refleader.ru

Реферат: "Логические основы устройства компьютера"

Выдержка из работы

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ НЕФТИ И ГАЗА ИМЕНИ И.М. ГУБКИНА

РЕФЕРАТ

на тему: «Логические основы устройства компьютера»

Студент:

Булат В.Р.

Москва, 2014

Оглавление

1. Что такое алгебра логики

1.1 Логические операции: дизъюнкция, конъюнкция и отрицание

1.2 Таблицы истинности

2. Логические основы компьютера

2.1 Законы алгебры логики

2.2 Переключательные схемы

2.3 Вентили

2.4 Сумматор и полусумматор

2.4.1 Полусумматор

2.4.2 Сумматор

2.5 Триггер как элемент памяти. Схема RS-триггера

2.5.1 RS-триггер на вентилях ИЛИ-НЕ

3. Практическое значение алгебры логики

Список использованной литературы

1. Что такое алгебра логики

Алгебра логики (булева алгебра) — это раздел математики, возникший в XIX веке благодаря усилиям английского математика Дж. Буля. Поначалу булева алгебра не имела никакого практического значения. Однако уже в XX веке ее положения нашли применение в описании функционирования и разработке различных электронных схем. Законы и аппарат алгебры логики стал использоваться при проектировании различных частей компьютеров (память, процессор). Хотя это не единственная сфера применения данной науки.

Что же собой представляет алгебра логики? Во-первых, она изучает методы установления истинности или ложности сложных логических высказываний с помощью алгебраических методов. Во-вторых, она делает это таким образом, что сложное логическое высказывание описывается функцией, результатом вычисления которой может быть либо истина, либо ложь (1 или 0). При этом аргументы функции (простые высказывания) также могут иметь только два значения: 0, либо 1.

Что такое простое логическое высказывание? Это фразы типа «два больше одного», «5.8 является целым числом». В первом случае мы имеем истину, а во втором ложь. Алгебра логики не касается сути этих высказываний. Если кто-то решит, что высказывание «Земля квадратная» истинно, то алгебра логики это примет как факт. Дело в том, что булева алгебра занимается вычислениями результата сложных логических высказываний на основе заранее известных значений простых высказываний.

1.1 Логические операции: дизъюнкция, конъюнкция и отрицание

Алгебра логики предусматривает множество логических операций. Однако три из них заслуживают особого внимания, т.к. с их помощью можно описать все остальные, и, следовательно, использовать меньше разнообразных устройств при конструировании схем. Такими операциями являются конъюнкция (И), дизъюнкция (ИЛИ) и отрицание (НЕ). Часто конъюнкцию обозначают &, дизъюнкцию — ||, а отрицание — чертой над переменной, обозначающей высказывание.

При конъюнкции истина сложного выражения возникает лишь в случае истинности всех простых выражений, из которых состоит сложное. Во всех остальных случаях сложное выражение будет ложно.

При дизъюнкции истина сложного выражения наступает при истинности хотя бы одного входящего в него простого выражения или двух сразу. Бывает, что сложное выражение состоит более чем из двух простых.

В этом случае достаточно, чтобы одно простое было истинным и тогда все высказывание будет истинным.

Отрицание — это унарная операция (т.е. зависящая от одного аргумента), т.к. выполняется по отношению к одному простому выражению или по отношению к результату сложного. В результате отрицания получается новое высказывание, противоположное исходному.

1.2 Таблицы истинности

Логические операции удобно описывать так называемыми таблицами истинности, в которых отражают результаты вычислений сложных высказываний при различных значениях исходных простых высказываний. Простые высказывания обозначаются переменными (например, A и B). (1, с. 125).

2. Логические основы компьютера

В компьютере используются различные устройства, работу которых прекрасно описывает алгебра логики. К таким устройствам относятся группы переключателей, вентили, триггеры, сумматоры.

Кроме того, связь между булевой алгеброй и компьютерами лежит и в используемой в компьютере двоичной системе счисления. Поэтому в устройствах компьютера можно хранить и преобразовывать как числа, так и значения логических переменных.

2.1 Законы алгебры логики

Для логических величин обычно используются три операции:

1. Конъюнкция — логическое умножение (И) — and, &, ?.

2. Дизъюнкция — логическое сложение (ИЛИ) — or, |, v.

3. Логическое отрицание (НЕ) — not,.

Логические выражения можно преобразовывать в соответствии с законами алгебры логики:

1. Законы рефлексивности: a? a = a a? a = a

2. Законы коммутативности: a? b = b? a a? b = b? a

3. Законы ассоциативности: (a? b)? c = a? (b? c) (a? b)? c = a? (b? c)

4. Законы дистрибутивности: a? (b? c) = (a? b)? (a? c) a? (b? c) = (a? b)? (a? c)

5. Закон отрицания: (a) = a

6. Законы де Моргана: (a? b) = a? b (a? b) = a? b

7. Законы поглощения: a? (a? b) = a a? (a? b) = a

2.2 Переключательные схемы

В ЭВМ применяются электрические схемы, состоящие из множества переключателей. Переключатель может находиться только в двух состояниях: замкнутом и разомкнутом. В первом случае — ток проходит, во втором — нет. Описывать работу таких схем очень удобно с помощью алгебры логики. В зависимости от положения переключателей можно получить или не получить сигналы на выходах.

2. 3 Вентили

Вентиль — это устройство, которое выдает результат булевой операции от введенных в него данных (сигналов). Так, например, есть вентили, реализующие логическое умножение (конъюнкцию), сложение (дизъюнкцию) и отрицание.

Вентили представляют собой достаточно простые элементы, которые можно комбинировать между собой, создавая тем самым различные схемы. Одни схемы подходят для осуществления арифметических операций, а на основе других строят различную память ЭВМ.

Простейший вентиль представляет собой транзисторный инвертор, который преобразует низкое напряжение в высокое или наоборот (высокое в низкое). Это можно представить как преобразование логического нуля в логическую единицу или наоборот, т. е. получаем вентиль НЕ.

Соединив пару транзисторов различным способом, получают вентили ИЛИ-НЕ и И-НЕ. Эти вентили принимают уже не один, а два и более входных сигнала. Выходной сигнал всегда один и зависит от входных сигналов. В случае вентиля ИЛИ-НЕ получить высокое напряжение (логическую единицу) можно только при условии низкого напряжении на всех входах. В случае вентиля И-НЕ все наоборот: логическая единица получается, если все входные сигналы будут нулевыми. Как видно, это обратно таким привычным логическим операциям как И и ИЛИ. Однако обычно используются вентили И-НЕ и ИЛИ-НЕ, т.к. их реализация проще: И-НЕ и ИЛИ-НЕ реализуются двумя транзисторами, тогда как логические И и ИЛИ тремя.

Выходной сигнал вентиля можно выражать как функцию от входных.

Транзистору требуется очень мало времени для переключения из одного состояния в другое (время переключения оценивается в наносекундах). И в этом одно из существенных преимуществ схем, построенных на их основе.

2.4 Сумматор и полусумматор

Арифметико-логическое устройство процессора (АЛУ) обязательно содержит в своем составе такие элементы как сумматоры. Эти схемы позволяют складывать двоичные числа.

Как происходит сложение? Допустим, требуется сложить двоичные числа 1001 и 0011. Сначала складываем младшие разряды (последние цифры): 1+1=10. Т. е. в младшем разряде будет 0, а единица — это перенос в старший разряд. Далее: 0 + 1 + 1(от переноса) = 10, т. е. в данном разряде снова запишется 0, а единица уйдет в старший разряд. На третьем шаге: 0 + 0 + 1(от переноса) = 1. В итоге сумма равна 1100.

2.4.1 Полусумматор

Теперь не будем обращать внимание на перенос из предыдущего разряда и рассмотрим только, как формируется сумма текущего разряда. Если были даны две единицы или два нуля, то сумма текущего разряда равна 0. Если одно из двух слагаемых равно единице, то сумма равна единице. Получить такие результаты можно при использовании вентиля ИСКЛЮЧАЮЩЕГО ИЛИ.

Перенос единицы в следующий разряд происходит, если два слагаемых равны единице. И это реализуемо вентилем И.

Тогда сложение в пределах одного разряда (без учета возможной пришедшей единицы из младшего разряда) можно реализовать изображенной ниже схемой, которая называется полусумматором. У полусумматора два входа (для слагаемых) и два выхода (для суммы и переноса). На схеме изображен полусумматор, состоящий из вентилей ИСКЛЮЧАЮЩЕЕ ИЛИ и И.

2.4.2 Сумматор

В отличие от полусумматора сумматор учитывает перенос из предыдущего разряда, поэтому имеет не два, а три входа.

