Источники электрического тока. Реферат на тему источники тока


Источники тока

Государственное образовательное учреждение

Начального профессионального образования

Профессиональное  училище №24.            

Реферат по электротехнике

На  тему:

«Источники  тока» 

     

Выполнила:

Кошкина О.С.,

гр. 30 а/м  ТУ  

Проверила:

Князева

Татьяна Александровна       

Ярославль

2010 

Содержание. 

Введение………..………………………………………………………………….3

  1. История открытия электрического тока……………………………
  2. Источники тока …………………………………………………………

                2.1.Химические………………………………………………….

                2.2.Физические…………………………………………………. 

Список литературы……………………………………………………………… 

        Введение.

        Что же такое электрический  ток и что необходимо для его  возникновения и существования  в течение нужного нам времени?

        Слово «ток» означает движение или течение чего-то. Электрическим  током называется упорядоченное (направленное) движение заряженных частиц. Чтобы получить электрический ток в проводнике, надо создать в нем электрическое поле. Чтобы электрический ток в проводнике существовал длительное время, необходимо все это время поддерживать в нем электрическое поле. Электрическое поле в проводниках создается и может длительное время поддерживаться источниками электрического тока.

        В настоящее время  человечество использует четыре основных источника тока: статический, химический, механический и полупроводниковый (солнечные батареи), но во всяком из них совершается работа по разделению положительно и отрицательно заряженных частиц. Раздельные частицы накапливаются на полюсах источника тока - так называют места, к которым с помощью клемм или зажимов подсоединяют проводники. Один полюс источника тока заряжается положительно, другой - отрицательно. Если полюсы соединить проводником, то под действием поля свободные заряженные частицы в проводнике будут двигаться, возникнет электрический ток.

 

  1. История открытия электрического тока.
 

        До 1650 года - времени, когда в Европе пробудился большой  интерес к электричеству, - не было известно способа легко получать большие электрические заряды. С  ростом числа ученых, заинтересовавшихся исследованиями электричества, можно  было ожидать создания все более простых и эффективных способов получения электрических зарядов. Отто фон Герике придумал первую электрическую машину. Он налил расплавленную серу внутрь полого стеклянного шара, а затем, когда сера затвердела, разбил стекло, не догадываясь о том, что сам стеклянный шар с неменьшим успехом мог бы послужить его целям. Затем Герике укрепил серный шар так, как показано на рис.1, чтобы его можно было вращать рукояткой. Для получения заряда надо было одной рукой вращать шар, а другой - прижимать к нему кусок кожи. Трение поднимало потен-циал шара до величины, достаточной, чтобы получать искры длиной в несколько сантиметров.

        Эта машина оказала  большую помощь в экспериментальном изучении электричества, но еще более трудные задачи «хранения» и «запасания» электрических зарядов удалось решить лишь благодаря последующему прогрессу физики. Дело в том, что мощные заряды, которые можно было создавать на телах с помощью электростатической машины Герике, быстро исчезали. Вначале думали, что причиной этого является «испарение» зарядов. Для предотвращения «испарения» зарядов было предложено заключить заряженные тела в закрытые сосуды, сделанные из изолирующего материала. Естественно, в качестве таких сосудов были выбраны стеклянные бутылки, а в качестве электризуемого материала - вода, поскольку ее было легко наливать в бутылки. Чтобы можно было зарядить воду, не открывая бутылку, сквозь пробку был пропущен гвоздь. Замысел был хорош, но по причинам, в то время непонятным, прибор работал не столь уж удачно. В результате интенсивных экспериментов вскоре же было открыто, что запасенный заряд и тем самым силу электрического удара можно резко увеличить, если бутылку изнутри и снаружи покрыть проводящим материалом, например тонкими листами фольги. Более того, если соединить гвоздь с помощью хорошего проводника со слоем металла внутри бутылки, то оказалось, что можно вообще обойтись без воды. Это новое «хранилище» электричества было изобретено в 1745 году в голландском городе Лейдене и получило название лейденской банки.

