Учебные материалы.. первая помощь в учебе... Реферат гидроэлектростанции


Реферат Гидроэлектростанция

Опубликовать скачать

Реферат на тему:

План:

Введение

Одна из самых крупных по выработке российская ГЭС — Братская

Плотина Серрон Гранде в Сальвадоре, вогнутая для увеличения прочности тела плотины

Гидроэлектроста́нция (ГЭС) — электростанция, в качестве источника энергии использующая энергию водного потока. Гидроэлектростанции обычно строят на реках, сооружая плотины и водохранилища.

Для эффективного производства электроэнергии на ГЭС необходимы два основных фактора: гарантированная обеспеченность водой круглый год и возможно большие уклоны реки, благоприятствуют гидростроительству каньонообразные виды рельефа.

1. Особенности

2. Принцип работы

Схема плотины гидроэлектростанции

Принцип работы ГЭС достаточно прост. Цепь гидротехнических сооружений обеспечивает необходимый напор воды, поступающей на лопасти гидротурбины, которая приводит в действие генераторы, вырабатывающие электроэнергию.

Необходимый напор воды образуется посредством строительства плотины, и как следствие концентрации реки в определенном месте, или деривацией — естественным током воды. В некоторых случаях для получения необходимого напора воды используют совместно и плотину, и деривацию.

Непосредственно в самом здании гидроэлектростанции располагается все энергетическое оборудование. В зависимости от назначения, оно имеет свое определенное деление. В машинном зале расположены гидроагрегаты, непосредственно преобразующие энергию тока воды в электрическую энергию. Есть еще всевозможное дополнительное оборудование, устройства управления и контроля над работой ГЭС, трансформаторная станция, распределительные устройства и многое другое.

Гидроэлектрические станции разделяются в зависимости от вырабатываемой мощности:

Мощность ГЭС зависит от напора и расхода воды, а также от КПД используемых турбин и генераторов. Из-за того, что по природным законам уровень воды постоянно меняется, в зависимости от сезона, а также еще по ряду причин, в качестве выражения мощности гидроэлектрической станции принято брать цикличную мощность. К примеру, различают годичный, месячный, недельный или суточный циклы работы гидроэлектростанции.

Типичная для горных районов Китая малая ГЭС (ГЭС Хоуцзыбао, уезд Синшань округа Ичан, пров. Хубэй). Вода поступает с горы по чёрному трубопроводу

Гидроэлектростанции также делятся в зависимости от максимального использования напора воды:

В зависимости от напора воды, в гидроэлектростанциях применяются различные виды турбин. Для высоконапорных — ковшовые и радиально-осевые турбины с металлическими спиральными камерами. На средненапорных ГЭС устанавливаются поворотнолопастные и радиально-осевые турбины, на низконапорных — поворотнолопастные турбины в железобетонных камерах. Принцип работы всех видов турбин схож — вода, находящаяся под давлением (напор воды) поступает на лопасти турбины, которые начинают вращаться. Механическая энергия, таким образом, передается на гидрогенератор, который и вырабатывает электроэнергию. Турбины отличаются некоторыми техническими характеристиками, а также камерами — стальными или железобетонными, и рассчитаны на различный напор воды.

Гидроэлектрические станции также разделяются в зависимости от принципа использования природных ресурсов, и, соответственно, образующейся концентрации воды. Здесь можно выделить следующие ГЭС:

В состав гидроэлектрических станций, в зависимости от их назначения, также могут входить дополнительные сооружения, такие как шлюзы или судоподъемники, способствующие навигации по водоему, рыбопропускные, водозаборные сооружения, используемые для ирригации и многое другое.

Ценность гидроэлектрической станции состоит в том, что для производства электрической энергии, они используют возобновляемые природные ресурсы. Ввиду того, что потребности в дополнительном топливе для ГЭС нет, конечная стоимость получаемой электроэнергии значительно ниже, чем при использовании других видов электростанций. [2]

3. Гидроэнергетика в мире

На 2006 год гидроэнергетика обеспечивает производство до 88 % возобновляемой и до 20 % всей электроэнергии в мире, установленная гидроэнергетическая мощность достигает 777 ГВт.

Абсолютным лидером по выработке гидроэнергии на душу населения является Исландия. Кроме неё этот показатель наиболее высок в Норвегии (доля ГЭС в суммарной выработке — 98 %), Канаде и Швеции. В Парагвае 100 % производимой энергии вырабатывается на гидроэлектростанциях.

Наиболее активное гидростроительство на начало 2000-х ведёт Китай, для которого гидроэнергия является основным потенциальным источником энергии. В этой стране размещено до половины малых гидроэлектростанций мира, а также крупнейшая ГЭС мира «Три ущелья» на реке Янцзы и строящийся крупнейший по мощности каскад ГЭС. Ещё более крупная ГЭС «Гранд Инга» мощностью 39 ГВт планируется к сооружению международным консорциумом на реке Конго в Демократической Республике Конго (бывший Заир).

На 2008 год крупнейшими производителями гидроэнергии (включая переработку на ГАЭС) в абсолютных значениях являются следующие страны[3]:

Страна Потребление гидроэнергии в ТВт·ч
1. Китай 585
2. Канада 369
3. Бразилия 364
4. США 251
5. Россия 167
6. Норвегия 140
7. Индия 116
8. Венесуэла 87
9. Япония 69
10. Швеция 66
11. Франция 63

3.1. Крупнейшие ГЭС в мире

Наименование Мощность,ГВт Среднегодоваявыработка, млрд кВт·ч Собственник География
Три ущелья 22,40 100,00 р. Янцзы, г. Сандоупин, Китай
Итайпу 14,00 100,00 Итайпу-Бинасионал р. Парана, г. Фос-ду-Игуасу, Бразилия/Парагвай
Гури 10,30 40,00 р. Карони, Венесуэла
Черчилл-Фолс 5,43 35,00 Newfoundland and Labrador Hydro р. Черчилл, Канада
Тукуруи 8,30 21,00 Eletrobrás р. Токантинс, Бразилия

4. Гидроэлектростанции России

По состоянию на 2009 год в России имеется 15 гидроэлектростанций свыше 1000 МВт (действующих, достраиваемых или находящихся в замороженном строительстве), и более сотни гидроэлектростанций меньшей мощности.

4.1. Крупнейшие гидроэлектростанции России

Наименование Мощность,ГВт Среднегодоваявыработка, млрд кВт·ч Собственник География
Саяно-Шушенская ГЭС 2,56 (6,40)[сн 1] 23,50[сн 1] ОАО РусГидро р. Енисей, г. Саяногорск
Красноярская ГЭС 6,00 20,40 ОАО «Красноярская ГЭС» р. Енисей, г. Дивногорск
Братская ГЭС 4,52 22,60 ОАО Иркутскэнерго, РФФИ р. Ангара, г. Братск
Усть-Илимская ГЭС 3,84 21,70 ОАО Иркутскэнерго,РФФИ р. Ангара, г. Усть-Илимск
Богучанская ГЭС[сн 2] 3,00 17,60 ОАО «Богучанская ГЭС», ОАО РусГидро р. Ангара, г. Кодинск
Волжская ГЭС 2,58 12,30 ОАО РусГидро р. Волга, г. Волжский
Жигулёвская ГЭС 2,32 10,50 ОАО РусГидро р. Волга, г. Жигулевск
Бурейская ГЭС 2,01 7,10 ОАО РусГидро р. Бурея, пос. Талакан
Чебоксарская ГЭС 1,40 (0,8)[сн 3] 3,31 (2,2)[сн 3] ОАО РусГидро р. Волга, г. Новочебоксарск
Саратовская ГЭС 1,36 5,7 ОАО РусГидро р. Волга, г. Балаково
Зейская ГЭС 1,33 4,91 ОАО РусГидро р. Зея, г. Зея
Нижнекамская ГЭС 1,25 (0,45)[сн 3] 2,67 (1,8)[сн 3] ОАО «Генерирующая компания», ОАО «Татэнерго» р. Кама, г. Набережные Челны
Загорская ГАЭС 1,20 1,95 ОАО РусГидро р. Кунья, пос. Богородское
Воткинская ГЭС 1,02 2,60 ОАО РусГидро р. Кама, г. Чайковский
Чиркейская ГЭС 1,00 2,47 ОАО РусГидро р. Сулак, п. Дубки

Примечания:

  1. ↑ 12 Восстанавливается после аварии (2009 год), в скобках указано доаварийное значение.
  2. Строящиеся объекты.
  3. ↑ 1234 Мощность и выработка при проектном уровне водохранилища; в настоящее время фактическая мощность и выработка значительно ниже, указаны в скобках.

4.2. Другие гидроэлектростанции России

4.3. Предыстория развития гидростроения в России [4]

Первая очередь строительства ГЭС:[5]

Район Название Мощность,тыс. кВт
Северный Волховская 30
  Нижнесвирская 110
  Верхнесвирская 140
Южный Александровская 200
Уральский Чусовая 25
Кавказский Кубанская 40
  Краснодарская 20
  Терская 40
Сибирь Алтайская 40
Туркестан Туркестанская 40

В Советский период развития энергетики упор делался на особую роль единого народнохозяйственного плана электрификации страны — ГОЭЛРО, который был утвержден 22 декабря 1920 года. Этот день был объявлен в СССР профессиональным праздником — Днём энергетика. Глава плана, посвященная гидроэнергетике — называлась «Электрификация и водная энергия». В ней указывалось, что гидроэлектростанции могут быть экономически выгодными, главным образом, в случае комплексного использования: для выработки электроэнергии, улучшения условий судоходства или мелиорации. Предполагалось, что в течение 10-15 лет в стране можно соорудить ГЭС общей мощностью 21 254 тыс. лошадиных сил (около 15 млн кВт), в том числе в европейской части России — мощностью 7394, в Туркестане — 3020, в Сибири — 10 840 тыс. л.с. На ближайшие 10 лет намечалось сооружение ГЭС мощностью 950 тыс. кВт, однако в последующем было запланировано сооружение десяти ГЭС общей рабочей мощностью первых очередей 535 тыс. кВт.

Хотя уже за год до этого в 1919 году Совет труда и обороны признал строительства Волховской и Свирской гидростанций объектами, имеющими оборонное значение. В том же году началась подготовка к возведению Волховской ГЭС, первой из гидроэлектростанций возведенных по плану ГОЭЛРО.

Однако и до начала строительства Волховской ГЭС Россия имела достаточно богатый опыт промышленного гидростроительства, в основном, частными компаниями и концессиями. Информация об этих ГЭС, построенных в России за последнее десятилетие 19-го века и первые 20 лет двадцатого столетия достаточно разрознена, противоречива и требует специальных исторических исследований.

Наиболее достоверным считается, что первой гидроэлектростанцией в России была Березовская (Зыряновская) ГЭС, построенная в Рудном Алтае на реке Березовка (приток р. Бухтармы) в 1892 году. Она была четырехтурбинная общей мощностью 200 кВт и предназначалась для обеспечения электричеством шахтного водоотлива из Зыряновского рудника.[6]

На роль первой также претендует Ныгринская ГЭС, которая появилась в Иркутской губернии на реке Ныгри (приток р. Вачи) в 1896 году. Энергетическое оборудование станции состояло из двух турбин с общим горизонтальным валом, вращавшим три динамо--машины мощностью по 100 кВт. Первичное напряжение преобразовывалось четырьмя трансформаторами трехфазного тока до 10 кВ и передавалось по двум высоковольтным линиям на соседние прииски. Это были первые в России высоковольтные ЛЭП. Одну линию (длиной 9 км) проложили через гольцы к прииску Негаданному, другую (14 км) — вверх по долине Ныгри до устья ключа Сухой Лог, где в те годы действовал прииск Ивановский. На приисках напряжение трансформировалось до 220 В. Благодаря электроэнергии Ныгринской ГЭС в шахтах установили электрические подъемники. Кроме того, электрифицировали приисковую железную дорогу, служившую для вывоза отработанной породы, которая стала первой в России электрифицированной железной дорогой.[7]

5. Преимущества

6. Недостатки

7. Крупнейшие аварии и происшествия

Примечания

  1. Интервью профессора Дмитрия Селютина.22.08.2009, «ВЕСТИ» - www.youtube.com/watch?v=y6Vw0wTt1Iw
  2. Гидроэлектрическая станция (ГЭС)
  3. T.M. L'état paufine l'ouverture des barrages à la concurrence - www.lesechos.fr/info/energie/020239999544.htm // Les échos. — Paris: 27/11/2009. — № 20561. — С. 21.
  4. «Электроэнергетика. Строители России. XX век.» М.: Мастер, 2003. С.193. ISBN 5-9207-0002-5
  5. По материалам Комиссии ГОЭЛРО
  6. Березовская ГЭС - syrjanowsk.narod.ru/html/beresowskajages.html
  7. Электроэнергетика Иркутской области. Газета «Наука в Сибири» № 3-4 (2139—2140) 23 января 1998 г. - www-sbras.nsc.ru/HBC/hbc.phtml?26 170 1
  8. ГЭС как оружие - Технологии : Hi-Tech / infox.ru - www.infox.ru/hi-tech/tech/2009/08/21/Krupnyeyshiye_GES.phtml
скачатьДанный реферат составлен на основе статьи из русской Википедии. Синхронизация выполнена 09.07.11 16:21:30Похожие рефераты: Малая гидроэлектростанция, Каховская гидроэлектростанция, Аль-Вахда (гидроэлектростанция), Гидроэлектростанция Понале, Голубицкая гидроэлектростанция, Акосомбо (гидроэлектростанция), Рачунская гидроэлектростанция, Хоробровская малая гидроэлектростанция.

Категории: Гидроэлектростанции.

