wreferat.baza-referat.ru

 

Начальная

Windows Commander

Far
WinNavigator
Frigate
Norton Commander
WinNC
Dos Navigator
Servant Salamander
Turbo Browser

Winamp, Skins, Plugins
Необходимые Утилиты
Текстовые редакторы
Юмор

File managers and best utilites

Виды лазеров. Реферат конструкция и виды лазеров


Реферат: Типы и характеристики лазеров

ФЕДЕРАЛЬНОЕ АГЕНСТВО ЖЕЛЕЗНОДОРОЖНОГО ТРАНСПОРТА

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ

ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ»

(МИИТ)

Институт транспортной техники и систем управления

Кафедра «Технология транспортного машиностроения и ремонта подвижного состава»

Реферат

по дисциплине: «Электрофизические и электрохимические методы обработки»

Тема: «Типы и характеристики лазеров»

Введение

Изобретение лазера стоит в одном ряду с наиболее выдающимися достижениями науки и техники XX века. Первый лазер появился в 1960 г., и сразу же началось бурное развитие лазерной техники. В короткое время были созданы разнообразные типы лазеров и лазерных устройств, предназначенных для решения конкретных научных и технических задач. Лазеры уже успели завоевать прочные позиции во многих отраслях народного хозяйства. Как заметил академик А.П. Александров, всякий мальчишка теперь знает слово лазер. И все же, что такое лазер, чем он интересен и полезен? Один из основоположников науки о лазерах - квантовой электроники - академик Н.Г. Басов отвечает на этот вопрос так: Лазер - это устройство, в котором энергия, например тепловая, химическая, электрическая, преобразуется в энергию электромагнитного поля - лазерный луч. При таком преобразовании часть энергии неизбежно теряется, но важно то, что полученная в результате лазерная энергия обладает несравненно более высоким качеством. Качество лазерной энергии определяется ее высокой концентрацией и возможностью передачи на значительное расстояние. Лазерный луч можно сфокусировать в крохотное пятнышко диаметра порядка длины световой волны и получить плотность энергии, превышающую на сегодняшний день плотность энергии ядерного взрыва.

С помощью лазерного излучения уже удалось достичь самых высоких значений температуры, давления, напряженности магнитного поля. Наконец, лазерный луч является самым емким носителем информации и в этой роли - принципиально новым средством ее передачи и обработки. Широкое применение лазеров в современной науке и технике объясняется специфическими свойствами лазерного излучения. Лазер - это генератор когерентного света. В отличии от других источников света (например, ламп накаливания или ламп дневного света) лазер дает оптическое излучение, характеризующееся высокой степенью упорядоченности светового поля или, как говорят, высокой степенью когерентности. Такое излучение отличается высокой монохроматичностью и направленностью. В наши дни лазеры успешно трудятся на современном производстве, справляясь с самыми разнообразными задачами. Лазерным лучом раскраивают ткани и режут стальные листы, сваривают кузова автомобилей и приваривают мельчайшие детали в радиоэлектронной аппаратуре, пробивают отверстия в хрупких и сверхтвердых материалах. Причем лазерная обработка материалов позволяет повысить эффективность и конкурентоспособность по сравнению с другими видами обработки. Непрерывно расширяется область применения лазеров в научных исследованиях - физических, химических, биологических.

Замечательные свойства лазеров - исключительно высокая когерентность и направленность излучения, возможность генерирования когерентных волн большой интенсивности в видимой, инфракрасной и ультрафиолетовой областях спектра, получение высоких плотностей энергии как в непрерывном, так и в импульсном режиме - уже на заре квантовой электроники указывало на возможность широкого их применения для практических целей. С начала своего возникновения лазерная техника развивается исключительно высокими темпами. Появляются новые типы лазеров и одновременно усовершенствуются старые: создаются лазерные установки с необходимым для различных конкретных целей комплексом характеристик, а также различного рода приборы управления лучом, все более и более совершенствуется измерительная техника. Это послужило причиной глубокого проникновения лазеров во многие отрасли народного хозяйства, и в частности в машино- и приборостроение.

Надо особо отметить, что освоение лазерных методов или, иначе говоря, лазерных технологий значительно повышает эффективность современного производства. Лазерные технологии позволяют осуществлять наиболее полную автоматизацию производственных процессов.

Огромны и впечатляющи достижения лазерной техники сегодняшнего дня. Завтрашний день обещает еще более грандиозные свершения. С лазерами связаны многие надежды: от создания объемного кино до решения таких глобальных проблем, как установление сверхдальней наземной и подводной оптической связи, разгадку тайн фотосинтеза, осуществление управляемой термоядерной реакции, появление систем с большим объемом памяти и быстродействующими устройствами ввода - вывода информации.

1. Классификация лазеров

Принято различать два типа лазеров: усилители и генераторы. На выходе усилителя появляется лазерное излучение, когда на его вход (а сам он уже находится в возбужденном состоянии) поступает незначительный сигнал на частоте перехода. Именно этот сигнал стимулирует возбужденные частицы к отдаче энергии. Происходит лавинообразное усиление. Таким образом - на входе слабое излучение, на выходе - усиленное. С генератором дело обстоит иначе. На его вход излучение на частоте перехода уже не подают, а возбуждают и, более того, перевозбуждают активное вещество. Причем если активное вещество находится в перевозбужденном состоянии, то существенно растет вероятность самопроизвольного перехода одной или нескольких частиц с верхнего уровня на нижний. Это приводит к возникновению стимулированного излучения.

Второй подход к классификации лазеров связан с физическим состоянием активного вещества. С этой точки зрения лазеры бывают твердотельными (например, рубиновый, стеклянный или сапфировый), газовыми (например, гелий-неоновый, аргоновый и т.п.), жидкостными, если в качестве активного вещества используется полупроводниковый переход, то лазер называют полупроводниковым.

