Начальная

Windows Commander

Far
WinNavigator
Frigate
Norton Commander
WinNC
Dos Navigator
Servant Salamander
Turbo Browser

Winamp, Skins, Plugins
Необходимые Утилиты
Текстовые редакторы
Юмор

File managers and best utilites

Реферат: Кватернионы. Комплексные числа и кватернионы реферат


Реферат Кватернион

скачать

Реферат на тему:

План:

    Введение
  • 1 Определения
    • 1.1 Вектор-скаляр
    • 1.2 Стандартное определение
      • 1.2.1 Через вещественные матрицы
    • 1.3 Через комплексные числа
      • 1.3.1 Через комплексные матрицы
  • 2 Связанные определения
    • 2.1 Сопряжение
    • 2.2 Модуль
    • 2.3 Обращение
  • 3 Алгебраические свойства
  • 4 Кватернионы и повороты пространства
  • 5 Целые кватернионы
    • 5.1 Целые единичные кватернионы
    • 5.2 Разложение на простые сомножители
  • 6 Функции кватернионного переменного
    • 6.1 Вспомогательные функции
    • 6.2 Элементарные функции
    • 6.3 Регулярные функции
    • 6.4 Производная Гато
  • 7 Виды умножений
    • 7.1 Умножение Грассмана
    • 7.2 Евклидово умножение
    • 7.3 Скалярное произведение
    • 7.4 Внешнее произведение
    • 7.5 Векторное произведение
  • 8 Из истории
  • 9 Новые результаты и направления исследований
    • 9.1 Кватернионы и метрика Минковского
  • ПримечанияЛитература

Введение

Кватернио́ны (от лат. quaterni, по четыре) — система гиперкомплексных чисел, предложенная Гамильтоном в 1843 году.

Умножение кватернионов некоммутативно; они образуют тело, которое обычно обозначается \mathbb H.

Кватернионы очень удобны для описания изометрий трёхмерного и четырёхмерного Евклидовых пространств, и поэтому получили широкое распространение в механике. Также их используют в вычислительной математике, например при создании трёхмерной графики.[1]

1. Определения

1.1. Вектор-скаляр

Кватернион представляет собой пару \left(a, \vec{u} \right), где \vec{u} — вектор трёхмерного пространства, а a\, — скаляр, то есть вещественное число. Операции сложения определены следующим образом:

\left(a, \vec{u} \right)+ \left(b , \vec{v}\right)= \left(a + b , \vec{u} + \vec{v}\right)

Произведение определяется следующим образом:

\left(a, \vec{u}\right)\left(b, \vec{v}\right)= \left(ab - \vec{u}\cdot\vec{v}, a\vec{v} + b\vec{u} + \vec{u}\times\vec{v}\right)

где \cdot обозначает скалярное произведение, а \times — векторное произведение.

В частности,

\left(a, 0\right)\left(0, \vec{v}\right)=\left(0, \vec{v}\right)\left(a, 0 \right)= \left(0, a\vec{v}\right) \left(a, 0\right)\left(b, 0\right)=\left(ab, 0\right)\, \left(0, \vec{u} \right)\left(0, \vec{v}\right)= \left( - \vec{u}\cdot\vec{v} , \vec{u}\times\vec{v}\right)

Заметим, что

  • Алгебраические операции в кватернионах обладают свойством дистрибутивности.
  • Антикоммутативность векторного произведения влечёт некоммутативность произведения кватернионов.

1.2. Стандартное определение

Кватернионы можно определить как формальную сумму \,a+bi+cj+dk, где \,a, b, c, d — вещественные числа, а \,i, j, k — мнимые единицы со следующим свойством: i2 = j2 = k2 = ijk = − 1. Таким образом, таблица умножения базисных кватернионов — \,1, i, j, k — выглядит так:

например, \,ij=k, a \,ji=-k.

1.2.1. Через вещественные матрицы

Кватернионы также можно определить как вещественные матрицы следующего вида с обычными матричными произведением и суммой:

\begin{pmatrix}
 a & -b & -c & -d \\ 
 b & \;\;a & -d & \;\; c \\
 c & \;\;d & \;\; a & -b \\
 d & -c & \;\; b & \;\; a 
\end{pmatrix}.

При такой записи:

  • сопряжённому кватерниону соответствует транспонированная матрица: 
\bar q \mapsto 
Q ^ T
;
  • четвёртая степень модуля кватерниона равна определителю соответствующей матрицы: 
\left|q \right| ^ 4 =
\det Q
.

1.3. Через комплексные числа

Кватернион можно представить как пару комплексных чисел. Пусть 
j ^ 2 = -1,\,
j \ne \pm i
и 
z, w \in \C
. Тогда кватернион можно записать в виде q = z + wj = a + bi + cj + dij.

1.3.1. Через комплексные матрицы

Альтернативно, кватернионы можно определить как комплексные матрицы следующего вида с обычными матричными произведением и суммой:

\begin{pmatrix} \;\;\alpha & \beta \\ -\bar \beta & \bar \alpha \end{pmatrix}=\begin{pmatrix} \;\;a+bi & c+di \\ -c+di & a-bi \end{pmatrix},

здесь \bar \alpha и \bar \beta обозначают комплексно-сопряжённые числа к \,\alpha и \, \beta.

Такое представление имеет несколько замечательных свойств:

  • комплексному числу соответствует диагональная матрица;
  • сопряжённому кватерниону соответствует сопряжённая транспонированная матрица: 
\bar q \mapsto 
\bar Q ^ T
;
  • квадрат модуля кватерниона равен определителю соответствующей матрицы: 
\left|q \right| ^ 2 =
\det Q
.

2. Связанные определения

Для кватерниона

\,q=a+bi+cj+dk

кватернион \,a называется скалярной частью \,q, а кватернион \,u=bi+cj+dk — векторной частью. Если \,u=0, то кватернион называется чисто скалярным, а при \,a=0 — чисто векторным.

2.1. Сопряжение

Кватернион

\bar q=a-bi-cj-dk

называется сопряжённым к \,q.

Сопряжённое произведение есть произведение сопряжённых в обратном порядке:


\overline {pq} = 
\bar q
\bar p

Для кватернионов справедливо равенство


\overline {p} =-\frac 12 (p+ipi+jpj+kpk)

2.2. Модуль

Так же, как и для комплексных чисел,

 \left|q \right| =\sqrt{q\bar q}=\sqrt{a^2+b^2+c^2+d^2}

называется модулем \,q. Если \, \left|q \right| =1, то \,q называется единичным кватернионом.

В качестве нормы кватерниона обычно рассматривают его модуль: 
\left\|z \right\| =
\left |z \right |
.

Таким образом, на множестве кватернионов можно ввести метрику. Кватернионы образуют метрическое пространство, изоморфное \R^4 с евклидовой метрикой.

Кватернионы с модулем в качестве нормы образуют банахову алгебру.

Из тождества четырёх квадратов вытекает, что  \left|p\cdot q \right| = \left|p \right| \cdot \left|q \right| , иными словами, кватернионы обладают мультипликативной нормой и образуют ассоциативную алгебру с делением.

2.3. Обращение

Кватернион, обратный по умножению к q, вычисляется так:


q^{-1} = 
\frac 
{\bar q}
{\left|q \right| ^ 2}
.

3. Алгебраические свойства

Четыре базисных кватерниона и четыре противоположных им по знаку образуют по умножению группу кватернионов (порядка 8). Обозначается:

 
Q_8 = 
\left\{
\pm 1, 
\pm i, 
\pm j, 
\pm k
\right\}
.

Множество кватернионов является примером кольца с делением.

Множество кватернионов образует четырёхмерную ассоциативную алгебру с делением над полем вещественных (но не комплексных) чисел. Вообще  \mathbb R,  \mathbb C,  \mathbb H являются единственными конечномерными ассоциативными алгебрами с делением над полем вещественных чисел.[2]

Некоммутативность умножения кватернионов приводит к неожиданным последствиям. Например, количество различных корней полиномиального уравнения над множеством кватернионов может быть больше, чем степень уравнения. В частности, уравнение q2 + 1 = 0 имеет бесконечно много решений — это все единичные чисто векторные кватернионы.

4. Кватернионы и повороты пространства

Организация всех трёх степеней свободы, однако окончательная свобода наименьшего кольца зависит от положения старших колец

Кватернионы, рассматриваемые как алгебра над \scriptstyle\Bbb R, образуют четырёхмерное вещественное векторное пространство. Любой поворот этого пространства относительно \,0 может быть записан в виде q\mapsto \xi q \zeta, где \,\xi и \,\zeta — пара единичных кватернионов, при этом пара \,\left(\xi,\zeta\right) определяется с точностью до знака, то есть один поворот определяют в точности две пары — \,\left(\xi,\zeta\right) и \,\left(-\xi,-\zeta\right). Из этого следует, что группа Ли SO\left(\R,4\right) поворотов \R^4 есть факторгруппа S^3\times S^3/\Z_2, где \,S^3 обозначает мультипликативную группу единичных кватернионов.

Чисто векторные кватернионы образуют трёхмерное вещественно векторное пространство. Любой поворот пространства чисто векторных кватернионов относительно \,0 может быть записан в виде u\mapsto \xi u \bar\xi, где \,\xi — некоторый единичный кватернион. Соответственно, SO\left(\R,3\right)=S^3/\Z_2, в частности, SO\left(\R,3\right) диффеоморфно \R \mathrm{P}^3.

5. Целые кватернионы

В качестве нормы кватерниона выберем квадрат его модуля: 
\left\|z \right\| =
\left |z \right | ^ 2
.

Целыми принято называть кватернионы a + bi + cj + dk такие, что все 2a,2b,2c,2d — целые и одинаковой чётности.

Целый кватернион называется

  • чётным
  • нечётным
  • простым

если таким же свойством обладает его норма.

Целый кватернион называется примитивным, если он не делится ни на какое натуральное число, кроме 1, нацело (иными словами, 
\gcd \left(2a, 2b, 2c, 2d \right) \le 2
).

5.1. Целые единичные кватернионы

Существует 24 целых единичных кватерниона:


\pm 1, 
\pm i, 
\pm j, 
\pm k, 
\frac 
{
\pm 1 
\pm i
\pm j
\pm k
}
{2}
.

Они образуют группу по умножению и лежат в вершинах правильного четырёхмерного многогранника — кубооктаэдра (не путать с трёхмерным многогранником-кубооктаэдром).

5.2. Разложение на простые сомножители

Для примитивных кватернионов верен аналог основной теоремы арифметики.

Теорема.[3] Для любого фиксированного порядка множителей в разложении нормы кватерниона N(q) в произведение простых целых положительных чисел N(q) = p1p2...pn существует разложение кватерниона q в произведение простых кватернионов q = q1q2...qn такое, что N(qi) = pi. Причём данное разложение единственно по модулю домножения на единицы — это значит, что любое другое разложение будет иметь вид


q = 
\left(q_1 \epsilon_1 \right)
\left(\bar\epsilon_1 q_2 \epsilon_2 \right)
\left(\bar\epsilon_2 q_3 \epsilon_3 \right)
...
\left(\bar\epsilon_{n-1} q_n \right)
,

где ε1, ε2, ε3, … εn − 1 — целые единичные кватернионы.