Текст доступен по лицензии Creative Commons Attribution-ShareAlike.

wreferat.baza-referat.ru

Реферат - по Физике на тему: гидроэлектростанции

реферат

по Физике

на тему:

гидроэлектростанции

Дережинский Сергей (a) кл

Гидроэлектрическая станция, гидроэлектростанции (ГЭС), комплекс сооружений и оборудования, посредством которых энергия потока воды преобразуется в электрическую энергию. ГЭС состоит из последовательной цепи гидротехнических сооружений, обеспечивающих необходимую концентрацию потока воды и создание напора, и энергетического оборудования, преобразующего энергию движущейся под напором воды в механическую энергию вращения, которая, в свою очередь, преобразуется в электрическую энергию

Напор ГЭС создаётся концентрацией падения реки на используемом участке (аб ) плотиной, либо деривацией, либо плотиной и деривацией совместно. Основное энергетическое оборудование ГЭС размещается в здании ГЭС: в машинном зале электростанции — гидроагрегаты, вспомогательное оборудование, устройства автоматического управления и контроля; в центральном посту управления — пульт оператора-диспетчера или автооператор гидроэлектростанции Повышающая трансформаторная подстанция размещается как внутри здания ГЭС, так и в отдельных зданиях или на открытых площадках. Распределительные устройства зачастую располагаются на открытой площадке. Здание ГЭС может быть разделено на секции с одним или несколькими агрегатами и вспомогательным оборудованием, отделённые от смежных частей здания. При здании ГЭС или внутри него создаётся монтажная площадка для сборки и ремонта различного оборудования и для вспомогательных операций по обслуживанию ГЭС.

По установленной мощности (в Мвт ) различают ГЭС мощные (свыше 250), средние (до 25) и малые (до 5). Мощность ГЭС зависит от напора Нб (разности уровней верхнего и нижнего бьефа), расхода воды Q (м3 /сек ), используемого в гидротурбинах, и кпд гидроагрегата hг. По ряду причин (вследствие, например, сезонных изменений уровня воды в водоёмах, непостоянства нагрузки энергосистемы, ремонта гидроагрегатов или гидротехнических сооружений и т.п.) напор и расход воды непрерывно меняются, а кроме того, меняется расход при регулировании мощности ГЭС. Различают годичный, недельный и суточный циклы режима работы ГЭС.

По максимально используемому напору ГЭС делятся на высоконапорные (более 60 м ), средненапорные (от 25 до 60 м ) и низконапорные (от 3 до 25 м ). На равнинных реках напоры редко превышают 100 м, в горных условиях посредством плотины можно создавать напоры до 300 м и более, а с помощью деривации — до 1500 м. Классификация по напору приблизительно соответствует типам применяемого энергетического оборудования: на высоконапорных ГЭС применяют ковшовые и радиально-осевые турбины с металлическими спиральными камерами; на средненапорных — поворотнолопастные и радиально-осевые турбины с железобетонными и металлическими спиральными камерами, на низконапорных — поворотнолопастные турбины в железобетонных спиральных камерах, иногда горизонтальные турбины в капсулах или в открытых камерах. Подразделение ГЭС по используемому напору имеет приблизительный, условный характер.

По схеме использования водных ресурсов и концентрации напоров ГЭС обычно подразделяют на русловые, приплотинные, деривационные с напорной и безнапорной деривацией, смешанные, гидроаккумулирующие и приливные. В русловых и приплотинных ГЭС напор воды создаётся плотиной, перегораживающей реку и поднимающей уровень воды в верхнем бьефе. При этом неизбежно некоторое затопление долины реки. В случае сооружения двух плотин на том же участке реки площадь затопления уменьшается. На равнинных реках наибольшая экономически допустимая площадь затопления ограничивает высоту плотины. Русловые и приплотинные ГЭС строят и на равнинных многоводных реках и на горных реках, в узких сжатых долинах.

В состав сооружений русловой ГЭС, кроме плотины, входят здание ГЭС и водосбросные сооружения Состав гидротехнических сооружений зависит от высоты напора и установленной мощности. У русловой ГЭС здание с размещенными в нём гидроагрегатами служит продолжением плотины и вместе с ней создаёт напорный фронт. При этом с одной стороны к зданию ГЭС примыкает верхний бьеф, а с другой — нижний бьеф. Подводящие спиральные камеры гидротурбин своими входными сечениями закладываются под уровнем верхнего бьефа, выходные же сечения отсасывающих труб погружены под уровнем нижнего бьефа.

В соответствии с назначением гидроузла в его состав могут входить судоходные шлюзы или судоподъёмник, рыбопропускные сооружения, водозаборные сооружения для ирригации и водоснабжения. В русловых ГЭС иногда единственным сооружением, пропускающим воду, является здание ГЭС. В этих случаях полезно используемая вода последовательно проходит входное сечение с мусорозадерживающими решётками, спиральную камеру, гидротурбину, отсасывающую трубу, а по специальным водоводам между соседними турбинными камерами производится сброс паводковых расходов реки. Для русловых ГЭС характерны напоры до 30-40 м; к простейшим русловым ГЭС относятся также ранее строившиеся сельские ГЭС небольшой мощности. На крупных равнинных реках основное русло перекрывается земляной плотиной, к которой примыкает бетонная водосливная плотина и сооружается здание ГЭС. Такая компоновка типична для многих отечественных ГЭС на больших равнинных реках. Волжская ГЭС им. 22-го съезда КПСС — наиболее крупная среди станций руслового типа.

При более высоких напорах оказывается нецелесообразным передавать на здание ГЭС гидростатическое давление воды. В этом случае применяется тип приплотинной ГЭС, у которой напорный фронт на всём протяжении перекрывается плотиной, а здание ГЭС располагается за плотиной, примыкает к нижнему бьефу. В состав гидравлической трассы между верхним и нижним бьефом ГЭС такого типа входят глубинный водоприёмник с мусорозадерживающей решёткой, турбинный водовод, спиральная камера, гидротурбина, отсасывающая труба. В качестве дополнительных сооружений в состав узла могут входить судоходные сооружения и рыбоходы, а также дополнительный водосброс. Примером подобного типа станций на многоводной реке служит Братская ГЭС на р. Ангара.

Другой вид компоновки приплотинных ГЭС, соответствующий горным условиям, при сравнительно малых расходах реки, характерен для Нурекской ГЭС на р. Вахш (Средняя Азия), проектной мощностью 2700 Мвт. Здание ГЭС открытого типа располагается ниже плотины, вода подводится к турбинам по одному или нескольким напорным туннелям. Иногда здание ГЭС размещают ближе к верхнему бьефу в подземной (подземная ГЭС) выемке. Такая компоновка целесообразна при наличии скальных оснований, особенно при земляных или набросных плотинах, имеющих значительную ширину. Сброс паводковых расходов производится через водосбросные туннели или через открытые береговые водосбросы.

В деривационных ГЭС концентрация падения реки создаётся посредством деривации; вода в начале используемого участка реки отводится из речного русла водоводом, с уклоном, значительно меньшим, чем средний уклон реки на этом участке и со спрямлением изгибов и поворотов русла. Конец деривации подводят к месту расположения здания ГЭС. Отработанная вода либо возвращается в реку, либо подводится к следующей деривационной ГЭС. Деривация выгодна тогда, когда уклон реки велик. Деривационная схема концентрации напора в чистом виде (бесплотинный водозабор или с низкой водозаборной плотиной) на практике приводит к тому, что из реки забирается лишь небольшая часть её стока. В др. случаях в начале деривации на реке сооружается более высокая плотина и создаётся водохранилище: такая схема концентрации падения называется смешанной, т.к. используются оба принципа создания напора. Иногда, в зависимости от местных условий, здание ГЭС выгоднее располагать на некотором расстоянии от конца используемого участка реки вверх по течению; деривация разделяется по отношению к зданию ГЭС на подводящую и отводящую. В ряде случаев с помощью деривации производится переброска стока реки в соседнюю реку, имеющую более низкие отметки русла. Характерным примером является Ингурская ГЭС, где сток р. Ингури перебрасывается туннелем в соседнюю р. Эрисцкали (Кавказ).

Сооружения безнапорных деривационных ГЭС состоят из трёх основных групп: водозаборное сооружение, водоприёмная плотина и собственно деривация (канал, лоток, безнапорный туннель). Дополнительными сооружениями на ГЭС с безнапорной деривацией являются отстойники и бассейны суточного регулирования, напорные бассейны, холостые водосбросы и турбинные водоводы. Крупнейшая ГЭС с безнапорной подводящей деривацией — ГЭС Роберт-Мозес (США) мощностью 1950 Мвт, а с безнапорной отводящей деривацией — Ингурская ГЭС (СССР) мощностью 1300 Мвт .

На ГЭС с напорной деривацией водовод (туннель, металлическая, деревянная или железобетонная труба) прокладывается с несколькими большим продольным уклоном, чем при безнапорной деривации. Применение напорной подводящей деривации обусловливается изменяемостью горизонта воды в верхнем бьефе, из-за чего в процессе эксплуатации изменяется и внутренний напор деривации. В состав сооружений ГЭС этого типа входят: плотина, водозаборный узел, деривация с напорным водоводом, станционный узел ГЭС с уравнительным резервуаром и турбинными водоводами, отводящая деривация в виде канала или туннеля (при подземной ГЭС). Крупнейшая ГЭС с напорной подводящей деривацией — Нечако-Кемано (Канада) проектной мощностью 1792 Мвт .

ГЭС с напорной отводящей деривацией применяется в условиях значительных изменений уровня воды в реке в месте выхода отводящей деривации или по экономическим соображениям. В этом случае необходимо сооружение уравнительного резервуара (в начале отводящей деривации) для выравнивания неустановившегося потока воды в реке. Наиболее мощная ГЭС (350 Мвт ) этого типа — ГЭС Харспронгет (Швеция).

Особое место среди ГЭС занимают гидроаккумулирующие электростанции (ГАЭС) и приливные электростанции (ПЭС). Сооружение ГАЭС обусловлено ростом потребности в пиковой мощности в крупных энергетических системах, что и определяет генераторную мощность, требующуюся для покрытия пиковых нагрузок. Способность ГАЭС аккумулировать энергию основана на том, что свободная в энергосистеме в некоторый период времени (провала графика потребности) электрическая энергия используется агрегатами ГАЭС, которые, работая в режиме насоса, нагнетают воду из водохранилища в верхний аккумулирующий бассейн. В период пиков нагрузки аккумулированная т. о. энергия возвращается в энергосистему (вода из верхнего бассейна поступает в напорный трубопровод и вращает гидроагрегаты, работающие в режиме генератора тока). Мощность отдельных ГАЭС с такими обратимыми гидроагрегатами достигает 1620 Мвт (Корнуол, США).

ПЭС преобразуют энергию морских приливов в электрическую. Электроэнергия приливных ГЭС в силу некоторых особенностей, связанных с периодическим характером приливов и отливов, может быть использована в энергосистемах лишь совместно с энергией регулирующих электростанций, которые восполняют провалы мощности приливных электростанций в течение суток или месяцев. В 1967 во Франции было завершено строительство крупной ПЭС на р. Ранс (24 агрегата общей мощностью 240 Мвт ). В СССР в 1968 в Кислой Губе (Кольский полуостров) вступила в строй первая опытная ПЭС мощностью 0,4 Мвт, на которой ныне проводятся экспериментальные работы для будущего строительства ПЭС.

По характеру использования воды и условиям работы различают ГЭС на бытовом стоке без регулирования, с суточным, недельным, сезонным (годовым) и многолетним регулированием. Отдельные ГЭС или каскады ГЭС, как правило, работают в системе совместно с конденсационными электростанциями (КЭС), теплоэлектроцентралями (ТЭЦ), атомными электростанциями (АЭС), газотурбинными установками (ГТУ), причём в зависимости от характера участия в покрытии графика нагрузки энергосистемы ГЭС могут быть базисными, полупиковыми и пиковыми .

Важнейшая особенность гидроэнергетических ресурсов по сравнению с топливно-энергетическими ресурсами — их непрерывная возобновляемость. Отсутствие потребности в топливе для ГЭС определяет низкую себестоимость вырабатываемой на ГЭС электроэнергии. Поэтому сооружению ГЭС, несмотря на значительные удельные капиталовложения на 1 квт установленной мощности и продолжительные сроки строительства, придавалось и придаётся большое значение, особенно когда это связано с размещением электроёмких производств .

Одни из первых гидроэлектрических установок мощностью всего в несколько сотен вт были сооружены в 1876-81 в Штангассе и Лауфене (Германия) и в Грейсайде (Англия). Развитие ГЭС и их промышленное использование тесно связано с проблемой передачи электроэнергии на расстояние: как правило, места, наиболее удобные для сооружения ГЭС, удалены от основных потребителей электроэнергии. Протяжённость существовавших в то время линий электропередач не превышала 5-10 км; самая длинная линия 57 км. Сооружение линии электропередачи (170 км ) от Лауфенской ГЭС до Франкфурта-на-Майне (Германия) для снабжения электроэнергией Международная электротехническая выставки (1891) открыла широкие возможности для развития ГЭС. В 1892 промышленный ток дала ГЭС, построенная на водопаде в Бюлахе (Швейцария), почти одновременно в 1893 были построены ГЭС в Гельшене (Швеция), на р. Изар (Германия) и в Калифорнии (США). В 1896 вступила в строй Ниагарская ГЭС (США) постоянного тока; в 1898 дала ток ГЭС Рейнфельд (Германия), а в 1901 стали под нагрузку гидрогенераторы ГЭС Жонат (Франция).

В России существовали, но так и не были реализованы детально разработанные проекты ГЭС русских учёных Ф. А. Пироцкого, И. А. Тиме, Г. О. Графтио, И. Г. Александрова и др., предусматривавших, в частности, использование порожистых участков рр. Днепр, Волхов, Западная Двина, Вуокса и др. Так, например, уже в 1892-95 русским инженером В. Ф. Добротворским были составлены проекты сооружения ГЭС мощностью 23,8 Мвт на р. Нарова и 36,8 Мвт на водопаде Б. Иматра. Реализации этих проектов препятствовали как косность царской бюрократии, так и интересы частных капиталистических групп, связанных с топливной промышленностью. Первая промышленная ГЭС в России мощностью около 0,3 Мвт (300 квт ) была построена в 1895-96 под руководством русских инженеров В. Н. Чиколева и Р. Э. Классона для электроснабжения Охтинского порохового завода в Петербурге. В 1909 закончилось строительство крупнейшей в дореволюционной России Гиндукушской ГЭС мощностью 1,35 Мвт (1350 квт ) на р. Мургаб (Туркмения). В период 1905-17 вступили в строй Саткинская, Алавердинская, Каракультукская, Тургусунская, Сестрорецкая и др. ГЭС небольшой мощности. Сооружались также частные фабрично-заводские гидроэлектрические установки с использованием оборудования иностранных фирм.