        Первый, кто открыл иную возможность получения электричества, нежели с помощью электризации трением, был итальянский ученый Луиджи Гальвани (1737-1798). Он был по специальности биолог, но работал в лаборатории, где проводились опыты с электричеством. Гальвани наблюдал явление, которое было известно многим еще до него; оно заключалось в том, что если ножной нерв мертвой лягушки возбудить искрой от электрической машины, то начинала сокращаться вся лапка. Но однажды Гальвани заметил, что лапка пришла в движение, когда с нервом лапки соприкасался только стальной скальпель. Удивительнее всего было то, что между электрической машиной и скальпелем не было никакого контакта. Это поразительное открытие заставило Гальвани поставить ряд опытов для обнаружения причины электрического тока. Один из экспериментов был поставлен Гальвани с целью выяснить, вызывает ли такие же движения в лапке электричество молнии. Для этого Гальвани подвесил на латунных крючках несколько лягушачьих лапок в окне, закрытом железной решеткой. И он нашел, в противоположность своим ожиданиям, что сокращения лапок происходят в любое время, вне всякой зависимости от состояния погоды. Присутствие рядом электрической машины или другого источника электричества оказалось не нужным. Гальвани установил далее, что вместо железа и латуни можно использовать любые два разнородных металла, причем комбинация меди и цинка вызывала явление в наиболее отчетливом виде. Стекло, резина, смола, камень и сухое дерево вообще не давали никакого эффекта. Таким образом, возникновение тока все еще оставалось тайной. Где же появляется ток - только в тканях тела лягушки, только разнородных металлах или же в комбинации металлов и тканей? К сожалению, Гальвани пришел к заключению, что ток возникает исключительно в тканях тела лягушки. В результате его современникам понятие «животного электричества» стало казаться гораздо более реальным, чем электричества какого-либо другого происхождения.

        Другой итальянский  ученый Алессандро Вольта(1745-1827) окончательно доказал, что если поместить лягушачьи лапки в водные растворы некоторых веществ, то в тканях лягушки гальванический ток не возникает. В частности, это имело место для ключевой или вообще чистой воды; этот ток появляется при добавлении к воде кислот, солей или щелочей. По-видимому, наибольший ток возникал в комбинации меди и цинка, помещенных в разбавленный раствор серной кислоты. Комбинация двух пластин из разнородных металлов, погруженных в водный раствор щелочи, кислоты или соли, называется гальваническим (или химическим) элементом. Если бы средствами для получения электродвижущей силы служили только трение и химические процессы в гальванических элементах, то стоимость электрической энергии, необходимой для работы различных машин, была бы исключительно высокой. В результате огромного количества экспериментов учёными разных стран были сделаны открытия, позволившие создать механические электрические машины, вырабатывающие относительно дешёвую электроэнергию.

        В начале 19 века Ганс Христиан Эрстед сделал открытие совершенно нового электрического явления, заключавшегося в том, что при прохождении тока через проводник вокруг него образуется магнитное поле. Спустя несколько лет, в 1831 году, Фарадей сделал ещё одно открытие, равное по своей значимости открытию Эрстеда. Фарадей обнаружил, что когда движущийся проводник пересекает силовые линии магнитного поля, в проводнике наводится электродвижущая сила, вызывающая ток в цепи, в которую входит этот проводник. Наведённая ЭДС меняется прямо пропорционально скорости движения, числу проводников, а также напряжённости магнитного поля. Иначе говоря, наведённая ЭДС прямо пропорциональна числу силовых линий, пересекаемых проводником в единицу времени. Когда проводник пересекает 100000000 силовых линий за 1 сек, наведённая ЭДС равна 1 Вольту. Перемещая вручную одиночный проводник или проволочную катушку в магнитном поле, больших токов получить нельзя. Более эффективным способом является намотка провода на большую катушку или изготовление катушки в виде барабана. Катушку затем насаживают на вал, располагаемый между полюсами магнита и вращаемый силой воды или пара. Так, в сущности, и устроен генератор электрического тока, который относится к механическим источникам электрического тока, и активно используется человечеством в настоящее время.