Третий подход к классификации связан со способом возбуждения активного вещества. Различают следующие лазеры: с возбуждением за счет оптического излучения, с возбуждением потоком электронов, с возбуждением солнечной энергией, с возбуждением за счет энергий взрывающихся проволочек, с возбуждением химической энергией, с возбуждением с помощью ядерного излучения. Различают также лазеры по характеру излучаемой энергии и ее спектральному составу. Если энергия излучается импульсно, то говорят об импульсных лазерах, если непрерывно, то лазер называют лазером с непрерывным излучением. Есть лазеры и со смешанным режимом работы, например полупроводниковые. Если излучение лазера сосредоточено в узком интервале длин волн, то лазер называют монохроматичным, если в широком интервале, то говорят о широкополосном лазере.

Еще один вид классификации основан на использовании понятия выходной мощности. Лазеры, у которых непрерывная (средняя) выходная мощность более 106 Вт, называют высокомощными. При выходной мощности в диапазоне 105…103 Вт имеем лазеры средней мощности. Если же выходная мощность менее 10-3 Вт, то говорят о маломощных лазерах.

В зависимости от конструкции открытого зеркального резонатора различают лазеры с постоянной добротностью и лазеры с модулированной добротностью - у такого лазера одно из зеркал может быть размещено, в частности, на оси электродвигателя, который вращает это зеркало. В данном случае добротность резонатора периодически меняется от нулевого до максимального значения. Такой лазер называют лазером с Q-модуляцией.

2. Характеристики лазеров

Одной из характеристик лазеров является длина волны излучаемой энергии. Диапазон волн лазерного излучения простирается от рентгеновского участка до дальнего инфракрасного, т.е. от 10-3 до 102 мкм. За областью 100 мкм лежит, образно говоря, целина. Но она простирается только до миллиметрового участка, который осваивается радистами. Этот неосвоенный участок непрерывно сужается, и есть надежда, что его освоение завершится в ближайшее время. Доля, приходящаяся на различные типы генераторов, неодинакова. Наиболее широкий диапазон у газовых квантовых генераторов.

Другой важной характеристикой лазеров является энергия импульса. Она измеряется в джоулях и наибольшей величины достигает у твердотельных генераторов - порядка 103 Дж. Третьей характеристикой является мощность. Газовые генераторы, которые излучают непрерывно, имеют мощность от 10-3 до 102 Вт. Милливаттную мощность имеют генераторы, использующие в качестве активной среды гелий-неоновую смесь. Мощность порядка 100 Вт имеют генераторы на CO2. С твердотельными генераторами разговор о мощности имеет особый смысл. К примеру, если взять излучаемую энергию в 1 Дж, сосредоточенную в интервале в одну секунду, то мощность составит 1 Вт. Но длительность излучения генератора на рубине составляет 10-4 с, следовательно, мощность составляет 10000 Вт, т.е. 10 кВт. Если же длительность импульса уменьшена с помощью оптического затвора до 10-6 с, мощность составляет 106 Вт, т.е. мегаватт. Это не предел! Можно увеличить энергию в импульсе до 103 Дж и сократить ее длительность до 10-9с и тогда мощность достигнет 1012 Вт. А это очень большая мощность. Известно, что когда на металл приходится интенсивность луча, достигающая 105 Вт/см2, то начинается плавление металла, при интенсивности 107 Вт/см2 - кипение металла, а при 109 Вт/см2 лазерное излучение начинает сильно ионизировать пары вещества, превращая их в плазму.

Еще одной важной характеристикой лазера является расходимость лазерного луча. Наиболее узкий луч имеют газовые лазеры. Он составляет величину в несколько угловых минут. Расходимость луча твердотельных лазеров около 1…3 угловых градусов. Полупроводниковые лазеры имеют лепестковый раскрыв излучения: в одной плоскости около одного градуса, в другой - около 10…15 угловых градусов.

Следующей важной характеристикой лазера является диапазон длин волн, в котором сосредоточено излучение, т.е. монохроматичность. У газовых лазеров монохроматичность очень высокая, она составляет 10-10, т.е. значительно выше, чем у газоразрядных ламп, которые раньше использовались как стандарты частоты. Твердотельные лазеры и особенно полупроводниковые имеют в своем излучении значительный диапазон частот, т. е. не отличаются высокой монохроматичностью.

Очень важной характеристикой лазеров является коэффициент полезного действия. У твердотельных он составляет от 1 до 3,5%, у газовых 1…15%, у полупроводниковых 40…60%. Вместе с тем принимаются всяческие меры для повышения кпд лазеров, ибо низкий кпд приводит к необходимости охлаждения лазеров до температуры 4…77 К, а это сразу усложняет конструкцию аппаратуры.

2.1 Твердотельные лазеры

Твердотельные лазеры делятся на импульсные и непрерывные. Среди импульсных лазеров более распространены устройства на рубине и неодимовом стекле. Длина волны неодимового лазера составляет l = 1,06 мкм. Эти устройства представляют собой относительно большие стержни, длина которых достигает 100 см, а диаметр - 4-5 см. Энергия импульса генерации такого стержня - 1000 дж за 10-3 сек.

Лазер на рубине также отличается большой мощностью импульса, при длительности 10-3 сек его энергия составляет сотни дж. Частота повторения импульсов может достигать нескольких кГц.

Самые известные лазеры непрерывного действия изготавливаются на флюорите кальция с примесью диспрозия и лазеры на иттриево-алюминиевом гранате, в котором присутствуют примеси атомов редкоземельных металлов. Длина волны этих лазеров находится в области от 1 до 3 мкм. Мощность импульса составляет примерно 1 вт либо его доли. Лазеры на иттриево-алюминиевом гранате способы обеспечить мощность импульса до нескольких десятков вт.

Как правило, в твердотельных лазерах используется многомодовый режим генерации. Одномодовая генерация может быть получена при введении в резонатор селектирующих элементов. Подобное решение было вызвано снижением генерируемой мощности излучения.