1-я мировая война 1914-18 и связанный с ней интенсивный рост промышленности некоторых западных стран повлекли за собой развитие действовавших и строительство новых энергопромышленных центров, в том числе на базе ГЭС. В результате мощность ГЭС во всём мире к 1920 достигла 17 тыс. Мвт, а мощность отдельных ГЭС, например Масл-Шолс (США), Иль-Малинь (Канада), превысила 400 Мвт (400 тыс. квт ).

Общая мощность ГЭС России к 1917 составляла всего около 16 Мвт; самой крупной была Гиндукушская ГЭС. Строительство мощных ГЭС началось по существу только после Великой Октябрьской социалистической революции. В восстановительный период (20-е гг.) в соответствии с планом ГОЭЛРО были построены первые крупные ГЭС — Волховская (ныне Волховская ГЭС им. В. И. Ленина) и Земо-Авчальская ГЭС им. В. И. Ленина. В годы первых пятилеток (1929-40) вступили в строй ГЭС — Днепровская, Нижнесвирская, Рионская и др.

К началу Великой Отечественной войны 1941-45 было введено в эксплуатацию 37 ГЭС общей мощностью более 1500 Мвт. Во время войны было приостановлено начатое строительство ряда ГЭС общей мощностью около 1000 Мвт (1 млн. квт ). Значительная часть ГЭС общей мощностью около 1000 Мвт оказалась разрушенной или демонтированной. Началось сооружение новых ГЭС малой и средней мощности на Урале (Широковская, Верхотурская, Алапаевская, Белоярская и др.), в Средней Азии (Аккавакские, Фархадская, Саларская, Нижнебуэсуйские и др.), на Северном Кавказе (Майкопская, Орджоникидзевская, Краснополянская), в Азербайджане (Мингечаурская ГЭС), в Грузии (Читахевская ГЭС) и в Армении (Гюмушская ГЭС). К концу 1945 в Советском Союзе мощность всех ГЭС, вместе с восстановленными, достигла 1250 Мвт, а годовая выработка электроэнергии — 4,8 млрд. квт/ч .

В начале 50-х гг. развернулось строительство крупных гидроэлектростанций на р. Волге у гг. Горького, Куйбышева и Волгограда, Каховской и Кременчугской ГЭС на Днепре, а также Цимлянской ГЭС на Дону. Волжские ГЭС им. В. И. Ленина и им. 22-го съезда КПСС стали первыми из числа наиболее мощных ГЭС в СССР и в мире. Во 2-й половине 50-х гг. началось строительство Братской ГЭС на р. Ангаре и Красноярской ГЭС на р. Енисее. С 1946 по 1958 в СССР были построены и восстановлены 63 ГЭС общей мощностью 9600 Мвт. За семилетие 1959-65 было введено 11400 Мвт новых гидравлических мощностей и суммарная мощность ГЭС достигла 22200 Мвт (табл. 1). К 1970 в СССР продолжалось строительство 35 промышленных ГЭС (суммарной мощностью 32000 Мвм ), в том числе 11 ГЭС единичной мощностью свыше 1000 Мвт: Саяно-Шушенская, Красноярская, Усть-Илимская, Нурекская, Ингурская, Саратовская, Токтогульская, Нижнекамская, Зейская, Чиркейская, Чебоксарская.

Табл. 1. — Развитие ГЭС в СССР за период 1965-80

Показатели ГЭС

1965

1970

1975

1980

(прогноз)

Установленная мощность ГЭС, Мвт

22200

32000

50000

74500

Доля ГЭС в общей мощности электростанций СССР, %

19,3

18,6

20

20,3

Выработка электроэнергии в год, млрд. квт -ч

81,4

121

182

260

Доля ГЭС в выработке электроэнергии в СССР, %

16,1

16

15,6

14,6

Мощность ГАЭС, Мет

-

30

1410

5100

В 60-х гг. наметилась тенденция к снижению доли ГЭС в общем мировом производстве электроэнергии и всё большему использованию ГЭС для покрытия пиковых нагрузок. К 1970 всеми ГЭС мира производилось около 1000 млрд. квт/ч электроэнергии в год, причём начиная с 1960 доля ГЭС в мировом производстве снижалась в среднем за год примерно на 0,7%. Особенно быстро снижается доля ГЭС в общем производстве электроэнергии в ранее традиционно считавшихся «гидроэнергетическими» странах (Швейцария, Австрия, Финляндия, Япония, Канада, отчасти Франция), т.к. их экономический гидроэнергетический потенциал практически исчерпан.

Табл. 2. -Крупнейшие ГЭС мира

Наименование

ГЭС

Мощность ГЭС *,

Мвт

Год начала

эксплуатации

Действующие

Красноярская, СССР....

5000

(6000)

1967

Братская, СССР

4100

(4600)

1961

Волжская им. 22-го съезда КПСС, СССР

2530

1958

Волжская им. В. И. Ленина, СССР

2300

1955

Джон-Дей, США

2160

(2700)

1968

Гранд-Кули, США

1974

(1711)

1941

Роберт-Мозес (Ниагара), США

1950

1961

Св. Лаврентия, Канада-США

1824

1958

Высотная Асуанская, АРЕ

1750

(2100)

1967

Боарнуа, Канада

1639

1948

Строятся

Саяно-Шушенская, СССР

6300

-

Черчилл-Фолс, Канада

4500

-

Усть-Илимская, СССР

4300

-

Илья-Солтейра, Бразилия

3200

-

Нурекская, СССР

2700

-

Портидж-Маунтин, Канада

2300

-

Железные Ворота,

Румыния-Югославия

2100

-

Тарбалла, Пакистан

2000

-

Мика, Канада

2000

-

* Мощность ГЭС приведена по состоянию на 1 января 1969; в скобках указана проектная мощность.

Несмотря на снижение доли ГЭС в общей выработке, абсолютные значения производства электроэнергии и мощности ГЭС непрерывно растут вследствие строительства новых крупных электростанций. В 1969 в мире насчитывалось свыше 50 действующих и строящихся ГЭС единичной мощностью 1000 Мвт и выше, причём 16 из них — в Советском Союзе.

Дальнейшее развитие гидроэнергетического строительства в СССР предусматривает сооружение каскадов ГЭС с комплексным использованием водных ресурсов в целях удовлетворения нужд совместно энергетики, водного транспорта, водоснабжения, ирригации, рыбного хозяйства и пр. Примером могут служить Днепровский, Волжско-Камский, Ангаро-Енисейский, Севанский и др. каскады ГЭС.

Крупнейшим районом гидроэнергостроительства СССР до 50-х гг. 20 в. традиционно была Европейская часть территории Союза, на долю которой приходилось около 65% электроэнергии, вырабатываемой всеми ГЭС СССР. Для современного гидроэнергостроительства характерно: продолжение строительства и совершенствование низко- и средненапорных ГЭС на рр. Волге, Каме, Днепре, Даугаве и др., строительство крупных высоконапорных ГЭС в труднодоступных районах Кавказа, Средней Азии, Восточной Сибири и т.п., строительство средних и крупных деривационных ГЭС на горных реках с большими уклонами и использованием переброски стока в соседние бассейны, но главное — строительство мощных ГЭС на крупных реках Сибири и Дальнего Востока — Енисее, Ангаре, Лене и др. ГЭС, сооружаемые в богатых гидроэнергоресурсами районах Сибири и Дальнего Востока, вместе с тепловыми электростанциями, работающими на местном органическом топливе (природный газ, уголь, нефть), станут основной энергетической базой для снабжения дешёвой электроэнергией развивающейся промышленности Сибири, Средней Азии и Европейской части СССР (см. Единая электроэнергетическая система).

www.ronl.ru

ГИДРОЭЛЕКТРОСТАНЦИЯ (ГЭС)

Гидроэлектростанция — это комплекс сложных гидротехнических сооружений и оборудования. Его назначение — преобразовывать энергию потока воды в электрическую энергию. Гидроэнергия относится к числу так называемых возобновляемых источников энергии, т. е. практически неиссякаема.

Важнейшее гидротехническое сооружение — плотина. Она задерживает воду в водохранилище, создает необходимый напор воды. Гидравлическая турбина — главный двигатель на ГЭС. С ее помощью энергия воды, движущейся под напором, превращается в механическую энергию вращения, которая затем (благодаря электрическому генератору) преобразуется в электрическую энергию. Гидравлическая турбина, гидрогенератор, устройства автоматического контроля и управления — пульты размещены в машинном зале ГЭС. Повышающие трансформаторы могут располагаться и внутри здания, и на открытых площадках.   Распределительные   устройства чаще всего устанавливаются на открытом воздухе рядом со зданием электростанции.

В Советском Союзе, обладающем большими гидроэнергоресурсами (11112% от мировых), развернуто широкое строительство гидростанций. По установленной мощности гидроэлектриций. Только за 30 послевоенных лет, с 1950 станции подразделяют на малые — по 1980 год, выработка электроэнергии на до 5 МВт, средние — от 5 до 25 и крупные — ГЭС выросла более чем в 10 раз. свыше 25 МВт. В нашей стране действуют 20 ГЭС, на каждой из которых установленная мощность превышает 500 МВт. Крупнейшие из них — Красноярская (6000 МВт) и Саяно-Шушенская (6400 МВт) ГЭС.

Строительство ГЭС немыслимо без комплексного решения многих задач. Надо удовлетворять нужды не только энергетики, но и водного транспорта, водоснабжения, ирригации, рыбного хозяйства. Лучше всего этим задачам отвечает принцип каскадности когда на реке строят не одну, а ряд ГЭС, расположенных по течению реки. Это позволяет создать на реке несколько последовательно расположенных на разных уровнях водохранилищ, а значит, полнее использовать сток реки, ее энергетические ресурсы й маневрировать мощностью отдельных ГЭС. Каскады гидроэлектрических станций сооружены на многих реках. Кроме Волжского, каскады построены на Каме, Днепре, Чирчике, Раздане, Иртыше, Риони, Свири. Наиболее мощный Ангаро-Енисейский каскад с крупнейшими в мире ГЭС — Братской, Красноярской, Саяно-Шушенской и Богучанской общей мощностью около 17 ГВт и годовой выработкой 76 млрд. кВт- ч электроэнергии.

Существует несколько видов электростанций, использующих энергию потока воды. Помимо гидроэлектростанций строят еще гидроаккумулирующие электростанции (ГАЭС) и приливные электростанции (ПЭС). С первого взгляда едва ли заметишь разницу между обычной гидроэлектростанцией и гидро-аккумулирующей электростанцией. Такое же здание, где размещено главное энергетическое оборудование, такие же линии электропередачи. Нет принципиальной разницы и в способе производства электроэнергии. В чем же особенности ГАЭС?

В отличие от ГЭС гидроаккумулирующая станция требует два водохранилища (а не одно) емкостью по нескольку десятков миллионов кубических метров. Уровень одного должен быть на несколько десятков метров выше другого. Оба водохранилища сообщаются между собой трубопроводами. На нижнем водохранилище строится здание ГАЭС. В нем так называемые обратимые гидроагрегаты — гидравлические турбины и электрические генераторы размещены на одном валу. Они могут работать и как генераторы тока, и как электрические водяные насосы. Когда потребление энергии уменьшается, например в ночные часы, гидравлические турбины выполняют роль насосов, перекачивая воду из нижнего водохранилища в верхнее. При этом генераторы работают как электрические двигатели, получающие электрическую энергию от тепловых и атомных электростанций. Когда же потребление электроэнергии возрастает, гидроагрегаты ГАЭС переключаются на обратное вращение. Падающая из верхнего водохранилища в нижнее вода вращает гидравлические турбины, генераторы вырабатывают электрическую энергию. Таким образом, ГАЭС в ночные часы как бы накапливает электроэнергию, вырабатываемую другими электростанциями, а днем отдает ее. Поэтому ГАЭС обычно служит, как говорят энергетики, для покрытия «пиков» нагрузки, т. е. она дает энергию тогда, когда в ней особо нуждаются. На земном шаре действуют более 160 ГАЭС. У нас в стране первая ГАЭС построена под Киевом. Она имеет малый напор, всего 73 м, и суммарную мощность 225 МВт.

Вступила в строй более крупная ГАЭС в Московской области, мощностью 1,2 ГВт, с напором 100 м.

Обычно ГАЭС строят на реках. Но, как оказалось, подобные электростанции можно строить на берегах морей и океанов. Только там они получили иное название — приливные электростанции (ПЭС).

Два раза в сутки в одно и то же время уровень океана то поднимается, то опускается. Это гравитационные силы Луны и Солнца притягивают к себе массы воды. Вдали от берега колебания уровня воды не превышают 1 м, но у самого берега они могут достигать 13 м, как, например, в Пенжинской губе на Охотском море.

Если залив или устье реки перегородить плотиной, то в момент наибольшего подъема воды в таком искусственном водохранилище можно запереть сотни миллионов кубических метров воды. Когда же в море наступает отлив, между уровнями воды в водохранилище и в море создается перепад, достаточный для вращения гидротурбин, установленных в зданиях ПЭС. Если водохранилище одно, ПЭС может вырабатывать электрическую энергию непрерывно в течение 4—5 ч с перерывами соответственно по 1—2 ч четыре раза за сутки (столько раз меняется уровень воды в водохранилище при приливах и отливах).

Чтобы устранить неравномерность выработки электроэнергии, водохранилище станции делится плотиной на 2—3 меньших. В одном поддерживают уровень отлива, в другом — уровень прилива, третье служит резервным.

