Государственное образовательное учреждение
Гимназия № 1505
РЕФЕРАТ
на тему: «Радиолокация»
реферат подготовил:
Дрейманис Петр Янисович
консультант:
Ветюков Дмитрий Алексеевич
Москва 2009 год.
Содержание:
1.Что такое радиолокация (Введение) ………3
1.1Принципдействия…………..……………………3-4
2. Радиолокационная станция……………………4
2.1 Принцип действия РЛС………..........................5
2.2 Принцип действия Первичной РЛС……….....5-6
2.3 Принцип действия Вторичной РЛС…………..6-7
73. Применение РЛ………………………………..…7
3.1 Военное применение……………………………7-8
3.2 Невоенное применение…………………………8
4.Технология СТЕСЛС и связь ее с РЛ (РЛС)……………………………………………………8
5. Используемая литература……………………..9
1. Что такое радиолокация (в дальнейшем РЛ)?
Радиолокация — область науки и техники, объединяющая методы и средства обнаружения, измерения координат, а также определение свойств и характеристик различных объектов, основанных на использовании радиоволн.
Выделяют два вида радиолокации:
· Пассивная радиолокация основана на приёме собственного излучения объекта
· При активной радиолокации радар излучает свой собственный зондирующий импульс и принимает его, отраженным от цели.
Активная радиолокация бывает двух видов:
· С активным ответом — на объекте предполагается наличие ответчика (радиопередатчика), который излучает радиоволны в ответ на принятый сигнал. Активный ответ применяется для опознавания объектов, а также для получения от них дополнительной информации (например, количество топлива, тип объекта и многое другое).
· С пассивным ответом — запросный сигнал отражается от объекта и воспринимается в пункте приёма как ответный.
1.1 Принцип действия:
Радиолокация основана на следующих физических явлениях:
· Радиоволны рассеиваются, на встретившихся, на пути их распространения: объектов с другими электрическими свойствами, отличными от свойств среды распространения. При этом отражённая волна, так же, как и собственно, излучение цели, позволяет обнаружить цель.
· Частота принятого сигнала получает дополнительный сдвиг относительно частоты излучаемых колебаний при перемещении точек приёма и излучения, что позволяет измерять радиальные скорости движения цели относительно РЛС.
2. Радиолокационная станция
Радиолокационная станция (РЛС) или радар — система для обнаружения воздушных, морских и наземных объектов, а также для определения их дальности. В основном используется метод, основанный на излучении радиоволн и регистрации их отражений от объектов.
РЛС можно классифицировать так:
По предназначению:
· РЛС обнаружения;
· РЛС управления и слежения;
· Панорамные РЛС;
· РЛС бокового обзора;
· Метеорологические РЛС.
По характеру носителя:
· Наземные РЛС
· Морские РЛС
· Бортовые РЛС
По типу действия
· Первичные
· Вторичные
По сфере применения:
· Военные
· Гражданские
2.1 Принцип действия РЛС
Система действия действий такова: большая антенна вращается на 360 градусов и посылает радиоволны, между которыми угол равен 1 градус, и дальность действий этих волн 100 км, тем самым, отсекая квадрат 2х2 километра; таких волн антенна посылает и принимает 360х90, так как по окружности 360 и по вертикали 90. Если искомый объект находиться в отсекаемом квадрате, то вычисляется его скорость и примерное местоположение его в определенное время и туда посылается луч, который гораздо тоньше предыдущего и служит для захвата цели, в то время как предыдущий служит для обнаружения цели
2.2 Устройство Первичной РЛС
В основе строения Первичной РЛС лежат: приемник (устройство для приёма электромагнитных волн, с последующим преобразованием содержащейся в них информации к виду, в котором она могла бы быть использована.), антенна (устройство для излучения и приема радиоволн ), передатчик (техническое устройство для передачи сигналов в участке электромагнитных волн с помощью радиоволн).
1. Передающее устройство является источником электромагнитного сигнала высокой мощности. В зависимости от конструкции, передатчик работает либо в импульсном режиме, формируя повторяющиеся короткие мощные электромагнитные импульсы, либо излучает непрерывный электромагнитный сигнал.
2. Антенна выполняет фокусировку сигнала приёмника и формирование диаграммы, а также приём отражённого от цели сигнала и передачу этого сигнала в приёмник. В зависимости от реализации приём отражённого сигнала может осуществляться либо той же самой антенной, либо другой, которая иногда может располагаться на значительном расстоянии от передающего устройства.
3. Приёмное устройство выполняет усиление и обработку принятого сигнала. В самом простом случае результирующий сигнал подаётся на экран, который показывает изображение, синхронизированное с движением антенны.
Импульсные РЛС
Современные радары сопровождения построены как импульсные радары. Импульсный радар передаёт только в течение очень краткого времени короткий импульс, обычно приблизительно микросекунда в продолжительности, после чего он слушает эхо, в то время как импульс распространяется. Следующий импульс можно послать только через некоторое время, а именно после того как импульс придёт обратно, это зависит от дальности обнаружения радара (данным мощностью передатчика, усилением антенны и чувствительностью приёмника). Промежуток времени между импульсами называют интервалом повторения импульса, обратная к нему величина — важный параметр, который называют частотой повторения импульса. Радары низкой частоты дальнего обзора, обычно имеют интервал повторения в несколько сотен импульсов в секунду (или Герц [Гц]). Частота повторения импульсов является одним из отличительных признаков, по которым возможно дистанционное определение модели РЛС.
Принцип действия вторичного радиолокатора несколько отличается, от принципа Первичной радиолокации. В основе устройства Вторичной РЛС лежат компоненты: передатчик, антенна, приёмник, сигнальный процессор (специализированный микропроцессор, предназначенный для цифровой обработки сигналов в реальном масштабе времени), индикатор исамолётный ответчик с антенной (бортовое приёмопередающее устройство летательных аппаратов, предназначенное для автоматической выдачи информационных посылок по запросному сигналу РЛС.).
Передатчик. Служит для излучения импульсов запроса в антенну на частоте 1030 МГц
Антенна. Служит для излучения и приёма отражённого сигнала. Для вторичной РЛС характерно то, что антенна излучает на частоте 1030МГц, и принимает на частоте 1090 МГц.
Приёмник. Служит для приёма импульсов на частоте 1090 МГц
Сигнальный процессор. Служит для обработки принятых сигналов
Индикатор. Служит для индикации обработанной информации
Самолётный ответчик с антенной. Служит для передачи импульсного радиосигнала, содержащего дополнительную информацию, обратно в сторону РЛС при получении радиосигнала запроса.
3. Применение РЛ
3.1 Военное применение
Одним из первых важных применений радиолокации были поиск и дальнее обнаружение в военных целях. Обратимся к истории: перед второй мировой войной Великобритания построила не очень совершенную, но довольно эффективную сеть радиолокационных станций дальнего обнаружения для защиты от внезапных воздушных налетов со стороны Ла-Манша. В наши же дни более совершенные радиолокационные сети защищают Россию и Северную Америку от внезапного нападения авиации или ракет. Корабли и самолеты также оснащаются радиолокаторами. Таким образом, стало возможным наведение истребителей на вражеские бомбардировщики с наземных радиолокаторов слежения или с корабельных радиолокаторов перехвата; можно также использовать бортовые самолетные радиолокаторы для обнаружения, слежения и уничтожения техники противника. Бортовые радиолокаторы важны для поиска, осуществляемого над сушей или морем, и оказания помощи в навигации или при слепом бомбометании.
Ракеты с радиолокационным наведением оснащаются для выполнения боевых задач специальными автономными устройствами. Для распознавания местности на самонаводящейся ракете имеется бортовой радиолокатор, который сканирует земную поверхность и соответствующим образом корректирует траекторию полета. Радиолокатор, расположенный поблизости от противоракетной установки, может непрерывно отслеживать полет межконтинентальной ракеты. За последние годы в обычные методы и средства радиолокации было внесено много нового – появилась, в частности, система для одновременного слежения за многими целями, находящимися на разных высотах и азимутах; кроме того, разработан способ усиления сигналов радиолокатора без увеличения фонового шума.
3.2 Невоенные применения .
Океанские суда используют радиолокационные системы для навигации. На промысловых траулерах радиолокатор находит применение для обнаружения косяков рыбы.
На самолетах радиолокаторы используют для решения ряда задач, в том числе для определения высоты полета относительно земли. В аэропортах один радиолокатор служит для управления воздушным движением, а другой – радиолокатор управления заходом на посадку – помогает пилотам посадить самолет в условиях плохой видимости.
4. Технология СТЕЛС и связь ее с РЛ (РЛС).