        Солнечную энергию люди используют с древнейших времён. Ещё в 212 г. до н. э. с помощью концентрированных солнечных лучей они зажигали священный огонь у храмов. Согласно легенде приблизительно в то же время греческий учёный Архимед при защите родного города поджёг паруса кораблей римского флота.

        Солнце представляет собой удалённый от Земли на расстояние 149,6 млн км термоядерный реактор, излучающий энергию, которая поступает на Землю  главным образом в виде электромагнитного  излучения. Наибольшая часть энергии  излучения Солнца сосредоточена в видимой и инфракрасной части спектра. Солнечная радиация - это неисчерпаемый возобновляемый источник экологически чистой энергии. Без ущерба для экологической среды может быть использовано 1,5 % всей падающей на землю солнечной энергии, т.е. 1,62 *10 16 киловатт\часов в год, что эквивалентно огромному количеству условного топлива - 2 *10 12 т.

        Усилия конструкторов  идут по пути использования фотоэлементов  для прямого преобразования солнечной  энергии в электрическую. Фотопреобразователи, называемые также солнечными батареями, состоят из ряда фотоэлементов, соединенных последовательно или параллельно. Если преобразователь должен заряжать аккумулятор, питающий, например, радиоустройство в облачное время, то его подключают параллельно к выводам солнечной батареи ( рис. 3). Элементы применяемые в солнечных батареях, должны обладать большим КПД, выгодной спектральной характеристикой, малой стоимостью, простой конструкцией и небольшой массой. К сожалению, только немногие из известных на сегодня фотоэлементов отвечают хотя бы частично этим требованиям. Это прежде всего некоторые виды полупроводниковых фотоэлементов. Простейший из них - селеновый. К сожалению, КПД лучших селеновых фотоэлементов мал(0,1...1 %).

        Основой солнечных  батарей являются кремниевые фото-преобразователи, имеющие вид круглых или прямоугольных пластин толщиной 0,7 - 1 мм и площадью до 5 - 8 кв.см. Опыт показал, что хорошие результаты дают небольшие элементы, площадью около 1 кв. см., имеющие КПД около 10 %. Созданы также фотоэлементы из полупроводниковых металлов с теоретическим КПД 18 %. Кстати, практический КПД фотоэлектрических преобразователей ( около 10 %) превышает КПД паровоза ( 8 %), коэффициент полезного использования солнечной энергии в растительном мире (1 %), а также КПД многих гидротехнических и ветровых устройств. Фотоэлектрические преобразователи имеют практически неограниченную долговечность. Для сравнения можно привести значения КПД различных источников электрической энергии ( в процентах) : теплоэлектроцентраль - 20-30, термоэлектрический преобразователь - 6 - 8, селеновый фотоэлемент - 0,1 - 1, солнечная батарея - 6 - 11, топливный элемент - 70, свинцовый аккумулятор - 80 - 90.

        В 1989 г. фирмой Боинг (США) создан двухслойный фотоэлемент, состоящий из двух полупроводников - арсенида и антимонида галлия - с коэффициентом преобразования солнечной энергии в электрическую, равным 37 %, что вполне сопоставимо с КПД современных тепловых и атомных электростанций. Недавно удалось доказать, что фотоэлектрический метод преобразования солнечной энергии теоретически позволяет использовать энергию Солнца с КПД, достигающим 93 %! А ведь первоначально считалось, что максимальный верхний предел КПД солнечных элементов составляет не более 26 %, т.е. значительно ниже КПД высокотемпературных тепловых машин.

        Солнечные батареи  пока используются в основном в космосе, а на Земле только для электроснабжения автономных потребителей мощностью  до 1 кВт, питания радионавигационной и маломощной радиоэлектронной аппаратуры, привода экспериментальных электромобилей и самолётов. По мере совершенствования солнечных батарей они будут находить применение в жилых домах для автономного энергоснабжения, т.е. отопления и горячего водоснабжения, а также для выработки электроэнергии для освещения и питания бытовых электроприборов.