Например, примитивный кватернион q = (1 + i)2(1 + i + j)(2 + i) имеет норму 60, значит, по модулю домножения на единицы он имеет ровно 12 разложений в произведение простых кватернионов, отвечающих 12 разложениям числа 60 в произведений простых:

 60 = 2\cdot2\cdot3\cdot5 \quad 60 = 2\cdot2\cdot5\cdot3 \quad 60 = 2\cdot3\cdot2\cdot5 \quad 60 = 2\cdot5\cdot2\cdot3 \quad 60 = 2\cdot3\cdot5\cdot2 \quad 60 = 2\cdot5\cdot3\cdot2

 60 = 3\cdot2\cdot2\cdot5 \quad 60 = 5\cdot2\cdot2\cdot3 \quad 60 = 3\cdot2\cdot5\cdot2 \quad 60 = 5\cdot2\cdot3\cdot2 \quad 60 = 3\cdot5\cdot2\cdot2 \quad 60 = 5\cdot3\cdot2\cdot2

Общее число разложений такого кватерниона равно 24^3 \cdot 12 = 165888

6. Функции кватернионного переменного

6.1. Вспомогательные функции

Знак кватерниона вычисляется так:


\operatorname {sgn}\, q =
\frac {q} {\left|q \right|}
.

Аргумент кватерниона — это угол поворота четырёхмерного вектора, который отсчитывается от вещественной единицы:


\arg q =
\arccos
\frac 
{a}
{\left|q \right|}
.

В дальнейшем используется представление заданного кватерниона q в виде

q = a + \left| \mathbf{u} \right| \mathrm{i} = \left| q \right| \mathrm{e}^{\mathrm{i}\,\mathrm{arg}\,q}

Здесь a — вещественная часть кватерниона, \mathrm{i} = \left| \mathbf{u} \right|^{-1} \mathbf{u}. При этом i2 = − 1, поэтому проходящая через q и вещественную прямую плоскость имеет структуру алгебры комплексных чисел, что позволяет перенести на случай кватернионов произвольные аналитические функции. Они удовлетворяют стандартным соотношениям, если все аргументы имеют вид a + bi для фиксированного единичного вектора i. В случае если требуется рассматривать кватернионы с разным направлением, формулы значительно усложняются, в силу некоммутативности алгебры кватернионов.

6.2. Элементарные функции

Стандартное определение аналитических функций на ассоциативной нормированной алгебре основано на разложении этих функций в степенные ряды. Рассуждения, доказывающие корректность определения таких функций, полностью аналогичны комплексному случаю и основаны на вычислении радиуса сходимости соответствующих степенных рядов. Учитывая указанное выше «комплексное» представление для заданного кватерниона, соответствующие ряды можно привести к указанной ниже компактной форме. Здесь приведены лишь некоторые наиболее употребительные аналитические функции, аналогично можно вычислить любую аналитическую функцию. Общее правило таково: если f(a + bi) = c + di для комплексных чисел, то f(q) = c + d \mathbf{i}, где кватернион q рассматривается в «комплексном» представлении q = a + b \mathbf{i}.

Степень и логарифм  
\exp q = \exp a \left(
\cos \left|\mathbf{u} \right| + \sin \left| \mathbf{u} \right| \hat{\mathbf{u}}
\right)
 
\ln q = \ln \left|q \right| + \arg q\, \hat{\mathbf{u}}

Отметим, что, как обычно в комплексном анализе, логарифм оказывается определён лишь с точностью до 2\pi \hat{\mathbf{u}}.

Тригонометрические функции  
\sin q 
= 
\sin a \,
\operatorname {ch} \left|\mathbf{u} \right| 
+
\cos a \, \operatorname {sh} \left|\mathbf{u} \right| \hat{\mathbf{u}}
 
\cos q 
= 
\cos a \,
\operatorname {ch} \left|\mathbf{u} \right| 
-
\sin a \, \operatorname {sh} \left|\mathbf{u} \right| \hat{\mathbf{u}}
 
\operatorname {tg}\, q 
= \frac{\sin q}{\cos q}

6.3. Регулярные функции

Существуют разные способы определения регулярных функций кватернионного переменного. Самый явный — рассмотрение кватернионно дифференцируемых функций, при этом можно рассматривать праводифференцируемые и леводифференцируемые функции, не совпадающие в силу некоммутативности умножения кватернионов. Очевидно, что их теория полностью аналогична. Определим кватернионно леводифференцируемую функцию f как имеющую предел

\frac{df}{dq} = \lim_{h \to 0} \left[ h^{-1}\left(f\left(q+h\right) - f\left(q\right)\right) \right]

Оказывается, что все такие функции имеют в некоторой окрестности точки q вид

f = a + qb

где a,b — постоянные кватернионы. Другой способ основан на использовании операторов

\frac{\partial}{\partial \bar q} = \frac{\partial}{\partial t} + \vec i \frac{\partial}{\partial x} + \vec j \frac{\partial}{\partial y} + \vec k \frac{\partial}{\partial z} \frac{\partial}{\partial q} = \frac{\partial}{\partial t} - \vec i \frac{\partial}{\partial x} - \vec j \frac{\partial}{\partial y} - \vec k \frac{\partial}{\partial z}

и рассмотрении таких кватернионных функций f, для которых[4]

\frac{\partial f}{\partial \bar q} = 0

что полностью аналогично использованию операторов \frac{\partial}{\partial \bar z} и \frac{\partial}{\partial z} в комплексном случае. При этом получаются аналоги интегральной теоремы Коши, теории вычетов, гармонических функций и рядов Лорана для кватернионных функций[5].

6.4. Производная Гато

Производная Гато функции кватернионного переменного определена согласно формуле

\partial f(x)(a)=\lim_{t\to 0}(t^{-1}(f(x+ta)-f(x)))

Производная Гато является аддитивным отображением приращения аргумента и может быть представлена в виде[6]

\partial f(x)(dx)=
\frac{{}_{(s)0}\partial f(x)}{\partial x}
dx
\frac{{}_{(s)1}\partial f(x)}{\partial x}

Здесь предполагается суммирование по индексу s. Число слагаемых зависит от выбора функции f. Выражения \frac{{}_{(s)0}\partial f(x)}{\partial x} и \frac{{}_{(s)1}\partial f(x)}{\partial x} называются компонентами производной.

7. Виды умножений

7.1. Умножение Грассмана

Так по-другому называется общепринятое умножение кватернионов (pq).

7.2. Евклидово умножение

Отличается от общепринятого тем, что вместо первого сомножителя берется сопряжённый к нему: \bar p q. Оно также некоммутативно.

7.3. Скалярное произведение

Аналогично одноимённой операции для векторов:

 
p \cdot q = \frac{\bar p q + \bar q p}{2}
.

Эту операцию можно использовать для выделения одного из коэффициентов, например, 
\left(a + bi + cj + dk\right) \cdot i = b
.

Определение модуля кватерниона можно видоизменить:

 \left|p \right| = \sqrt{p \cdot p} .

7.4. Внешнее произведение

	
\operatorname {Outer}\left(p, q\right) = \frac {\bar p q - \bar q p} {2}
.

Используется не очень часто, тем не менее рассматривается в дополнение к скалярному произведению.

7.5. Векторное произведение

Аналогично одноимённой операции для векторов. Результатом является тоже вектор:

 
p \times q = \frac{pq - qp}{2}.

8. Из истории

Памятная табличка на мосту Брум Бридж в Дублине: «Здесь на прогулке, 16 октября 1843 года, во вспышке гения, сэр Уильям Роуэн Гамильтон открыл формулу перемножения кватернионов»[7]

Система кватернионов была впервые опубликована Гамильтоном в 1843 году. Историки науки также обнаружили наброски по этой теме в неопубликованных рукописях Гаусса, относящихся к 1819—1820 годам.[8]

Бурное и чрезвычайно плодотворное развитие комплексного анализа в XIX веке стимулировало у математиков интерес к следующей задаче: найти новый вид чисел, аналогичный по свойствам комплексным, но содержащий не одну, а две мнимые единицы. Предполагалось, что такая модель будет полезна при решении пространственных задач математической физики. Однако работа в этом направлении оказалась безуспешной.

Новый вид чисел был обнаружен ирландским математиком Уильямом Гамильтоном в 1843 году, и он содержал не две, как ожидалось, а три мнимые единицы. Гамильтон назвал эти числа кватернионами. Позднее Фробениус строго доказал (1877) теорему, согласно которой расширить комплексное поле до поля или тела с двумя мнимыми единицами невозможно.

Несмотря на необычные свойства новых чисел (их некоммутативность), эта модель довольно быстро принесла практическую пользу. Максвелл использовал компактную кватернионную запись для формулировки своих уравнений электромагнитного поля.[9] Позднее на основе алгебры кватернионов был создан трёхмерный векторный анализ (Гиббс, Хевисайд).

9. Новые результаты и направления исследований

9.1. Кватернионы и метрика Минковского

Как алгебра над \scriptstyle\Bbb R, кватернионы образуют вещественное векторное пространство \scriptstyle\Bbb H, снабжённое тензором третьего ранга S типа (1,2), иногда называемого структурным тензором. Как всякий тензор такого типа, S отображает каждую 1-форму t на \scriptstyle\Bbb H и пару векторов \left(a, b\right) из \scriptstyle\Bbb H в вещественное число S\left(t, a, b\right). Для любой фиксированной 1-формы t S превращается в ковариантный тензор второго ранга, который, в случае его симметрии, становится скалярным произведением на \scriptstyle\Bbb H. Поскольку каждое вещественное векторное пространство является также вещественным линейным многообразием, такое скалярное произведение порождает тензорное поле, которое, при условии его невырожденности, становится (псевдо- или собственно-)евклидовой метрикой на \scriptstyle\Bbb H. В случае кватернионов это скалярное произведение индефинитно, его сигнатура не зависит от 1-формы t, а соответствующая псевдоевклидова метрика есть метрика Минковского [10]. Эта метрика автоматически продолжается на группу Ли ненулевых кватернионов вдоль её левоинвариантных векторных полей, образуя так называемую закрытую ФЛРУ (Фридман — Леметр — Робертсон — Уолкер) метрику[11] — важное решение уравнений Эйнштейна. Эти результаты проясняют некоторые аспекты проблемы совместимости квантовой механики и общей теории относительности в рамках теории квантовой гравитации[12].

Примечания

  1. Кватернионы в программировании игр - wat.gamedev.ru/articles/quaternions (GameDev.ru)
  2. Теорема Фробениуса
  3. John C. Baez. On Quaternions and Octonions: Their Geometry, Arithmetic, and Symmetry, by John H. Conway and Derek A. Smith - math.ucr.edu/home/baez/octonions/conway_smith/  (англ.). — Review.
  4. R. Fueter Über die analytische Darstellung der regulären Funktionen einer Quaternionenvariablen, — Comment. math. Helv. 8, pp.371—378, 1936.
  5. A. Sudbery Quaternionic Analysis, — Department of Mathematics, University of York, 1977.
  6. Выражение \frac{{}_{(s)p}\partial f(x)}{\partial x} не является дробью и должно восприниматься как символ оператора. Данное обозначение предложено для того, чтобы сохранить преемственность с классическим анализом.
  7. В письме своему сыну Арчибальду от 5 августа 1865 года Гамильтон пишет: «…Но, конечно, надпись уже стёрлась» (Л. С. Полак Вариационные принципы механики, их развитие и применение в физике.— М.: Физматгиз, 1960.— С.103-104)
  8. Бурбаки Н.. Архитектура математики. Очерки по истории математики. — М.: Иностранная литература, 1963. — С. 68.
  9. А. Н. Крылов Отзыв о работах академика П. П. Лазарева. - vivovoco.rsl.ru/VV/PAPERS/BIO/KRYLOV/KRYLOV_23.HTM
  10. Vladimir Trifonov A Linear Solution of the Four-Dimensionality Problem // Euruphysics Letters, — IOP Publishing, V. 32, № 8 / 12.1995. — С. 621—626 — DOI: 10.1209/0295-5075/32/8/001.
  11. Vladimir Trifonov Natural Geometry of Nonzero Quaternions // International Journal of Theoretical Physics, — Springer Netherlands, V. 46, № 2 / 02.2007. — С. 251—257 — ISSN 0020-7748 (Print) ISSN 1572-9575 (Online).
  12. Vladimir Trifonov GR-Friendly Description of Quantum Systems // International Journal of Theoretical Physics, — Springer Netherlands, V. 47, № 2 / 02.2008. — С. 492—510 — ISSN 0020-7748 (Print) ISSN 1572-9575 (Online).