Сложность производства твердотельных лазеров заключается в необходимости выращивания больших монокристаллов или варки больших образцов прозрачного стекла. Преодолеть эти трудности позволило изготовление жидкостных лазеров, где активная среда представлена жидкостью, в которую введены редкоземельные элементы. Тем не менее жидкостные лазеры имеют ряд недостатков, ограничивающих область их использования.

2.2 Жидкостные лазеры

Жидкостными называются лазеры с жидкой активной средой. Основным преимуществом этого вида устройств является возможность циркуляции жидкости и, соответственно, ее охлаждение. В результате и в импульсном, и в непрерывном режиме можно получить больше энергии.

Первые жидкостные лазеры производились на основе редкоземельных хелатов. Недостатком этих лазеров является низкий уровень достижимой энергии и химическая неустойчивость хелатов. В результате эти лазеры не нашли применения. Советские ученые предложили использовать в лазерной среде неорганические активные жидкости. Лазеры на их основе отличаются высокими импульсными энергиями и обеспечивают показатели средней мощности. Жидкостные лазеры на такой активной среде способны генерировать излучение с узким спектром частот.

Еще один вид жидкостных лазеров - устройства, работающие на растворах органических красителей, отличающихся широкими спектральными линиями люминесценции. Такой лазер способен обеспечить непрерывную перестройку длин излучаемых волн света в широком диапазоне. При замене красителей обеспечивается перекрытие всего видимого спектра и части инфракрасного. Источником накачки в таких устройствах являются, как правило, твердотельные лазеры, но возможно использование газосветных ламп, обеспечивающих короткие вспышки белого света (менее 50 мксек).

2.3 Газовые лазеры

Существует много разновидностей. Одна из них - фотодиссоционный лазер. В нем применяется газ, молекулы которого под влиянием оптической накачки диссоциируют (распадаются) на две части, одна из которых оказывается в возбужденном состоянии и используется для лазерного излучения.

Большую группу газовых лазеров составляют газоразрядные лазеры, в которых активной средой является разреженный газ (давление 1-10 мм рт. ст.), а накачка осуществляется электрическим разрядом, который может быть тлеющим или дуговым и создается постоянным током или переменным током высокой частоты (10-50 МГц).

Существует несколько типов газоразрядных лазеров. В ионных лазерах излучение получается за счет переходов электронов между энергетическими уровнями ионов. Примером служит аргоновый лазер, в котором используется дуговой разряд постоянного тока.

Лазеры на атомных переходах генерируют за счет переходов электронов между энергетическими уровнями атомов. Эти лазеры дают излучение с длиной волны 0,4-100 мкм. Пример - гелий-неоновый лазер, работающий на смеси гелия и неона под давлением около 1 мм рт. ст. Для накачки служит тлеющий разряд, создаваемый постоянным напряжением примерно 1000 В.

К газоразрядным относятся также молекулярные лазеры, в которых излучение возникает от переходов электронов между энергетическими уровнями молекул. Эти лазеры имеют широкий диапазон частот, соответствующий длинам волн от 0,2 до 50 мкм.

Наиболее распространен из молекулярных лазер на диоксиде углерода (СО2-лазер). Он может давать мощность до 10 кВт и имеет довольно высокий КПД - около 40%. К основному углекислому газу обычно ещё добавляют примеси азота, гелия и других газов. Для накачки применяют тлеющий разряд постоянного тока или высокочастотный. Лазер на диоксиде углерода создает излучение с длиной волны около 10 мкм. Схематически он показан на рис. 1.

Рис. 1 - Принцип устройства СО2-лазера

Разновидность СО2-лазеров - газодинамические. В них инверсная населенность, необходимая для лазерного излучения, достигается за счет того, что газ, предварительно нагретый до 1500 К при давлении 20-30 атм, поступает в рабочую камеру, где он расширяется, а его температура и давление резко снижаются. Такие лазеры могут дать непрерывное излучение мощностью до 100 кВт.

К молекулярным относятся так называемые эксимерные лазеры, у которых рабочей средой является инертный газ (аргон, ксенон, криптон и др.), либо его соединение с хлором или фтором. В таких лазерах накачка осуществляется не электрическим разрядом, а потоком так называемых быстрых электронов (с энергией в сотни кэВ). Излучаемая волна получается наиболее короткой, например, у лазера на аргоне 0,126 мкм.

Большие мощности излучения можно получить, если повысить давление газа и применить накачку с помощью ионизирующего излучения в сочетании с внешним электрическим полем. Ионизирующим излучением служит поток быстрых электронов либо ультрафиолетовое излучение. Такие лазеры называются электроионизационными или лазерами на сжатом газе. Схематически лазеры такого типа показаны на рис. 2.

Рис. 2 - Электроионизационная накачка

Возбужденные молекулы газа за счет энергии химических реакций получаются в химических лазерах. Здесь используются смеси некоторых химически активных газов (фтор, хлор, водород, хлористый водород и др.). Химические реакции в таких лазерах должны протекать очень быстро. Для ускорения применяются специальные химические агенты, которые получаются при диссоциации молекул газа под действием оптического излучения, или электрического разряда, или электронного пучка. Примером химического лазера может служить лазер на смеси фтора, водорода и углекислого газа.

Особый тип лазера - плазменный лазер. В нем активной средой служит высокоионизированная плазма паров щелочноземельных металлов (магний, барий, стронций, кальций). Для ионизации применяют импульсы тока силой до 300 А при напряжении до 20 кВ. Длительность импульсов 0,1-1,0 мкс. Излучение такого лазера имеет длину волны 0,41-0,43 мкм, но может также быть в ультрафиолетовой области.

2.4 Полупроводниковые лазеры

Хотя полупроводниковые лазеры и являются твердотельными, их принято выделять в особую группу. В этих лазерах когерентное излучение получается вследствие перехода электронов с нижнего края зоны проводимости на верхний край валентной зоны. Существует два типа полупроводниковых лазеров. Первый имеет пластину беспримесного полупроводника, в котором накачка производится пучком быстрых электронов с энергией 50-100 кэВ. Возможна также оптическая накачка. В качестве полупроводников используются арсенид галлия GaAs, сульфид кадмия CdS или селенид кадмия CdSe. Накачка электронным пучком вызывает сильный нагрев полупроводника, отчего лазерное излучение ухудшается. Поэтому такие лазеры нуждаются в хорошем охлаждении. Например, лазер на арсениде галлия принято охлаждать до температуры 80 К.