На ПЭС устанавливают гидроагрегаты, которые способны работать с высоким КПД как в генераторном (производить электроэнергию), так и в насосном режиме (перекачивать воду из водохранилища с низким уровнем воды в водохранилище с высоким уровнем). В насосном режиме ПЭС работает тогда, когда в энергосистеме появляется избыточная электроэнергия. В этом случае агрегаты подкачивают или откачивают воду из одного водохранилища в другое.

В 1968 г. на побережье Баренцева моря в Кислой губе сооружена первая в нашей стране опытно-промышленная ПЭС. В здании электростанции размещено 2 гидроагрегата мощностью 400 кВт.

Десятилетний опыт эксплуатации первой ПЭС позволил приступить к составлению проектов Мезенской ПЭС на Белом море, Пенжинской и Тугурской на Охотском море.

Использование великих сил приливов и отливов Мирового океана, даже самих океанских волн — интересная проблема. К решению ее еще только приступают. Тут многое предстоит изучать, изобретать, конструировать.

Строительство крупных энергетических гигантов — будь то ГЭС, ГАЭС или ПЭС — каждый раз экзамен для строителей. Здесь соединяется труд рабочих самой высокой квалификации и разных специальностей — от мастеров бетонных работ до монтажников-верхолазов.

enciklopediya-tehniki.ru

Гидроэлектростанция

Гидроэлектростанция (ГЭС)

Люди очень давно научились использовать энергию воды для того, чтобы вращать рабочие колеса мельниц, станков, пилорам. Но постепенно доля гидроэнергии в общем количестве энергии, используемой человеком, уменьшилась. Это связано с ограниченной возможностью передачи энергии воды на большие расстояния. С появлением электрической турбины, приводимой в движение водой, у гидроэнергетики появились новые перспективы.

 Гидроэлектростанция представляет собой комплекс различных сооружений и оборудования, использование которых позволяет преобразовывать энергию воды в электроэнергию. Гидротехнические сооружения обеспечивают необходимую концентрацию потока воды, а дальнейшие процессы производятся при помощи соответствующего оборудования.

Гидроэлектростанции возводятся на реках, сооружая плотины и водохранилища. Большое значение для эффективности работы станции имеет выбор места. Необходимо наличие двух факторов: гарантированная обеспеченность водой в течение всего года и как можно больший уклон реки. Гидроэлектростанции разделяются на плотинные (необходимый уровень реки обеспечивается за счёт строительства плотины) и деривационные (производится отвод воды из речного русла к месту с большой разностью уровней).

Отличаться может и расположение сооружений станции. Например, здание станции может входить в состав водонапорных сооружений (так называемые русловые станции) или располагаться за плотиной (приплотинные станции).

Определение гидроэлектростанции

Гидроэлектростанция (ГЭС) — электростанция, в качестве источника энергии использующаяэнергию водного потока. Гидроэлектростанции обычно строят нареках, сооружаяплотиныиводохранилища.

Для эффективного производства электроэнергии на ГЭС необходимы два основных фактора: гарантированная обеспеченность водой круглый год и возможно большие уклоны реки, благоприятствуют гидростроительству каньонообразныевиды рельефа.

Технологии

Работа гидроэлектростанций основана на использовании кинетической энергии падающей воды. Для преобразования этой энергии применяются турбина и генератор. Сначала эти устройства вырабатывают механическую энергию, а затем уже электроэнергию. Турбины и генераторы могут устанавливаться непосредственно в дамбе или возле неё. В некоторых случаях используется трубопровод, посредством которого вода, находящаяся под давлением, подводится ниже уровня дамбы или к водозаборному узлу ГЭС.

Индикаторами мощности гидроэлектростанций являются две переменные: расход воды, который измеряется в кубических метрах и гидростатический напор. Последний показатель представляет собой разность высот между начальной и конечной точкой падения воды. Проект станции может основываться на каком-то одном из этих показателей или на обоих.

Современные технологии производства гидроэлектроэнергии позволяют получать довольно высокий КПД. Иногда он в два раза превышает аналогичные показатели обычных теплоэлектростанций. Во многом такая эффективность обеспечивается особенностями оборудования гидроэлектростанций. Оно очень надёжно, да и пользоваться им просто.

Кроме того, всё используемое оборудование обладает ещё одним важным преимуществом. Это длительный срок службы, что объясняется отсутствием теплоты в процессе производства. И действительно часто менять оборудование не нужно, поломки случаются крайне редко. Минимальный срок службы электростанций – около пятидесяти лет. А на просторах бывшего Советского Союза успешно функционируют станции, построенные в двадцатых или тридцатых годах прошлого века. Управление гидроэлектростанциями осуществляется через центральный узел, и вследствие этого в большинстве случаев там работает небольшой персонал.

Принцип работы ГЭС

Принцип работы ГЭС достаточно прост. Цепь гидротехнических сооружений обеспечивает необходимый напор воды, поступающей на лопасти гидротурбины, которая приводит в действие генераторы, вырабатывающие электроэнергию.

Необходимый напор воды образуется посредством строительства плотины, и как следствие концентрации реки в определенном месте, или деривацией — естественным током воды. В некоторых случаях для получения необходимого напора воды используют совместно и плотину, и деривацию.

Непосредственно в самом здании гидроэлектростанции располагается все энергетическое оборудование. В зависимости от назначения, оно имеет свое определенное деление. В машинном зале расположены гидроагрегаты, непосредственно преобразующие энергию тока воды в электрическую энергию. Есть еще всевозможное дополнительное оборудование, устройства управления и контроля над работой ГЭС, трансформаторная станция, распределительные устройства и многое другое.

Гидроэлектрические станции разделяются в зависимости от вырабатываемой мощности:

мощные — вырабатывают от 25 МВТ и выше;

средние — до 25 МВт;

малые гидроэлектростанции — до 5 МВт.

Гидроэлектростанции также делятся в зависимости от максимального использования напора воды:

высоконапорные — более 60 м;

средненапорные — от 25 м;

низконапорные — от 3 до 25 м.

Мощность ГЭС напрямую зависит от напора воды, а также от КПД используемого генератора. Из-за того, что по природным законам уровень воды постоянно меняется, в зависимости от сезона, а также еще по ряду причин, в качестве выражения мощности гидроэлектрической станции принято брать цикличную мощность. К примеру, различают годичный, месячный, недельный или суточный циклы работы гидроэлектростанции.

Гидроэлектростанции Казахстана

По данным KEGOC — системного оператора единой электроэнергетической системы Казахстана — производство электрической энергии в стране осуществляют 72 электростанции различной формы собственности.

Фактическая установленная мощность на конец 2012 года — 19,4 ГВт,[2] на конец 2013 года — 19,6 ГВт.

KEGOC подразделяет электрические станции на электростанции национального значения, электростанции в составе промышленных комплексов и электростанции регионального значения.

В списке перечисляются электростанции Казахстана. Список сортирован по видам электростанций. Установленная мощность и структура собственности электростанций приводится в соответствии с официальными годовыми отчётами генерирующих компаний Казахстана. В качестве собственника электростанций АО «АлЭС» (Алматинские ТЭЦ-1, ТЭЦ-2 и ТЭЦ-3, Капчагайская ГЭС и Алматинский каскад ГЭС) указывается Самрук-Энерго, так как 100 % акций АО «АлЭС» принадлежитСамрук-Энерго.

В Казахстане имеются значительные гидроресурсы, теоретически мощность всех гидроресурсов страны составляют 170 млрд кВт·ч в год. Основные реки: Иртыш, Или иСырдарья. Экономически эффективные гидроресурсы сосредоточены в основном на востоке (горный Алтай) и на юге страны. Крупнейшие ГЭС: Бухтарминская,Шульбинская, Усть-Каменогорская (на реке Иртыш) и Капчагайская (на реке Или) обеспечивающие 10 % потребностей страны.

В Казахстане планируется увеличение использования гидроресурсов в среднесрочном периоде. В декабре 2011 г. была запущена в эксплуатациюМойнакская ГЭС(300 МВт), проектируются Булакская ГЭС (78 МВт), Кербулакская ГЭС (50 МВт) и ряд малых ГЭС.

Название

Собственник

Мощность (МВт)

Область

Река

Шульбинская ГЭС

Самрук-Энерго (92,14 %)

702

Восточно-Казахстанская область

Иртыш

Бухтарминская ГЭС

Самрук-Энерго (90 %)

675

Восточно-Казахстанская область

Иртыш

Капчагайская ГЭС (Капшагайская ГЭС)

Самрук-Энерго

364

Алматинская область

Или

Усть-Каменогорская ГЭС

Самрук-Энерго (89,9 %)

331,2

Восточно-Казахстанская область

Иртыш

Мойнакская ГЭС

Самрук-Энерго (51 %)

300

Алматинская область

Чарын

Шардаринская ГЭС

Самрук-Энерго (100 %)

100

Южно-Казахстанская область

Сырдарья

Алматинский каскад

Самрук-Энерго

46,9

Алматинская область

Большая и Малая Алматинка

Каратальская ГЭС (ГЭС-1)

ТОО «Казцинк-ТЭК»

10,08

Алматинская область

Каратал

Каратальские ГЭС-2, 3, 4

ТОО «Каскад Каратальских ГЭС»

11,9

Алматинская область

Каратал

Лениногорский каскад ГЭС (Хариузовская и Тишинская ГЭС)

11,8

Восточно-Казахстанская область

Громотуха

Тасоткельская ГЭС

ТОО «Компания А Т»

9,2

Жамбылская область

Шу

Талдыкорганские ГЭС

5,2

Алматинская область

Иссыкская ГЭС-2

5,1

Алматинская область

Иссык

Меркенские ГЭС-1, 2, 3

ТОО «Гидроэнергетическая компания»

3,6

Жамбылская область

Мерке

Каракыстакская ГЭС

2,1

Жамбылская область

Каракыстак

Зайсанская ГЭС

2

Восточно-Казахстанская область

Аксу ГЭС-1

1,9

Алматинская область

Иссыкская ГЭС-3

1,0

Алматинская область

Иссык

Основные достоинства и недостатки

Основные преимущества гидроэнергетики очевидны. Разумеется, главным преимуществом гидроресурсов является их возобновляемость: запас воды практически неисчерпаем. При этом гидроресурсы значительно опережают в развитии остальные виды возобновляемых источников энергии и способны обеспечивать энергией большие города и целые регионы.

Кроме того, пользоваться этим источником энергии можно достаточно просто, что подтверждается длительной историей гидроэнергетики. Например, генераторы гидроэлектростанций можно включать или выключать в зависимости от энергопотребления. Себестоимость строительства гидроэлектростанций является довольно низкой.

В то же время достаточно спорным является вопрос о влиянии гидроэнергетики на окружающую среду. С одной стороны, эксплуатация гидроэлектростанций не приводит к загрязнению природы вредными веществами.

Но в то же время образование водохранилищ требует затопления значительных территорий, зачастую плодородных, а это становится причиной негативных изменений в природе. Например, плотины часто перекрывают рыбам путь к нерестилищам, но в то жнее время благодаря этому обстоятельству значительно увеличивается количество рыбы в

водохранилищах и развивается рыболовство.

Одни из первых гидроэлектрических установок мощностью всего в несколько сотен ват были сооружены в 1876-1881 годах в Штангассе и Лауфене (Германия) и в Грейсайде (Англия). Развитие ГЭС и их промышленное использование тесно связано с проблемой передачи электроэнергии на расстояние. Сооружение линии электропередачи (170 км) от Лауфенской ГЭС до Франкфурта-на-Майне (Германия) для снабжения электроэнергией Международная электротехническая выставки (1891) открыла широкие возможности для развития ГЭС. В 1892 году промышленный ток дала ГЭС, построенная на водопаде в Бюлахе (Швейцария), почти одновременно в 1893 были построены ГЭС в Гельшене (Швеция), на реке Изар (Германия) и в Калифорнии (США). В 1896 году вступила в строй Ниагарская ГЭС (США) постоянного тока; в 1898 дала ток ГЭС Рейнфельд (Германия), а в 1901 стали под нагрузку гидрогенераторы ГЭС Жонат (Франция).

Убедительными сведеньями о первой в мире ГЭС можно считать и информацию о первой гидроэлектростанции Хорватии в городке Шибеник (1885 год). Напряжение переменного тока мощностью 230 кВт служило для городского освещения.

Наиболее достоверным считается, что первой гидроэлектростанцией в России была Березовская (Зыряновская) ГЭС, построенная в Рудном Алтае на реке Березовка (приток р. Бухтармы) в 1892 году. Она была четырехтурбинная общей мощностью 200 кВт. Полученная энергия освещала производственные помещения, обеспечивала работу телефонной станции, и питала электронасосы для откачки воды из рудниковых шахт.

На роль первой также претендует Ныгринская ГЭС, которая появилась в Иркутской губернии на реке Ныгри (приток р. Вачи) в 1896 году. Энергетическое оборудование станции состояло из двух турбин с общим горизонтальным валом, вращавшим три динамо-машины мощностью по 100 кВт. Первичное напряжение преобразовывалось четырьмя трансформаторами трехфазного тока до 10 кВ и передавалось по двум высоковольтным линиям на соседние прииски Негаданный и Ивановский. На приисках напряжение трансформировалось до 220 В. Благодаря электроэнергии Ныгринской ГЭС в шахтах установили электрические подъемники. Кроме того, электрифицировали приисковую железную дорогу, служившую для вывоза отработанной породы, которая стала первой в России электрифицированной железной дорогой.