СТЕЛС — технология снижения заметности. Поверхность самолёта собирают из нескольких тысяч плоских треугольников специального волнотталкивающего материала, следовательно:
Одна из возможных гипотез, почему СТЕЛС не заметен для радара это то, что он отражает волны таким образом, чтобы отражённый сигнал не вернулся в радиолокационную станцию противника, а куда-нибудь в другую точку.
Например:
Допустим, что покрытие для внешней отделки СТЕЛС делается из метала, который способен отразить радиоволны. Который крепится на крыле самолета, его нижней части, и нижней части крыла под определенным углом, чтобы радиоволны отражались не в РЛС а, допустим, уходили далеко в небо, или же падали на землю, но не на РЛС.
Используемая литература:
nature.web.ru/db/msg.html?mid=1158447&s= (автор статьи А.И. Козлов).
Учебник по физике 11 класс.
www.ronl.ru
Рис.1. Система координат обзорной РЛС ? - угол места, ? - угол азимута, R – наклонная дальность
Различают два основных режима работы РЛС: режим обзора (сканирования) пространства и режим слежения за целью. В режиме обзора луч РЛС по строго определенной системе просматривает все пространство или заданный сектор. Антенна, например, может медленно поворачиваться по азимуту и в то же время быстро наклоняться вверх и вниз, сканируя по углу места. В режиме слежения антенна все время направлена на выбранную цель, и специальные следящие системы поворачивают ее вслед за движущейся целью. Удаленность того или иного объекта определяется по запаздыванию отраженного сигнала относительно излучаемого. Запаздывание сигнала очень мало, поскольку радиоволны распространяются со скоростью, близкой к скорости света (300 000 км/с). Действительно, для самолета, находящегося на расстоянии 3 км от РЛС, запаздывание сигнала составит всего 20 мкс. Такой результат, получается, из-за того, что радиоволна проходит путь в обоих направлениях, к цели и обратно, так что общее расстояние, пройденное волной, составит 6 км. Однако при радиолокации Марса, успешно проведенной в начале 60-х годов, задержка сигнала составила около 11 мин, а это время малым назвать нельзя. Современная вычислительная техника способна с высокой точностью обрабатывать сигналы с ничтожным временем запаздывания, поэтому с помощью радаров можно регистрировать объекты, расположенные как на больших, так и на малых расстояниях от наблюдателя. Существует единственное существенное ограничение применения радаров в целях сверхдальних наблюдений - это ослабление сигнала. Если сигнал проходит большое расстояние, то он частично рассеивается, искажается и ослабевает и выделить его в приемнике из собственных шумов приемника и шумов иного происхождения зачастую крайне затруднительно. Ослабление сигнала при радиолокации вполне поддается расчету, который основан на простых физических соображениях. Если в какой - то точке излучается мощность Р, то поток мощности через единичную площадку, находящуюся на расстоянии R, будет пропорционален Р/4?R2. В знаменателе стоит площадь сферы радиусом R, окружающей источник. Таким образом, при обычной радиосвязи мощность, принятая антенной, обратно пропорциональна квадрату расстояния. Этот закон - закон сферической расходимости пучка энергии - выполняется всегда при распространении волн в свободном пространстве. Даже если сконцентрировать излучаемую мощность в узкий луч и поток энергии возрастет в несколько раз, (этот коэффициент называется коэффициентом направленного действия антенны, КНД), квадратичная зависимость от расстояния сохранится. Но в радиолокации радиосигнал преодолевает двойные расстояния, а сама облучаемая цель рассеивает энергию по всем направлениям, и если облучающий цель поток энергии ослабевает обратно пропорционально R2, то приходящий к приемнику рассеянный поток еще ослабляется во столько же раз и оказывается обратно пропорциональным R4. Это означает, что для повышения дальности действия РЛС в два раза при прочих равных условиях мощность ее передатчика надо повысить в 16 раз. Столь высокой ценой достигаются высокие характеристики современных РЛС. В РЛС с фазовым методом измерения дальности, характерно непрерывное зондирующее излучение. В этом случае о расстоянии до объекта судят по изменению фазы сигнала генератора масштабной частоты (ГМЧ) за время распространения электромагнитных волн до объекта и обратно. В фазометре (Ф) рис.2 сравниваются две волны: прямая, поступающая непосредственно от ГМЧ, и отраженная, поступающая с выхода приемника (Пр) после отражения от объекта. Эти радиоволны имеют различные фазы.
Рис.2 Структурная схема фазового метода измерения дальности
Пусть напряжение, вырабатываемое ГМЧ, изменяется по закону Umax=Um*sin(?t+?0), Где ?0 – начальная фаза; ? - масштабная частота ГМЧ. Этим напряжением модулируются колебания генератора высокой частоты (ГВЧ), которые излучаются в пространство. Тогда напряжение отраженного сигнала на выходе приемника (Пр) Uотр= Um отр* sin[?(t - t0)+?0] = Um отр* sin(?t - ?t0+?0), где ?t0 – сдвиг фаз между прямым и отраженным сигналами. В этой формуле не учитываются запаздывание фазы сигнала в цепях РЛС и сдвиг фаз, возникающий при отражении от объекта. Эти параметры постоянны и могут быть получены экспериментальным путем. Поскольку t0 = 2D/c, то ? = ?2D/c = 4?fD/?. Из этой формулы следует, что сдвиг фаз между прямым и отраженным сигналами зависит от дальности до объекта и частоты колебаний, генерируемых ГМЧ. Поскольку частота колебаний постоянна, по сдвигу фаз можно определить дальность до объекта. Наибольшее распространение получил импульсный способ определения дальности. Работой импульсного локатора управляет генератор импульсов (ГИ), следующих с относительно невысокой частотой повторения - порядка сотен импульсов в секунду. Мощные импульсы подаются на генератор высокой частоты (ГВЧ), вырабатывающий очень мощные короткие импульсы высокочастотных (ВЧ) колебаний. Через антенный переключатель (АП) ВЧ импульс поступает в антенну и излучается. После излучения импульса антенна подключается к входу приемника (Пр.).
Рис.3. Структурная схема импульсной РЛС
Одновременно с излучением импульса запускается генератор развертки (ГР.), вырабатывающий линейно нарастающее пилообразное напряжение. Оно поступает на пластины горизонтального отклонения электронно-лучевой трубки, экран которой и является экраном РЛС. Усиленный и продетектированный сигнал с выхода приемника подается на пластины вертикального отклонения. Что же можно наблюдать на экране? Прежде всего, в самом начале линии развертки появится мощный импульс сигнала ВЧ генератора, который служит началом шкалы дальности. Спустя некоторое время, нужное для распространения волн, придут сигналы от целей. Луч к этому времени переместится правее. Чем дальше цель, тем дальше от начала развертки окажутся отраженные импульсы. А их амплитуда будет соответствовать интенсивности отраженного сигнала. По ней в какой - то мере можно судить о величине цели. Определять дальность на экране импульсного локатора достаточно просто: под линией развертки можно расположить шкалу. Но, поскольку такой способ уж очень несерьезен, в схему локатора ввели масштабные генераторы меток. Шкалу дальности стал рисовать электронный луч параллельно со своим основным назначением - индикацией целей. Генератор развертки совершенствовался, например, достигнута возможность «растянуть» по горизонтали любое место линии развертки, чтобы подробнее рассмотреть отраженные сигналы в заданном интервале дальностей. У описанного индикатора (он получил название «индикатор типа «А») есть существенный недостаток: он дает только дальность, а направление на цель надо определять по шкалам поворотного устройства антенны. Поэтому очень скоро был разработан другой индикатор (тип В), используемый в РЛС кругового обзора. Антенна этой станции вращается вокруг вертикальной оси, «просматривая» все азимутальные направления от 0 до 360 градусов. Структурная схема РЛС и порядок работы остаются прежними, но индикатор кругового обзора (ИКО) выполнен совсем по-другому. Пилообразное напряжение развертки подается на специальный кольцевой отклоняющий электрод, и линия развертки проходит по радиусу - от центра к краю экрана. Она поворачивается синхронно с антенной. Для поворота линии развертки на обычные отклоняющие пластины X и Y подают синусоидальные переменные напряжения в квадратуре, т.е. на одну пару пластин - косинусоидальное напряжение, а на другую синусоидальное. Частоты этих напряжений равны частоте вращения антенны и составляют доли герца. Луч при этом описывал бы круги на экране, но, поскольку имеется еще напряжение радиальной развертки на кольцевом электроде, изменяющееся значительно быстрее с частотой повторения излучаемых импульсов, луч чертит линию развертки, вращающуюся вместе с вращением антенны. Сигнал с выхода приемника подается на управляющий электрод (сетку) ЭЛТ и заставляет луч увеличивать яркость при наличии отраженных импульсов. Таким образом, на экране ИКО луч «рисует» радиолокационную карту местности. Место расположения самой РЛС соответствует центру экрана. Локатор кругового обзора хорошо подходит для морской навигации, дальнего обнаружения воздушных целей, диспетчерского контроля в аэропортах. Теперь все чаще переходят к секторному обзору, при котором антенна «осматривает» не весь горизонт, а только нужную его часть. Большие наземные РЛС снабжают индикаторами нескольких типов: кругового обзора для обнаружения целей и контроля обстановки, типа А для точного определения дальности и т.