|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Радиация, ее влияние на человека. Реферат на тему радиация и ее влияние на человекаРадиация, ее влияние на человека1. Основные понятия, термины и определенияРадиация, проникающая радиация, радиационная защита, защита от ионизирующих и рентгеновских излучений, нуклиды, радионуклиды и т.п. Многообразие этих терминов, которые в какой-то степени повторяют друг друга, нередко приводит к неоднозначному пониманию и толкованию. С некоторым допущением можно сказать, что радиация - это явление, происходящее в радиоактивных элементах, ядерных реакторах, при ядерных взрывах, сопровождающееся испусканием частиц и различными излучениями, в результате чего возникают вредные и опасные факторы, воздействующие на людей. Следовательно, термин «ионизирующие излучения» есть одна из сторон проявления физико-химических процессов, протекающих в радиоактивных элементах. Термин «проникающая радиация» следует понимать как поражающий фактор ионизирующих излучений, возникающих, например, при взрыве атомного реактора. Ионизирующее излучение - это любое излучение, вызывающее ионизацию среды, т.е. протекание электрических токов в этой среде, в том числе и в организме человека, что часто приводит к разрушению клеток, изменению состава крови, ожогам и другим тяжелым последствиям. 2.Источники и виды ионизирующих излученийИсточниками ионизирующих излучений являются радиоактивных элементы и их изотопы, ядерные реакторы, ускорители заряженными частиц и др. рентгеновские установки и высоковольтные источники постоянного тока относятся к источникам рентгеновского излучения. Здесь следует отметить, что при нормальном режиме их эксплуатации радиационная опасность незначительна. Она наступает при возникновении аварийного режима и может долго проявлять себя при радиоактивном заражении местности. Ионизирующие излучения разделяются на два вида: электромагнитное (гамма-излучение и рентгеновское излучение) и корпускулярное, представляющее собой - и -частицы, нейтроны и др. По своим свойствам -частицы обладают малой проникающей способностью и не представляют опасности до тех пор, пока радиоактивные вещества, испускающие -частицы, не попадут внутрь организма через рану, с пищей или вдыхаемым воздухом; тогда они становятся чрезвычайно опасными. -частицы могут проникать в ткани организма на глубину один – два сантиметра. Большой проникающей способностью обладает -излучение, которое распространяется со скоростью света; его может задержать лишь толстая свинцовая или бетонная плита. 3. Понятие о нуклидах и радионуклидах Ядра всех изотопов химических элементов образуют группу «нуклидов». Большинство нуклидов нестабильны, т.е. они все время превращаются в другие нуклиды. Например, атом урана-238 время от времени испускает два протона и два нейтрона (-частицы). Уран превращается в торий-234, но торий также нестабилен. В конечном итоге эта цепочка превращений оканчивается стабильным нуклидом свинца. Самопроизвольный распад нестабильного нуклида называется радиоактивным распадом, а сам такой нуклид - радионуклидом. При каждом распаде высвобождается энергия, которая и передается дальше в виде излучения. Поэтому можно сказать, что в определенной степени испускание ядром частицы, состоящей из двух протонов и двух нейтронов, - это -излучение, испускание электрона - -излучение, и, в некоторых случаях, возникает -излучение. Образование и рассеивание радионуклидов приводит к радиоактивному заражению воздуха, почвы, воды, что требует постоянного контроля их содержания и принятия мер по нейтрализации. 4. Радиация вокруг нас Как все-таки действует радиация на человека и окружающую среду? Это одна из многих сегодняшних проблем, которая приковывает к себе внимание огромного количества людей. Радиация действительно опасна: в больших дозах она приводит к поражению тканей, живой клетки, в малых - вызывает раковые явления и способствует генетическим изменениям. Однако опасность представляют вовсе не те источники радиации, о которых больше всего говорят. Радиация, связанная с развитием атомной энергетики, составляет лишь малую долю, существенную часть облучения население получает от естественных источников радиации: из космоса и от радиоактивных веществ, находящихся в земной коре, от применения рентгеновских лучей в медицине, во время полета на самолете, от каменного угля, сжигаемого в бесчисленном количестве различными котельными и т.