На 2012 год гидроэнергетика обеспечивает производство до 21% всей электроэнергии в мире, установленная энергетическая мощность гидроэлектростанций (ГЭС) достигает 715 ГВт. Лидерами по выработке гидроэнергии в абсолютных значениях являются: Китай, Канада, Бразилия; а на душу населения - Норвегия, Исландия и Канада. Крупнейшими мировыми гидроэлектростанциями являются:

·Три ущелья (Китай, река Янцзы) - 22,4 ГВт,

·Итайпу (Бразилия, река Парана) - 14 ГВт,

·Гури (Венесуэла, река Карони) 10,3 ГВт,

·Тукуруи (Бразилия, река Токантинс) - 8,3 ГВт,

·Гранд-Кули (США, река Колумбия) - 6,8 ГВт,

·Саяно-Шушенская (Россия, река Енисей) 6,4 ГВт,

·Красноярская (Россия, река Енисей) 6 ГВт,

·Робер-Бурасса (Канада, река Ла-Гранд) 5,6 ГВт,

·Черчилл-Фолс (Канада, река Черчил) - 5,4 ГВт,

По состоянию на 2011 год в России имеется 15 действующих, достраиваемых и находящихся в замороженном строительстве гидравлических электростанций свыше 1000 МВт и более сотни гидроэлектростанций меньшей мощности.

При этом по экономическому потенциалу гидроэнергоресурсов Россия занимает второе место и мире (порядка 852 млрд. кВт ч.) после Китая, однако, по степени их освоения - 20% - уступает практически всем развитым странам и многим развивающимся государствам. Степень износа оборудования большинства российских гидростанций превышает 40%, а по некоторым ГЭС этот показатель достигает 70%, что связано с системной проблемой всей гидроэнергетической отрасли и ее хроническим недофинансированием.

Основные виды ГЭС

Русловые и плотинные ГЭС

Это наиболее распространенные виды гидроэлектрических станций. Напор воды в них создается посредством установки плотины, полностью перегораживающей реку, или поднимающей уровень воды в ней на необходимую отметку. Такие гидроэлектростанции строят на многоводных равнинных реках, а также на горных реках, в местах, где русло реки более узкое, сжатое.

- плотина; 2 - затворы; 3 - максимальный уровень верхнего бьефа; 4 - минимальный уровень верхнего бьефа; 5 - гидравлический подъёмник; 6 - сороудерживающая решётка; 7 гидрогенератор; 8 - гидравлическая турбина; 9 - минимальный уровень нижнего бьефа; 10 - максимальный паводковый уровень

Приплотинные ГЭС

Строятся при более высоких напорах воды. В этом случае река полностью перегораживается плотиной, а само здание ГЭС располагается за плотиной, в нижней её части. Вода, в этом случае, подводится к турбинам через специальные напорные тоннели, а не непосредственно, как в русловых ГЭС.

- плотина; 2 - водовод; 3 - площадка электротехнического оборудования высокого напряжения; 4 - здание машинного зала ГЭС.

Деривационные гидроэлектростанции:

Деривационные гидроэлектростанции. Такие электростанции строят в тех местах, где велик уклон реки. Необходимая концентрация воды в ГЭС такого типа создается посредством деривации. Вода отводится из речного русла через специальные водоотводы. Последние - спрямлены, и их уклон значительно меньший, нежели средний уклон реки. В итоге вода подводится непосредственно к зданию ГЭС. Деривационные ГЭС могут быть разного вида - безнапорные или с напорной деривацией. В случае с напорной деривацией, водовод прокладывается с большим продольным уклоном. В другом случае в начале деривации на реке создается более высокая плотина, и создается водохранилище - такая схема еще называется смешанной деривацией, так как используются оба метода создания необходимой концентрации воды.

Схема деривационной гидроэлектрической станции: 1 - плотина; 2 водоподъёмник; 3 - отстойник; 4 - деривационный канал; 5 - бассейн суточного регулирования; 6 - напорный бассейн; 7 - турбинный водовод; 8 - распределительное устройство; 9 - здание ГЭС; 10 - водосброс; 11 - подъездные пути

Гидроаккумулирующие электростанции:

Такие ГАЭС способны аккумулировать вырабатываемую электроэнергию, и пускать её в ход в моменты пиковых нагрузок. Принцип работы таких электростанций следующий: в определенные периоды (не пиковой нагрузки), агрегаты ГАЭС работают как насосы от внешних источников энергии и закачивают воду в специально оборудованные верхние бассейны. Когда возникает потребность, вода из них поступает в напорный трубопровод и приводит в действие турбины.

Приливные ГЭС (ПЭС):

Особый вид гидроэлектростанции, использующий энергию приливов, а фактически кинетическую энергию вращения Земли. В приливных электростанциях используется перепад уровней воды (колебания уровня воды у берега могут достигать 12 метров), образующийся во время прилива и отлива. Для этого отделяют прибрежный бассейн невысокой плотиной, которая задерживает приливную воду при отливе. Затем воду выпускают, и она вращает гидротурбины которые могут работать как в режиме генератора, так и в режиме насоса (для перекачки воды в водохранилище для последующей работы в отсутствие приливов и отливов).

Принцип действия ГЭС. Основные сооружения и оборудование гидроэлектростанций

Гидроэлектростанция ? это комплекс сооружений и оборудования, посредством которых энергия потока воды преобразуется в электрическую энергию.

Гидроэлектростанции являются составной частью гидроузла - комплекса гидротехнических сооружений, предназначенных для использования водных ресурсов в интересах народного хозяйства: получения электрической энергии, ирригации, водоснабжения, улучшения условий судоходства, защиты от наводнений, рыбоводства и др.

Мощность гидравлического потока зависит от расхода и напора. Скорость потока воды в реке изменяется по ее длине с изменением сечения русла и гидравлического уклона. Для концентрации мощности и сосредоточения напора реки в каком-либо одном месте возводят гидротехнические сооружения: плотину, деривационный канал.

Плотина, перегородив реку, образует водохранилище, достигающее иногда таких больших размеров, что его называют морем. Таковы, например, Волгоградское, Цимлянское море, простирающиеся более чем на 100 км. Поверхность воды перед плотиной называется верхним бьефом, а за плотиной - нижним бьефом.

Водосбросные сооружения перепускают воду из верхнего бьефа в нижний во избежание превышения максимального расчетного уровня воды в период паводка, сбрасывает лед, шугу и т.п.

Если река судоходна, то к плотине примыкают шлюзы (судоподъемники) с подходными каналами для пропуска судов и плотов через гидроузел, перевалки грузов и пересадки пассажиров с водного на сухопутный транспорт и пр.

Для обеспечения отбора и подачи воды неэнергетическим потребителям в состав гидроузла входят водоприемные сооружения и насосные станции.

Рыбохозяйственные сооружения - это рыбоходы и рыбоподъемники для пропуска через гидроузел ценных пород рыб к местам постоянных нерестилищ, рыбозащитные сооружения и сооружения для искусственного рыборазведения. Иногда рыбу пропускают через шлюзы в процессе шлюзования судов.

Для связи объектов гидроузла между собой, соединения их с сетью государственных автомобильных и железных дорог, а также для пропуска этих дорог через сооружения гидроузла строят транспортные сооружения: мосты, дороги и др.

Для выработки электроэнергии и ее распределения потребителям в состав гидроузла входят различные энергетические сооружения. К ним относятся: водоприемные устройства и водоводы, подводящие воду из верхнего бьефа к турбинам и отводящие воду в нижний бьеф; здание гидроэлектростанций с гидротурбинами, гидрогенераторами и трансформаторами; вспомогательное механическое и подъемно - транспортное оборудование; пульт управления; открытые распределительные устройства, предназначенные для приема и распределения энергии.

Принцип действия ГЭС заключается в следующем: плотина образует водохранилище, обеспечивая постоянный напор воды. Вода входит в водоприемник и, пройдя по напорному водоводу, вращает гидротурбину, которая приводит в действие гидрогенератор. Выходное напряжение гидрогенераторов повышается трансформаторами для передачи на распределительные подстанции и затем потребителям.

Напор создаётся концентрацией падения реки на используемом участке плотиной, либо деривацией, либо плотиной и деривацией совместно. Деривацией в гидротехнике называют совокупность сооружений, осуществляющих отвод воды из реки, водохранилища или другого водоёма, транспортировку её к станционному узлу ГЭС, насосной станции, а также отвод воды от них. Различают деривацию безнапорную и напорную. Напорная деривация - трубопровод, напорный туннель, применяется, когда колебания уровня воды в месте её забора или отвода значительны. При малых колебаниях уровня может применяться как напорная, так и безнапорная деривация. Тип деривации выбирается с учётом природных условий района на основании технико-экономического расчёта. Протяжённость современных деривационных водоводов достигает нескольких десятков километров, пропускная способность более 2000 м3/сек. Основное энергетическое оборудование размещается в здании ГЭС: в машинном зале электростанции - гидроагрегаты, вспомогательное оборудование, устройства автоматического управления и контроля; в центральном посту управления пульт оператора-диспетчера или автооператор гидроэлектростанции. Повышающая трансформаторная подстанция размещается как внутри здания ГЭС, так и в отдельных зданиях или на открытых площадках. Распределительные устройства зачастую располагаются на открытой площадке. Здание может быть разделено на секции с одним или несколькими агрегатами и вспомогательным оборудованием, отделённые от смежных частей здания. При здании ГЭС или внутри него создаётся монтажная площадка для сборки и ремонта различного оборудования и для вспомогательных операций по обслуживанию. По установленной мощности различают мощные (свыше 250 МВт), средние (до 25 МВт) и малые (до 5 МВт). Мощность ГЭС зависит от напора (разности уровней верхнего и нижнего расхода воды Q (м3/сек)), используемого в гидротурбинах, и КПД гидроагрегата.

По максимально используемому напору ГЭС делятся на высоконапорные (более 60 м), средненапорные (от 25 до 60 м) и низконапорные (от 3 до 25 м). На равнинных реках напоры редко превышают 100 м, в горных условиях посредством плотины можно создавать напоры до 300 м и более, а с помощью деривации - до 1500 м.

Одними из самых важных составляющих ГЭС считаются гидрогенераторы и гидротурбины.

Гидротурбины.

Гидравлическая турбина преобразует энергию воды, текущей под напором, в механическую энергию вращения вала.

По принципу действия гидротурбины делят на реактивные (напороструйные) и активные (свободноструйные). Вода к рабочему колесу поступает либо через сопла (в активных гидротурбинах), либо через направляющий аппарат (в реактивных гидротурбинах).

Наиболее распространённой разновидностью активной гидротурбины является ковшовая турбина. Ковшовые турбины конструктивно сильно отличаются от наиболее распространенных реактивных гидротурбин (радиально-осевых, поворотно-лопастных), у которых рабочее колесо находится в потоке воды. В ковшовых турбинах вода подается через сопла по касательной к окружности, проходящей через середину ковша. Вода, проходя через сопло, формирует струю, летящую с большой скоростью и ударяющую о лопатку турбины, после чего колесо проворачивается, совершая работу. После отклонения одной лопатки под струю подставляется другая. Процесс использования энергии струи происходит при атмосферном давлении, а производство энергии осуществляется только за счет кинетической энергии воды. Лопатки турбины имеют двояковогнутую форму с острым лезвием посередине; задача лезвия - разделять струю воды с целью лучшего использования энергии. Ковшовые гидротурбины применяются при напорах более 200 метров (чаще всего 300-500 метров и более), при расходах до 100 м³/сек. Мощность наиболее крупных ковшовых турбин может достигать 200-250 МВт и более. При напорах до 700 метров ковшовые турбины конкурируют с радиально-осевыми, при больших напорах их использование безальтернативно. Как правило, ГЭС с ковшовыми турбинами построены по деривационной схеме, поскольку получить столь значительные напоры при помощи плотины проблематично. Преимуществами ковшовых турбин является возможность использования очень больших напоров, а также небольших расходов воды. Недостатки турбины - неэффективность при небольших напорах, невозможность использования как насоса, высокие требования к качеству подаваемой воды.

studfiles.net

Гидроэнергетика, история гидроэнергетики в России, Российские гидроэлектростанции - Экономическая география

Гидроэнергетика, история гидроэнергетики в России, Российские гидроэлектростанции

ГИДРОЭЛЕКТРОСТАНЦИИ

По количеству вырабатываемой энергии на втором месте посте теплоэлектростанций находятся гидроэлектростанции (ГЭС). Электроэнергия ГЭС наиболее дешева среди других видов, но строительство гидроэлектростанции дорого. Современные ГЭС позволяют производить до 7 млн. кВт энергии, что вдвое превышает показатели действующих в настоящее время ТЭС и, пока, АЭС, однако размещение ГЭС в Европе затруднено по причине дороговизны земли и невозможности затопления больших территорий в данных регионах. В России этой проблемы нет. Важным недостатком ГЭС является сезонность работы, столь неудобная для промышленности.ГЭС можно разделить на две основные группы: ГЭС на крупных равнинных реках и ГЭС на горных реках. В России большая часть ГЭС сооружалась на равнинных реках. Сооружение ГЭС на равнинных реках менее рентабельно, чем на горных, но иногда это необходимо, например, для создания нормального судоходства и орошения. Во всех странах мира стараются отказаться от использования ГЭС на равнинных реках, переходя на быстрые горные реки или АЭС.Гидроэлектростанции используют для выработки электроэнергии гидроэнергетические ресурсы, то есть силу падающей воды. Существует три основных вида ГЭС.Гидроэлектрические станции. Технологическая схема их работы довольна проста. Естественные водные ресурсы реки преобразуются в гидроэнергетические ресурсы с помощью строительства гидротехнических сооружений. Гидроэнергетические ресурсы используются в турбине и превращаются в механическую энергию, механическая энергия используется в генераторе и превращается в электрическую энергию.Приливные станции. Природа сама создает условия для получения напора, под которым может быть использована вода морей. В результате приливов и отливов уровень воды меняется на северных морях – Охотском, Беринговом, волна достигает 13 метров. Между уровнем бассейна и моря создается разница и таким образом создается напор. Так как приливная волна периодически изменяется, то в соответствии с ней меняется напор и мощность станций. Пока еще использование приливной энергии ведется в скромных масштабах. Главным недостатком таких станций является вынужденный режим. Приливные станции (ПЭС) дают свою мощность не тогда, когда этого требует потребитель, а в зависимости от приливов и отливов воды. Велика также стоимость сооружений таких станций.Гидроаккумулирующие электростанции. Их действие основано на цикличном перемещении одного и того же объема воды между двумя бассейнами: верхним и нижним. В ночные часы, когда потребность электроэнергии мала, вода перекачивается из нижнего водохранилища в верхний бассейн, потребляя при этом излишки энергии, производимой электростанциями ночью. Днем, когда резко возрастает потребление электричества, вода сбрасывается из верхнего бассейна вниз через турбины, вырабатывая при этом энергию. Это выгодно, так как остановки ТЭС в ночное время невозможны. Таким образом, ГАЭС позволяет решать проблемы пиковых нагрузок. В России, особенно в европейской части, остро стоит проблема создания маневренных электростанций, в том числе ГАЭС.В настоящее время появился новый тип гидроэлектростанций – бесплотинная мини-электростанция. Её устройство несложно, а показатели мощности довольно неплохи. Это мобильная электростанция, что удобно в некоторых труднодостижимых местах. Рукавная электростанция – также относится с микро гидроэлектростанциям.