д. Если, например, диаграмма направленности антенны может «качаться» еще и по углу места (для этого обычно не наклоняют всю антенну, достаточно «качать» ее облучатель), то применяют в дополнение к ИКО индикатор «дальность - высота». В нем луч развертывается по радиусу и «качается» в некотором секторе синхронно с антенной, а координаты выбраны прямоугольными. Такой индикатор наглядно покажет и высоту цели. Технические характеристики РЛС во многом зависят от конструкции приемо - передающей антенны. Энергию волн из волновода в открытое пространство можно передать посредством рупорной антенны. Хорошая рупорная антенна должна быть длинной, поскольку любые неоднородности в волноводе приводят к отражению распространяющейся энергии. Переход от волновода к рупору как раз и является такой неоднородностью, поэтому он должен быть достаточно плавным. Чтобы правильно сформировалась диаграмма направленности, поле в раскрыве антенны должно быть синфазным. Это значит, что колебания поля электромагнитной волны в различных точках раскрыва должны происходить одновременно. Но при распространении от рупора и вдоль его грани волна проходит разный путь и колебания на краях раскрыва запаздывают относительно колебаний в центре. Если разница путей достигает четверти, или даже половины длины волны, рупорная антенна окажется неэффективной. Для уменьшения указанной разницы путей, рупорные антенны делают длинными. Это не совсем удобно, поэтому в радиолокации предпочитают зеркальные антенны, а рупор используют в качестве облучателя зеркала. Чем больше размеры антенны, тем уже ее диаграмма направленности. Угловая ширина диаграммы направленности ? связана с размером антенны формулой ?=?/D, где угол ? выражается в радианах. Стремление увеличить дальность действия привело к тому, что радиолокация, как и многие другие области техники, пережила эпоху «гигантомании». Создавались все более мощные магнетроны, антенны все больших размеров, устанавливавшиеся на гигантских поворотных платформах. Мощность РЛС достигла 10 и более мегаватт в импульсе. Более мощные передатчики создавать было уже физически невозможно: резонаторы и волноводы не выдерживали высокой напряженности электромагнитного поля, в них происходили неуправляемые разряды. Появились данные и о биологической опасности высококонцентрированного излучения РЛС : у людей проживающих вблизи РЛС наблюдались заболевания кроветворной системы, воспаленные лимфатические узлы. Со временем появились нормы на предельную плотность потока СВЧ энергии, допустимые для работы человека (кратковременно допускается до 10 мВт/см2). Новые требования, предъявляемые к РЛС, привели к разработке совершенно новой техники, новых принципов радиолокации. В настоящее время на современных РЛС импульс посылаемый станцией представляет собой сигнал, закодированный по весьма сложному алгоритму ( наиболее распространен код Баркера), позволяющий получать данные повышенной точности и ряд дополнительных сведений о наблюдаемой цели. С появлением транзисторов и вычислительной техники мощные мегаваттные передатчики ушли в прошлое. На их смену пришли сложные системы РЛС средней мощности объединенные посредством ЭВМ. Благодаря внедрению информационных технологий стала возможна синхронная автоматическая работа нескольких РЛС. Радиолокационные комплексы постоянно совершенствуются, находят новые сферы применения. Однако есть еще масса неизученного, поэтому эта область науки еще долго будет интересна физикам, математикам, радиоинженерам; будет объектом серьезных научных работ и изысканий. Развитие современной науки и техники невозможно представить себе без применения радиолокации, которая используется и в исследовании космоса, и в навигации воздушных и морских судов, и в военной технике ( для обнаружения цели и наведения ракет на цель).
Список используемой литературы: 1. Основы радиолокации и телевидения. А.А.Немец, В.И.Федотов, Москва, Высшая школа, 1984г. 2. Радиолокация без формул. М.К.Размахнин, Москва, Советское радио,1971г. -1-
www.ronl.ru
works.tarefer.ru
Реферат на тему:
Радиолока́ция — область науки и техники, объединяющая методы и средства обнаружения, измерения координат, а также определение свойств и характеристик различных объектов, основанных на использовании радиоволн. Близким и отчасти перекрывающимся термином является радионавигация, однако в радионавигации более активную роль играет объект, координаты которого измеряются, чаще всего это определение собственных координат. Основное техническое приспособление радиолокации — радиолокационная станция (англ. Radar).
Различают активную, полуактивную, активную с пассивным ответом и пассивную РЛ. Подразделяются по используемому диапазону радиоволн, по виду зондирующего сигнала, числу применяемых каналов, числу и виду измеряемых координат, месту установки РЛС.
Выделяют два вида радиолокации:
Активная радиолокация бывает двух видов:
Активная радиолокация с пассивным ответом
Для просмотра окружающего пространства РЛС использует различные способы обзора за счёт перемещения направленного луча антенны РЛС:
В соответствии с видом излучения РЛС делятся на
Радиолокация основана на следующих физических явлениях:
При импульсном методе радиолокации передатчики генерируют колебания в виде кратковременных импульсов, за которыми следуют сравнительно длительные паузы. Причём длительность паузы выбирается исходя из дальности действия РЛС Dmax.
Сущность метода состоит в следующем:
Передающее устройство РЛС излучает энергию не непрерывно, а кратковременно, строго периодически повторяющимися импульсами, в паузах между которыми происходит приём отражённых импульсов приёмным устройством той же РЛС. Таким образом, импульсная работа РЛС даёт возможность разделить во времени мощный зондирующий импульс, излучаемый передатчиком и значительно менее мощный эхо-сигнал. Измерение дальности до цели сводится к измерению отрезка времени между моментом излучения импульса и моментом приёма, то есть временем движения импульса до цели и обратно.
См. Основное уравнение радиолокации.
Максимальная дальность действия РЛС зависит от ряда параметров и характеристик как антенной системы станции, так и генератора, и приёмника системы. В общем случае без учёта потерь мощности в атмосфере, помех и шумов дальность действия системы можно определить следующим образом:
,где:
- мощность генератора; - коэффициент направленного действия антенны; - эффективная площадь антенны - эффективная площадь рассеяния цели - минимальная чувствительность приёмника.При наличии шумов и помех дальность действия РЛС уменьшается.
Атмосферные потери особенно велики в сантиметровом и миллиметровом диапазонах и вызываются дождем, снегом и туманом, а в миллиметровом диапазоне также кислородом и парами воды.
Используются в основном для определения радиальной скорости движущегося объекта (использует эффект Допплера). Достоинством РЛС такого типа является дешевизна и простота использования, однако в таких РЛС сильно затруднено измерение расстояния до объекта.
Пример: простейший радар для определения скорости автомобиля.
Как известно, эффект отражения радиоволн открыл А.С. Попов в 1897 году. Но технически использовать удивительный эффект для «дальнего видения» никому не удавалось: волны рассеивались, и на объект локации их попадало меньше одной миллиардной части. Практические работы в области радиолокации начались в 30-х годах. Работы велись практически параллельно в СССР, Германии, Англии и Франции. Естественно, что разработки держались в секрете. Основной целью было обнаружение атак авиации.
В Советском Союзе осознание необходимости средств обнаружения авиации, свободных от недостатков звукового и оптического наблюдения, привела к разворачиванию исследований в области радиолокации. Идея, предложенная молодым артиллеристом Павлом Ощепковым получила одобрение высшего командования: наркома обороны СССР К. Е. Ворошилова и его заместителя — М. Н. Тухачевского.
3 января 1934 года в СССР был успешно проведён эксперимент по обнаружению самолёта радиолокационным методом. Самолёт, летящий на высоте 150 метров был обнаружен на дальности 600 метров от радарной установки. Эксперимент был организован представителями Ленинградского Института Электротехники и Центральной Радиолаборатории. В 1934 году маршал Тухачевский в письме правительству СССР написал: «Опыты по обнаружению самолётов с помощью электромагнитного луча подтвердили правильность положенного в основу принципа». Первая опытная установка «Рапид» была опробована в том же году[1][2], в 1936 году советская сантиметровая радиолокационная станция «Буря» засекала самолёт с расстояния 10 километров[1][3]. Работы по радиолокации были начаты и в УФТИ в Харькове. Первые РЛС в СССР, принятые на вооружение РККА и выпускавшиеся серийно были: РУС-1 – с 1939 года и РУС-2 – с 1940 года.