Литература

  • И. Л. Кантор, А. С. Солодовников Гиперкомплексные числа - www.ftl.kherson.ua/index.php?option=com_remository&Itemid=5&func=showdown&id=8026. — М.: Наука, 1973. — 144 с.
  • Мищенко А., Соловьев Ю. Кватернионы - kvant.mccme.ru/1983/09/kvaterniony.htm, — Квант, N9, 1983.
  • Martin John Baker EuclideanSpace.com - www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/index.htm — применение кватернионов в 3D графике.

wreferat.baza-referat.ru

Реферат: Кватернионы

Как сделать из точек числа?

Если речь идет о точках на прямой – это просто. Выбрав начало отсчета и масштаб с направлением, можно получить из прямой числовую ось и тем самым превратить каждую точку вдействительноечисло – ее координату.

С точками на плоскости сложнее. Выбираем две оси и начало отсчета. Для каждой точки плоскости сопоставляем ее координаты (x;y). Эта пара будет называтьсядуплетом. Чтобы сделать дуплет числом, нужно научиться “складывать” и “умножать” их в соответствии со свойствами сложения и умножения.

Дуплеты складываются как векторы – покоординатно:

(x; y) + (x’; y’) = (x + x’; y + y’). (1)

Для умножения существует иная формула:

(x; y) (x’; y’) = (xx’ - yy’; xy’ + x’y).(2)

Умножение и сложение (1), (2) дуплетов подчиняются привычным свойствам сложения и умножения. Следовательно, множество дуплетов с операциями (1), (2) можно считать полноценным числовым множеством.

На самом деле дуплеты – этокомплексныечисла. Их записывают так:x + yi, гдеi–мнимая единица (дуплет (0; 1)). Ее квадрат равен . Это позволяет извлекать квадратные корни из отрицательных чисел.

Но встает проблема превращения точекпространствав числа. Здесь снова введем систему координат и запишем точки в виде набора уже трех координат(x; y; z). Эти так называемыетриплетытоже складываются покоординатно:

(x; y; z) + (x’; y’; z’) = (x + x’; y + y’; z + z’).(3)

Триплеты можно будет считать числами, если научиться их умножать, обладая, вместе со свойствами сложения, обычными способами умножения этих операций.

В 1833 г. умножением триплетов занимался ирландский математик У. Р. Гамильтон (1805 – 1865). О нем мы расскажем особо.

Уильям Роуан Гамильтон

Гамильтон был человеком многосторонне развитым. В четырнадцать лет владел девятью языками, в 1824 г. опубликовал в трудах Королевской Ирландской Академии работу, посвященную геометрической оптике, в 1828 г. получил звание королевского астронома Ирландии.

К 1833 г. Гамильтон занимал пост директора обсерватории в Денсинке и был известен работами по оптике и аналитической механики. Он предсказал эффект двойной конической рефракции в двуосных кристаллах.

В течение долгих десяти лет Гамильтон безуспешно пытался придумать правило умножения триплетов.

Векторное произведение

Задача поначалу казалась несложной. Складывать векторы следовало по формуле (3). Оставалось найти формулу умножения, подобную формуле (2). Но Гамильтон безуспешно пытался подбирать формулы для умножения триплетов.

В то время было известно правило векторного произведения:

векторнымпроизведением ненулевых векторов называется вектор, перпендикулярный плоскости, проходящей через векторы имеющий направление, определяемое правилом “правой руки”, и длину êê êê. Если для данных векторов заданы координаты в прямоугольной системе координат:

то (4)

Но операция векторного произведения не годилась Гамильтону, поскольку она не имеет обратной. Например, если то угол () между векторами равен нулю. Значит, длина векторного произведения равна нулю, т.е. и сам вектор нулевой.

Но несмотря на неудачи, Гамильтон пытался решить поставленную перед собой задачу. Но эта задача не могла быть решена (объяснение следует ниже). Но труд не пропал даром. В 1843 г. Гамильтон вдруг решил, что для определения умножения нужно рассматривать не триплеты (тройки чисел), а четверки, или кватернионы. Вот история их создания.

Случай на Брогемском мосту

В одном из писем к своему сыну Гамильтон писал: “Это был 16-й день октября, который случился в понедельник, в день заседания Совета Королевской Ирландской Академии, где я должен был председательствовать. Я направлялся туда с твоей матерью вдоль Королевского канала; и, хотя она говорила мне какие-то отдельные фразы, я их почти не воспринимал, так как в моем сознании подспудно что-то творилось. Неожиданно как будто бы замкнулся электрический контур; блеснула искра, предвещающая многие длительные годы определенно направленной мысли и труда, моего – если доведется, или труда других, если мне будет даровано достаточно сознательной жизни, чтобы сообщить о своем открытии. Я оказался не в состоянии удержаться от желания высечь ножом на мягком камне Брогемского моста фундаментальную формулу о символахi, j, k,

,

содержащую решение проблемы, но, конечно, эта запись с тех пор стерлась. Однако более прочное упоминание осталось в Книге записей Совета Академии за этот день, где засвидетельствовано, что я попросил и получил разрешение на доклад о кватернионах на первом заседании сессии, который и был прочитан соответственно в Понедельник 13-го следующего месяца – ноября”.

Определение кватернионов

Кватернионы– это четверки действительных чисел(x; y; u; v), которые удобно записывать в видеq = x + yi + uj + vk, гдеi, j, k– новые числа, являющиеся аналогом мнимой единицы в комплексных числах. Требуется, чтобы числаi, j, kудовлетворяли следующим соотношениям:

(5)

(6)

которые удобно записать в виде “таблицы умножения”.

x i j k

i -1 k j

j -k -1 i

k -j -i -1

По определению операции сложения и умножения кватернионов производятся по обычным правилам раскрытия скобок и приведения подобных членов с учетом правил (5) – (6).

Согласно этому определению, если и – два кватерниона, то

(7)

Это, разумеется, привычное нам “покоординатное” сложение. Далее, произведение кватернионов и вычисляется так:

Длинная, но совершенно автоматическая проверка показывает, что умножение кватернионов обладает сочетательным свойством:

Естественно считать, что действительные и комплексные числа являются частным случаем кватернионов. Так, действительное числоx– это кватернион вида

Комплексное числоz = x + yiпредставляется как кватернион

У операции сложения кватернионов, очевидно, имеется обратная операция –вычитание. Именно, разность двух кватернионов и определяется формулой:

Если , то разность кватернионов – это нулевой кватернион.

Деление кватернионов

Перейдем теперь к операции деления кватернионов, обратной к операции умножения. Вообще, что мы понимаем под частным от деления числаaна числоb, не равное нулю? Это такое числоc,что

bc = a.(10)

Так определяется частное от деления для действительных и комплексных чисел. К сожалению, для кватерниона применить непосредственно это определение мы не можем. Для того чтобы формула (10) “корректно” определяла частное, нужно, чтобы произведение не зависело от порядка сомножителей. В противном случае наряду с частным определенным формулой (10), существует вполне равноправное “левое” частное” с’, определяемое формулой

c’b = a,

которое может отличаться от “правого частного”cиз (10). Вот здесь, кроме необходимости выйти за пределы трехмерного пространства, Гамильтону пришлось принести еще одну жертву.

Оказывается, определенные им новые числа – кватернионы – потеряли еще одно привычное качество: произведение кватернионов зависит от порядка сомножителей. Действительно, уже в формулах (6) при изменении порядка сомножителей произведение меняет знак.

Таким образом, можно говорить лишь о “делении справа” и “делении слева”. Как реально найти, скажем, “левое частное” от деления кватерниона на кватернион ?

Обозначим искомое частное черезq = x + yi + uj + vk. Тогда, используя правило умножения для кватернионов и определение левого частного, получим следующее равенство кватернионов:

,

или

Полученное равенство равносильно системе четырех линейных уравнений с переменнымиx, y, u, v:

Аналогичным образом находится “правое частное” от деления на .

Рассмотрим частный случай, когда делимое равно единице. В этом случае частное от деления =1 на кватернион (и “слева” и “справа”) равно одному и тому же кватерниону

Поэтому кватернионpобозначается через . Тогда “правое частное” от деления кватерниона на выражается формулой

,

а “левое частное” от деления кватерниона на – формулой

Практически частное от деления двух кватернионов ищется другим путем. Для этого нам потребуются

Скалярные и векторные кватернионы

Так же как комплексные числа разлагаются в сумму своей действительной и мнимой частей, кватернион тоже можно разложить в суммуq = x + (yi + uj + vk).Первое слагаемое в этом разложении называетсяскалярнойчастьюкватерниона, а второе –векторнойчастью.Скалярная частьх– это просто действительное число, а векторная часть может быть изображена векторомr = yi + uj + vkв трехмерном пространстве, гдеi, j, kмы теперь рассматриваем как единичные вектора прямоугольной системы координат.

Таким образом, каждый кватернионqпредставляется в виде суммыq = x + r, гдеx– скалярная часть кватернионаq, аr– векторная часть. Еслиr = 0, тоq = xи кватернионqназываетсяскалярным кватернионом.Если жеx = 0, тоq = rиqназываетсявекторнымкватернионом.

При сложении кватернионов независимо складываются их скалярные и векторные части.

При умножении дело обстоит сложнее. Если и – скалярные кватернионы, то их произведение тоже скалярный кватернион. В случае, когда =х– скалярный кватернион, а =r– векторный кватернион, произведение является векторным кватернионом, и операция умножения совпадает с умножением вектораrв пространстве на действительное числоx.

И, наконец, если оба кватерниона векторные, то

Как видно из последней формулы, скалярная часть произведения равна скалярному произведению векторов и с обратным знаком. Векторная же часть – это наш старый знакомый – векторное произведение , записанное в координатах.

Объединяя все рассмотренные случаи, получим общую формулу для умножения кватернионов. Если и , то

А как же триплеты?

Почему же Гамильтону не удалось найти способа умножения триплетов? Раньше уже было отмечено, что эту задачу решить нельзя. Доказано, что попростуне существуетспособа умножения точек пространства, удовлетворяющего нашим требованиям (ассоциативности, дистрибутивности относительно покоординатного сложения, возможности деления на ненулевые элементы). Сейчас, к тому же, известны все случаи, когда можно вести такое умножение. Это доказал немецкий математик Ф. Г. Фробениус (1849 – 1917). По его словам, этих случаев три: в размерности один (действительные числа), в размерности два (комплексные числа) и в “размерности четыре” (кватернионы).