Накачка электронным пучком может быть поперечной (рис. 3) или продольной (рис. 4). При поперечной накачке две противоположные грани полупроводникового кристалла отполированы и играют роль зеркал оптического резонатора. В случае продольной накачки применяются внешние зеркала. При продольной накачке значительно улучшается охлаждение полупроводника. Пример такого лазера - лазер на сульфиде кадмия, генерирующий излучение с длиной волны 0,49 мкм и имеющий КПД около 25%.

Рис. 3 - Поперечная накачка электронным пучком

Рис. 4 - Продольная накачка электронным пучком

Второй тип полупроводникового лазера - так называемый инжекционный лазер. В нем имеется p-n-переход (рис. 5), образованный двумя вырожденными примесными полупроводниками, у которых концентрация донорных и акцепторных примесей составляет 1018-1019см-3. Грани, перпендикулярные плоскости p-n-перехода, отполированы и служат в качестве зеркал оптического резонатора. На такой лазер подается прямое напряжение, под действием которого понижается потенциальный барьер в p-n-переходе и происходит инжекция электронов и дырок. В области перехода начинается интенсивная рекомбинация носителей заряда, при которой электроны переходят из зоны проводимости в валентную зону и возникает лазерное излучение. Для инжекционных лазеров применяют главным образом арсенид галлия. Излучение имеет длину волны 0,8-0,9 мкм, КПД довольно высок - 50-60%.

Рис. 5 - Принцип устройства инжекционного лазера

усилитель генератор луч волна

Миниатюрные инжекционные лазеры с линейными размерами полупроводников около 1 мм дают мощность излучения в непрерывном режиме до 10 мВт, а в импульсном режиме могут иметь мощность до 100 Вт. Получение больших мощностей требует сильного охлаждения.

Следует отметить, что в устройстве лазеров имеется много различных особенностей. Оптический резонатор лишь в простейшем случае составлен из двух плоскопараллельных зеркал. Применяются и более сложные конструкции резонаторов, с другой формой зеркал.

В состав многих лазеров входят дополнительные устройства для управления излучением, расположенные либо внутри резонатора, либо вне его. С помощью этих устройств отклоняется и фокусируется лазерный луч, изменяются различные параметры излучения. Длина волны у разных лазеров может составлять 0,1-100 мкм. При импульсном излучении длительность импульсов бывает в пределах от 10-3 до 10-12 с. Импульсы могут быть одиночными или следовать с частотой повторения до нескольких гигагерц. Достижимая мощность составляет 109 Вт для наносекундных импульсов и 1012 Вт для сверхкоротких пикосекундных импульсов.

2.5 Лазеры на красителях

Лазеры, использующие в качестве лазерного материала органические красители, обычно в форме жидкого раствора. Они принесли революцию в лазерную спектроскопию и стали родоначальником нового типа лазеров c длительностью импульса менее пикосекунды (Лазеры сверхкоротких импульсов).

В качестве накачки сегодня обычно применяют другой лазер, например Nd: YAG с диодной накачкой, или Аргоновый лазер. Очень редко можно встретить лазер на красителях с накачкой лампой-вспышкой. Основная особенность лазеров на красителях - очень большая ширина контура усиления. Ниже приведена таблица параметров некоторых лазеров на красителях.

Существует две возможности использовать такую большую рабочую область лазера:

перестройка длины волны на которой происходит генерация -> лазерная спектроскопия,

генерация сразу в широком диапазоне -> генерация сверх коротких импульсов.

В соответствии с этими двумя возможностями различаются и конструкции лазеров. Если для перестройки длины волны используется обычная схема, только добавляются дополнительные блоки для термостабилизации и выделения излучения со строго определённой длиной волны (обычно призма, дифракционная решётка, или более сложные схемы), то для генерации сверх коротких импульсов требуется уже гораздо более сложная установка. Изменяется конструкция кюветы с активной средой. Из-за того, что длительность импульса лазера в конечном итоге составляет 100÷30·10?15 (свет в вакууме успевает пройти лишь 30÷10мкм за это время), инверсия населённости должна быть максимальна, этого можно добиться только очень быстрой прокачкой раствора красителя. Для того чтобы это осуществить применяют специальную конструкцию кюветы со свободной струёй красителя (краситель прокачивается из специального сопла со скоростью порядка 10м/с). Наиболее короткие импульсы получаются при использовании кольцевого резонатора.

2.6 Лазер на свободных электронах

Вид лазера, излучение в котором генерируется моноэнергетическим пучком электронов, распространяющимся в ондуляторе - периодической системе отклоняющих (электрических или магнитных) полей. Электроны, совершая периодические колебания, излучают фотоны, энергия которых зависит от энергии электронов и параметров ондулятора.

В отличие от газовых, жидкостных или твердотельных лазеров, где электроны возбуждаются в связанных атомных или молекулярных состояниях - у FEL источником излучения является пучок электронов в вакууме, проходящий сквозь ряд расположенных специальным образом магнитов - ондулятор (вигглер), заставляющий пучок двигаться по синусоидальной траектории, теряя энергию, которая преобразуется в поток фотонов. В результате вырабатывается мягкое рентгеновское излучение, применяемое, например, для исследования кристаллов и других наноструктур.

Меняя энергию электронного пучка, а также параметры ондулятора (силу магнитного поля и расстояние между магнитами), можно в широких пределах менять частоту лазерного излучения, вырабатываемого FEL, что является главным отличием FEL от лазеров других систем. Излучение, получаемое с помощью FEL, применяется для изучения нанометровых структур - есть опыт получения изображений частиц размером всего 100 нанометров (этот результат был достигнут с помощью рентгеновской микроскопии с разрешением около 5 нм). Проект первого лазера на свободных электронах был опубликован в 1971 году Джоном М. Дж. Мэйди в рамках своего PhD-проекта в Стэнфордском университете. В 1976 году Мэйди и его коллеги продемонстрировали первые опыты с FEL, используя электроны с энергией 24 МэВ и 5-метровый вигглер для усиления излучения.

