны соединяться с молекулой  или ионом и без затраты  энергии, т. е. пассивно транспортировать их через мембрану по градиенту концентрации. Этот процесс, получивший название облегченной  диффузии, является главным механизмом избирательной проницаемости мембраны.

При облегченной  диффузии переносчик, функционирующий  в клеточной мембране, на одной  стороне мембраны соединяется с  молекулой или ионом, а на другой — отдает их, пройдя с ними вместе короткий путь через мембрану. Клетка не расходует на это никакой энергии, если не считать энергию, затраченную  на самообразование переносчика. Переносчик, в сущности, только делает мембрану более проницаемой для того вещества, которое он переносит в клетку полярных молекул, таких, как ионы, сахара, аминокислоты, нуклеотиды и многие другие метаболиты.

Интересно отметить, что вода легко диффундирует через  липидный слой, несмотря на то, что молекулы воды относительно нерастворимы в жирах. Большая скорость диффузии воды отчасти  объясняется тем, что ее молекулы малы и не заряжены. Напротив, для  всех заряженных молекул (ионов), независимо от их размера, липидные слои плазматической мембраны служат серьезным препятствием для проникновения в клетку.

В отличие от облегченной  диффузии, активный транспорт —  это перемещение веществ против их градиентов концентрации. Вещества переходят при этом из той области, где их концентрация ниже, туда, где  она и без того уже выше. Поскольку  такое перемещение происходит в  направлении, противоположном нормальной диффузии, клетка должна затрачивать  на это энергию. Источником этой энергии  служит АТФ. Благодаря затрате энергии, необходимый растению катион, например калия, может проникнуть в клетки корня даже в том случае, если его концентрация в почвенном  растворе в 100 раз ниже, чем в клеточном  соке. Наоборот, менее нужный растению катион Na+ они удаляют в окружающую среду даже при более высокой  концентрации в ней этого элемента.

Механизмы активного  поглощения существуют только для ионов  питательных веществ; следовательно, клетка обладает определенной избирательной  способностью по отношению к различным  ионам. Остальные ионы проникают  в клетку в соответствии с градиентом их электрохимического потенциала и  проницаемостью мембран.

Вода совершенно необходима живой клетке, однако клетка, как известно, не располагает никакой  специальной системой ни для ее поглощения, ни для выведения наружу. Вода проходит сквозь клеточную мембрану совершенно свободным путем осмоса. Осмос  — это диффузия воды через проницаемую  мембрану, вызванная разностью концентраций. Если клетку поместить в воду (гипотонический раствор), то создается градиент водного  потенциала: снаружи концентрация воды будет значительно выше, чем внутри. В силу этого вода поступает внутрь клетки по градиенту своей концентрации, причем мембрана избирательно пропускает только молекулы воды.

Осмотическое движение воды зависит от двух главных факторов: 

1) от общей концентрации  всех растворенных в воде частиц  по обе стороны мембраны;

2) от давления, создаваемого  каждым раствором. 

При прочих равных условиях вода стремится переходить через  избирательно проницаемую мембрану от менее концентрированного раствора к раствору с более высокой  концентрацией всех растворенных частиц. Однако при этом в какой-то момент вода, поступившая в более концентрированный  раствор, может развить такое  давление, что оно будет вытеснять  ее наружу с такой же скоростью, с  какой она поступает внутрь.

Не обладая способностью насасывать или откачивать воду непосредственно, клетки регулируют приток и отток  воды, изменяя концентрацию находящихся  в них растворенных веществ. Чтобы  поглотить больше воды, клетка поглощает  больше ионов различных солей, молекул  глюкозы или других растворимых  соединений. В результате в клетке повышается концентрация растворенных частиц. Вода, по законам осмоса, начинает поступать в клетку, стремясь к  выравниванию своей собственной  концентрации по обе стороны мембраны.

Так работает эта  система до тех пор, пока концентрация растворенных веществ вне клетки и в клетке примерно одинакова. Если же в среде концентрация растворенных веществ выше, чем в самой клетке, или если средой для клетки служит практически сухой воздух, то клетка теряет воду и сморщивается. С оттоком воды содержимое клетки сжимается и отходит от клеточных стенок, растение увядает. Если же увядшие растения поместить в воду, то вода вновь поступает в клетки. Они становятся тургесцентными, т. е. набухают от воды и снова прижимаются к клеточным стенкам, подчиняясь тургурному давлению, направленному изнутри наружу. Клеточные стенки способны растягиваться лишь до известного предела, после которого они начинают оказывать противодавление, вытесняющее воду из клеток с такой же скоростью, с какой она в них поступает.

Таким способом клеточные  стенки защищают клетки, не дают им лопнуть  под напором избытка воды.

По мере поступления  воды осмотическое давление Р клеточного сока и сосущая сила S уменьшаются, а тургурное давление возрастает до тех пор, пока они не уравновесят  друг друга. После этого поглощение воды прекращается. Эта зависимость  выражается следующим уравнением: 

S = P — T 

При полном плазмолизе тургор равен нулю, а сосущая сила клетки — величине ее осмотического  давления. В случае полного насыщения  клетки водой тургурное давление равно осмотическому (Р = Т), вследствие чего сосущая сила будет равна  нулю, и поступление воды в клетку прекратится.

yaneuch.ru

Реферат - Основой жизнедеятельности клетки и организма яв­ляются обмен веществ и превращение энергии

§15 ОБМЕН ВЕЩЕСТВ И ПРЕВРАЩЕНИЕ ЭНЕРГИИ В КЛЕТКЕ

Основой жизнедеятельности клетки и организма яв­ляются обмен веществ и превращение энергии. Обмен ве­ществ и превращение энергии — совокупность всех ре­акций распада и синтеза, протекающих в клетке или во всем организме, связанная с выделением или поглоще­нием энергии. Обмен веществ и превращение энергии со­стоит из двух взаимосвязанных, но противоположных процессов — ассимиляции и диссимиляции.

Две стороны обмена веществ и превращения энергии.

Диссимиляциями лат. диссимиляцио — разрушение, вы­деление) — это совокупность реакций распада и окис­ления в живых системах высокомолекулярных орга­нических веществ до низкомолекулярных органичес­ких и неорганических. В процессе диссимиляции про­исходит освобождение энергии, заключенной в хи­мических связях органических молекул и запасание ее в виде АТФ. Диссимиляционные процессы — это дыха­ние, брожение, гликолиз. Основные конечные продук­ты при этом — вода, углекислый газ, аммиак, мочеви­на и молочная кислота.

Ассимиляция (от лат. ассимиляцио — усвоение) — это совокупность реакций синтеза высокомолекулярных ор­ганических веществ из низкомолекулярных органиче­ских или неорганических. В процессе ассимиляции происходит поглощение энергии от распада молекул АТФ. Так, органические вещества, например, углеводы образуются в растительных клетках из углекислого га­за, воды и минеральных солей.

Итак, основное вещество, которое обеспечивает все об­менные процессы в клетке — это АТФ. В процессе дис­симиляции происходят синтез молекул АТФ и запаса­ние в них энергии. В процессе ассимиляции молекулы АТФ распадаются и выделяющаяся при этом энергия расходуется на синтез органических веществ. Все реак­ции обмена веществ превращения энергии в клетке фер­ментативные — т. е. идут в присутствии ферментов.

^ Типы обмена веществ.

Единственный источник энер­гии на Земле — это Солнце. Благодаря солнечной энер­гии происходит первичный синтез органических веществ из неорганических — фотосинтез. Энергия Солнца акку­мулируется в синтезированных органических вещест­вах, превращаясь в энергию химических связей. В про­цессе питания организмы расщепляют органические вещества, а выделяющаяся при этом энергия запасается в молекулах АТФ. В дальнейшем она используется в ре­акциях ассимиляции.

По способу получения энергии, питания и синтеза ор­ганических веществ все организмы делят на автотрофные и гетеротрофные. Автотрофные организ­мы, или автотрофы (от греч. аутос — сам и трофо — пища, питание) синтезируют органические вещества из неорганических. К автотрофам относят все зеленые рас­тения и цианобактерии. Автотрофно питаются и хемосинтезирующие бактерии, использующие энергию, которая выделяется при окислении неорганических веществ, например серы, железа, азота.

Гетеротрофные организмы, или гетеротрофы (от греч. гетерос — другой и трофо — пища, питание) используют только готовые органические вещества. Ис­точником энергии для них служит энергия, запасенная в органических веществах, получаемых с пищей и выде­ляющаяся при их распаде и окислении. К гетеротрофам относят все животные, грибы и большинство бактерий. При гетеротрофной ассимиляции организм поглощает органические вещества в готовом виде и преобразует их в собственные питательные вещества.

Процессы диссимиляции у организмов также раз­личаются. Аэробным организмам, или аэробам (от греч. аэр — воздух и биос — жизнь) для жизнедеятельности необходим кислород. Дыхание для них является глав­ной формой диссимиляции. Богатые энергией органиче­ские вещества в присутствие кислорода полностью окисляются до энергетически бедных неорганических ве­ществ — углекислого газа и воды.

Анаэробным организмам, или анаэробам (от греч. a an — отрицательная частица) кислород не нужен: про­цессы их жизнедеятельности могут протекать в бески­слородной среде. Органические вещества в этом случае расщепляются не полностью. Поэтому продукты их жиз­недеятельности могут использовать другие организмы. Например, все молочнокислые продукты являются результатом жизнедеятельности анаэробных молочно­кислых бактерий.

Большинство организмов на нашей планете — аэро­бы: все растения, животные (за исключением некоторых паразитов), основные группы грибов и бактерий. Число анаэробов значительно меньше: это многие почвенные микроорганизмы (бактерии и грибы), внутренние пара­зиты, утратившие способность использовать кислород в связи с образом жизни.

www.ronl.ru

Химический состав клетки и обмен веществ на клеточном уровне

Химический состав клетки и обмен веществ на клеточном уровне

ВВЕДЕНИЕ

Клетка - это основная единица живого (биологической активности), ограниченная полупроницаемой мембраной и способная к самовоспроизведению в среде, не содержащей живых систем.

Начало биологической эволюции связано с появлением на Земле клеточных форм жизни.

Одноклеточные организмы представляют собой существующие отдельно друг от друга клетки. Тело всех многоклеточных - животных и растений - построено из большего или меньшего числа клеток, которые являются своего рода блоками, составляющими сложный организм. Независимо от того, представляет ли собой клетка целостную живую систему - отдельный организм или составляет лишь его часть, она наделена набором признаков и свойств, общим для всех клеток.

1. Химический состав клетки

Клеточное вещество является сложным полифазным коллоидом, т.е. представляет собой систему из двух несмешивающихся фаз. Одна из этих фаз структурно является цитоплазматическим матриксом и выполняет роль водной фазы с переходами от жидкого до твердого состояния, тогда как другая является мембранной системой и выполняет роль относительно жидкой фазы. Цитоплазма практически бесцветна, имеет характер раствора.

В элементарном составе клетки насчитывают более 70 элементов, среди которых наиболее частыми являются кислород, углерод, водород, азот. На долю кислорода приходится 65% общей массы, на долю углерода - 18%, водорода - 10%, азота - 3%.

После этих элементов идут кальций, фосфор, калий, сера, натрий, хлор. Поскольку все эти элементы встречаются в клетках в большом количестве, часто их называют макроэлементами. Марганец, медь, йод, кобальт и другие, обнаруживаемые в микроколичествах, называют микроэлементами.

Химические элементы, входящие в состав клеток и обладающие биологическими функциями, называют биогенными.

Химические элементы участвуют в построении вещества клеток в виде ионов (катионов и анионов) или химических соединений. Важными являются катионы К*, Na*, Ca?*, Mg?*. Что касается анионов, то ими являются h3PO4?, Cl?и HCO??.

Соединяясь химическими связями, группы атомов образуют так называемые малые органические молекулы, которыми являются аминокислоты, нуклеотиды, сахара и жирные кислоты. Из этих малых молекул в клетках формируются макромолекулы в виде белков, нуклеиновых кислот, углеводов и липидов.

Клетки построены как из неорганических, так и органических соединений.

Неорганическими соединениями клетки являются вода и минеральные соли.

Вода составляет около 70% массы клетки. У отдельных организмов, например медуз, содержание превышает 95%. У растений очень прочное сцепление молекул воды способствует переносу растворенных питательных веществ из корней в листья при транспирации. На молекулярном уровне у наземных и водных животных, равно как и у растений, вода определяет ряд важных свойств макромолекул.

В теле человека вода составляет 60%, из которой 40% приходится на внутриклеточную, а 20% - на экстраклеточную воду. Плазма крови содержит 5% экстраклеточной воды.

Вода имеет исключительно важное значение для жизнедеятельности клеток, представляя собой среду, в которой осуществляются важнейшие реакции, лежащие в основе синтеза и распада веществ. В воде хорошо растворяются хлористый натрий, сахара, простые спирты, альдегиды, катионы. Эта особенность воды имеет очень важное биологическое значение.