В 1946 году американские специалисты — Реймонд и Хачертон, бывший сотрудник посольства США в Москве, написали: «Советские учёные успешно разработали теорию радара за несколько лет до того, как радар был изобретён в Англии».[4]
Основным фактором, ограничивающим технические характеристики локаторов, является малая мощность принимаемого сигнала. При этом мощность принимаемого сигнала убывает как четвёртая степень дальности, то есть, чтобы увеличить дальность действия локатора в 10 раз нужно увеличить мощность передатчика в 10000 раз! Естественно на этом пути быстро пришли к пределам, преодолеть которые было далеко не просто. Уже в самом начале развития был осознан тот факт, что имеет значение не сама мощность принимаемого сигнала, а его заметность на фоне шумов приемника. Снижение шумов приемника также было ограничено естественными шумами элементов приемника, например тепловыми. Данный тупик был преодолен на пути усложнения методов обработки принятого сигнала и связанного с этим усложнения формы применяемых сигналов. Развитие радиолокации как научной отрасли знаний шло одновременно с развитием кибернетики и сейчас потребуются специальные исследования, чтобы решить, где именно были получены первые результаты. Следует отметить появление понятия сигнала, который позволил отвлечься от конкретных физических процессов в приемнике, таких как напряжение и ток, и позволил решать стоящие проблемы как математическую задачу о поиске наилучших функциональных преобразованиях функций времени.
Одной из первых работ в этой области была работа Котельникова В. А. об оптимальном приёме сигнала, то есть наилучшем в условии шумов методе обработки сигнала. В результате было доказано, что качество приёма зависит не от мощности сигнала, а от его энергии, то есть произведения мощности на время, таким образом, появилась доказанная возможность увеличения дальности действия за счёт увеличения длительности сигналов, в пределе до непрерывного излучения. Значительным шагом вперед стало отчетливое применение в технике методов статистической теории решений (критерий Неймана-Пирсона) и принятие того факта, что исправное устройство может работать с определённой долей вероятности. Для того, чтобы радиолокационный сигнал при большой длительности позволял измерять дальность и скорость с высокой точностью, потребовались сложные сигналы, в отличие от простых радиолокационных импульсов, изменяющие какие-либо характеристики в процессе генерации. Так. сигналы с линейной частотной модуляцией изменяют частоту колебаний в течение одного импульса, сигналы с фазовой манипуляцией скачкообразно изменяют фазу сигнала, обычно на 180 градусов. При создании сложных сигналов было сформулировано понятие функции неопределённости сигнала, показывающей связь точности измерений дальности и скорости. Необходимость повышения точности измерения параметров стимулировало развитие различных методов фильтрации результатов измерений, например, методов оптимальной нелинейной фильтрации, которые явились обобщением фильтра Калмана на нелинейные задачи. В итоге всех этих разработок теоретическая радиолокация оформилась как самостоятельная сильно математизированная отрасль знаний, в которой значительную роль имеют формализованные методы синтеза, то есть проектирование ведется в известной мере «на кончике пера».
Основными моментами в противостоянии с авиацией были:
wreferat.baza-referat.ru
1. Что такое радиолокация?
Радиолокация - область науки и техники, предмет которой - наблюдение различных объектов (целей) радиотехническими методами: их обнаружение, распознавание, определение их координат и скорости и др.
Еще А.С. Попов заметил, что радиоволны имеют способность отражаться. На этом и основан принцип действия радиолокационной станции. Мощный луч радиолокационного передатчикам фокусируется большой антенной в направлении исследуемого объекта, фиксируется и изучается отраженный радиосигнал, на основе чего делаются выводы о тех или иных характеристиках объекта.
2. Начало радиолокации.
Первые работы по созданию радиолокационных систем начались в нашей стране в середине 30-х годов. Впервые идею радиолокации высказал научный сотрудник Ленинградского электрофизического института (ЛЭФИ) П.К. Ощепков еще в 1932 году. Позднее он же предложил идею импульсного излучения.
16 января 1934 года в Ленинградском физико - техническом институте (ЛФТИ) под председательством академика А. Ф. Иоффе состоялось совещание, на котором представители ПВО РККА поставили задачу обнаружения самолетов на высотах до 10 и дальности до 50 км в любое время суток и в любых погодных условиях. За работу взялись несколько групп изобретателей и ученых. Уже летом 1934 года группа энтузиастов, среди которых были Б. К. Шембель, В.В. Цимбалин и П. К. Ощепков, представила членам правительства опытную установку. Проект получил необходимое финансирование и в 1938 году был испытан макет импульсного радиолокатора, который имел дальность действия до 50 км при высоте цели 1,5 км. Создатели макета Ю, Б, Кобзарев, П, А, Погорелко и Н, Я, Чернецов в 1941 году за разработку радиолокационной техники были удостоены Государственной премии СССР. Дальнейшие разработки были направлены в основном на увеличение дальности действия и повышение точности определения координат. Станция РУС- 2 принятая летом 1940 года на вооружение войск ПВО не имела аналогов в мире по своим техническим характеристикам , она сослужила хорошую службу во время Великой Отечественной войны при обороне Москвы от налетов вражеской авиации. После войны перед радиолокационной техникой новые сферы применения во многих отраслях народного хозяйства. Без радаров теперь немыслимы авиация и судовождение. Радиолокационные станции исследуют планеты Солнечной системы и поверхность нашей Земли, определяют параметры орбит спутников и обнаруживают скопления грозовых облаков. За последние десятилетия радиолокационная техника неузнаваемо изменилась.
3. Основы радиолокации.
Определение координат цели радаром производится с учетом выбранной системы координат. Выбор той или иной системы координат связан со сферой применения радиолокационной установки. Например, наземная радиолокационная станция (РЛС) наблюдения за воздушной обстановкой измеряет три координаты цели: азимут, угол места и наклонную дальность.
α
Система координат обзорной РЛС :
α - азимут; ß- угол места; R - наклонная дальность
РЛС такого типа используются на аэродромах . Работает эта станция в сферической системе координат.
Различают два основных режима работы РЛС : режим обзора (сканирования) пространства и режим слежения за целью. В режиме обзора луч РЛС по строго определенной системе просматривает все пространство или заданный сектор. Антенна , например, может медленно поворачиваться по азимуту и в то же время быстро наклоняться вверх и вниз, сканируя по углу места. В режиме слежения антенна все время направлена на выбранную цель и специальные следящие системы поворачивают ее вслед за движущейся целью.
Удаленность того или иного объекта определяется по запаздыванию отраженного сигнала относительно излучаемого. Запаздывание сигнала очень мало, поскольку радиоволны распространяются со скоростью, близкой к скорости света (300 000 км/с). Действительно, для самолета, находящегося на расстоянии 3 км от РЛС, запаздывание сигнала составит всего 20 мкс. Такой результат получается из - за того, что радиоволна проходит путь в обоих направлениях, к цели и обратно, так что общее расстояние, пройденное волной, составит 6 км. Однако при радиолокации Марса, успешно проведенной в начале 60-х годов, задержка сигнала составила около 11 мин, а это время малым назвать нельзя. Современная вычислительная техника способна с высокой точностью обрабатывать сигналы с ничтожным временем запаздывания, поэтому с помощью радаров можно регистрировать объекты, расположенные как на больших, так и на малых расстояниях от наблюдателя. Существует единственное существенное ограничение применения радаров в целях сверхдальних наблюдений - это ослабление сигнала. Если сигнал проходит большое расстояние, то он частично рассеивается, искажается и ослабевает и выделить его в приемнике из собственных шумов приемника и шумов иного происхождения зачастую крайне затруднительно. Ослабление сигнала при радиолокации вполне поддается расчету , который основан на простых физических соображениях. Если в какой - то точке излучается мощность Р , то поток мощности через единичную площадку, находящуюся на расстоянии R , будет пропорционален Р/4pR^2. В знаменателе стоит площадь сферы радиусом R, окружающей источник. Таким образом, при обычной радиосвязи мощность, принятая антенной, обратно пропорциональна квадрату расстояния. Этот закон - закон сферической расходимости пучка энергии - выполняется всегда при распространении волн в свободном пространстве. Даже если сконцентрировать излучаемую мощность в узкий луч и поток энергии возрастет в несколько раз ( этот коэффициент называется коэффициентом направленного действия антенны, КНД ), квадратичная зависимость от расстояния сохранится. Но в радиолокации радиосигнал преодолевает двойные расстояния, а сама облучаемая цель рассеивает энергию по
всем направлениям , и если облучающий цель поток энергии ослабевает обратно пропорционально R^2 то приходящий к приемнику рассеяный поток еще ослабляется во столько же раз и оказывается обратно пропорциональным R^4. Это означает, что для повышения дальности действия РЛС в два раза при прочих равных условиях мощность ее передатчика надо повысить в 16 раз. Столь высокой ценой достигаются высокие характеристики современных РЛС.