Чтобы учесть перенос приходится схему усложнять. По-сути получается, что состоит из двух полусумматоров.

Рассмотрим один из случаев. Требуется сложить 0 и 1, а также 1 из переноса. Сначала определяем сумму текущего разряда. Судя по левой схеме ИСКЛЮЧАЮЩЕЕ ИЛИ, куда входят a и b, на выходе получаем единицу. В следующее ИСКЛЮЧАЮЩЕЕ ИЛИ уже входят две единицы. Следовательно, сумма будет равна 0.

Теперь смотрим, что происходит с переносом. В один вентиль И входят 0 и 1 (a и b). Получаем 0. Во второй вентиль (правее) заходят две единицы, что дает 1. Проход через вентиль ИЛИ нуля от первого И и единицы от второго И дает нам 1.

Проверим работу схемы простым сложением 0 + 1 + 1 = 10. Т. е. 0 остается в текущем разряде, и единица переходит в старший. Следовательно, логическая схема работает верно.

Работу данной схемы при всех возможных входных значениях можно описать следующей таблицей истинности.

2.5 Триггер как элемент памяти. Схема RS-триггера

Память (устройство, предназначенное для хранения данных и команд) является важной частью компьютера. Можно сказать, что она его и определяет: если вычислительное устройство не имеет памяти, то оно уже не компьютер.

Элементарной единицей компьютерной памяти является бит. Поэтому требуется устройство, способное находиться в двух состояниях, т. е. хранить единицу или ноль. Также это устройство должно уметь быстро переключаться из одного состояния в другое под внешним воздействием, что дает возможность изменять информацию. Ну и наконец, устройство должно позволять определять его состояние, т. е. предоставлять во вне информацию о своем состоянии.

Триггер — устройство, способное запоминать, хранить и позволяющее считывать информацию. Он был изобретен в начале XX века Бонч-Бруевичем.

Разнообразие триггеров весьма велико. Наиболее простой из них так называемый RS-триггер, который собирается из двух вентилей. Обычно используют вентили ИЛИ-НЕ или И-НЕ.

алгебра логика таблица компьютер

2.5. 1 RS-триггер на вентилях ИЛИ-НЕ

RS-триггер «запоминает», на какой его вход подавался сигнал, соответствующий единице, в последний раз. Если сигнал был подан на S-вход, то триггер на выходе постоянно «сообщает», что хранит единицу. Если сигнал, соответствующий единице, подан на R-вход, то триггер на выходе имеет 0. Не смотря на то, что триггер имеет два выхода, имеется в виду выход Q. (Q с чертой всегда имеет противоположное Q значение.)

Другими словами, вход S (set) отвечает за установку триггера в 1, а вход R (reset) — за установку триггера в 0. Установка производится сигналом, с высоким напряжением (соответствует единице). Просто все зависит от того, на какой вход он подается.

Большую часть времени на входы подается сигнал равный 0 (низкое напряжение). При этом триггер сохраняет свое прежнее состояние.

Возможны следующие ситуации:

· Q = 1, сигнал подан на S, следовательно, Q не меняется.

· Q = 0, сигнал подан на S, следовательно, Q = 1.

· Q = 1, сигнал подан на R, следовательно, Q = 0.

· Q = 0, сигнал подан на R, следовательно, Q не меняется.

Ситуация, при которой на оба входа подаются единичные сигналы, недопустима.

Как триггер сохраняет состояние? Допустим, триггер выдает на выходе Q логический 0. Тогда судя по схеме, этот 0 возвращается также и в верхний вентиль, где инвертируется (получается 1) и уже в этом виде передается нижнему вентилю.

Тот в свою очередь снова инвертирует сигнал (получается 0), который и имеется на выходе Q. Состояние триггера сохраняется, он хранит 0.

Теперь, допустим, был подан единичный сигнал на вход S. Теперь в верхний вентиль входят два сигнала: 1 от S и 0 от Q. Поскольку вентиль вида ИЛИ-НЕ, то на выходе из него получается 0. Ноль идет на нижний вентиль, там инвертируется (получается 1). Сигнал на выходе Q становится соответствующим 1. (1, с. 140)

3. Практическое значение алгебры логики

Двоичный полусумматор способен осуществлять операцию двоичного сложения двух одноразрядных двоичных чисел (т.е. выполнять правила двоичной арифметики):

0 + 0 = 0; 0 + 1 = 1; 1 + 0 = 1; 1 + 1 = 0.

При этом полусумматор выделяет бит переноса. Однако схема полусумматора не содержит третьего входа, на который можно подавать сигнал переноса от предыдущего разряда суммы двоичных чисел. Поэтому полусумматор используется только в младшем разряде логической схемы суммирования многоразрядных двоичных чисел, где не может быть сигнала переноса от предыдущего двоичного разряда. Полный двоичный сумматор складывает два многоразрядных двоичных числа с учетом сигналов переноса от сложения в предыдущих двоичных разрядах.

Соединяя двоичные сумматоры в каскад, можно получить логическую схему сумматора для двоичных чисел с любым числом разрядов. С некоторыми изменениями эти логические схемы применяются для вычитания, умножения и деления двоичных чисел. С их помощью построены арифметические устройства современных компьютеров.

Сумматоры и полусумматоры являются однотактными логическими схемами. Значения их выходов однозначно определяется значениями их входов. Фактор времени в них отсутствует. Наряду с ними существуют многотактные логические схемы, в которых значения их выходов определяются не только значениями их входов, но и их состоянием в предыдущем такте. Фактор времени и определяется такими тактами. К таким логическим схемам относятся схемы памяти (триггеры). Они строятся с помощью обратной связи с выхода на вход.

В триггерах с помощью обратной связи образуется замкнутая цепь с выхода на вход для запоминания входного сигнала. Эта цепь сохраняется после снятия входного сигнала неограниченное время, вплоть до появления сигнала стирания.

Такая схема памяти имеет еще и другое название — триггер с раздельными входами. В такой схеме есть вход для запоминания (S) и стирания ®. Широко используется в вычислительной технике и триггер со счетным входом. Он имеет только один вход и один выход. Такая схема осуществляет деление на 2, т. е. состояние ее выхода изменяется только после подачи подряд двух входных импульсов. Соединяя триггеры со счетным выходом в последовательный каскад, можно осуществлять деление на 2, 4, 8, 16, 32, 64 и т. д.

Схема оперативной памяти играет важную роль при построении систем управления машинами повышенной опасности, такими, например, как производственные прессы. Чтобы обезопасить руки оператора, такие машины строят с системами двуручного управления. Подобные системы заставляют оператора держать обе руки на кнопках управления во время каждого рабочего цикла машины. Это исключает попадание рук в опасную зону, где происходит прессование детали.

В современных компьютерах микроскопические транзисторы в кристалле интегральной схемы сгруппированы в системы вентилей, выполняющих логические операции над двоичными числами. Так, с их помощью построены описанные выше двоичные сумматоры, позволяющие складывать многоразрядные двоичные числа, производить вычитание, умножение, деление и сравнение чисел между собой. Логические вентили, действуя по определенным правилам, управляют движением данных и выполнением инструкций в компьютере. (2, с. 218)

Список использованной литературы

1) Угринович Н. Д. Информатика и информационные технологии: Учебник для 10−11 классов — М. :БИНОМ, 2003. — 512 с.

2) Макарова Н. В., Волков В. Б. Информатика: учебник для вузов — М.: Питер, 2011. — 576 с.

Показать Свернуть

saratov-ouk.ru

Логические основы построения компьютера

Разделы: Информатика

1. Понятие, суждение, умозаключение.

Логика изучает внутреннюю структуру процесса мышления, который реализуется в таких естественно сложившихся формах мышления как понятие, высказывание и умозаключение.

Мышление всегда осуществляется через понятия, высказывания и умозаключения.

Понятие – это форма мышления, которая выделяет существенные признаки предмета или класса предметов, позволяющие отличать их от других.

Существенными называются такие признаки, каждый из которых, взятый отдельно, необходим, а все вместе достаточны, чтобы с их помощью отличить данный предмет от всех остальных и сделать обобщение, объединив однородные предметы в множество.

Примеры понятий:

Единичные понятия: самая высокая гора в Европе, этот стол, Москва и т.д.

Общие понятия: красота, металл, доброта, глупость, лес, коллектив и т.д.

Абстрактные понятия: вес, жесткость, цвет, вселенная, человечество и т.д.

Конкретные понятия: круг, дом, пламя, битва и т.д.

Любое понятие характеризуется содержанием и объемом.

Содержание понятия – совокупность (множество) его признаков.