Что было дальше

Гамильтон и его последователи возлагали большие надежды на кватернионы. От кватернионов ожидали таких же результатов, как от комплексных чисел, и даже больше. И действительно, с помощью исчисления кватернионов были обнаружены совершенные в их математической красоте формулы, описывающие ряд важных физических явлений. Но дальнейшие надежды на развитие алгебраического и функционального исчисления кватернионов не оправдались.

Для кватернионов не имеет места основная теорема алгебры о существовании корней у многочлена с кватернионными коэффициентами, а, с другой стороны, существует такой многочлен с кватернионными коэффициентами от одной переменной, для которого любой кватернион является корнем.

Оптимизм сменился скепсисом. В начале нашего века математики перестали интересоваться кватернионами. Но время шло, и физики упорно искали математический формализм для некоторых эффектов, связанных с так называемымспиномэлементарных частиц. Кватернионы снова получили признание, когда была понята их роль в построении различных геометрических преобразований пространства, используемых в квантовой физике. Геометрические свойства кватернионов – это особая большая тема.

Для этого будет посвящен другой реферат.

Использованная литература:

Квант. Изд. “Наука”. Главная редакция физико-математической литературы, Москва, 1983(9).

superbotanik.net

Реферат Кватернионы

Как сделать из точек числа?

Если речь идет о точках на прямой – это просто. Выбрав начало отсчета и масштаб с направлением, можно получить из прямой числовую ось и тем самым превратить каждую точку в действительное число – ее координату.

С точками на плоскости сложнее. Выбираем две оси и начало отсчета. Для каждой точки плоскости сопоставляем ее координаты (x; y). Эта пара будет называться дуплетом. Чтобы сделать дуплет числом, нужно научиться “складывать” и “умножать” их в соответствии со свойствами сложения и умножения.

Дуплеты складываются как векторы – покоординатно:

(x; y) + (x’; y’) = (x + x’; y + y’). (1)

Для умножения существует иная формула:

(x; y) (x’; y’) = (xx’ - yy’; xy’ + x’y). (2)

Умножение и сложение (1), (2) дуплетов подчиняются привычным свойствам сложения и умножения. Следовательно, множество дуплетов с операциями (1), (2) можно считать полноценным числовым множеством.

На самом деле дуплеты – это комплексные числа. Их записывают так: x + yi, где i –мнимая единица (дуплет (0; 1)). Ее квадрат равен . Это позволяет извлекать квадратные корни из отрицательных чисел.

Но встает проблема превращения точек пространства в числа. Здесь снова введем систему координат и запишем точки в виде набора уже трех координат (x; y; z). Эти так называемые триплеты тоже складываются покоординатно:

(x; y; z) + (x’; y’; z’) = (x + x’; y + y’; z + z’). (3)

Триплеты можно будет считать числами, если научиться их умножать, обладая, вместе со свойствами сложения, обычными способами умножения этих операций.

В 1833 г. умножением триплетов занимался ирландский математик У. Р. Гамильтон (1805 – 1865). О нем мы расскажем особо.

Уильям Роуан Гамильтон

Гамильтон был человеком многосторонне развитым. В четырнадцать лет владел девятью языками, в 1824 г. опубликовал в трудах Королевской Ирландской Академии работу, посвященную геометрической оптике, в 1828 г. получил звание королевского астронома Ирландии.

К 1833 г. Гамильтон занимал пост директора обсерватории в Денсинке и был известен работами по оптике и аналитической механики. Он предсказал эффект двойной конической рефракции в двуосных кристаллах.

В течение долгих десяти лет Гамильтон безуспешно пытался придумать правило умножения триплетов.

Векторное произведение

Задача поначалу казалась несложной. Складывать векторы следовало по формуле (3). Оставалось найти формулу умножения, подобную формуле (2). Но Гамильтон безуспешно пытался подбирать формулы для умножения триплетов.

В то время было известно правило векторного произведения:

векторным произведением ненулевых векторов называется вектор, перпендикулярный плоскости, проходящей через векторы имеющий направление, определяемое правилом “правой руки”, и длину   . Если для данных векторов заданы координаты в прямоугольной системе координат:

то (4)

Но операция векторного произведения не годилась Гамильтону, поскольку она не имеет обратной. Например, если то угол ( ) между векторами равен нулю. Значит, длина векторного произведения равна нулю, т.е. и сам вектор нулевой.

Но несмотря на неудачи, Гамильтон пытался решить поставленную перед собой задачу. Но эта задача не могла быть решена (объяснение следует ниже). Но труд не пропал даром. В 1843 г. Гамильтон вдруг решил, что для определения умножения нужно рассматривать не триплеты (тройки чисел), а четверки, или кватернионы. Вот история их создания.

Случай на Брогемском мосту

В одном из писем к своему сыну Гамильтон писал: “Это был 16-й день октября, который случился в понедельник, в день заседания Совета Королевской Ирландской Академии, где я должен был председательствовать. Я направлялся туда с твоей матерью вдоль Королевского канала; и, хотя она говорила мне какие-то отдельные фразы, я их почти не воспринимал, так как в моем сознании подспудно что-то творилось. Неожиданно как будто бы замкнулся электрический контур; блеснула искра, предвещающая многие длительные годы определенно направленной мысли и труда, моего – если доведется, или труда других, если мне будет даровано достаточно сознательной жизни, чтобы сообщить о своем открытии. Я оказался не в состоянии удержаться от желания высечь ножом на мягком камне Брогемского моста фундаментальную формулу о символах i, j, k,

,

содержащую решение проблемы, но, конечно, эта запись с тех пор стерлась. Однако более прочное упоминание осталось в Книге записей Совета Академии за этот день, где засвидетельствовано, что я попросил и получил разрешение на доклад о кватернионах на первом заседании сессии, который и был прочитан соответственно в Понедельник 13-го следующего месяца – ноября”.

Определение кватернионов

Кватернионы – это четверки действительных чисел (x; y; u; v), которые удобно записывать в виде q = x + yi + uj + vk, где i, j, k – новые числа, являющиеся аналогом мнимой единицы в комплексных числах. Требуется, чтобы числа i, j, k удовлетворяли следующим соотношениям:

(5)

(6)

которые удобно записать в виде “таблицы умножения”.

x i j k

i -1 k j

j -k -1 i

k -j -i -1

По определению операции сложения и умножения кватернионов производятся по обычным правилам раскрытия скобок и приведения подобных членов с учетом правил (5) – (6).

Согласно этому определению, если и – два кватерниона, то

(7)

Это, разумеется, привычное нам “покоординатное” сложение. Далее, произведение кватернионов и вычисляется так:

Длинная, но совершенно автоматическая проверка показывает, что умножение кватернионов обладает сочетательным свойством:

Естественно считать, что действительные и комплексные числа являются частным случаем кватернионов. Так, действительное число x – это кватернион вида

Комплексное число z = x + yi представляется как кватернион

У операции сложения кватернионов, очевидно, имеется обратная операция –вычитание. Именно, разность двух кватернионов и определяется формулой:

Если , то разность кватернионов – это нулевой кватернион.

Деление кватернионов

Перейдем теперь к операции деления кватернионов, обратной к операции умножения. Вообще, что мы понимаем под частным от деления числа a на число b, не равное нулю? Это такое число c, что

bc = a. (10)

Так определяется частное от деления для действительных и комплексных чисел. К сожалению, для кватерниона применить непосредственно это определение мы не можем. Для того чтобы формула (10) “корректно” определяла частное, нужно, чтобы произведение не зависело от порядка сомножителей. В противном случае наряду с частным определенным формулой (10), существует вполне равноправное “левое” частное” с’, определяемое формулой

c’b = a,

которое может отличаться от “правого частного” c из (10). Вот здесь, кроме необходимости выйти за пределы трехмерного пространства, Гамильтону пришлось принести еще одну жертву.

Оказывается, определенные им новые числа – кватернионы – потеряли еще одно привычное качество: произведение кватернионов зависит от порядка сомножителей. Действительно, уже в формулах (6) при изменении порядка сомножителей произведение меняет знак.

Таким образом, можно говорить лишь о “делении справа” и “делении слева”. Как реально найти, скажем, “левое частное” от деления кватерниона на кватернион ?

Обозначим искомое частное через q = x + yi + uj + vk. Тогда, используя правило умножения для кватернионов и определение левого частного, получим следующее равенство кватернионов:

,

или

Полученное равенство равносильно системе четырех линейных уравнений с переменными x, y, u, v:

Аналогичным образом находится “правое частное” от деления на .

Рассмотрим частный случай, когда делимое равно единице. В этом случае частное от деления =1 на кватернион (и “слева” и “справа”) равно одному и тому же кватерниону

Поэтому кватернион p обозначается через . Тогда “правое частное” от деления кватерниона на выражается формулой

,

а “левое частное” от деления кватерниона на – формулой

Практически частное от деления двух кватернионов ищется другим путем. Для этого нам потребуются

Скалярные и векторные кватернионы

Так же как комплексные числа разлагаются в сумму своей действительной и мнимой частей, кватернион тоже можно разложить в сумму q = x + (yi + uj + vk). Первое слагаемое в этом разложении называется скалярной частью кватерниона, а второе – векторной частью. Скалярная часть х –это просто действительное число, а векторная часть может быть изображена вектором r = yi + uj + vk в трехмерном пространстве, где i, j, k мы теперь рассматриваем как единичные вектора прямоугольной системы координат.

Таким образом, каждый кватернион q представляется в виде суммы q = x + r, где x – скалярная часть кватерниона q, а r – векторная часть. Если r = 0, то q = x и кватернион q называется скалярным кватернионом. Если же x = 0, то q = r и q называется векторным кватернионом.

При сложении кватернионов независимо складываются их скалярные и векторные части.

При умножении дело обстоит сложнее. Если и – скалярные кватернионы, то их произведение тоже скалярный кватернион. В случае, когда = х – скалярный кватернион, а = r – векторный кватернион, произведение является векторным кватернионом, и операция умножения совпадает с умножением вектора r в пространстве на действительное число x.

И, наконец, если оба кватерниона векторные, то

Как видно из последней формулы, скалярная часть произведения равна скалярному произведению векторов и с обратным знаком. Векторная же часть – это наш старый знакомый – векторное произведение , записанное в координатах.

Объединяя все рассмотренные случаи, получим общую формулу для умножения кватернионов. Если и , то

А как же триплеты?

Почему же Гамильтону не удалось найти способа умножения триплетов? Раньше уже было отмечено, что эту задачу решить нельзя. Доказано, что попросту не существует способа умножения точек пространства, удовлетворяющего нашим требованиям (ассоциативности, дистрибутивности относительно покоординатного сложения, возможности деления на ненулевые элементы). Сейчас, к тому же, известны все случаи, когда можно вести такое умножение. Это доказал немецкий математик Ф. Г. Фробениус (1849 – 1917). По его словам, этих случаев три: в размерности один (действительные числа), в размерности два (комплексные числа) и в “размерности четыре” (кватернионы).

Что было дальше

Гамильтон и его последователи возлагали большие надежды на кватернионы. От кватернионов ожидали таких же результатов, как от комплексных чисел, и даже больше. И действительно, с помощью исчисления кватернионов были обнаружены совершенные в их математической красоте формулы, описывающие ряд важных физических явлений. Но дальнейшие надежды на развитие алгебраического и функционального исчисления кватернионов не оправдались.