 

  1. Химические  и физические источники  тока
 

         Источники тока - это устройства, преобразующие различные виды энергии в электрическую. По виду преобразуемой энергии источники тока условно можно разделить на химические и физические. Сведения о первых химических источниках тока (гальванических элементах и аккумуляторах) относятся к 19 в. (например, батарея Вольта, элемент Лекланше). Однако вплоть до 40-х гг. 20 в. в мире было разработано и реализовано в конструкциях не более 5 типов гальванических пар. С середины 40-х гг. вследствие развития радиоэлектроники и широкого использования автономных источников тока создано ещё около 25 типов гальванических пар. Теоретически в источниках тока может быть реализована свободная энергия химических реакции практически любого окислителя и восстановителя, а следовательно, возможна реализация несколько тысяч гальванических пар. Принципы работы большинства физических источников были известны уже в 19 в. В дальнейшем вследствие быстрого развития и совершенствования турбогенераторы и гидрогенераторы стали основными промышленными источниками электроэнергии. Физические источники тока, основанные на других принципах, получили промышленное развитие лишь в 50-60-х гг. 20 в., что обусловлено возросшими и достаточно специфическими требованиями техники.

         Технический прогресс, проникновение электротехники и  электроники на транспорт, в быт, медицину и т. д. стимулировали разработку автономных источников электропитания, среди которых химические источники  тока в количественном отношении заняли видное место, став продукцией массового потребления. Переносные осветительные приборы, магнитофоны и радиоприёмники, телевизоры и переносная медицинская аппаратура, средства ж.-д. транспорта, автомобили, тракторы, самолёты, искусственные спутники, космические корабли, средства связи и многое другое оснащены малогабаритными источниками тока.

stud24.ru

Источники электрического тока | Социальная сеть работников образования

Слайд 1

Источники электрического тока Выполнил: Рубцов Антон ученик 8 Б класса МОУ СОШ № 105 Научный руководитель: Маслова Е. А. учитель физики

Слайд 2

Выбор темы Я захотел изучить историю создания источников электрического тока, а также сделать некоторые источники своими руками, повторив опыты известных ученых. Актуальность Человечество не может существовать без электрической энергии и возможно кому то удастся открыть новые источники электрического тока более экономичные и менее затратные. Цель работы – изучение основных видов источников электрического тока, принципа их действия и изготовление источников своими руками. Задачи: 1. Рассмотреть основные виды источников электрического тока. 2. Изучить принцип действия источников тока. 3. Изготовить некоторые источники своими руками.

Слайд 3

Основная часть Источник тока - это устройство, в котором происходит преобразование какого-либо вида энергии в электрическую энергию. В любом источнике тока совершается работа по разделению положительно и отрицательно заряженных частиц, которые накапливаются на полюсах источника. Электрический ток - направленное (упорядоченное) движение заряженных частиц (электронов, ионов и др.) За направление тока принимают направление движения положительно заряженных частиц. Если ток создается отрицательно заряженными частицами (например, электронами), то направление тока считают противоположным направлению движения частиц.

Слайд 4

История создания первых источников тока

Слайд 5

Свойства янтаря Впервые на электрический заряд обратил внимание Фалес Милетский. Он обнаружил, что янтарь, потёртый о шерсть, приобретает свойства притягивать мелкие предметы. Окаменелая смола древних деревьев которые росли на нашей планете 38-120 млн лет назад.

Слайд 6

Электрическая машина Отто фон Герике Отто фон Герике придумал первую электрическую машину. Он налил расплавленную серу внутрь полого стеклянного шара, а затем, когда сера затвердела, разбил стекло. Затем Герике укрепил серный шар так, чтобы его можно было вращать рукояткой. Для получения заряда надо было одной рукой вращать шар, а другой - прижимать к нему кусок кожи. Трение поднимало напряжение шара до величины, достаточной, чтобы получать искры длиной в несколько сантиметров.