Объем понятия – множество предметов, к которым прилагается понятие.

Высказывание – это формулировка своего понимания окружающего мира. Высказывание является повествовательным предложением, в котором что-либо утверждается или отрицается. По поводу высказывания можно сказать, истинно оно или ложно. В русском языке высказывания выражаются повествовательными предложениями:

Алупкинский дворец находится в Крыму.

Кащей Бессмертный – скупой и жадный.

В русском языке высказывания выражаются повествовательными предложениями:

в математической логике – утверждение, истинность которого (в общем случае) зависит от значений входящих в него переменных.

Умозаключение – это форма мышления, с помощью которой из одного или нескольких суждений может быть получено новое суждение.

Рассуждение – цепочка фактов, общих положений и умозаключений. Умозаключение представляет собой переход от сведений, которыми мы располагаем до рассуждения (посылок или условий), к выводам. Правильный способ умозаключений из истинных посылок всегда ведет к истинным выводам.

Примеры индуктивных рассуждений:

Правильны ли полученные выводы?

1)     1 – нечетное и простое число,     3 – нечетное и простое число.    5 – нечетное и простое числоВывод: все нечетные – простые числа.

2). 1=1,1+3=4,1+3+5=9,1+3+5+7=16,1+3+5+7+9=25, и т.д.

Вывод: квадрат любого числа К равен сумме К первых нечетных чисел.

3). Fe, Си, Zn. Pt – твердые телаВывод: все металлы-твердые.

4) В Аргентине, Эквадоре, Венесуэле говорят по-испански.Вывод: все страны Латинской Америки – испаноязычные

2. Алгебра логики

– определяет правила записи, вычисления значений, упрощения и преобразования высказываний.

В алгебре логики высказывания обозначают буквами и называют логическими переменными.

Если высказывание истинно, то значение соответствующей ему логической переменной обозначают единицей (А = 1), а если ложно – нулём (В = 0).

0 и 1 называются логическими значениями.

Высказывания бывают простые и сложные.

Высказывание называется простым, если никакая его часть сама не является высказыванием.

Сложные (составные) высказывания строятся из простых с помощью логических операций.

Логические операции.

Конъюнкция – логическая операция, ставящая в соответствие каждым двум высказываниям новое высказывание, являющееся истинным тогда и только тогда, когда оба исходных высказывания истинны.

Другое название: логическое умножение.

Дизъюнкция – логическая операция, которая каждым двум высказываниям ставит в соответствие новое высказывание, являющееся ложным тогда и только тогда, когда оба исходных высказывания ложны.

Другое название: логическое сложение.

Обозначения: V, |, ИЛИ, +.

Инверсия – логическая операция, которая каждому высказыванию ставит в соответствие новое высказывание, значение которого противоположно исходному.

Другое название: логическое отрицание.

Обозначения: НЕ, ¬ , ¯ .

Импликация – это логическая операция, ставящая в соответствие каждым двум простым высказываниям составное высказывание, являющееся ложным тогда и только тогда, когда условие (первое высказывание) истинно, а следствие (второе высказывание) ложно.

В естественном языке – “Если A, то B”;

Обозначение –

Логическая эквивалентность (равнозначность) – это логическая операция, ставящая в соответствие каждым двум высказываниям составное высказывание, являющееся истинным тогда и только тогда, когда оба исходных высказывания одновременно истины или одновременно ложны.

В естественном языке – “Тогда и только тогда и в том и только том случае”;

Обозначение – ↔

Логические операции имеют следующий приоритет:

инверсия, конъюнкция, дизъюнкция, импликация, эквивалентность

Задача.

В 10-х классах учатся 50 человек. Факультатив по математике посещают 36 человек, по физике – 20 человек, на тот и другой факультатив записаны 10 учеников.

Какое количество учащихся не посещают факультативы?

36 – 10 = 26 – число учеников посещающих математику, и не посещающих физику.

20 + 26 = 46 – число учеников, посещающих математику или физику.

50 – 46 = 4 – число учеников, которые не посещают никаких факультативов.

3. Построение таблиц истинности сложных высказываний.

Свойства логических операций.

Пример:

Справочный материал:

Решение логических задач упрощением логических выражений.

На соревнованиях по легкой атлетике Андрей, Боря, Сережа и Володя заняли первые четыре места. Но когда девочки стали вспоминать, как эти места распределились между победителями, то мнения разошлись:

Даша: Андрей был первым, а Володя – вторым.

Галя: Андрей был вторым, а Борис – третьим.

Лена: Боря был четвертым, а Сережа – вторым.

Известно, что каждая девочка в одном утверждении ошиблась, а в другом была права. Кто из мальчиков какое место занял?

Введем обозначения:

 

Начальная

Windows Commander

Far
WinNavigator
Frigate
Norton Commander
WinNC
Dos Navigator
Servant Salamander
Turbo Browser

Winamp, Skins, Plugins
Необходимые Утилиты
Текстовые редакторы
Юмор

File managers and best utilites

Логические основы устройства компьютера. Реферат на тему логические основы компьютера


Реферат: "Логические основы устройства компьютера"

Выдержка из работы

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ НЕФТИ И ГАЗА ИМЕНИ И.М. ГУБКИНА

РЕФЕРАТ

на тему: «Логические основы устройства компьютера»

Студент:

Булат В.Р.

Москва, 2014

Оглавление

1. Что такое алгебра логики

1.1 Логические операции: дизъюнкция, конъюнкция и отрицание

1.2 Таблицы истинности

2. Логические основы компьютера

2.1 Законы алгебры логики

2.2 Переключательные схемы

2.3 Вентили

2.4 Сумматор и полусумматор

2.4.1 Полусумматор

2.4.2 Сумматор

2.5 Триггер как элемент памяти. Схема RS-триггера

2.5.1 RS-триггер на вентилях ИЛИ-НЕ

3. Практическое значение алгебры логики

Список использованной литературы

1. Что такое алгебра логики

Алгебра логики (булева алгебра) — это раздел математики, возникший в XIX веке благодаря усилиям английского математика Дж. Буля. Поначалу булева алгебра не имела никакого практического значения. Однако уже в XX веке ее положения нашли применение в описании функционирования и разработке различных электронных схем. Законы и аппарат алгебры логики стал использоваться при проектировании различных частей компьютеров (память, процессор). Хотя это не единственная сфера применения данной науки.

Что же собой представляет алгебра логики? Во-первых, она изучает методы установления истинности или ложности сложных логических высказываний с помощью алгебраических методов. Во-вторых, она делает это таким образом, что сложное логическое высказывание описывается функцией, результатом вычисления которой может быть либо истина, либо ложь (1 или 0). При этом аргументы функции (простые высказывания) также могут иметь только два значения: 0, либо 1.

Что такое простое логическое высказывание? Это фразы типа «два больше одного», «5.8 является целым числом». В первом случае мы имеем истину, а во втором ложь. Алгебра логики не касается сути этих высказываний. Если кто-то решит, что высказывание «Земля квадратная» истинно, то алгебра логики это примет как факт. Дело в том, что булева алгебра занимается вычислениями результата сложных логических высказываний на основе заранее известных значений простых высказываний.

1.1 Логические операции: дизъюнкция, конъюнкция и отрицание

Алгебра логики предусматривает множество логических операций. Однако три из них заслуживают особого внимания, т.к. с их помощью можно описать все остальные, и, следовательно, использовать меньше разнообразных устройств при конструировании схем. Такими операциями являются конъюнкция (И), дизъюнкция (ИЛИ) и отрицание (НЕ). Часто конъюнкцию обозначают &, дизъюнкцию — ||, а отрицание — чертой над переменной, обозначающей высказывание.

При конъюнкции истина сложного выражения возникает лишь в случае истинности всех простых выражений, из которых состоит сложное. Во всех остальных случаях сложное выражение будет ложно.

При дизъюнкции истина сложного выражения наступает при истинности хотя бы одного входящего в него простого выражения или двух сразу. Бывает, что сложное выражение состоит более чем из двух простых.

В этом случае достаточно, чтобы одно простое было истинным и тогда все высказывание будет истинным.

Отрицание — это унарная операция (т.е. зависящая от одного аргумента), т.к. выполняется по отношению к одному простому выражению или по отношению к результату сложного. В результате отрицания получается новое высказывание, противоположное исходному.

1.2 Таблицы истинности

Логические операции удобно описывать так называемыми таблицами истинности, в которых отражают результаты вычислений сложных высказываний при различных значениях исходных простых высказываний. Простые высказывания обозначаются переменными (например, A и B). (1, с. 125).

