|
||||||||||||||||||||||||||||||||||||||
|
Курсовая работа: Основные свойства цитоплазмы. Реферат цитоплазмаРеферат - Основные свойства цитоплазмыФизико-химические свойства цитоплазмы. Цитоплазма, представляющая собой основную массу протопласта (за вычетом ядра, митохондрии и пластид), имеет сложное строение, детали которого до сих пор еще не выяснены. Она состоит из большого количества высокомолекулярных веществ — биополимеров. Часть последних формирует особые структурные образования — мембраны, придающие цитоплазме значительную структурность. Цитоплазма проявляет свойства сравнительно вязкой жидкости, но одновременно и некоторые свойства твердого тела (эластичность). Подобное сочетание свойств возможно благодаря тому, что молекулы биополимеров способны образовывать временные ассоциации различных размеров. Разрушение этих ассоциаций способствует проявлению жидкостных свойств, их восстановлению — проявлению свойств твердого тела. Структурную основу всей цитоплазмы, так называемый цитоскелет, составляют особые белки, способные преобразовывать химическую энергию в механическую работу. Это — сократительные белки, подобные тем белкам, из которых построены мышцы животных. Благодаря пустой сети мембран внутри цитоплазмы образуется множество так называемых отделов. Тем самым создаются условия для пространственного разграничения различных биохимических процессов. Эти процессы могут протекать одновременно в разных частях цитоплазмы одной и той же клетки, не мешая друг другу. Схема строения геля Молекулы биополимеров — белков и липидов — в мембранах расположены в строго определенной последовательности. Благодаря такому строению мембрана обладает способностью избирательно пропускать молекулы одних веществ и не пропускать молекулы других веществ, т. е. она обладает избирательной проницаемостью, и играет важную роль в жизнедеятельности. Цитоплазма имеет две пограничные мембраны. Одна из этих мембран, называемая плазма леммой, отграничивает цитоплазму от вакуоли. Тонопласт — наиболее устойчивая часть цитоплазмы; при гибели содержимого клетки он отмирает последним. Значительную роль в процессах структурообразования в цитоплазме играют ионы, а также молекулы низкомолекулярных соединений, обладающие полярными группами. Схематическое изображение различных форм плазмолиза: 1 — выпуклая; 2 — вогнутая; 3, 4 — судорож Поступление веществ в цитоплазму. Вещество, поступившее в цитоплазму, либо связывается самой цитоплазмой, либо поступает из нее в клеточный сок. Растворы солей или Сахаров высокой концентрации обычно не проникают в цитоплазму, а оттягивают из нее воду. При этом цитоплазма отходит от стенок клетки. Это явление получило название плазмолиза. При отхождении цитоплазмы от стенок клетки она образует вогнутую поверхность (вогнутый плазмолиз), которая затем через 15—30 мин переходит в выпуклую форму (выпуклый плазмолиз). Своеобразную форму плазмолиза можно вызвать действием раствора роданистого калия (KCNS) на клетку чешуи лука. Анионы CNS проникают в клетку и вызывают набухание мезоплазмы, внутрь вакуоли они не проникают. Мезоплазма при этом становится хорошо заметной в виде колпачков на полюсах плазмолизированного протопласта. Отсюда данный тип плазмолиза получил название колпачкового плазмолиза. Колпачковый плазмолиз обнаруживает первый тип проницаемости цитоплазмы, когда проникшее вещество связывается самой цитоплазмой и не поступает в вакуоль. Другой тип проницаемости цитоплазмы связан с проникновением вещества в вакуоль. Далеко не все растворы вызывают долго длящийся плазмолиз. Если плазмолизировать протопласт клетки раствором мочевины или глицерина, то сначала наблюдается плазмолиз. Затем плазмолиз сравнительно быстро заканчивается. Мочевина и глицерин быстро проникают внутрь вакуоли, увеличивают концентрацию клеточного сока, который начинает поглощать воду из окружающего раствора. При этом цитоплазма вновь подходит к стенкам клетки. Это явление получило название деплазмолиза, и такой плазмолиз называется временным. Колпачковый плазмолиз в растворе роданистого калия Проникновение вещества в вакуоли клетки можно наблюдать на примере действия красителя метиленового синего (водный раствор 1:5000) на какое-нибудь водное растение, например элодею. Краситель скопляется внутри вакуолей, и очень часто в них даже образуется осадок из красителя, связанного с дубильными веществами вакуолей. Проницаемость цитоплазмы связана с активной жизнедеятельностью (дыханием) растения. Поступление веществ (солей или, вернее, их катионов и анионов) в цитоплазму идет за счет обмена их на ионы, выходящие из клетки. Это происходит таким образом, что образованные в процессе дыхания Н+ и НСОз (ионы угольной кислоты) выделяются в окружающий раствор, а на их место в цитоплазму поступают ионы калия и натрия вместо ионов водорода, а на место иона НСОз— соответственные анионы. Не всегда вещества проникают в цитоплазму за счет ее активной жизнедеятельности. Дело в том, что поверхностные слои цитоплазмы богаты липидами, которые не образуют сплошной пленки на поверхности цитоплазмы, а чередуются с молекулами белков или вкраплены в белковый остов поверхностных слоев, т. е. на поверхности цитоплазмы образуется своеобразная мозаика из участков белков и липидов. Растворимые в липидах вещества (спирт, эфир, хлороформ и др.) очень легко проникают в цитоплазму. Вода и соли, нерастворимые в липидах, проникают в цитоплазму через белковые слои. Проницаемость цитоплазмы не остается постоянной в течение жизни растения, а меняется с возрастом, а также увеличивается при повышении температуры и интенсивности освещения. Движение цитоплазмы. Одним из характерных свойств цитоплазмы является ее способность к движению. Движение цитоплазмы и находящихся в ней включений происходит как в постенном слое, так и в тяжах, связывающих ядро с цитоплазмой. Скорость перемещения цитоплазмы в эпидермисе чешуи лука составляет примерно 5—7 м/с. На скорость движения Цитоплазмы влияют температура, свет и другие факторы. В одном из опытов движение цитоплазмы в клетках водного растения валлиснерии начиналось при температуре 1,25°С, шло с наибольшей интенсивностью при 38,5°С и останавливалось при 45°С. Движение цитоплазмы играет большую роль в жизнедеятельности растительного организма, способствуя перемещению веществ из одной клетки в другую. Вязкость — одно из важнейших свойств цитоплазмы. Она очень сильно колеблется в зависимости от вида растения, а также от фаз его развития. У некоторых растений вязкость цитоплазмы немного превышает вязкость воды, а у других достигает вязкости глицерина, превосходящего в этом отношении воду в 87 раз. Вязкость цитоплазмы тесно связана с обменом веществ: чем выше вязкость, тем обычно менее интенсивен обмен. У созревших семян цитоплазма переходит в студенистое состояние — гель. Высокая вязкость цитоплазмы способствует увеличению устойчивости растений к повышенной температуре. Сравнительное определение вязкости цитоплазмы производят по времени перехода вогнутого плазмолиза в выпуклый. Насколько тесно связана вязкость цитоплазмы с температурой коагуляции белков, видно на примере озимой ржи. Вязкость цитоплазмы в различных органах ржи неодинакова. В тех органах, где она выше, белки цитоплазмы свертываются при более высокой температуре. ОРГАНОИДЫ КЛЕТКИ Помимо цитоплазмы, в световом микроскопе можно наблюдать и другие составные части, получившие название органоидов клетки. К ним относятся ядро, пластиды, митохондрии. Крупные органоиды (ядро, пластиды) хорошо видны в световом микроскопе, другие органоиды (митохондрии, рыбосомы) и структурные элементы цитоплазмы (аппарат Гольджи, эндоплазматическая сеть) только лишь в электронном микроскопе. Ядро является обязательной составной частью любой растительной и животной клетки. Оно имеет обычно округлую или слегка вытянутую форму. Абсолютные размеры ядра не превышают 7—8 мкм. Ядро состоит из ядерной плазмы (кариоплазмы), ядрышка, ядерной оболочки, отграничивающей ядро от окружающей цитоплазмы. Кариоплазма содержит твердую часть — хроматин и жидкую — ядерный сок. Хроматин — это сложное образование, в состав которого входят нуклеопротеиды, т. е. соединения белков с нуклеиновыми кислотами. В ядре содержится дезоксирибонуклеиновая кислота, ДНК, а в ядрышке — рибонуклеиновая кислота — РНК. Лейкопласты в эпидермисе листьев традесканции: 1— лейкопласты; 2—ядро; 3— оболочка Ядро играет огромную роль в жизни клеток. При делении клеток (митозе) из хроматина ядра образуются хромосомы, которые являются носителями наследственности. Число хромосом строго определенно для каждого отдельного вида растений и животных. Ядро имеет большое значение и в неделящейся клетке. О роли ядра можно судить по изучению физиологии безъядерных клеток. В 1890 г. И.И. Герасимов, действуя на делящуюся клетку водоросли спирогиры низкой температурой, или эфиром, получал безъядерные клетки и клетки, содержащие двойное количество ядерного вещества. Безъядерные клетки хотя и продолжали некоторое время жить, но переставали расти, обмен веществ в них шел ненормально. Образовавшийся в процессе фотосинтеза крахмал не претерпевал дальнейших превращений, и клетки им переполнялись. Отделенная от ядра цитоплазма сравнительно быстро погибает из-за нарушения обмена веществ. Изолированное от цитоплазмы ядро также не может существовать. Жизнеспособными являются только клетки, содержащие цитоплазму и ядро. Пластиды. Пластидами называются особые органоиды в клетке. К ним относят бесцветные лейкопласты, зеленые хлоропласты и оранжевые хромопласты. Все виды пластид могут возникать из бесцветных пропластид. Окраска пластид обусловлена особыми пигментами (красящими веществами): в хлоропластах — зеленым хлорофилле м, а в хромопластах — оранжевым каротином. Лейкопласты имеются в клубнях и корневищах растений, где они образуют запасной крахмал. Кроме того, они встречаются в эпидермисе листьев некоторых растений, например в листьях традесканции. Роль их в эпидермисе связана с тем, что они содержат ряд ферментов и способствуют ферментативной деятельности клеток. Известно, что выращенные в темноте растения бывают бледно- желтого цвета. Хлоропласты в листьях лехалениума Хромопласты лепестков настурции Хлоропласты встречаются в лепестках, плодах и некоторых корнях (морковь). Могут возникать из пропластид и из хлоропластов. Плоды многих растений бывают сначала зелеными — содержат хлоропласты (томаты, рябина, шиповник), затем они краснеют, так как у них разрушается — хлорофилл и остается оранжевый пигмент каротин. В хлоропластах также имеется каротин, но он маскируется зеленым пигментом хлорофиллом. Хромопласты часто имеют игольчатую или неправильную форму, так как каротиноиды в них кристаллизуются. Помимо пластид, в клетках имеются и другие органоиды — митохондрии, размером около 1 мкм, играющие большую роль в дыхании растений. СУБМИКРОСКОПИЧЕСКОЕ СТРОЕНИЕ КЛЕТКИ Электронный микроскоп и основные принципы его работы. Создание и применение светового микроскопа способствовало развитию ряда биологических наук — цитологии, гистологии, микробиологии, успехи которых привели к крупным практическим результатам в области медицины, сельского хозяйства и ряда отраслей промышленности. Однако уже к концу XIX в. выяснилось, что возможности светового микроскопа ограничены. Частицы мельче 0,2 мкм в световом микроскопе уже неразличимы. Они лежат ниже разрешающей способнорти микроскопа, т.е. способности различать две отдельные точки. Развитие физики электронных явлений дало возможность использовать для микроскопа электронные излучения. На смену стеклянным линзам пришли «электронные линзы» — электромагнитные поля, способные фокусировать и преломлять электронный пучок. В сороковых годах XX в. начали изготовляться первые электронные микроскопы. Разрешающая способность лучших из них составляет в настоящее время около 10-8 — 2-10-8 см, причем увеличение достигает 1 000 000 раз. Строение клетки под электронным микроскопом. Изучение ультратонких срезов клеток привело к открытию, что все структурные элементы цитоплазмы клетки и клеточные органоиды имеют мембранное строение. Электронный микроскоп помог увидеть тонкое строение клеток растений и животных. Цитоплазма состоит из матрикса (основы) и заключенных в нееорганелл (хлоропласты, митохондрии, аппарат Гольджи и др.), а также мембран. На поверхности цитоплазмы имеются мембраны — плазмалемма а на поверхности вакуоли — тонопласт. Мембраны клетки состоят из липидов и белков. Таким образом, строение мембраны имеет мозаичный характер. Эндоплазматическая сеть состоит из длинных канальцев, пронизывающих цитоплазму; представляет собой выросты двойной ядерной мембраны. Эндоплазматическая сеть образует в цитоплазме непрерывную систему, ограничивающую полости, по которым перемещаются вещества между ядром и цитоплазмой. Эндоплазматическая сеть увеличивает поверхность цитоплазмы и, как бы изолируя ее на отдельные участки, способствует протеканию разнообразных процессов в [различных частях клетки. Аппарат Гольджи — структурный элемент цитоплазмы клетки, названный в честь итальянского ученого, который впервые описал это образование. Долгое время считали, что аппарат Гольджи имеется только в животных клетках. В дальнейшем он был обнаружен и в растительных клетках. Аппарат Гольджи состоит из системы мембран, сгруппированных в стопки. По концам мембран наблюдаются вздутия, которые отшнуровываются от них в виде пузырьков, способных превращаться в вакуоли или цистерны. Ядро. Изучение ядра в электронном микроскопе показало, 100% то оно окружено оболочкой, состоящей из двух мембран — внутренней и наружной. Предполагают, что наружная мембрана является продолжением мембран, составляющих эндоплазматическую сеть цитоплазмы. В ядерной оболочке имеются поры (до двухсот), через которые происходит обмен между веществами ядра и цитоплазмы. Ядро состоит из округлых гранул, образованных ДНК и РНК в соединении с белками. Кроме того, в ядре имеется одно или несколько ядрышек, содержащих в основном рибонуклеиновую кислоту (РНК). Хлоропласты. Хлоропласт отделен от цитоплазмы оболочкой. Внутри хлоропласта расположены пачки мембран, образующих пары, соединенные концами. В результате этого образуется замкнутый диск. Пачки дисков, расположенных в определенном порядке образуют граны ^Хлоропластов. У большинства растений мембрана граны переводит в более тонкую мембрану стромы. Строма является основным веществом хлоропласта и заполняет объем, не заснятый мембранной системой. В строме находятся капельки жира, крахмальные зерна, гранулярное вещество, содержащее ферменты. Считается, что мембрана хлоропласта (толщина около 70-10-8 см) состоит из двух слоев липидов, находящихся между двумя тонкими слоями белка. Хлорофилл образует мономолекулярный слой по всей поверхности диска. Митохондрии. Электронномикроскопическое изучение митохондрий в клетках показало, что они одеты поверхностной мембраной, под которой находится множество внутренних мембран, расположенных параллельно друг другу. Все мембраны, как мы уже знаем, состоят из нескольких слоев. Толщина слоев и расстояние между ними довольно постоянны. Между мембранами находится внутреннее пространство митохондрий, величина его различна у митохондрий разных клеток. Митохондрии подвижны и могут перемещаться в клетке за счет собственного движения. Однако по большей части они передвигаются током движущейся цитоплазмы. На свету митохондрии движутся к хлоропластам, а в темноте — к стенкам клетки. Митохондрии состоят на 30—40% (сухое вещество) из белков, на 25—38% из липидов. В них содержится от 1 до 6% рибонуклеиновой кислоты. Большую роль в образовании митохондрии играют ионы кальция. При недостатке солей кальция в растении число митохондрий уменьшается. Мембраны митохондрий содержат постоянный набор ферментов, которые участвуют в процессах окисления и накопления энергии при дыхании. Митохондрии могут осуществлять синтез близких к белкам веществ — пептидов, по-видимому, принимают участие в жировом обмене, а также в поглощении солей и воды. Под влиянием высокой температуры митохондрии набухают и теряют свою структуру. Рибосомы в отличие от пластид и митохондрий представляют собой не микроскопические, а субмикроскопические органоиды размером от 200-10-8 —280-10-8 см. Рибосомы состоят из белков (55%), фосфолипидов (4%) и рибонуклеиновой кислоты (40% от сухого вещества). Они содержат 65% всей рибонуклеиновой кислоты клеток. Рибосомы образуются в ядре, вернее, в ядрышке,' где происходит их сборка из отдельных более мелких частиц. Рибосомы содержатся в цитоплазме и хлоропластах. Особенное хорошо они заметны в клетках, интенсивно синтезирующих белок, так как основная их функция — синтез белка. Лизосомы. Круглые пузырьки, осуществляющие внутреннее переваривание веществ. Содержат ряд ферментов, отделены мембраной от цитоплазмы. Пероксисомы. Мелкие пузырьки. В них происходит фотодыхание. Микротрубочки. Располагаются в наружном слое цитоплазмы. Состоят из белка тубулина. Входят в состав веретена при делении клеток (митозе). НАСЛЕДСТВЕННАЯ ИНФОРМАЦИЯ И РЕГУЛЯЦИЯ У РАСТЕНИЙ Основное свойство образовывать один и тот же вид при развитии растения из воспроизводящей клетки, т. е. свойство наследственности, заключено в ядре и связано с ДНК. Большое значение в регуляции функций организма играет цитоплазматическая связь между клетками. Они соединены цитоплазматическими нитями — плазмодесмами, объединяющими клетки как бы в единое целое. Впервые плазмодесмы были обнаружены проф. Горожанкиным. Очень важную роль играет гормональная регуляция физиологических функций. В растениях образуются следующие гормоны: ауксины, гиббереллины, цитокинины, абсцизовая кислота и этилен. О значении каждого из этих гормонов будет идти речь ниже. Световая регуляция осуществляется длиной дня, продолжительность которого влияет на развитие растений. Растения делятся на растения короткого дня, зацветающие лишь при укорочении длины дня осенью, растения длинного дня, зацветающие только при длине дня больше 12 ч, и нейтральные растения, зацветающие как на коротком, так и на длинном дне. Наконец, регулирование светом может осуществляться с помощью специального вещества — фитохрома. Фитохром имеет две формы: активную и неактивную. Активная форма тормозит рост, неактивная форма дает симптомы этиоляции. По своей природе фитохром близок к пигментам сине-зеленых и красных водорослей фикоциану и фикоэритрину. Освещение красным светом с длиной волны 660 нм переводит фитохром в активную форму, а более длинноволновый красный свет приводит фитохром уже в неактивное состояние. Таковы в очень коротких чертах основы регуляции отдельных функций растений. Как мы уже знаем, белковые вещества, составляющие основу живых организмов, построены из аминокислот. В организмах имеется свыше 20 аминокислот. Эти 20 аминокислот могут складываться различным образом и образовывать разнообразные белки, которые выполняют ту или иную функцию в организме. Число комбинаций сложения аминокислот почти безгранично, и это определяет специфичность отдельных белков. План построения белка из аминокислот заложен, или, как говорят, «закодирован», в молекуле