Слайд 7

Лейденская банка Лейденская банка представляет собой стеклянную бутылку, с обеих сторон обвернутую фольгой. Внутри банки имеется металлический стержень. Подключенная обкладками к электрической машине банка могла накапливать значительное количество электричества. Если ее обкладки соединяли отрезком толстой проволоки, то в месте замыкания проскакивала сильная искра, и накопленный электрический заряд мгновенно исчезал. Так стало возможным получить кратковременный электрический ток. Затем банку надо было снова заряжать. Сейчас подобные приборы мы называем электрическими конденсаторами.

Слайд 8

Элемент Гальвани Луиджи Гальвани (1737-1798) - один из основоположников учения об электричестве, его опыты с «животным» электричеством положили начало новому научному направлению — электрофизиологии. В результате опытов с лягушками Гальвани предположил существование электричества внутри живых организмов. В честь него был назван гальванический элемент – батарейка.

Слайд 9

Вольтов столб Алесандро Вольта (1745 - 1827) - итальянский физик, химик и физиолог, изобретатель источника постоянного электрического тока. Его первый источник тока – «вольтов столб». Вольта положил друг на друга попеременно несколько десятков небольших цинковых и серебряных кружочков, проложив меж ними бумагу, смоченную подсоленной водой.

Слайд 10

Основные виды источников электрического тока Механические Тепловые Световые Химические Термоэлемент Фотоэлемент Электрофорная машина Гальванический элемент

Слайд 11

Источники тока животного происхождения

Слайд 12

Электричество внутри живых организмов У многих растений возникают токи повреждений. Срезы листьев, стебля всегда заряжены отрицательно по отношению к нормальной ткани.

Слайд 13

Животные, вырабатывающие электрический ток Электрический скат (до 220 В) Американский сомик (до 360 В) Угорь (до 1200 В)

Слайд 14

Фрукты и овощи, вырабатывающие электрический ток. Фрукты и овощи можно разделить на изначально содержащие и приобретшие внутрищелочной или кислотный баланс в процессе окисления. К первым относятся цитрусовые (лимон) и картошка. А ко вторым, например соленый огурец и маринованный помидор.

Слайд 15

Атмосферное электричество При движении воздуха воздушные различные потоки в результате соприкосновения электризуются. Одна часть облака (верхняя) электризуется положительно, а другая (нижняя) - отрицательно. В момент, когда заряд облака станет большим, между двумя его наэлектризованными частями проскакивает мощная электрическая искра – молния.

Слайд 16

Практическая часть

Слайд 17

Самодельные батарейки Для изготовления самодельных батареек нам потребуются приборы и материалы: Медная пластинка Цинковая пластинка Лимон, огурец, сода, вода, монетки Вольтметр Соединительные провода

Слайд 18

Гальванический элемент из лимона Вырабатывает электрический ток напряжением

Слайд 19

Гальванический элемент из первого соленого огурца Вырабатывает электрический ток напряжением

Слайд 20

Гальванический элемент из второго и третьего огурцов

Слайд 21

Батарея из двух соленых огурцов Вырабатывает электрический ток напряжением

Слайд 22

Батарея из трех соленых огурцов Вырабатывает электрический ток напряжением

Слайд 23

Лампочка, включенная в цепь из трех соленых огурцов Собрали цепь Лампочка загорелась

Слайд 24

Содовая батарейка Вырабатывает электрический ток напряжением

Слайд 25

Содовая батарея из двух и трех элементов

Слайд 26

Лампочка, включенная в цепь трех содовых элементов Собрали цепь Лампочка загорелась

Слайд 27

Соленая батарейка Вырабатывает электрический ток напряжением

Слайд 28

Заключение Для достижения цели данной работы я решил следующие задачи: Рассмотрел основные виды источников электрического тока. 1. Механические источники тока 2. Тепловые источники тока 3. Световые источники тока 4. Химические источники тока Изучил принцип работы источников тока. Изготовил некоторые источники своими руками. 1. Гальванический элемент из лимона. 2. Гальванический элемент из соленого огурца. 3. Содовую батарейку. 4. Соленую батарейку.