Для воды характерно то, что она обладает некоторой способностью к обратимой ионизации, в ходе которой она распадается на ионы водорода (Н*) и ионы гидроксила (ОН?). Величины рН всех жидкостей организмов исключительно постоянны. Их изменения чрезвычайно неблагоприятны для организмов, поскольку даже небольшие сдвиги рН характеризуются значительным падением каталитической активности ферментов.

В воде под влиянием ферментов происходят реакции гидролиза белков и других соединений. Вода принимает участие также в выведении из клеток продуктов обмена. Наконец, она поддерживает тепловой режим клетки.

Минеральные соли входят в состав цитоплазмы. Встречаются калиевые, натриевые, магниевые соли, соли серной, соляной, фосфорной и других кислот. Важнейшая роль минеральных солей заключается в определении ими кислотно-щелочного состояния протоплазмы. Они необходимы также для размножения клеток.

Органическими (углеродсодержащими) соединениями клетки являются белки, нуклеиновые кислоты, углеводы, липиды и АТФ.

Белки, или, как их еще называют, протеины, являются наиболее сложными химическими соединениями, характеризующимися большой молекулярной массой. В состав всех известных белков входят углерод, водород, азот и кислород. В большинстве белков находят серу, а в некоторых белках - фосфор, железо, цинк и медь. Будучи макромолекулами, они представляют собой линейные полимеры, в которых мономерами являются аминокислоты, каждая из которых состоит из аминогруппы(-Nh3), карбоксильной группы (-COOH), атома водорода и R-группы, присоединенной к атому углерода, который называют ? - углеродным атомом.

Белки различаются по составу на простые и сложные. Простые белки состоят только из аминокислот. Сложные белки содержат соединения как органические, так и неорганические.

Углеводы - это органические соединения углерода, водорода и кислорода с общей формулой (СН2) n.

Углеводы обладают структурной функцией, причем самым распространенным структурным углеводом является целлюлоза. Другими структурными углеводными элементами являются гликоза-миногликаны (кислые мукополисахариды) и протеогликаны.

Углеводы являются важнейшим источником энергии в организме, которая освобождается в результате окислительно-восстановительных реакций. Углеводы служат своеобразным питательным резервом клеток, запасаясь в них в виде гликогена в клетках животных и крахмала в клетках растений.

Липиды - жиры, которые являются соединениями, состоящими из жирных кислот и глицирола. Липиды встречаются почти во всех клетках, но в основном в небольших количествах, хотя некоторые клетки содержат эти соединения в очень больших количествах, доходящих до 90% их сухой массы. Они обнаруживаются в нервной ткани, мужских половых клетках, в семенах растений. Липиды в сочетании с другими соединениями образуют более сложные соединения и обладают рядом важнейших свойств в жизни клеток. Прежде всего, поскольку углеводы могут переводится в липиды, то последние выполняют роль накопитель энергии, ибо окисление липидов сопровождается выделением энергии.

Очень важное значение в построении клеточных структур липиды приобрели в составе фосфолипидов, которые являются одним из основных строительных материалов мембран клеток. Важную биологическую роль в жизни клеток и организмов играют также липопротеиды.

Также в клетках в очень небольших количествах встречаются аминокислоты в свободном состоянии, которые не встречаются в составе белков.

Содержание химических элементов в клетке

Элементы Количество (в%) Элементы Количество (в%)

Кислород 65-75 Кальций 0,04-2,00

Углерод 15-16 Магний 0,02-0,03

Водород 8-10 Натрий 0,02-0,03

Азот 1,5-3,0 Железо 0,01-0,015

Фосфор 0,2-1,0 Цинк 0,0003

Калий 0,15-0,4 Медь 0,0002

Сера 0,15-0,2 Йод 0,0001

Хлор 0,05-0,1 Фтор 0,0001

В таблице приведены данные об атомном составе клеток. Из 109 элементов периодической системы Менделеева в клетках обнаружено значительное их большинство. Особенно велико содержание в клетке четырех элементов - кислорода, углерода, азота и водорода. В сумме они составляют почти 98% всего содержимого клетки. Следующую группу составляют восемь элементов, содержание которых в клетке исчисляется десятыми и сотыми долями процента. Это сера, фосфор, хлор, калий, магний, натрий, кальций, железо. В сумме они составляют 1.9%. Все остальные элементы содержатся в клетке в исключительно малых количествах (меньше 0,01%)

Таким образом, в клетке нет каких-нибудь особенных элементов, характерных только для живой природы. Это указывает на связь и единство живой и неживой природы. На атомном уровне различий между химическим составом органического и не органического мира нет. Различия обнаруживаются на более высоком уровне организации - молекулярном.

2. Обмен веществ на клеточном уровне

Для химических реакций, протекающих в клетке, характерны величайшая организованность и упорядоченность: каждая реакция протекает в строго определенном месте. Молекулы ферментов расположены в один слой на внутренних структурах - мембранах митохондрий и эндоплазматической сети, выстилая их, как кафель стенку. При этом местоположение ферментов не случайно: они расположены в том порядке, в котором идут реакции. Мембраны клетки, выстланные молекулами ферментов, представляют своего рода «каталитический конвейер», на котором с исключительной точностью осуществляются химические реакции.

Пластический и энергетический обмен (ассимиляция и диссимиляция). В клетке обнаружена примерно тысяча ферментов. С помощью этого мощного каталитического аппарата осуществляется сложнейшая и многообразная химическая деятельность. Из громадного числа химических реакций клетки выделяются два противоположных по характеру типа реакций. Первый из них представляет реакции синтеза. В клетке постоянно идут процессы созидания. Из простых веществ образуются более сложные, из низкомолекулярных - высокомолекулярные. Синтезируются белки, сложные углеводы, жиры, нуклеиновые кислоты. Синтезированные вещества используются для построения разных частей клетки, ее органоидов, секретов, ферментов, запасных веществ. Синтетические реакции особенно интенсивно идут в растущей клетке, но и у вполне взрослой, т.е. закончившей рост и развитие, клетки постоянно происходит синтез веществ для замены молекул, израсходованных и износившихся в процессе функционирования или разрушенных при повреждении. На место каждой разрушенной молекулы белка или какого-нибудь другого вещества встает новая молекула. Таким путем клетка сохраняет постоянной свою форму и химический состав, несмотря на непрерывное их изменение в процессе жизнедеятельности.

Синтез веществ, идущий в клетке, называется биологическим синтезом или сокращенно биосинтезом. Все реакции биосинтеза идут с поглощением энергии.

Совокупность реакций биосинтеза называется пластическим обменом или ассимиляцией. Первое слово происходит от греческого «пластикос», что значит скульптурный. Так же как скульптор из глины или мрамора лепит(высекает) изваяние, так из веществ, синтезированных в процессе биосинтеза, клетка создает свое тело. Второе слово (ассимиляция) происходит от латинского «симилис» (сходный, подобный). Смысл этого термина состоит в том, что поступающие в клетку из внешней среды пищевые вещества, резко отличающиеся от веществ клетки, в результате химических превращений становятся подобными веществам клетки.

Второй тип химических реакций клетки - реакции расщепления. Сложные вещества распадаются на более простые, высокомолекулярные - на низкомолекулярные. Белки распадаются на аминокислоты, крахмал - на глюкозу. Эти вещества расщепляются на еще более низкомолекулярные соединения, и в конце концов образуются совсем простые, бедные энергией вещества: СО2 и Н2О. Реакции расщепления в большинстве случаев сопровождаются выделением энергии. Биологическое значение этих реакций состоит в обеспечении клетки энергией, необходимой для ее деятельности. Любая форма активности - движение, секреция, биосинтез и др. - нуждается в затрате энергии, которая черпается из энергии, освобождаемой в результате химических реакций расщепления.

Совокупность реакций расщепления называется энергетическим обменом клетки или диссимиляцией. Диссимиляция прямо противоположна ассимиляции: в результате расщепления вещества утрачивают сходство с веществами клетки.

Пластический и энергетический обмены (ассимиляция и диссимиляция) находятся между собой в неразрывной связи. Связь эта состоит в том, что, с одной стороны, реакции биосинтеза нуждаются в затрате энергии, которая черпается из реакций расщепления. С другой стороны, для осуществления реакций энергетического обмена необходим постоянный биосинтез обслуживающих эти реакции ферментов, так как в процессе своей работы они изнашиваются и разрушаются.

Обмен веществ и энергии

Сложные системы реакций, составляющие процесс пластического и энергетического обмена, тесно связаны не только между собой, но и с внешней средой. Из внешней среды в клетку поступают пищевые вещества, которые служат материалом для реакций пластического обмена, а в реакциях расщепления из них освобождается энергия, необходимая для функционирования клетки. Во внешнюю же среду, выделяются продукты, которые клеткой более не могут быть использованы.

Совокупность всех ферментативных реакций клетки, т.е. совокупность пластического и энергетического обменов (ассимиляции и диссимиляции), связанных между собой и с внешней средой, называется обменом веществ и энергии. Этот процесс является основным условием поддержания жизни клетки, источником ее роста, развития и функционирования.

АТФ как единое и универсальное энергетическое вещество. Любое проявление жизнедеятельности, любая функция клетки требуют затраты энергии. Энергия нужна для движения, для биосинтетических реакций и различных других форм клеточной активности.

Любая деятельность клетки всегда точно совпадает во времени с распадом АТФ.

При усиленной, но кратковременной работе, например при беге на короткую дистанцию, мышца работает почти исключительно за счет содержащейся в ней АТФ. При усиленной секреции в секреторных клетках также идет интенсивное расщепление АТФ. При синтезе сложных веществ, например при синтезе сложных углеводов, или белка, одновременно с синтетической реакцией идет распад АТФ. Отсюда следует, что непосредственным источником энергии и для сокращения мышц, и для секреции, и для синтеза сложных соединений в клетке является энергия, освобождающаяся при расщеплении АТФ. Так как запас АТФ в клетке ограничен, то ясно, что после распада АТФ' должно произойти ее восстановление. Так оно в действительности и происходит. В этом и заключается биологический смысл остальных реакций энергетического обмена. Функция этих реакций одна: их энергия используется для восполнения убыли АТФ. Понятно поэтому, что при длительной работе содержание АТФ в клетке существенно не изменяется. Это объясняется тем, что реакции расщепления углеводов и других веществ обеспечивают быстрое и полное восстановление израсходованной АТФ. Таким образом, АТФ - единый и универсальный источник энергии для функциональной деятельности клетки. Отсюда понятно, что возможна передача энергии из одних частей клетки в другие. Синтез АТФ может происходить в одном месте клетки и в одно время, а использоваться она может в другом месте и в другое время. Синтез АТФ в основном происходит в митохондриях клетки. Образовавшаяся здесь АТФ по каналам эндоплазматической сети направляется в те места клетки, где возникает потребность в энергии.

Три этапа энергетического обмена. Для изучения энергетического обмена клетки его удобно разделить на 3 последовательных этапа. Рассмотрим эти этапы на примере животной клетки.

Первый этап подготовительный. На этом этапе крупные молекулы углеводов, жиров, белков, нуклеиновых кислот распадаются на небольшие молекулы: из крахмала образуется глюкоза, из жиров - глицерин и жирные кислоты, из белков - аминокислоты, из нуклеиновых кислот - нуклеотиды. Распад веществ на этом этапе сопровождается незначительным энергетическим эффектом. Вся освобождающаяся при всём этом энергия рассеивается в виде тепла.