д. Сама по себе радиоактивность - явление не новое, как считают некоторые, связывая ее возникновение со строительством АЭС и появлением ядерных боеприпасов. Она существовала на Земле задолго до зарождения жизни. С тех пор как образовалась наша Вселенная (порядка 20 миллиардов лет назад), радиация постоянно наполняет космическое пространство. Многие удивляются, узнав, что человек, хотя в чрезвычайно малой мере, но тоже радиоактивен. В его мышцах, костях и других тканях присутствуют мизерные количества радиоактивных веществ. Однако с момента открытия радиации как явления не прошло и ста лет. Так как основную часть дозы облучения население получает от естественных источников, то большинства из них избежать просто невозможно. Человек подвергается двум видам облучения: внешнему и внутреннему. Дозы облучения сильно различаются и зависят, главным образом, от того, где люди живут. 4.1. Источники внешнего облученияРадиоактивный фон, создаваемый космическими лучами (0,3 мЗв/год), дает чуть меньше половины всего внешнего облучения (0,65 мЗв/год), получаемого населением. Нет такого места на Земле, куда бы ни проникали космические лучи. При этом надо отметить, что Северный и Южный полюса получают больше радиации, чем экваториальные районы. Происходит это из-за наличия у Земли магнитного поля, силовые линии которого входят и выходят у полюсов. Однако более существенную роль играет место нахождения человека. Чем выше поднимается он над уровнем моря, тем сильнее становится облучение, ибо толщина воздушной прослойки и ее плотность по мере подъема уменьшается, а следовательно, падают защитные свойства. Те, кто живет на уровне моря, в год получают дозу внешнего облучения приблизительно 0,3 мЗв, на высоте 4000 метров – уже 1,7 мЗв. На высоте 12 км доза облучения за счет космических лучей возрастает приблизительно в 25 раз по сравнению с земной. Экипажи и пассажиры самолетов при перелете на расстояние 2400 км получают дозу облучения 10 мкЗм (0,01 мЗв или 1 мбэр), при полете из Москвы в Хабаровск эта цифра уже составит 40 – 50 мкЗв. Здесь играет роль не только продолжительность, но и высота полета. Земная радиация, дающая ориентировочно 0,35 мЗв/год внешнего облучения, исходит в основном от тех пород полезных ископаемых, которые содержат калий – 40, рубидий – 87, уран – 238, торий – 232. Естественно, уровни земной радиации на нашей планете неодинаковы и колеблются большей частью от 0,3 до 0,6 мЗв/год. Есть такие места, где эти показатели во много раз выше. 4.2. Внутреннее облучение населенияВнутренне облучение населения от естественных источников на две трети происходит от попадания радиоактивных веществ в организм с пищей, водой и воздухом. В среднем человек получает около 180 мкЗв/год за счет калия – 40, который усваивается организмом вместе с нерадиоактивным калием, необходимым для жизнедеятельности. Нуклиды свинца – 210, полония – 210 концентрируются в рыбе и моллюсках. Поэтому люди, потребляющие много рыбы и других даров моря, получают относительно высокие дозы внутреннего облучения. Жители северных районов, питающиеся мясом оленя, тоже подвергаются более высокому облучению, потому что лишайник, который употребляют олени в пищу зимой, концентрирует в себе значительные количества радиоактивных изотопов полония и свинца. Недавно ученые установили, что наиболее весомым из всех естественных источников радиации является радиоактивный газ радон - это невидимый, не имеющий ни вкуса, ни запаха газ, который в 7,5 раз тяжелее воздуха. В природе радон встречается в двух основных видах: радон – 222 и радон – 220. Основная часть радиации исходит не от самого радона, а от дочерних продуктов распада, поэтому значительную часть