ДНК, находящейся в ядре. Нуклеиновые кислоты ДНК и РНК состоят из трех структурных элементов: азотистых оснований, сахара и фосфорной кислоты. Соединяясь, эти вещества образуют нуклеотиды. Нуклеиновые кислоты представляют собой продукты полимеризации (уплотнения) большого числа нуклеотидов. Полимерами называют вещества, молекулы которых состоят из одинаковых, периодически повторяющихся групп атомов. Например, полиэтилен имеет строение: (—СНг—СНг)л —СНг—СНг— ДНК — сложный полимер с молекулярной массой от 4 до 10 млн. Она состоит из двух полинуклеотидных цепей, образованных большим числом соединенных между собой нуклеотидов. В состав ДНК входит сахар дезоксирибоза (С5Н10О4). ДНК очень чувствительна к действию кислот и при гидролизе в молекулярном растворе соляной кислоты при 60°С через несколько минут распадается на нуклеотиды. Схема молекулы ДНК РНК в отличие от ДНК состоит из одной цепи полинуклеотидов и вместо дезоксирибозы содержит d-рибозу (С5Н10О5). РНК распадается на нуклеотиды под влиянием щелочей. В ядре при непосредственном участии ДНК образуется РНК, которая содержит полученные oт ДНК сведения о порядке сложения аминокислот в различные белки. Эта РНК носит название информационной или посредника. На каждую нить информационной РНК садится по нескольку рибосом. Эта цепочка рибосом называется полисомой. В полисомах происходит синтез белка при участии содержащейся в рибосомах рибосомальной РНК. Отдельныерибосомы движутся по нити РНК, считывают заложенную в ней информацию (сведения), полученную в ядре от ДНК и укладывают аминокислоты в полипептидные цепи. Аминокислоты, образовавшиеся в процессе обмена веществ, под водятся к полисомам особой, тоже образовавшейся первоначально в ядре РНК-переносчиком или транспортной РНК названной так потому, что она переносит активированны соответственными ферментами аминокислоты на рибосомы. Таких различных РНК-переносчиков имеется примерно 20 по числу аминокислот, из которых строятся белки. Таким образом, в синтезе белка в растениях участвуют различные РНК: рибосомальная РНК, информационная РНК передающая порядок укладки аминокислот в полипептидны цепи, и транспортная РНК, которая доставляет активированные соответственными ферментами аминокислоты к полисе мам. Такова схема синтеза белков в растении. Каждая клетка организма содержит полный набор информации о строении всех белков, которые она может синтезировать. Поэтому из маленького кусочка листа многих растений, например бегонии, может развиться целое растение ил даже из одной клетки (в культуре тканей, см. ниже) может развиться целый организм. С другой стороны, только из ядра или только из цитоплазмы новый организм не образуется, так как весь процесс образования белков происходит только в целостной клетке, состоящей из ядра и цитоплазмы. Схема биосинтеза белка в клетке www.ronl.ru Реферат - Цитоплазма: а органоидыПлан: Цитология. Строение клетки: мембрана; ядро; цитоплазма: а) органоиды: 1.эндоплазматическая сеть; 2.рибосомы; 3.комплекс Гольджи; 4.лизосомы; 5.клеточный центр; 6.энергетические органоиды. б) клеточные включения: углеводы; жиры; белки. Функции клеток: деление клетки; обмен веществ: а) пластический обмен; б) энергетический обмен. раздражимость; роль органических веществ в осуществлении функций клетки: а) белки; б) углеводы; в) жиры; г) нуклеиновые кислоты: ДНК; РНК; д) АТФ. Новые открытия в области клетки. Хабаровские цитологи. Заключение Цитология. Цитология (греч. «цитос» - клетка, «логос» - наука) – наука о клетках. Цитология изучает строение и химический состав клеток, функции клеток в организме животных и растений, размножение и развитие клеток, приспособление клеток к условиям окружающей среды. Современная цитология – наука комплексная. Она имеет самые тесные связи с другими биологическими науками, например, с ботаникой, зоологией, физиологией, учением об эволюции органического мира, а также с молекулярной биологией, химией, физикой, математикой. Цитология – одна из молодых биологических наук, её возраст около 100 лет. Возраст же термина «клетка» насчитывает около 300 лет. Исследуя клетку как важнейшую единицу живого, цитология занимает центральное положение в ряду биологических дисциплин. Изучение клеточного строения организмов было начато микроскопами XVII века, в XIX веке была создана единая для всего органического мира клеточная теория (Т. Шванн, 1839). В ХХ веке быстрому прогрессу цитологии способствовали новые методы: электронная микроскопия, изотопные индикаторы, культивирование клеток и др. Название «клетка» предложил англичанин Р. Гук ещё в 1665 г., но только в XIX веке началось её систематическое изучение. Несмотря на то, что клетки могут входить в состав различных организмов и органов (бактерий, икринок, эритроцитов, нервов и т.д.) и даже существовать как самостоятельные (простейшие) организмы, в их строении и функциях обнаружено много общего. Хотя отдельная клетка представляет собой наиболее простую форму жизни, строение её достаточно сложно… Строение клетки. Клетки находятся в межклеточном веществе, обеспечивающем их механическую прочность, питание и дыхание. Основные части любой клетки – цитоплазма и ядро. Клетка покрыта мембраной, состоящей из нескольких слоёв молекул, обеспечивающей избирательную проницаемость веществ. В цитоплазме расположены мельчайшие структуры – органоиды. К органоидам клетки относятся: эндоплазматическая сеть, рибосомы, митохондрии, лизосомы, комплекс Гольджи, клеточный центр. Мембрана. Если рассматривать в микроскоп клетку какого-нибудь растения, например, корешка лука, то видно, что она окружена сравнительно толстой оболочкой. Оболочка совсем другой природы хорошо видна у гигантского аксона кальмара. Но не оболочка выбирает, какие вещества пускать и какие не пускать в аксон. Оболочка клетки служит как бы дополнительным «земляным валом», который окружает и защищает главную крепостную стену – клеточную мембрану с её автоматическими воротами, насосами, специальными «наблюдателями», ловушками и другими удивительными приспособлениями. «Мембрана – крепостная стена клетки», но только в том смысле, что она ограждает и защищает внутреннее содержимое клетки. Растительную клетку можно отделить от наружной оболочки. Можно разрушить оболочку у бактерий. Тогда может показаться, что они вообще ничем не отделены от окружающего раствора – это просто кусочки студня с внутренними включениями. Новые физические методы, прежде всего электронная микроскопия, не только позволили с несомненностью установить наличие мембраны, но и рассмотреть некоторые её детали. Внутреннее содержимое клетки и её мембрана состоят в основном из одних и тех же атомов. Эти атомы – углерод, кислород, водород, азот – расположены в начале таблицы Менделеева. На электронной фотографии тонкого среза клетки мембраны видны в виде двух тёмных линий. Общая толщина мембраны может быть точно измерена с этих снимков. Она равно всего 70-80 А (1А = 10-8 см), т.е. в 10 тыс. раз меньше толщины человеческого волоса. Итак, клеточная мембрана – очень мелкое молекулярное сито. Однако мембрана – весьма своеобразное сито. Её поры скорее напоминают длинные узкие проходы в крепостной стене средневекового города. Высота и ширина этих проходов в 10 раз меньше длины. Кроме того, в этом сите отверстия встречаются очень редко – поры занимают у некоторых клеток только одну миллионную часть площади мембраны. Это соответствует всего одному отверстию на площади обычного волосяного сита для просеивания муки, т.е. с обычной точки зрения мембрана вовсе не сито. Ядро. Ядро - самый заметный и самый большой органоид клетки, который первым привлёк внимание исследователей. Клеточное ядро (лат. nucleus, греч. карион) открыто в 1831 году шотландским учёным Робертом Брауном. Его можно сравнить с кибернетической системой, где имеет место хранение, переработка и передача в цитоплазму огромной информации, заключённой в очень малом объёме. Ядро играет главную роль в наследственности. Ядро выполняет также функцию восстановления целостности клеточного тела (регенерация), является регулятором всех жизненных отправлений клетки. Форма ядра чаще всего шарообразная или яйцевидная. Важнейшей составной частью ядра является хроматин (от греч. хрома – цвет, окраска) – вещество, хорошо окрашивающееся ядерными красками. Ядро отделено от цитоплазмы двойной мембраной, которая непосредственно связана с эндоплазматической сетью и комплексом Гольджи. На ядерной мембране обнаружены поры, через которые (как и через наружную цитоплазматическую мембрану) одни вещества проходят легче, чем другие, т.е. поры обеспечивают избирательную проницаемость мембраны. Внутреннее содержимое ядра составляет ядерный сок, заполняющий пространство между структурами ядра. В ядре всегда присутствует одно или несколько ядрышек. В ядрышке образуются рибосомы. Поэтому между активностью клетки и размером ядрышек существует прямая связь: чем активнее протекают процессы биосинтеза белка, тем крупнее ядрышки и, наоборот, в клетках, где синтез белка ограничен, ядрышки или очень невелики, или совсем отсутствуют. В ядре расположены нитевидные образования – хромосомы. В ядре клетки тела человека (кроме половых) содержится по 46 хромосом. Хромосомы являются носителями наследственных задатков организма, передающихся от родителей потомству. Большинство клеток содержит одно ядро, но существуют и многоядерные клетки (в печени, в мышцах и др.). Удаление ядра делает клетку нежизнеспособной. Цитоплазма. Цитоплазма – полужидкая слизистая бесцветная масса, содержащая 75-85% воды, 10-12% белков и аминокислот, 4-6% углеводов, 2-3%жиров и липидов, 1% неорганических и других веществ. Цитоплазматическое содержимое клетки способно двигаться, что способствует оптимальному размещению органоидов, лучшему протеканию биохимических реакций, выделению продуктов обмена и т.д. Слой цитоплазмы формирует разные образования: реснички, жгутики, поверхностные выросты Цитоплазма пронизана сложной сетчатой системой, связанной с наружной плазматической мембраной и состоящей из сообщающихся между собой канальцев, пузырьков, уплощённых мешочков. Такая сетчатая система названа вакуолярной системой. Органоиды. Цитоплазма содержит ряд мельчайших структур клетки – органоидов, которые выполняют различные функции. Органоиды обеспечивают жизнедеятельность клетки. Эндоплазматическая сеть. Название этого органоида отражает место расположения его в центральной части цитоплазмы (греч. «эндон» - внутри). ЭПС представляет собой очень разветвлённую систему канальцев, трубочек, пузырьков, цистерн разной величины и формы, отграниченных мембранами от цитоплазмы клетки. ЭПС бывает двух видов: гранулярная, состоящая из канальцев и цистерн, поверхность которых усеяна зёрнышками (гранулами) и агранулярная, т.е. гладкая (без гран). Граны в эндоплазматической сети ни что иное, как рибосомы. Интересно, что в клетках зародышей животных наблюдается в основном гранулярная ЭПС, а у взрослых форм – агранулярная. Зная, что рибосомы в цитоплазме служат местом синтеза белка, можно предположить, что гранулярная ЭПС преобладает в клетках, активно синтезирующих белок. Считают, что агранулярная сеть в большей степени предоставлена в тех клетках, где идёт активный синтез липидов (жиров и жироподобных веществ). Оба вида эндоплазматической сети не только участвуют в синтезе органических веществ, но и накапливают и транспортируют их к местам назначения, регулируют обмен веществ между клеткой и окружающей её средой. Рибосомы. Рибосомы – не мембранные клеточные органоиды, состоящие из рибонуклеиновой кислоты и белка. Их внутреннее строение во многом ещё остаётся загадкой. В электронном микроскопе они имеют вид округлых или грибовидных гранул. Каждая рибосомы разделена желобком на большую и маленькую части (субъединицы). Часто несколько рибосом объединяются нитью специальной рибонуклеиновой кислоты (РНК), называемой информационной (и-РНК). Рибосомы осуществляют уникальную функцию синтеза белковых молекул из аминокислот. Комплекс Гольджи. Продукты биосинтеза поступают в просветы полостей и канальцев ЭПС, где они концентрируются в специальный аппарат – комплекс Гольджи, расположенный вблизи ядра. Комплекс Гольджи участвует в транспорте продуктов биосинтеза к поверхности клетки и в выведении их из клетки, в формировании лизосом и т.д. Комплекс Гольджи был открыт итальянским цитологом Камилио Гольджи (1844 – 1926) и в 1898 году был назван «комплексом (аппаратом) Гольджи». Белки, выработанные в рибосомах, поступают в комплекс Гольджи, а когда они требуются другому органоиду, то часть комплекса Гольджи отделяется, и белок доставляется в требуемое место. Лизосомы. Лизосомы (от греч. «лизео» – растворяю и «сома» - тело) - это органоиды клетки овальной формы, окружённые однослойной мембраной. В них находится набор ферментов, которые разрушают белки, углеводы, липиды. В случае повреждения лизосомной мембраны ферменты начинают расщеплять и разрушать внутреннее содержимое клетки, и она погибает. Клеточный центр. Клеточный центр можно наблюдать в клетках, способных делиться. Он состоит из двух палочковидных телец – центриолей. Находясь около ядра и комплекса Гольджи, клеточный центр участвует в процессе деления клетки, в образовании веретена деления. Энергетические органоиды. Митохондрии (греч. «митос» - нить, «хондрион» - гранула) называют энергетическими станциями клетки. Такое название обуславливается тем, что именно в митохондриях происходит извлечение энергии, заключённой в питательных веществах. Форма митохондрий изменчива, но чаще всего они имеют вид нитей или гранул. Размеры и число их также непостоянны и зависят от функциональной активности клетки. На электронных микрофотографиях видно, что митохондрии состоят из двух мембран: наружной и внутренней. Внутренняя мембрана образует выросты, называемые кристами, которые сплошь устланы ферментами. Наличие крист увеличивает общую поверхность митохондрий, что важно для активной деятельности ферментов. В митохонлриях обнаружены свои специфические ДНК и рибосомы. В связи с этим они самостоятельно размножаются при делении клетки. Хлоропласты – по форме напоминают диск или шар с двойной оболочкой – наружной и внутренней. Внутри хлоропласта также имеются ДНК, рибосомы и особые мембранные структуры – граны, связанные между собой и внутренней мембраной хлоропласта. В мембранах гран и находится хлорофилл. Благодаря хлорофиллу в хлоропластах происходит превращение энергии солнечного света в химическую энергию АТФ (аденозинтрифосфат). Энергия АТФ используется в хлоропластах для синтеза углеводов из углекислого газа и воды. Клеточные включения. К клеточным включениям относятся углеводы, жиры и белки. Углеводы. Углеводы состоят из углерода, водорода и кислорода. К углеводам относятся глюкоза, гликоген (животный крахмал). Многие углеводы хорошо растворимы в воде и являются основными источниками энергии для осуществления всех жизненных процессов. При распаде одного грамма углеводов освобождается 17,2 кДж энергии. Жиры. Жиры образованы теми же химическими элементами, что и углеводы. Жиры нерастворимы в воде. Они входят в состав клеточных мембран. Жиры также служат запасным источником энергии в организме. При полном расщеплении одного грамма жира освобождается 39, 1 кДж энергии. Белки. Белки являются основными веществами клетки. Белки состоят из углерода, водорода, кислорода, азота, серы. Часто в состав белка входит фосфор. Белки служат главным строительным материалом. Они участвуют в формировании мембран клетки, ядра, цитоплазмы, органоидов. Многие белки выполняют роль ферментов (ускорителей течения химических реакций). В одной клетке насчитывается до 1000 разных белков. При распаде белков в организме освобождается примерно такое же количество энергии, как и при расщеплении углеводов. Все эти вещества накапливаются в цитоплазме клетки в виде капель и зёрен различной величины и формы. Они периодически синтезируются в клетке и используются в процессе обмена веществ. Функции клеток. Клетка обладает различными функциями: деление клетки, обмен веществ и раздражимость. ^ Деление клетки. Деление – это вид размножения клеток. Во время деления клетки хорошо заметны хромосомы. Набор хромосом в клетках тела, характерный для данного вида растений и животных, называется кариотипом. В любом многоклеточном организме существует два вида клеток – соматические (клетки тела) и половые клетки или гаметы. В половых клетках число хромосом в два раза меньше, чем в соматических. В соматических клетках все хромосомы представлены парами – такой набор называется диплоидным и обозначается 2n. Парные хромосомы (одинаковые по величине, форме, строению) называются гомологичными. В половых клетках каждая из хромосом в одинарном числе. Такой набор называется гаплоидным и обозначается n. Наиболее распространённым способом деления соматических клеток является митоз. Во время митоза клетка проходит ряд последовательных стадий или фаз, в результате которых каждая дочерняя клетка получает такой же набор хромосом, какой был у материнской клетки. Во время подготовки клетки к делению – в период интерфазы (период между двумя актами деления) число хромосом удваивается. Вдоль каждой исходной хромосомы из имеющихся в клетке химических соединений синтезируется её точная копия. Удвоенная хромосома состоит из двух половинок – хроматид. Каждая из хроматид содержит одну молекулу ДНК. В период интерфазы в клетке происходит процесс биосинтеза белка, удваиваются также все важнейшие структуры клетки. Продолжительность интерфазы в среднем 10-20 часов. Затем наступает процесс деления клетки – митоз. Во время митоза клетка проходит следующие четыре фазы: профаза, метафаза, анафаза и телофаза. В профазе хорошо видны центриоли – органоиды, играющие определённую роль в делении дочерних хромосом. Центриоли делятся и расходятся к разным полюсам. От них протягиваются нити, образующие веретено деления, которое регулирует расхождение хромосом к полюсам делящейся клетки. В конце профазы ядерная оболочка распадается, исчезает ядрышко, хромосомы спирализуются и укорачиваются. Метафаза характеризуется наличием хорошо видимых хромосом, располагающихся в экваториальной плоскости клетки. Каждая хромосома состоит из двух хроматид и имеет перетяжку – центромеру, к которой прикрепляются нити веретена деления. После деления центромеры каждая хроматида становится самостоятельной дочерней хромосомой. В анафазе дочерние хромосомы расходятся к разным полюсам клетки. В последней стадии – телофазе – хромосомы вновь раскручиваются и приобретают вид длинных тонких нитей. Вокруг них возникает ядерная оболочка, в ядре формируется ядрышко. В процессе деления цитоплазмы все её органоиды равномерно распределяются между дочерними клетками. Весь процесс митоза продолжается обычно 1-2 часа. В результате митоза все дочерние клетки содержат одинаковый набор хромосом и одни и те же гены. Следовательно, митоз – это способ деления клетки, заключающийся в точном распределении генетического материала между дочерними клетками, обе дочерние клетки получают диплоидный набор хромосом. Биологическое значение митоза огромно. Функционирование органов и тканей многоклеточного организма было бы невозможно без сохранения одинакового генетического материала в бесчисленных клеточных поколениях. Митоз обеспечивает такие важные процессы жизнедеятельности, как эмбриональное развитие, рост, поддержание структурной целостности тканей при постоянной утрате клеток в процессе их функционирования (замещение погибших эритроцитов, эпителия кишечника и пр.), восстановление органов и тканей после повреждения. ^ Обмен веществ. Основная функция клетки – обмен веществ. Из межклеточного вещества в клетки постоянно поступают питательные вещества и кислород и выделяются продукты распада. Так, клетки человека поглощают кислород, воду, глюкозу, аминокислоты, минеральные соли, витамины, а выводят углекислый газ, воду, мочевину, мочевую кислоту и т.