2. Логические основы компьютера

В компьютере используются различные устройства, работу которых прекрасно описывает алгебра логики. К таким устройствам относятся группы переключателей, вентили, триггеры, сумматоры.

Кроме того, связь между булевой алгеброй и компьютерами лежит и в используемой в компьютере двоичной системе счисления. Поэтому в устройствах компьютера можно хранить и преобразовывать как числа, так и значения логических переменных.

2.1 Законы алгебры логики

Для логических величин обычно используются три операции:

1. Конъюнкция — логическое умножение (И) — and, &, ?.

2. Дизъюнкция — логическое сложение (ИЛИ) — or, |, v.

3. Логическое отрицание (НЕ) — not,.

Логические выражения можно преобразовывать в соответствии с законами алгебры логики:

1. Законы рефлексивности: a? a = a a? a = a

2. Законы коммутативности: a? b = b? a a? b = b? a

3. Законы ассоциативности: (a? b)? c = a? (b? c) (a? b)? c = a? (b? c)

4. Законы дистрибутивности: a? (b? c) = (a? b)? (a? c) a? (b? c) = (a? b)? (a? c)

5. Закон отрицания: (a) = a

6. Законы де Моргана: (a? b) = a? b (a? b) = a? b

7. Законы поглощения: a? (a? b) = a a? (a? b) = a

2.2 Переключательные схемы

В ЭВМ применяются электрические схемы, состоящие из множества переключателей. Переключатель может находиться только в двух состояниях: замкнутом и разомкнутом. В первом случае — ток проходит, во втором — нет. Описывать работу таких схем очень удобно с помощью алгебры логики. В зависимости от положения переключателей можно получить или не получить сигналы на выходах.

2. 3 Вентили

Вентиль — это устройство, которое выдает результат булевой операции от введенных в него данных (сигналов). Так, например, есть вентили, реализующие логическое умножение (конъюнкцию), сложение (дизъюнкцию) и отрицание.

Вентили представляют собой достаточно простые элементы, которые можно комбинировать между собой, создавая тем самым различные схемы. Одни схемы подходят для осуществления арифметических операций, а на основе других строят различную память ЭВМ.

Простейший вентиль представляет собой транзисторный инвертор, который преобразует низкое напряжение в высокое или наоборот (высокое в низкое). Это можно представить как преобразование логического нуля в логическую единицу или наоборот, т. е. получаем вентиль НЕ.

Соединив пару транзисторов различным способом, получают вентили ИЛИ-НЕ и И-НЕ. Эти вентили принимают уже не один, а два и более входных сигнала. Выходной сигнал всегда один и зависит от входных сигналов. В случае вентиля ИЛИ-НЕ получить высокое напряжение (логическую единицу) можно только при условии низкого напряжении на всех входах. В случае вентиля И-НЕ все наоборот: логическая единица получается, если все входные сигналы будут нулевыми. Как видно, это обратно таким привычным логическим операциям как И и ИЛИ. Однако обычно используются вентили И-НЕ и ИЛИ-НЕ, т.к. их реализация проще: И-НЕ и ИЛИ-НЕ реализуются двумя транзисторами, тогда как логические И и ИЛИ тремя.

Выходной сигнал вентиля можно выражать как функцию от входных.

Транзистору требуется очень мало времени для переключения из одного состояния в другое (время переключения оценивается в наносекундах). И в этом одно из существенных преимуществ схем, построенных на их основе.

2.4 Сумматор и полусумматор

Арифметико-логическое устройство процессора (АЛУ) обязательно содержит в своем составе такие элементы как сумматоры. Эти схемы позволяют складывать двоичные числа.

Как происходит сложение? Допустим, требуется сложить двоичные числа 1001 и 0011. Сначала складываем младшие разряды (последние цифры): 1+1=10. Т. е. в младшем разряде будет 0, а единица — это перенос в старший разряд. Далее: 0 + 1 + 1(от переноса) = 10, т. е. в данном разряде снова запишется 0, а единица уйдет в старший разряд. На третьем шаге: 0 + 0 + 1(от переноса) = 1. В итоге сумма равна 1100.

2.4.1 Полусумматор

Теперь не будем обращать внимание на перенос из предыдущего разряда и рассмотрим только, как формируется сумма текущего разряда. Если были даны две единицы или два нуля, то сумма текущего разряда равна 0. Если одно из двух слагаемых равно единице, то сумма равна единице. Получить такие результаты можно при использовании вентиля ИСКЛЮЧАЮЩЕГО ИЛИ.

Перенос единицы в следующий разряд происходит, если два слагаемых равны единице. И это реализуемо вентилем И.

Тогда сложение в пределах одного разряда (без учета возможной пришедшей единицы из младшего разряда) можно реализовать изображенной ниже схемой, которая называется полусумматором. У полусумматора два входа (для слагаемых) и два выхода (для суммы и переноса). На схеме изображен полусумматор, состоящий из вентилей ИСКЛЮЧАЮЩЕЕ ИЛИ и И.

2.4.2 Сумматор

В отличие от полусумматора сумматор учитывает перенос из предыдущего разряда, поэтому имеет не два, а три входа.

Чтобы учесть перенос приходится схему усложнять. По-сути получается, что состоит из двух полусумматоров.

Рассмотрим один из случаев. Требуется сложить 0 и 1, а также 1 из переноса. Сначала определяем сумму текущего разряда. Судя по левой схеме ИСКЛЮЧАЮЩЕЕ ИЛИ, куда входят a и b, на выходе получаем единицу. В следующее ИСКЛЮЧАЮЩЕЕ ИЛИ уже входят две единицы. Следовательно, сумма будет равна 0.

Теперь смотрим, что происходит с переносом. В один вентиль И входят 0 и 1 (a и b). Получаем 0. Во второй вентиль (правее) заходят две единицы, что дает 1. Проход через вентиль ИЛИ нуля от первого И и единицы от второго И дает нам 1.

Проверим работу схемы простым сложением 0 + 1 + 1 = 10. Т. е. 0 остается в текущем разряде, и единица переходит в старший. Следовательно, логическая схема работает верно.

Работу данной схемы при всех возможных входных значениях можно описать следующей таблицей истинности.

2.5 Триггер как элемент памяти. Схема RS-триггера

Память (устройство, предназначенное для хранения данных и команд) является важной частью компьютера. Можно сказать, что она его и определяет: если вычислительное устройство не имеет памяти, то оно уже не компьютер.

Элементарной единицей компьютерной памяти является бит. Поэтому требуется устройство, способное находиться в двух состояниях, т. е. хранить единицу или ноль. Также это устройство должно уметь быстро переключаться из одного состояния в другое под внешним воздействием, что дает возможность изменять информацию. Ну и наконец, устройство должно позволять определять его состояние, т. е. предоставлять во вне информацию о своем состоянии.

Триггер — устройство, способное запоминать, хранить и позволяющее считывать информацию. Он был изобретен в начале XX века Бонч-Бруевичем.

Разнообразие триггеров весьма велико. Наиболее простой из них так называемый RS-триггер, который собирается из двух вентилей. Обычно используют вентили ИЛИ-НЕ или И-НЕ.

алгебра логика таблица компьютер

2.5. 1 RS-триггер на вентилях ИЛИ-НЕ

RS-триггер «запоминает», на какой его вход подавался сигнал, соответствующий единице, в последний раз. Если сигнал был подан на S-вход, то триггер на выходе постоянно «сообщает», что хранит единицу. Если сигнал, соответствующий единице, подан на R-вход, то триггер на выходе имеет 0. Не смотря на то, что триггер имеет два выхода, имеется в виду выход Q. (Q с чертой всегда имеет противоположное Q значение.)

Другими словами, вход S (set) отвечает за установку триггера в 1, а вход R (reset) — за установку триггера в 0. Установка производится сигналом, с высоким напряжением (соответствует единице). Просто все зависит от того, на какой вход он подается.

Большую часть времени на входы подается сигнал равный 0 (низкое напряжение). При этом триггер сохраняет свое прежнее состояние.

Возможны следующие ситуации:

· Q = 1, сигнал подан на S, следовательно, Q не меняется.

· Q = 0, сигнал подан на S, следовательно, Q = 1.

· Q = 1, сигнал подан на R, следовательно, Q = 0.

· Q = 0, сигнал подан на R, следовательно, Q не меняется.

Ситуация, при которой на оба входа подаются единичные сигналы, недопустима.

Как триггер сохраняет состояние? Допустим, триггер выдает на выходе Q логический 0. Тогда судя по схеме, этот 0 возвращается также и в верхний вентиль, где инвертируется (получается 1) и уже в этом виде передается нижнему вентилю.