Для кватернионов не имеет места основная теорема алгебры о существовании корней у многочлена с кватернионными коэффициентами, а, с другой стороны, существует такой многочлен с кватернионными коэффициентами от одной переменной, для которого любой кватернион является корнем.

Оптимизм сменился скепсисом. В начале нашего века математики перестали интересоваться кватернионами. Но время шло, и физики упорно искали математический формализм для некоторых эффектов, связанных с так называемым спином элементарных частиц. Кватернионы снова получили признание, когда была понята их роль в построении различных геометрических преобразований пространства, используемых в квантовой физике. Геометрические свойства кватернионов – это особая большая тема.

Для этого будет посвящен другой реферат.

Использованная литература:

Квант. Изд. “Наука”. Главная редакция физико-математической литературы, Москва, 1983(9).

nreferat.ru

Реферат: Кватернионы

 

 

 

 

 

 

 

Как сделать из точек числа?

 

     Если речь идет о точках на прямой – это просто. Выбрав начало отсчета и масштаб с направлением, можно получить из прямой числовую ось и тем самым превратить каждую точку в действительное число – ее координату.

     С точками на плоскости сложнее. Выбираем две оси и начало отсчета. Для каждой точки плоскости сопоставляем ее координаты (x;  y). Эта пара будет называться дуплетом. Чтобы сделать дуплет числом, нужно научиться “складывать” и “умножать” их в соответствии со свойствами сложения и умножения.

     Дуплеты складываются как векторы – покоординатно:

 

(x; y) + (x’; y’) = (x + x’; y + y’). (1)

 

Для умножения существует иная формула:

 

(x; y)  (x’; y’) = (xx’ -  yy’; xy’ + x’y). (2)

 

Умножение и сложение (1), (2) дуплетов подчиняются привычным свойствам сложения и умножения. Следовательно, множество дуплетов с операциями (1), (2) можно считать полноценным числовым множеством.

     На самом деле дуплеты – это комплексные числа. Их записывают так: x + yi, где i –мнимая единица (дуплет (0; 1)). Ее квадрат равен . Это позволяет извлекать квадратные корни из отрицательных чисел.

     Но встает проблема превращения точек пространства в числа. Здесь снова введем систему координат и запишем точки в виде набора уже трех координат (x; y; z). Эти так называемые триплеты тоже складываются покоординатно:

 

(x; y; z) + (x’; y’; z’) = (x + x’; y + y’; z + z’). (3)

 

Триплеты можно будет считать числами, если научиться их умножать, обладая, вместе со свойствами сложения, обычными способами умножения этих операций.

     В 1833 г. умножением триплетов занимался ирландский математик У. Р.  Гамильтон (1805 – 1865). О нем мы расскажем особо.

 

 

     Гамильтон был человеком многосторонне развитым. В четырнадцать лет владел девятью языками, в 1824 г. опубликовал в трудах Королевской Ирландской Академии работу, посвященную геометрической оптике, в 1828 г. получил звание королевского астронома Ирландии.

     К 1833 г. Гамильтон занимал пост директора обсерватории в Денсинке и был известен работами по оптике и аналитической механики. Он предсказал эффект двойной конической рефракции в двуосных кристаллах.

     В течение долгих десяти лет Гамильтон безуспешно пытался придумать правило умножения триплетов.

 

 

 

 

 

     Задача поначалу казалась несложной. Складывать векторы следовало по формуле (3). Оставалось найти формулу умножения, подобную формуле (2). Но Гамильтон безуспешно пытался подбирать формулы для умножения триплетов.

     В то время было известно правило векторного произведения:

векторным произведением  ненулевых векторов  называется вектор, перпендикулярный плоскости, проходящей через векторы  имеющий направление, определяемое правилом “правой руки”,  и длину êê êê. Если для данных векторов заданы координаты в прямоугольной системе координат:

 

 

 

 

то  (4)

 

Но операция векторного произведения не годилась Гамильтону, поскольку она не имеет обратной. Например, если  то угол () между векторами равен нулю. Значит, длина векторного произведения  равна нулю, т.е. и сам вектор  нулевой.

     Но несмотря на неудачи, Гамильтон пытался решить поставленную перед собой задачу. Но эта задача не могла быть решена (объяснение следует ниже). Но труд не пропал даром. В 1843 г. Гамильтон вдруг решил, что для определения умножения нужно рассматривать не триплеты (тройки чисел), а четверки, или кватернионы. Вот история их создания.                            

 

 

    В одном из писем к своему сыну Гамильтон писал: “Это был 16-й день октября, который случился в понедельник, в день заседания Совета Королевской Ирландской Академии, где я должен был председательствовать. Я направлялся туда с твоей матерью вдоль Королевского канала; и, хотя она говорила мне какие-то отдельные фразы, я их почти не воспринимал, так как в моем сознании подспудно что-то творилось. Неожиданно как будто бы замкнулся электрический контур; блеснула искра, предвещающая многие длительные годы определенно направленной мысли и труда, моего – если доведется, или труда других, если мне будет даровано достаточно сознательной жизни, чтобы сообщить о своем открытии. Я оказался не в состоянии удержаться от желания высечь ножом на мягком камне Брогемского моста фундаментальную формулу о символах i, j, k,

 

,

 

содержащую решение проблемы, но, конечно, эта запись с тех пор стерлась. Однако более прочное упоминание осталось в Книге записей Совета Академии за этот день, где засвидетельствовано, что я попросил и получил разрешение на доклад о кватернионах на первом заседании сессии, который и был прочитан соответственно в Понедельник 13-го следующего месяца – ноября”.

 

Определение кватернионов

 

   Кватернионы – это четверки действительных чисел (x; y; u; v), которые удобно записывать в виде q = x + yi + uj + vk, где i, j, k – новые числа, являющиеся аналогом мнимой единицы в комплексных числах. Требуется, чтобы числа i, j, k удовлетворяли следующим соотношениям:

 

 (5)

  (6)

 

которые удобно записать в виде “таблицы умножения”.

 

                                   x      i      j       k

 

                                   i      -1      k      j

 

                                   j      -k     -1     i

 

                                   k      -j     -i    -1

   

     По определению операции сложения и умножения кватернионов производятся по обычным правилам раскрытия скобок и приведения подобных членов с учетом правил (5) –  (6).

     Согласно этому определению, если  и  – два кватерниона, то

 

 (7)

 

Это, разумеется, привычное нам “покоординатное” сложение. Далее, произведение кватернионов  и  вычисляется так:

     

 

Длинная, но совершенно автоматическая проверка показывает, что умножение кватернионов обладает сочетательным свойством:

 

 

 

Естественно считать, что действительные и комплексные числа являются частным случаем кватернионов. Так, действительное число x – это кватернион вида

 

 

 

Комплексное число z = x + yi  представляется как кватернион

 

 

       

     У операции сложения кватернионов, очевидно, имеется обратная операция –вычитание. Именно, разность двух кватернионов  и  определяется формулой:

 

 

 

Если , то разность кватернионов – это нулевой кватернион.

 

 

     Перейдем теперь к операции деления кватернионов, обратной к операции умножения. Вообще, что мы понимаем под частным от деления числа a на число b, не равное нулю? Это такое число c, что

 

bc = a. (10)

 

Так определяется частное от деления для действительных и комплексных чисел. К сожалению, для кватерниона применить непосредственно это определение мы не можем. Для того чтобы формула (10) “корректно” определяла частное, нужно, чтобы произведение не зависело от порядка сомножителей. В противном случае наряду с частным  определенным формулой (10), существует вполне равноправное “левое” частное” с’, определяемое формулой

 

c’b = a,

 

которое может отличаться от “правого частного” c из (10). Вот здесь, кроме необходимости выйти за пределы трехмерного пространства, Гамильтону пришлось принести еще одну жертву.

     Оказывается, определенные им новые числа – кватернионы – потеряли еще одно привычное качество: произведение кватернионов зависит от порядка сомножителей. Действительно, уже в формулах (6) при изменении порядка сомножителей произведение меняет знак.

     Таким образом, можно говорить лишь о “делении справа” и “делении слева”. Как реально найти, скажем, “левое частное” от деления кватерниона  на кватернион ?

    Обозначим искомое частное через q = x + yi + uj + vk. Тогда, используя правило умножения для кватернионов и определение левого частного, получим следующее равенство кватернионов:

 

,

 

или

 

 

    Полученное равенство равносильно системе четырех линейных уравнений с переменными x, y, u, v:

 

 

    Аналогичным образом находится “правое частное” от деления  на .

    Рассмотрим частный случай, когда делимое  равно единице. В этом случае частное от деления =1 на кватернион  (и “слева” и “справа”) равно одному и тому же кватерниону

 

 

 

Поэтому кватернион p обозначается через . Тогда “правое частное” от деления кватерниона  на  выражается формулой

 

,

 

а “левое частное” от деления кватерниона  на  – формулой

 

 

 

    Практически частное от деления двух кватернионов ищется другим путем. Для этого нам потребуются

 

 

    Так же как комплексные числа разлагаются в сумму своей действительной и мнимой частей, кватернион тоже можно разложить в сумму q = x + (yi + uj + vk). Первое слагаемое в этом разложении называется скалярной частью кватерниона, а второе – векторной частью. Скалярная часть х – это просто действительное число, а векторная часть может быть изображена вектором r = yi + uj + vk в трехмерном пространстве, где i, j, k мы теперь рассматриваем как единичные вектора прямоугольной системы координат.

    Таким образом, каждый кватернион q представляется в виде суммы q = x + r, где x – скалярная часть кватерниона q, а r – векторная часть. Если r = 0, то q = x и кватернион q называется скалярным кватернионом. Если же x = 0, то q = r и q называется векторным кватернионом.

    При сложении кватернионов независимо складываются их скалярные и векторные части.

    При умножении дело обстоит сложнее. Если  и  – скалярные кватернионы, то их произведение тоже скалярный кватернион. В случае, когда = х – скалярный кватернион, а  = r – векторный кватернион, произведение  является векторным кватернионом, и операция умножения совпадает с умножением вектора r в пространстве на действительное число x.

    И, наконец, если оба кватерниона векторные, то

 

 

 

Как видно из последней формулы, скалярная часть произведения  равна скалярному произведению  векторов  и  с обратным знаком. Векторная же часть  – это наш старый знакомый – векторное произведение , записанное в координатах.

    Объединяя все рассмотренные случаи, получим общую формулу для умножения кватернионов. Если    и , то

 

 

 

 

    Почему же Гамильтону не удалось найти способа умножения триплетов? Раньше уже было отмечено, что эту задачу решить нельзя. Доказано, что попросту не существует способа умножения точек пространства, удовлетворяющего нашим требованиям (ассоциативности, дистрибутивности относительно покоординатного сложения, возможности деления на ненулевые элементы). Сейчас, к тому же, известны все случаи, когда можно вести такое умножение. Это доказал немецкий математик Ф. Г. Фробениус (1849 – 1917). По его словам, этих случаев три: в размерности один (действительные числа), в размерности два (комплексные числа) и в “размерности четыре” (кватернионы).

 

 

    Гамильтон и его последователи возлагали большие надежды на кватернионы. От кватернионов ожидали таких же результатов, как от комплексных чисел, и даже больше. И действительно, с помощью исчисления кватернионов были обнаружены совершенные в их математической красоте формулы, описывающие ряд важных физических явлений. Но дальнейшие надежды на развитие алгебраического и функционального исчисления кватернионов не оправдались.