д. Набор веществ, свойственный клеткам человека, присущ и многим другим клеткам живых организмов: всем животным клеткам, некоторым микроорганизмам. У клеток зелёных растений характер веществ существенно иной: пищевые вещества у них составляют углекислый газ и вода, а выделяется кислород. У некоторых бактерий, обитающих на корнях бобовых растений (вика, горох, клевер, соя), пищевым веществом служит азот атмосферы, а выводятся соли азотной кислоты. У микроорганизма, селящегося в выгребных ямах и на болотах, пищевым веществом служит сероводород, а выделяется сера, покрывая поверхность воды и почвы жёлтым налётом серы. Таким образом, у клеток разных организмов характер пищевых и выделяемых веществ различается, но общий закон действителен для всех: пока клетка жива, происходит непрерывное движение веществ – из внешней среды в клетку и из клетки во внешнюю среду. Обмен веществ выполняет две функции. Первая функция – обеспечение клетки строительным материалом. Из веществ, поступающих в клетку, - аминокислот, глюкозы, органических кислот, нуклеотидов – в клетке непрерывно происходит биосинтез белков, углеводов, липидов, нуклеиновых кислот. Биосинтез – это образование белков, жиров, углеводов и их соединений из более простых веществ. В процессе биосинтеза образуются вещества, свойственные определённым клеткам организма. Например, в клетках мышц синтезируются белки, обеспечивающие их сокращение. Из белков, углеводов, липидов, нуклеиновых кислот формируется тело клетки, её мембраны, органоиды. Реакции биосинтеза особенно активно идут в молодых, растущих клетках. Однако биосинтез веществ постоянно происходит в клетках, закончивших рост и развитие, так как химический состав клетки в течение её жизни многократно обновляется. Обнаружено, что «продолжительность жизни» молекул белков клетки колеблется от 2-3 часов до нескольких дней. После этого срока они разрушаются и заменяются вновь синтезированными. Таким образом, клетка сохраняет функции и химический состав. Совокупность реакций, способствующих построению клетки и обновлению её состава, носит название пластического обмена (греч. «пластикос» - лепной, скульптурный). Вторая функция обмена веществ – обеспечение клетки энергией. Любое проявление жизнедеятельности (движение, биосинтез веществ, генерация тепла и др.) нуждаются в затрате энергии. Для энергообеспечения клетки используется энергия химических реакций, которая освобождается в результате расщепления поступающих веществ. Эта энергия преобразуется в другие виды энергии. Совокупность реакций, обеспечивающих клетки энергией, называют энергетическим обменом. Пластический и энергетический обмены неразрывно связаны между собой. С одной стороны, все реакции пластического обмена нуждаются в затрате энергии. С другой стороны, для осуществления реакции энергетического обмена необходим постоянный синтез ферментов, так как «продолжительность жизни» молекул ферментов невелика. Через пластический и энергетический обмены осуществляется связь клетки с внешней средой. Эти процессы являются основным условием поддержания жизни клетки, источником её роста, развития и функционирования. Живая клетка представляет собой открытую систему, поскольку между клеткой и окружающей средой постоянно происходит обмен веществ и энергии. Раздражимость. Живые клетки способны реагировать на физические и химические изменения окружающей их среды. Это свойство клеток называется раздражимостью или возбудимостью. При этом из состояния покоя клетка переходит в рабочее состояние – возбуждение. При возбуждении в клетках меняется скорость биосинтеза и распада веществ, потребление кислорода, температура. В возбуждённом состоянии разные клетки выполняют свойственные им функции. Железистые клетки образуют и выделяют вещества, мышечные клетки сокращаются, в нервных клетках возникает слабый электрический сигнал – нервный импульс, который может распространяться по клеточным мембранам. ^ Роль органических соединений в осуществлении функций клетки. Главная роль в осуществлении функций клетки принадлежит органическим соединениям. Среди них наибольшее значение имеют белки, жиры, углеводы и нуклеиновые кислоты. Белки. Белки представляют собой большие молекулы, состоящие из сотен и тысяч элементарных звеньев – аминокислот. Всего в живой клетке известно 20 видов аминокислот. Название аминокислоты получили из-за содержания в своём составе аминной группы Nh3. Белки в обмене веществ занимают особое место. Ф. Энгельс так оценил эту роль белков: «Жизнь – это способ существования белковых тел, существенным моментом которого является постоянный обмен веществ с окружающей их внешней природой, причём с прекращением этого обмена веществ прекращается и жизнь, что приводит к разложению белка». И на самом деле, везде, где есть жизнь, находят белки. Белки входят в состав цитоплазмы, гемоглобина, плазмы крови, многих гормонов, иммунных тел, поддерживают постоянство водно-солевой среды организма. Без белков нет роста. Ферменты, обязательно участвующие во всех этапах обмена веществ, имеют белковую природу. Углеводы. Углеводы поступают в организм в виде крахмала. Расщепившись в пищеварительном тракте до глюкозы, углеводы всасываются в кровь и усваиваются клетками. Углеводы – главный источник энергии, особенно при усиленной мышечной работе. Больше половины энергии организм взрослых людей получает за счёт углеводов. Конечные продукты обмена углеводов – углекислый газ и вода. В крови количество глюкозы поддерживается на относительно постоянном уровне (около 0,11%). Уменьшение содержания глюкозы вызывает понижение температуры тела, расстройство деятельности нервной системы, утомление. Повышение количества глюкозы вызывает её отложение в печени в виде запасного животного крахмала – гликогена. Значение глюкозы для организма не исчерпывается её ролью как источника энергии. Глюкоза входит в состав цитоплазмы и, следовательно, необходима при образовании новых клеток, особенно в период роста. Углеводы имеют важное значение и в обмене веществ центральной нервной системы. При резком снижении количества сахара в крови отмечаются расстройства деятельности нервной системы. Наступают судороги, бред, потеря сознания, изменение деятельности сердца. Жиры. Поступивший с пищей жир в пищеварительном тракте расщепляется на глицерин и жирные кислоты, которые всасываются в основном в лимфу и лишь частично в кровь. Жир используется организмом как богатый источник энергии. При распаде одного грамма жира в организме освобождается энергии в два раза больше, чем при распаде такого же количества белков и углеводов. Жиры входят и в состав клеток (цитоплазма, ядро, клеточные мембраны), где их количество устойчиво и постоянно. Скопления жира могут выполнять и другие функции. Например, подкожный жир препятствует усиленной отдаче тепла, околопочечный жир предохраняет почку от ушибов и т.д. Недостаток жиров в пище нарушает деятельность центральной нервной системы и органов размножения, снижает выносливость к различным заболеваниям. С жирами в организм поступают растворимые в них витамины (витамины A, D, E и др.), имеющие для человека жизненно важное значение. Нуклеиновые кислоты. Нуклеиновые кислоты образуются в клеточном ядре. Отсюда и произошло название (лат. «нуклеус» - ядро). Входя в состав хромосом, нуклеиновые кислоты участвуют в хранении и передаче наследственных свойств клетки. Нуклеиновые кислоты обеспечивают образование белков. ДНК. Молекула ДНК – дезоксирибонуклеиновая кислота – была открыта в клеточных ядрах ещё в 1868 году швейцарским врачом И.Ф. Мишером. Позднее узнали, что ДНК находится в хромосомах ядра. Основная функция ДНК – информационная: порядок расположения её четырёх нуклеотидов (нуклеотид - мономер; мономер – вещество, состоящее из повторяющихся элементарных звеньев) несёт важную информацию – определяет порядок расположения аминокислот в линейных молекулах белков, т.е. их первичную структуру. Набор белков (ферментов, гормонов) определяет свойства клетки и организма. Молекулы ДНК хранят сведения об этих свойствах и передают их в поколения потомков, т.е. ДНК является носителем наследственной информации. РНК. РНК – рибонуклеиновая кислота – очень похожа на ДНК и тоже построена из мономерных нуклеотидов четырёх типов. Главное отличие РНК от ДНК – одинарная, а не двойная цепочка молекулы. Различают несколько видов РНК, все они принимают участие в реализации наследственной информации, хранящейся в молекулах ДНК, через синтез белка. АТФ. Очень важную роль в биоэнергетике клетки играет адениловый нуклеотид, к которому присоединены два остатка фосфорной кислоты. Такое вещество называют аденозинтрифосфорной кислотой (АТФ). АТФ – универсальный биологический аккумулятор энергии: световая энергия Солнца и энергия, заключённая в потребляемой пище, запасается в молекулах АТФ. Энергию АТФ (Е) все клетки используют для процессов биосинтеза, движения нервных импульсов, свечений и других процессов жизнедеятельности. Новые открытия в области клетки. Раковые клетки. Два британца и американец разделят Нобелевскую премию за 2001 г. по медицине. Их открытия в области развития клеток, возможно, позволят разработать новые методы борьбы с раком.Как сообщил представитель Нобелевского комитета, ученые-медики разделят премию в $943 000. 61-летний американец Лиланд Хартвел работает в Исследовательском раковом центре Фреда Хатчисона в Сиэтле. Британцы 58-летний Тимоти Хунт и 52-летний Пол Нурс - сотрудники отделений Королевского фонда исследований рака в Хертфордшире и Лондоне. Научные открытия, совершенные лауреатами касаются жизненного цикла раковых клеток. В частности, они обнаружили ключевые регуляторы деления клеток - нарушение этого процесса ведет к возникновению раковых клеток. Результаты исследований могут быть использованы при диагностике болезни и имеют важное значение для перспективы создания новых методов лечения рака.Трое победителей были определены утром 08.10.01 в результате голосования членов комитета, которое прошло в Каролинском институте Стокгольма. Клонирование. Клонированная овца Долли явила миру технологию получения из взрослой клетки точной копии животного. А значит, принципиально возможным стало получить точную копию человека. И теперь человечество встало перед вопросом: что будет, если кто-нибудь эту возможность реализует?.. Если вспомнить про трансплантацию органов, которая позволяет заменить одну или несколько "запчастей", то клонирование теоретически позволяет обеспечить полную замену "агрегата" под названием человеческий организм. Да это же решение проблемы личного бессмертия! Ведь благодаря клонированию из собственных планов на жизнь можно исключить болезнь, инвалидность и даже смерть! Звучит славно, не правда ли? Особенно, если учесть, что копии должны быть живыми и находиться при этом в таких условиях, чтобы как минимум не портились. Представляете себе эти "склады" живых человеческих "запчастей"? А есть ведь еще и "польза" вторая - использование клонирования не только для получения органов, но и для проведения исследований и экспериментов на живом "материале". Далее перед дерзающими маячит манящая идея воспроизводства Эйнштейнов, Пушкиных, Лобачевских, Ньютонов. Налепили гениев и рванули вперед по пути прогресса. Однако буквально все - от ученых до простой публики - сознают, что выращивание человека на "запчасти" порождает немало вопросов этического плана. Уже сейчас мировое сообщество располагает документами, согласно которым подобное не должно быть позволено. Конвенция о правах человека устанавливает принцип: "Интересы и благо человеческого существа должны иметь приоритет над односторонне рассматриваемыми интересами общества и развития науки". Российское законодательство также устанавливает весьма жесткие ограничения на использование человеческого материала. Так, в предлагаемой медиками поправке к проекту "Закона о репродуктивных правах граждан и гарантиях их осуществления" содержится такай пункт: "Человеческий эмбрион не может быть целенаправленно получен или клонирован в научных, фармакологических или лечебных целях". Вообще, дискуссии по этому поводу в мире идут достаточно бурные. Если американские эксперты из федеральной комиссии по биотехнологиям еще только начинают изучать правовые и этические аспекты этого открытия и представлять его на суд законодателей, то Ватикан остался верен своей прежней позиции, заявив о неприемлемости вмешательства человека в процессы репродукции и вообще - в генетический материал человека и животного. Исламские теологи выражают озабоченность тем, что клонирование людей нарушит и без того разрываемый противоречиями институт брака. Индуисты и буддисты мучительно размышляют над тем, как соотнести клонирование с проблемами кармы и дхармы. Всемирная организация здравоохранения /ВОЗ/ также негативно относится к клонированию собственно человека. Генеральный директор ВОЗ Хироси Накадзима считает, что "использование клонирования для производства человека неприемлемо с этической точки зрения". Специалисты ВОЗ исходят из того, что применение метода клонирования к людям нарушило бы такие фундаментальные принципы медицинской науки и права, как уважение человеческого достоинства и безопасность человеческого генетического потенциала. Вместе с тем ВОЗ не против исследований в области клонирования клеток, поскольку это могло бы принести пользу, в частности, для диагностики и изучения рака. Не возражают медики и против клонирования животных, которое может содействовать изучению болезней, поражающих людей. При этом ВОЗ считает, что хотя клонирование животных способно принести существенные выгоды медицине, нужно быть все время начеку, помня о возможных негативных последствиях - таких, например, как перенос заразных болезней от животных человеку. Опасения, высказываемые по поводу клонирования в современных культурах Запада и Востока, вполне объяснимы. Как бы суммируя их, известный французский цитобиолог Пьер Шамбон предлагает ввести 50-летний мораторий на вторжение в хромосомы человека, если это не направлено на устранение генетических дефектов и заболеваний. А вот еще вопрос не из маловажных: клонируется ли душа? Можно ли вообще считать искусственного человека личностью, наделенной ею? Точка зрения церкви на этот счет абсолютно однозначна. "Даже если такой искусственный человек будет создан руками ученых, у него не будет души, а значит, это не человек, а зомби", - считает священник Храма Вознесения Христова отец Олег. Но и в возможность создания клонированного человека представитель церкви не верит, так как убежден, что только Бог может сотворить человека. "Чтобы в клетке ДНК, помимо чисто биологических и механических соединений начался процесс роста живого человеческого существа, наделенного душой, в этом должен участвовать святой дух, а такого при искусственном зарождении жизни нет». Хабаровские цитологи. Вопросами цитологии и гистологии в Хабаровском крае занимались сотрудники Медицинского института (ныне Дальневосточный Государственный Медицинский Университет – ДВГМУ). У истоков стоял Алов Иосиф Александрович, заведующий кафедрой гистологии в 1952 – 1961 гг. С 1962 по 1982 гг. заведовал лабораторией гистологии в Институте Морфологии Человека АМН СССР в г. Москва. Ныне кафедру гистологии возглавляет Рыжавский Борис Яковлевич (с 1979 года), защитивший докторскую диссертацию в 1985 году. Основными направлениями работы кафедры гистологии являются следующие: овариоэктология (удаление яичника) и её влияние на формирование нормальной морфологии коры больших полушарий у потомства (определяют особые количественные показатели, например, ростовые индексы и т.п.) влияние алкоголя и ноотропных препаратов на потомство исследование плаценты и её патологий в ходе эмбриогенеза и влияние этих отклонений на дальнейший онтогенез. Используются главным образом классические гистологические методики для решения этих задач. Также вопросами, связанными с клеткой и тканями, занимается Центральная научно-исследовательская лаборатория (ЦНИЛ) при ДВГМУ, возглавляемая профессором Сергеем Серафимовичем Тимошиным, под руководством которого защищены 3 докторских и 18 кандидатских диссертаций. По его инициативе и непосредственном участии в Хабаровском крае была создана первая радио иммунологическая лаборатория. Внедрена в практику здравоохранения методика определения гормонов и биологически-активных веществ радио иммунным и иммуноферментным методами, что позволяет осуществлять раннюю диагностику ряда заболеваний, в том числе онкологических. Заключение. Клетка – это самостоятельное живое существо. Она питается, двигается в поисках пищи, выбирает, куда идти и чем питаться, защищается и не пускает внутрь из окружающей среды неподходящие вещества и существа. Всеми этими способностями обладают одноклеточные организмы, например, амёбы. Клетки, входящие в состав организма, специализированы и не обладают некоторыми возможностями свободных клеток. Клетка – самая мелкая единица живого, л www.ronl.ru Реферат: Основные свойства цитоплазмыОСНОВНЫЕ СВОЙСТВА ЦИТОПЛАЗМЫ
Физико-химические свойства цитоплазмы. Цитоплазма, представляющая собой основную массу протопласта (за вычетом ядра, митохондрии и пластид), имеет сложное строение, детали которого до сих пор еще не выяснены. Она состоит из большого количества высокомолекулярных веществ — биополимеров. Часть последних формирует особые структурные образования — мембраны, придающие цитоплазме значительную структурность. Цитоплазма проявляет свойства сравнительно вязкой жидкости, но одновременно и некоторые свойства твердого тела (эластичность). Подобное сочетание свойств возможно благодаря тому, что молекулы биополимеров способны образовывать временные ассоциации различных размеров. Разрушение этих ассоциаций способствует проявлению жидкостных свойств, их восстановлению — проявлению свойств твердого тела. Структурную основу всей цитоплазмы, так называемый цитоскелет, составляют особые белки, способные преобразовывать химическую энергию в механическую работу. Это — сократительные белки, подобные тем белкам, из которых построены мышцы животных. Благодаря пустой сети мембран внутри цитоплазмы образуется множество так называемых отделов. Тем самым создаются условия для пространственного разграничения различных биохимических процессов. Эти процессы могут протекать одновременно в разных частях цитоплазмы одной и той же клетки, не мешая друг другу.