4. Радиолокационная техника.
Рассмотрим структурные схемы простейших радиолокаторов. Доплеровская РЛС непрерывного излучения - самая простая из всех. Именно по такому принципу были построены первые «радиоуловители» самолетов. Она содержит генератор высокочастотных колебаний ( ГВЧ), передающую Апер и приемную Апр антенны, смеситель и усилитель низкой частоты биений (УНЧ) . На его выходе включаются либо наушники, либо частотомер.
Доплеровская РЛС не обнаруживает неподвижные предметы. Сигнал, отраженный от них имеет ту же самую частоту, что и излучаемый. Но если обнаруживаемый объект движется в направлении локатора или от него, частота отраженного сигнала изменяется вследствие эффекта Доплера (эффект Доплера - изменение длины волны l (или частоты), наблюдаемое при движении источника волн относительно их приемника. Характерен для любых волн (свет, звук и т. д.). При приближении источника к приемнику l уменьшается, а при удалении растет на величину l - lо = vlо/c, где lо - длина волны источника, c - скорость распространения волны, v - относительная скорость движения источника.)
При радиолокации эффект Доплера проявляется вдвое сильнее. Самолет, летящий навстречу излучаемой локатором волне, встречает более частые колебания электромагнитного поля. Переизлучая их во время движения, он еще повышает их частоту. При удалении же самолета от локатора частота отраженного сигнала понижается. В приемную антенну попадают два сигнала: прямого прохождения (от излучающей антенны) и отраженный от цели. В смесителе они взаимодействуют, образуя разностную частоту биений, в точности равную доплеровской Fд=2foV/C
где fo - частота излучаемого сигнала; С - радиальная скорость цели; V - скорость радиоволн, равная скорости света.
Определить дальность доплеровским локатором нельзя, но если частоту излучаемых колебаний изменять в некоторых пределах, т.е. ввести в генератор частотную модуляцию, то появляется возможность измерить дальность. Первую опытную установку, действующую по такому принципу, построил известный ученый Б. К. Шембель и использовал ее при локации Крымских гор. Пусть частота передатчика изменяется по пилообразному закону. Частота отраженного сигнала будет изменяться также, но с запаздыванием на некоторое время t , время распространения волн до цели и обратно. Если частота передатчика в какой - то момент t 1 равна f 1 , то отраженный сигнал возвращается с этой же частотой. Но частота передатчика к времени t1 + t успеет измениться до значения
f 1 + D f, и в приемнике выделится сигнал биений с частотой Df.
|
Эта частота тем выше, чем больше расстояние до цели. Частотно - модулированные локаторы нашли свое применение в авиации, на судах, а также для выполнения операции стыковки космических кораблей на орбите, обеспечивающие очень хорошую точность определения дистанции.
Наибольшее распространение получил импульсный способ определения дальности. Работой импульсного локатора управляет генератор импульсов (ГИ), следующих с относительно невысокой частотой повторения - порядка сотен импульсов в секунду. Мощные импульсы подаются на генератор высокой частоты (ГВЧ), вырабатывающий очень мощные короткие импульсы высокочастотных (ВЧ) колебаний. Через антенный переключатель (АП) ВЧ импульс поступает в антенну и излучается. После излучения импульса антенна подключается ко входу приемника (Пр).
Одновременно с излучением импульса запускается генератор развертки (ГР), вырабатывающий линейно нарастающее пилообразное напряжение. Оно поступает на пластины горизонтального отклонения электронно - лучевой трубки, экран которой и является т.н. экраном РЛС.
Усиленный и продетектированный сигнал с выхода приемника подается на пластины вертикального отклонения. Что же можно наблюдать на экране? Прежде всего в самом начале линии развертки появится мощный импульс сигнала ВЧ генератора, который служит началом шкалы дальности. Спустя некоторое время, нужное для распространения волн, придут сигналы от целей. Луч к этому времени переместится правее. Чем дальше цель, тем дальше от начала развертки окажутся отраженные импульсы. А их амплитуда будет соответствовать интенсивности отраженного сигнала. По ней в какой - то мере можно судить о величине цели. Определять дальность на экране импульсного локатора достаточно просто: под линией развертки можно расположить шкалу. Но, поскольку такой способ уж очень несерьезен, в схему локатора ввели масштабные генераторы меток. Шкалу дальности стал рисовать электронный луч параллельно со своим основным назначением - индикацией целей. Генератор развертки совершенствовался, например достигнута возможность «растянуть» по горизонтали любое место линии развертки, чтобы подробнее рассмотреть отраженные сигналы в заданном интервале дальностей. У описанного индикатора ( он получил название «индикатор типа «А») есть существенный недостаток: он дает только дальность, а направление на цель надо определять по шкалам поворотного устройства антенны. Поэтому очень скоро был разработан другой индикатор (тип В), используемый в РЛС кругового обзора. Антенна этой станции вращается вокруг вертикальной оси, «просматривая» все азимутальные направления от 0 до 360 градусов. Структурная схема РЛС и порядок работы остаются прежними, но индикатор кругового обзора (ИКО) выполнен совсем по - другому. Пилообразное напряжение развертки подается на специальный кольцевой отклоняющий электрод, и линия развертки проходит по радиусу - от центра к краю экрана. Она поворачивается синхронно с антенной. Для поворота линии развертки на обычные отклоняющие пластины X и Y подают синусоидальные переменные напряжения в квадратуре, т.е. на одну пару пластин - косинусоидальное напряжение, а на другую синусоидальное. Частоты этих напряжений равны частоте вращения антенны и составляют доли герца. Луч при этом описывал бы круги на экране, но , поскольку имеется еще напряжение радиальной развертки на кольцевом электроде, изменяющееся значительно быстрее с частотой повторения излучаемых импульсов, луч чертит линию развертки, вращающуюся вместе с вращением антенны.
Сигнал с выхода приемника подается на управляющий электрод (сетку) ЭЛТ и заставляет луч увеличивать яркость при наличии отраженных импульсов. Таким образом, на экране ИКО луч «рисует» радиолокационную карту местности. Место расположения самой РЛС соответствует центру экрана. Локатор кругового обзора хорошо подходит для морской навигации, дальнего обнаружения воздушных целей, диспетчерского контроля в аэропортах. Теперь все чаще переходят к секторному обзору, при котором антенна «осматривает» не весь горизонт, а только нужную его часть. Большие наземные РЛС снабжают индикаторами нескольких типов: кругового обзора для обнаружения целей и контроля обстановки, типа А для точного определения дальности и т.д. Если, например, диаграмма направленности антенны может «качаться» еще и по углу места (для этого обычно не наклоняют всю антенну, достаточно «качать» ее облучатель ), то применяют в дополнение к ИКО индикатор «дальность - высота». В нем луч развертывается по радиусу и «качается» в некотором секторе синхронно с антенной, а координаты выбраны прямоугольными. Такой индикатор наглядно покажет и высоту цели.
5. Конструкции отдельных элементов РЛС .
Мощный генератор высокой частоты для локаторов, работающих в диапазоне метровых волн, выполняется на электронных лампах, как правило, триодах. Но колебательный контур, состоящий из катушки и конденсатора, уже не пригоден, поскольку катушка для частот в десятки и сотни мегагерц должна быть маленькой, а это несовместимо с высокой мощностью колебаний. Поэтому катушка вырождается в отрезок двух
проводной линии, выполненной из толстых медных трубок. Линия на
страивается передвижным короткозамкнутым мостиком. Симметричная линия лучше всего совмещается с двухтактным генератором :
Конденсатора в контуре нет - его роль выполняют междуэлектродные емкости ламп. Через них осуществляется и обратная связь. Часть переменного анодного напряжения через емкость анод - катод возбуждает другой контур - линию, включенную между катодами ламп. Ее настройкой подбирают нужную для возбуждения колебаний фазу напряжения обратной связи. Сетки ламп заземляют по высокой частоте. Отбор мощности ВЧ колебаний осуществляют петлей связи, расположенной вблизи анодной линии. Напряжение анодного питания подают на короткозамкнутый мостик этой линии через ВЧ дроссель (катушку индуктивности), изолирующий источник питания от ВЧ колебаний. Генератор будет работать в импульсном режиме, если его питать не постоянным анодным напряжением, а мощными высоковольтными импульсами. Они генерируются в устройстве с тиратроном - газоразрядной лампой, поджигаемой управляющим импульсом. Пока тиратрон погашен, накопительный конденсатор С заряжается через дроссель с большой индуктивностью L от высоковольтного источника. Ток заряда невелик, а время заряда может достичь периода повторения импульсов. Короткий запускающий импульс поджигает тиратрон, и генератор ВЧ оказывается подключенным к накопительному конденсатору, заряженному до высокого потенциала (десятки киловольт). Генерируется очень короткий радиоимпульс, причем анодный ток ВЧ генератора может достичь десятков ампер. Заряд конденсатора расходуется в течение нескольких микросекунд или даже долей микросекунды, генерация прекращается, и тиратрон гаснет. Конденсатор С снова начинает медленно заряжаться через дроссель L. Если бы ВЧ генератор работал при такой мощности несколько дольше, то электроды лампы неминуемо расплавились бы , выгорели или испарились. Только благодаря краткости импульсов ничего этого не происходит, а средняя мощность генератора оказывается для него невысокой и вполне безопасной.