Тот в свою очередь снова инвертирует сигнал (получается 0), который и имеется на выходе Q. Состояние триггера сохраняется, он хранит 0.

Теперь, допустим, был подан единичный сигнал на вход S. Теперь в верхний вентиль входят два сигнала: 1 от S и 0 от Q. Поскольку вентиль вида ИЛИ-НЕ, то на выходе из него получается 0. Ноль идет на нижний вентиль, там инвертируется (получается 1). Сигнал на выходе Q становится соответствующим 1. (1, с. 140)

3. Практическое значение алгебры логики

Двоичный полусумматор способен осуществлять операцию двоичного сложения двух одноразрядных двоичных чисел (т.е. выполнять правила двоичной арифметики):

0 + 0 = 0; 0 + 1 = 1; 1 + 0 = 1; 1 + 1 = 0.

При этом полусумматор выделяет бит переноса. Однако схема полусумматора не содержит третьего входа, на который можно подавать сигнал переноса от предыдущего разряда суммы двоичных чисел. Поэтому полусумматор используется только в младшем разряде логической схемы суммирования многоразрядных двоичных чисел, где не может быть сигнала переноса от предыдущего двоичного разряда. Полный двоичный сумматор складывает два многоразрядных двоичных числа с учетом сигналов переноса от сложения в предыдущих двоичных разрядах.

Соединяя двоичные сумматоры в каскад, можно получить логическую схему сумматора для двоичных чисел с любым числом разрядов. С некоторыми изменениями эти логические схемы применяются для вычитания, умножения и деления двоичных чисел. С их помощью построены арифметические устройства современных компьютеров.

Сумматоры и полусумматоры являются однотактными логическими схемами. Значения их выходов однозначно определяется значениями их входов. Фактор времени в них отсутствует. Наряду с ними существуют многотактные логические схемы, в которых значения их выходов определяются не только значениями их входов, но и их состоянием в предыдущем такте. Фактор времени и определяется такими тактами. К таким логическим схемам относятся схемы памяти (триггеры). Они строятся с помощью обратной связи с выхода на вход.

В триггерах с помощью обратной связи образуется замкнутая цепь с выхода на вход для запоминания входного сигнала. Эта цепь сохраняется после снятия входного сигнала неограниченное время, вплоть до появления сигнала стирания.

Такая схема памяти имеет еще и другое название — триггер с раздельными входами. В такой схеме есть вход для запоминания (S) и стирания ®. Широко используется в вычислительной технике и триггер со счетным входом. Он имеет только один вход и один выход. Такая схема осуществляет деление на 2, т. е. состояние ее выхода изменяется только после подачи подряд двух входных импульсов. Соединяя триггеры со счетным выходом в последовательный каскад, можно осуществлять деление на 2, 4, 8, 16, 32, 64 и т. д.

Схема оперативной памяти играет важную роль при построении систем управления машинами повышенной опасности, такими, например, как производственные прессы. Чтобы обезопасить руки оператора, такие машины строят с системами двуручного управления. Подобные системы заставляют оператора держать обе руки на кнопках управления во время каждого рабочего цикла машины. Это исключает попадание рук в опасную зону, где происходит прессование детали.

В современных компьютерах микроскопические транзисторы в кристалле интегральной схемы сгруппированы в системы вентилей, выполняющих логические операции над двоичными числами. Так, с их помощью построены описанные выше двоичные сумматоры, позволяющие складывать многоразрядные двоичные числа, производить вычитание, умножение, деление и сравнение чисел между собой. Логические вентили, действуя по определенным правилам, управляют движением данных и выполнением инструкций в компьютере. (2, с. 218)

Список использованной литературы

1) Угринович Н. Д. Информатика и информационные технологии: Учебник для 10−11 классов — М. :БИНОМ, 2003. — 512 с.

2) Макарова Н. В., Волков В. Б. Информатика: учебник для вузов — М.: Питер, 2011. — 576 с.

Показать Свернуть

sinp.com.ua

Логические основы компьютера

              ЛОГИЧЕСКИЕ ОСНОВЫ КОМПЬЮТЕРА.

Что такое алгебра логики?

Алгебра логики- это  раздел математики, изучающий высказывания, рассматриваемые со стороны их логических значений (истинности или ложности ) и логических операций над  ними.

Алгебра логики возникла в середине 19в. в трудах английского математика Джорджа Буля. Ее создание представляло собой попытку решать традиционные логические задачи алгебраическими методами.

Логическое высказывание-это любое повествовательное предложение, в отношении которого можно однозначно сказать, истинно или ложно.

Так например, предложение "6- четное число" следует считать высказыванием, так как оно истинное. Предложение "Рим- столица Франции" тоже высказывание, так как оно ложное.

Разумеется, не всякое предложение является логическим высказыванием.

Высказывательная  форма- это повествовательное предложение, которое прямо или косвенно содержит  хотя бы одну переменную или становится высказыванием, когда все переменные замешаются своими  значениями.

Алгебра логики рассматривает любое высказывание  только с одной точки зрения- является оно ли истинным или ложным. Употребляемые в обычной речи слова и словосочетания "не", "и", "или", "если..., то", "тогда и только тогда" и др. позволяют из уже заданных высказываний строить новые высказывания. Такие слова и словосочетания называются логическими связками.

Высказывания, образованныеиз других высказываний с помощью логических связок,называются составными. Высказывания, не являющиеся составными, называются элементарными.

Каждая логическая связка рассматривается как операция над логическими высказываниями и имеет свое название и обозначения:

1.Операция, выражаемая словом "не", называется отрицанием и обозначается чертой над высказыванием.

2.Операция, выражаемая связкой "и", называется конъюкцией (от лат.-соединение) или логическим умножением  и обозначается точкой.

3. Операция, выражаемая связкой "или",называется дизъюнкцией или логическим сложением и обозначается плюсом+.

4. Операция, выражаемая связками "если ...., то", "из ... слудует", "...влечет ...", называется импликацией и обозначается знаком→.

5. Операция, выражаемая связками "тогда и только тогда", "необходимо и достаточно", "... равносильно ...", называется эквиваленцией или двойной импликацией и обозначается знаком ↔.

                Что такое логическая формула.

С помощью логических переменных и символов логических операций любое высказывание можно формализовать, т.е заменить формулой. Дадим определение логической формуле:

1. Всякая логическая переменная и символы "истинна" ("1") и ложь ("0")- формулы.

2.Если А и В - формулы, то А, (А*В), (А+В), (А→В),(А↔В) - формулы.

3.Никаких других формул в алгебре логики нет.

В пункте 1 определены элементарные формулы, в пункте 2 даны правила образования из любых данных формул новых формул.

         Что такое логический элемент компьютера.

Логический элемент компьютера- часть электронной логической схемы, которая реализует элементарную логическую функцию.

Логическими элементами компьютеров являются электронные схемы И, ИЛИ, НЕ, И-НЕ, ИЛИ-НЕ и др. (называемые также вентилями), а также триггер.

С помощью этих схем можно реализовать любую логическую функцию, описывающую работу устройств компьютера. Обычно у вентилей бывает от двух до восьми входов и один или два выхода. Чтобы представить два логических состояния "1" и "0" в вентилях, соответствующие им входные и выходные сигналы имеют один из двух установленных уровней напряжения. Например, +5 вольт и 0 вольт.

Высокий уровень обычно соответствует значению "истина" ("1"), а низкий- значению "ложь" (0). Каждый логический элемент  имеет свое условное обозначение, которое выражает его логическую функцию, но не указывает на то, какая именно электронная схема в нем реализована. Это упрощает запись и понимание сложных логических схем. Работу логических элементов описывают с помощью таблиц истинности.

Таблица истинности- это табличное представление логической схемы, в котором перечислены все возможные сочетания значений истинности входных сигналов вместе со значением истинности выходного сигнала для каждого из этих сочетаний.

         Что такое схемы И, ИЛИ, НЕ, И-НЕ, ИЛИ-НЕ.

1)Схема И реализует конъюнкцию двух или более логических значений.

Условное обозначение на структурных схемах схемы И с двумя входами представлено, а таблица истинности - в таблице 1

Таблица 1

                       Х                             У                               Х*У
0 0 0
0 1 0
1 0 0
1 1 1
2) Схема ИЛИ реализует дизъюнкцию двух или более логических значений.

Когда хотя бы на одном входе схемы ИЛИ будет единица, на ее выходе также будет единица. Таблица истинности 2

Х У Х+У
0 0 0
0 1 1
1 0 1
1 1 1
 3)Схема НЕ(инвертор) реализует операцию отрицания.

Таблица2

 4)Схема И-НЕ состоит из элемента И и инвертора и осуществляет отрицание результата схемы И.