Схема строения геля Молекулы биополимеров — белков и липидов — в мембранах расположены в строго определенной последовательности. Благодаря такому строению мембрана обладает способностью избирательно пропускать молекулы одних веществ и не пропускать молекулы других веществ, т. е. она обладает избирательной проницаемостью, и играет важную роль в жизнедеятельности. Цитоплазма имеет две пограничные мембраны. Одна из этих мембран, называемая плазма леммой, отграничивает цитоплазму от вакуоли. Тонопласт — наиболее устойчивая часть цитоплазмы; при гибели содержимого клетки он отмирает последним. Значительную роль в процессах структурообразования в цитоплазме играют ионы, а также молекулы низкомолекулярных соединений, обладающие полярными группами.
Схематическое изображение различных форм плазмолиза: 1 — выпуклая; 2 — вогнутая; 3, 4 — судорож
Поступление веществ в цитоплазму. Вещество, поступившее в цитоплазму, либо связывается самой цитоплазмой, либо поступает из нее в клеточный сок. Растворы солей или Сахаров высокой концентрации обычно не проникают в цитоплазму, а оттягивают из нее воду. При этом цитоплазма отходит от стенок клетки. Это явление получило название плазмолиза. При отхождении цитоплазмы от стенок клетки она образует вогнутую поверхность (вогнутый плазмолиз), которая затем через 15—30 мин переходит в выпуклую форму (выпуклый плазмолиз). Своеобразную форму плазмолиза можно вызвать действием раствора роданистого калия (KCNS) на клетку чешуи лука. Анионы CNS проникают в клетку и вызывают набухание мезоплазмы, внутрь вакуоли они не проникают. Мезоплазма при этом становится хорошо заметной в виде колпачков на полюсах плазмолизированного протопласта. Отсюда данный тип плазмолиза получил название колпачкового плазмолиза. Колпачковый плазмолиз обнаруживает первый тип проницаемости цитоплазмы, когда проникшее вещество связывается самой цитоплазмой и не поступает в вакуоль. Другой тип проницаемости цитоплазмы связан с проникновением вещества в вакуоль. Далеко не все растворы вызывают долго длящийся плазмолиз. Если плазмолизировать протопласт клетки раствором мочевины или глицерина, то сначала наблюдается плазмолиз. Затем плазмолиз сравнительно быстро заканчивается. Мочевина и глицерин быстро проникают внутрь вакуоли, увеличивают концентрацию клеточного сока, который начинает поглощать воду из окружающего раствора. При этом цитоплазма вновь подходит к стенкам клетки. Это явление получило название деплазмолиза, и такой плазмолиз называется временным.
Колпачковый плазмолиз в растворе роданистого калия
Проникновение вещества в вакуоли клетки можно наблюдать на примере действия красителя метиленового синего (водный раствор 1:5000) на какое-нибудь водное растение, например элодею. Краситель скопляется внутри вакуолей, и очень часто в них даже образуется осадок из красителя, связанного с дубильными веществами вакуолей. Проницаемость цитоплазмы связана с активной жизнедеятельностью (дыханием) растения. Поступление веществ (солей или, вернее, их катионов и анионов) в цитоплазму идет за счет обмена их на ионы, выходящие из клетки. Это происходит таким образом, что образованные в процессе дыхания Н+ и НСОз (ионы угольной кислоты) выделяются в окружающий раствор, а на их место в цитоплазму поступают ионы калия и натрия вместо ионов водорода, а на место иона НСОз— соответственные анионы. Не всегда вещества проникают в цитоплазму за счет ее активной жизнедеятельности. Дело в том, что поверхностные слои цитоплазмы богаты липидами, которые не образуют сплошной пленки на поверхности цитоплазмы, а чередуются с молекулами белков или вкраплены в белковый остов поверхностных слоев, т. е. на поверхности цитоплазмы образуется своеобразная мозаика из участков белков и липидов. Растворимые в липидах вещества (спирт, эфир, хлороформ и др.) очень легко проникают в цитоплазму. Вода и соли, нерастворимые в липидах, проникают в цитоплазму через белковые слои. Проницаемость цитоплазмы не остается постоянной в течение жизни растения, а меняется с возрастом, а также увеличивается при повышении температуры и интенсивности освещения. Движение цитоплазмы. Одним из характерных свойств цитоплазмы является ее способность к движению. Движение цитоплазмы и находящихся в ней включений происходит как в постенном слое, так и в тяжах, связывающих ядро с цитоплазмой. Скорость перемещения цитоплазмы в эпидермисе чешуи лука составляет примерно 5—7 м/с. На скорость движения Цитоплазмы влияют температура, свет и другие факторы. В одном из опытов движение цитоплазмы в клетках водного растения валлиснерии начиналось при температуре 1,25°С, шло с наибольшей интенсивностью при 38,5°С и останавливалось при 45°С. Движение цитоплазмы играет большую роль в жизнедеятельности растительного организма, способствуя перемещению веществ из одной клетки в другую. Вязкость — одно из важнейших свойств цитоплазмы. Она очень сильно колеблется в зависимости от вида растения, а также от фаз его развития. У некоторых растений вязкость цитоплазмы немного превышает вязкость воды, а у других достигает вязкости глицерина, превосходящего в этом отношении воду в 87 раз. Вязкость цитоплазмы тесно связана с обменом веществ: чем выше вязкость, тем обычно менее интенсивен обмен. У созревших семян цитоплазма переходит в студенистое состояние — гель. Высокая вязкость цитоплазмы способствует увеличению устойчивости растений к повышенной температуре. Сравнительное определение вязкости цитоплазмы производят по времени перехода вогнутого плазмолиза в выпуклый. Насколько тесно связана вязкость цитоплазмы с температурой коагуляции белков, видно на примере озимой ржи. Вязкость цитоплазмы в различных органах ржи неодинакова. В тех органах, где она выше, белки цитоплазмы свертываются при более высокой температуре.
ОРГАНОИДЫ КЛЕТКИ
Помимо цитоплазмы, в световом микроскопе можно наблюдать и другие составные части, получившие название органоидов клетки. К ним относятся ядро, пластиды, митохондрии. Крупные органоиды (ядро, пластиды) хорошо видны в световом микроскопе, другие органоиды (митохондрии, рыбосомы) и структурные элементы цитоплазмы (аппарат Гольджи, эндоплазматическая сеть) только лишь в электронном микроскопе. Ядро является обязательной составной частью любой растительной и животной клетки. Оно имеет обычно округлую или слегка вытянутую форму. Абсолютные размеры ядра не превышают 7—8 мкм. Ядро состоит из ядерной плазмы (кариоплазмы), ядрышка, ядерной оболочки, отграничивающей ядро от окружающей цитоплазмы. Кариоплазма содержит твердую часть — хроматин и жидкую — ядерный сок. Хроматин — это сложное образование, в состав которого входят нуклеопротеиды, т. е. соединения белков с нуклеиновыми кислотами. В ядре содержится дезоксирибонуклеиновая кислота, ДНК, а в ядрышке — рибонуклеиновая кислота — РНК.
Лейкопласты в эпидермисе листьев традесканции: 1— лейкопласты; 2—ядро; 3— оболочка
Ядро играет огромную роль в жизни клеток. При делении клеток (митозе) из хроматина ядра образуются хромосомы, которые являются носителями наследственности. Число хромосом строго определенно для каждого отдельного вида растений и животных. Ядро имеет большое значение и в неделящейся клетке. О роли ядра можно судить по изучению физиологии безъядерных клеток. В 1890 г. И.И. Герасимов, действуя на делящуюся клетку водоросли спирогиры низкой температурой, или эфиром, получал безъядерные клетки и клетки, содержащие двойное количество ядерного вещества. Безъядерные клетки хотя и продолжали некоторое время жить, но переставали расти, обмен веществ в них шел ненормально. Образовавшийся в процессе фотосинтеза крахмал не претерпевал дальнейших превращений, и клетки им переполнялись. Отделенная от ядра цитоплазма сравнительно быстро погибает из-за нарушения обмена веществ. Изолированное от цитоплазмы ядро также не может существовать. Жизнеспособными являются только клетки, содержащие цитоплазму и ядро. Пластиды. Пластидами называются особые органоиды в клетке. К ним относят бесцветные лейкопласты, зеленые хлоропласты и оранжевые хромопласты. Все виды пластид могут возникать из бесцветных пропластид. Окраска пластид обусловлена особыми пигментами (красящими веществами): в хлоропластах — зеленым хлорофилле м, а в хромопластах — оранжевым каротином. Лейкопласты имеются в клубнях и корневищах растений, где они образуют запасной крахмал. Кроме того, они встречаются в эпидермисе листьев некоторых растений, например в листьях традесканции. Роль их в эпидермисе связана с тем, что они содержат ряд ферментов и способствуют ферментативной деятельности клеток. Известно, что выращенные в темноте растения бывают бледно- желтого цвета.
Хлоропласты в листьях лехалениума
Хромопласты лепестков настурции
Хлоропласты встречаются в лепестках, плодах и некоторых корнях (морковь). Могут возникать из пропластид и из хлоропластов. Плоды многих растений бывают сначала зелеными — содержат хлоропласты (томаты, рябина, шиповник), затем они краснеют, так как у них разрушается — хлорофилл и остается оранжевый пигмент каротин. В хлоропластах также имеется каротин, но он маскируется зеленым пигментом хлорофиллом. Хромопласты часто имеют игольчатую или неправильную форму, так как каротиноиды в них кристаллизуются. Помимо пластид, в клетках имеются и другие органоиды — митохондрии, размером около 1 мкм, играющие большую роль в дыхании растений.
СУБМИКРОСКОПИЧЕСКОЕ СТРОЕНИЕ КЛЕТКИ
Электронный микроскоп и основные принципы его работы. Создание и применение светового микроскопа способствовало развитию ряда биологических наук — цитологии, гистологии, микробиологии, успехи которых привели к крупным практическим результатам в области медицины, сельского хозяйства и ряда отраслей промышленности. Однако уже к концу XIX в. выяснилось, что возможности светового микроскопа ограничены. Частицы мельче 0,2 мкм в световом микроскопе уже неразличимы. Они лежат ниже разрешающей способнорти микроскопа, т.е. способности различать две отдельные точки. Развитие физики электронных явлений дало возможность использовать для микроскопа электронные излучения. На смену стеклянным линзам пришли "электронные линзы" — электромагнитные поля, способные фокусировать и преломлять электронный пучок. В сороковых годах XX в. начали изготовляться первые электронные микроскопы. Разрешающая способность лучших из них составляет в настоящее время около 10-8— 2-10-8 см, причем увеличение достигает 1 000 000 раз. Строение клетки под электронным микроскопом. Изучение ультратонких срезов клеток привело к открытию, что все структурные элементы цитоплазмы клетки и клеточные органоиды имеют мембранное строение. Электронный микроскоп помог увидеть тонкое строение клеток растений и животных. Цитоплазма состоит из матрикса (основы) и заключенных в нее органелл (хлоропласты, митохондрии, аппарат Гольджи и др.), а также мембран. На поверхности цитоплазмы имеются мембраны — плазмалемма а на поверхности вакуоли — тонопласт. Мембраны клетки состоят из липидов и белков. Таким образом, строение мембраны имеет мозаичный характер. Эндоплазматическая сеть состоит из длинных канальцев, пронизывающих цитоплазму; представляет собой выросты двойной ядерной мембраны. Эндоплазматическая сеть образует в цитоплазме непрерывную систему, ограничивающую полости, по которым перемещаются вещества между ядром и цитоплазмой. Эндоплазматическая сеть увеличивает поверхность цитоплазмы и, как бы изолируя ее на отдельные участки, способствует протеканию разнообразных процессов в [различных частях клетки. Аппарат Гольджи — структурный элемент цитоплазмы клетки, названный в честь итальянского ученого, который впервые описал это образование. Долгое время считали, что аппарат Гольджи имеется только в животных клетках. В дальнейшем он был обнаружен и в растительных клетках. Аппарат Гольджи состоит из системы мембран, сгруппированных в стопки. По концам мембран наблюдаются вздутия, которые отшнуровываются от них в виде пузырьков, способных превращаться в вакуоли или цистерны. Ядро. Изучение ядра в электронном микроскопе показало, 100% то оно окружено оболочкой, состоящей из двух мембран — внутренней и наружной. Предполагают, что наружная мембрана является продолжением мембран, составляющих эндоплазматическую сеть цитоплазмы. В ядерной оболочке имеются поры (до двухсот), через которые происходит обмен между веществами ядра и цитоплазмы. Ядро состоит из округлых гранул, образованных ДНК и РНК в соединении с белками. Кроме того, в ядре имеется одно или несколько ядрышек, содержащих в основном рибонуклеиновую кислоту (РНК). Хлоропласты. Хлоропласт отделен от цитоплазмы оболочкой. Внутри хлоропласта расположены пачки мембран, образующих пары, соединенные концами. В результате этого образуется замкнутый диск. Пачки дисков, расположенных в определенном порядке образуют граны ^Хлоропластов. У большинства растений мембрана граны переводит в более тонкую мембрану стромы. Строма является основным веществом хлоропласта и заполняет объем, не заснятый мембранной системой. В строме находятся капельки жира, крахмальные зерна, гранулярное вещество, содержащее ферменты. Считается, что мембрана хлоропласта (толщина около 70-10-8 см) состоит из двух слоев липидов, находящихся между двумя тонкими слоями белка. Хлорофилл образует мономолекулярный слой по всей поверхности диска. Митохондрии. Электронномикроскопическое изучение митохондрий в клетках показало, что они одеты поверхностной мембраной, под которой находится множество внутренних мембран, расположенных параллельно друг другу. Все мембраны, как мы уже знаем, состоят из нескольких слоев. Толщина слоев и расстояние между ними довольно постоянны. Между мембранами находится внутреннее пространство митохондрий, величина его различна у митохондрий разных клеток. Митохондрии подвижны и могут перемещаться в клетке за счет собственного движения. Однако по большей части они передвигаются током движущейся цитоплазмы. На свету митохондрии движутся к хлоропластам, а в темноте — к стенкам клетки. Митохондрии состоят на 30—40% (сухое вещество) из белков, на 25—38% из липидов. В них содержится от 1 до 6% рибонуклеиновой кислоты. Большую роль в образовании митохондрии играют ионы кальция. При недостатке солей кальция в растении число митохондрий уменьшается. Мембраны митохондрий содержат постоянный набор ферментов, которые участвуют в процессах окисления и накопления энергии при дыхании. Митохондрии могут осуществлять синтез близких к белкам веществ — пептидов, по-видимому, принимают участие в жировом обмене, а также в поглощении солей и воды. Под влиянием высокой температуры митохондрии набухают и теряют свою структуру. Рибосомы в отличие от пластид и митохондрий представляют собой не микроскопические, а субмикроскопические органоиды размером от 200-10-8 —280-10-8 см. Рибосомы состоят из белков (55%), фосфолипидов (4%) и рибонуклеиновой кислоты (40% от сухого вещества). Они содержат 65% всей рибонуклеиновой кислоты клеток. Рибосомы образуются в ядре, вернее, в ядрышке,' где происходит их сборка из отдельных более мелких частиц. Рибосомы содержатся в цитоплазме и хлоропластах. Особенное хорошо они заметны в клетках, интенсивно синтезирующих белок, так как основная их функция — синтез белка. Лизосомы. Круглые пузырьки, осуществляющие внутреннее переваривание веществ. Содержат ряд ферментов, отделены мембраной от цитоплазмы. Пероксисомы. Мелкие пузырьки. В них происходит фотодыхание. Микротрубочки. Располагаются в наружном слое цитоплазмы. Состоят из белка тубулина. Входят в состав веретена при делении клеток (митозе).