    Для кватернионов не имеет места основная теорема алгебры о существовании корней у многочлена с кватернионными коэффициентами, а, с другой стороны, существует такой многочлен с кватернионными коэффициентами от одной переменной, для которого любой кватернион является корнем. 

   Оптимизм сменился скепсисом. В начале нашего века математики перестали интересоваться кватернионами. Но время шло, и физики упорно искали математический формализм для некоторых эффектов, связанных с так называемым спином элементарных частиц. Кватернионы снова получили признание, когда была понята их роль в построении различных геометрических преобразований пространства, используемых в квантовой физике. Геометрические свойства кватернионов – это особая большая тема.

Для этого будет посвящен другой реферат.

 

 

 Использованная литература:

 Квант. Изд. “Наука”. Главная редакция физико-математической литературы, Москва, 1983(9).

www.referatmix.ru

Реферат Кватернионы

Как сделать из точек числа?     Если речь идет о точках на прямой – это просто. Выбрав начало отсчета и масштаб с направлением, можно получить из прямой числовую ось и тем самым превратить каждую точку в действительное число – ее координату.

     С точками на плоскости сложнее. Выбираем две оси и начало отсчета. Для каждой точки плоскости сопоставляем ее координаты (x;  y). Эта пара будет называться дуплетом. Чтобы сделать дуплет числом, нужно научиться “складывать” и “умножать” их в соответствии со свойствами сложения и умножения.

     Дуплеты складываются как векторы – покоординатно:(x; y) + (x’; y’) = (x + x’; y + y’). (1)Для умножения существует иная формула:(x; y)  (x’; y’) = (xx’ -  yy’; xy’ + x’y). (2)Умножение и сложение (1), (2) дуплетов подчиняются привычным свойствам сложения и умножения. Следовательно, множество дуплетов с операциями (1), (2) можно считать полноценным числовым множеством.

     На самом деле дуплеты – это комплексные числа. Их записывают так: x + yi, где i –мнимая единица (дуплет (0; 1)). Ее квадрат равен . Это позволяет извлекать квадратные корни из отрицательных чисел.

     Но встает проблема превращения точек пространства в числа. Здесь снова введем систему координат и запишем точки в виде набора уже трех координат (x; y; z). Эти так называемые триплеты тоже складываются покоординатно:(x; y; z) + (x’; y’; z’) = (x + x’; y + y’; z + z’). (3)Триплеты можно будет считать числами, если научиться их умножать, обладая, вместе со свойствами сложения, обычными способами умножения этих операций.

     В 1833 г. умножением триплетов занимался ирландский математик У. Р.  Гамильтон (1805 – 1865). О нем мы расскажем особо.

     Гамильтон был человеком многосторонне развитым. В четырнадцать лет владел девятью языками, в 1824 г. опубликовал в трудах Королевской Ирландской Академии работу, посвященную геометрической оптике, в 1828 г. получил звание королевского астронома Ирландии.

     К 1833 г. Гамильтон занимал пост директора обсерватории в Денсинке и был известен работами по оптике и аналитической механики. Он предсказал эффект двойной конической рефракции в двуосных кристаллах.

     В течение долгих десяти лет Гамильтон безуспешно пытался придумать правило умножения триплетов.

     Задача поначалу казалась несложной. Складывать векторы следовало по формуле (3). Оставалось найти формулу умножения, подобную формуле (2). Но Гамильтон безуспешно пытался подбирать формулы для умножения триплетов.

     В то время было известно правило векторного произведения:

векторным произведением  ненулевых векторов  называется вектор, перпендикулярный плоскости, проходящей через векторы  имеющий направление, определяемое правилом “правой руки”,  и длину êê êê. Если для данных векторов заданы координаты в прямоугольной системе координат:

то  (4)Но операция векторного произведения не годилась Гамильтону, поскольку она не имеет обратной. Например, если  то угол () между векторами равен нулю. Значит, длина векторного произведения  равна нулю, т.е. и сам вектор  нулевой.

     Но несмотря на неудачи, Гамильтон пытался решить поставленную перед собой задачу. Но эта задача не могла быть решена (объяснение следует ниже). Но труд не пропал даром. В 1843 г. Гамильтон вдруг решил, что для определения умножения нужно рассматривать не триплеты (тройки чисел), а четверки, или кватернионы. Вот история их создания.                             

    В одном из писем к своему сыну Гамильтон писал: “Это был 16-й день октября, который случился в понедельник, в день заседания Совета Королевской Ирландской Академии, где я должен был председательствовать. Я направлялся туда с твоей матерью вдоль Королевского канала; и, хотя она говорила мне какие-то отдельные фразы, я их почти не воспринимал, так как в моем сознании подспудно что-то творилось. Неожиданно как будто бы замкнулся электрический контур; блеснула искра, предвещающая многие длительные годы определенно направленной мысли и труда, моего – если доведется, или труда других, если мне будет даровано достаточно сознательной жизни, чтобы сообщить о своем открытии. Я оказался не в состоянии удержаться от желания высечь ножом на мягком камне Брогемского моста фундаментальную формулу о символах i, j, k,,содержащую решение проблемы, но, конечно, эта запись с тех пор стерлась. Однако более прочное упоминание осталось в Книге записей Совета Академии за этот день, где засвидетельствовано, что я попросил и получил разрешение на доклад о кватернионах на первом заседании сессии, который и был прочитан соответственно в Понедельник 13-го следующего месяца – ноября”.Определение кватернионов   Кватернионы – это четверки действительных чисел (x; y; u; v), которые удобно записывать в виде q = x + yi + uj + vk, где i, j, k – новые числа, являющиеся аналогом мнимой единицы в комплексных числах. Требуется, чтобы числа i, j, k удовлетворяли следующим соотношениям: (5)

  (6)которые удобно записать в виде “таблицы умножения”.                                   x      i      j       k                                   i      -1      k      j

 

                                   j      -k     -1     i

                                   k      -j     -i    -1

   

     По определению операции сложения и умножения кватернионов производятся по обычным правилам раскрытия скобок и приведения подобных членов с учетом правил (5) –  (6).

     Согласно этому определению, если  и  – два кватерниона, то (7)Это, разумеется, привычное нам “покоординатное” сложение. Далее, произведение кватернионов  и  вычисляется так:

      Длинная, но совершенно автоматическая проверка показывает, что умножение кватернионов обладает сочетательным свойством:Естественно считать, что действительные и комплексные числа являются частным случаем кватернионов. Так, действительное число x – это кватернион видаКомплексное число z = x + yi  представляется как кватернион

       

     У операции сложения кватернионов, очевидно, имеется обратная операция –вычитание. Именно, разность двух кватернионов  и  определяется формулой:Если , то разность кватернионов – это нулевой кватернион.

     Перейдем теперь к операции деления кватернионов, обратной к операции умножения. Вообще, что мы понимаем под частным от деления числа a на число b, не равное нулю? Это такое число c, что bc = a. (10)Так определяется частное от деления для действительных и комплексных чисел. К сожалению, для кватерниона применить непосредственно это определение мы не можем. Для того чтобы формула (10) “корректно” определяла частное, нужно, чтобы произведение не зависело от порядка сомножителей. В противном случае наряду с частным  определенным формулой (10), существует вполне равноправное “левое” частное” с’, определяемое формулойc’b = a,которое может отличаться от “правого частного” c из (10). Вот здесь, кроме необходимости выйти за пределы трехмерного пространства, Гамильтону пришлось принести еще одну жертву.

     Оказывается, определенные им новые числа – кватернионы – потеряли еще одно привычное качество: произведение кватернионов зависит от порядка сомножителей. Действительно, уже в формулах (6) при изменении порядка сомножителей произведение меняет знак.

     Таким образом, можно говорить лишь о “делении справа” и “делении слева”. Как реально найти, скажем, “левое частное” от деления кватерниона  на кватернион ?

    Обозначим искомое частное через q = x + yi + uj + vk. Тогда, используя правило умножения для кватернионов и определение левого частного, получим следующее равенство кватернионов:,или    Полученное равенство равносильно системе четырех линейных уравнений с переменными x, y, u, v:    Аналогичным образом находится “правое частное” от деления  на .

    Рассмотрим частный случай, когда делимое  равно единице. В этом случае частное от деления =1 на кватернион  (и “слева” и “справа”) равно одному и тому же кватернионуПоэтому кватернион p обозначается через . Тогда “правое частное” от деления кватерниона  на  выражается формулой,а “левое частное” от деления кватерниона  на  – формулой    Практически частное от деления двух кватернионов ищется другим путем. Для этого нам потребуются

    Так же как комплексные числа разлагаются в сумму своей действительной и мнимой частей, кватернион тоже можно разложить в сумму q = x + (yi + uj + vk). Первое слагаемое в этом разложении называется скалярной частью кватерниона, а второе – векторной частью. Скалярная часть х – это просто действительное число, а векторная часть может быть изображена вектором r = yi + uj + vk в трехмерном пространстве, где i, j, k мы теперь рассматриваем как единичные вектора прямоугольной системы координат.

    Таким образом, каждый кватернион q представляется в виде суммы q = x + r, где x – скалярная часть кватерниона q, а r – векторная часть. Если r = 0, то q = x и кватернион q называется скалярным кватернионом. Если же x = 0, то q = r и q называется векторным кватернионом.

    При сложении кватернионов независимо складываются их скалярные и векторные части.

    При умножении дело обстоит сложнее. Если  и  – скалярные кватернионы, то их произведение тоже скалярный кватернион. В случае, когда = х – скалярный кватернион, а  = r – векторный кватернион, произведение  является векторным кватернионом, и операция умножения совпадает с умножением вектора r в пространстве на действительное число x.

    И, наконец, если оба кватерниона векторные, то Как видно из последней формулы, скалярная часть произведения  равна скалярному произведению  векторов  и  с обратным знаком. Векторная же часть  – это наш старый знакомый – векторное произведение , записанное в координатах.

    Объединяя все рассмотренные случаи, получим общую формулу для умножения кватернионов. Если    и , то

    Почему же Гамильтону не удалось найти способа умножения триплетов? Раньше уже было отмечено, что эту задачу решить нельзя. Доказано, что попросту не существует способа умножения точек пространства, удовлетворяющего нашим требованиям (ассоциативности, дистрибутивности относительно покоординатного сложения, возможности деления на ненулевые элементы). Сейчас, к тому же, известны все случаи, когда можно вести такое умножение. Это доказал немецкий математик Ф. Г. Фробениус (1849 – 1917). По его словам, этих случаев три: в размерности один (действительные числа), в размерности два (комплексные числа) и в “размерности четыре” (кватернионы).

    Гамильтон и его последователи возлагали большие надежды на кватернионы. От кватернионов ожидали таких же результатов, как от комплексных чисел, и даже больше. И действительно, с помощью исчисления кватернионов были обнаружены совершенные в их математической красоте формулы, описывающие ряд важных физических явлений. Но дальнейшие надежды на развитие алгебраического и функционального исчисления кватернионов не оправдались.

    Для кватернионов не имеет места основная теорема алгебры о существовании корней у многочлена с кватернионными коэффициентами, а, с другой стороны, существует такой многочлен с кватернионными коэффициентами от одной переменной, для которого любой кватернион является корнем. 

   Оптимизм сменился скепсисом. В начале нашего века математики перестали интересоваться кватернионами. Но время шло, и физики упорно искали математический формализм для некоторых эффектов, связанных с так называемым спином элементарных частиц. Кватернионы снова получили признание, когда была понята их роль в построении различных геометрических преобразований пространства, используемых в квантовой физике. Геометрические свойства кватернионов – это особая большая тема.