Импульсный модулятор с накопительным конденсатором имеет один существенный недостаток. По мере расходования заряда конденсатора при генерировании радиоимпульса напряжение на нем быстро падает, а с ним - и мощность высокочастотных колебаний. В результате генерируется остроконечный радиоимпульс с пологим спадом. Гораздо выгоднее работать с прямоугольными импульсами, мощность которых в течение их длительности остается примерно постоянной. Прямоугольные импульсы будут генерироваться описанным генератором, если накопительный конденсатор заменить искусственной длинной линией, разомкнутой на свободном конце; например, может использоваться отрезок коаксиального кабеля. Волновое сопротивление линии должно равняться сопротивлению генератора ВЧ колебаний со стороны зажимов питания, т.е. отношению его анодного напряжения к анодному току. В момент поджигания тиратрона вдоль длинной линии пойдет волна напряжения, разряжающая линию. Процесс закончится, когда волна напряжения, отразившись от разомкнутого конца линии, вернется к аноду тиратрона. Линия будет разряжена полностью, и тиратрон погаснет. Таким образом, длительность импульса определяется длинной линии и равна отношению удвоенной длины линии к скорости распространения волн в ней. Генераторы модулирующих импульсов с искусственными длинными линиями получили самое широкое распространение в радиолокационной технике.
Для перехода к дециметровым и сантиметровым волнам ВЧ генератор с двухпроводными линиями оказался непригодным, поскольку длина линии составляет менее четверти длины волны. Кроме того, время пролета электрона в лампе оказывается больше периода колебаний , что полностью нарушает работоспособность триода. Выход был найден в использовании объемного резонатора . Объемный резонатор - ограниченный объем, внутри которого могут возбуждаться электромагнитные колебания. Обычно объемный резонатор - замкнутая полость с проводящими стенками, форма и размеры которой определяют частоту колебаний и конфигурацию электрических и магнитных полей, бывают прямоугольные, цилиндрические, тороидальные и др. форм. Объемным резонатором является также объем, заполненный средой с др. электрическими и магнитными свойствами. Применение объемных резонаторов позволило повысить резонансную частоту ВЧ контура , не уменьшая его размеров.
В годы второй мировой войны были разработаны конструкции принципиально новых генераторов сантиметровых волн - клистронов и магнетронов. В клистроне электронный луч формируется подобно тому, как это происходит в электронно - лучевой трубке. Луч проходит последовательно через два объемных резонатора, настроенных на одну и ту же частоту. Если к первому резонатору подвести СВЧ колебания, луч окажется промодулированным по скорости. Электроны, пролетевшие резонатор за один полупериод колебаний, ускоряются, поскольку электрическое поле разгоняет их, а электроны, пролетевшие за второй полупериод, замедляются, так как их тормозит электрическое поле, и их скорость уменьшается. По пути ко второму резонатору электроны сгруппировываются в «пакеты» , поскольку быстрые электроны догоняют медленные. На еще большем расстоянии пакеты электронов снова рассеиваются. В том месте, где происходит группировка электронов стоит второй резонатор и возбуждается пакетами электронов или волнами их пространственного заряда. Энергия колебаний , отдаваемая электронами во второй резонатор, оказывается намного больше энергии , затраченной на модуляцию электронного луча. По такому принципу действует клистрон - усилитель. Его нетрудно превратить в генератор: достаточно часть энергии из второго резонатора направить обратно, в первый. В отражательном клистроне генерация осуществляется несколько иначе. Он содержит только один резонатор. Пролетевшие сквозь резонатор электроны возвращаются обратно специальным электродом - отражателем, на который подан отрицательный потенциал. Сгруппированные пакеты снова пролетают сквозь резонатор, отдавая запасенную энергию. Отражательные клистроны долгие годы служили гетеродинами в радиолокационных приемниках. Большую колебательную мощность отдает магнетрон - многорезонаторное электронное устройство. Он содержит мощный катод в виде трубки и еще более мощный анодный блок, выполненный из меди, с профрезерованными в нем резонаторами. Каждый резонатор открывается в сторону катода щелью. Вся конструкция помещается между полюсами мощного электромагнита так, чтобы магнитное поле было направлено по оси катода. На анод должно подаваться высокое положительное напряжение. Магнетроны дали возможность генерировать очень большие импульсные мощности на сантиметровых волнах, благодаря чему резко повысилась дальность действия и точность РЛС.
Что же касается приемников сантиметровых волн, то наибольшее распространение получил супергетеродин с кристаллическим смесителем (СМ) на выходе . Специальный полупроводниковый диод с малой емкостью р - п перехода монтируется прямо в волноводе, идущем от антенного переключателя. К принимаемому сигналу добавляется сигнал местного гетеродина , собранного на маломощном отражательном клистроне. Частота гетеродина отличается от частоты принимаемых импульсов на значение, равное промежуточной частоте (ПЧ). Промежуточная частота выбирается в диапазоне 30...100 МГц, т.е. там, где сравнительно несложно получить большое усиление с помощью электронных ламп или транзисторов.
|
|
|
Основное усиление сигнала происходит в тракте ПЧ . Оно может достигать 10^6. Принимаются меры по выравниванию амплитуд сильных и слабых отраженных сигналов. К ним относятся усилители ПЧ с логарифмической амплитудной характеристикой , различные системы автоматической регулировки усиления. На входе приемника сильные сигналы от близких объектов и и слабые от далеких целей могут различаться на 100...120 дБ. В усилителе ПЧ эта разница уменьшается до 20...30 дБ, и тогда все отражения будут хорошо видны на экране индикатора. Последними элементами структурной схемы приемника являются детектор и усилитель видеоимпульсов.
Технические характеристики РЛС во многом зависят от конструкции приемо - передающей антенны. Энергию волн из волновода в открытое пространство можно передать посредством рупорной антенны. Хорошая рупорная антенна должна быть длинной , поскольку любые неоднородности в волноводе приводят к отражению распространяющейся энергии. Переход от волновода к рупору как раз и является такой неоднородностью, поэтому он должен быть достаточно плавным. Чтобы правильно сформировалась диаграмма направленности , поле в раскрыве антенны должно быть синфазным. Это значит, что колебания поля электромагнитной волны в различных точках раскрыва должны происходить одновременно. Но при распространении от рупора и вдоль его грани волна проходит разный путь и колебания на краях раскрыва запаздывают относительно колебаний в центре. Если разница путей достигает четверти, или даже половины длины волны, рупорная антенна окажется неэффективной. Для уменьшения указанной разницы путей, рупорные антенны делают длинными. Это не совсем удобно, поэтому в радиолокации предпочитают зеркальные антенны , а рупор используют в качестве облучателя зеркала . Чем больше размеры антенны , тем уже ее диаграмма направленности. Угловая ширина диаграммы направленности f связана с размером антенны формулой f=l/D , где угол f выражается в радианах.
Стремление увеличить дальность действия привело к тому, что радиолокация, как и многие другие области техники, пережила эпоху «гигантомании». Создавались все более мощные магнетроны, антенны все больших размеров, устанавливавшиеся на гигантских поворотных платформах. Мощность РЛС достигла 10 и более мегаватт в импульсе. Более мощные передатчики создавать было уже физически невозможно: резонаторы и волноводы не выдерживали высокой напряженности электромагнитного поля, в них происходили неуправляемые разряды. Появились данные и о биологической опасности высококонцентрированного излучения РЛС : у людей проживающих вблизи РЛС наблюдались заболевания кроветворной системы, воспаленные лимфатические узлы. Со временем появились нормы на предельную плотность потока СВЧ энергии, допустимые для работы человека (кратковременно допускается до 10 мВт/см^2).