ИСТОРИЯ ГИДРОЭНЕРГЕТИКИ В РОССИИ

Долгое время считалось, что серьезная гидроэнергетика в нашей стране начиналась в 20-х годах прошлого века. В царской России в 1913 г. было выработано тогдашними 74 гидростанциями всего 5 млн. кВт, то есть столько, сколько вырабатывает Красноярская ГЭС менее чем за час.Именно с малых гидроэлектростанций выросла гидроэнергетика нынешней России. Так вспомним же где и кем были построены эти предтечи нынешних гигантов. К 1916 г. Министерство земледелия России зарегистрировало 24 гидроэлектростанции, мощностью от 150 кВт и более, построенных на мелких речках, дающих электроэнергию фабрикам, курортам, монастырям, поместьям и рудникам. Чаще всего использовалась такая схема. В горных районах, где быстрые реки позволяли не затапливать окрестности, в верховьях возводилась небольшая плотина. Уровень воды повышался на несколько метров. Затем по склону прорывался канал или укладывались трубы, куда отводилась часть потока. Остальная вода, переливаясь через гребень плотины, продолжала свое течение по руслу. У подошвы склона сооружалась гидроэлектростанция, турбина крутила не очень мощный электрогенератор. Первенцем гидроэнергетики в России следует считать станцию на Рудном Алтае, построенную в 1892 г. Эта четырехтурбинная ГЭС была создана под руководством инженера Кокшарова для шахтного водоотлива Зыряновского рудника. Здесь издавна были гидросливные установки, где с помощью воды вращались механизмы. Пристроив к ним турбины с генератором тока, можно было без дополнительных затрат получить электроэнергию. Кроме того, у рудника были именитые хозяева - русские цари. Следующие по "возрасту" были ГЭС, построенные на Урале, в Восточной Сибири и под Петербургом. На Урале первые гидроэлектростанции появились там, где добывалась железная руда, в частности на Алапаевском месторождении бурых железняков. Мощность Алапаевской ГЭС, построенной в 1904 г., по тем временам была велика - 560 кВт. В европейской части России первая промышленная гидроэлектростанция мощностью в 260 кВт была построена уже в 1896 г. на реке Охте, близ Петербурга. Она снабжала электроэнергией Охтинский пороховой завод. В ее создании участвовали инженеры В. Н. Чиколев и Р. Э. Классон. 18 октября 1898 г. стало знаменательной датой для Ленских золотых приисков: в этот день заработала ГЭС, на которой впервые в России были установлены генераторы трехфазного (переменного) тока. Трансформатор напряжением 10 кВ позволил передать ток на расстояние в 20 км. Для этого была специально сооружена высоковольтная линия. Через пару лет на Ленских приисках начали строить еще ряд ГЭС, так что их число к началу 1917 г. достигло шести, общая мощность - 2,5 тыс. кВт. В Средней Азии ГЭС появились значительно позднее, чем в Сибири, но зато сюда, на реку Мургаб, была доставлена самая крупная в то время гидравлическая турбина, изготовленная в Риге. С ее помощью стала работать с 1910 г. гидроэлектростанция, поставлявшая электроэнергию для орошения земель, где выращивали фрукты для царского двора. Как это ни парадоксально, проводниками технического прогресса часто оказывались монастыри и курорты. Так, еще в 1902 г. под монастырем "Новый Афон", была построена Сухумская (или Псырцхская) ГЭС мощностью в 350 кВт.И еще об одной гидростанции стоит рассказать - это ГЭС "Белый уголь", в создании которой принимал участие известный инженер М. А. Шателен. Построенная в 1903 г. на реке Подкумок .Ни одна из гидроэлектростанций не была столь популярна. Впервые о ней писал в 1902 г. журнал "Электрический вестник". Возможно, что популярность станции стала причиной досадной ошибки: в некоторых изданиях ее называют первой ГЭС страны. Более 110 лет минуло с тех пор, как наши соотечественники заставили воду работать для электроэнергетики. Пришла пора, наверное, считать первые ГЭС памятниками национальной технической культуры.

ГИДРОЭНЕРГЕТИЧЕСКИЕ РЕСУРСЫ РОССИИ

Водные ресурсы — это воды рек, озер и подземные воды, они служат основным источником водоснабжения страны. Вода нужна и коммунальному хозяйству, и промышленным предприятиям, и сельскому хозяйству для орошения. В целом страна хорошо обеспечена водными ресурсами, но по ее территории они распределены неравномерно. Хорошо обеспечены северные районы, Сибирь (80% пресных вод сосредоточено в озере Байкал), однако все наиболее освоенные части страны испытывают недостаток воды, особенно это касается южной половины европейской части страны.Главная проблема водоснабжения — нехватка чистой воды, загрязнение вод рек и озер бытовыми и промышленными стоками, стоками животноводческих комплексов. Нужно шире внедрять системы оборотного водоснабжения, очистки сточных вод и их использования.Водные ресурсы России значительны и разнообразны. Запасы пресной воды содержатся не только в реках, озерах, водохранилищах, но также и в подземных водоемах, ледниках, многолетней мерзлоте и болотах. По водообеспеченности Россия значительно опережает любую соседнюю республику нового зарубежья. Но распределение водных ресурсов крайне неравномерно. Значение этой диспропорции еще более усиливается, если учесть, что наименее обеспеченные водой районы являются главными потребителями воды.Россия обладает огромными гидроэнергетическими ресурсами. Но они используются менее чем на 20%. Большая часть гидроэнергетических ресурсов приходится на Сибирь и Дальний Восток (80%). Особенно велики они в бассейнах рек Енисея, Лены, Оби, Ангары, Иртыша, Амура. Богаты гидроэнергоресурсами реки Северного Кавказа. Строительство ГЭС не только выгодно, но имеет и отрицательные последствия: затопление земель, изменение уровня грунтовых вод, микроклимата, ухудшаются условия для размножения многих ценных видов рыб.Велико значение рек для развития межрайонных и внутрихозяйственных связей. В России — самая разветвленная речная сеть в мире; протяженность судоходных речных путей по России — свыше 400 тыс. км.РОССИЙСКИЕ ГИДРОЭЛЕКТРОСТАНЦИИ

Новосибирская ГЭС, построена на р. Оби, вблизи г. Новосибирска (ныне - в черте города). Проектная мощность станции 400 МВт, среднегодовая выработка электроэнергии 1687 млн. кВт/ч. В состав гидроузла входят водосливная бетонная плотина высотой 33 м, длиной по гребню 198,5 м, земляная намывная плотина длиной 4382 м, здание ГЭС длиной 283,6 м, в котором установлено 7 гидроагрегатов мощностью по 57,2 МВт, и трёхкамерный однониточный шлюз. Плотина образует Новосибирское водохранилище. Строительство станции начато в 1950, 1-й агрегат пущен в 1957, в 1959 введена в эксплуатацию на полную мощность. Энергия, вырабатываемая ГЭС, поступает в объединённую энергосистему Сибири.Верхнесвирская ГЭС, на р. Свирь в Ленинградской области. Сооружение ГЭС начато в 1935, в 1941 (в связи с войной) строительство прервано, возобновлено в 1947, пущена в 1952. Установленная мощность 160 Мвт (160 тыс. кВт). Среднегодовая выработка электроэнергии 620 млн. кВт/ч. В состав гидроузла входят: трёхпролётная бетонная водосливная плотина (длина 111 м), совмещенная ГЭС (длина 117,8 м), земляная намывная плотина (длина 312,8 м, наибольшая высота 31 м) и однокамерный судоходный шлюз. Общая длина напорного фронта 620 м. В машинном зале установлены 4 гидротурбины поворотно-лопастного типа. Электроэнергия по высоковольтным линиям электропередачи напряжением 220 кв передаётся в Объединённую энергосистему Северо-Запада.Красноярская ГЭС, крупнейшая ГЭС мира (1972). Расположена на р. Енисей, выше г. Красноярска, в месте пересечения Енисеем отрогов Восточного Саяна у г. Дивногорска. Установленная мощность 6000 Мвт (6 млн. квт), среднемноголетняя выработка электроэнергии - 20,4 млрд. кВт/ч в год. В состав сооружений входят: русловая бетонная плотина высота 124 м, здание ГЭС длина 430 м, судоподъёмник, открытые распределительные устройства напряжением 220 и 500 кв. Длина напорного фронта гидроузла 1175 м, максимальный напор 101 м, расход воды через плотину 12000 м3/сек. Плотина образует Красноярское водохранилище. В станционной части плотины размещены 24 водозаборных отверстия, а в водосбросной 7 водосливных пролётов шириной по 25 м. В здании ГЭС установлены 12 гидроагрегатов с турбинами радиально-осевого типа мощностью по 508 Мвт. Управление, регулирование и контроль работы электромеханического оборудования ГЭС осуществляются автоматически, с использованием средств телемеханики ближнего действия. Судоподъёмник продольно-наклонного типа с поворотным устройством расположен на левом берегу. Перемещение судов из одного бьефа в другой производится в самоходной судовозной камере.Волховская ГЭС, первая районная ГЭС , построенная по плану ГОЭЛРО на р. Волхов. Сооружение станции начато в 1918, но из-за Гражданской войны и военной интервенции строительные работы развернулись только в 1921. Первоначальная мощность ГЭС 58 Мвт (58 тыс. квт). В начале Великой Отечественной войны станция была демонтирована и оборудование вывезено. В 1942 частично восстановлена и по подводному кабелю, проложенному по дну Ладожского озера, снабжала электроэнергией осаждённый Ленинград. В октябре 1944 полностью восстановлена. Мощность станции увеличена до 66 Мвт. Среднегодовая выработка электроэнергии - 375 млн. кВт/ч. В состав гидроузла входят: бетонная водосливная плотина длиной 213,3 м, здание ГЭС длиной 140,5 м, водоспуск, однокамерный шлюз и рыбоход. В машинном зале ГЭС установлены 8 гидроагрегатов мощностью по 8 Мвт и 2 малых гидроагрегата по 1 Мвт. Водонапорные сооружения создают Волховское водохранилище.Саяно-Шушенская ГЭС, Саянская, одна из крупнейших ГЭС, строящаяся в долине р. Енисей, вблизи поселка Майна Хакасской АО Красноярского края. Установленная мощность 6400 Мвт. Среднегодовая выработка электроэнергии составит 23,8 млрд. кВт/ч. В состав гидроузла входят: арочно-гравитационная плотина максимальной высотой 242 м и длина по гребню 1066 м; здание ГЭС приплотинного типа с 10 агрегатами по 640 Мвт; расчётный напор 194 м; эксплуатационный водосброс с водобойным колодцем; предусмотрена возможность устройства судоподъёмника. Плотина образует водохранилище сезонного регулирования полным объёмом 31,3 км3 и полезным объёмом 15,3 км3. Работы подготовительного периода начаты в 1964. Электроэнергия, вырабатываемая ГЭС, будет передаваться по высоковольтным линиям напряжением 500 кв в объединённую энергосистему Сибири. Саратовская ГЭС, одна из ГЭС Волжского каскада. Расположена у г. Балаково Саратовской области. Установленная мощность 1,36 Гвт, среднегодовая выработка электроэнергии 5,4 млрд. кВт/ч. строительство начато в 1956, введена на полную мощность в 1970. В состав гидроузла входят: русловая земляная намывная плотина длиной по гребню 1260 м и высотой 40м, двухниточный однокамерный шлюз, верховой и низовой каналы, левобережная дамба, рыбоподъёмник и здание ГЭС совмещенного типа с сопрягающими устройствами. В машинном зале длиной 1100 м установлено 24 агрегата (21 по 60 Мвт, 2 по 45 Мвт и один - 10 Мвт для обеспечения собственных нужд ГЭС). Плотина образует Саратовское водохранилище. Электроэнергия по линиям электропередачи 500 и 220 кв передаётся в энергосистему средней Волги, а через неё - в Единую энергетическую систему.Усть-Хантайская ГЭС, одна из самых северных ГЭС мира. Расположена на р. Хантайка (правый приток Енисея). Максимальный напор 56,5 м. В состав гидроузла входят русловая каменно-набросная плотина длина по гребню 420 м, водоприёмник длина 140 м, береговой водосброс, рассчитанный на пропуск 3300 м3 воды в секунду, и береговые дамбы длина 4,5 км. Здание ГЭС подземного типа длина 139 м, с расстояниями между осями агрегата 17 м. Гидроузел образует Усть-Хантайское водохранилище. Строительство ГЭС начато в 1963, закончено в 1972. ГЭС снабжает электроэнергией Норильский горно-металлургический комбинат и районы Крайнего Севера.Братская ГЭС, одна из крупнейших в мире. Сооружена на р. Ангаре в Падунском сужении вблизи г. Братска Иркутской области РСФСР. Строительство начато в 1955, в 1961 пущены первые 4 гидроагрегата. Проектная мощность ГЭС 4500 Мвт. Средняя годовая выработка электроэнергии 22,7 млрд. кВт/ч. К 1967 мощность станции достигла 4100 Мвт. В здании ГЭС установлено 16 гидроагрегатов с мощностью по 225 Мвт и 2 гидроагрегата по 250 Мвт. Турбины вертикальные радиально-осевые на напор 100 м и частоту вращения 125 об /м. В состав гидроузла входят: русловая бетонная плотина гравитационного типа длиной 924 м и максимальной строительной высотой 124,5 м, состоящая из станционной части (длиной 515 м, в которой расположены 20 водоприёмных отверстий и напорные трубопроводы), водосливной (длиной 242 м с 10 водосбросными отверстиями) и глухих частей общей длиной. 167 м; здание ГЭС длиной 516 м, расположенное у низовой грани станционной части плотины и примыкающее к левому берегу; береговые бетонные плотины общей длиной 506 м; правобережная земляная плотина длиной 2987 м и левобережная длиной 723 м; открытые распределительные устройства на напряжение 220 и 500 кв., расположенные на левом берегу р. Ангары. По гребню плотины проходит магистральная железная дорога Тайшет - Лена, а ниже - шоссейная дорога. Напорные сооружения общей длиной 5140 м образуют Братское водохранилище. Судоходные сооружения - объекты 2-й очереди.Воткинская ГЭС, гидроэлектростанция Камского каскада у г. Чайковского Пермской области, в 30 км от г. Воткинска. Установленная мощность 1000 Мвт (1 млн. квт). Среднегодовая выработка электроэнергии 2320 млн. квтЇч. Сооружение гидроузла начато в 1955, в 1961 пущен 1-й агрегат, в 1963 станция введена на полную мощность. В состав гидроузла входят: 8-пролётная водосливная плотина длиной 191 м и высотой 44,5 м; земляные намывные плотины общей длиной 4,79 км и наибольшей высотой 35 м; здание ГЭС длиной 308 м и 2-ниточный однокамерный шлюз. Напорные сооружения общей длиной 5,4 км образуют Воткинское водохранилище. В машинном зале ГЭС установлены 10 гидроагрегатов по 100 Мвт. Электроэнергия, вырабатываемая ГЭС, передаётся по высоковольтным линиям электропередачи напряжением 500, 220 и 110 кв. В. ГЭС - одна из опорных электростанций объединённой энергосистемы Урала.Волжская ГЭС, одна из крупнейших ГЭС мира, в нижнем течении р. Волги, севернее г. Волгограда. Установленная мощность 2,54 Гвт (2,54 млн. квт), среднегодовая выработка электроэнергии 11,1 млрд. квтЇч. Строительство начато в 1951, в 1958 пущены первые 3 гидроагрегата, в 1962 - последний (22-й агрегат). В состав гидроузла входят: бетонная водосливная плотина распластанного профиля с максимальным напором 27 м, длиной 725 м, имеющая 27 водосливных пролётов; земляная намывная плотина длиной 3375 м; здание ГЭС совмещенного типа длиной 664 м с сороудерживающим сооружением; двухниточный двухступенчатый шлюз с аванпортом в верхнем бьефе и низовым подходным каналом длиной 5,6 км; Волго-Ахтубинский канал; рыбопропускное сооружение. По сооружениям гидроузла устроены железнодорожный и шоссейный переходы через р. Волгу. Напорные сооружения образуют Волгоградское водохранилище. В здании ГЭС установлены 22 вертикальных гидроагрегата мощностью по 115 Мвт (115 тыс. квт). Малый гидроагрегат мощностью 11 Мвт установлен на рыбоподъёмнике.