 Таблица3

Х У Х*У
0 0 1
0 1 1
1 0 1
1 1 0
 5)Схема ИЛИ-НЕ состоит из элемента ИЛИ и инвертора и осуществляет отрицание результата схемы ИЛИ.

 Таблица4

Х У Х+У
0 0 1
0 1 0
1 0 0
1 1 0
                                    Что такое триггер.

Триггер- Это электронная схема, широко применяемая в регистрах компьютера для надежного запоминания одного разряда двоичного кода. Триггер имеет два устойчивых состояния, одно из которых соответствует  двоичной еденице, а другое - двоичному нулю.

Термин  "триггер" происходит от английского слова ТРИГГЕР-защелка, спусковой крючок. Самый распространенный тип триггера  - так называемый  РС - триггер. Он имеет 2 симметричных входа С и Р.

                                    Что такое сумматор.

Сумматор- это электронная логическая схема, выполняющая суммирование двоичных чисел.

Сумматор служит прежде всего центральным узлом арифметико-логического устройства компьютера, однако он находит применение также и других устройствах машины. Многоразрядный двоичный сумматор, предназначенный для сложения многоразрядовых двоичных чисел, представляет собой комбинацию одноразрядовых сумматоров, с рассмотрения которых мы и начнем. Одноразрядовый  двоичный сумматор есть устройство с тремя входами и двумя выходами,работа которого может быть описана следующей таблицей истинности:

     Входы      Выходы
Первое слагаемое Второе слагаемое перенос сумма перенос
  0 0 0 0 0
  0 0 1 1 0
  0 1 0 1 0
  0 1 1 0 1
  1 0 0 1 0
  1 0 1 0 1
  1 1 0 0 1
1 1 1 1 1
 Если требуется складывать двоичные слова длиной два и более бит, то можно использовать последовательное соединение таких сумматоров, причем для двух соседних сумматоров выход переноса одного сумматора  является входом для другого.  

                     Что такое переключательная схема.

Переключательная схема-это схематическое изображение некоторого устройства, состоящего из переключателей и соединяющих их проводников , а так же из входов и выходов, на которые подается и с которых снимается электрический сигнал.

Каждый переключатель имеет только два состояния: замкнутое и разомкнутое. Две схемы называются равносильными, если через одну из них проходит ток тогда и только тогда, когда он проходит через другую. Из двух равносильных схем более простой считается та схема, функция проводимости которой содержит меньшее число логических операций или переключателей. При рассмотрении переключательных схем возникают две основные задачи: синтез и анализ схемы. Синтез схемы по заданным условиям ее работы сводится к следующим трем этапам:

-составление функции проводимости по таблице истинности, отражающей эти условия;

-упрощение этой функции;

-построение соответствующей схемы.

Анализ схемы сводится к:

-определению значений ее функции проводимости при всех возможных наборах входящих в эту функцию переменных;

-получению упрощенной формулы.

                             Решение логических задач.

Разнообразие логических задач очень велико. Способов решения тоже не мало. Но наибольшее распространение получили следующие три способа решения логических задач: средствами алгебры логики; табличный; с помощью рассуждений.

 Решение логических задач средствами алгебры логики

 Обычно используется следующая схема решения:

-изучается условие задачи;

-вводится система обозначений для логических высказываний;

-конструируется логическая формула, описывающая логические связи между всеми высказываниями условия задачи;

-определяются значения истинности этой логической формулы;

-из полученных значений истинности формулы определяются значения истинности введенных логических высказываний, на основании которых делается заключение о решении.

www.coolreferat.com

Реферат: Логические основы устройства компьютера

Значение алгебры логики. Таблицы истинности. Логические операции: дизъюнкция, конъюнкция и отрицание. Выходной сигнал вентиля. Переключательные схемы. Логические основы компьютера. Значение устройства триггер как элемента памяти. Сумматор и полусумматор. Краткое сожержание материала:

Размещено на

Размещено на

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ НЕФТИ И ГАЗА ИМЕНИ И.М. ГУБКИНА

РЕФЕРАТ

на тему: «Логические основы устройства компьютера»

Студент:

Булат В.Р.

Москва, 2014

Оглавление

1. Что такое алгебра логики

1.1 Логические операции: дизъюнкция, конъюнкция и отрицание

1.2 Таблицы истинности

2. Логические основы компьютера

2.1 Законы алгебры логики

2.2 Переключательные схемы

2.3 Вентили

2.4 Сумматор и полусумматор

2.4.1 Полусумматор

2.4.2 Сумматор

2.5 Триггер как элемент памяти. Схема RS-триггера

2.5.1 RS-триггер на вентилях ИЛИ-НЕ

3. Практическое значение алгебры логики

Список использованной литературы

Алгебра логики (булева алгебра) - это раздел математики, возникший в XIX веке благодаря усилиям английского математика Дж. Буля. Поначалу булева алгебра не имела никакого практического значения. Однако уже в XX веке ее положения нашли применение в описании функционирования и разработке различных электронных схем. Законы и аппарат алгебры логики стал использоваться при проектировании различных частей компьютеров (память, процессор). Хотя это не единственная сфера применения данной науки.

Что же собой представляет алгебра логики? Во-первых, она изучает методы установления истинности или ложности сложных логических высказываний с помощью алгебраических методов. Во-вторых, она делает это таким образом, что сложное логическое высказывание описывается функцией, результатом вычисления которой может быть либо истина, либо ложь (1 или 0). При этом аргументы функции (простые высказывания) также могут иметь только два значения: 0, либо 1.

Что такое простое логическое высказывание? Это фразы типа «два больше одного», «5.8 является целым числом». В первом случае мы имеем истину, а во втором ложь. Алгебра логики не касается сути этих высказываний. Если кто-то решит, что высказывание «Земля квадратная» истинно, то алгебра логики это примет как факт. Дело в том, что булева алгебра занимается вычислениями результата сложных логических высказываний на основе заранее известных значений простых высказываний.

1.1 Логические операции: дизъюнкция, конъюнкция и отрицание

Алгебра логики предусматривает множество логических операций. Однако три из них заслуживают особого внимания, т.к. с их помощью можно описать все остальные, и, следовательно, использовать меньше разнообразных устройств при конструировании схем. Такими операциями являются конъюнкция (И), дизъюнкция (ИЛИ) и отрицание (НЕ). Часто конъюнкцию обозначают &, дизъюнкцию - ||, а отрицание - чертой над переменной, обозначающей высказывание.

При конъюнкции истина сложного выражения возникает лишь в случае истинности всех простых выражений, из которых состоит сложное. Во всех остальных случаях сложное выражение будет ложно.

При дизъюнкции истина сложного выражения наступает при истинности хотя бы одного входящего в него простого выражения или двух сразу. Бывает, что сложное выражение состоит более чем из двух простых.

В этом случае достаточно, чтобы одно простое было истинным и тогда все высказывание будет истинным.

Отрицание - это унарная операция (т.е. зависящая от одного аргумента), т.к. выполняется по отношению к одному простому выражению или по отношению к результату сложного. В результате отрицания получается новое высказывание, противоположное исходному.

1.2 Таблицы истинности

Логические операции удобно описывать так называемыми таблицами истинности, в которых отражают результаты вычислений сложных высказываний при различных значениях исходных простых высказываний. Простые высказывания обозначаются переменными (например, A и B). (1, с. 125).

В компьютере используются различные устройства, работу которых прекрасно описывает алгебра логики. К таким устройствам относятся группы переключателей, вентили, триггеры, сумматоры.

Кроме того, связь между булевой алгеброй и компьютерами лежит и в используемой в компьютере двоичной системе счисления. Поэтому в устройствах компьютера можно хранить и преобразовывать как числа, так и значения логических переменных.

2.1 Законы алгебры логики

Для логических величин обычно используются три операции:

1. Конъюнкция - логическое умножение (И) - and, &, ?.

2. Дизъюнкция - логическое сложение (ИЛИ) - or, |, v.

3. Логическое отрицание (НЕ) - not, ¬.

Логические выражения можно преобразовывать в соответствии с законами алгебры логики:

1. Законы рефлексивности: a ? a = a a ? a = a

2. Законы коммутативности: a ? b = b ? a a ? b = b ? a

3. Законы ассоциативности: (a ? b) ? c = a ? (b ? c) (a ? b) ? c = a ? (b ? c)

4. Законы дистрибутивности: a ? (b ? c) = (a ? b) ? (a ? c) a ? (b ? c) = (a ? b) ? (a ? c)

5. Закон отрицания: ¬ (¬ a) = a

6. Законы де Моргана: ¬ (a ? b) = ¬ a ? ¬ b ¬ (a ? b) = ¬ a ? ¬ b

7. Законы поглощения: a ? (a ? b) = a a ? (a ? b) = a

2.2 Переключательные схемы

В ЭВМ применяются электрические схемы, состоящие из множества переключателей. Переключатель может находиться только в двух состояниях: замкнутом и разомкнутом. В первом случае - ток проходит, во втором - нет. Описывать работу таких схем очень удобно с помощью алгебры логики. В зависимости от положения переключателей можно получить или не получить сигналы на выходах.