дозы облучения человек получает от радионуклидов радона, попадающих в организм вместе с вдыхаемым воздухом. Радон высвобождается из земной коры повсеместно, поэтому максимальную часть облучения от него человек получает, находясь в закрытом, непроветриваемом помещении нижних этажей зданий, куда газ просачивается через фундамент и пол. Концентрация его в закрытых помещениях обычно в 8 раз выше, чем на улице, а на верхних этажах ниже, чем на первом. Дерево, кирпич, бетон выделяют небольшое количество газа, а вот гранит и железо - значительно больше. Очень радиоактивны глиноземы. Относительно высокой радиоактивностью обладают некоторые отходы промышленности, используемые в строительстве, например, кирпич из красной глины (отходы производства алюминия), доменный шлак (в черной металлургии), зольная пыль (образуется при сжигании угля). Другими источниками поступления радона в жилые помещения являются вода и природный газ. Надо помнить, что в сырой воде его намного больше, а при кипячении радон улетучивается, поэтому основную опасность представляет собой его попадание в легкие с парами воды. Чаще всего это происходит в ванной комнате при приеме горячего душа. Точно такую же опасность радон представляет, смешиваясь под землей с природным газом, который при сжигании в кухонных плитах, отопительных и других нагревательных приборах попадает в помещение. Концентрация его сильно увеличивается при отсутствии хороших вытяжных систем. Также нельзя забывать, что при сжигании угля значительная часть его компонентов спекается в шлак или золу, где концентрируются радиоактивные вещества. Более легкая из них часть - зольная пыль - уносится в воздух, что также приводит к дополнительному облучению людей. Из печек и каминов всего мира вылетает в атмосферу зольной пыли не меньше, чем из труб электростанции. За последние десятилетия человек усиленно занимался проблемами ядерной физики. Он создал сотни искусственных радионуклидов, научился использовать возможности атома в самых различных отраслях - в медицине, при производстве электро- и тепловой энергии, изготовлении светящихся циферблатов часов, множества приборов, при поиске полезных ископаемых и в военном деле. Все это, естественно, приводит к дополнительному облучению людей. В большинстве случаев дозы невелики, но иногда техногенные источники оказываются во много тысяч раз интенсивнее, чем естественные. Медицинские процедуры и методы лечения, связанные с применением радиоактивности, вносят основной вклад в дозу, получаемую человеком от техногенных источников. Так, при рентгенографии зубов человек получает местное разовое облучение 0,03 Зв (3 бэр), при при рентгенографии желудка - 0,3 Зв (30 бэр), при флюорографии – 3,7 мЗв (370 мбэр). Ядерные взрывы тоже вносят свою лепту в увеличение дозы облучения человека. Радиоактивные осадки от испытаний в атмосфере разносятся по всей планете, повышая общий уровень загрязненности. Испытания эти проходили в два периода:
Всего ядерных испытаний в атмосфере произведено: Китаем – 193, СССР – 142, Францией – 45, США – 22, Великобританией – 21. После 1980 года взрывы в атмосфере практически прекратились. Подземные же испытания продолжаются до сих пор. Атомная энергетика, хотя и вносит в суммарное облучение населения незначительный вклад, является предметом интенсивных споров. Если ядерные установки работают нормально, то и выбросы радиоактивных материалов в окружающую среду очень малы. Каждому понятно, что доза облучения от ядерного реактора зависит от времени и расстояния. Чем дальше человек живет от АЭС, тем меньшую дозу он получает. Дело в том, что большинство радионуклидов, выбрасываемых в атмосферу, быстро распадаются, и поэтому они имеют только местное значение. Конечно, есть и долгоживущие, которые могут распространяться по всему земному шару и оставаться в окружающей среде практически бесконечно. Другим источником загрязнения радиоактивными веществами служат рудники и обогатительные фабрики. В процессе переработки урановой руды образуется огромное количество отходов - «хвостов», которые