НАСЛЕДСТВЕННАЯ ИНФОРМАЦИЯ И РЕГУЛЯЦИЯ У РАСТЕНИЙ
Основное свойство образовывать один и тот же вид при развитии растения из воспроизводящей клетки, т. е. свойство наследственности, заключено в ядре и связано с ДНК. Большое значение в регуляции функций организма играет цитоплазматическая связь между клетками. Они соединены цитоплазматическими нитями — плазмодесмами, объединяющими клетки как бы в единое целое. Впервые плазмодесмы были обнаружены проф. Горожанкиным. Очень важную роль играет гормональная регуляция физиологических функций. В растениях образуются следующие гормоны: ауксины, гиббереллины, цитокинины, абсцизовая кислота и этилен. О значении каждого из этих гормонов будет идти речь ниже. Световая регуляция осуществляется длиной дня, продолжительность которого влияет на развитие растений. Растения делятся на растения короткого дня, зацветающие лишь при укорочении длины дня осенью, растения длинного дня, зацветающие только при длине дня больше 12 ч, и нейтральные растения, зацветающие как на коротком, так и на длинном дне. Наконец, регулирование светом может осуществляться с помощью специального вещества — фитохрома. Фитохром имеет две формы: активную и неактивную. Активная форма тормозит рост, неактивная форма дает симптомы этиоляции. По своей природе фитохром близок к пигментам сине-зеленых и красных водорослей фикоциану и фикоэритрину. Освещение красным светом с длиной волны 660 нм переводит фитохром в активную форму, а более длинноволновый красный свет приводит фитохром уже в неактивное состояние. Таковы в очень коротких чертах основы регуляции отдельных функций растений. Как мы уже знаем, белковые вещества, составляющие основу живых организмов, построены из аминокислот. В организмах имеется свыше 20 аминокислот. Эти 20 аминокислот могут складываться различным образом и образовывать разнообразные белки, которые выполняют ту или иную функцию в организме. Число комбинаций сложения аминокислот почти безгранично, и это определяет специфичность отдельных белков. План построения белка из аминокислот заложен, или, как говорят, "закодирован", в молекуле ДНК, находящейся в ядре. Нуклеиновые кислоты ДНК и РНК состоят из трех структурных элементов: азотистых оснований, сахара и фосфорной кислоты. Соединяясь, эти вещества образуют нуклеотиды. Нуклеиновые кислоты представляют собой продукты полимеризации (уплотнения) большого числа нуклеотидов. Полимерами называют вещества, молекулы которых состоят из одинаковых, периодически повторяющихся групп атомов. Например, полиэтилен имеет строение: (—СНг—СНг)л—СНг—СНг— ДНК — сложный полимер с молекулярной массой от 4 до 10 млн. Она состоит из двух полинуклеотидных цепей, образованных большим числом соединенных между собой нуклеотидов. В состав ДНК входит сахар дезоксирибоза (С5Н10О4). ДНК очень чувствительна к действию кислот и при гидролизе в молекулярном растворе соляной кислоты при 60°С через несколько минут распадается на нуклеотиды.
Схема молекулы ДНК
РНК в отличие от ДНК состоит из одной цепи полинуклеотидов и вместо дезоксирибозы содержит d-рибозу (С5Н10О5). РНК распадается на нуклеотиды под влиянием щелочей. В ядре при непосредственном участии ДНК образуется РНК, которая содержит полученные oт ДНК сведения о порядке сложения аминокислот в различные белки. Эта РНК носит название информационной или посредника. На каждую нить информационной РНК садится по нескольку рибосом. Эта цепочка рибосом называется полисомой. В полисомах происходит синтез белка при участии содержащейся в рибосомах рибосомальной РНК. Отдельныерибосомы движутся по нити РНК, считывают заложенную в ней информацию (сведения), полученную в ядре от ДНК и укладывают аминокислоты в полипептидные цепи. Аминокислоты, образовавшиеся в процессе обмена веществ, под водятся к полисомам особой, тоже образовавшейся первоначально в ядре РНК-переносчиком или транспортной РНК названной так потому, что она переносит активированны соответственными ферментами аминокислоты на рибосомы. Таких различных РНК-переносчиков имеется примерно 20 по числу аминокислот, из которых строятся белки. Таким образом, в синтезе белка в растениях участвуют различные РНК: рибосомальная РНК, информационная РНК передающая порядок укладки аминокислот в полипептидны цепи, и транспортная РНК, которая доставляет активированные соответственными ферментами аминокислоты к полисе мам. Такова схема синтеза белков в растении. Каждая клетка организма содержит полный набор информации о строении всех белков, которые она может синтезировать. Поэтому из маленького кусочка листа многих растений, например бегонии, может развиться целое растение ил даже из одной клетки (в культуре тканей, см. ниже) может развиться целый организм. С другой стороны, только из ядра или только из цитоплазмы новый организм не образуется, так как весь процесс образования белков происходит только в целостной клетке, состоящей из ядра и цитоплазмы.
Схема биосинтеза белка в клетке www.referatmix.ru Курсовая работа - Основные свойства цитоплазмыФизико-химические свойства цитоплазмы. Цитоплазма, представляющая собой основную массу протопласта (за вычетом ядра, митохондрии и пластид), имеет сложное строение, детали которого до сих пор еще не выяснены. Она состоит из большого количества высокомолекулярных веществ — биополимеров. Часть последних формирует особые структурные образования — мембраны, придающие цитоплазме значительную структурность. Цитоплазма проявляет свойства сравнительно вязкой жидкости, но одновременно и некоторые свойства твердого тела (эластичность). Подобное сочетание свойств возможно благодаря тому, что молекулы биополимеров способны образовывать временные ассоциации различных размеров. Разрушение этих ассоциаций способствует проявлению жидкостных свойств, их восстановлению — проявлению свойств твердого тела. Структурную основу всей цитоплазмы, так называемый цитоскелет, составляют особые белки, способные преобразовывать химическую энергию в механическую работу. Это — сократительные белки, подобные тем белкам, из которых построены мышцы животных. Благодаря пустой сети мембран внутри цитоплазмы образуется множество так называемых отделов. Тем самым создаются условия для пространственного разграничения различных биохимических процессов. Эти процессы могут протекать одновременно в разных частях цитоплазмы одной и той же клетки, не мешая друг другу. Схема строения геля Молекулы биополимеров — белков и липидов — в мембранах расположены в строго определенной последовательности. Благодаря такому строению мембрана обладает способностью избирательно пропускать молекулы одних веществ и не пропускать молекулы других веществ, т. е. она обладает избирательной проницаемостью, и играет важную роль в жизнедеятельности. Цитоплазма имеет две пограничные мембраны. Одна из этих мембран, называемая плазма леммой, отграничивает цитоплазму от вакуоли. Тонопласт — наиболее устойчивая часть цитоплазмы; при гибели содержимого клетки он отмирает последним. Значительную роль в процессах структурообразования в цитоплазме играют ионы, а также молекулы низкомолекулярных соединений, обладающие полярными группами. Схематическое изображение различных форм плазмолиза: 1 — выпуклая; 2 — вогнутая; 3, 4 — судорож Поступление веществ в цитоплазму. Вещество, поступившее в цитоплазму, либо связывается самой цитоплазмой, либо поступает из нее в клеточный сок. Растворы солей или Сахаров высокой концентрации обычно не проникают в цитоплазму, а оттягивают из нее воду. При этом цитоплазма отходит от стенок клетки. Это явление получило название плазмолиза. При отхождении цитоплазмы от стенок клетки она образует вогнутую поверхность (вогнутый плазмолиз), которая затем через 15—30 мин переходит в выпуклую форму (выпуклый плазмолиз). Своеобразную форму плазмолиза можно вызвать действием раствора роданистого калия (KCNS) на клетку чешуи лука. Анионы CNS проникают в клетку и вызывают набухание мезоплазмы, внутрь вакуоли они не проникают. Мезоплазма при этом становится хорошо заметной в виде колпачков на полюсах плазмолизированного протопласта. Отсюда данный тип плазмолиза получил название колпачкового плазмолиза. Колпачковый плазмолиз обнаруживает первый тип проницаемости цитоплазмы, когда проникшее вещество связывается самой цитоплазмой и не поступает в вакуоль. Другой тип проницаемости цитоплазмы связан с проникновением вещества в вакуоль. Далеко не все растворы вызывают долго длящийся плазмолиз. Если плазмолизировать протопласт клетки раствором мочевины или глицерина, то сначала наблюдается плазмолиз. Затем плазмолиз сравнительно быстро заканчивается. Мочевина и глицерин быстро проникают внутрь вакуоли, увеличивают концентрацию клеточного сока, который начинает поглощать воду из окружающего раствора. При этом цитоплазма вновь подходит к стенкам клетки. Это явление получило название деплазмолиза, и такой плазмолиз называется временным. Колпачковый плазмолиз в растворе роданистого калия Проникновение вещества в вакуоли клетки можно наблюдать на примере действия красителя метиленового синего (водный раствор 1:5000) на какое-нибудь водное растение, например элодею. Краситель скопляется внутри вакуолей, и очень часто в них даже образуется осадок из красителя, связанного с дубильными веществами вакуолей. Проницаемость цитоплазмы связана с активной жизнедеятельностью (дыханием) растения. Поступление веществ (солей или, вернее, их катионов и анионов) в цитоплазму идет за счет обмена их на ионы, выходящие из клетки. Это происходит таким образом, что образованные в процессе дыхания Н+ и НСОз (ионы угольной кислоты) выделяются в окружающий раствор, а на их место в цитоплазму поступают ионы калия и натрия вместо ионов водорода, а на место иона НСОз— соответственные анионы. Не всегда вещества проникают в цитоплазму за счет ее активной жизнедеятельности. Дело в том, что поверхностные слои цитоплазмы богаты липидами, которые не образуют сплошной пленки на поверхности цитоплазмы, а чередуются с молекулами белков или вкраплены в белковый остов поверхностных слоев, т. е. на поверхности цитоплазмы образуется своеобразная мозаика из участков белков и липидов. Растворимые в липидах вещества (спирт, эфир, хлороформ и др.) очень легко проникают в цитоплазму. Вода и соли, нерастворимые в липидах, проникают в цитоплазму через белковые слои. Проницаемость цитоплазмы не остается постоянной в течение жизни растения, а меняется с возрастом, а также увеличивается при повышении температуры и интенсивности освещения. Движение цитоплазмы. Одним из характерных свойств цитоплазмы является ее способность к движению. Движение цитоплазмы и находящихся в ней включений происходит как в постенном слое, так и в тяжах, связывающих ядро с цитоплазмой. Скорость перемещения цитоплазмы в эпидермисе чешуи лука составляет примерно 5—7 м/с. На скорость движения Цитоплазмы влияют температура, свет и другие факторы. В одном из опытов движение цитоплазмы в клетках водного растения валлиснерии начиналось при температуре 1,25°С, шло с наибольшей интенсивностью при 38,5°С и останавливалось при 45°С. Движение цитоплазмы играет большую роль в жизнедеятельности растительного организма, способствуя перемещению веществ из одной клетки в другую. Вязкость — одно из важнейших свойств цитоплазмы. Она очень сильно колеблется в зависимости от вида растения, а также от фаз его развития. У некоторых растений вязкость цитоплазмы немного превышает вязкость воды, а у других достигает вязкости глицерина, превосходящего в этом отношении воду в 87 раз. Вязкость цитоплазмы тесно связана с обменом веществ: чем выше вязкость, тем обычно менее интенсивен обмен. У созревших семян цитоплазма переходит в студенистое состояние — гель. Высокая вязкость цитоплазмы способствует увеличению устойчивости растений к повышенной температуре. Сравнительное определение вязкости цитоплазмы производят по времени перехода вогнутого плазмолиза в выпуклый. Насколько тесно связана вязкость цитоплазмы с температурой коагуляции белков, видно на примере озимой ржи. Вязкость цитоплазмы в различных органах ржи неодинакова. В тех органах, где она выше, белки цитоплазмы свертываются при более высокой температуре. ОРГАНОИДЫ КЛЕТКИ Помимо цитоплазмы, в световом микроскопе можно наблюдать и другие составные части, получившие название органоидов клетки. К ним относятся ядро, пластиды, митохондрии. Крупные органоиды (ядро, пластиды) хорошо видны в световом микроскопе, другие органоиды (митохондрии, рыбосомы) и структурные элементы цитоплазмы (аппарат Гольджи, эндоплазматическая сеть) только лишь в электронном микроскопе. Ядро является обязательной составной частью любой растительной и животной клетки. Оно имеет обычно округлую или слегка вытянутую форму. Абсолютные размеры ядра не превышают 7—8 мкм. Ядро состоит из ядерной плазмы (кариоплазмы), ядрышка, ядерной оболочки, отграничивающей ядро от окружающей цитоплазмы. Кариоплазма содержит твердую часть — хроматин и жидкую — ядерный сок. Хроматин — это сложное образование, в состав которого входят нуклеопротеиды, т. е. соединения белков с нуклеиновыми кислотами. В ядре содержится дезоксирибонуклеиновая кислота, ДНК, а в ядрышке — рибонуклеиновая кислота — РНК. Лейкопласты в эпидермисе листьев традесканции: 1— лейкопласты; 2—ядро; 3— оболочка Ядро играет огромную роль в жизни клеток. При делении клеток (митозе) из хроматина ядра образуются хромосомы, которые являются носителями наследственности. Число хромосом строго определенно для каждого отдельного вида растений и животных. Ядро имеет большое значение и в неделящейся клетке. О роли ядра можно судить по изучению физиологии безъядерных клеток. В 1890 г. И.И. Герасимов, действуя на делящуюся клетку водоросли спирогиры низкой температурой, или эфиром, получал безъядерные клетки и клетки, содержащие двойное количество ядерного вещества. Безъядерные клетки хотя и продолжали некоторое время жить, но переставали расти, обмен веществ в них шел ненормально. Образовавшийся в процессе фотосинтеза крахмал не претерпевал дальнейших превращений, и клетки им переполнялись. Отделенная от ядра цитоплазма сравнительно быстро погибает из-за нарушения обмена веществ. Изолированное от цитоплазмы ядро также не может существовать. Жизнеспособными являются только клетки, содержащие цитоплазму и ядро. Пластиды. Пластидами называются особые органоиды в клетке. К ним относят бесцветные лейкопласты, зеленые хлоропласты и оранжевые хромопласты. Все виды пластид могут возникать из бесцветных пропластид. Окраска пластид обусловлена особыми пигментами (красящими веществами): в хлоропластах — зеленым хлорофилле м, а в хромопластах — оранжевым каротином. Лейкопласты имеются в клубнях и корневищах растений, где они образуют запасной крахмал. Кроме того, они встречаются в эпидермисе листьев некоторых растений, например в листьях традесканции. Роль их в эпидермисе связана с тем, что они содержат ряд ферментов и способствуют ферментативной деятельности клеток. Известно, что выращенные в темноте растения бывают бледно- желтого цвета. Хлоропласты в листьях лехалениума Хромопласты лепестков настурции Хлоропласты встречаются в лепестках, плодах и некоторых корнях (морковь). Могут возникать из пропластид и из хлоропластов. Плоды многих растений бывают сначала зелеными — содержат хлоропласты (томаты, рябина, шиповник), затем они краснеют, так как у них разрушается — хлорофилл и остается оранжевый пигмент каротин. В хлоропластах также имеется каротин, но он маскируется зеленым пигментом хлорофиллом. Хромопласты часто имеют игольчатую или неправильную форму, так как каротиноиды в них кристаллизуются. Помимо пластид, в клетках имеются и другие органоиды — митохондрии, размером около 1 мкм, играющие большую роль в дыхании растений. СУБМИКРОСКОПИЧЕСКОЕ СТРОЕНИЕ КЛЕТКИ Электронный микроскоп и основные принципы его работы. Создание и применение светового микроскопа способствовало развитию ряда биологических наук — цитологии, гистологии, микробиологии, успехи которых привели к крупным практическим результатам в области медицины, сельского хозяйства и ряда отраслей промышленности. Однако уже к концу XIX в. выяснилось, что возможности светового микроскопа ограничены. Частицы мельче 0,2 мкм в световом микроскопе уже неразличимы. Они лежат ниже разрешающей способнорти микроскопа, т.