2.3 Вентили

Вентиль - это устройство, которое выдает результат булевой операции от введенных в него данных (сигналов). Так, например, есть вентили, реализующие логическое умножение (конъюнкцию), сложение (дизъюнкцию) и отрицание.

Вентили представляют собой достаточно простые элементы, которые можно комбинировать между собой, создавая тем самым различные схемы. Одни схемы подходят для осуществления арифметических операций, а на основе других строят различную память ЭВМ.

Простейший вентиль представляет собой транзисторный инвертор, который преобразует низкое напряжение в высокое или наоборот (высокое в низкое). Это можно представить как преобразование логического нуля в логическую единицу или наоборот, т.е. получаем вентиль НЕ.

Соединив пару транзисторов различным способом, получают вентили ИЛИ-НЕ и И-НЕ. Эти вентили принимают уже не один, а два и более входных сигнала. Выходной сигнал всегда один и зависит от входных сигналов. В случае вентиля ИЛИ-НЕ получить высокое напряжение (логическую единицу) можно только при условии низкого напряжении на всех входах. В случае вентиля И-НЕ все наоборот: логическая единица получается, если все входные сигналы будут нулевыми. Как видно, это обратно таким привычным логическим операциям как И и ИЛИ. Однако обычно используются вентили И-НЕ и ИЛИ-НЕ, т.к. их реализация проще: И-НЕ и ИЛИ-НЕ реализуются двумя транзисторами, тогда как логические И и ИЛИ тремя.

Выходной сигнал вентиля можно выражать как функцию от входных.

Транзистору требуется очень мало времени для переключения из одного состояния в другое (время переключения оценивается в наносекундах). И в этом одно из существенных преимуществ схем, построенных на их основе.

2.4 Сумматор и полусумматор

Арифметико-логическое устройство процессора (АЛУ) обязательно содержит в своем составе такие элементы как сумматоры. Эти схемы позволяют складывать двоичные числа.

Как происходит сложение? Допустим, требуется сложить двоичные числа 1001 и 0011. Сначала складываем младшие разряды (последние цифры): 1+1=10. Т.е. в младшем разряде будет 0, а единица - это перенос в старший разряд. Далее: 0 + 1 + 1(от переноса) = 10, т.е. в данном разряде снова запишется 0, а единица уйдет в старший разряд. На третьем шаге: 0 + 0 + 1(от переноса) = 1. В итоге сумма равна 1100.

2.4.1 Полусумматор

Теперь не будем обращать внимание на перенос из предыдущего разряда и рассмотрим только, как формируется сумма текущего разряда. Если были даны две единицы или два нуля, то сумма текущего разряда равна 0. Если одно из двух слагаемых равно единице, то сумма равна единице. Получить такие результаты можно при использовании вентиля ИСКЛЮЧАЮЩЕГО ИЛИ.

Перенос единицы в следующий разряд происходит, если два слагаемых равны единице. И это реализуемо вентилем И....

www.tnu.in.ua

Логические основы компьютера

Логические основы компьютера

Что такое алгебра логики?

Алгебра логики (булева алгебра) – это раздел математики, возникший в XIX веке благодаря усилиям английского математика Дж. Буля. Поначалу булева алгебра не имела никакого практического значения. Однако уже в XX веке ее положения нашли применение в описании функционирования и разработке различных электронных схем. Законы и аппарат алгебры логики стал использоваться при проектировании различных частей компьютеров (память, процессор). Хотя это не единственная сфера применения данной науки.

Что же собой представляет алгебра логики? Во-первых, она изучает методы установления истинности или ложности сложных логических высказываний с помощью алгебраических методов. Во-вторых, булева алгебра делает это таким образом, что сложное логическое высказывание описывается функцией, результатом вычисления которой может быть либо истина, либо ложь (1, либо 0). При этом аргументы функции (простые высказывания) также могут иметь только два значения: 0, либо 1.

Логическое высказывание: это высказывание, относительно которого можно однозначно сказать истинно оно или ложно. Например, высказывания «Париж столица Франции» и «Париж столица Англии» - это логические высказывания, так как относительно каждого можно сказать, что первое высказывание истинно, а второе ложно. А высказывания «пойдем гулять?» и «пять стульев» не являются логическими, так как относительно каждого из них нельзя сказать истинно оно или ложно.

Что такое простое логическое высказывание? Это фразы типа «два больше одного», «5.8 является целым числом». В первом случае мы имеем истину, а во втором ложь. Алгебра логики не касается сути этих высказываний. Если кто-то решит, в рамках конкретной задачи, что высказывание «Земля квадратная» истинно, то алгебра логики это примет как факт. Дело в том, что булева алгебра занимается вычислениями результата сложных логических высказываний на основе заранее известных значений простых высказываний.

Простое логическое высказывание: это логическое высказывание, не содержащее логические операции и связки.

Логические операции. Дизъюнкция, конъюнкция и отрицание

Так как же связываются между собой простые логические высказывания, образуя сложные? В естественном языке мы используем различные союзы и другие части речи. Например, «и», «или», «либо», «не», «если», «то», «тогда». Пример сложных высказываний: «у него есть знания и навыки», «она приедет во вторник, либо в среду», «я буду играть тогда, когда сделаю уроки», «5 не равно 6». Как мы решаем, что нам сказали правду или нет? Как-то логически, даже где-то неосознанно, исходя из предыдущего жизненного опыта, мы понимает, что правда при союзе «и» наступает в случае правдивости обоих простых высказываний. Стоит одному стать ложью и все сложное высказывание будет лживо. А вот, при связке «либо» должно быть правдой только одно простое высказывание, и тогда все выражение станет истинным.

Булева алгебра переложила этот жизненный опыт на аппарат математики, формализовала его, ввела жесткие правила получения однозначного результата. Союзы стали называться здесь логическими операции.

Алгебра логики предусматривает множество логических операций. Однако три из них заслуживают особого внимания, так как с их помощью можно описать все остальные, и, следовательно, использовать меньше разнообразных устройств при конструировании схем. Такими операциями являются конъюнкция (логическое умножение (И)), дизъюнкция (логическое сложение (ИЛИ)) и отрицание (инверсия (НЕ)). При этом конъюнкцию обозначают &, дизъюнкцию - V, а отрицание - чертой над переменной, обозначающей высказывание.

При конъюнкции истина сложного выражения возникает лишь в случае истинности всех простых выражений, из которых состоит сложное. Во всех остальных случаях сложное выражение будет ложно.

При дизъюнкции истина сложного выражения наступает при истинности хотя бы одного входящего в него простого выражения или двух сразу. Бывает, что сложное выражение состоит более, чем из двух простых. В этом случае достаточно, чтобы одно простое было истинным и тогда все высказывание будет истинным.

Отрицание – это унарная операция (то есть выполняется по отношению к одному простому выражению или по отношению к результату сложного). В результате отрицания получается новое высказывание, противоположное исходному.

Таблицы истинности

Логические операции удобно описывать так называемыми таблицами истинности. Таблица истинности – это таблица, устанавливающая соответствие между всеми возможными наборами логических переменных, входящих в логическую функцию, и значениями функции. Как правило, простые высказывания обозначаются переменными (латинскими буквами A, B, С и так далее).

Таблица истинности для отрицания выглядит следующим образом:

Таблица истинности для конъюнкции выглядит следующим образом:

A

B

A & B

0

0

0

0

1

0

1

0

0

1

1

1

Таблица истинности для дизъюнкции выглядит следующим образом:

A

B

A V B

0

0

0

0

1

1

1

0

1

1

1

1

Порядок выполнения логических операций. Порядок выполнения логических операций задается круглыми скобками. Но для уменьшения числа скобок договорились считать, что сначала выполняется операция отрицания (“не”), затем конъюнкция (“и”), после дизъюнкция (“или”).