Второй этап энергетического обмена называется без кислородным или неполным. Вещества, образовавшиеся в подготовительном этапе, - глюкоза, глицерин, органические кислоты, аминокислоты и др. - вступают на путь дальнейшего распада. Это сложный, многоступенчатый процесс. Он состоит из ряда следующих одна за другой ферментативных реакций. Ферменты, обслуживающие этот процесс, расположены на внутриклеточных мембранах правильными рядами. Вещество, попав на первый фермент этого ряда, передвигается, как на конвейере, на второй фермент, далее на третий и т. Д. Это обеспечивает быстрое и эффективное течение процесса. Разберем его на примере без кислородного расщепления глюкозы, которое имеет специальное название - гликолиза. Гликолиз представляет собой совокупность более десятка последовательных ферментативных реакций. В нем принимают участие 13 ферментов и образуются 12 промежуточных веществ. Не останавливаясь на отдельных реакциях гликолиза, укажем, что на первую ступень ферментного конвейера вступает глюкоза, а с последней сходят две молекулы молочной кислоты. Суммарное уравнение гликолиза должно быть записано так:

C6h22O6 = 2C3H6O3

Глюкоза Молочная кислота

Процесс гликолиза происходит у всех животных клеток и у некоторых микроорганизмов. Всем известное молочнокислое брожение (при скисании молока) вызывается молочнокислыми грибками и бактериями. По механизму оно вполне тождественно гликолизу. Спиртовое брожение тоже сходно с гликолизом. Большая часть реакций гликолиза и брожение совпадают полностью. Различие состоит лишь в заключительной стадии: при гликолизе процесс заканчивается образованием молочной кислоты, а при брожении добавляется еще одно звено. Из молочной кислоты под влиянием фермента, содержащегося в дрожжах, выделяется СО2 и образуется этиловый спирт:

C3H6O3 = CO2 + C2H5OH

Таким образом, суммарное уравнение спиртового брожения должно быть записано так:

C6h22O6 = 2CO2 + 2C2H5OH

Глюкоза Этиловый спирт

Как видно из уравнений гликолиза и брожения, в этих процессах кислород не участвует, почему они и называются без кислород-ными процессами. Вполне ясно также, почему эти процессы на-зываются неполными: полным расщеплением глюкозы будет раз-рушение ее до конца, т.е. превращение ее в простейшие соеди-нения (СО2 и Н2О), что соответствует уравнению:

C6h22O6 + 6O2 = 6CO2 + 6h3O

Почти все промежуточные реакции при безкислородном расщеплении глюкозы идут с освобождением энергии. Каждая отдельная реакция дает небольшой выход энергии, а в сумме получается немалая величина: расщепление одной грамм-молекулы глюкозы (180 г.) на две грамм-молекулы молочной кислоты дает почти 200 кДж (50 000 кал). Если бы энергия, освобождающаяся при превращении глюкозы в молочную кислоту, освободилась сразу, в результате одной реакции, то это привело бы к опасному перегреву и повреждению клетки. Разделение же процесса на ряд промежуточных звеньев обусловливает постепенное выделение энергии, что предохраняет клетку от теплового повреждения.

Процесс гликолиза идет только в присутствии АТФ и АДФ, так как оба эти нуклеотида являются обязательными участниками происходящих реакций. АТФ необходима в начале гликолиза, АДФ - в конце. АТФ фосфорилирует глюкозу: передавая глюкозе остаток фосфорной кислоты, АТФ при всём этом переходит в АДФ. АДФ обеспечивает обратный процесс: дефосфорилирование промежуточных продуктов гликолиза. Присоединяя остаток фосфорной кислоты, АДФ превращается в АТФ. В конце гликолиза АТФ всегда образуется больше, чем ее тратится в начале. В ходе расщепления одной молекулы глюкозы происходит образование двух новых молекул АТФ. Таким образом, в итоге процесса гликолиза АТФ всегда накапливается.

Так как синтез АТФ представляет эндотермический процесс, то очевидно, что энергия для синтеза АТФ черпается за счет энергии реакций без кислородного расщепления глюкозы. Следовательно, энергия, освобождающаяся в ходе реакций гликолиза, не вся переходит в тепло. Часть ее идет на синтез двух богатых энергией фосфатных связей.

Произведем несложный расчет: всего в ходе без кислородного расщепления грамм-молекулы глюкозы освобождается 200 кдж (50 000 кал). На образование одной связи, богатой энергией, при превращении грамм-молекулы АДФ в АТФ затрачивается 40 кдж (10 000 кал). Входе без кислородного расщепления образуются две такие связи. Таким образом, в энергию двух грамм-молекул АТФ переходит 2x40 = 80 кдж (2X10 000 = 20 000 кал). Итак, из 200 кДж (50 000 кал) только 80 (20 000) сберегаются в виде АТФ, а 120 (30 000) рассеиваются в виде тепла. Следовательно, в хо-де без кислородного расщепления глюкозы 40% энергии сберегается клеткой.

Третий этап энергетического обмена - стадия кислородного, или полного, расщепления, или дыхания. Продукты, возникшие в предшествующей стадии, окисляются до конца, т.е. до СО2 и Н2О.

Основное условие осуществления этого процесса - наличие в окружающей среде кислорода и поглощение его клеткой. Стадия кислородного расщепления, как и предыдущая стадия без кислородного расщепления, представляет собой ряд последовательных ферментативных реакций. Каждая реакция катализируется особым ферментом.

Весь ферментативный ряд кислородного расщепления сосредоточен в митохондриях, где ферменты расположены на мембранах правильными рядами. Сущность каждой из реакций состоит в окислении органической молекулы, которая с каждой ступенью постепенно разрушается и превращается в конечные продукты окисления: СО2 и Н2О.

Все промежуточные реакции кислородного расщепления, как и промежуточные реакции без кислородного процесса, идут с освобождением энергии. Количество энергии, освобождаемой на каждой ступени при кислородном процессе, однако, много больше, чем на каждой ступени без кислородного процесса. В сумме кислородное расщепление дает громадную величину - 2600 кдж (650 000 г.-кал) (на две грамм-молекулы молочной кислоты). Если бы при расщеплении содержащейся в клетке молочной кислоты вся энергия освободилась в результате одной реакции, клетка подверглась бы тепловому повреждению. При рассредоточении же процесса на ряд промежуточных звеньев такой опасности нет.

Подробное исследование стадии кислородного расщепления показало, что в ней, как и в без кислородном процессе, происходит образование АТФ из АДФ. В ходе кислородного расщепления двух молекул молочной кислоты синтезируются 36 молекул АТФ, т.е. 36 богатых энергией фосфатных связей.

Теперь должно быть ясным значение третьей стадии энергетического обмена - кислородного расщепления молочной кислоты. Если в ходе безкислородного расщепления освобождается 200 кдж (50 000 кал) (на моль глюкозы), то в стадии кислородного расщепления освобождается еще 2600 кдж (650 000 кал). Если в ходе без кислородного процесса синтезируются две молекулы АТФ, то в процессе кислородного расщепления синтезируется еще 36 молекул АТФ. Иными словами, на стадии кислородного расщепления образуется свыше 90% энергии, получаемой клеткой в процессе расщепления глюкозы.

Всего в процессе расщепления глюкозы до СО2 и Н2О, т.е. в ходе процессов без кислородного и кислородного расщепления, синтезируется 2 + 36=38 молекул; АТФ. Таким образом, в потенциальную энергию АТФ переходит 38X40=1520 кдж (38x10 000 = 380 000 кал). Всего же при расщеплении глюкозы (в без кисло-родную и кислородную стадии), освобождается 200 + 2600 = 2800 кдж (50 000 + 650 000=700 000 кал). Следовательно, почти 55% всей энергии, освобождаемой при расщеплении глюкозы, сберегается клеткой в форме АТФ. Остальная часть (45%) рассеивается в виде тепла. Чтобы оценить значение этих цифр, вспомним, что в паровых машинах из энергии, освобождаемой при сгорании угля, в полезную форму преобразуется не более 12-15%. В лучших турбинах этот процент повышается до 20-25. В двигателях внутреннего сгорания он достигает примерно 35%. Таким образом, по эффективности: преобразования энергии живая клетка превосходит все известные преобразователи энергии в технике.

При сопоставлении количества энергии, освобождаемой в ходе без кислородного и кислородного расщепления глюкозы, а также числа молекул АТФ, синтезируемых в обе стадии, что кислородный процесс несравненно более эффективен, чем без кислородный. В стадии без кислородного расщепления освобождается примерно 1/20 часть энергии, освобождающейся при кислородном процессе. Вполне понятно поэтому, что в нормальных условиях для мобилизации энергии в клетке всегда используется как без кислородный, так и кислородный путь расщепления. Если осуществление кислородного процесса затруднено или вовсе невозможно, например при недостатке кислорода, тогда для поддержания жизни остается только без кислородный процесс. Но при всём этом для получения АТФ в количестве, необходимом для жизнедеятельности, клетке приходится расщеплять очень большое количество глюкозы.

Дыхание и горение

Расщепление органических веществ, происходящее в клетке, часто сравнивают с горением: в обоих случаях происходит поглощение кислорода и выделение продуктов окисления - СО2 и Н2О. При этом состав продуктов горения неопределенный и непостоянный, он меняется в зависимости от соотношения окисляемого вещества и кислорода, зависит от температуры и других условий. Дыхание же происходит в результате высокоупорядоченного процесса, ряда последовательных ферментативных реакций. Образование CO2 при горении происходит в результате прямого присоединения кислорода к углероду, а при биологическом окислении CO2 возникает путем расщепления органических кислот под влиянием ферментов.

Таким образом, вполне ясно, что между процессами горения и биологического окисления существует глубокое, принципиальное различие. Дыхание же происходит в результате высокоупорядоченного процесса, ряда последовательных ферментативных реакций. Образование СО2 при горении происходит в результате прямого присоединения кислорода к углероду, а при биологическом окислении СО2 возникает путем расщепления органических кислот под влиянием ферментов.

Заключение

Клетки являются высокоорганизованными дифференироанными образованиями, а размножение клеток обеспечивает физическую основу генетической непрерывности между родительскими клетками и дочерними клетками.

Через клетки происходит поглощение, превращение, запасание и использование веществ и энергии. Структуры клеток являются ареной, на которой осуществляются многочисленные биологические реакции, в частности, ферментация, дыхание, фотосинтез, дупликация хромосом, причем эти процессы имеют место как у одноклеточных организмов, так и в клетках многоклеточных организмов. Можно сказать, что жизнь многоклеточных организмов основывается на жизни их клеток.

Список литературы

1. Биология. (Учебник) Под ред. В.Н. Ярыгина (2003, 5-е изд.)

2. Микробиология. (Учебник) Гусев М.В., Минеева Л.А. (2003 г.)

3. Биология с основами экологии. (Учебник) Пехов А.П. 2000,

referatwork.ru

Метаболизм как основа жизнедеятельности клетки

Метаболизм как основа жизнедеятельности клетки

Вертьянов С. Ю.

Под метаболизмом понимают постоянно происходящий в клетках живых организмов обмен веществ и энергии. Одни соединения, выполнив свою функцию, становятся ненужными, в других возникает насущная потребность. В различных процессах метаболизма из простых веществ при участии ферментов синтезируются высокомолекулярные соединения, в свою очередь сложные молекулы расщепляются на более простые.

Реакции биологического синтеза называются анаболическими (греч. anabole подъем), а их совокупность в клетке — анаболизмом, или пластическим обменом (греч. plastos вылепленный, созданный).

В клетке протекает огромное количество процессов синтеза: липидов в эндоплазматической сети, белков на рибосомах, полисахаридов в комплексе Гольджи эукариот и в цитоплазме прокариот, углеводов в пластидах растений. Структура синтезируемых макромолекул обладает видовой и индивидуальной специфичностью. Набор характерных для клетки веществ соответствует последовательности нуклеотидов ДНК, составляющих генотип. Для обеспечения реакций синтеза клетке требуются существенные затраты энергии, получаемой при расщеплении веществ.

Совокупность реакций расщепления сложных молекул на более простые носит название катаболизма (греч. katabole разрушение), или энергетического обмена. Примерами таких реакций является расщепление липидов, полисахаридов, белков и нуклеиновых кислот в лизосомах, а также простых углеводов и жирных кислот в митохондриях.

В результате процессов катаболизма высвобождается энергия. Существенная ее часть запасается в виде высокоэнергетичных химических связей АТФ. Запасы АТФ позволяют организму быстро и эффективно обеспечивать различные процессы жизнедеятельности.

Молекулы белков функционируют в организме от нескольких часов до нескольких дней. За этот период в них накапливаются нарушения, и белки становятся непригодными для выполнения своих функций. Они расщепляются и заменяются на вновь синтезируемые. Требуют постоянного обновления и сами клеточные структуры.

Пластический и энергетический обмены неразрывно взаимосвязаны. Процессы расщепления осуществляют энергетическое обеспечение процессов синтеза, а также поставляют необходимые для синтеза строительные вещества. Правильный обмен веществ поддерживает постоянство химического состава биологических систем, их внутренней среды. Способность организмов сохранять внутренние параметры неизменными носит название гомеостаза. Процессы метаболизма происходят в соответствии с генетической программой клетки, реализуя ее наследственную информацию.

Энергетический обмен в клетке. Синтез АТФ

Человек и животные получают энергию за счет окисления органических соединений, поступающих с пищей. Биологическое окисление веществ — это, по сути, медленное горение. Конечные продукты сгорания дров (целлюлозы) — углекислый газ и вода. Полное окисление органических веществ (углеводов и липидов) в клетках также происходит до воды и углекислого газа. В отличие от горения, процесс биологического окисления происходит постепенно. Высвобождающаяся энергия также постепенно запасается в виде химических связей синтезируемых соединений. Некоторая ее часть рассеивается в клетках, поддерживая необходимую для жизнедеятельности температуру.

Синтез АТФ происходит главным образом в митохондриях (у растений еще и в хлоропластах) и обеспечивается в основном энергией, выделяющейся при расщеплении глюкозы, но могут использоваться и другие простые органические соединения — сахара, жирные кислоты и пр.