е. способности различать две отдельные точки. Развитие физики электронных явлений дало возможность использовать для микроскопа электронные излучения. На смену стеклянным линзам пришли «электронные линзы» — электромагнитные поля, способные фокусировать и преломлять электронный пучок. В сороковых годах XX в. начали изготовляться первые электронные микроскопы. Разрешающая способность лучших из них составляет в настоящее время около 10-8 — 2-10-8 см, причем увеличение достигает 1 000 000 раз. Строение клетки под электронным микроскопом. Изучение ультратонких срезов клеток привело к открытию, что все структурные элементы цитоплазмы клетки и клеточные органоиды имеют мембранное строение. Электронный микроскоп помог увидеть тонкое строение клеток растений и животных. Цитоплазма состоит из матрикса (основы) и заключенных в нееорганелл (хлоропласты, митохондрии, аппарат Гольджи и др.), а также мембран. На поверхности цитоплазмы имеются мембраны — плазмалемма а на поверхности вакуоли — тонопласт. Мембраны клетки состоят из липидов и белков. Таким образом, строение мембраны имеет мозаичный характер. Эндоплазматическая сеть состоит из длинных канальцев, пронизывающих цитоплазму; представляет собой выросты двойной ядерной мембраны. Эндоплазматическая сеть образует в цитоплазме непрерывную систему, ограничивающую полости, по которым перемещаются вещества между ядром и цитоплазмой. Эндоплазматическая сеть увеличивает поверхность цитоплазмы и, как бы изолируя ее на отдельные участки, способствует протеканию разнообразных процессов в [различных частях клетки. Аппарат Гольджи — структурный элемент цитоплазмы клетки, названный в честь итальянского ученого, который впервые описал это образование. Долгое время считали, что аппарат Гольджи имеется только в животных клетках. В дальнейшем он был обнаружен и в растительных клетках. Аппарат Гольджи состоит из системы мембран, сгруппированных в стопки. По концам мембран наблюдаются вздутия, которые отшнуровываются от них в виде пузырьков, способных превращаться в вакуоли или цистерны. Ядро. Изучение ядра в электронном микроскопе показало, 100% то оно окружено оболочкой, состоящей из двух мембран — внутренней и наружной. Предполагают, что наружная мембрана является продолжением мембран, составляющих эндоплазматическую сеть цитоплазмы. В ядерной оболочке имеются поры (до двухсот), через которые происходит обмен между веществами ядра и цитоплазмы. Ядро состоит из округлых гранул, образованных ДНК и РНК в соединении с белками. Кроме того, в ядре имеется одно или несколько ядрышек, содержащих в основном рибонуклеиновую кислоту (РНК). Хлоропласты. Хлоропласт отделен от цитоплазмы оболочкой. Внутри хлоропласта расположены пачки мембран, образующих пары, соединенные концами. В результате этого образуется замкнутый диск. Пачки дисков, расположенных в определенном порядке образуют граны ^Хлоропластов. У большинства растений мембрана граны переводит в более тонкую мембрану стромы. Строма является основным веществом хлоропласта и заполняет объем, не заснятый мембранной системой. В строме находятся капельки жира, крахмальные зерна, гранулярное вещество, содержащее ферменты. Считается, что мембрана хлоропласта (толщина около 70-10-8 см) состоит из двух слоев липидов, находящихся между двумя тонкими слоями белка. Хлорофилл образует мономолекулярный слой по всей поверхности диска. Митохондрии. Электронномикроскопическое изучение митохондрий в клетках показало, что они одеты поверхностной мембраной, под которой находится множество внутренних мембран, расположенных параллельно друг другу. Все мембраны, как мы уже знаем, состоят из нескольких слоев. Толщина слоев и расстояние между ними довольно постоянны. Между мембранами находится внутреннее пространство митохондрий, величина его различна у митохондрий разных клеток. Митохондрии подвижны и могут перемещаться в клетке за счет собственного движения. Однако по большей части они передвигаются током движущейся цитоплазмы. На свету митохондрии движутся к хлоропластам, а в темноте — к стенкам клетки. Митохондрии состоят на 30—40% (сухое вещество) из белков, на 25—38% из липидов. В них содержится от 1 до 6% рибонуклеиновой кислоты. Большую роль в образовании митохондрии играют ионы кальция. При недостатке солей кальция в растении число митохондрий уменьшается. Мембраны митохондрий содержат постоянный набор ферментов, которые участвуют в процессах окисления и накопления энергии при дыхании. Митохондрии могут осуществлять синтез близких к белкам веществ — пептидов, по-видимому, принимают участие в жировом обмене, а также в поглощении солей и воды. Под влиянием высокой температуры митохондрии набухают и теряют свою структуру. Рибосомы в отличие от пластид и митохондрий представляют собой не микроскопические, а субмикроскопические органоиды размером от 200-10-8 —280-10-8 см. Рибосомы состоят из белков (55%), фосфолипидов (4%) и рибонуклеиновой кислоты (40% от сухого вещества). Они содержат 65% всей рибонуклеиновой кислоты клеток. Рибосомы образуются в ядре, вернее, в ядрышке,' где происходит их сборка из отдельных более мелких частиц. Рибосомы содержатся в цитоплазме и хлоропластах. Особенное хорошо они заметны в клетках, интенсивно синтезирующих белок, так как основная их функция — синтез белка. Лизосомы. Круглые пузырьки, осуществляющие внутреннее переваривание веществ. Содержат ряд ферментов, отделены мембраной от цитоплазмы. Пероксисомы. Мелкие пузырьки. В них происходит фотодыхание. Микротрубочки. Располагаются в наружном слое цитоплазмы. Состоят из белка тубулина. Входят в состав веретена при делении клеток (митозе). НАСЛЕДСТВЕННАЯ ИНФОРМАЦИЯ И РЕГУЛЯЦИЯ У РАСТЕНИЙ Основное свойство образовывать один и тот же вид при развитии растения из воспроизводящей клетки, т. е. свойство наследственности, заключено в ядре и связано с ДНК. Большое значение в регуляции функций организма играет цитоплазматическая связь между клетками. Они соединены цитоплазматическими нитями — плазмодесмами, объединяющими клетки как бы в единое целое. Впервые плазмодесмы были обнаружены проф. Горожанкиным. Очень важную роль играет гормональная регуляция физиологических функций. В растениях образуются следующие гормоны: ауксины, гиббереллины, цитокинины, абсцизовая кислота и этилен. О значении каждого из этих гормонов будет идти речь ниже. Световая регуляция осуществляется длиной дня, продолжительность которого влияет на развитие растений. Растения делятся на растения короткого дня, зацветающие лишь при укорочении длины дня осенью, растения длинного дня, зацветающие только при длине дня больше 12 ч, и нейтральные растения, зацветающие как на коротком, так и на длинном дне. Наконец, регулирование светом может осуществляться с помощью специального вещества — фитохрома. Фитохром имеет две формы: активную и неактивную. Активная форма тормозит рост, неактивная форма дает симптомы этиоляции. По своей природе фитохром близок к пигментам сине-зеленых и красных водорослей фикоциану и фикоэритрину. Освещение красным светом с длиной волны 660 нм переводит фитохром в активную форму, а более длинноволновый красный свет приводит фитохром уже в неактивное состояние. Таковы в очень коротких чертах основы регуляции отдельных функций растений. Как мы уже знаем, белковые вещества, составляющие основу живых организмов, построены из аминокислот. В организмах имеется свыше 20 аминокислот. Эти 20 аминокислот могут складываться различным образом и образовывать разнообразные белки, которые выполняют ту или иную функцию в организме. Число комбинаций сложения аминокислот почти безгранично, и это определяет специфичность отдельных белков. План построения белка из аминокислот заложен, или, как говорят, «закодирован», в молекуле ДНК, находящейся в ядре. Нуклеиновые кислоты ДНК и РНК состоят из трех структурных элементов: азотистых оснований, сахара и фосфорной кислоты. Соединяясь, эти вещества образуют нуклеотиды. Нуклеиновые кислоты представляют собой продукты полимеризации (уплотнения) большого числа нуклеотидов. Полимерами называют вещества, молекулы которых состоят из одинаковых, периодически повторяющихся групп атомов. Например, полиэтилен имеет строение: (—СНг—СНг)л —СНг—СНг— ДНК — сложный полимер с молекулярной массой от 4 до 10 млн. Она состоит из двух полинуклеотидных цепей, образованных большим числом соединенных между собой нуклеотидов. В состав ДНК входит сахар дезоксирибоза (С5Н10О4). ДНК очень чувствительна к действию кислот и при гидролизе в молекулярном растворе соляной кислоты при 60°С через несколько минут распадается на нуклеотиды. Схема молекулы ДНК РНК в отличие от ДНК состоит из одной цепи полинуклеотидов и вместо дезоксирибозы содержит d-рибозу (С5Н10О5). РНК распадается на нуклеотиды под влиянием щелочей. В ядре при непосредственном участии ДНК образуется РНК, которая содержит полученные oт ДНК сведения о порядке сложения аминокислот в различные белки. Эта РНК носит название информационной или посредника. На каждую нить информационной РНК садится по нескольку рибосом. Эта цепочка рибосом называется полисомой. В полисомах происходит синтез белка при участии содержащейся в рибосомах рибосомальной РНК. Отдельныерибосомы движутся по нити РНК, считывают заложенную в ней информацию (сведения), полученную в ядре от ДНК и укладывают аминокислоты в полипептидные цепи. Аминокислоты, образовавшиеся в процессе обмена веществ, под водятся к полисомам особой, тоже образовавшейся первоначально в ядре РНК-переносчиком или транспортной РНК названной так потому, что она переносит активированны соответственными ферментами аминокислоты на рибосомы. Таких различных РНК-переносчиков имеется примерно 20 по числу аминокислот, из которых строятся белки. Таким образом, в синтезе белка в растениях участвуют различные РНК: рибосомальная РНК, информационная РНК передающая порядок укладки аминокислот в полипептидны цепи, и транспортная РНК, которая доставляет активированные соответственными ферментами аминокислоты к полисе мам. Такова схема синтеза белков в растении. Каждая клетка организма содержит полный набор информации о строении всех белков, которые она может синтезировать. Поэтому из маленького кусочка листа многих растений, например бегонии, может развиться целое растение ил даже из одной клетки (в культуре тканей, см. ниже) может развиться целый организм. С другой стороны, только из ядра или только из цитоплазмы новый организм не образуется, так как весь процесс образования белков происходит только в целостной клетке, состоящей из ядра и цитоплазмы. Схема биосинтеза белка в клетке www.ronl.ru Реферат - Цитоплазма. Органеллы общего значения и специальные, их строение и функции.
В цитоплазме различают основное вещество (матрикс, гиалоплазма), включения и органеллы. Основное вещество цитоплазмы заполняет пространство между плазмалеммой, ядерной оболочкой и другими внутриклеточными структурами. Обычный электронный микроскоп не выявляет в нем какой-либо внутренней организации. Белковый состав гиалоплазмы разнообразен. Важнейшие из белков представлены ферментами гаиколиза, обмена Сахаров, азотистых оснований, аминокислот и липидов. Ряд белков гиалоплазмы служит субъединицами, из которых происходит сборка таких структур, как микротрубочки. Основное вещество цитоплазмы образует истинную внутреннюю среду клетки, которая объединяет все внутриклеточные структуры и обеспечивает взаимодействие их друг с другом. Выполнение матриксом объединяющей, а также каркасной функции может быть связано с выявляемой с помощью сверхмощного электронного микроскопа микротрабекулярной сети, образованной тонкими фибриллами толщиной 2—3 нм и пронизывающей всю цитоплазму. Через гиалоплазму осуществляется значительный объем внутриклеточных перемещений веществ и структур. Основное вещество цитоплазмы следует рассматривать так же, как сложную коллоидную систему, способную переходить из золеобразного (жидкого) состояния в гелеобразное. В процессе таких переходов совершается работа. О функциональном значении таких переходов см. разд. 2.3.8. Включениями (рис. 2.5) называют относительно непостоянные компоненты цитоплазмы, которые служат запасными питательными веществами (жир, гликоген), продуктами, подлежащими выведению из клетки (гранулы секрета), балластными веществами (некоторые пигменты). Органеллы — это постоянные структуры цитоплазмы, выполняющие в клетке жизненно важные функции. Выделяют органеллы общего значения и специальные. Последние в значительном количестве присутствуют в клетках, специализированных к выполнению определенной функции, но в незначительном количестве могут встречаться и в других типах клеток. К ним относят, например, микроворсинки всасывающей поверхности эпителиальной клетки кишечника, реснички эпителия трахеи и бронхов, синаптические пузырьки, транспортирующие вещества — переносчики нервного возбуждения с одной нервной клетки на другую или клетку рабочего органа, миофибриллы, от которых зависит сокращение мышцы. Детальное рассмотрение специальных органелл входит в задачу курса гистологии. К органеллам общего значения относят элементы канальцевой и вакуолярной системы в виде шероховатой и гладкой цитоплазматической сети, пластинчатый комплекс, митохондрии, рибосомы и полисомы, лизосомы, пероксисомы, микрофибриллы и микротрубочки, центриоли клеточного центра. В растительных клетках выделяют также хлоропласта, в которых происходит фотосинтез. Канальцевая и вакуолярная системы образованы сообщающимися или отдельными трубчатыми или уплощенными (цистерна) полостями, ограниченными мембранами и распространяющимися по всей цитоплазме клетки. Нередко цистерны имеют пузыревидные расширения. В названной системе выделяют шероховатую и гладкую цитоплазматическую сети (см. рис. 2.3). Особенность строения шероховатой сети состоит в прикреплении к ее мембранам полисом. В силу этого она выполняет функцию синтеза определенной категории белков, преимущественно удаляемых из клетки, например секретируемых клетками желез. В области шероховатой сети происходит образование белков и липидов цитоплазматических мембран, а также их сборка. Плотно упакованные в слоистую структуру цистерны шероховатой сети являются участками наиболее активного белкового синтеза и называются эргастоплазмой. Мембраны гладкой цитоплазматической сети лишены полисом. Функционально эта сеть связана с обменом углеводов, жиров и других веществ небелковой природы, например стероидных гормонов (в половых железах, корковом слое надпочечников). По канальцам и цистернам происходит перемещение веществ, в частности секретируемого железистой клеткой материала, от места синтеза в зону упаковки в гранулы. В участках печеночных клеток, богатых структурами гладкой сети, разрушаются и обезвреживаются вредные токсические вещества, некоторые лекарства (барбитураты). В пузырьках и канальцах гладкой сети поперечно-полосатой мускулатуры сохраняются (депонируются) ионы кальция, играющие важную роль в процессе сокращения.
Рибосома — это округлая рибонуклеопротеиновая частица диаметром 20—30 нм. Она состоит из малой и большой субъединиц, объединение которых происходит в присутствии матричной (информационной) РНК (мРНК). Одна молекула мРНК обычно объединяет несколько рибосом наподобие нитки бус. Такую структуру называют полисомой. Полисомы свободно располагаются в основном веществе цитоплазмы или прикреплены к мембранам шероховатой цитоплазматической сети. В обоих случаях они служат местом активного синтеза белка. Сравнение соотношения количества свободных и прикрепленных к мембранам полисом в эмбриональных недифференцированных и опухолевых клетках, с одной стороны, и в специализированных клетках взрослого организма —с другой, привело к заключению, что на полисомах гиалоплазмы образуются белки для собственных нужд (для «домашнего» пользования) данной клетки, тогда как на полисомах гранулярной сети синтезируются белки, выводимые из клетки и используемые на нужды организма (например, пищеварительные ферменты, белки грудного молока). Пластинчатый комплекс Голъджи образован совокупностью диктиосом числом от нескольких десятков (обычно около 20) до нескольких сотен и даже тысяч на клетку. Диктиосома (рис. 2.6, А) представлена стопкой из 3—12 уплощенных дискообразных цистерн, от краев которых отшнуровываются пузырьки (везикулы). Ограниченные определенным участком (локальные) расширения цистерн дают более крупные пузырьки (вакуоли). В дифференцированных клетках позвоночных животных и человека диктиосомы обычно собраны в околоядерной зоне цитоплазмы. В пластинчатом комплексе образуются секреторные пузырьки или вакуоли, содержимое которых составляют белки и другие соединения, подлежащие выводу из клетки. При этом предшественник секрета (просекрет), поступающий.в диктиосому из зоны синтеза, подвергается в ней некоторым химическим преобразованиям. Он также обособляется (сегрегируется) в виде «порций», которые здесь же одеваются мембранной оболочкой. В пластинчатом комплексе образуются лизосомы. В диктиосомах синтезируются полисахариды, а также их комплексы с белками (гликопротеины) и жирами (гликолипиды), которые затем можно обнаружить в гликокаликсе клеточной оболочки. Митохондрии (рис. 2.6,Б)— это структуры округлой или палочко-видной, нередко ветвящейся формы толщиной 0,5 мкм и длиной обычно до 5—10 мкм. В большинстве животных клеток количество митохондрий колеблется от 150 до 1500, однако в женских половых клетках их число достигает нескольких сотен тысяч. В сперматозоидах нередко присутствует одна гигантская митохондрия, спирально закрученная вокруг осевой части жгутика. Одна разветвленная митохондрия обнаружена в клетке такого паразита человека, как трипаносома. Оболочка митохондрий состоит из двух мембран, различающихся по химическому составу, набору ферментов и функциям. Внутренняя мембрана образует впячивания листовидной (кристы) или трубчатой (тубулы) формы. Пространство, ограниченное внутренней мембраной, составляет матрикс органеллы. В нем с помощью электронного микроскопа обнаруживаются зерна диаметром 20—40 нм. Они накапливают ионы кальция и магния, а также полисахариды, например гликоген.