Слайд 29

Библиография Абрамов С.С.. Большая энциклопедия Кирилла и Мифодия . 2009 Википедия – свободная энциклопедия. www . ru . wikipedia . org . Джулиан Холанд . Большая иллюстрированная энциклопедия эрудита. «Махаон» 2001г; Карцев В.П. Приключения великих уравнений. М.: Просвещение, 2007

nsportal.ru

Электрический ток. Источники электрического тока.

Предисловие.

 

 

Что же такое электрический ток и что необходимо для его возникновения и существования в течение нужного нам времени?

Слово «ток» означает движение или течение чего-то. Электричес-ким током называется упорядоченное (направленное) движение заряженных частиц. Чтобы получить электрический ток в провод-нике, надо создать в нем электрическое поле. Чтобы электричес-кий ток в проводнике существовал длительное время, необходи-мо все это время поддерживать в нем электрическое поле. Элек-трическое поле в проводниках создается и может длительное вре-мя поддерживаться источниками электрического тока. В настоя-щее время человечество использует четыре основные источника тока: статический, химический, механический и полупроводнико-вый(солнечные батареи), но во всяком из них совершается рабо-та по разделению положительно и отрицательно заряженных частиц. Раздельные частицы накапливаются на полюсах источни-ка тока, - так называют места, к которым с помощью клемм или зажимов подсоединяют проводники. Один полюс источника тока заряжается положительно, другой - отрицательно. Если полюсы соединить проводником, то под действием поля свободные заря-женные частицы в проводнике будут двигаться, возникнет элек­трический ток.

 

 

 

 

 

 

 

 

 

Электрический ток.

Источники электрического тока.

 

До 1650 года - времени, когда в Европе пробудился боль-шой интерес к электричеству, - не было известно способа легко получать большие электрические заряды. С ростом числа ученых, заинтересовавшихся исследованиями электричества, можно было ожидать создания все более простых и эффективных способов получения электрических зарядов.

Отто фон Герике придумал первую электрическую машину. Он налил расплавленную серу внутрь полого стеклянного шара, а затем, когда сера затвердела, разбил стекло, не догадываясь о том, что сам стеклянный шар с неменьшим успехом мог бы пос-лужить его целям. Затем Герике укрепил серный шар так, как показано на рис.1, чтобы его можно было вращать рукояткой. Для получения заряда надо было одной рукой вращать шар, а другой - прижимать к нему кусок кожи. Трение поднимало потен-циал шара до величины, достаточной, чтобы получать искры длиной в несколько сантиметров.

 

Эта машина оказала боль-

шую помощь в эксперименталь-

ном изучении электричества, но

еще более трудные задачи «хра-

нения» и «запасания» электри-

ческих зарядов удалось решить

лишь благодаря последующему

прогрессу физики. Дело в том , что мощные заряды, которые

можно было создавать на телах с помощью электростатической

машины Герике, быстро исчезали. Вначале думали, что причиной этого является «испарение» зарядов. Для предотвращения

 

 

«испарения» зарядов было предложено заключить заряженные тела в закрытые сосуды, сделанные из изолирующего материала. Естественно, в качестве таких сосудов были выбраны стеклянные бутылки, а в качестве электризуемого материала - вода, поскольку ее было легко наливать в бутылки. Чтобы можно было зарядить воду , не открывая бутылку, сквозь пробку был пропущен гвоздь. Замысел был хорош, но по причинам , в то время непонятным, прибор работал не столь уж удачно. В результате интенсивных экспериментов вскоре же было открыто, что запа­сенный заряд и тем самым силу электрического удара можно резко увеличить , если бутылку изнутри и снаружи покрыть проводящим материалом, например тонкими листами фольги. Более того, если соединить гвоздь с помощью хорошего про­водника со слоем металла внутри бутылки, то оказалось, что можно вообще обойтись без воды. Это новое «хранилище» электричества было изобретено в 1745 году в голландском го­роде Лейдене и получило название лейденской банки (рис.2 ).