Гликолиз. Процесс расщепления глюкозы в живых организмах носит название гликолиза (греч. glykys сладкий + lysis расщепление). Рассмотрим основные его этапы.

На первой, предварительной стадии в лизосомах происходит образование простых органических молекул путем расщепления ди- и полисахаридов. Выделяющееся при этом небольшое количество энергии рассеивается в виде тепла.

Второй этап гликолиза происходит в цитоплазме без участия кислорода и называется анаэробным (бескислородным — греч. ana без + aer воздух) гликолизом — неполным окислением глюкозы без участия кислорода.

Бескислородный гликолиз представляет собой сложный многоступенчатый процесс из десяти последовательных реакций. Каждая реакция катализируется специальным ферментом. В итоге глюкоза расщепляется до пировиноградной кислоты (ПВК):

С6Н12О6(глюкоза) + 2Н3РО4 + 2АДФ = 2С3Н4О3(ПВК) + 2АТФ + 2Н2О

Глюкоза в этом процессе не только расщепляется, но и окисляется (теряет атомы водорода). В мышцах человека и животных две молекулы ПВК, приобретая атомы водорода, восстанавливаются в молочную кислоту С3Н6О3. Этим же продуктом заканчивается гликолиз у молочнокислых бактерий и грибков, применяемый для приготовления кислого молока, простокваши, кефира, а также при силосовании кормов в животноводстве. Процесс превращения ПВК в клетках микроорганизмов и растений в устойчивые конечные продукты называют брожением.

Так, дрожжевые грибки расщепляют ПВК на этиловый спирт и углекислый газ. Этот процесс, называемый спиртовым брожением, используют для приготовления кваса, пива и вина. Брожение других микроорганизмов завершается образованием ацетона, уксусной кислоты и т.д.

Главным результатом анаэробного гликолиза во всех организмах является образование двух молекул АТФ. Высвобождающаяся при расщеплении глюкозы энергия относительно невелика — 200 кДж/моль. Высокоэнергетичные связи АТФ запасают 40% этой величины. Остальные 60% рассеиваются в виде тепла. Основной выход энергии и молекул АТФ происходит на третьем, кислородном этапе гликолиза, называемом еще аэробным дыханием.

Кислородный гликолиз. При наличии достаточного количества кислорода дальнейший процесс расщепления ПВК происходит уже не в цитоплазме, а в митохондриях, и включает несколько десятков последовательных реакций, каждая из которых обслуживается своим комплексом ферментов.

Молекулы ПВК под действием ферментов (и кофермента НАД — никотинамидадениндинуклеотида) поэтапно окисляются сначала до уксусной кислоты, а затем, в так называемом цикле Кребса (или трикарбоновых кислот), до углекислого газа и воды (медленное горение). В процессе окисления образуются сложные молекулярные соединения с присоединенными к ним атомами водорода. Молекулы-переносчики подхватывают и перемещают электроны этих атомов по длинной цепи ферментов от одного к другому. На каждом шаге электроны вступают в окислительно-восстановительные реакции и отдают свою энергию, которая идет на перемещение протонов на внешнюю сторону внутренней мембраны митохондрии.

В результате оставшиеся протоны и перемещенные электроны оказываются на разных сторонах внутренней мембраны. На мембране создается разность потенциалов.

Фермент, синтезирующий АТФ (АТФ-синтетаза), встроен во внутреннюю мембрану по всей ее толщине. Этот фермент имеет характерную особенность: небольшой каналец в молекулярной структуре. При накоплении на мембране разности потенциалов примерно в 200 мВ ионы Н+ начинают протискиваться через каналец в молекуле АТФ-синтетазы. В процессе энергичного продвижения ионов через фермент происходит синтез АТФ из АДФ с участием фосфорной кислоты.

В химических реакциях кислородного гликолиза освобождается большое количество энергии — 2600 кДж/моль. Существенная ее часть (55%) запасается в высокоэнергетичных связях образующихся молекул АТФ. Остальные 45% рассеиваются в виде тепла (поэтому при выполнении физической работы нам жарко). Итоговое уравнение кислородной стадии выглядит следующим образом:

2С3Н6О3(молочн.кислота) + 6О2 + 36Н3РО4 + 36АДФ = 6СО2 + 42Н2О + 36АТФ

Таким образом, кислородное расщепление резко увеличивает эффективность энергетического обмена и играет основную роль в аккумулировании энергии. Если гликолиз без участия кислорода дает только 2 молекулы АТФ, то кислородный гликолиз обеспечивает синтез 36 молекул АТФ. В итоге в полном цикле гликолиза на каждую молекулу глюкозы образуется 38 молекул АТФ.

При среднесуточных энергетических затратах в 10 тыс. кДж в организме человека ежедневно синтезируется около 170 кг АТФ, а содержится всего около 50 г АТФ, следовательно, возобновление запаса происходит с частотой 3400 раз в сутки!

При интенсивной физической работе клетки организма не успевают насытиться кислородом, и расщепление глюкозы ограничивается бескислородным гликолизом. В результате быстро накапливается молочная кислота — токсичное для нервных и мышечных клеток соединение (вспомним мышечные боли после тяжелой работы). Появление молочной кислоты возбуждает дыхательный центр и заставляет нас усиленно дышать. Насыщение клеток кислородом позволяет организму возобновить процесс кислородного расщепления, обеспечивающий необходимое количество энергии в виде молекул АТФ. Наступает "второе дыхание". Гепардам после интенсивного бега требуется продолжительный отдых, порой они оказываются не в состоянии защитить свою добычу от менее сильных хищников. В большой скорости восстановления кислородного запаса, а значит, в лучшей приспособленности к длительной мышечной активности — преимущество многих мелких животных.

Митохондрии способны использовать для синтеза АТФ не только расщепление глюкозы. В их матриксе содержатся также ферменты, расщепляющие жирные кислоты. Особенностью этого цикла является большой энергетический выход — 51 молекула АТФ на каждую молекулу жирной кислоты. Не случайно медведи и другие животные, впадая в спячку, запасают именно жиры. Любопытно, что часть запасаемого жира имеет у них бурый цвет. Такие жировые клетки содержат множество митохондрий необычного строения: их внутренние мембраны пронизаны порами. Ионы водорода свободно проходят через эти поры, и синтез АТФ в клетках бурого жира не происходит. Вся энергия, освобождающаяся в процессе кислородного расщепления жирных кислот, выделяется в виде большого количества тепла, согревающего животных во время долгой зимней спячки.

Бурый жир составляет не более 1-2% массы тела, но повышает производство тепла до 400 Вт на каждый килограмм веса (теплопроизводство человека в состоянии покоя составляет 1 Вт/кг). Запасают жир и верблюды. При постоянном дефиците влаги это вдвойне выгодно, поскольку расщепление жиров дает еще и большое количество воды.

Кроме глюкозы и жирных кислот, митохондрии способны расщеплять аминокислоты, но они — дорогое топливо. Аминокислоты являются важным строительным материалом, из них организм синтезирует свои белки. К тому же использование аминокислот для синтеза АТФ требует предварительного удаления аминогруппы NН2 с образованием токсичного аммиака. Белки и составляющие их аминокислоты используются клеткой для получения энергии только в крайнем случае.

Этиловый спирт тоже может использоваться митохондриями для синтеза АТФ. Но спирт как "топливо" имеет для организма человека свои недостатки, постоянное употребление алкоголя приводит к тяжелым расстройствам, например, к жировому перерождению печени — циррозу.

Фотосинтез — превращение энергии света в энергию химических связей

Автотрофные организмы. В отличие от человека и животных, все зеленые растения и часть бактерий способны синтезировать органические вещества из неорганических соединений. Такой тип обмена веществ называется автотрофным (греч. autos сам + trophe пища). В зависимости от вида энергии, используемой автотрофами для синтеза органических молекул, их делят на фототрофов и хемотрофов. Фототрофы используют энергию солнечного света, а хемотрофы — химическую энергию, высвобождающуюся при окислении ими различных неорганических соединений.

Зеленые растения являются фототрофами. Их хлоропласты содержат хлорофилл, позволяющий растениям осуществлять фотосинтез — преобразование энергии солнечного света в энергию химических связей синтезируемых органических соединений. Из всего спектра солнечного излучения молекулы хлорофилла поглощают красную и синюю часть, а зеленая составляющая достигает сетчатки наших глаз. Поэтому большинство растений мы видим зелеными.

Для осуществления фотосинтеза растения поглощают из атмосферы углекислый газ, а из водоемов и почвы — воду, неорганические соли азота и фосфора. Итоговое уравнение фотосинтеза выглядит довольно просто:

6СО2 + 6Н2О = С6Н12О6(глюкоза) + 6О2,

но всем хорошо известно, что при смешивании углекислого газа и воды глюкоза не образуется. Фотосинтез — сложный многоступенчатый процесс, для прохождения которого необходим не только солнечный свет и хлорофилл, но и ряд ферментов, энергия АТФ и молекулы-переносчики. Выделяют две фазы фотосинтеза — световую и темновую.

С в е т о в а я ф а з а фотосинтеза начинается с освещения растений светом. Солнечные фотоны, передавая свою энергию молекуле хлорофилла, переводят молекулу в возбужденное состояние: ее электроны, получая дополнительную энергию, переходят на более высокие орбиты. Отрыв таких возбужденных электронов может происходить значительно легче, чем невозбужденных. Молекулы-переносчики захватывают их и перемещают на другую сторону мембраны тилакоида.

Молекулы хлорофилла восполняют потерю электронов, отрывая их от молекул воды. В результате вода расщепляется на протоны и молекулярный кислород:

2Н2О – 4е = 4Н+ + О2

Процесс расщепления молекул воды до молекулярного кислорода, протонов и электронов под действием света называют фотолизом. Молекулярный кислород легко диффундирует сквозь мембраны тилакоидов и выделяется в атмосферу. Протоны неспособны к проникновению через мембрану и остаются внутри.

Таким образом, снаружи мембраны накапливаются электроны, доставленные молекулами-переносчиками с возбужденных молекул хлорофилла, а внутри — протоны, образовавшиеся в результате фотолиза воды. Возникает разность потенциалов. В мембраны тилакоидов хлоропласта, так же как и во внутренние мембраны митохондрий, встроены ферменты-синтетазы, осуществляющие синтез АТФ. В молекулярной структуре синтетаз растений также имеется каналец, через который могут проходить протоны. При достижении на мембране критической разности потенциалов протоны, влекомые силой электрического поля, протискиваются по канальцу АТФ-синтетазы, затрачивая энергию на синтез АТФ. Соединяясь на другой стороне мембраны с электронами, протоны образуют атомарный водород.

Фотосинтез в хлоропластах весьма эффективен: он дает в 30 раз больше АТФ, чем кислородный гликолиз в митохондриях тех же растений.

Таким образом, во время световой фазы фотосинтеза происходят следующие главные процессы: выделение в атмосферу свободного кислорода, синтез АТФ и образование атомарного водорода.

Протекание дальнейших реакций может происходить и в темноте, потому носит название темновой фазы.

Т е м н о в а я ф а з а. Реакции этой фазы происходят в строме хлоропласта при участии атомарного водорода и АТФ, образовавшихся в световой фазе, а также ферментов, восстанавливающих СО2 до простого сахара — триозы (глицеральдегида) — и синтезирующих из нее глюкозу:

6СО2 + 24Н = С6Н12О6(глюкоза) + 6Н2О

Для образования одной молекулы глюкозы требуется 18 молекул АТФ. Комплекс реакций темновой фазы, осуществляемых ферментами (и коферментом НАД), носит название цикла Кальвина.

Кроме глюкозы, из триозы могут синтезироваться жирные кислоты, аминокислоты и пр. Углеводы и жирные кислоты далее транспортируются в лейкопласты, где из них формируются запасные питательные вещества — крахмал и жиры.

С наступлением темноты растения продолжают процесс фотосинтеза, используя запасенные на свету соединения. Когда этот запас исчерпывается, прекращается и фотосинтез. В ночной темноте растения напоминают по типу обмена веществ животных: они поглощают кислород из атмосферы (дышат) и окисляют при помощи его запасенные днем питательные вещества. На дыхание растения используют в 20-30 раз меньше кислорода, чем выделяют в атмосферу в процессе фотосинтеза.

Количество энергии, производимой растениями, значительно превышает количество тепла, выделяющегося при сжигании всем населением планеты горючих полезных ископаемых. Ежегодно растительность планеты дает 200 млрд. т кислорода и 150 млрд. т органических соединений, необходимых человеку и животным.

Хемосинтез. Большинство бактерий лишены хлорофилла. Некоторые из них являются хемотрофами: для синтеза органических веществ они используют не энергию света, а энергию, высвобождающуюся при окислении неорганических соединений. Такой способ получения энергии и синтеза органических веществ назвали хемосинтезом (греч. chemia химия). Явление хемосинтеза открыто в 1887 г. русским микробиологом С. Н. Виноградским.