остаются радиоактивными в течение миллионов лет. Они - главный долгоживущий источник облучения населения. Подводя итог, надо сказать, что средние дозы облучения от атомной энергетики весьма малы по сравнению с дозами, получаемыми от естественных источников (более 1%). В промышленности и в быту из-за применения различных технических средств люди тоже получают дополнительное, хотя и небольшое, облучение. Например, работники, которые участвуют в производстве люминофоров с использованием радиоактивных материалов, на заводах стройиндустрии и промплощадках, где используются установки промышленной дефектоскопии. Под землей повышенные дозы получают шахтеры, рудокопы, золотодобытчики. Достается и персоналу курортов с радоновыми источниками. Самым распространенным бытовым облучателем являются часы со светящимся циферблатом. Они дают годовую дозу, в 4 раза превышающую ту, что обусловлена утечкой на АЭС. На расстоянии 1 метра от циферблата излучение, как правило, в 10000 раз слабее, чем в 1 сантиметре. Источник рентгеновского излучения - цветной телевизор. При просмотре, например, одного хоккейного матча человек получает облучение 0,1мкЗв (1мкбэр). Если смотреть передачи в течении года ежедневно по 3 часа, то доза облучения составит 5 мкЗв. Таким образом, в современных условиях при наличии высокого естественного радиационного фона, при действующих технологических процессах каждый житель Земли ежегодно получает дозу облучения в среднем 2 – 3 мЗв (200 – 300 мбэр). 5. Воздействие и критерии опасности ионизирующих излучений 5.1. Воздействие ионизирующих излучений Любой вид ионизирующих излучений вызывает биологические изменения в организме как при внешнем (источник находится вне организма), так и при внутреннем облучении (радиоактивные вещества, т.е. частицы, попадают внутрь организма с пищей, через органы дыхания). Однократное облучение вызывает биологические нарушения, которые зависят от суммарной поглощенной дозы. Так при дозе до 0,25 Гр видимых нарушений нет, но уже при 4 – 5 Гр смертельные случаи составляют 50% от общего числа пострадавших, а при 6 Гр и более - 100% пострадавших. (Здесь: Гр – грей). Основной механизм действия связан с процессами ионизации атомов и молекул живой материи, в частности молекул воды, содержащихся в клетках. Они-то как раз и подвергаются интенсивному разрушению. Вызванные изменения могут быть обратимыми или необратимыми и протекать в хронической форме лучевой болезни. 5.2. Критерии опасности ионизирующих излучений Степень воздействия ионизирующих излучений на живой организм зависит от мощности дозы облучения, продолжительности этого воздействия и вида излучения и радионуклида, попавшего внутрь организма. Для количественной оценки ионизирующего действия рентгеновского и -излучения в сухом атмосферном воздухе используется понятие экспозиционной дозы. За единицу экспозиционной дозы принимают кулон на килограмм (Кл/кг). Применяется также внесистемная единица - рентген (Р): 1Р = 2,58*10-4 Кл/кг. Количество энергии излучения, поглощенное единицей массы облучаемого тела (тканями организма), называется поглощенной дозой и измеряется в системе СИ в греях (1 Гр = 1 Дж/кг). Применяется также прежняя единица – рад (1 рад = 0,01 Гр). Но этот критерий не учитывает того, что при одинаковой поглощенной дозе -частицы гораздо опаснее -частиц и -излучения. Поэтому введена величина эквивалентной дозы, измеряемая в зивертах (1 Зв = 1 Дж/кг). Зиверт представляет собой единицу поглощенной дозы, умноженную на коэффициент, учитывающий неодинаковую радиоактивную опасность для организма разных видов ионизирующего излучения. Для оценки эквивалентной дозы применяется также единица БЭР (биологический эквивалент рада): 1БЭР = 0,01 Зв. Эффективная эквивалентная доза – эквивалентная доза, умноженная на коэффициент, учитывающий разную чувствительность различных тканей к облучению; она также измеряется в зивертах. В 1996 году, в соответствии с Законом РФ «О радиационной безопасности населения», введены дозовые пределы: для персонала – 20мЗв (миллизиверт) в год при производственной деятельности с источниками ионизирующих излучений и 1 мЗв для населения. 6. Методы и средства защиты от ионизирующих излучений Включают в себя организационные. Гигиенические, технические и лечебно-профилактические мероприятия, а именно:
Защита от внутреннего облучения заключается в устранении непосредственного контакта работающих с радиоактивными и предотвращение попадания их в воздух рабочей зоны. Необходимо руководствоваться нормами радиационной безопасности, в которых приведены категории облучаемых лиц, дозовые пределы и мероприятия по защите, и санитарными правилами, которые регламентируют размещение помещений и установок, место работ, порядок получения, учета и хранения источников излучения, требования к вентиляции, пылегазоочистке, обезвреживанию радиоактивных отходов идр. 7. Краткий комментарий закона РФ «О радиационной безопасности населения» С начала 1996 года в РФ действует Закон «О радиоактивной безопасности населения». Принципиальная основа Закона РФ заключается в новой стратегии радиационной защиты, предусматривающей в качестве основного показателя оценки уровня радиационного благополучия населения среднюю эффективную дозу, получаемую им от всех источников ионизирующего излучения. Предусмотрено возмещение ущерба здоровью граждан, проживающих вблизи радиационно-опасных предприятий и на территории, где могут быть превышения дозовых пределов. В Законе указываются конкретные значения основных дозовых пределов, которые снижены для работающих с излучением в 2,5 раза, а для населения – в 5 раз по сравнению с ранее действовавшими нормами. Проведение мероприятий, связанных с введением в действие новых основных дозовых пределов, предусматривается за счет собственных средств предприятий. Кроме того, за счет средств предприятий и средств экологических фондов будет внедряться государственная система социально-экономической компенсации граждан за повышенный риск, связанный с проживанием в районах расположения радиационно-опасных объектов. За счет средств федерального бюджета - осуществлять разработка единой государственной системы учета и контроля доз облучения персонала, работающего с радиоактивными источниками, и населения, подвергшегося воздействию источников излучения естественного и искусственного происхождения, а также составление карт-схем, атласов радиоактивного загрязнения и создание банка данных. Содержание:
8. Литература: 1.Петров Н.Н. «Человек в чрезвычайных ситуациях». Учебное пособие - Челябинск: Южно-Уральское книжное изд-во, 1995 г. 2. Фомин А.Д. «Организация охраны труда на предприятии в современных условиях». Новосибирск, изд-во «Модус», 1997 г. topref.ru Радиация, ее влияние на организм человека
ИНСТИТУТ УПРАВЛЕНИЯ И ЭКОНОМИКИ Г. САНКТ-ПЕТЕРБУРГ
Курсовая работа
По дисциплине Экология
По теме Радиация, ее влияние на организм человека
Ф.И.О.: Фогель В.Н. Курс: 2 Факультет: социального управления Специальность: социально-культурный сервис и туризм Форма обучения: очная ____________ подпись
Проверил: ___________________ ____________ Ф.И.О. подпись
Калининград, 2002 г.Содержание
Введение3
1.1 Основные понятия и единицы измерения4
2.1 Естественные источники10 2.2 Источники, созданные человеком (техногенные)11 Заключение14 Список использованной литературы15
Введение
С давних времен человек совершенствовал себя, как физически, так и умственно, постоянно создавая и совершенствуя орудия труда. Постоянная нехватка энергии заставляла человека искать и находить новые источники, внедрять их не заботясь о будущем. Таких примеров множество: паровой двигатель побудил человека к созданию огромных фабрик, что за собой повлекло мгновенное ухудшение экологи в городах. Другим примером служит создание каскадов гидроэлектростанций, затопивших огромные территории и изменившие до неузнаваемости экосистемы отдельных районов. В порыве за открытиями в конце XIX в. двумя учеными: Пьером Кюри и Марией Сладковской-Кюри было открыто явление радиоактивности. Именно это достижение поставило существование всей планеты под угрозу. За 100 с лишним лет человек наделал