Другие похожие работы, которые могут вас заинтересовать.вшм>

4449. Лекция Логические основы ЭВМ 40.08 KB
  Основы математической логики; логические законы. Основные логические элементы; логические схемы. Полусумматор, сумматор. Триггер.
8888. Лекция ЛОГИЧЕСКИЕ ОСНОВЫ АРГУМЕНТАЦИИ 20.21 KB
  Суждения используемые при обосновании тезиса. В качестве аргументов выступают посылки а в качестве тезиса – заключение вывода. ДОКАЗАТЕЛЬСТВО это аргументация в которой осуществляется полное обоснование истинности некоторого суждения тезиса путем выведения его из других суждений аргументов принимаемых за истинные. Иными словами при прямом доказательстве истинность тезиса непосредственно следует из истинности аргументов тезис является логическим следствием аргументов.
6489. Лекция Логические элементы и логические функции 184.65 KB
  1 Классификация электрических сигналов Основная задача любого электронного устройства – обработка информации которую несут в себе электрические сигналы. В самом общем виде электрические сигналы можно классифицировать следующим образом: аналоговые – напряжение и токи непрерывно изменяющиеся во времени; информация содержится в амплитуде частоте или фазе сигналов; дискретные – импульсные – скачкообразно изменяющиеся сигналы; информация содержится в амплитуде частоте или форме импульсов; дискретные – цифровые – сигналы амплитуда которых...
7158. Лекция Компоненты компьютера 16.59 KB
  Системный блок является основным блоком в составе персонального компьютера так как это устройство содержит в структуре все основные технические компоненты выполняющие управление работой персонального компьютера: Электронные схемы управляющие работой компьютера микропроцессор оперативная память контроллеры устройств и т. Блок питания который преобразует электропитание сети в постоянный ток низкого напряжения подаваемый на электронные схемы компьютера. мама мать материнка – это сложная многослойная печатная плата на которой...
7306. Лекция Базовая конфигурация компьютера 120.84 KB
  В настоящее время для настольных ПК базовой считается конфигурация в которую входит четыре устройства: Системный блок; Монитор; Клавиатура; Мышь. Устройства находящиеся внутри системного блока называют внутренними а устройства подключаемые к нему снаружи – внешними периферийные это дополнительные устройства предназначенные для ввода вывода и длительного хранения данных. В системный блок входит системная плата материнская плата процессор оперативная память накопители на жестких и гибких магнитных дисках на оптический...
193. Лекция Логические элементы 384.14 KB
  Определение логических элементов Логические элементы ЛЭ – это электронные схемы реализующие простейшие логические операции. Классификация логических элементов 1.15 показаны УГО логических элементов по европейскому стандарту DIN которые не сильно отличаются от обозначений по российскому стандарту. EmitterCoupled Logic ECL] используемая в МС с высокой скоростью переключения элементов 052 нс; инжекторноинжекторной логики И2Л с инжекционным питанием; на МДПтранзисторах МДП = МеталлДиэлектрикПолупроводник [англ.
3871. Реферат Аппаратное обеспечение компьютера. Микропроцессор 17.45 KB
  Процессор - основная микросхема, выполняющая арифметические и логические операции - мозг компьютера. Процессор состоит из ячеек, похожих на ячейки оперативной памяти, но в этих ячейках данные могут не только храниться, но и изменяться.
2775. Лабораторная работа Логическая и физическая структура компьютера 210.81 KB
  Процессор осуществляет выполнение программ работающих на компьютере и управляет работой остальных устройств компьютера. тактовая частота характеризует быстродействие компьютера чем она выше тем быстрее осуществляется работа компьютера. Оперативная память Следующим очень важным элементом компьютера является оперативная память.
2541. Лекция Аудио система персонального компьютера 116.19 KB
  Собственно цифровые каналы звуковой карты проходят через интерфейсные схемы например MIDI от шины расширения до ЦАП и от АЦП обратно к шине. На этих картах располагается и порт традиционного MIDI. Интерфейс MIDI Цифровой интерфейс музыкальных инструментов...
3402. Реферат Влияние компьютера на здоровье человека 118.2 KB
  Ежедневно мы сталкиваемся с действием компьютера: это и домашний персональный компьютер, и компьютер на рабочем месте, и другие формы проявления всеобщей компьютеризации. Не каждый из нас знает, что компьютер является источником или может предрасполагать к развитию большого количества заболевания
А1 – Андрей первый, А2 – Андрей второй, Б4 – Борис четвертый, В2 – Володя второй, Б3 – Борис третий, С2 – Сережа второй

4. Базовые логические элементы компьютера

Дискретный преобразователь, который после обработки входных двоичных сигналов выдает на выходе сигнал, являющийся значением одной из логических операций, называется логическим элементом.

Базовые логические элементы реализуют три базовые логические операции:

Любая логическая операция может быть представлена в виде комбинации трех базовых, поэтому любые устройства компьютера, производящие обработку и хранение информации, могут быть собраны из базовых логических элементов.

Логические элементы компьютера оперируют с сигналами, представляющими собой электрические импульсы.

Есть импульс – логическое значение сигнала 1, нет импульса – значение 0.

Анализ электронной схемы.

Какой сигнал должен быть на выходе при каждом возможном наборе сигналов на входах?

Решение. Все возможные комбинации сигналов на входах А и В внесём в таблицу истинности. Проследим преобразование каждой пары сигналов при прохождении их через логические элементы и запишем полученный результат в таблицу.

Заполненная таблица истинности полностью описывает рассматриваемую электронную схему.

В инвертор поступает сигнал от входа В. В конъюнктор поступают сигналы от входа А и от инвертора. Таким образом, F= А & ¬ B

Полусумматор и сумматор.

Арифметико-логическое устройство процессора (АЛУ) содержит в своем составе такие элементы как сумматоры. Они позволяют складывать двоичные числа. Сложение в пределах одного разряда (без учета возможной пришедшей единицы из младшего разряда) можно реализовать схемой, которая называется полусумматором. У полусумматора два входа (для слагаемых) и два выхода (для суммы и переноса).

В отличие от полусумматора сумматор учитывает перенос из предыдущего разряда, поэтому имеет не два, а три входа.

Триггер.

(trigger-защелка, спусковой крючок) – это устройство, позволяющее запоминать, хранить и считывать информацию.

Каждый триггер хранит 1 бит информации, те он может находиться в одном из двух устойчивых состояний –логический “О” или логическая “1”.

Триггер способен почти мгновенно переходить из одного электрического состояния в другое и наоборот

Логическая схема триггера выглядит следующим образом:

Входы триггера расшифровываются следующим образом – S (от английского Set – установка) и R (Reset – сброс). Они используются для установки триггера в единичное состояние и сброса в нулевое. В связи с этим такой триггер называется RS-триггер.

Выход Q называется прямым, а противоположный – инверсный. Сигналы на прямом и инверсном выходах, конечно же, должны быть противоположны.

Пусть для определенности на вход S подан единичный сигнал, a R=0. Тогда независимо от состояния другого входа, который подсоединен к выходу Q (иначе говоря, вне зависимости от предыдущего состояния триггера), верхний по схеме элемент ИЛИ-НЕ получит на выходе 0 (результат ИЛИ равен 1, но его инверсия – 0). Этот нулевой сигнал передается на вход другого логического элемента, где на втором входе R тоже установлен 0. В итоге после выполнения логических операций ИЛИ-НЕ над двумя входными нулями этот элемент получает на выходе 1, которую возвращает первому элементу на соответствующий вход. Последнее обстоятельство очень важно: теперь, когда на этом входе установилась 1, состояние другого входа (S) больше не играет роли. Иными словами, если даже теперь убрать входной сигнал S, внутреннее распределение уровней сохранится без изменения.

Поскольку Q = 1, триггер перешел в единичное состояние, и, пока не придут новые внешние сигналы, сохраняет его. Итак, при подаче сигнала на вход S триггер переходит в устойчивое единичное состояние.

При противоположной комбинации сигналов R = 1 и S = 0 вследствие полной симметрии схемы все происходит совершенно аналогично, но теперь на выходе Q уже получается 0. Иными словами, при подаче сигнала на R-триггер сбрасывается в устойчивое нулевое состояние.

Таким образом, окончание действия сигнала в обоих случаях приводит к тому, что R = 0 и S = 0.

(Приложение 1)

xn--i1abbnckbmcl9fb.xn--p1ai


Смотрите также

 

..:::Новинки:::..

Windows Commander 5.11 Свежая версия.

Новая версия
IrfanView 3.75 (рус)

Обновление текстового редактора TextEd, уже 1.75a

System mechanic 3.7f
Новая версия

Обновление плагинов для WC, смотрим :-)

Весь Winamp
Посетите новый сайт.

WinRaR 3.00
Релиз уже здесь

PowerDesk 4.0 free
Просто - напросто сильный upgrade проводника.

..:::Счетчики:::..

 

     

 

 

.