Мощность лазера составляла 300 мВт, а эффективность всего 0,01 %, но была показана работоспособность такого класса устройств, что привело к огромному интересу и резкому увеличению количества разработок в области FEL.

Теги: Типы и характеристики лазеров  Реферат  Информатика, ВТ, телекоммуникации

dodiplom.ru

Реферат - Лазеры. Основы устройства и их применение

ЛАЗЕР.

1)Краткие исторические данные.

Лазер,источник электромагнитного излучения видимого, инфракрасного иультрафиолетового диапазонов, основанный на вынужденном излучении атомов имолекул. Слово "лазер"составлено из начальных букв (аббревиатура) слов английской фразы «LightAmplification by Stimulated Emission of Radiation», что означает«усиление света в результате вынужденного излучения». Первый лазербыл создан в 1960 году- и сразу  началось бурное развитие лазерной техники. Всравнительно короткое время появились различные типы лазеров и лазерныхустройств предназначенных для решения конкретных научных и технических задач.

2)Строение лазера

                  Лазер- источник света. По сравнению с другими источниками света лазер обладаетрядом уникальных свойств, связанных с когерентностью и высокой направленностьюего излучения. Излучение «нелазерных» источников света не имеет этихособенностей.

                  ”Сердцелазера” — его активный элемент. У одних лазеров он представляет собойкристаллический или  стеклянный стержень цилиндрической формы. У других — этоотпаянная стеклянная трубка, внутри которой находится специально подобраннаягазовая смесь. У третьих — кювета со специальной жидкостью. Соответственно различаютлазеры твердотельные, газовые и жидкостные.

                  При нагревании любое тело начинает испускать тепло.Однако излучение теплового источника распространяется по всем направлениям отисточника, т. е. заполняет телесный угол 2p рад. Формирование направленногопучка от такого источника, осуществляемое с помощью системы диафрагм илиоптических систем, состоящих из линз и зеркал, всегда сопровождается потерейэнергии. Никакая оптическая система не позволяет получить на поверхностиосвещаемого объекта мощность излучения большую, чем в самом источнике света.

3)Принцип работы лазера.

Возбуждённый атом может самопроизвольно (спонтанно) перейти на один изнижележащих уровней энергии, излучив при этом квант света (см. Атом).Световые волны, излучаемые нагретыми телами, формируются именно в результатетаких спонтанных переходов атомов и молекул. Спонтанное излучение различныхатомов некогерентно. Однако, помимо спонтанного испускания, существуютизлучательные акты др. рода. При распространении в среде световой волны счастотой v, соответствующей разности каких-либо двух энергетических уровней E1,E2 атомов или молекул среды (hn = E2 — E1,где h — Планка постоянная), к спонтанному испусканию частиц добавляютсядр. радиационные процессы. Атомы, находящиеся на нижнем энергетическом уровне E1,в результате поглощения квантов света с энергией hn переходят на уровеньE2 (рис. 2, а). Число таких переходовпропорционально r (n) N1, где r (n)- спектральная плотность излучения в эрг/см3, N1 — концентрация атомов, находящихся на уровне E1 (населённостьуровня). Атомы, находящиеся на верхнем энергетическом уровне E2,под действием квантовhn вынужденно переходят на уровень E1(рис. 2, б). Число таких переходов пропорционально r(n)N2, где N2 — концентрация атомовна уровне E2. В результате переходов E1?E2 волна теряет энергию, ослабляется. В результате же переходов E2?E1 световая волна усиливается. Результирующее изменениеэнергии световой волны определяется разностью (N2 — N1).В условиях термодинамического равновесия населённость нижнего уровня N1всегда больше населённости верхнего N2. Поэтому волна теряетбольше энергии, чем приобретает, т. е. имеет место поглощение света. Однако внекоторых специальных случаях оказывается возможным создать такие условия,когда возникает инверсия населённостей уровней E1 и E2,при которой N2 > N1. При этом вынужденныепереходы E2?E1 преобладают и поставляют всветовую волну больше энергии, чем теряется в результате переходов E1?E2. Световая волна в этом случае не ослабляется, аусиливается.

4)Виды лазеров.

      Рубиновый лазер работает в импульсномрежиме. Существуют также лазеры непрерывно­го действия.

В газовых лазерах этого типа рабочим веществом является, газ.Атомы рабочего вещества возбуж­даются электрическим разрядом.

Применяются и полупроводнико­вые лазеры непрерывного действия. Онисозданы впервые в нашей стра­не. В них энергия для излучения заимствуется отэлектрического тока.

Созданы очень мощные газоди­намическиелазеры непрерывного действия на сотни киловатт. В этих лазерах«перенаселенность» верхних энергетических уровней создается! прирасширении и адиабатном охлаждении сверхзвуковых газовых потоков, нагретых донескольких тысяч кельвин.

5)Применение лазеров.

Лазерыиспользуют во многих сферах деятельности. Ведь лазер это удивительный источниксвета. Лазеры, конечно, при желании могут применяться в качествеэкстравагантных светильников. Однако использовать лазерный луч в целяхосвещения  нерационально.

Большие возможностиоткрываются перед лазерной техникой в биологии и медицине. Лазерный лучприменяется не только в хирургии (например, при операциях на сетчатке глаза)как скальпель, но и в терапии.

Интенсивноразвиваются методы лазерной локации и связи. Локация Луны с помощью рубиновыхЛ. и спец. уголковых отражателей, доставленных на Луну, позволила увеличитьточность измерения расстояний Земля — Луна до нескольких см.