Новые требования, предъявляемые к РЛС, привели к разработке совершенно новой техники, новых принципов радиолокации. В настоящее время на современных РЛС импульс посылаемый станцией представляет собой сигнал, закодированный по весьма сложному алгоритму ( наиболее распространен код Баркера), позволяющий получать данные повышенной точности и ряд дополнительных сведений о наблюдаемой цели. С появлением транзисторов и вычислительной техники мощные мегаваттные передатчики ушли в прошлое. На их смену пришли сложные системы РЛС средней мощности объединенные посредством ЭВМ. Благодаря внедрению информационных технологий стала возможна синхронная автоматическая работа нескольких РЛС. Радиолокационные комплексы постоянно совершенствуются, находят новые сферы применения. Однако есть еще масса неизученного, поэтому эта область науки еще долго будет интересна физикам, математикам, радиоинженерам; будет объектом серьезных научных работ и изысканий.
Радиолокация
www.referatmix.ru
1. Что такое радиолокация?
Радиолокация — область науки и техники, предмет которой — наблюдение различных объектов (целей) радиотехническими методами: их обнаружение, распознавание, определение их координат и скорости и др.
Еще А.С. Попов заметил, что радиоволны имеют способность отражаться. На этом и основан принцип действия радиолокационной станции. Мощный луч радиолокационного передатчикам фокусируется большой антенной в направлении исследуемого объекта, фиксируется и изучается отраженный радиосигнал, на основе чего делаются выводы о тех или иных характеристиках объекта.
2. Начало радиолокации.
Первые работы по созданию радиолокационных систем начались в нашей стране в середине 30-х годов. Впервые идею радиолокации высказал научный сотрудник Ленинградского электрофизического института (ЛЭФИ) П.К. Ощепков еще в 1932 году. Позднее он же предложил идею импульсного излучения.
16 января 1934 года в Ленинградском физико — техническом институте (ЛФТИ) под председательством академика А. Ф. Иоффе состоялось совещание, на котором представители ПВО РККА поставили задачу обнаружения самолетов на высотах до 10 и дальности до 50 км в любое время суток и в любых погодных условиях. За работу взялись несколько групп изобретателей и ученых. Уже летом 1934 года группа энтузиастов, среди которых были Б. К. Шембель, В.В. Цимбалин и П. К. Ощепков, представила членам правительства опытную установку. Проект получил необходимое финансирование и в 1938 году был испытан макет импульсного радиолокатора, который имел дальность действия до 50 км при высоте цели 1,5 км. Создатели макета Ю, Б, Кобзарев, П, А, Погорелко и Н, Я, Чернецов в 1941 году за разработку радиолокационной техники были удостоены Государственной премии СССР. Дальнейшие разработки были направлены в основном на увеличение дальности действия и повышение точности определения координат. Станция РУС- 2 принятая летом 1940 года на вооружение войск ПВО не имела аналогов в мире по своим техническим характеристикам, она сослужила хорошую службу во время Великой Отечественной войны при обороне Москвы от налетов вражеской авиации. После войны перед радиолокационной техникой новые сферы применения во многих отраслях народного хозяйства. Без радаров теперь немыслимы авиация и судовождение. Радиолокационные станции исследуют планеты Солнечной системы и поверхность нашей Земли, определяют параметры орбит спутников и обнаруживают скопления грозовых облаков. За последние десятилетия радиолокационная техника неузнаваемо изменилась.
3. Основы радиолокации.
Определение координат цели радаром производится с учетом выбранной системы координат. Выбор той или иной системы координат связан со сферой применения радиолокационной установки. Например, наземная радиолокационная станция (РЛС) наблюдения за воздушной обстановкой измеряет три координаты цели: азимут, угол места и наклонную дальность.
α
Система координат обзорной РЛС :
α — азимут; ß- угол места; R — наклонная дальность
РЛС такого типа используются на аэродромах. Работает эта станция в сферической системе координат.
Различают два основных режима работы РЛС: режим обзора (сканирования) пространства и режим слежения за целью. В режиме обзора луч РЛС по строго определенной системе просматривает все пространство или заданный сектор. Антенна, например, может медленно поворачиваться по азимуту и в то же время быстро наклоняться вверх и вниз, сканируя по углу места. В режиме слежения антенна все время направлена на выбранную цель и специальные следящие системы поворачивают ее вслед за движущейся целью.
Удаленность того или иного объекта определяется по запаздыванию отраженного сигнала относительно излучаемого. Запаздывание сигнала очень мало, поскольку радиоволны распространяются со скоростью, близкой к скорости света (300 000 км/с). Действительно, для самолета, находящегося на расстоянии 3 км от РЛС, запаздывание сигнала составит всего 20 мкс. Такой результат получается из — за того, что радиоволна проходит путь в обоих направлениях, к цели и обратно, так что общее расстояние, пройденное волной, составит 6 км. Однако при радиолокации Марса, успешно проведенной в начале 60-х годов, задержка сигнала составила около 11 мин, а это время малым назвать нельзя. Современная вычислительная техника способна с высокой точностью обрабатывать сигналы с ничтожным временем запаздывания, поэтому с помощью радаров можно регистрировать объекты, расположенные как на больших, так и на малых расстояниях от наблюдателя. Существует единственное существенное ограничение применения радаров в целях сверхдальних наблюдений — это ослабление сигнала. Если сигнал проходит большое расстояние, то он частично рассеивается, искажается и ослабевает и выделить его в приемнике из собственных шумов приемника и шумов иного происхождения зачастую крайне затруднительно. Ослабление сигнала при радиолокации вполне поддается расчету, который основан на простых физических соображениях. Если в какой — то точке излучается мощность Р, то поток мощности через единичную площадку, находящуюся на расстоянии R, будет пропорционален Р/4pR^2. В знаменателе стоит площадь сферы радиусом R, окружающей источник. Таким образом, при обычной радиосвязи мощность, принятая антенной, обратно пропорциональна квадрату расстояния. Этот закон — закон сферической расходимости пучка энергии — выполняется всегда при распространении волн в свободном пространстве. Даже если сконцентрировать излучаемую мощность в узкий луч и поток энергии возрастет в несколько раз ( этот коэффициент называется коэффициентом направленного действия антенны, КНД ), квадратичная зависимость от расстояния сохранится. Но в радиолокации радиосигнал преодолевает двойные расстояния, а сама облучаемая цель рассеивает энергию по
всем направлениям, и если облучающий цель поток энергии ослабевает обратно пропорционально R^2 то приходящий к приемнику рассеяный поток еще ослабляется во столько же раз и оказывается обратно пропорциональным R^4. Это означает, что для повышения дальности действия РЛС в два раза при прочих равных условиях мощность ее передатчика надо повысить в 16 раз. Столь высокой ценой достигаются высокие характеристики современных РЛС.
4. Радиолокационная техника.
Рассмотрим структурные схемы простейших радиолокаторов. Доплеровская РЛС непрерывного излучения — самая простая из всех. Именно по такому принципу были построены первые «радиоуловители» самолетов. Она содержит генератор высокочастотных колебаний ( ГВЧ), передающую Апер и приемную Апр антенны, смеситель и усилитель низкой частоты биений (УНЧ). На его выходе включаются либо наушники, либо частотомер.
Доплеровская РЛС не обнаруживает неподвижные предметы. Сигнал, отраженный от них имеет ту же самую частоту, что и излучаемый. Но если обнаруживаемый объект движется в направлении локатора или от него, частота отраженного сигнала изменяется вследствие эффекта Доплера (эффект Доплера — изменение длины волны l (или частоты), наблюдаемое при движении источника волн относительно их приемника. Характерен для любых волн (свет, звук и т. д.). При приближении источника к приемнику l уменьшается, а при удалении растет на величину l — l о= vl о/c, где l о — длина волны источника, c — скорость распространения волны, v — относительная скорость движения источника.)
При радиолокации эффект Доплера проявляется вдвое сильнее. Самолет, летящий навстречу излучаемой локатором волне, встречает более частые колебания электромагнитного поля. Переизлучая их во время движения, он еще повышает их частоту. При удалении же самолета от локатора частота отраженного сигнала понижается. В приемную антенну попадают два сигнала: прямого прохождения (от излучающей антенны) и отраженный от цели. В смесителе они взаимодействуют, образуя разностную частоту биений, в точности равную доплеровской Fд=2foV/C
где fo — частота излучаемого сигнала; С — радиальная скорость цели; V — скорость радиоволн, равная скорости света.