Н и т р и ф и ц и р у ю щ и е б а к т е р и и. В корневищах растений, главным образом, бобовых, живут особые клубеньковые бактерии. Они способны усваивать недоступный растениям атмосферный азот и обогащать почву аммиаком. Нитрифицирующие бактерии окисляют аммиак клубеньковых бактерий до азотистой кислоты и далее — азотистую до азотной. В результате растения получают соли азотной кислоты, необходимые для синтеза аминокислот и азотистых оснований.

В о д о р о д н ы е б а к т е р и и также широко распространены в почвах. Они окисляют молекулы водорода, образующиеся в результате бескислородного окисления органических останков различными микроорганизмами:

2Н2 + О2 = 2Н2О

Ж е л е з о б а к т е р и и используют энергию, высвобождающуюся при окислении двухвалентного железа до трехвалентного (закисные соли до окисных).

С е р о б а к т е р и и обитают в болотах и "питаются" сероводородом. В результате окисления сероводорода выделяется необходимая для жизнедеятельности бактерий энергия и накапливается сера. При окислении серы до серной кислоты высвобождается еще часть энергии. Суммарный выход энергии составляет существенную величину — 666 кДж/моль. Огромное количество серобактерий обитает в Черном море. Его воды, начиная со стометровой глубины, насыщены сероводородом.

Гетеротрофный тип обмена веществ. Человек и животные не способны синтезировать необходимые для жизнедеятельности органические вещества из неорганических и вынуждены поглощать их с пищей. Такие организмы называют гетеротрофами (греч. heteros другой). К гетеротрофам относятся также большинство бактерий и грибы. Вещества, поступившие с пищей, разлагаются в организмах животных на простые углеводы, аминокислоты, нуклеотиды, из которых далее синтезируются высокомолекулярные соединения, необходимые для конкретного вида существ в конкретной фазе жизненного цикла. Часть поступивших с пищей молекул расщепляется до конечных продуктов, а высвобождающаяся энергия используется в процессах жизнедеятельности. Некоторое количество энергии рассеивается в виде теплоты, служащей для поддержания температуры тела.

Многие одноклеточные водоросли имеют миксотрофное (смешанное) питание. На свету они фотосинтезируют, а в темноте переходят к фагоцитозу, т.е. становятся гетеротрофами.

Пластический обмен. Биосинтез белков. Синтез и РНК

В процессах метаболизма реализуется наследственная информация. Клетка синтезирует только те вещества, которые записаны в ее генетической программе. Каждой группе клеток присущ свой комплекс химических соединений. Среди них особенно важными для организма являются белки.

Многие функции и признаки организма определяются его набором белков. Белки-ферменты расщепляют пищу, отвечают за поглощение и выделение солей, синтезируют жиры и углеводы, производят множество других биохимических превращений. Белки определяют цвет глаз, рост — словом, внешнюю специфичность организмов. Большинство белков, выполняющих одни и те же функции, несколько различны даже у особей одного и того же вида (к примеру, белки групп крови). Но некоторые однофункциональные белки могут иметь сходное строение у далеких групп организмов (к примеру, инсулин собаки и человека).

В процессе жизнедеятельности белковые молекулы постепенно разрушаются, теряют свою структуру — денатурируют. Их активность падает, и клетки заменяют их новыми. В организмах постоянно происходит синтез необходимых белков.

иосинтез белковых молекул — сложный ферментативный процесс, начинающийся в ядре и заканчивающийся на рибосомах. Центральную функцию в нем выполняют носители генетической информации — нуклеиновые кислоты ДНК и РНК.

Генетический код. Последовательность нуклеотидов ДНК задает последовательность аминокислот в белках — их первичную структуру. Молекулы ДНК являются матрицами для синтеза всех белков.

Отрезок ДНК, несущий информацию о первичной структуре конкретного белка, называют геном. Соответствующую последовательность нуклеотидов — генетическим кодом белка.

Идею о том, что наследственная информация записана на молекулярном уровне, а синтез белков идет по матричному принципу, впервые высказал еще в 1920-х годах русский биолог Н. К. Кольцов. В настоящее время код ДНК полностью расшифрован. В этом заслуга известных ученых: Г. Гамова (1954), а также Ф. Крика, С. Очоа, М. Ниренберга, Р. Холи и К. Хорана (1961-65). Значительную часть свойств генетического кода установил английский физик Ф. Крик, исследуя бактериофагов.

К о д т р и п л е т е н. Каждая аминокислота в генетическом коде задается последовательностью трех нуклеотидов — триплетом, или кодоном. Различных нуклеотидов в ДНК четыре, следовательно, теоретически возможных кодонов — 64 (43). Большинству аминокислот соответствует от 2 до 6 кодонов — код, как говорят, вырожден. Чем чаще аминокислота встречается в белках, тем, как правило, большим числом кодонов она кодируется. Оставшиеся три кодона вместе с кодоном метионина (АУГ) служат знаками препинания при считывании информации — указывают начало и конец матриц конкретных белков. Если белок имеет несколько полимерных цепей (образующих отдельные глобулы), то знаки препинания выделяют полипептидные звенья. Считывание каждого звена происходит непрерывно, без знаков препинания и пропусков — триплет за триплетом.

К о д о д н о з н а ч е н. Кроме триплетности, генетический код наделен рядом других характерных свойств. Его кодоны не перекрываются, каждый кодон начинается с нового нуклеотида, и ни один нуклеотид не может прочитываться дважды. Любой кодон соответствует только одной аминокислоте.

К о д у н и в е р с а л е н. Генетическому коду свойственна универсальность для всех организмов на Земле. Одинаковые аминокислоты кодируются одними и теми же триплетами нуклеотидов у бактерий и слонов, водорослей и лягушек, черепах и лошадей, птиц и даже человека. Несколько отличаются (на 1-5 кодонов) только коды митохондрий некоторых организмов, ряда дрожжей и бактерий.

Ошибка хотя бы в одном триплете приводит к серьезным нарушениям в организме. У больных серповидной анемией (их эритроциты имеют не дисковую, а серповидную форму) из 574 аминокислот белка гемоглобина одна аминокислота заменена другой в двух местах. В результате белок имеет измененную третичную и четвертичную структуру. Нарушенная геометрия активного центра, присоединяющего кислород, не позволяет гемоглобину эффективно справляться со своей задачей — связывать кислород в легких и снабжать им клетки организма.

Транскрипция. Синтез белка происходит в цитоплазме на рибосомах. Генетическую информацию от хромосом ядра к месту синтеза переносят иРНК:

ДНК – и РНК - белок

Информационная РНК синтезируется на отрезке одной из нитей ДНК как на матрице, хранящей информацию о первичной структуре конкретного белка или группы белков, выполняющих одну функцию. В основе синтеза лежит принцип комплементарности: напротив Цднк встает Грнк, напротив Гднк — Црнк, напротив Аднк — Урнк, напротив Тднк — Арнк. Затем мономерные звенья связываются в полимерную цепь. Таким образом, иРНК становится точной копией второй нити ДНК (с учетом замены Т- У). Молекула иРНК имеет одноцепочечную структуру, она в сотни раз короче ДНК.

Процесс перенесения генетической информации на синтезируемую иРНК носит название транскрипции. Перед началом каждого гена или группы однофункциональных генов расположена последовательность нуклеотидов, называемая инициатором (содержит кодон АУГ). В этой последовательности есть участок (промотор) для присоединения фермента РНК-полимеразы, осуществляющего транскрипцию. Полимераза распознает промотор благодаря химическому сродству. В конце матрицы синтеза находится стоп-кодон (один из трех в таблице), или терминатор.

В ходе транскрипции РНК-полимераза в комплексе с другими ферментами разрывает водородные связи между азотистыми основаниями двух нитей ДНК, частично раскручивает ДНК и производит синтез иРНК по принципу комплементарности. На одной ДНК "работают" сразу несколько полимераз.

Готовая молекула иРНК после небольшой перестройки связывается в комплекс со специальными белками и транспортируется ими через ядерную оболочку на рибосомы. Эти белки выполняют и другую функцию — они защищают иРНК от действия различных ферментов цитоплазмы. В прокариотической клетке ДНК не отделена от цитоплазмы, и синтез белков рибосомы начинают еще во время транскрипции.

Транспортные РНК. Необходимые для синтеза белков аминокислоты всегда имеются в составе цитоплазмы. Они образуются в процессе расщепления лизосомами белков. Транспортные РНК связывают аминокислоты, доставляют их на рибосомы и производят точную пространственную ориентацию аминокислот на рибосоме.

Рассмотрим устройство тРНК, позволяющее ей успешно выполнять свои сложные функции. В цепочке, состоящей из 70-90 звеньев, имеется 4 пары комплементарных отрезков из 4-7 нуклеотидов — А, Б, В и Г. Комплементарные участки связываются водородными связями попарно (как в молекуле ДНК). В результате нить тРНК "слипается" в четырех местах с образованием петлистой структуры, напоминающей лист клевера. В верхушке "листа" располагается триплет, код которого комплементарен кодону иРНК, соответствующему транспортируемой аминокислоте. Так, если в иРНК код аминокислоты валина ГУГ, то на вершине валиновой тРНК ему будет соответствовать триплет ЦАЦ. Комплементарный триплет в тРНК называют антикодоном.

Специальный фермент распознает антикодон тРНК, присоединяет к "черенку листа" определенную аминокислоту (в нашем примере — валин), и затем тРНК перемещает ее к рибосоме. Каждая тРНК транспортирует только свою аминокислоту.

Синтез белковой цепи на рибосоме

Матричные процессы составляют основу способности живых организмов к воспроизведению. В клеточном ядре происходит удвоение ДНК. Новая молекула воспроизводится на матрице старой и представляет собой ее точную копию. Информационная РНК синтезируется на матрице ДНК в виде точной копии одного из участков ДНК. Далее на матрице иРНК происходит синтез белков.

Трансляция. Перевод последовательности нуклеотидов иРНК в последовательность аминокислот синтезируемых белков называют трансляцией.

В активном центре рибосомы размещаются два триплета иРНК и соответственно две тРНК. Рибосома перемещается по иРНК не плавно, а прерывисто, триплет за триплетом. На каждом шаге присоединяется новая аминокислота. Транспортные РНК перемещаются со своей аминокислотой к рибосоме и "примеряют" свой антикодон к очередному кодону иРНК, находящемуся в активном центре (комплементарные нуклеотиды хорошо подходят друг другу, между ними возникают водородные связи). Если антикодон оказывается не комплементарным, то тРНК удаляется в цитоплазму к другим рибосомам. Если же он оказывается комплементарным, то тРНК присоединяется к кодону водородными связями.

Далее особый фермент рибосомы подсоединяет синтезируемую полипептидную цепь к "прибывшей" аминокислоте. Ее транспортная РНК продолжает удерживать всю формирующуюся белковую цепь на кодоне иРНК до прихода следующей тРНК. Освободившаяся тРНК перемещается в цитоплазму "на поиск" аминокислот. Рибосома перескакивает на следующий триплет иРНК, и процесс повторяется. Интервал между перескакиваниями продолжается не более 1/5 — 1/6 с, а вся трансляция среднего белка — 1-2 минуты.

На одной нити иРНК "трудятся" сразу несколько рибосом. На иРНК, содержащей информацию о белке гемоглобине, размещается до 5 рибосом, на некоторых других иРНК — до 20 рибосом. Когда в активном центре рибосомы оказывается один из трех триплетов, кодирующих знаки препинания между генами, синтез белка завершается.

Освободившаяся рибосома отправляется на другую иРНК. Рибосомы универсальны и могут синтезировать полипептиды по любой матрице иРНК. Субъединицы рибосом соединяются только для синтеза белка, после окончания синтеза они вновь разъединяются.

Сворачивание в спираль и приобретение третичной структуры происходит по мере синтеза белковой цепи, поэтому зачастую невозможно восстановление денатурированных белков со сложной пространственной структурой, даже если их первичная структура сохранена. Сворачивание белковой цепи целой молекулы происходит по-иному, и белок оказывается неактивным.

Многие белки — например, пищеварительные ферменты — очень активны и способны переварить саму клетку, поэтому синтезируемые молекулы белков сразу попадают в эндоплазматическую сеть (к мембране которой прикреплены синтезирующие белки рибосомы) и по ее каналам перемещаются к комплексу Гольджи, а от него в тот участок клетки или в ту часть организма, где требуется этот вид белков. Синтез небелковых соединений клетка осуществляет в два этапа. Сначала рибосомы производят трансляцию специфического белка-фермента. Затем при его участии образуется молекула необходимого соединения — углевода, жиров и т.д. Сходным образом синтезируются и другие соединения: витамины, небелковые гормоны и пр.