Полученыобнадёживающие результаты в направленном стимулировании химических реакций. Спомощью Л. можно селективно возбуждать одно из собственных колебаний молекулы.Оказалось, что при этом молекулы способны вступать в реакции, которые нельзяили затруднительно стимулировать обычным нагревом.

      С помощью лазернойтехники интенсивно разрабатываются оптические методы обработки передачи ихранения информации, методы голографической записи информации, цветноепроекционное телевидение.

6)Заключение.

     Запоследнее время в России и за рубежом были проведены обширные исследования вобласти квантовой электроники. созданы разнообразные лазеры, а также приборы,основанные на их использовании. Лазеры теперь применяются в  локации и в связи,в космосе и на земле, в медицине и строительстве, в вычислительной технике ипромышленности, в военной технике. Появилось новое научное направление — голография, становление и развитие которой также немыслимо без лазеров.

      Созданиелазеров- пример того, как развитие фундаментальной науки приводит к гигантскомупрогрессу в самых различных областях техники и технологии.

Министерство    общего  образования

Российской  Федерации

МОУ СИВИНСКАЯ СРЕДНЯЯ ШКОЛАНаправление: «Физика»

РЕФЕРАТ НА ТЕМУ: ЛАЗЕРЫ. ОСНОВЫ  УСТРОЙСТВА  И   ИХ

ПРИМЕНЕНИЕ

 

                                                   Выполнилученик Миронов Евгений. 11 «б» класс. Предмет Физика. Преподаватель

___________________________________

Сива 2003 год.

 

     

 

www.ronl.ru

Реферат - Лазеры. Основы устройства и их применение

ЛАЗЕР.

1)Краткие исторические данные.

Лазер, источник электромагнитного излучения видимого, инфракрасного и ультрафиолетового диапазонов, основанный на вынужденном излучении атомов и молекул. Слово "лазер" составлено из начальных букв (аббревиатура) слов английской фразы "Light Amplification by Stimulated Emission of Radiation", что означает "усиление света в результате вынужденного излучения". Первый лазер был создан в 1960 году- и сразу началось бурное развитие лазерной техники. В сравнительно короткое время появились различные типы лазеров и лазерных устройств предназначенных для решения конкретных научных и технических задач.

2)Строение лазера

Лазер - источник света. По сравнению с другими источниками света лазер обладает рядом уникальных свойств, связанных с когерентностью и высокой направленностью его излучения. Излучение "нелазерных" источников света не имеет этих особенностей.

”Сердце лазера” - его активный элемент. У одних лазеров он представляет собой кристаллический или стеклянный стержень цилиндрической формы. У других - это отпаянная стеклянная трубка, внутри которой находится специально подобранная газовая смесь. У третьих - кювета со специальной жидкостью. Соответственно различают лазеры твердотельные, газовые и жидкостные.

При нагревании любое тело начинает испускать тепло. Однако излучение теплового источника распространяется по всем направлениям от источника, т. е. заполняет телесный угол 2p рад. Формирование направленного пучка от такого источника, осуществляемое с помощью системы диафрагм или оптических систем, состоящих из линз и зеркал, всегда сопровождается потерей энергии. Никакая оптическая система не позволяет получить на поверхности освещаемого объекта мощность излучения большую, чем в самом источнике света.

3)Принцип работы лазера.

Возбуждённый атом может самопроизвольно (спонтанно) перейти на один из нижележащих уровней энергии, излучив при этом квант света (см. Атом). Световые волны, излучаемые нагретыми телами, формируются именно в результате таких спонтанных переходов атомов и молекул. Спонтанное излучение различных атомов некогерентно. Однако, помимо спонтанного испускания, существуют излучательные акты др. рода. При распространении в среде световой волны с частотой v, соответствующей разности каких-либо двух энергетических уровней E1, E2 атомов или молекул среды (hn = E2 - E1, где h - Планка постоянная), к спонтанному испусканию частиц добавляются др. радиационные процессы. Атомы, находящиеся на нижнем энергетическом уровне E1, в результате поглощения квантов света с энергией hn переходят на уровень E2 (рис. 2, а). Число таких переходов пропорционально r (n) N1, где r (n) - спектральная плотность излучения в эрг/см3, N1 - концентрация атомов, находящихся на уровне E1 (населённость уровня). Атомы, находящиеся на верхнем энергетическом уровне E2, под действием квантов hn вынужденно переходят на уровень E1 (рис. 2, б). Число таких переходов пропорционально r (n) N2, где N2 - концентрация атомов на уровне E2. В результате переходов E1 ? E2 волна теряет энергию, ослабляется. В результате же переходов E2 ? E1 световая волна усиливается. Результирующее изменение энергии световой волны определяется разностью (N2 - N1). В условиях термодинамического равновесия населённость нижнего уровня N1 всегда больше населённости верхнего N2. Поэтому волна теряет больше энергии, чем приобретает, т. е. имеет место поглощение света. Однако в некоторых специальных случаях оказывается возможным создать такие условия, когда возникает инверсия населённостей уровней E1 и E2, при которой N2 > N1. При этом вынужденные переходы E2 ? E1 преобладают и поставляют в световую волну больше энергии, чем теряется в результате переходов E1 ? E2. Световая волна в этом случае не ослабляется, а усиливается.

4)Виды лазеров.

Рубиновый лазер работает в импульсном режиме. Существуют также лазеры непрерывно­го действия.

В газовых лазерах этого типа рабочим веществом является, газ. Атомы рабочего вещества возбуж­даются электрическим разрядом.

Применяются и полупроводнико­вые лазеры непрерывного действия. Они созданы впервые в нашей стра­не. В них энергия для излучения заимствуется от электрического тока.

Созданы очень мощные газоди­намические лазеры непрерывного действия на сотни киловатт. В этих лазерах «перенаселенность» верхних энергетических уровней создается ! при расширении и адиабатном охлаждении сверхзвуковых газовых потоков, нагретых до нескольких тысяч кельвин.

5)Применение лазеров.