Для этого будет посвящен другой реферат. Использованная литература:

 Квант. Изд. “Наука”. Главная редакция физико-математической литературы, Москва, 1983(9).

bukvasha.ru

Кватернионы

Как сделать из точек числа?     Если речь идет о точках на прямой – это просто. Выбрав начало отсчета и масштаб с направлением, можно получить из прямой числовую ось и тем самым превратить каждую точку в действительное число – ее координату.

     С точками на плоскости сложнее. Выбираем две оси и начало отсчета. Для каждой точки плоскости сопоставляем ее координаты (x;  y). Эта пара будет называться дуплетом. Чтобы сделать дуплет числом, нужно научиться “складывать” и “умножать” их в соответствии со свойствами сложения и умножения.

     Дуплеты складываются как векторы – покоординатно:(x; y) + (x’; y’) = (x + x’; y + y’). (1)Для умножения существует иная формула:(x; y)  (x’; y’) = (xx’ -  yy’; xy’ + x’y). (2)Умножение и сложение (1), (2) дуплетов подчиняются привычным свойствам сложения и умножения. Следовательно, множество дуплетов с операциями (1), (2) можно считать полноценным числовым множеством.

     На самом деле дуплеты – это комплексные числа. Их записывают так: x + yi, где i –мнимая единица (дуплет (0; 1)). Ее квадрат равен . Это позволяет извлекать квадратные корни из отрицательных чисел.

     Но встает проблема превращения точек пространства в числа. Здесь снова введем систему координат и запишем точки в виде набора уже трех координат (x; y; z). Эти так называемые триплеты тоже складываются покоординатно:(x; y; z) + (x’; y’; z’) = (x + x’; y + y’; z + z’). (3)Триплеты можно будет считать числами, если научиться их умножать, обладая, вместе со свойствами сложения, обычными способами умножения этих операций.

     В 1833 г. умножением триплетов занимался ирландский математик У. Р.  Гамильтон (1805 – 1865). О нем мы расскажем особо.

     Гамильтон был человеком многосторонне развитым. В четырнадцать лет владел девятью языками, в 1824 г. опубликовал в трудах Королевской Ирландской Академии работу, посвященную геометрической оптике, в 1828 г. получил звание королевского астронома Ирландии.

     К 1833 г. Гамильтон занимал пост директора обсерватории в Денсинке и был известен работами по оптике и аналитической механики. Он предсказал эффект двойной конической рефракции в двуосных кристаллах.

     В течение долгих десяти лет Гамильтон безуспешно пытался придумать правило умножения триплетов.

     Задача поначалу казалась несложной. Складывать векторы следовало по формуле (3). Оставалось найти формулу умножения, подобную формуле (2). Но Гамильтон безуспешно пытался подбирать формулы для умножения триплетов.

     В то время было известно правило векторного произведения:

векторным произведением  ненулевых векторов  называется вектор, перпендикулярный плоскости, проходящей через векторы  имеющий направление, определяемое правилом “правой руки”,  и длину êê êê. Если для данных векторов заданы координаты в прямоугольной системе координат:

то  (4)Но операция векторного произведения не годилась Гамильтону, поскольку она не имеет обратной. Например, если  то угол () между векторами равен нулю. Значит, длина векторного произведения  равна нулю, т.е. и сам вектор  нулевой.

     Но несмотря на неудачи, Гамильтон пытался решить поставленную перед собой задачу. Но эта задача не могла быть решена (объяснение следует ниже). Но труд не пропал даром. В 1843 г. Гамильтон вдруг решил, что для определения умножения нужно рассматривать не триплеты (тройки чисел), а четверки, или кватернионы. Вот история их создания.                             

    В одном из писем к своему сыну Гамильтон писал: “Это был 16-й день октября, который случился в понедельник, в день заседания Совета Королевской Ирландской Академии, где я должен был председательствовать. Я направлялся туда с твоей матерью вдоль Королевского канала; и, хотя она говорила мне какие-то отдельные фразы, я их почти не воспринимал, так как в моем сознании подспудно что-то творилось. Неожиданно как будто бы замкнулся электрический контур; блеснула искра, предвещающая многие длительные годы определенно направленной мысли и труда, моего – если доведется, или труда других, если мне будет даровано достаточно сознательной жизни, чтобы сообщить о своем открытии. Я оказался не в состоянии удержаться от желания высечь ножом на мягком камне Брогемского моста фундаментальную формулу о символах i, j, k,,содержащую решение проблемы, но, конечно, эта запись с тех пор стерлась. Однако более прочное упоминание осталось в Книге записей Совета Академии за этот день, где засвидетельствовано, что я попросил и получил разрешение на доклад о кватернионах на первом заседании сессии, который и был прочитан соответственно в Понедельник 13-го следующего месяца – ноября”.Определение кватернионов   Кватернионы – это четверки действительных чисел (x; y; u; v), которые удобно записывать в виде q = x + yi + uj + vk, где i, j, k – новые числа, являющиеся аналогом мнимой единицы в комплексных числах. Требуется, чтобы числа i, j, k удовлетворяли следующим соотношениям: (5)

  (6)которые удобно записать в виде “таблицы умножения”.                                   x      i      j       k                                   i      -1      k      j

 

                                   j      -k     -1     i

                                   k      -j     -i    -1

   

     По определению операции сложения и умножения кватернионов производятся по обычным правилам раскрытия скобок и приведения подобных членов с учетом правил (5) –  (6).

     Согласно этому определению, если  и  – два кватерниона, то (7)Это, разумеется, привычное нам “покоординатное” сложение. Далее, произведение кватернионов  и  вычисляется так:

      Длинная, но совершенно автоматическая проверка показывает, что умножение кватернионов обладает сочетательным свойством:Естественно считать, что действительные и комплексные числа являются частным случаем кватернионов. Так, действительное число x – это кватернион видаКомплексное число z = x + yi  представляется как кватернион

       

     У операции сложения кватернионов, очевидно, имеется обратная операция –вычитание. Именно, разность двух кватернионов  и  определяется формулой:Если , то разность кватернионов – это нулевой кватернион.

     Перейдем теперь к операции деления кватернионов, обратной к операции умножения. Вообще, что мы понимаем под частным от деления числа a на число b, не равное нулю? Это такое число c, что bc = a. (10)Так определяется частное от деления для действительных и комплексных чисел. К сожалению, для кватерниона применить непосредственно это определение мы не можем. Для того чтобы формула (10) “корректно” определяла частное, нужно, чтобы произведение не зависело от порядка сомножителей. В противном случае наряду с частным  определенным формулой (10), существует вполне равноправное “левое” частное” с’, определяемое формулойc’b = a,которое может отличаться от “правого частного” c из (10). Вот здесь, кроме необходимости выйти за пределы трехмерного пространства, Гамильтону пришлось принести еще одну жертву.

     Оказывается, определенные им новые числа – кватернионы – потеряли еще одно привычное качество: произведение кватернионов зависит от порядка сомножителей. Действительно, уже в формулах (6) при изменении порядка сомножителей произведение меняет знак.

     Таким образом, можно говорить лишь о “делении справа” и “делении слева”. Как реально найти, скажем, “левое частное” от деления кватерниона  на кватернион ?

    Обозначим искомое частное через q = x + yi + uj + vk. Тогда, используя правило умножения для кватернионов и определение левого частного, получим следующее равенство кватернионов:,или    Полученное равенство равносильно системе четырех линейных уравнений с переменными x, y, u, v:    Аналогичным образом находится “правое частное” от деления  на .

    Рассмотрим частный случай, когда делимое  равно единице. В этом случае частное от деления =1 на кватернион  (и “слева” и “справа”) равно одному и тому же кватернионуПоэтому кватернион p обозначается через . Тогда “правое частное” от деления кватерниона  на  выражается формулой,а “левое частное” от деления кватерниона  на  – формулой    Практически частное от деления двух кватернионов ищется другим путем. Для этого нам потребуются

    Так же как комплексные числа разлагаются в сумму своей действительной и мнимой частей, кватернион тоже можно разложить в сумму q = x + (yi + uj + vk). Первое слагаемое в этом разложении называется скалярной частью кватерниона, а второе – векторной частью. Скалярная часть х – это просто действительное число, а векторная часть может быть изображена вектором r = yi + uj + vk в трехмерном пространстве, где i, j, k мы теперь рассматриваем как единичные вектора прямоугольной системы координат.

    Таким образом, каждый кватернион q представляется в виде суммы q = x + r, где x – скалярная часть кватерниона q, а r – векторная часть. Если r = 0, то q = x и кватернион q называется скалярным кватернионом. Если же x = 0, то q = r и q называется векторным кватернионом.

    При сложении кватернионов независимо складываются их скалярные и векторные части.

    При умножении дело обстоит сложнее. Если  и  – скалярные кватернионы, то их произведение тоже скалярный кватернион. В случае, когда = х – скалярный кватернион, а  = r – векторный кватернион, произведение  является векторным кватернионом, и операция умножения совпадает с умножением вектора r в пространстве на действительное число x.

    И, наконец, если оба кватерниона векторные, то Как видно из последней формулы, скалярная часть произведения  равна скалярному произведению  векторов  и  с обратным знаком. Векторная же часть  – это наш старый знакомый – векторное произведение , записанное в координатах.

    Объединяя все рассмотренные случаи, получим общую формулу для умножения кватернионов. Если    и , то

    Почему же Гамильтону не удалось найти способа умножения триплетов? Раньше уже было отмечено, что эту задачу решить нельзя. Доказано, что попросту не существует способа умножения точек пространства, удовлетворяющего нашим требованиям (ассоциативности, дистрибутивности относительно покоординатного сложения, возможности деления на ненулевые элементы). Сейчас, к тому же, известны все случаи, когда можно вести такое умножение. Это доказал немецкий математик Ф. Г. Фробениус (1849 – 1917). По его словам, этих случаев три: в размерности один (действительные числа), в размерности два (комплексные числа) и в “размерности четыре” (кватернионы).

    Гамильтон и его последователи возлагали большие надежды на кватернионы. От кватернионов ожидали таких же результатов, как от комплексных чисел, и даже больше. И действительно, с помощью исчисления кватернионов были обнаружены совершенные в их математической красоте формулы, описывающие ряд важных физических явлений. Но дальнейшие надежды на развитие алгебраического и функционального исчисления кватернионов не оправдались.

    Для кватернионов не имеет места основная теорема алгебры о существовании корней у многочлена с кватернионными коэффициентами, а, с другой стороны, существует такой многочлен с кватернионными коэффициентами от одной переменной, для которого любой кватернион является корнем. 

   Оптимизм сменился скепсисом. В начале нашего века математики перестали интересоваться кватернионами. Но время шло, и физики упорно искали математический формализм для некоторых эффектов, связанных с так называемым спином элементарных частиц. Кватернионы снова получили признание, когда была понята их роль в построении различных геометрических преобразований пространства, используемых в квантовой физике. Геометрические свойства кватернионов – это особая большая тема.

Для этого будет посвящен другой реферат. Использованная литература:

 Квант. Изд. “Наука”. Главная редакция физико-математической литературы, Москва, 1983(9).

www.coolreferat.com

Реферат - Кватернионы - Математика

Как сделать из точек числа?