Процесс синтеза белков требует затрат большого количества специфической энергии АТФ, которую нельзя заменить иным источником. Только на присоединение каждой аминокислоты к тРНК расходуется энергия одной молекулы АТФ, а в среднем белке 400-500 аминокислот. Общее количество затрачиваемой энергии существенно превышает суммарную химическую энергию образующихся пептидных связей между молекулами аминокислот. По этой причине белки редко используются клеткой в качестве топлива: слишком велики затраты на их изготовление.

Регуляция транскрипции и трансляции. Клетки различных тканей живых организмов сильно отличаются друг от друга по строению и функциям, но все они произошли от единственной зиготы (оплодотворенной яйцеклетки) в результате многократного деления.

Перед каждым актом деления ДНК реплицируется в две точные копии. Ученым удалось экспериментально доказать, что дифференцированные клетки организма имеют одинаковый набор ДНК, не утрачивая ни одной из его частей в процессе делений.

В 1958 г. Ф. Стюарт впервые вырастил из единственной клетки взрослой моркови целое растение. В 1968 г. Дж. Гордону удалось пересадить ядра из клеток кишечника головастика в яйцеклетки лягушки, лишенные собственных ядер, и вырастить из них нормальных лягушек. Следовательно, клетки всех тканей организма имеют один и тот же набор генов, одну и ту же информацию о строении белков.

Однако клетки каждой ткани производят свои белки, свои ферменты. Гемоглобин образуется только в эритроцитах, белковый гормон роста синтезируется только в клетках гипофиза, зрительный белок опсин — в клетках сетчатки глаза, а инсулин — в клетках поджелудочной железы.

Такое разнообразие происходит по причине того, что клетки каждой ткани реализуют только свою часть информации ДНК. В разных клетках происходит транскрипция разных участков ДНК, синтезируются разные иРНК, по которым воспроизводятся разные белки. Более того, специфичные для клеток белки производятся не все сразу, а по мере необходимости. В организмах имеются удивительно точные механизмы "включения" и "выключения" генов на разных этапах жизненного цикла клетки от ее появления до деления.

Геном эукариот устроен намного сложнее генома прокариот. Это связано с увеличением сложности регуляции генетических процессов, а не с увеличением количества структурных белков и ферментов. В клетках высокоразвитых организмов только 10% всех генов ответственны за синтез ферментов и структурных белков, остальные 90% составляют "административный аппарат" клетки.

Кроме того, существуют системы, регулирующие синтез веществ в организме как едином целом. В клетках желез внутренней секреции вырабатываются гормоны, которые разносятся с кровью по всему телу. Эти гормоны регулируют процессы синтеза иРНК и трансляцию именно в тех клетках, для которых они предназначены. На поверхности мембраны клеток есть рецепторы для "своих" гормонов. Связываясь с рецепторами, гормоны управляют активностью различных систем клетки, регулирующих обмен. В результате может изменяться как транскрипция конкретных генов, так и синтез белков на рибосомах.

Даже синтезированные иРНК могут долгое время не транслироваться, если нет "команды" от гормонов. Каждый гормон через определенные системы клеток активирует свои гены. Так, адреналин дает сигнал на синтез ферментов, расщепляющих гликоген до глюкозы, интенсивно потребляемой мышцами при физической нагрузке. Инсулин выполняет обратную функцию, он участвует в синтезе гликогена из глюкозы в клетках печени.

Как транскрипция, так и трансляция могут подавляться различными химическими веществами, относящимися к классу антибиотиков (греч. anti против + bios жизнь). Например, эритромицин и стрептомицин подавляют синтез белка на рибосомах инфекционных бактерий, а бледная поганка содержит вещество, подавляющее функционирование РНК-полимеразы человека. Прекращение полимеразой синтеза иРНК приводит к тяжелейшим последствиям.

Подведем итоги. В воспроизведении белков в живых существах участвует ДНК, информационная РНК, транспортные РНК для 20 аминокислот (всего 61, по количеству кодонов), рибосомы, состоящие из нескольких рибосомных РНК (3 у прокариот и 4 у эукариот) и десятков различных молекул белка, а также целый комплекс ферментов. Для осуществления синтеза одной белковой молекулы необходим тонкий, специфический подвод энергии посредством более чем 1000 молекул АТФ. Практически вся клетка участвует в синтезе, нарушение строения хотя бы одного из компонентов нарушает процесс воспроизведения белковых молекул.

Для современных ученых удивителен сам факт функционирования этой сложной системы в организме. Доказана абсолютная невозможность самообразования молекул РНК и даже ее более простой составляющей — рибозы. Возможность же самосборки белков в гипотетическом первобытном океане при возникновении в нем жизни квалифицированные биохимики совершенно исключают. Так познание внутриклеточных процессов приводит к мысли о богосотворенности мира и приближает нас к очевидности Божия бытия.

Список литературы

Для подготовки данной работы были использованы материалы с сайта http://www.portal-slovo.ru/

topref.ru

Реферат - Метаболизм как основа жизнедеятельности клетки

Метаболизм как основа жизнедеятельности клетки

Вертьянов С. Ю.

Под метаболизмом понимают постоянно происходящий в клетках живых организмов обмен веществ и энергии. Одни соединения, выполнив свою функцию, становятся ненужными, в других возникает насущная потребность. В различных процессах метаболизма из простых веществ при участии ферментов синтезируются высокомолекулярные соединения, в свою очередь сложные молекулы расщепляются на более простые.

Реакции биологического синтеза называются анаболическими (греч. anabole подъем), а их совокупность в клетке — анаболизмом, или пластическим обменом (греч. plastos вылепленный, созданный).

В клетке протекает огромное количество процессов синтеза: липидов в эндоплазматической сети, белков на рибосомах, полисахаридов в комплексе Гольджи эукариот и в цитоплазме прокариот, углеводов в пластидах растений. Структура синтезируемых макромолекул обладает видовой и индивидуальной специфичностью. Набор характерных для клетки веществ соответствует последовательности нуклеотидов ДНК, составляющих генотип. Для обеспечения реакций синтеза клетке требуются существенные затраты энергии, получаемой при расщеплении веществ.

Совокупность реакций расщепления сложных молекул на более простые носит название катаболизма (греч. katabole разрушение), или энергетического обмена. Примерами таких реакций является расщепление липидов, полисахаридов, белков и нуклеиновых кислот в лизосомах, а также простых углеводов и жирных кислот в митохондриях.

В результате процессов катаболизма высвобождается энергия. Существенная ее часть запасается в виде высокоэнергетичных химических связей АТФ. Запасы АТФ позволяют организму быстро и эффективно обеспечивать различные процессы жизнедеятельности.

Молекулы белков функционируют в организме от нескольких часов до нескольких дней. За этот период в них накапливаются нарушения, и белки становятся непригодными для выполнения своих функций. Они расщепляются и заменяются на вновь синтезируемые. Требуют постоянного обновления и сами клеточные структуры.

Пластический и энергетический обмены неразрывно взаимосвязаны. Процессы расщепления осуществляют энергетическое обеспечение процессов синтеза, а также поставляют необходимые для синтеза строительные вещества. Правильный обмен веществ поддерживает постоянство химического состава биологических систем, их внутренней среды. Способность организмов сохранять внутренние параметры неизменными носит название гомеостаза. Процессы метаболизма происходят в соответствии с генетической программой клетки, реализуя ее наследственную информацию.

Энергетический обмен в клетке. Синтез АТФ

Человек и животные получают энергию за счет окисления органических соединений, поступающих с пищей. Биологическое окисление веществ — это, по сути, медленное горение. Конечные продукты сгорания дров (целлюлозы) — углекислый газ и вода. Полное окисление органических веществ (углеводов и липидов) в клетках также происходит до воды и углекислого газа. В отличие от горения, процесс биологического окисления происходит постепенно. Высвобождающаяся энергия также постепенно запасается в виде химических связей синтезируемых соединений. Некоторая ее часть рассеивается в клетках, поддерживая необходимую для жизнедеятельности температуру.

Синтез АТФ происходит главным образом в митохондриях (у растений еще и в хлоропластах) и обеспечивается в основном энергией, выделяющейся при расщеплении глюкозы, но могут использоваться и другие простые органические соединения — сахара, жирные кислоты и пр.

Гликолиз. Процесс расщепления глюкозы в живых организмах носит название гликолиза (греч. glykys сладкий + lysis расщепление). Рассмотрим основные его этапы.

На первой, предварительной стадии в лизосомах происходит образование простых органических молекул путем расщепления ди- и полисахаридов. Выделяющееся при этом небольшое количество энергии рассеивается в виде тепла.

Второй этап гликолиза происходит в цитоплазме без участия кислорода и называется анаэробным (бескислородным — греч. ana без + aer воздух) гликолизом — неполным окислением глюкозы без участия кислорода.

Бескислородный гликолиз представляет собой сложный многоступенчатый процесс из десяти последовательных реакций. Каждая реакция катализируется специальным ферментом. В итоге глюкоза расщепляется до пировиноградной кислоты (ПВК):

С6Н12О6(глюкоза) + 2Н3РО4 + 2АДФ = 2С3Н4О3(ПВК) + 2АТФ + 2Н2О

Глюкоза в этом процессе не только расщепляется, но и окисляется (теряет атомы водорода). В мышцах человека и животных две молекулы ПВК, приобретая атомы водорода, восстанавливаются в молочную кислоту С3Н6О3. Этим же продуктом заканчивается гликолиз у молочнокислых бактерий и грибков, применяемый для приготовления кислого молока, простокваши, кефира, а также при силосовании кормов в животноводстве. Процесс превращения ПВК в клетках микроорганизмов и растений в устойчивые конечные продукты называют брожением.

Так, дрожжевые грибки расщепляют ПВК на этиловый спирт и углекислый газ. Этот процесс, называемый спиртовым брожением, используют для приготовления кваса, пива и вина. Брожение других микроорганизмов завершается образованием ацетона, уксусной кислоты и т.д.

Главным результатом анаэробного гликолиза во всех организмах является образование двух молекул АТФ. Высвобождающаяся при расщеплении глюкозы энергия относительно невелика — 200 кДж/моль. Высокоэнергетичные связи АТФ запасают 40% этой величины. Остальные 60% рассеиваются в виде тепла. Основной выход энергии и молекул АТФ происходит на третьем, кислородном этапе гликолиза, называемом еще аэробным дыханием.

Кислородный гликолиз. При наличии достаточного количества кислорода дальнейший процесс расщепления ПВК происходит уже не в цитоплазме, а в митохондриях, и включает несколько десятков последовательных реакций, каждая из которых обслуживается своим комплексом ферментов.

Молекулы ПВК под действием ферментов (и кофермента НАД — никотинамидадениндинуклеотида) поэтапно окисляются сначала до уксусной кислоты, а затем, в так называемом цикле Кребса (или трикарбоновых кислот), до углекислого газа и воды (медленное горение). В процессе окисления образуются сложные молекулярные соединения с присоединенными к ним атомами водорода. Молекулы-переносчики подхватывают и перемещают электроны этих атомов по длинной цепи ферментов от одного к другому. На каждом шаге электроны вступают в окислительно-восстановительные реакции и отдают свою энергию, которая идет на перемещение протонов на внешнюю сторону внутренней мембраны митохондрии.

В результате оставшиеся протоны и перемещенные электроны оказываются на разных сторонах внутренней мембраны. На мембране создается разность потенциалов.

Фермент, синтезирующий АТФ (АТФ-синтетаза), встроен во внутреннюю мембрану по всей ее толщине. Этот фермент имеет характерную особенность: небольшой каналец в молекулярной структуре. При накоплении на мембране разности потенциалов примерно в 200 мВ ионы Н+ начинают протискиваться через каналец в молекуле АТФ-синтетазы. В процессе энергичного продвижения ионов через фермент происходит синтез АТФ из АДФ с участием фосфорной кислоты.

В химических реакциях кислородного гликолиза освобождается большое количество энергии — 2600 кДж/моль. Существенная ее часть (55%) запасается в высокоэнергетичных связях образующихся молекул АТФ. Остальные 45% рассеиваются в виде тепла (поэтому при выполнении физической работы нам жарко). Итоговое уравнение кислородной стадии выглядит следующим образом:

2С3Н6О3(молочн.кислота) + 6О2 + 36Н3РО4 + 36АДФ = 6СО2 + 42Н2О + 36АТФ

Таким образом, кислородное расщепление резко увеличивает эффективность энергетического обмена и играет основную роль в аккумулировании энергии. Если гликолиз без участия кислорода дает только 2 молекулы АТФ, то кислородный гликолиз обеспечивает синтез 36 молекул АТФ. В итоге в полном цикле гликолиза на каждую молекулу глюкозы образуется 38 молекул АТФ.

При среднесуточных энергетических затратах в 10 тыс. кДж в организме человека ежедневно синтезируется около 170 кг АТФ, а содержится всего около 50 г АТФ, следовательно, возобновление запаса происходит с частотой 3400 раз в сутки!