В матриксе размещен собственный аппарат биосинтеза белка органеллы. Он представлен 2—б копиями кольцевой и лишенной гистонов (как у прокариот) молекулы ДНК, рибосомами, набором транспортных РНК (тРНК), ферментами редупликации ДНК, транскрипции и трансляции наследственной информации. По основным свойствам: размерам и структуре рибосом, организации собственного наследственного материала — этот аппарат сходен с таковым у прокариот и отличается от аппарата биосинтеза белка цитоплазмы эукариотической клетки (чем подтверждается симбиотическая гипотеза происхождения митохондрий; см. § 1.5). Гены собственной ДНК кодируют нуклеотидные последовательности митохондриальных рРНК и тРНК, а также последовательности аминонокислот некоторых белков органеллы, главным образом ее внутренней мембраны. Аминокислотные последовательности (первичная структура) большинства белков митохондрий закодированы в ДНК клеточного ядра и образуются вне органеллы в цитоплазме. Главная функция митохондрий состоит в ферментативном извлечении из определенных химических веществ энергии (путем их окисления) и накоплении энергии в биологически используемой форме (путем синтеза молекул аденозинтрифосфата —АТФ). В целом этот процесс называется окислительным (расформированием. В энергетической функции митохондрий активно участвуют компоненты матрикса и внутренняя мембрана. Именно с этой мембраной связаны цепь переноса электронов (окисление) и АТФ-синтетаза, катализирующая сопряженное с окислением фосфорилирование АДФ в АТФ. Среди побочных функций митохондрий можно назвать участие в синтезе стероидных гормонов и некоторых аминокислот (глутаминовая). Лизосомы (рис. 2.6, В) представляют собой пузырьки диаметром обычно 0,2—0,4 мкм, которые содержат набор ферментов кислых гидролаз, катализирующих при низких значениях рН гидролитическое (в водной среде) расщепление нуклеиновых кислот, белков, жиров, полисахаридов. Их оболочка образована одинарной мембраной, покрытой иногда снаружи волокнистым белковым слоем (на электронограммах «окаймленные» пузырьки). Функция лизосом — внутриклеточное переваривание оазличных химических соединений и структур. Первичными лизосомами (диаметр 100 нм) называют неактивные органеллы, вторичными — органеллы, в которых происходит процесс переваривания. Вторичные лизосомы образуются из первичных. Они подразделяются на гетеролизосомы (фаголизосомы) и аутолизосомы (цитолизосомы). В первых (рис. 2.6, Г) переваривается материал, поступающий в клетку извне путем пиноцитоза и фагоцитоза, во вторых разрушаются собственные структуры клетки, завершившие свою функцию. Вторичные лизосомы, в которых процесс переваривания завершен, называют остаточными тельцами (телолизосомы). В них отсутствуют гидролазы и содержится непереваренный материал. Микротельца составляют сборную группу органелл. Это ограниченные одной мембраной пузырьки диаметром 0,1—1,5 мкм с мелкозернистым матриксом и нередко кристаллоидными или аморфными белковыми включениями. К этой группе относят, в частности, пероксисомы. Они содержат ферменты оксидазы, катализирующие образование пероксида водорода, который, будучи токсичным, разрушается затем под действием фермента пероксидазы. Эти реакции включены в различные метаболические циклы, например в обмен мочевой кислоты в клетках печени и почек. В печеночной клетке число пероксисом достигает 70—100. К органеллам общего значения относят также некоторые постоянные структуры цитоплазмы, лишенные мембран. Микротрубочки (рис. 2.6, Д)— трубчатые образования различной длины с внешним диаметром 24 нм, шириной просвета 15 нм и толщиной стенки около 5 нм. Встречаются в свободном состоянии в цитоплазме клеток или как структурные элементы жгутиков, ресничек, митотического веретена, центриолей. Свободные микротрубочки и микротрубочки ресничек, жгутиков и центриолей имеют разную устойчивость к разрушающим воздействиям, например химическим (колхицин). Микротрубочки строятся из стереотипных субьединиц белковой природы путем их полимеризации. В живой клетке процессы полимеризации протекают одновременно с процессами деполимеризации. Соотношением этих процессов определяется количество микротрубочек. В свободном состоянии микротрубочки выполняют опорную функцию, определяя форму клеток, а также являются факторами направленного перемещения внутриклеточных компонентов. Микрофиламентами (рис. 2.6, Е) называют длинные, тонкие образования, иногда образующие пучки и обнаруживаемые по всей цитоплазме. Существует несколько разных типов микрофиламентов. Актиновые микрофиламенты благодаря присутствию в них сократимых белков (актин) рассматривают в качестве структур, обеспечивающих клеточные формы движения, например амебоидные. Им приписывают также каркасную роль и участие в организации внутриклеточных перемещений органелл и участков гиалоплазмы. По периферии клеток под плазмалеммой, а также в околоядерной зоне обнаруживаются пучки микрофиламентов толщиной 10 нм — промежуточные филстенты. В эпителиальных, нервных, глиальных, мышечных клетках, фибробластах они построены из разных белков. Промежуточные филаменты выполняют, по-видимому, механическую, каркасную функцию. Актиновые микрофибриллы и промежуточные филаменты, как и микротрубочки, построены из субъединиц. В силу этого их количество зависит от соотношения процессов полимеризации и деполимеризации. Для животных клеток, части клеток растений, грибов и водорослей характерен клеточный центр, в состав которого входят центриоли. Центриолъ (под электронным микроскопом) имеет вид «полого» цилиндра диаметром около 150 нм и длиной 300—500 нм. Ее стенка образована 27 микротрубочками, сгруппированными в 9 триплетов. В функцию центриолей входит образование нитей митотического веретена, которые также образованы микротрубочками. Центриоли поляризуют процесс деления клетки, обеспечивая расхождение сестринских хроматид (хромосом) в анафазе митоза. Эукариотическая клетка имеет клеточный скелет (цитоскелет) из внутриклеточных волокон (Кольцов) – начало ХХ века, в конце 1970 вновь открыт. Эта структура позволяет клетке иметь свою форму, иногда изменяя ее. Цитоплазма находится в движении. Цитоскелет участвует с процессе переноса органоидов, участвует в регенерации клеток. Митохондрии – сложные образования с двойной мембраной(0,2-0,7мкм) и разной формой. Внутренняя мембрана имеет кристы. Наружная мембрана проницаема практически для всех химических веществ, внутренняя – только активный транспорт. Между мембранами – матрикс. Митохондрии располагаются там, где необходима энергия. Митохондрии имеют систему рибосом, молекулу ДНК. Возможно возникновение мутаций (более66 заболеваний). Как правило, они связаны с недостаточной энергией АТФ, часто связаны с сердечно-сосудистой недостаточностью, патологиями. Количество митохондрий разное (в клетке трипаносомы- 1 митохондрия). Количество зависит от возраста, функции, активности ткани (печень – более1000). Лизосомы – тельца, окруженные элементарной мембраной. Содержат 60 ферментов( 40 лизосомальных, гидролитических). Внутри лизосомы – нейтральная среда. Активизируются низкими значениями рН, выходя в цитоплазму (самопереваривание). Мембраны лизосом защищают цитоплазму и клетку от разрушения. Образуются в комплексе Гольджи (внутриклеточный желудок, могут перерабатывать отработавшие свое структуры клетки). Есть 4 вида. 1-первичные, 2-4 – вторичные. С помощью эндоцитоза в клетку попадает вещество. Первичная лизосома (запасающая гранула) с набором ферментов, поглощает вещество и образуется пищеварительная вакуоль (при полном переваривании расщепление идет до низкомолекулярных соединений). Непереваренные остатки остаются в остаточных тельцах, которые могут накапливаться (лизосомные болезни накопления). Остаточные тельца, накапливающиеся в эмбриональном периоде, приводят к гаргалеизму, уродствам, мукополисахаридозам. Аутофагирующие лизосомы уничтожают собственные структуры клетки( ненужные структуры). Могут содержать митохондрии, части комплекса Гольджи. Часто образуются при голодании. Могут возникать при воздействии других клеток (эритроциты).
12.Поток информации, энергии и вещества в клетке. Жизнедеятельность клетки как единицы биологической активности обеспечивается совокупностью взаимосвязанных, приуроченных к определенным внутриклеточным структурам, упорядоченных во времени и пространстве обменных (метаболических) процессов. Эти процессы образуют три потока: информации, энергии и веществ. Благодаря наличию потока информации клетка на основе многовекового эволюционного опыта предков приобретает структуру, отвечающую критериям живого, поддерживает ее во времени, а также передает в ряду поколений. В потоке информации участвуют ядро (конкретно ДНК хромосом), макромолекулы, переносящие информацию в цитоплазму (мРНК), цитоплазматический аппарат трансляции (рибосомы и полисомы, тРНК, ферменты активации аминокислот). На завершающем этапе этого потока полипептиды, синтезированные на полисомах, приобретают третичную и четвертичную структуры и используются в качестве катализаторов или структурных белков (рис. 2.7). Кроме основного по объему заключенной информации ядерного генома в эукариотических клетках функционируют также геномы митохондрий, а в зеленых растениях — и хлоропластов.
Рис. 2.7. Поток биологической информации в клетке
www.ronl.ru Доклад - Основные свойства цитоплазмыФизико-химические свойства цитоплазмы. Цитоплазма, представляющая собой основную массу протопласта (за вычетом ядра, митохондрии и пластид), имеет сложное строение, детали которого до сих пор еще не выяснены. Она состоит из большого количества высокомолекулярных веществ — биополимеров. Часть последних формирует особые структурные образования — мембраны, придающие цитоплазме значительную структурность. Цитоплазма проявляет свойства сравнительно вязкой жидкости, но одновременно и некоторые свойства твердого тела (эластичность). Подобное сочетание свойств возможно благодаря тому, что молекулы биополимеров способны образовывать временные ассоциации различных размеров. Разрушение этих ассоциаций способствует проявлению жидкостных свойств, их восстановлению — проявлению свойств твердого тела. Структурную основу всей цитоплазмы, так называемый цитоскелет, составляют особые белки, способные преобразовывать химическую энергию в механическую работу. Это — сократительные белки, подобные тем белкам, из которых построены мышцы животных. Благодаря пустой сети мембран внутри цитоплазмы образуется множество так называемых отделов. Тем самым создаются условия для пространственного разграничения различных биохимических процессов. Эти процессы могут протекать одновременно в разных частях цитоплазмы одной и той же клетки, не мешая друг другу. Схема строения геля Молекулы биополимеров — белков и липидов — в мембранах расположены в строго определенной последовательности. Благодаря такому строению мембрана обладает способностью избирательно пропускать молекулы одних веществ и не пропускать молекулы других веществ, т. е. она обладает избирательной проницаемостью, и играет важную роль в жизнедеятельности. Цитоплазма имеет две пограничные мембраны. Одна из этих мембран, называемая плазма леммой, отграничивает цитоплазму от вакуоли. Тонопласт — наиболее устойчивая часть цитоплазмы; при гибели содержимого клетки он отмирает последним. Значительную роль в процессах структурообразования в цитоплазме играют ионы, а также молекулы низкомолекулярных соединений, обладающие полярными группами. Схематическое изображение различных форм плазмолиза: 1 — выпуклая; 2 — вогнутая; 3, 4 — судорож Поступление веществ в цитоплазму. Вещество, поступившее в цитоплазму, либо связывается самой цитоплазмой, либо поступает из нее в клеточный сок. Растворы солей или Сахаров высокой концентрации обычно не проникают в цитоплазму, а оттягивают из нее воду. При этом цитоплазма отходит от стенок клетки. Это явление получило название плазмолиза. При отхождении цитоплазмы от стенок клетки она образует вогнутую поверхность (вогнутый плазмолиз), которая затем через 15—30 мин переходит в выпуклую форму (выпуклый плазмолиз). Своеобразную форму плазмолиза можно вызвать действием раствора роданистого калия (KCNS) на клетку чешуи лука. Анионы CNS проникают в клетку и вызывают набухание мезоплазмы, внутрь вакуоли они не проникают. Мезоплазма при этом становится хорошо заметной в виде колпачков на полюсах плазмолизированного протопласта. Отсюда данный тип плазмолиза получил название колпачкового плазмолиза. Колпачковый плазмолиз обнаруживает первый тип проницаемости цитоплазмы, когда проникшее вещество связывается самой цитоплазмой и не поступает в вакуоль. Другой тип проницаемости цитоплазмы связан с проникновением вещества в вакуоль. Далеко не все растворы вызывают долго длящийся плазмолиз. Если плазмолизировать протопласт клетки раствором мочевины или глицерина, то сначала наблюдается плазмолиз. Затем плазмолиз сравнительно быстро заканчивается. Мочевина и глицерин быстро проникают внутрь вакуоли, увеличивают концентрацию клеточного сока, который начинает поглощать воду из окружающего раствора. При этом цитоплазма вновь подходит к стенкам клетки. Это явление получило название деплазмолиза, и такой плазмолиз называется временным. Колпачковый плазмолиз в растворе роданистого калия Проникновение вещества в вакуоли клетки можно наблюдать на примере действия красителя метиленового синего (водный раствор 1:5000) на какое-нибудь водное растение, например элодею. Краситель скопляется внутри вакуолей, и очень часто в них даже образуется осадок из красителя, связанного с дубильными веществами вакуолей. Проницаемость цитоплазмы связана с активной жизнедеятельностью (дыханием) растения. Поступление веществ (солей или, вернее, их катионов и анионов) в цитоплазму идет за счет обмена их на ионы, выходящие из клетки. Это происходит таким образом, что образованные в процессе дыхания Н+ и НСОз (ионы угольной кислоты) выделяются в окружающий раствор, а на их место в цитоплазму поступают ионы калия и натрия вместо ионов водорода, а на место иона НСОз— соответственные анионы. Не всегда вещества проникают в цитоплазму за счет ее активной жизнедеятельности. Дело в том, что поверхностные слои цитоплазмы богаты липидами, которые не образуют сплошной пленки на поверхности цитоплазмы, а чередуются с молекулами белков или вкраплены в белковый остов поверхностных слоев, т. е. на поверхности цитоплазмы образуется своеобразная мозаика из участков белков и липидов. Растворимые в липидах вещества (спирт, эфир, хлороформ и др.) очень легко проникают в цитоплазму. Вода и соли, нерастворимые в липидах, проникают в цитоплазму через белковые слои. Проницаемость цитоплазмы не остается постоянной в течение жизни растения, а меняется с возрастом, а также увеличивается при повышении температуры и интенсивности освещения. Движение цитоплазмы. Одним из характерных свойств цитоплазмы является ее способность к движению. Движение цитоплазмы и находящихся в ней включений происходит как в постенном слое, так и в тяжах, связывающих ядро с цитоплазмой. Скорость перемещения цитоплазмы в эпидермисе чешуи лука составляет примерно 5—7 м/с. На скорость движения Цитоплазмы влияют температура, свет и другие факторы. В одном из опытов движение цитоплазмы в клетках водного растения валлиснерии начиналось при температуре 1,25°С, шло с наибольшей интенсивностью при 38,5°С и останавливалось при 45°С. Движение цитоплазмы играет большую роль в жизнедеятельности растительного организма, способствуя перемещению веществ из одной клетки в другую. Вязкость — одно из важнейших свойств цитоплазмы. Она очень сильно колеблется в зависимости от вида растения, а также от фаз его развития. У некоторых растений вязкость цитоплазмы немного превышает вязкость воды, а у других достигает вязкости глицерина, превосходящего в этом отношении воду в 87 раз. Вязкость цитоплазмы тесно связана с обменом веществ: чем выше вязкость, тем обычно менее интенсивен обмен. У созревших семян цитоплазма переходит в студенистое состояние — гель. Высокая вязкость цитоплазмы способствует увеличению устойчивости растений к повышенной температуре. Сравнительное определение вязкости цитоплазмы производят по времени перехода вогнутого плазмолиза в выпуклый. Насколько тесно связана вязкость цитоплазмы с температурой коагуляции белков, видно на примере озимой ржи. Вязкость цитоплазмы в различных органах ржи неодинакова. В тех органах, где она выше, белки цитоплазмы свертываются при более высокой температуре. ОРГАНОИДЫ КЛЕТКИ Помимо цитоплазмы, в световом микроскопе можно наблюдать и другие составные части, получившие название органоидов клетки. К ним относятся ядро, пластиды, митохондрии. Крупные органоиды (ядро, пластиды) хорошо видны в световом микроскопе, другие органоиды (митохондрии, рыбосомы) и структурные элементы цитоплазмы (аппарат Гольджи, эндоплазматическая сеть) только лишь в электронном микроскопе. Ядро является обязательной составной частью любой растительной и животной клетки. Оно имеет обычно округлую или слегка вытянутую форму. Абсолютные размеры ядра не превышают 7—8 мкм. Ядро состоит из ядерной плазмы (кариоплазмы), ядрышка, ядерной оболочки, отграничивающей ядро от окружающей цитоплазмы. Кариоплазма содержит твердую часть — хроматин и жидкую — ядерный сок. Хроматин — это сложное образование, в состав которого входят нуклеопротеиды, т. е. соединения белков с нуклеиновыми кислотами. В ядре содержится дезоксирибонуклеиновая кислота, ДНК, а в ядрышке — рибонуклеиновая кислота — РНК. Лейкопласты в эпидермисе листьев традесканции: 1— лейкопласты; 2—ядро; 3— оболочка Ядро играет огромную роль в жизни клеток. При делении клеток (митозе) из хроматина ядра образуются хромосомы, которые являются носителями наследственности. Число хромосом строго определенно для каждого отдельного вида растений и животных. Ядро имеет большое значение и в неделящейся клетке. О роли ядра можно судить по изучению физиологии безъядерных клеток. В 1890 г. И.