 

Первый кто от­крыл иную возможность полу-чения электричества, не-жели с помощью элек­три-зации трением, был италь-янский ученый Луиджи Гальвани (1737-1798). Он был по специальности биолог, но ра­ботал в лаборатории, где прово-дились опыты с электричеством. Галь­вани нблю-дал явление, которое было известно многим еще до него; оно заключалось в том, что если ножной нерв мертвой лягушки возбудить искрой от электрической машины, то начинала сокращаться вся лапка. Но однажды Гальвани заметил, что лапка пришла в движение, когда с нервом лапки соприкасался только стальной скальпель. Удивительнее всего было то , что между электрической машиной и скаль-пелем не было никакого контакта. Это поразительное открытие заставило Гальвани поставить ряд опытов для обнаружения при-чины электрического тока. Один из экспериментов был поставлен Гальвани с целью выяснить, вызывает ли такие же движения в лапке электричество молнии. Для этого Гальвани подвесил на латунных крючках несколько лягушачьих лапок в окне, закрытом железной решеткой. И он нашел, в противоположность своим ожиданиям, что сокращения лапок происходят в любое время, вне всякой зависимости от состояния погоды. Присутствие рядом электрической машины или другого источника электричества оказалось не нужным. Гальвани установил далее, что вместо железа и латуни можно использовать любые два разнородных металла, причем комбинация меди и цинка вызывала явление в наиболее отчетливом виде. Стекло, резина, смола, камень и сухое дерево вообще не давали никакого эффекта. Таким образом, возникновение тока все еще оставалось тайной. Где же появляется ток - только в тканях тела лягушки, только разнородных металлах или же в комбинации металлов и тканей? К сожалению, Гальвани пришел к заключению , что ток возникает исключительно в тканях тела лягушки. В результате его современникам понятие «животного электричества» стало казаться гораздо более реальным, чем электричества какого-либо другого происхождения.

Другой итальянский ученый Алессандро Вольта(1745-1827) окончательно доказал, что если поместить лягушачьи лапки в водные растворы некоторых веществ, то в тканях лягушки гальванический ток не возникает. В частности, это имело место для ключевой или вообще чистой воды; этот ток появляется при добавлении к воде кислот, солей или щелочей. По-видимому, наибольший ток возникал в комбинации меди и цинка, помещенных в разбавленный раствор серной кислоты. Комбинация двух пластин из разнородных металлов, погруженных в водный раствор щелочи, кислоты или соли, называется гальваническим (или химическим) элементом.

Если бы средствами для получения электродвижущей силы служили только трение и химические процессы в гальванических элементах, то стоимость электрической энергии, необходимой для работы различных машин, была бы исключительно высокой. В результате огромного количества экспериментов учёными разных стран были сделаны открытия, позволившие создать механические электрические машины, вырабатывающие относительно дешёвую электроэнергию.

В начале 19 века Ганс Христиан Эрстед сделал открытие совершенно нового электрического явления, заключавшегося в том, что при прохождении тока через проводник вокруг него образуется магнитное поле. Спустя несколько лет, в 1831 году, Фарадей сделал ещё одно открытие, равное по своей значимости открытию Эрстеда. Фарадей обнаружил, что когда движущийся проводник пересекает силовые линии магнитного поля, в проводнике наводится электродвижущая сила, вызывающая ток в цепи, в которую входит этот проводник. Наведённая ЭДС меняется прямо пропорционально скорости движения, числу проводников, а также напряжённости магнитного поля. Иначе говоря, наведённая ЭДС прямо пропорциональна числу силовых линий, пересекаемых проводником в единицу времени. Когда проводник пересекает 100000000 силовых линий за 1 сек, наведённая ЭДС равна 1 Вольту. Перемещая вручную одиночный проводник или проволочную катушку в магнитном поле, больших токов получить нельзя. Более эффективным способом является намотка провода на большую катушку или изготовление катушки в виде барабана. Катушку затем насаживают на вал, располагаемый между полюсами магнита и вращаемый силой воды или пара. Так, в сущности, и устроен генератор электрического тока, который относится к механическим источникам электрического тока, и активно используется человечеством в настоящее время. Солнечную энергию люди используют с древнейших времён. Ещё в 212 г. до н. э. с помощью концентрированных солнечных лучей они зажигали священный огонь у храмов. Согласно легенде приблизительно в то же время греческий учёный Архимед при защите родного города поджёг паруса кораблей римского флота.