столько глупостей, сколько не делал за все свое существование. Давно уже прошла Холодная война, мы уже пережили Чернобыль и многие засекреченные аварии на полигонах, однако проблема радиационной угрозы никуда не ушла и посей день служит главной угрозой биосфере. Радиация играет огромную роль в развитии цивилизации на данном историческом этапе. Благодаря явлению радиоактивности был совершен существенный прорыв в области медицины и в различных отраслях промышленности, включая энергетику. Но одновременно с этим стали всё отчётливее проявляться негативные стороны свойств радиоактивных элементов: выяснилось, что воздействие радиационного излучения на организм может иметь трагические последствия. Подобный факт не мог пройти мимо внимания общественности. И чем больше становилось известно о действии радиации на человеческий организм и окружающую среду, тем противоречивее становились мнения о том, насколько большую роль должна играть радиация в различных сферах человеческой деятельности. К сожалению, отсутствие достоверной информации вызывает неадекватное восприятие данной проблемы. Газетные истории о шестиногих ягнятах и двухголовых младенцах сеют панику в широких кругах. Проблема радиационного загрязнения стала одной из наиболее актуальных. Поэтому необходимо прояснить обстановку и найти верный подход. Радиоактивность следует рассматривать как неотъемлемую часть нашей жизни, но без знания закономерностей процессов, связанных с радиационным излучением, невозможно реально оценить ситуацию. Для этого создаются специальные международные организации, занимающиеся проблемами радиации, в их числе существующая с конца 1920-х годов Международная комиссия по радиационной защите (МКРЗ), а также созданный в 1955 году в рамках ООН Научный Комитет по действию атомной радиации (НКДАР).
Радиация
Радиация существовала всегда. Радиоактивные элементы входили в состав Земли с начала ее существования и продолжают присутствовать до настоящего времени. Однако само явление радиоактивности было открыто всего сто лет назад. В 1896 году французский ученый Анри Беккерель случайно обнаружил, что после продолжительного соприкосновения с куском минерала, содержащего уран, на фотографических пластинках после проявки появились следы излучения. Позже этим явлением заинтересовались Мария Кюри (автор термина “радиоактивность”) и ее муж Пьер Кюри. В 1898 году они обнаружили, что в результате излучения уран превращается в другие элементы, которые молодые ученые назвали полонием и радием. К сожалению люди, профессионально занимающиеся радиацией, подвергали свое здоровье, и даже жизнь опасности из-за частого контакта с радиоактивными веществами. Несмотря на это исследования продолжались, и в результате человечество располагает весьма достоверными сведениями о процессе протекания реакций в радиоактивных массах, в значительной мере обусловленных особенностями строения и свойствами атома. Известно, что в состав атома входят три типа элементов: отрицательно заряженные электроны движутся по орбитам вокруг ядра плотно сцепленных положительно заряженных протонов и электрически нейтральных нейтронов. Химические элементы различают по количеству протонов. Одинаковое количество протонов и электронов обуславливает электрическую нейтрал www.studsell.com Реферат на тему Радиация, ее влияние на человека |
ождается из земной коры повсеместно, поэтому
максимальную часть облучения от него человек получает, находясь в
закрытом, непроветриваемом помещении нижних этажей зданий, куда газ
просачивается через фундамент и пол. Концентрация его в закрытых
помещениях обычно в 8 раз выше, чем на улице, а на верхних
этажах ниже, чем на первом.
Дерево, кирпич, бетон выделяют небольшое количество газа, а
вот гранит и железо - значительно больше. Очень радиоактивны
глиноземы. Относительно высокой радиоактивностью обладают некоторые
отходы промышленности, используемые в строительстве, например, кирпич
из красной глины (отходы производства алюминия), доменный шлак (в
черной металлургии), зольная пыль (образуется при сжигании угля).