И. Герасимов, действуя на делящуюся клетку водоросли спирогиры низкой температурой, или эфиром, получал безъядерные клетки и клетки, содержащие двойное количество ядерного вещества. Безъядерные клетки хотя и продолжали некоторое время жить, но переставали расти, обмен веществ в них шел ненормально. Образовавшийся в процессе фотосинтеза крахмал не претерпевал дальнейших превращений, и клетки им переполнялись. Отделенная от ядра цитоплазма сравнительно быстро погибает из-за нарушения обмена веществ. Изолированное от цитоплазмы ядро также не может существовать. Жизнеспособными являются только клетки, содержащие цитоплазму и ядро. Пластиды. Пластидами называются особые органоиды в клетке. К ним относят бесцветные лейкопласты, зеленые хлоропласты и оранжевые хромопласты. Все виды пластид могут возникать из бесцветных пропластид. Окраска пластид обусловлена особыми пигментами (красящими веществами): в хлоропластах — зеленым хлорофилле м, а в хромопластах — оранжевым каротином. Лейкопласты имеются в клубнях и корневищах растений, где они образуют запасной крахмал. Кроме того, они встречаются в эпидермисе листьев некоторых растений, например в листьях традесканции. Роль их в эпидермисе связана с тем, что они содержат ряд ферментов и способствуют ферментативной деятельности клеток. Известно, что выращенные в темноте растения бывают бледно- желтого цвета. Хлоропласты в листьях лехалениума Хромопласты лепестков настурции Хлоропласты встречаются в лепестках, плодах и некоторых корнях (морковь). Могут возникать из пропластид и из хлоропластов. Плоды многих растений бывают сначала зелеными — содержат хлоропласты (томаты, рябина, шиповник), затем они краснеют, так как у них разрушается — хлорофилл и остается оранжевый пигмент каротин. В хлоропластах также имеется каротин, но он маскируется зеленым пигментом хлорофиллом. Хромопласты часто имеют игольчатую или неправильную форму, так как каротиноиды в них кристаллизуются. Помимо пластид, в клетках имеются и другие органоиды — митохондрии, размером около 1 мкм, играющие большую роль в дыхании растений. СУБМИКРОСКОПИЧЕСКОЕ СТРОЕНИЕ КЛЕТКИ Электронный микроскоп и основные принципы его работы. Создание и применение светового микроскопа способствовало развитию ряда биологических наук — цитологии, гистологии, микробиологии, успехи которых привели к крупным практическим результатам в области медицины, сельского хозяйства и ряда отраслей промышленности. Однако уже к концу XIX в. выяснилось, что возможности светового микроскопа ограничены. Частицы мельче 0,2 мкм в световом микроскопе уже неразличимы. Они лежат ниже разрешающей способнорти микроскопа, т.е. способности различать две отдельные точки. Развитие физики электронных явлений дало возможность использовать для микроскопа электронные излучения. На смену стеклянным линзам пришли «электронные линзы» — электромагнитные поля, способные фокусировать и преломлять электронный пучок. В сороковых годах XX в. начали изготовляться первые электронные микроскопы. Разрешающая способность лучших из них составляет в настоящее время около 10-8 — 2-10-8 см, причем увеличение достигает 1 000 000 раз. Строение клетки под электронным микроскопом. Изучение ультратонких срезов клеток привело к открытию, что все структурные элементы цитоплазмы клетки и клеточные органоиды имеют мембранное строение. Электронный микроскоп помог увидеть тонкое строение клеток растений и животных. Цитоплазма состоит из матрикса (основы) и заключенных в нееорганелл (хлоропласты, митохондрии, аппарат Гольджи и др.), а также мембран. На поверхности цитоплазмы имеются мембраны — плазмалемма а на поверхности вакуоли — тонопласт. Мембраны клетки состоят из липидов и белков. Таким образом, строение мембраны имеет мозаичный характер. Эндоплазматическая сеть состоит из длинных канальцев, пронизывающих цитоплазму; представляет собой выросты двойной ядерной мембраны. Эндоплазматическая сеть образует в цитоплазме непрерывную систему, ограничивающую полости, по которым перемещаются вещества между ядром и цитоплазмой. Эндоплазматическая сеть увеличивает поверхность цитоплазмы и, как бы изолируя ее на отдельные участки, способствует протеканию разнообразных процессов в [различных частях клетки. Аппарат Гольджи — структурный элемент цитоплазмы клетки, названный в честь итальянского ученого, который впервые описал это образование. Долгое время считали, что аппарат Гольджи имеется только в животных клетках. В дальнейшем он был обнаружен и в растительных клетках. Аппарат Гольджи состоит из системы мембран, сгруппированных в стопки. По концам мембран наблюдаются вздутия, которые отшнуровываются от них в виде пузырьков, способных превращаться в вакуоли или цистерны. Ядро. Изучение ядра в электронном микроскопе показало, 100% то оно окружено оболочкой, состоящей из двух мембран — внутренней и наружной. Предполагают, что наружная мембрана является продолжением мембран, составляющих эндоплазматическую сеть цитоплазмы. В ядерной оболочке имеются поры (до двухсот), через которые происходит обмен между веществами ядра и цитоплазмы. Ядро состоит из округлых гранул, образованных ДНК и РНК в соединении с белками. Кроме того, в ядре имеется одно или несколько ядрышек, содержащих в основном рибонуклеиновую кислоту (РНК). Хлоропласты. Хлоропласт отделен от цитоплазмы оболочкой. Внутри хлоропласта расположены пачки мембран, образующих пары, соединенные концами. В результате этого образуется замкнутый диск. Пачки дисков, расположенных в определенном порядке образуют граны ^Хлоропластов. У большинства растений мембрана граны переводит в более тонкую мембрану стромы. Строма является основным веществом хлоропласта и заполняет объем, не заснятый мембранной системой. В строме находятся капельки жира, крахмальные зерна, гранулярное вещество, содержащее ферменты. Считается, что мембрана хлоропласта (толщина около 70-10-8 см) состоит из двух слоев липидов, находящихся между двумя тонкими слоями белка. Хлорофилл образует мономолекулярный слой по всей поверхности диска. Митохондрии. Электронномикроскопическое изучение митохондрий в клетках показало, что они одеты поверхностной мембраной, под которой находится множество внутренних мембран, расположенных параллельно друг другу. Все мембраны, как мы уже знаем, состоят из нескольких слоев. Толщина слоев и расстояние между ними довольно постоянны. Между мембранами находится внутреннее пространство митохондрий, величина его различна у митохондрий разных клеток. Митохондрии подвижны и могут перемещаться в клетке за счет собственного движения. Однако по большей части они передвигаются током движущейся цитоплазмы. На свету митохондрии движутся к хлоропластам, а в темноте — к стенкам клетки. Митохондрии состоят на 30—40% (сухое вещество) из белков, на 25—38% из липидов. В них содержится от 1 до 6% рибонуклеиновой кислоты. Большую роль в образовании митохондрии играют ионы кальция. При недостатке солей кальция в растении число митохондрий уменьшается. Мембраны митохондрий содержат постоянный набор ферментов, которые участвуют в процессах окисления и накопления энергии при дыхании. Митохондрии могут осуществлять синтез близких к белкам веществ — пептидов, по-видимому, принимают участие в жировом обмене, а также в поглощении солей и воды. Под влиянием высокой температуры митохондрии набухают и теряют свою структуру. Рибосомы в отличие от пластид и митохондрий представляют собой не микроскопические, а субмикроскопические органоиды размером от 200-10-8 —280-10-8 см. Рибосомы состоят из белков (55%), фосфолипидов (4%) и рибонуклеиновой кислоты (40% от сухого вещества). Они содержат 65% всей рибонуклеиновой кислоты клеток. Рибосомы образуются в ядре, вернее, в ядрышке,' где происходит их сборка из отдельных более мелких частиц. Рибосомы содержатся в цитоплазме и хлоропластах. Особенное хорошо они заметны в клетках, интенсивно синтезирующих белок, так как основная их функция — синтез белка. Лизосомы. Круглые пузырьки, осуществляющие внутреннее переваривание веществ. Содержат ряд ферментов, отделены мембраной от цитоплазмы. Пероксисомы. Мелкие пузырьки. В них происходит фотодыхание. Микротрубочки. Располагаются в наружном слое цитоплазмы. Состоят из белка тубулина. Входят в состав веретена при делении клеток (митозе). НАСЛЕДСТВЕННАЯ ИНФОРМАЦИЯ И РЕГУЛЯЦИЯ У РАСТЕНИЙ Основное свойство образовывать один и тот же вид при развитии растения из воспроизводящей клетки, т. е. свойство наследственности, заключено в ядре и связано с ДНК. Большое значение в регуляции функций организма играет цитоплазматическая связь между клетками. Они соединены цитоплазматическими нитями — плазмодесмами, объединяющими клетки как бы в единое целое. Впервые плазмодесмы были обнаружены проф. Горожанкиным. Очень важную роль играет гормональная регуляция физиологических функций. В растениях образуются следующие гормоны: ауксины, гиббереллины, цитокинины, абсцизовая кислота и этилен. О значении каждого из этих гормонов будет идти речь ниже. Световая регуляция осуществляется длиной дня, продолжительность которого влияет на развитие растений. Растения делятся на растения короткого дня, зацветающие лишь при укорочении длины дня осенью, растения длинного дня, зацветающие только при длине дня больше 12 ч, и нейтральные растения, зацветающие как на коротком, так и на длинном дне. Наконец, регулирование светом может осуществляться с помощью специального вещества — фитохрома. Фитохром имеет две формы: активную и неактивную. Активная форма тормозит рост, неактивная форма дает симптомы этиоляции. По своей природе фитохром близок к пигментам сине-зеленых и красных водорослей фикоциану и фикоэритрину. Освещение красным светом с длиной волны 660 нм переводит фитохром в активную форму, а более длинноволновый красный свет приводит фитохром уже в неактивное состояние. Таковы в очень коротких чертах основы регуляции отдельных функций растений. Как мы уже знаем, белковые вещества, составляющие основу живых организмов, построены из аминокислот. В организмах имеется свыше 20 аминокислот. Эти 20 аминокислот могут складываться различным образом и образовывать разнообразные белки, которые выполняют ту или иную функцию в организме. Число комбинаций сложения аминокислот почти безгранично, и это определяет специфичность отдельных белков. План построения белка из аминокислот заложен, или, как говорят, «закодирован», в молекуле ДНК, находящейся в ядре. Нуклеиновые кислоты ДНК и РНК состоят из трех структурных элементов: азотистых оснований, сахара и фосфорной кислоты. Соединяясь, эти вещества образуют нуклеотиды. Нуклеиновые кислоты представляют собой продукты полимеризации (уплотнения) большого числа нуклеотидов. Полимерами называют вещества, молекулы которых состоят из одинаковых, периодически повторяющихся групп атомов. Например, полиэтилен имеет строение: (—СНг—СНг)л —СНг—СНг— ДНК — сложный полимер с молекулярной массой от 4 до 10 млн. Она состоит из двух полинуклеотидных цепей, образованных большим числом соединенных между собой нуклеотидов. В состав ДНК входит сахар дезоксирибоза (С5Н10О4). ДНК очень чувствительна к действию кислот и при гидролизе в молекулярном растворе соляной кислоты при 60°С через несколько минут распадается на нуклеотиды. Схема молекулы ДНК РНК в отличие от ДНК состоит из одной цепи полинуклеотидов и вместо дезоксирибозы содержит d-рибозу (С5Н10О5). РНК распадается на нуклеотиды под влиянием щелочей. В ядре при непосредственном участии ДНК образуется РНК, которая содержит полученные oт ДНК сведения о порядке сложения аминокислот в различные белки. Эта РНК носит название информационной или посредника. На каждую нить информационной РНК садится по нескольку рибосом. Эта цепочка рибосом называется полисомой. В полисомах происходит синтез белка при участии содержащейся в рибосомах рибосомальной РНК. Отдельныерибосомы движутся по нити РНК, считывают заложенную в ней информацию (сведения), полученную в ядре от ДНК и укладывают аминокислоты в полипептидные цепи. Аминокислоты, образовавшиеся в процессе обмена веществ, под водятся к полисомам особой, тоже образовавшейся первоначально в ядре РНК-переносчиком или транспортной РНК названной так потому, что она переносит активированны соответственными ферментами аминокислоты на рибосомы. Таких различных РНК-переносчиков имеется примерно 20 по числу аминокислот, из которых строятся белки. Таким образом, в синтезе белка в растениях участвуют различные РНК: рибосомальная РНК, информационная РНК передающая порядок укладки аминокислот в полипептидны цепи, и транспортная РНК, которая доставляет активированные соответственными ферментами аминокислоты к полисе мам. Такова схема синтеза белков в растении. Каждая клетка организма содержит полный набор информации о строении всех белков, которые она может синтезировать. Поэтому из маленького кусочка листа многих растений, например бегонии, может развиться целое растение ил даже из одной клетки (в культуре тканей, см. ниже) может развиться целый организм. С другой стороны, только из ядра или только из цитоплазмы новый организм не образуется, так как весь процесс образования белков происходит только в целостной клетке, состоящей из ядра и цитоплазмы. Схема биосинтеза белка в клетке www.ronl.ru Цитоплазма — рефератСанкт-Петербургское бюджетное образовательное учреждение среднего профессионального образованияАкушерский колледж
Реферат на тему:Цитоплазма
Выполнил(а): Кожушко М.Д. 104 группаПреподаватель: Зыкова А.О
Оглавление : 1. Цитоплазма.1.1. Функции и свойства цитоплазмы2. Гиалоплазма – матрикс.
3. Плазмолиз и деплазмолиз (циклоз).4. Включения.5. Выводы.
1
Введение:Данная тема выбрана для реферата, так как она интересна для рассмотрения и более подробного изучения. Так же цитоплазма это важнейшая часть клетки, в ней находятся все органеллы клетки, включения и гиалоплазма.
Цель работы: более подробное изучение содержимого, функций и свойств цитоплазмы.
2
ЦитоплазмаЦитоплазма -(от греческого κύτος «клетка» и πλάσμα здесь «содержимое») — полужидкое содержимое клетки, внутренняя среда живой или умершей клетки, кроме ядра и вакуоли, ограниченная плазматической мембраной. Включает гиалоплазму — основное прозрачное вещество цитоплазмы, находящиеся в ней обязательные клеточные компоненты — органеллы, а также различные непостоянные структуры — включения. Иногда под цитоплазмой понимают только гиалоплазму.Цитоплазма постоянно движется, перетекает внутри живой клетки, перемещая вместе с собой различные вещества, включения и органоиды[1]. Это движение называется циклозом.Термин «цитоплазма» ввёл Эдуард Страсбургер в 1882 году
3Цитоплазма способна к росту и воспроизведению и при частичном удалении может восстановиться. Однако она нормально функционирует только в присутствии ядра.В состав цитоплазмы входят органические и неорганические вещества многих видов. Основное вещество цитоплазмы — вода.Важнейшая роль цитоплазмы — объединение всех клеточных структур (компонентов) и обеспечение их химического взаимодействия. Она выполняет и другие функции, в частности, поддерживает тургор клетки.Тургор- показатель оводнённости и состояния водного режима живых организмов. Снижением тургора сопровождаются процессы автолиза (распада), увядания и старения клеток.
Функции и свойства цитоплазмы
Функции цитоплазмы:Функции цитоплазмы.
4
Свойства цитоплазмы:
Геалоплазма(матрикс)
Геалаплазма - основное вещество цитоплазмы, заполняет все пространство между плазматической мембраной, оболочкой ядра и другими внутриклеточными структурами. Гиалоплазму можно рассматривать как сложную коллоидную систему, способную существовать в двух состояниях, которые взаимно переходят одно в другое:
1) золеобразном (жидком).
2) гелеобразном.Гиалоплазма лишена какой-либо определенной организации. Химический состав гиалоплазмы: вода (90%), белки (ферменты гликолиза, обмена сахаров, азотистых оснований, белков и липидов)
Функции гиалоплазмы:
5
Матрикс цитоплазмы представляет собой гомогенную (при исследовании в электронном микроскопе) субстанцию между микрофиламентами. Она состоит из воды и множества растворенных неорганических и органических веществ, в частности, ферментов и других белков. Матрикс цитоплазмы служит средой для диффузии многих промежуточных продуктов обмена, а также местом, где протекают важнейшие метаболические процессы.
Плазмолиз и деплазмолиз (циклоз)
Циклоз - греч. kykloō кружить, вращать) — внутриклеточное движение цитоплазмы, происходящее без внешней деформации клетки.
6Свойственен как клеткам растений, так и клеткам животных.Он обеспечивает получение питательных элементов, продуктов обмена веществ (метаболитов), и генетической информации всеми частями больших растительных клеток.Движение цитоплазмы играет одну из важных ролей в распределении веществ внутри клетки, а также характеризует уровень жизнедеятельности клеточных структур. О движении цитоплазмы в первую очередь свидетельствует перемещения органелл в крупных клетках с большими вакуолями.Элементы цитоскелета — микрофиламенты принимают участие в осуществлении данного движения, а его источником выступает АТФ.
Типы движения цитплазмы:
Плазмолиз (от др.-греч. πλάσμα — вылепленное, оформленное и λύσις — разложение, распад), отделение протопласта от клеточной стенки в гипертоническом растворе.
7Плазмолизу предшествует потеря тургора. Зависит от многих факторов, но к цитоплазме относится один, вязкость цитоплазмы.
Деплазмолиз (от де… и плазмолиз) — возвращение протопласта клеток растений из состояния плазмолиза в исходное состояние, характеризующееся нормальным тургором. Деплазмолиз происходит при перенесении плазмолизированных клеток (то есть клеток, подвергшихся плазмолизу) в воду или гипотонические растворы.
Включения
Включения цитоплазмы — это необязательные компоненты клетки, появляющиеся и исчезающие в зависимости от интенсивности и характера обмена веществ в клетке и от условий существования организма. Включения имеют вид зерен, глыбок, капель, вакуолей, гранул различной величины и формы. Их химическая природа очень разнообразна. В зависимости от функционального назначения включения объединяют в группы:
8
Среди трофических включений (запасных питательных веществ) важную роль играют жиры и углеводы. Так же включения делятся на животной и растительной.
Включения животой клетки( гликоген)
Включения растительной клетки (кристаллы)
9
Выводы
10
myunivercity.ru |
|
||||||||||||||||||||||||||||||||||||
|
|