Лазеры используют во многих сферах деятельности. Ведь лазер это удивительный источник света. Лазеры, конечно, при желании могут применяться в качестве экстравагантных светильников. Однако использовать лазерный луч в целях освещения нерационально.

Большие возможности открываются перед лазерной техникой в биологии и медицине. Лазерный луч применяется не только в хирургии (например, при операциях на сетчатке глаза) как скальпель, но и в терапии.

Интенсивно развиваются методы лазерной локации и связи. Локация Луны с помощью рубиновых Л. и спец. уголковых отражателей, доставленных на Луну, позволила увеличить точность измерения расстояний Земля - Луна до нескольких см.

Получены обнадёживающие результаты в направленном стимулировании химических реакций. С помощью Л. можно селективно возбуждать одно из собственных колебаний молекулы. Оказалось, что при этом молекулы способны вступать в реакции, которые нельзя или затруднительно стимулировать обычным нагревом.

С помощью лазерной техники интенсивно разрабатываются оптические методы обработки передачи и хранения информации, методы голографической записи информации, цветное проекционное телевидение.

6)Заключение.

За последнее время в России и за рубежом были проведены обширные исследования в области квантовой электроники. созданы разнообразные лазеры, а также приборы , основанные на их использовании. Лазеры теперь применяются в локации и в связи, в космосе и на земле, в медицине и строительстве, в вычислительной технике и промышленности, в военной технике. Появилось новое научное направление - голография, становление и развитие которой также немыслимо без лазеров.

Создание лазеров- пример того, как развитие фундаментальной науки приводит к гигантскому прогрессу в самых различных областях техники и технологии.

Министерство общего образования

Российской Федерации

МОУ СИВИНСКАЯ СРЕДНЯЯ ШКОЛА

Направление: «Физика»

РЕФЕРАТ НА ТЕМУ: ЛАЗЕРЫ. ОСНОВЫ УСТРОЙСТВА И ИХ

ПРИМЕНЕНИЕ

Выполнил ученик Миронов Евгений. 11 «б» класс. Предмет Физика. Преподаватель

___________________________________

Сива 2003 год.

referat.store

Реферат Виды лазеров

Опубликовать скачать

Реферат на тему:

План:

    Введение
  • 1 Газовые лазеры
  • 2 Лазеры на красителях
  • 3 Лазеры на пара́х металлов
  • 4 Твердотельные лазеры
  • 5 Полупроводниковые лазеры
  • 6 Другие типы лазеров

Введение

Далее приводится таблица параметров наиболее распространённых лазеров различных типов, рабочие длины волн, области применения.

1. Газовые лазеры

Рабочее тело Длина волны Источник накачки Применение
Гелий-неоновый лазер 632,8 нм (543,5; 593,9; 611,8 нм, 1,1523; 1,52; 3,3913 мкм) Электрический разряд Интерферометрия, голография, спектроскопия, считывание штрих-кодов, демонстрация оптических эффектов.
Аргоновый лазер 488,0; 514,5 нм, (351; 465,8; 472,7; 528,7 нм) Электрический разряд Лечение сетчатки глаза, литография, накачка других лазеров.
Криптоновый лазер 416; 530,9; 568,2; 647,1; 676,4; 752,5; 799,3 нм Электрический разряд Научные исследования, в смеси с аргоном лазеры белого света, лазерные шоу.
Ксеноновый лазер Множество спектральных линий по всему видимому спектру и частично в УФ и ИК областях. Электрический разряд Научные исследования.
Азотный лазер 337,1 нм (316; 357 нм) Электрический разряд Накачка лазеров на красителях, исследование загрязнения атмосферы, научные исследования, учебные лазеры.
Лазер на фтористом водороде 2,7—2,9 мкм (Фтористый водород) 3,6—4,2 мкм (фторид дейтерия) Химическая реакция горения этилена и трёхфтористого азота (NF3) Лазерные вооружения. Способен работать в постоянном режиме в области мегаваттных мощностей.
Химический лазер на кислороде и иоде (COIL) 1,315 мкм Химическая реакция в пламени синглетного кислорода и иода Научные исследования, лазерные вооружения. Способен работать в постоянном режиме в области мегаваттных мощностей.
Углекислотный лазер (CO2) 10,6 мкм, (9,6 мкм) Поперечный (большие мощности) или продольный (малые мощности) электрический разряд Обработка материалов (резка, сварка), хирургия.
Лазер на монооксиде углерода (CO) 2,5—4,2 мкм, 4,8—8,3 мкм Электрический разряд Обработка материалов (гравировка, сварка и т. д.), фотоакустическая спектроскопия.
Эксимерный лазер 193 нм (ArF), 248 нм (KrF), 308 нм (XeCl), 353 нм (XeF) Рекомбинация эксимерных молекул при электрическом разряде Ультрафиолетовая литография в полупроводниковой промышленности, лазерная хирургия, коррекция зрения.

2. Лазеры на красителях

Рабочее тело Длина волны Источник накачки Применение
Лазер на красителях 390—435 нм (Stilbene), 460—515 нм (Кумарин 102), 570—640 нм (Родамин 6G), другие Другой лазер, импульсная лампа. Научные исследования, спектроскопия, косметическая хирургия, разделение изотопов. Рабочий диапазон определяется типом красителя.

3. Лазеры на пара́х металлов

Рабочее тело Длина волны Источник накачки Применение
Гелий-кадмиевый лазер на парах металлов 440 нм, 325 нм Электрический разряд в смеси паров металла и гелия. Полиграфия, УФ детекторы валюты, научные исследования.
Гелий-ртутный лазер на парах металлов 567 нм, 615 нм Электрический разряд в смеси паров металла и гелия. Археология, научные исследования, учебные лазеры.
Гелий-селеновый лазер на парах металлов до 24 спектральных полос от красного до УФ Электрический разряд в смеси паров металла и гелия. Археология, научные исследования, учебные лазеры.
Лазер на парах меди 510,6 нм, 578,2 нм Электрический разряд Дерматология, скоростная фотография, накачка лазеров на красителях.
Лазер на парах золота 627 нм Электрический разряд Археология, медицина.