Другими источниками поступления радона в жилые помещения
являются вода и природный газ. Надо помнить, что в сырой воде его
намного больше, а при кипячении радон улетучивается, поэтому
основную опасность представляет собой его попадание в легкие с
парами воды. Чаще всего это происходит в ванной комнате при
приеме горячего душа.
Точно такую же опасность радон представляет, смешиваясь под
землей с природным газом, который при сжигании в кухонных плитах,
отопительных и других нагревательных приборах попадает в помещение.
Концентрация его сильно увеличивается при отсутствии хороших
вытяжных систем.
Также нельзя забывать, что при сжигании угля значительная часть
его компонентов спекается в шлак или золу, где концентрируются
радиоактивные вещества. Более легкая из них часть - зольная пыль -
уносится в воздух, что также приводит к дополнительному облучению
людей.
Из печек и каминов всего мира вылетает в атмосферу зольной
пыли не меньше, чем из труб электростанции.
За последние десятилетия человек усиленно занимался проблемами
ядерной физики. Он создал сотни искусственных радионуклидов,
научился использовать возможности атома в самых различных отраслях
- в медицине, при производстве электро- и тепловой энергии,
изготовлении светящихся циферблатов часов, множества приборов, при
поиске полезных ископаемых и в военном деле. Все это, естественно,
приводит к дополнительному облучению людей. В большинстве случаев
дозы невелики, но иногда техногенные источники оказываются во много
тысяч раз интенсивнее, чем естественные.
Медицинские процедуры и методы лечения, связанные с применением
радиоактивности, вносят основной вклад в дозу, получаемую человеком
от техногенных источников. Так, при рентгенографии зубов человек
получает местное разовое облучение 0,03 Зв (3 бэр), при при
рентгенографии желудка - 0,3 Зв (30 бэр), при флюорографии – 3,7 мЗв
(370 мбэр).
Ядерные взрывы тоже вносят свою лепту в увеличение дозы
облучения человека. Радиоактивные осадки от испытаний в атмосфере
разносятся по всей планете, повышая общий уровень загрязненности.
Испытания эти проходили в два периода:
> первый (1954 – 1958 гг.), когда взрывы проводили
Великобритания, США и СССР;
> второй (1961 – 1962 гг.) – более значительный, когда
взрывы проводили в основном США и СССР.
Всего ядерных испытаний в атмосфере произведено: Китаем – 193,
СССР – 142, Францией – 45, США – 22, Великобританией – 21. После 1980 года
взрывы в атмосфере практически прекратились. Подземные же испытания
продолжаются до сих пор.
Атомная энергетика, хотя и вносит в суммарное облучение
населения незначительный вклад, является предметом интенсивных
споров. Если ядерные установки работают нормально, то и выбросы
радиоактивных материалов в окружающую среду очень малы.
Каждому понятно, что доза облучения от ядерного реактора
зависит от времени и расстояния. Чем дальше человек живет от АЭС,
тем меньшую дозу он получает. Дело в том, что большинство
радионуклидов, выбрасываемых в атмосферу, быстро распадаются, и
поэтому они имеют только местное значение. Конечно, есть и
долгоживущие, которые могут распространяться по всему земному шару
и оставаться в окружающей среде практически бесконечно.
Другим источником загрязнения радиоактивными веществами служат
рудники и обогатительные фабрики. В процессе переработки урановой
руды образуется огромное количество отходов - «хвостов», которые
остаются радиоактивными в течение миллионов лет. Они - главный
долгоживущий источник облучения населения. Подводя итог, надо
сказать, что средние дозы облучения от атомной энергетики весьма
малы по сравнению с дозами, получаемыми от естественных источников
(более 1%).