При интенсивной физической работе клетки организма не успевают насытиться кислородом, и расщепление глюкозы ограничивается бескислородным гликолизом. В результате быстро накапливается молочная кислота — токсичное для нервных и мышечных клеток соединение (вспомним мышечные боли после тяжелой работы). Появление молочной кислоты возбуждает дыхательный центр и заставляет нас усиленно дышать. Насыщение клеток кислородом позволяет организму возобновить процесс кислородного расщепления, обеспечивающий необходимое количество энергии в виде молекул АТФ. Наступает «второе дыхание». Гепардам после интенсивного бега требуется продолжительный отдых, порой они оказываются не в состоянии защитить свою добычу от менее сильных хищников. В большой скорости восстановления кислородного запаса, а значит, в лучшей приспособленности к длительной мышечной активности — преимущество многих мелких животных.

Митохондрии способны использовать для синтеза АТФ не только расщепление глюкозы. В их матриксе содержатся также ферменты, расщепляющие жирные кислоты. Особенностью этого цикла является большой энергетический выход — 51 молекула АТФ на каждую молекулу жирной кислоты. Не случайно медведи и другие животные, впадая в спячку, запасают именно жиры. Любопытно, что часть запасаемого жира имеет у них бурый цвет. Такие жировые клетки содержат множество митохондрий необычного строения: их внутренние мембраны пронизаны порами. Ионы водорода свободно проходят через эти поры, и синтез АТФ в клетках бурого жира не происходит. Вся энергия, освобождающаяся в процессе кислородного расщепления жирных кислот, выделяется в виде большого количества тепла, согревающего животных во время долгой зимней спячки.

Бурый жир составляет не более 1-2% массы тела, но повышает производство тепла до 400 Вт на каждый килограмм веса (теплопроизводство человека в состоянии покоя составляет 1 Вт/кг). Запасают жир и верблюды. При постоянном дефиците влаги это вдвойне выгодно, поскольку расщепление жиров дает еще и большое количество воды.

Кроме глюкозы и жирных кислот, митохондрии способны расщеплять аминокислоты, но они — дорогое топливо. Аминокислоты являются важным строительным материалом, из них организм синтезирует свои белки. К тому же использование аминокислот для синтеза АТФ требует предварительного удаления аминогруппы NН2 с образованием токсичного аммиака. Белки и составляющие их аминокислоты используются клеткой для получения энергии только в крайнем случае.

Этиловый спирт тоже может использоваться митохондриями для синтеза АТФ. Но спирт как «топливо» имеет для организма человека свои недостатки, постоянное употребление алкоголя приводит к тяжелым расстройствам, например, к жировому перерождению печени — циррозу.

Фотосинтез — превращение энергии света в энергию химических связей

Автотрофные организмы. В отличие от человека и животных, все зеленые растения и часть бактерий способны синтезировать органические вещества из неорганических соединений. Такой тип обмена веществ называется автотрофным (греч. autos сам + trophe пища). В зависимости от вида энергии, используемой автотрофами для синтеза органических молекул, их делят на фототрофов и хемотрофов. Фототрофы используют энергию солнечного света, а хемотрофы — химическую энергию, высвобождающуюся при окислении ими различных неорганических соединений.

Зеленые растения являются фототрофами. Их хлоропласты содержат хлорофилл, позволяющий растениям осуществлять фотосинтез — преобразование энергии солнечного света в энергию химических связей синтезируемых органических соединений. Из всего спектра солнечного излучения молекулы хлорофилла поглощают красную и синюю часть, а зеленая составляющая достигает сетчатки наших глаз. Поэтому большинство растений мы видим зелеными.

Для осуществления фотосинтеза растения поглощают из атмосферы углекислый газ, а из водоемов и почвы — воду, неорганические соли азота и фосфора. Итоговое уравнение фотосинтеза выглядит довольно просто:

6СО2 + 6Н2О = С6Н12О6(глюкоза) + 6О2,

но всем хорошо известно, что при смешивании углекислого газа и воды глюкоза не образуется. Фотосинтез — сложный многоступенчатый процесс, для прохождения которого необходим не только солнечный свет и хлорофилл, но и ряд ферментов, энергия АТФ и молекулы-переносчики. Выделяют две фазы фотосинтеза — световую и темновую.

С в е т о в а я ф а з а фотосинтеза начинается с освещения растений светом. Солнечные фотоны, передавая свою энергию молекуле хлорофилла, переводят молекулу в возбужденное состояние: ее электроны, получая дополнительную энергию, переходят на более высокие орбиты. Отрыв таких возбужденных электронов может происходить значительно легче, чем невозбужденных. Молекулы-переносчики захватывают их и перемещают на другую сторону мембраны тилакоида.

Молекулы хлорофилла восполняют потерю электронов, отрывая их от молекул воды. В результате вода расщепляется на протоны и молекулярный кислород:

2Н2О – 4е = 4Н+ + О2

Процесс расщепления молекул воды до молекулярного кислорода, протонов и электронов под действием света называют фотолизом. Молекулярный кислород легко диффундирует сквозь мембраны тилакоидов и выделяется в атмосферу. Протоны неспособны к проникновению через мембрану и остаются внутри.

Таким образом, снаружи мембраны накапливаются электроны, доставленные молекулами-переносчиками с возбужденных молекул хлорофилла, а внутри — протоны, образовавшиеся в результате фотолиза воды. Возникает разность потенциалов. В мембраны тилакоидов хлоропласта, так же как и во внутренние мембраны митохондрий, встроены ферменты-синтетазы, осуществляющие синтез АТФ. В молекулярной структуре синтетаз растений также имеется каналец, через который могут проходить протоны. При достижении на мембране критической разности потенциалов протоны, влекомые силой электрического поля, протискиваются по канальцу АТФ-синтетазы, затрачивая энергию на синтез АТФ. Соединяясь на другой стороне мембраны с электронами, протоны образуют атомарный водород.

Фотосинтез в хлоропластах весьма эффективен: он дает в 30 раз больше АТФ, чем кислородный гликолиз в митохондриях тех же растений.

Таким образом, во время световой фазы фотосинтеза происходят следующие главные процессы: выделение в атмосферу свободного кислорода, синтез АТФ и образование атомарного водорода.

Протекание дальнейших реакций может происходить и в темноте, потому носит название темновой фазы.

Т е м н о в а я ф а з а. Реакции этой фазы происходят в строме хлоропласта при участии атомарного водорода и АТФ, образовавшихся в световой фазе, а также ферментов, восстанавливающих СО2 до простого сахара — триозы (глицеральдегида) — и синтезирующих из нее глюкозу:

6СО2 + 24Н = С6Н12О6(глюкоза) + 6Н2О

Для образования одной молекулы глюкозы требуется 18 молекул АТФ. Комплекс реакций темновой фазы, осуществляемых ферментами (и коферментом НАД), носит название цикла Кальвина.

Кроме глюкозы, из триозы могут синтезироваться жирные кислоты, аминокислоты и пр. Углеводы и жирные кислоты далее транспортируются в лейкопласты, где из них формируются запасные питательные вещества — крахмал и жиры.

С наступлением темноты растения продолжают процесс фотосинтеза, используя запасенные на свету соединения. Когда этот запас исчерпывается, прекращается и фотосинтез. В ночной темноте растения напоминают по типу обмена веществ животных: они поглощают кислород из атмосферы (дышат) и окисляют при помощи его запасенные днем питательные вещества. На дыхание растения используют в 20-30 раз меньше кислорода, чем выделяют в атмосферу в процессе фотосинтеза.

Количество энергии, производимой растениями, значительно превышает количество тепла, выделяющегося при сжигании всем населением планеты горючих полезных ископаемых. Ежегодно растительность планеты дает 200 млрд. т кислорода и 150 млрд. т органических соединений, необходимых человеку и животным.

Хемосинтез. Большинство бактерий лишены хлорофилла. Некоторые из них являются хемотрофами: для синтеза органических веществ они используют не энергию света, а энергию, высвобождающуюся при окислении неорганических соединений. Такой способ получения энергии и синтеза органических веществ назвали хемосинтезом (греч. chemia химия). Явление хемосинтеза открыто в 1887 г. русским микробиологом С. Н. Виноградским.

Н и т р и ф и ц и р у ю щ и е б а к т е р и и. В корневищах растений, главным образом, бобовых, живут особые клубеньковые бактерии. Они способны усваивать недоступный растениям атмосферный азот и обогащать почву аммиаком. Нитрифицирующие бактерии окисляют аммиак клубеньковых бактерий до азотистой кислоты и далее — азотистую до азотной. В результате растения получают соли азотной кислоты, необходимые для синтеза аминокислот и азотистых оснований.

В о д о р о д н ы е б а к т е р и и также широко распространены в почвах. Они окисляют молекулы водорода, образующиеся в результате бескислородного окисления органических останков различными микроорганизмами:

2Н2 + О2 = 2Н2О

Ж е л е з о б а к т е р и и используют энергию, высвобождающуюся при окислении двухвалентного железа до трехвалентного (закисные соли до окисных).

С е р о б а к т е р и и обитают в болотах и «питаются» сероводородом. В результате окисления сероводорода выделяется необходимая для жизнедеятельности бактерий энергия и накапливается сера. При окислении серы до серной кислоты высвобождается еще часть энергии. Суммарный выход энергии составляет существенную величину — 666 кДж/моль. Огромное количество серобактерий обитает в Черном море. Его воды, начиная со стометровой глубины, насыщены сероводородом.

Гетеротрофный тип обмена веществ. Человек и животные не способны синтезировать необходимые для жизнедеятельности органические вещества из неорганических и вынуждены поглощать их с пищей. Такие организмы называют гетеротрофами (греч. heteros другой). К гетеротрофам относятся также большинство бактерий и грибы. Вещества, поступившие с пищей, разлагаются в организмах животных на простые углеводы, аминокислоты, нуклеотиды, из которых далее синтезируются высокомолекулярные соединения, необходимые для конкретного вида существ в конкретной фазе жизненного цикла. Часть поступивших с пищей молекул расщепляется до конечных продуктов, а высвобождающаяся энергия используется в процессах жизнедеятельности. Некоторое количество энергии рассеивается в виде теплоты, служащей для поддержания температуры тела.

Многие одноклеточные водоросли имеют миксотрофное (смешанное) питание. На свету они фотосинтезируют, а в темноте переходят к фагоцитозу, т.е. становятся гетеротрофами.

--PAGE_BREAK--Пластический обмен. Биосинтез белков. Синтез и РНК

В процессах метаболизма реализуется наследственная информация. Клетка синтезирует только те вещества, которые записаны в ее генетической программе. Каждой группе клеток присущ свой комплекс химических соединений. Среди них особенно важными для организма являются белки.

Многие функции и признаки организма определяются его набором белков. Белки-ферменты расщепляют пищу, отвечают за поглощение и выделение солей, синтезируют жиры и углеводы, производят множество других биохимических превращений. Белки определяют цвет глаз, рост — словом, внешнюю специфичность организмов. Большинство белков, выполняющих одни и те же функции, несколько различны даже у особей одного и того же вида (к примеру, белки групп крови). Но некоторые однофункциональные белки могут иметь сходное строение у далеких групп организмов (к примеру, инсулин собаки и человека).

В процессе жизнедеятельности белковые молекулы постепенно разрушаются, теряют свою структуру — денатурируют. Их активность падает, и клетки заменяют их новыми. В организмах постоянно происходит синтез необходимых белков.

иосинтез белковых молекул — сложный ферментативный процесс, начинающийся в ядре и заканчивающийся на рибосомах. Центральную функцию в нем выполняют носители генетической информации — нуклеиновые кислоты ДНК и РНК.

Генетический код. Последовательность нуклеотидов ДНК задает последовательность аминокислот в белках — их первичную структуру. Молекулы ДНК являются матрицами для синтеза всех белков.

Отрезок ДНК, несущий информацию о первичной структуре конкретного белка, называют геном. Соответствующую последовательность нуклеотидов — генетическим кодом белка.

Идею о том, что наследственная информация записана на молекулярном уровне, а синтез белков идет по матричному принципу, впервые высказал еще в 1920-х годах русский биолог Н. К. Кольцов. В настоящее время код ДНК полностью расшифрован. В этом заслуга известных ученых: Г. Гамова (1954), а также Ф. Крика, С. Очоа, М. Ниренберга, Р. Холи и К. Хорана (1961-65). Значительную часть свойств генетического кода установил английский физик Ф. Крик, исследуя бактериофагов.