Солнце представляет собой удалённый от Земли на расстояние 149,6 млн км термоядерный реактор, излучающий энергию, которая поступает на Землю главным образом в виде электромагнитного излучения. Наибольшая часть энергии излучения Солнца сосредоточена в видимой и инфракрасной части спектра. Солнечная радиация - это неисчерпаемый возобновляемый источник экологически чистой энергии. Без ущерба для экологической среды может быть использовано 1,5 % всей падающей на землю солнечной энергии, т.е. 1,62 *10 16 киловатт\часов в год, что эквивалентно огромному количеству условного топлива - 2 *10 12 т.

Усилия конструкторов идут по пути использования фотоэлементов для прямого преобразования солнечной энергии в электрическую. Фотопреобразователи, называемые также солнечными батареями, состоят из ряда фотоэлементов, соединенных последовательно или параллельно. Если преобразователь должен заряжать аккумулятор, питающий, например, радиоустройство в облачное время, то его подключают параллельно к выводам солнечной батареи ( рис. 3). Элементы применяемые в солнечных батареях, должны обладать большим КПД, выгодной спектральной характеристикой, малой стоимостью, простой конструкцией и небольшой массой. К сожалению, только немногие из известных на сегодня фотоэлементов отвечают хотя бы частично этим требованиям. Это прежде всего некоторые виды полупроводниковых фотоэлементов. Простейший из них - селеновый. К сожалению, КПД лучших селеновых фотоэлементов мал(0,1...1 %).

 

Основой солнечных батарей являются кремниевые фото-преобразователи, имеющие вид круглых или прямоуголь-ных пластин толщиной 0,7 - 1 мм и площадью до 5 - 8 кв.см. Опыт показал, что хорошие результаты дают небольшие элементы, площадью около 1 кв. см., имеющие КПД около 10 %. Созданы также фотоэлементы из полупро- водниковых металлов с теоретическим КПД 18 %. Кстати, практический КПД фотоэлектрических преобразователей ( около 10 %) превышает КПД паровоза ( 8 %), коэффициент полезного использования солнечной энергии в растительном мире (1 %), а также КПД многих гидротехнических и ветровых устройств. Фотоэлектрические преобразователи имеют практически неограниченную долговечность. Для сравнения можно привести значения КПД различных источников электрической энергии ( в процентах) : теплоэлектроцентраль - 20-30, термоэлектрический преобра-зователь - 6 - 8, селеновый фотоэлемент - 0,1 - 1, солнечная бата-рея - 6 - 11, топливный элемент - 70, свинцовый аккумулятор - 80 - 90.

В 1989 г. фирмой Боинг (США) создан двухслойный фотоэлемент, состоящий из двух полупроводников - арсенида и антимонида галлия - с коэффициентом преобразования солнечной энергии в электрическую, равным 37 %, что вполне сопоставимо с КПД современных тепловых и атомных электростанций. Недавно удалось доказать, что фотоэлектрический метод преобразования солнечной энергии теоретически позволяет использовать энергию Солнца с КПД, достигающим 93 %! А ведь первоначально считалось, что максимальный верхний предел КПД солнечных элементов составляет не более 26 %, т.е. значительно ниже КПД высокотемпературных тепловых машин.

Солнечные батареи пока используются в основном в кос-мосе, а на Земле только для электроснабжения автономных потребителей мощностью до 1 кВт, питания радионавигационной

и маломощной радиоэлектронной аппаратуры, привода экспериментальных электромобилей и самолётов. По мере совершенствования солнечных батарей они будут находить применение в жилых домах для автономного энергоснабжения , т.е. отопления и горячего водоснабжения, а также для выработки электроэнергии для освещения и питания бытовых электроприборов.

topref.ru


Смотрите также