ПЛАН ГОЭЛРО

Становление электроэнергетики России связано с планом ГОЭЛРО (1920 г.). Рассчитанный на 10—15 лет план предусматривал строительство 10 гидроэлектростанций и 20 паровых электростанций суммарной мощностью 1,5 млн кВт. Фактически план был реализован за 10 лет — к 1931 году, а к концу 1935 г. вместо 30 электростанций были построены 40 районных электростанций, в том числе Свирская и Волховская гидроэлектростанции, Шатурская на торфе и Каширская на подмосковных углях государственные районные электростанции (ГРЭС).Основу плана составили следующие направления:• широкое использование на электростанциях местных топливных ресурсов;• создание высоковольтных электрических сетей, объединяющих мощные станции;• экономическое использование топлива, достигаемое параллельной работой тепловых электростанций (ТЭС) и ГЭС;• сооружение ГЭС в первую очередь в районах, бедных органическим топливом.План ГОЭЛРО создал базу индустриализации России. В 1920-е годы наша страна занимала одно из последних мест в мире по выработке энергии, а уже в конце 1940-х годов она заняла первое место в Европе и второе в мире.

ЭКОЛОГИЧЕСКИЕ ПРОБЛЕМЫ ГИДРОЭНЕРГЕТИКИ

Одно из важнейших воздействий гидроэнергетики связано с отчуждением значительных площадей плодородных (пойменных) земель под водохранилища. В России, где за счет использования гидроресурсов производится не более 20% электрической энергии, при строительстве ГЭС затоплено не менее 6 млн. га земель. На их месте уничтожены естественные экосистемы.Со строительством водохранилищ связано резкое нарушение гидрологического режима рек, свойственных им экосистем и видового состава гидробионтов. Так, Волга практически на всем протяжении (от истоков до Волгограда) превращена в непрерывную систему водохранилищ.Ухудшение качества воды в водохранилищах происходит по различным причинам. В них резко увеличивается количество органических веществ как за счет ушедших под воду экосистем (древесина, другие растительные остатки, гумус почв и т. п.), так и вследствие их накопления в результате замедленного водообмена. Это своего рода отстойники и аккумуляторы веществ, поступающих с водосборов.В конечном счете, перекрытые водохранилищами речные системы из транзитных превращаются в транзитно-аккумулятивные. Кроме биогенных веществ, здесь аккумулируются тяжелые металлы, радиоактивные элементы и многие ядохимикаты с длительным периодом жизни. Продукты аккумуляции делают проблематичным возможность использования территорий, занимаемых водохранилищами, после их ликвидации. Имеются данные, что в результате заиления равнинные водохранилища теряют свою ценность как энергетические объекты через 50-100 лет после их строительства. Считается, что в перспективе мировое производство энергии на ГЭС не будет превышать 5% от общей.

ПЕРСПЕКТИВЫ ГИДРОЭНЕРГЕТИКИ

Сейчас Россия занимает второе место в мире по гидроэнергетическим ресурсам. Но потенциал еще больше. Новое строительство в основном планируется в Сибири и на Дальнем Востоке. Гидропотенциал этих регионов в настоящее время используется на 20 и 4% соответственно. Программой перспективного развития гидроэнергетики предусмотрено строительство следующих ГЭС: Катунская, Чемальсткая, Мокская, Тельмамская, Шилкинская, Нижнеангарская, Выдумская, Стрелковская, а также Ивановской ГЭС.К 2020 г. планируется ввести в эксплуатацию восемь строящихся сейчас гидростанций: каскад Нижне-Черекских ГЭС, Зарамагские ГЭС, Ирганайскую ГЭС, Богучанскую ГЭС, Бурейскую ГЭС, Усть-Среднеканскую ГЭС и Вилюйскую ГЭС. Их сооружение началось еще до 1990 г.Однако, нынешнее техническое состояние уже эксплуатирующихся гидроэлектростанций оставляет желать лучшего, поэтому акцент также делается на модернизацию существующих ГЭС.Весьма перспективным является строительство гидроаккумулирующих электростанций, которые позволяют решать проблему пиковых нагрузок. Построена Загорская ГАЭС (1,2 млн КВт), строится Центральная ГАЭС (2,6 млн КВт).Энергетика России в последние годы ясно показала, что при недофинансировании, при недоинвестировании энергетических активов энергетика может стать препятствием для экономического роста в регионах. Когда есть запрос на развитие промышленности, есть запрос на подключение потребителя, а энергетика не может обеспечить этот запрос.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

1. Экономическая география России: Учеб. Пособие для вузов / Под ред. Т. Г. Морозовой. – 2-е изд., перераб. и доп. – М.: ЮНИТИ-ДАНА, 2001. – 147с.2. Региональная экономика: Учеб. Пособие для вузов/ Т. Г. Морозова, М. П. Победина, Г. Б. Поляк и др.; Под ред. проф. Т. Г. Морозовой. – М.: Банки и биржи, ЮНИТИ, 1995. – 304 с.3. География России. Население и хозяйство. 9 кл.: Атлас. – 9-е изд., испр. – М.: Дрофа; Издательство ДИК, 2005. – 48с.: ил., карт.

Ключевые слова страницы: как, скачать, бесплатно, без, регистрации, смс, реферат, диплом, курсовая, сочинение, ЕГЭ, ГИА, ГДЗ

referatzone.com

Краткая характеристика работы гидроэлектростанции

Количество просмотров публикации Краткая характеристика работы гидроэлектростанции - 1066

ГЭС – комплекс сооружений и оборудования, посредством которых энергия потока воды преобразуется в электрическую энергию. ГЭС состоит из последовательной цепи гидротехнических сооружений, обеспечивающих необходимую концентрацию потока воды и создание напора, и энергетического оборудования, преобразующего энергию движущейся под напором воды в механическую энергию вращения, которая, в свою очередь, преобразуется в электрическую энергию.

Напор ГЭС создается концентрацией падения воды реки на используемом участке плотиной, либо деривацией, либо плотиной и деривацией совместно.

Основное энергетическое оборудование ГЭС размещается в здании ГЭС:

По схеме использования водных ресурсов и концентрации напоров ГЭС обычно подразделяют на русловые, приплотинные, деривационные с напорной и безнапорной деривацией, смешанные, гидроаккумулирующие и приливные. Подробнее остановимся на русловых ГЭС.

В русловых ГЭС (рис.Е.1.) напор воды создаётся плотиной, перегораживающей реку и поднимающей уровень воды в верхнем бьефе. При этом неизбежно неĸᴏᴛᴏᴩᴏᴇ затопление долины реки. На равнинных реках наибольшая экономически допустимая площадь затопления ограничивает высоту плотины. Русловые ГЭС строят и на равнинных многоводных реках и на горных реках, в узких сжатых долинах.

В состав сооружений русловой ГЭС, кроме плотины, входят здание ГЭС и водосбросные сооружения. Состав гидротехнических сооружений зависит от высоты напора и установленной мощности. У русловой ГЭС здание с размещенными в нём гидроагрегатами служит продолжением плотины и вместе с ней создаёт напорный фронт. При этом с одной стороны к зданию ГЭС примыкает верхний бьеф, а с другой - нижний бьеф. Подводящие спиральные камеры гидротурбин своими входными сечениями закладываются под уровнем верхнего бьефа, выходные же сечения отсасывающих труб погружены под уровнем нижнего бьефа.

В соответствии с назначением гидроузла в его состав могут входить судоходные шлюзы или судоподъёмник, рыбопропускные сооружения, водозаборные сооружения для ирригации и водоснабжения. Для русловых ГЭС характерны напоры до 30-40 м. На крупных равнинных реках основное русло перекрывается земляной плотиной, к которой примыкает бетонная водосливная плотина и сооружается здание ГЭС. Такая компоновка типична для многих отечественных ГЭС на больших равнинных реках.

Отдельные ГЭС или каскады ГЭС, как правило, работают в системе совместно с конденсационными электростанциями, теплоэлектроцентралями (ТЭЦ), атомными электростанциями (АЭС), газотурбинными установками (ГТУ), причём исходя из характера участия в покрытии графика нагрузки энергосистемы ГЭС бывают базисными, полупиковыми и пиковыми.

Важнейшая особенность гидроэнергетических ресурсов по сравнению с топливно-энергетическими ресурсами – их непрерывная возобновляемость.

Из-за большой площади зеркал водохранилищ наиболее крупных ГЭС ущерб, наносимый природе, значителœен. Наиболее значимым фактором воздействия крупных гидроэлектростанций на экосистему водосброса является создание водохранилищ и затопление земель. Это вызывает изменение видового состава, численности биомассы растений, животных, формирование новых биоценозов.

Эффективным способом уменьшения затопления территорий является увеличение количества ГЭС в каскаде с уменьшением на каждой ступени напора и, следовательно, зеркала водохранилищ.

Еще одна экологическая проблема гидроэнергетики связана с оценкой качества водной среды. В водохранилищах задерживается большая часть питательных веществ, приносимых реками. В теплую погоду водоросли способны массами размножаться в поверхностных слоях обогащенного питательными веществами, или эвтрофного, водохранилища. В ходе фотосинтеза водоросли потребляют питательные вещества из водохранилища и производят большое количество кислорода. Отмершие водоросли придают воде неприятный запах и вкус, покрывают толстым слоем дно и препятствуют отдыху людей на берегах водохранилищ. Массовое размножение, ʼʼцветениеʼʼ водорослей в неглубоких заболоченных водохранилищах делает их воду непригодной ни для промышленного использования, ни для хозяйственных нужд.

В случае если вопрос о положительном или отрицательном влиянии водохранилищ на качество воды до сих пор остается спорным, то негативное влияние неочищенных стоков, бесспорно. Большие объёмы воды и высокий эффект самоочищения в водохранилищах побуждают к строительству предприятий без должной очистки стоков, что превращает водохранилища в огромные отстойники сточных вод.

Кроме загрязнения объективным показателœем качества является состояние обитающих в воде живых организмов. Наиболее тесно связаны с водными массами планктонные организмы. В условиях верхнего бьефа формируется планктобиоценоз озерного типа, а в условиях нижнего – речного. Как правило, организмы сообществ озерного типа не приспособлены к жизни в реке. В речных условиях течение даже средней силы оказывает губительное влияние на озерные виды организмов. На структуру и динамику планктона влияют и сами гидротехнические сооружения, т.к. при преодолении гидроагрегатов планктон подвергается разрушению.

Рис.Е.1. Разрез здания Волжской ГЭС: 1 – водоприемник, 2 – камера турбины, 3 – гидротурбина, 4 – гидрогенератор, 5 – отсасывающая труба, 6 – распределительные устройства (электрические), 7 – трансформатор, 8 – портальные краны, 9 – кран машинного зала, 10 – донный водосброс; НПУ – нормальный подпорный уровень, м; УНБ – уровень нижнего бьефа, м

Развитие ГЭС и их промышленное использование тесно связано с проблемой передачи электроэнергии на расстояние: как правило, места͵ наиболее удобные для сооружения ГЭС, удалены от базовых потребителœей электроэнергии.