К о д т р и п л е т е н. Каждая аминокислота в генетическом коде задается последовательностью трех нуклеотидов — триплетом, или кодоном. Различных нуклеотидов в ДНК четыре, следовательно, теоретически возможных кодонов — 64 (43). Большинству аминокислот соответствует от 2 до 6 кодонов — код, как говорят, вырожден. Чем чаще аминокислота встречается в белках, тем, как правило, большим числом кодонов она кодируется. Оставшиеся три кодона вместе с кодоном метионина (АУГ) служат знаками препинания при считывании информации — указывают начало и конец матриц конкретных белков. Если белок имеет несколько полимерных цепей (образующих отдельные глобулы), то знаки препинания выделяют полипептидные звенья. Считывание каждого звена происходит непрерывно, без знаков препинания и пропусков — триплет за триплетом.

К о д о д н о з н а ч е н. Кроме триплетности, генетический код наделен рядом других характерных свойств. Его кодоны не перекрываются, каждый кодон начинается с нового нуклеотида, и ни один нуклеотид не может прочитываться дважды. Любой кодон соответствует только одной аминокислоте.

К о д у н и в е р с а л е н. Генетическому коду свойственна универсальность для всех организмов на Земле. Одинаковые аминокислоты кодируются одними и теми же триплетами нуклеотидов у бактерий и слонов, водорослей и лягушек, черепах и лошадей, птиц и даже человека. Несколько отличаются (на 1-5 кодонов) только коды митохондрий некоторых организмов, ряда дрожжей и бактерий.

Ошибка хотя бы в одном триплете приводит к серьезным нарушениям в организме. У больных серповидной анемией (их эритроциты имеют не дисковую, а серповидную форму) из 574 аминокислот белка гемоглобина одна аминокислота заменена другой в двух местах. В результате белок имеет измененную третичную и четвертичную структуру. Нарушенная геометрия активного центра, присоединяющего кислород, не позволяет гемоглобину эффективно справляться со своей задачей — связывать кислород в легких и снабжать им клетки организма.

Транскрипция. Синтез белка происходит в цитоплазме на рибосомах. Генетическую информацию от хромосом ядра к месту синтеза переносят иРНК:

ДНК – и РНК — белок

Информационная РНК синтезируется на отрезке одной из нитей ДНК как на матрице, хранящей информацию о первичной структуре конкретного белка или группы белков, выполняющих одну функцию. В основе синтеза лежит принцип комплементарности: напротив Цднк встает Грнк, напротив Гднк — Црнк, напротив Аднк — Урнк, напротив Тднк — Арнк. Затем мономерные звенья связываются в полимерную цепь. Таким образом, иРНК становится точной копией второй нити ДНК (с учетом замены Т- У). Молекула иРНК имеет одноцепочечную структуру, она в сотни раз короче ДНК.

Процесс перенесения генетической информации на синтезируемую иРНК носит название транскрипции. Перед началом каждого гена или группы однофункциональных генов расположена последовательность нуклеотидов, называемая инициатором (содержит кодон АУГ). В этой последовательности есть участок (промотор) для присоединения фермента РНК-полимеразы, осуществляющего транскрипцию. Полимераза распознает промотор благодаря химическому сродству. В конце матрицы синтеза находится стоп-кодон (один из трех в таблице), или терминатор.

В ходе транскрипции РНК-полимераза в комплексе с другими ферментами разрывает водородные связи между азотистыми основаниями двух нитей ДНК, частично раскручивает ДНК и производит синтез иРНК по принципу комплементарности. На одной ДНК «работают» сразу несколько полимераз.

Готовая молекула иРНК после небольшой перестройки связывается в комплекс со специальными белками и транспортируется ими через ядерную оболочку на рибосомы. Эти белки выполняют и другую функцию — они защищают иРНК от действия различных ферментов цитоплазмы. В прокариотической клетке ДНК не отделена от цитоплазмы, и синтез белков рибосомы начинают еще во время транскрипции.

Транспортные РНК. Необходимые для синтеза белков аминокислоты всегда имеются в составе цитоплазмы. Они образуются в процессе расщепления лизосомами белков. Транспортные РНК связывают аминокислоты, доставляют их на рибосомы и производят точную пространственную ориентацию аминокислот на рибосоме.

Рассмотрим устройство тРНК, позволяющее ей успешно выполнять свои сложные функции. В цепочке, состоящей из 70-90 звеньев, имеется 4 пары комплементарных отрезков из 4-7 нуклеотидов — А, Б, В и Г. Комплементарные участки связываются водородными связями попарно (как в молекуле ДНК). В результате нить тРНК «слипается» в четырех местах с образованием петлистой структуры, напоминающей лист клевера. В верхушке «листа» располагается триплет, код которого комплементарен кодону иРНК, соответствующему транспортируемой аминокислоте. Так, если в иРНК код аминокислоты валина ГУГ, то на вершине валиновой тРНК ему будет соответствовать триплет ЦАЦ. Комплементарный триплет в тРНК называют антикодоном.

Специальный фермент распознает антикодон тРНК, присоединяет к «черенку листа» определенную аминокислоту (в нашем примере — валин), и затем тРНК перемещает ее к рибосоме. Каждая тРНК транспортирует только свою аминокислоту.

Синтез белковой цепи на рибосоме

Матричные процессы составляют основу способности живых организмов к воспроизведению. В клеточном ядре происходит удвоение ДНК. Новая молекула воспроизводится на матрице старой и представляет собой ее точную копию. Информационная РНК синтезируется на матрице ДНК в виде точной копии одного из участков ДНК. Далее на матрице иРНК происходит синтез белков.

Трансляция. Перевод последовательности нуклеотидов иРНК в последовательность аминокислот синтезируемых белков называют трансляцией.

В активном центре рибосомы размещаются два триплета иРНК и соответственно две тРНК. Рибосома перемещается по иРНК не плавно, а прерывисто, триплет за триплетом. На каждом шаге присоединяется новая аминокислота. Транспортные РНК перемещаются со своей аминокислотой к рибосоме и «примеряют» свой антикодон к очередному кодону иРНК, находящемуся в активном центре (комплементарные нуклеотиды хорошо подходят друг другу, между ними возникают водородные связи). Если антикодон оказывается не комплементарным, то тРНК удаляется в цитоплазму к другим рибосомам. Если же он оказывается комплементарным, то тРНК присоединяется к кодону водородными связями.

Далее особый фермент рибосомы подсоединяет синтезируемую полипептидную цепь к «прибывшей» аминокислоте. Ее транспортная РНК продолжает удерживать всю формирующуюся белковую цепь на кодоне иРНК до прихода следующей тРНК. Освободившаяся тРНК перемещается в цитоплазму «на поиск» аминокислот. Рибосома перескакивает на следующий триплет иРНК, и процесс повторяется. Интервал между перескакиваниями продолжается не более 1/5 — 1/6 с, а вся трансляция среднего белка — 1-2 минуты.

На одной нити иРНК «трудятся» сразу несколько рибосом. На иРНК, содержащей информацию о белке гемоглобине, размещается до 5 рибосом, на некоторых других иРНК — до 20 рибосом. Когда в активном центре рибосомы оказывается один из трех триплетов, кодирующих знаки препинания между генами, синтез белка завершается.

Освободившаяся рибосома отправляется на другую иРНК. Рибосомы универсальны и могут синтезировать полипептиды по любой матрице иРНК. Субъединицы рибосом соединяются только для синтеза белка, после окончания синтеза они вновь разъединяются.

Сворачивание в спираль и приобретение третичной структуры происходит по мере синтеза белковой цепи, поэтому зачастую невозможно восстановление денатурированных белков со сложной пространственной структурой, даже если их первичная структура сохранена. Сворачивание белковой цепи целой молекулы происходит по-иному, и белок оказывается неактивным.

Многие белки — например, пищеварительные ферменты — очень активны и способны переварить саму клетку, поэтому синтезируемые молекулы белков сразу попадают в эндоплазматическую сеть (к мембране которой прикреплены синтезирующие белки рибосомы) и по ее каналам перемещаются к комплексу Гольджи, а от него в тот участок клетки или в ту часть организма, где требуется этот вид белков. Синтез небелковых соединений клетка осуществляет в два этапа. Сначала рибосомы производят трансляцию специфического белка-фермента. Затем при его участии образуется молекула необходимого соединения — углевода, жиров и т.д. Сходным образом синтезируются и другие соединения: витамины, небелковые гормоны и пр.

Процесс синтеза белков требует затрат большого количества специфической энергии АТФ, которую нельзя заменить иным источником. Только на присоединение каждой аминокислоты к тРНК расходуется энергия одной молекулы АТФ, а в среднем белке 400-500 аминокислот. Общее количество затрачиваемой энергии существенно превышает суммарную химическую энергию образующихся пептидных связей между молекулами аминокислот. По этой причине белки редко используются клеткой в качестве топлива: слишком велики затраты на их изготовление.

Регуляция транскрипции и трансляции. Клетки различных тканей живых организмов сильно отличаются друг от друга по строению и функциям, но все они произошли от единственной зиготы (оплодотворенной яйцеклетки) в результате многократного деления.

Перед каждым актом деления ДНК реплицируется в две точные копии. Ученым удалось экспериментально доказать, что дифференцированные клетки организма имеют одинаковый набор ДНК, не утрачивая ни одной из его частей в процессе делений.

В 1958 г. Ф. Стюарт впервые вырастил из единственной клетки взрослой моркови целое растение. В 1968 г. Дж. Гордону удалось пересадить ядра из клеток кишечника головастика в яйцеклетки лягушки, лишенные собственных ядер, и вырастить из них нормальных лягушек. Следовательно, клетки всех тканей организма имеют один и тот же набор генов, одну и ту же информацию о строении белков.

Однако клетки каждой ткани производят свои белки, свои ферменты. Гемоглобин образуется только в эритроцитах, белковый гормон роста синтезируется только в клетках гипофиза, зрительный белок опсин — в клетках сетчатки глаза, а инсулин — в клетках поджелудочной железы.

Такое разнообразие происходит по причине того, что клетки каждой ткани реализуют только свою часть информации ДНК. В разных клетках происходит транскрипция разных участков ДНК, синтезируются разные иРНК, по которым воспроизводятся разные белки. Более того, специфичные для клеток белки производятся не все сразу, а по мере необходимости. В организмах имеются удивительно точные механизмы «включения» и «выключения» генов на разных этапах жизненного цикла клетки от ее появления до деления.

Геном эукариот устроен намного сложнее генома прокариот. Это связано с увеличением сложности регуляции генетических процессов, а не с увеличением количества структурных белков и ферментов. В клетках высокоразвитых организмов только 10% всех генов ответственны за синтез ферментов и структурных белков, остальные 90% составляют «административный аппарат» клетки.

Кроме того, существуют системы, регулирующие синтез веществ в организме как едином целом. В клетках желез внутренней секреции вырабатываются гормоны, которые разносятся с кровью по всему телу. Эти гормоны регулируют процессы синтеза иРНК и трансляцию именно в тех клетках, для которых они предназначены. На поверхности мембраны клеток есть рецепторы для «своих» гормонов. Связываясь с рецепторами, гормоны управляют активностью различных систем клетки, регулирующих обмен. В результате может изменяться как транскрипция конкретных генов, так и синтез белков на рибосомах.

Даже синтезированные иРНК могут долгое время не транслироваться, если нет «команды» от гормонов. Каждый гормон через определенные системы клеток активирует свои гены. Так, адреналин дает сигнал на синтез ферментов, расщепляющих гликоген до глюкозы, интенсивно потребляемой мышцами при физической нагрузке. Инсулин выполняет обратную функцию, он участвует в синтезе гликогена из глюкозы в клетках печени.

Как транскрипция, так и трансляция могут подавляться различными химическими веществами, относящимися к классу антибиотиков (греч. anti против + bios жизнь). Например, эритромицин и стрептомицин подавляют синтез белка на рибосомах инфекционных бактерий, а бледная поганка содержит вещество, подавляющее функционирование РНК-полимеразы человека. Прекращение полимеразой синтеза иРНК приводит к тяжелейшим последствиям.

Подведем итоги. В воспроизведении белков в живых существах участвует ДНК, информационная РНК, транспортные РНК для 20 аминокислот (всего 61, по количеству кодонов), рибосомы, состоящие из нескольких рибосомных РНК (3 у прокариот и 4 у эукариот) и десятков различных молекул белка, а также целый комплекс ферментов. Для осуществления синтеза одной белковой молекулы необходим тонкий, специфический подвод энергии посредством более чем 1000 молекул АТФ. Практически вся клетка участвует в синтезе, нарушение строения хотя бы одного из компонентов нарушает процесс воспроизведения белковых молекул.

Для современных ученых удивителен сам факт функционирования этой сложной системы в организме. Доказана абсолютная невозможность самообразования молекул РНК и даже ее более простой составляющей — рибозы. Возможность же самосборки белков в гипотетическом первобытном океане при возникновении в нем жизни квалифицированные биохимики совершенно исключают. Так познание внутриклеточных процессов приводит к мысли о богосотворенности мира и приближает нас к очевидности Божия бытия.

Список литературы

Для подготовки данной работы были использованы материалы с сайта www.portal-slovo.ru/

www.ronl.ru


Смотрите также