В промышленности и в быту из-за применения различных
технических средств люди тоже получают дополнительное, хотя и
небольшое, облучение. Например, работники, которые участвуют в
производстве люминофоров с использованием радиоактивных материалов, на
заводах стройиндустрии и промплощадках, где используются установки
промышленной дефектоскопии. Под землей повышенные дозы получают
шахтеры, рудокопы, золотодобытчики. Достается и персоналу курортов с
радоновыми источниками.
Самым распространенным бытовым облучателем являются часы со
светящимся циферблатом. Они дают годовую дозу, в 4 раза превышающую
ту, что обусловлена утечкой на АЭС. На расстоянии 1 метра от
циферблата излучение, как правило, в 10000 раз слабее, чем в 1
сантиметре.
Источник рентгеновского излучения - цветной телевизор. При
просмотре, например, одного хоккейного матча человек получает
облучение 0,1мкЗв (1мкбэр). Если смотреть передачи в течении года
ежедневно по 3 часа, то доза облучения составит 5 мкЗв.
Таким образом, в современных условиях при наличии высокого
естественного радиационного фона, при действующих технологических
процессах каждый житель Земли ежегодно получает дозу облучения в
среднем 2 – 3 мЗв (200 – 300 мбэр).
5. Воздействие и критерии опасности ионизирующих
излучений
5.1. Воздействие ионизирующих излучений
Любой вид ионизирующих излучений вызывает биологические
изменения в организме как при внешнем (источник находится вне
организма), так и при внутреннем облучении (радиоактивные вещества,
т.е. частицы, попадают внутрь организма с пищей, через органы
дыхания).
Однократное облучение вызывает биологические нарушения, которые
зависят от суммарной поглощенной дозы. Так при дозе до 0,25 Гр
видимых нарушений нет, но уже при 4 – 5 Гр смертельные случаи
составляют 50% от общего числа пострадавших, а при 6 Гр и более -
100% пострадавших. (Здесь: Гр – грей).
Основной механизм действия связан с процессами ионизации атомов
и молекул живой материи, в частности молекул воды, содержащихся в
клетках. Они-то как раз и подвергаются интенсивному разрушению.
Вызванные изменения могут быть обратимыми или необратимыми и
протекать в хронической форме лучевой болезни.
5.2. Критерии опасности ионизирующих излучений
Степень воздействия ионизирующих излучений на живой организм
зависит от мощности дозы облучения, продолжительности этого
воздействия и вида излучения и радионуклида, попавшего внутрь
организма.
Для количественной оценки ионизирующего действия рентгеновского
и (-излучения в сухом атмосферном воздухе используется понятие
экспозиционной дозы. За единицу экспозиционной дозы принимают кулон
на килограмм (Кл/кг). Применяется также внесистемная единица - рентген
(Р): 1Р = 2,58*10-4 Кл/кг.
Количество энергии излучения, поглощенное единицей массы
облучаемого тела (тканями организма), называется поглощенной дозой и
измеряется в системе СИ в греях (1 Гр = 1 Дж/кг). Применяется также
прежняя единица – рад (1 рад = 0,01 Гр). Но этот критерий не
учитывает того, что при одинаковой поглощенной дозе (-частицы
гораздо опаснее (-частиц и (-излучения.
Поэтому введена величина эквивалентной дозы, измеряемая в
зивертах (1 Зв = 1 Дж/кг). Зиверт представляет собой единицу
поглощенной дозы, умноженную на коэффициент, учитывающий неодинаковую
радиоактивную опасность для организма разных видов ионизирующего
излучения.
Для оценки эквивалентной дозы применяется также единица БЭР
(биологический эквивалент рада): 1БЭР = 0,01 Зв.
Эффективная эквивалентная доза – эквивалентная доза, умноженная
на коэффициент, учитывающий разную чувствительность различных тканей
к облучению; она также измеряется в зивертах.
В 1996 году, в соответствии с Законом РФ «О радиационной
безопасности населения», введены дозовые пр
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|