Если речь идет о точках на прямой – это просто. Выбрав начало отсчета и масштаб с направлением, можно получить из прямой числовую ось и тем самым превратить каждую точку в действительное число – ее координату.

С точками на плоскости сложнее. Выбираем две оси и начало отсчета. Для каждой точки плоскости сопоставляем ее координаты (x; y ). Эта пара будет называться дуплетом . Чтобы сделать дуплет числом, нужно научиться “складывать” и “умножать” их в соответствии со свойствами сложения и умножения.

Дуплеты складываются как векторы – покоординатно:

(x; y) + (x’; y’) = (x + x’; y + y’). (1)

Для умножения существует иная формула:

(x; y) (x’; y’) = (xx’ — yy’; xy’ + x’y). (2)

Умножение и сложение (1), (2) дуплетов подчиняются привычным свойствам сложения и умножения. Следовательно, множество дуплетов с операциями (1), (2) можно считать полноценным числовым множеством.

На самом деле дуплеты – это комплексные числа. Их записывают так: x + yi, где i –мнимая единица (дуплет (0; 1)). Ее квадрат равен. Это позволяет извлекать квадратные корни из отрицательных чисел.

Но встает проблема превращения точек пространства в числа. Здесь снова введем систему координат и запишем точки в виде набора уже трех координат (x; y; z ). Эти так называемые триплеты тоже складываются покоординатно:

(x; y; z) + (x’; y’; z’) = (x + x’; y + y’; z + z’). (3)

Триплеты можно будет считать числами, если научиться их умножать, обладая, вместе со свойствами сложения, обычными способами умножения этих операций.

В 1833 г. умножением триплетов занимался ирландский математик У. Р. Гамильтон (1805 – 1865). О нем мы расскажем особо.

Уильям Роуан Гамильтон

Гамильтон был человеком многосторонне развитым. В четырнадцать лет владел девятью языками, в 1824 г. опубликовал в трудах Королевской Ирландской Академии работу, посвященную геометрической оптике, в 1828 г. получил звание королевского астронома Ирландии.

К 1833 г. Гамильтон занимал пост директора обсерватории в Денсинке и был известен работами по оптике и аналитической механики. Он предсказал эффект двойной конической рефракции в двуосных кристаллах.

В течение долгих десяти лет Гамильтон безуспешно пытался придумать правило умножения триплетов.

Векторное произведение

Задача поначалу казалась несложной. Складывать векторы следовало по формуле (3). Оставалось найти формулу умножения, подобную формуле (2). Но Гамильтон безуспешно пытался подбирать формулы для умножения триплетов.

В то время было известно правило векторного произведения:

векторным произведением ненулевых векторов называется вектор, перпендикулярный плоскости, проходящей через векторы имеющий направление, определяемое правилом “правой руки”, и длину êê êê. Если для данных векторов заданы координаты в прямоугольной системе координат:

то (4)

Но операция векторного произведения не годилась Гамильтону, поскольку она не имеет обратной. Например, если то угол () между векторами равен нулю. Значит, длина векторного произведения равна нулю, т.е. и сам вектор нулевой.

Но несмотря на неудачи, Гамильтон пытался решить поставленную перед собой задачу. Но эта задача не могла быть решена (объяснение следует ниже). Но труд не пропал даром. В 1843 г. Гамильтон вдруг решил, что для определения умножения нужно рассматривать не триплеты (тройки чисел), а четверки, или кватернионы. Вот история их создания.

Случай на Брогемском мосту

В одном из писем к своему сыну Гамильтон писал: “Это был 16-й день октября, который случился в понедельник, в день заседания Совета Королевской Ирландской Академии, где я должен был председательствовать. Я направлялся туда с твоей матерью вдоль Королевского канала; и, хотя она говорила мне какие-то отдельные фразы, я их почти не воспринимал, так как в моем сознании подспудно что-то творилось. Неожиданно как будто бы замкнулся электрический контур; блеснула искра, предвещающая многие длительные годы определенно направленной мысли и труда, моего – если доведется, или труда других, если мне будет даровано достаточно сознательной жизни, чтобы сообщить о своем открытии. Я оказался не в состоянии удержаться от желания высечь ножом на мягком камне Брогемского моста фундаментальную формулу о символах i, j, k,

,

содержащую решение проблемы, но, конечно, эта запись с тех пор стерлась. Однако более прочное упоминание осталось в Книге записей Совета Академии за этот день, где засвидетельствовано, что я попросил и получил разрешение на доклад о кватернионах на первом заседании сессии, который и был прочитан соответственно в Понедельник 13-го следующего месяца – ноября”.

Определение кватернионов

Кватернионы – это четверки действительных чисел (x; y; u; v), которые удобно записывать в виде q = x + yi + uj + vk, где i, j, k – новые числа, являющиеся аналогом мнимой единицы в комплексных числах. Требуется, чтобы числа i, j, k удовлетворяли следующим соотношениям:

(5)

(6)

которые удобно записать в виде “таблицы умножения”.

x i j k

i -1 k j

j -k -1 i

k -j -i -1

По определению операции сложения и умножения кватернионов производятся по обычным правилам раскрытия скобок и приведения подобных членов с учетом правил (5) – (6).

Согласно этому определению, если и – два кватерниона, то

(7)

Это, разумеется, привычное нам “покоординатное” сложение. Далее, произведение кватернионов и вычисляется так:

Длинная, но совершенно автоматическая проверка показывает, что умножение кватернионов обладает сочетательным свойством:

Естественно считать, что действительные и комплексные числа являются частным случаем кватернионов. Так, действительное число x – это кватернион вида

Комплексное число z = x + yi представляется как кватернион

У операции сложения кватернионов, очевидно, имеется обратная операция –вычитание. Именно, разность двух кватернионов и определяется формулой:

Если, то разность кватернионов – это нулевой кватернион.

Деление кватернионов

Перейдем теперь к операции деления кватернионов, обратной к операции умножения. Вообще, что мы понимаем под частным от деления числа a на число b, не равное нулю? Это такое число c, что

bc = a. (10)

Так определяется частное от деления для действительных и комплексных чисел. К сожалению, для кватерниона применить непосредственно это определение мы не можем. Для того чтобы формула (10) “корректно” определяла частное, нужно, чтобы произведение не зависело от порядка сомножителей. В противном случае наряду с частным определенным формулой (10), существует вполне равноправное “левое” частное” с’, определяемое формулой

c’b = a,

которое может отличаться от “правого частного” c из (10). Вот здесь, кроме необходимости выйти за пределы трехмерного пространства, Гамильтону пришлось принести еще одну жертву.

Оказывается, определенные им новые числа – кватернионы – потеряли еще одно привычное качество: произведение кватернионов зависит от порядка сомножителей. Действительно, уже в формулах (6) при изменении порядка сомножителей произведение меняет знак.

Таким образом, можно говорить лишь о “делении справа” и “делении слева”. Как реально найти, скажем, “левое частное” от деления кватерниона на кватернион ?

Обозначим искомое частное через q = x + yi + uj + vk. Тогда, используя правило умножения для кватернионов и определение левого частного, получим следующее равенство кватернионов:

,

или

Полученное равенство равносильно системе четырех линейных уравнений с переменными x, y, u, v :

Аналогичным образом находится “правое частное” от деления на .

Рассмотрим частный случай, когда делимое равно единице. В этом случае частное от деления =1 на кватернион (и “слева” и “справа”) равно одному и тому же кватерниону

Поэтому кватернион p обозначается через. Тогда “правое частное” от деления кватерниона на выражается формулой

,

а “левое частное” от деления кватерниона на – формулой

Практически частное от деления двух кватернионов ищется другим путем. Для этого нам потребуются

Скалярные и векторные кватернионы

Так же как комплексные числа разлагаются в сумму своей действительной и мнимой частей, кватернион тоже можно разложить в сумму q = x + (yi + uj + vk). Первое слагаемое в этом разложении называется скалярной частью кватерниона, а второе – векторной частью. Скалярная часть х – это просто действительное число, а векторная часть может быть изображена вектором r = yi + uj + vk в трехмерном пространстве, где i, j, k мы теперь рассматриваем как единичные вектора прямоугольной системы координат.

Таким образом, каждый кватернион q представляется в виде суммы q = x + r, где x – скалярная часть кватерниона q, а r – векторная часть. Если r = 0, то q = x и кватернион q называется скалярным кватернионом . Если же x = 0, то q = r и q называется векторным кватернионом .

При сложении кватернионов независимо складываются их скалярные и векторные части.

При умножении дело обстоит сложнее. Если и – скалярные кватернионы, то их произведение тоже скалярный кватернион. В случае, когда = х – скалярный кватернион, а = r – векторный кватернион, произведение является векторным кватернионом, и операция умножения совпадает с умножением вектора r в пространстве на действительное число x .

И, наконец, если оба кватерниона векторные, то

Как видно из последней формулы, скалярная часть произведения равна скалярному произведению векторов и с обратным знаком. Векторная же часть – это наш старый знакомый – векторное произведение, записанное в координатах.

Объединяя все рассмотренные случаи, получим общую формулу для умножения кватернионов. Если и, то

А как же триплеты?

Почему же Гамильтону не удалось найти способа умножения триплетов? Раньше уже было отмечено, что эту задачу решить нельзя. Доказано, что попросту не существует способа умножения точек пространства, удовлетворяющего нашим требованиям (ассоциативности, дистрибутивности относительно покоординатного сложения, возможности деления на ненулевые элементы). Сейчас, к тому же, известны все случаи, когда можно вести такое умножение. Это доказал немецкий математик Ф. Г. Фробениус (1849 – 1917). По его словам, этих случаев три: в размерности один (действительные числа), в размерности два (комплексные числа) и в “размерности четыре” (кватернионы).

Что было дальше

Гамильтон и его последователи возлагали большие надежды на кватернионы. От кватернионов ожидали таких же результатов, как от комплексных чисел, и даже больше. И действительно, с помощью исчисления кватернионов были обнаружены совершенные в их математической красоте формулы, описывающие ряд важных физических явлений. Но дальнейшие надежды на развитие алгебраического и функционального исчисления кватернионов не оправдались.

Для кватернионов не имеет места основная теорема алгебры о существовании корней у многочлена с кватернионными коэффициентами, а, с другой стороны, существует такой многочлен с кватернионными коэффициентами от одной переменной, для которого любой кватернион является корнем.

Оптимизм сменился скепсисом. В начале нашего века математики перестали интересоваться кватернионами. Но время шло, и физики упорно искали математический формализм для некоторых эффектов, связанных с так называемым спином элементарных частиц. Кватернионы снова получили признание, когда была понята их роль в построении различных геометрических преобразований пространства, используемых в квантовой физике. Геометрические свойства кватернионов – это особая большая тема.

Для этого будет посвящен другой реферат.

Использованная литература:

Квант. Изд. “Наука”. Главная редакция физико-математической литературы, Москва, 1983(9).

www.ronl.ru


Смотрите также

 

..:::Новинки:::..

Windows Commander 5.11 Свежая версия.

Новая версия
IrfanView 3.75 (рус)

Обновление текстового редактора TextEd, уже 1.75a

System mechanic 3.7f
Новая версия

Обновление плагинов для WC, смотрим :-)

Весь Winamp
Посетите новый сайт.

WinRaR 3.00
Релиз уже здесь

PowerDesk 4.0 free
Просто - напросто сильный upgrade проводника.

..:::Счетчики:::..

 

     

 

 

.