4. Твердотельные лазеры

Рабочее тело Длина волны Источник накачки Применение
Рубиновый лазер 694,3 нм Импульсная лампа Голография, удаление татуировок. Первый представленный тип лазера (1960).
Алюмо-иттриевые лазеры с легированием неодимом (Nd:YAG) 1,064 мкм, (1,32 мкм) Импульсная лампа, лазерный диод Обработка материалов, лазерные дальномеры, лазерные целеуказатели, хирургия, научные исследования, накачка других лазеров. Один из самых распространённых лазеров высокой мощности. Обычно работает в импульсном режиме (доли наносекунд). Нередко используется в сочетании с удвоителем частоты. Известны конструкции с квазинепрерывным режимом излучения.
Лазер на фториде иттрия-лития с легированием неодимом (Nd:YLF) 1,047 и 1,053 мкм Импульсная лампа, лазерный диод Наиболее часто используются для накачки титан-сапфировых лазеров, используя эффект удвоения частоты в нелинейной оптике.
Лазер на ванадате иттрия (YVO4) с легированием неодимом (Nd:YVO) 1,064 мкм Лазерные диоды Наиболее часто используются для накачки титан-сапфировых лазеров, используя эффект удвоения частоты в нелинейной оптике.
Лазер на неодимовом стекле (Nd:Glass) ~1,062 мкм (Силикатные стёкла), ~1,054 мкм (Фосфатные стёкла) Импульсная лампа, Лазерные диоды Лазеры сверхвысокой мощности (тераватты) и энергии (мегаджоули). Обычно работают в нелинейном режиме утроения частоты до 351 нм в устройствах лазерной плавки.
Титан-сапфировый лазер 650—1100 нм Другой лазер Спектроскопия, лазерные дальномеры, научные исследования.
Алюмо-иттриевые лазеры с легированием тулием (Tm:YAG) 2,0 мкм Лазерные диоды Лазерные радары
Алюмо-иттриевые лазеры с легированием иттербием (Yb:YAG) 1,03 мкм Импульсная лампа, Лазерные диоды Обработка материалов, исследование сверхкоротких импульсов, мультифотонная микроскопия, лазерные дальномеры.
Алюмо-иттриевые лазеры с легированием гольмием (Ho:YAG) 2,1 мкм Лазерные диоды Медицина
Церий-легированный литий-стронций (или кальций)-алюмо-фторидный лазер (Ce:LiSAF, Ce:LiCAF) ~280-316 нм Лазер Nd:YAG с учетверением частоты, Эксимерный лазер, лазер на парах ртути. Исследование атмосферы, лазерные дальномеры, научные разработки.
Лазер на александрите с легированием хромом Настраивается в диапазоне от 700 до 820 нм Импульсная лампа, Лазерные диоды. Для непрерывного режима — дуговая ртутная лампа Дерматология, лазерные дальномеры.
Волоконный лазер лазер с легированием эрбием 1,53-1,56 мкм Лазерные диоды Оптические усилители в волоконно-оптических линиях связи, обработка металлов (резка, сварка, гравировка), термораскалывание стекла, медицина, косметология.
Лазеры на фториде кальция, легированном ураном (U:CaF2) 2,5 мкм Импульсная лампа Первый 4-х уровневый твердотельный лазер, второй работающий тип лазера (после рубинового лазера Маймана), охлаждался жидким гелием, сегодня нигде не используется.

5. Полупроводниковые лазеры

Рабочее тело Длина волны Источник накачки Применение
Полупроводниковый лазерный диод Длина волны зависит от материала:

0,4 мкм — GaN,0,63-1,55 мкм — AlGaAs,3-20 мкм — соли свинца

Электрический ток Телекоммуникации, голография, лазерные целеуказатели, лазерные принтеры, накачка лазеров других типов. AlGaAs-лазеры (алюминий-арсенид-галлиевые), работающие в диапазоне 780 нм используются в проигрывателях компакт-дисков и являются самыми распространёнными в мире.

6. Другие типы лазеров

Рабочее тело Длина волны Источник накачки Применение
Лазер на свободных электронах Длина волны рентгеновского лазера варьируется в диапазоне 0,085-6 нм. Пучок релятивистских электронов Исследования атмосферы, материаловедение, медицина, противоракетная оборона.
Псевдо-никелево-самариевый лазер Рентгеновское излучение 17.3 нм Излучение в сверхгорячей плазме самария, создаваемое двойными импульсами лазера на неодимовом стекле. [1] Первый демонстрационный лазер, работающий в области жесткого рентгеновского излучения. Может применяться в микроскопах сверхвысокого разрешения и голографии. Его излучение лежит в «окне прозрачности» воды и позволяет исследовать структуру ДНК, активность вирусов в клетках, действие лекарств.
Лазер на центрах окраски Длина волны 0,8 — 4 микрон. Оптическая (лампа вспышка, лазерная) электронов Спектроскопия, медицина.
скачатьДанный реферат составлен на основе статьи из русской Википедии. Синхронизация выполнена 13.07.11 20:00:00Похожие рефераты: Физика лазеров, Безопасность лазеров, Применение лазеров, Виды соучастников, Виды рода Лук, Виды рода Дуб, Виды производства, Виды преступности, Виды вооружённых сил.

Категории: Лазеры по видам.

Текст доступен по лицензии Creative Commons Attribution-ShareAlike.

Смотрите также

 

..:::Новинки:::..

Windows Commander 5.11 Свежая версия.

Новая версия
IrfanView 3.75 (рус)

Обновление текстового редактора TextEd, уже 1.75a

System mechanic 3.7f
Новая версия

Обновление плагинов для WC, смотрим :-)

Весь Winamp
Посетите новый сайт.

WinRaR 3.00
Релиз уже здесь

PowerDesk 4.0 free
Просто - напросто сильный upgrade проводника.

..:::Счетчики:::..

 

     

 

 

.