И всœе же, рассматривая воздействие ГЭС на окружающую среду, следует отметить жизнесберегающую функцию ГЭС. Так выработка каждого млрд. кВт*ч электроэнергии на ГЭС вместо ТЭС приводит к уменьшению смертности населœения на 100-226 чел/год.

ПРИЛОЖЕНИЕ Ж

referatwork.ru

Реферат ГЭС

Опубликовать скачать

Реферат на тему:

План:

Введение

Одна из самых крупных по выработке российская ГЭС — Братская

Плотина Серрон Гранде в Сальвадоре, вогнутая для увеличения прочности тела плотины

Гидроэлектроста́нция (ГЭС) — электростанция, в качестве источника энергии использующая энергию водного потока. Гидроэлектростанции обычно строят на реках, сооружая плотины и водохранилища.

Для эффективного производства электроэнергии на ГЭС необходимы два основных фактора: гарантированная обеспеченность водой круглый год и возможно большие уклоны реки, благоприятствуют гидростроительству каньонообразные виды рельефа.

1. Особенности

2. Принцип работы

Схема плотины гидроэлектростанции

Принцип работы ГЭС достаточно прост. Цепь гидротехнических сооружений обеспечивает необходимый напор воды, поступающей на лопасти гидротурбины, которая приводит в действие генераторы, вырабатывающие электроэнергию.

Необходимый напор воды образуется посредством строительства плотины, и как следствие концентрации реки в определенном месте, или деривацией — естественным током воды. В некоторых случаях для получения необходимого напора воды используют совместно и плотину, и деривацию.

Непосредственно в самом здании гидроэлектростанции располагается все энергетическое оборудование. В зависимости от назначения, оно имеет свое определенное деление. В машинном зале расположены гидроагрегаты, непосредственно преобразующие энергию тока воды в электрическую энергию. Есть еще всевозможное дополнительное оборудование, устройства управления и контроля над работой ГЭС, трансформаторная станция, распределительные устройства и многое другое.

Гидроэлектрические станции разделяются в зависимости от вырабатываемой мощности:

Мощность ГЭС зависит от напора и расхода воды, а также от КПД используемых турбин и генераторов. Из-за того, что по природным законам уровень воды постоянно меняется, в зависимости от сезона, а также еще по ряду причин, в качестве выражения мощности гидроэлектрической станции принято брать цикличную мощность. К примеру, различают годичный, месячный, недельный или суточный циклы работы гидроэлектростанции.

Типичная для горных районов Китая малая ГЭС (ГЭС Хоуцзыбао, уезд Синшань округа Ичан, пров. Хубэй). Вода поступает с горы по чёрному трубопроводу

Гидроэлектростанции также делятся в зависимости от максимального использования напора воды:

В зависимости от напора воды, в гидроэлектростанциях применяются различные виды турбин. Для высоконапорных — ковшовые и радиально-осевые турбины с металлическими спиральными камерами. На средненапорных ГЭС устанавливаются поворотнолопастные и радиально-осевые турбины, на низконапорных — поворотнолопастные турбины в железобетонных камерах. Принцип работы всех видов турбин схож — вода, находящаяся под давлением (напор воды) поступает на лопасти турбины, которые начинают вращаться. Механическая энергия, таким образом, передается на гидрогенератор, который и вырабатывает электроэнергию. Турбины отличаются некоторыми техническими характеристиками, а также камерами — стальными или железобетонными, и рассчитаны на различный напор воды.

Гидроэлектрические станции также разделяются в зависимости от принципа использования природных ресурсов, и, соответственно, образующейся концентрации воды. Здесь можно выделить следующие ГЭС:

В состав гидроэлектрических станций, в зависимости от их назначения, также могут входить дополнительные сооружения, такие как шлюзы или судоподъемники, способствующие навигации по водоему, рыбопропускные, водозаборные сооружения, используемые для ирригации и многое другое.

Ценность гидроэлектрической станции состоит в том, что для производства электрической энергии, они используют возобновляемые природные ресурсы. Ввиду того, что потребности в дополнительном топливе для ГЭС нет, конечная стоимость получаемой электроэнергии значительно ниже, чем при использовании других видов электростанций. [2]

3. Гидроэнергетика в мире

На 2006 год гидроэнергетика обеспечивает производство до 88 % возобновляемой и до 20 % всей электроэнергии в мире, установленная гидроэнергетическая мощность достигает 777 ГВт.

Абсолютным лидером по выработке гидроэнергии на душу населения является Исландия. Кроме неё этот показатель наиболее высок в Норвегии (доля ГЭС в суммарной выработке — 98 %), Канаде и Швеции. В Парагвае 100 % производимой энергии вырабатывается на гидроэлектростанциях.

Наиболее активное гидростроительство на начало 2000-х ведёт Китай, для которого гидроэнергия является основным потенциальным источником энергии. В этой стране размещено до половины малых гидроэлектростанций мира, а также крупнейшая ГЭС мира «Три ущелья» на реке Янцзы и строящийся крупнейший по мощности каскад ГЭС. Ещё более крупная ГЭС «Гранд Инга» мощностью 39 ГВт планируется к сооружению международным консорциумом на реке Конго в Демократической Республике Конго (бывший Заир).

На 2008 год крупнейшими производителями гидроэнергии (включая переработку на ГАЭС) в абсолютных значениях являются следующие страны[3]:

Страна Потребление гидроэнергии в ТВт·ч
1. Китай 585
2. Канада 369
3. Бразилия 364
4. США 251
5. Россия 167
6. Норвегия 140
7. Индия 116
8. Венесуэла 87
9. Япония 69
10. Швеция 66
11. Франция 63

3.1. Крупнейшие ГЭС в мире

Наименование Мощность,ГВт Среднегодоваявыработка, млрд кВт·ч Собственник География
Три ущелья 22,40 100,00 р. Янцзы, г. Сандоупин, Китай
Итайпу 14,00 100,00 Итайпу-Бинасионал р. Парана, г. Фос-ду-Игуасу, Бразилия/Парагвай
Гури 10,30 40,00 р. Карони, Венесуэла
Черчилл-Фолс 5,43 35,00 Newfoundland and Labrador Hydro р. Черчилл, Канада
Тукуруи 8,30 21,00 Eletrobrás р. Токантинс, Бразилия

4. Гидроэлектростанции России

По состоянию на 2009 год в России имеется 15 гидроэлектростанций свыше 1000 МВт (действующих, достраиваемых или находящихся в замороженном строительстве), и более сотни гидроэлектростанций меньшей мощности.

4.1. Крупнейшие гидроэлектростанции России

Наименование Мощность,ГВт Среднегодоваявыработка, млрд кВт·ч Собственник География
Саяно-Шушенская ГЭС 2,56 (6,40)[сн 1] 23,50[сн 1] ОАО РусГидро р. Енисей, г. Саяногорск
Красноярская ГЭС 6,00 20,40 ОАО «Красноярская ГЭС» р. Енисей, г. Дивногорск
Братская ГЭС 4,52 22,60 ОАО Иркутскэнерго, РФФИ р. Ангара, г. Братск
Усть-Илимская ГЭС 3,84 21,70 ОАО Иркутскэнерго,РФФИ р. Ангара, г. Усть-Илимск
Богучанская ГЭС[сн 2] 3,00 17,60 ОАО «Богучанская ГЭС», ОАО РусГидро р. Ангара, г. Кодинск
Волжская ГЭС 2,58 12,30 ОАО РусГидро р. Волга, г. Волжский
Жигулёвская ГЭС 2,32 10,50 ОАО РусГидро р. Волга, г. Жигулевск
Бурейская ГЭС 2,01 7,10 ОАО РусГидро р. Бурея, пос. Талакан
Чебоксарская ГЭС 1,40 (0,8)[сн 3] 3,31 (2,2)[сн 3] ОАО РусГидро р. Волга, г. Новочебоксарск
Саратовская ГЭС 1,36 5,7 ОАО РусГидро р. Волга, г. Балаково
Зейская ГЭС 1,33 4,91 ОАО РусГидро р. Зея, г. Зея
Нижнекамская ГЭС 1,25 (0,45)[сн 3] 2,67 (1,8)[сн 3] ОАО «Генерирующая компания», ОАО «Татэнерго» р. Кама, г. Набережные Челны
Загорская ГАЭС 1,20 1,95 ОАО РусГидро р. Кунья, пос. Богородское
Воткинская ГЭС 1,02 2,60 ОАО РусГидро р. Кама, г. Чайковский
Чиркейская ГЭС 1,00 2,47 ОАО РусГидро р. Сулак, п. Дубки

Примечания:

  1. ↑ 12 Восстанавливается после аварии (2009 год), в скобках указано доаварийное значение.
  2. Строящиеся объекты.
  3. ↑ 1234 Мощность и выработка при проектном уровне водохранилища; в настоящее время фактическая мощность и выработка значительно ниже, указаны в скобках.

4.2. Другие гидроэлектростанции России

4.3. Предыстория развития гидростроения в России [4]

Первая очередь строительства ГЭС:[5]

Район Название Мощность,тыс. кВт
Северный Волховская 30
  Нижнесвирская 110
  Верхнесвирская 140
Южный Александровская 200
Уральский Чусовая 25
Кавказский Кубанская 40
  Краснодарская 20
  Терская 40
Сибирь Алтайская 40
Туркестан Туркестанская 40

В Советский период развития энергетики упор делался на особую роль единого народнохозяйственного плана электрификации страны — ГОЭЛРО, который был утвержден 22 декабря 1920 года. Этот день был объявлен в СССР профессиональным праздником — Днём энергетика. Глава плана, посвященная гидроэнергетике — называлась «Электрификация и водная энергия». В ней указывалось, что гидроэлектростанции могут быть экономически выгодными, главным образом, в случае комплексного использования: для выработки электроэнергии, улучшения условий судоходства или мелиорации. Предполагалось, что в течение 10-15 лет в стране можно соорудить ГЭС общей мощностью 21 254 тыс. лошадиных сил (около 15 млн кВт), в том числе в европейской части России — мощностью 7394, в Туркестане — 3020, в Сибири — 10 840 тыс. л.с. На ближайшие 10 лет намечалось сооружение ГЭС мощностью 950 тыс. кВт, однако в последующем было запланировано сооружение десяти ГЭС общей рабочей мощностью первых очередей 535 тыс. кВт.

Хотя уже за год до этого в 1919 году Совет труда и обороны признал строительства Волховской и Свирской гидростанций объектами, имеющими оборонное значение. В том же году началась подготовка к возведению Волховской ГЭС, первой из гидроэлектростанций возведенных по плану ГОЭЛРО.

Однако и до начала строительства Волховской ГЭС Россия имела достаточно богатый опыт промышленного гидростроительства, в основном, частными компаниями и концессиями. Информация об этих ГЭС, построенных в России за последнее десятилетие 19-го века и первые 20 лет двадцатого столетия достаточно разрознена, противоречива и требует специальных исторических исследований.

Наиболее достоверным считается, что первой гидроэлектростанцией в России была Березовская (Зыряновская) ГЭС, построенная в Рудном Алтае на реке Березовка (приток р. Бухтармы) в 1892 году. Она была четырехтурбинная общей мощностью 200 кВт и предназначалась для обеспечения электричеством шахтного водоотлива из Зыряновского рудника.[6]

На роль первой также претендует Ныгринская ГЭС, которая появилась в Иркутской губернии на реке Ныгри (приток р. Вачи) в 1896 году. Энергетическое оборудование станции состояло из двух турбин с общим горизонтальным валом, вращавшим три динамо--машины мощностью по 100 кВт. Первичное напряжение преобразовывалось четырьмя трансформаторами трехфазного тока до 10 кВ и передавалось по двум высоковольтным линиям на соседние прииски. Это были первые в России высоковольтные ЛЭП. Одну линию (длиной 9 км) проложили через гольцы к прииску Негаданному, другую (14 км) — вверх по долине Ныгри до устья ключа Сухой Лог, где в те годы действовал прииск Ивановский. На приисках напряжение трансформировалось до 220 В. Благодаря электроэнергии Ныгринской ГЭС в шахтах установили электрические подъемники. Кроме того, электрифицировали приисковую железную дорогу, служившую для вывоза отработанной породы, которая стала первой в России электрифицированной железной дорогой.[7]

5. Преимущества

6. Недостатки

7. Крупнейшие аварии и происшествия

Примечания

  1. Интервью профессора Дмитрия Селютина.22.08.2009, «ВЕСТИ» - www.youtube.com/watch?v=y6Vw0wTt1Iw
  2. Гидроэлектрическая станция (ГЭС)
  3. T.M. L'état paufine l'ouverture des barrages à la concurrence - www.lesechos.fr/info/energie/020239999544.htm // Les échos. — Paris: 27/11/2009. — № 20561. — С. 21.
  4. «Электроэнергетика. Строители России. XX век.» М.: Мастер, 2003. С.193. ISBN 5-9207-0002-5
  5. По материалам Комиссии ГОЭЛРО
  6. Березовская ГЭС - syrjanowsk.narod.ru/html/beresowskajages.html
  7. Электроэнергетика Иркутской области. Газета «Наука в Сибири» № 3-4 (2139—2140) 23 января 1998 г. - www-sbras.nsc.ru/HBC/hbc.phtml?26 170 1
  8. ГЭС как оружие - Технологии : Hi-Tech / infox.ru - www.infox.ru/hi-tech/tech/2009/08/21/Krupnyeyshiye_GES.phtml
скачатьДанный реферат составлен на основе статьи из русской Википедии. Синхронизация выполнена 09.07.11 16:21:30Категории: Гидроэлектростанции.Текст доступен по лицензии Creative Commons Attribution-ShareAlike.

wreferat.baza-referat.ru


Смотрите также