Определить дальность доплеровским локатором нельзя, но если частоту излучаемых колебаний изменять в некоторых пределах, т.е. ввести в генератор частотную модуляцию, то появляется возможность измерить дальность. Первую опытную установку, действующую по такому принципу, построил известный ученый Б. К. Шембель и использовал ее при локации Крымских гор. Пусть частота передатчика изменяется по пилообразному закону. Частота отраженного сигнала будет изменяться также, но с запаздыванием на некоторое время t, время распространения волн до цели и обратно. Если частота передатчика в какой — то момент t 1 равна f 1, то отраженный сигнал возвращается с этой же частотой. Но частота передатчика к времени t1 + t успеет измениться до значения
f 1 + D f, и в приемнике выделится сигнал биений с частотой Df.
|
Эта частота тем выше, чем больше расстояние до цели. Частотно — модулированные локаторы нашли свое применение в авиации, на судах, а также для выполнения операции стыковки космических кораблей на орбите, обеспечивающие очень хорошую точность определения дистанции.
Наибольшее распространение получил импульсный способ определения дальности. Работой импульсного локатора управляет генератор импульсов (ГИ), следующих с относительно невысокой частотой повторения — порядка сотен импульсов в секунду. Мощные импульсы подаются на генератор высокой частоты (ГВЧ), вырабатывающий очень мощные короткие импульсы высокочастотных (ВЧ) колебаний. Через антенный переключатель (АП) ВЧ импульс поступает в антенну и излучается. После излучения импульса антенна подключается ко входу приемника (Пр).
Одновременно с излучением импульса запускается генератор развертки (ГР), вырабатывающий линейно нарастающее пилообразное напряжение. Оно поступает на пластины горизонтального отклонения электронно — лучевой трубки, экран которой и является т.н. экраном РЛС.
Усиленный и продетектированный сигнал с выхода приемника подается на пластины вертикального отклонения. Что же можно наблюдать на экране? Прежде всего в самом начале линии развертки появится мощный импульс сигнала ВЧ генератора, который служит началом шкалы дальности. Спустя некоторое время, нужное для распространения волн, придут сигналы от целей. Луч к этому времени переместится правее. Чем дальше цель, тем дальше от начала развертки окажутся отраженные импульсы. А их амплитуда будет соответствовать интенсивности отраженного сигнала. По ней в какой — то мере можно судить о величине цели. Определять дальность на экране импульсного локатора достаточно просто: под линией развертки можно расположить шкалу. Но, поскольку такой способ уж очень несерьезен, в схему локатора ввели масштабные генераторы меток. Шкалу дальности стал рисовать электронный луч параллельно со своим основным назначением — индикацией целей. Генератор развертки совершенствовался, например достигнута возможность «растянуть» по горизонтали любое место линии развертки, чтобы подробнее рассмотреть отраженные сигналы в заданном интервале дальностей. У описанного индикатора ( он получил название «индикатор типа «А») есть существенный недостаток: он дает только дальность, а направление на цель надо определять по шкалам поворотного устройства антенны. Поэтому очень скоро был разработан другой индикатор (тип В), используемый в РЛС кругового обзора. Антенна этой станции вращается вокруг вертикальной оси, «просматривая» все азимутальные направления от 0 до 360 градусов. Структурная схема РЛС и порядок работы остаются прежними, но индикатор кругового обзора (ИКО) выполнен совсем по — другому. Пилообразное напряжение развертки подается на специальный кольцевой отклоняющий электрод, и линия развертки проходит по радиусу — от центра к краю экрана. Она поворачивается синхронно с антенной. Для поворота линии развертки на обычные отклоняющие пластины X и Y подают синусоидальные переменные напряжения в квадратуре, т.е. на одну пару пластин — косинусоидальное напряжение, а на другую синусоидальное. Частоты этих напряжений равны частоте вращения антенны и составляют доли герца. Луч при этом описывал бы круги на экране, но, поскольку имеется еще напряжение радиальной развертки на кольцевом электроде, изменяющееся значительно быстрее с частотой повторения излучаемых импульсов, луч чертит линию развертки, вращающуюся вместе с вращением антенны.
Сигнал с выхода приемника подается на управляющий электрод (сетку) ЭЛТ и заставляет луч увеличивать яркость при наличии отраженных импульсов. Таким образом, на экране ИКО луч «рисует» радиолокационную карту местности. Место расположения самой РЛС соответствует центру экрана. Локатор кругового обзора хорошо подходит для морской навигации, дальнего обнаружения воздушных целей, диспетчерского контроля в аэропортах. Теперь все чаще переходят к секторному обзору, при котором антенна «осматривает» не весь горизонт, а только нужную его часть. Большие наземные РЛС снабжают индикаторами нескольких типов: кругового обзора для обнаружения целей и контроля обстановки, типа А для точного определения дальности и т.д. Если, например, диаграмма направленности антенны может «качаться» еще и по углу места (для этого обычно не наклоняют всю антенну, достаточно «качать» ее облучатель ), то применяют в дополнение к ИКО индикатор «дальность — высота». В нем луч развертывается по радиусу и «качается» в некотором секторе синхронно с антенной, а координаты выбраны прямоугольными. Такой индикатор наглядно покажет и высоту цели.
5. Конструкции отдельных элементов РЛС .
Мощный генератор высокой частоты для локаторов, работающих в диапазоне метровых волн, выполняется на электронных лампах, как правило, триодах. Но колебательный контур, состоящий из катушки и конденсатора, уже не пригоден, поскольку катушка для частот в десятки и сотни мегагерц должна быть маленькой, а это несовместимо с высокой мощностью колебаний. Поэтому катушка вырождается в отрезок двухпроводной линии, выполненной из толстых медных трубок. Линия на
страивается передвижным короткозамкнутым мостиком. Симметричная линия лучше всего совмещается с двухтактным генератором :
Конденсатора в контуре нет — его роль выполняют междуэлектродные емкости ламп. Через них осуществляется и обратная связь. Часть переменного анодного напряжения через емкость анод — катод возбуждает другой контур — линию, включенную между катодами ламп. Ее настройкой подбирают нужную для возбуждения колебаний фазу напряжения обратной связи. Сетки ламп заземляют по высокой частоте. Отбор мощности ВЧ колебаний осуществляют петлей связи, расположенной вблизи анодной линии. Напряжение анодного питания подают на короткозамкнутый мостик этой линии через ВЧ дроссель (катушку индуктивности), изолирующий источник питания от ВЧ колебаний. Генератор будет работать в импульсном режиме, если его питать не постоянным анодным напряжением, а мощными высоковольтными импульсами. Они генерируются в устройстве с тиратроном — газоразрядной лампой, поджигаемой управляющим импульсом. Пока тиратрон погашен, накопительный конденсатор С заряжается через дроссель с большой индуктивностью L от высоковольтного источника. Ток заряда невелик, а время заряда может достичь периода повторения импульсов. Короткий запускающий импульс поджигает тиратрон, и генератор ВЧ оказывается подключенным к накопительному конденсатору, заряженному до высокого потенциала (десятки киловольт). Генерируется очень короткий радиоимпульс, причем анодный ток ВЧ генератора может достичь десятков ампер. Заряд конденсатора расходуется в течение нескольких микросекунд или даже долей микросекунды, генерация прекращается, и тиратрон гаснет. Конденсатор С снова начинает медленно заряжаться через дроссель L. Если бы ВЧ генератор работал при такой мощности несколько дольше, то электроды лампы неминуемо расплавились бы, выгорели или испарились. Только благодаря краткости импульсов ничего этого не происходит, а средняя мощность генератора оказывается для него невысокой и вполне безопасной.
Импульсный модулятор с накопительным конденсатором имеет один существенный недостаток. По мере расходования заряда конденсатора при генерировании радиоимпульса напряжение на нем быстро падает, а с ним — и мощность высокочастотных колебаний. В результате генерируется остроконечный радиоимпульс с пологим спадом. Гораздо выгоднее работать с прямоугольными импульсами, мощность которых в течение их длительности остается примерно постоянной. Прямоугольные импульсы будут генерироваться описанным генератором, если накопительный конденсатор заменить искусственной длинной линией, разомкнутой на свободном конце; например, может использоваться отрезок коаксиального кабеля. Волновое сопротивление линии должно равняться сопротивлению генератора ВЧ колебаний со стороны зажимов питания, т.е. отношению его анодного напряжения к анодному току. В момент поджигания тиратрона вдоль длинной линии пойдет волна напряжения, разряжающая линию. Процесс закончится, когда волна напряжения, отразившись от разомкнутого конца линии, вернется к аноду тиратрона. Линия будет разряжена полностью, и тиратрон погаснет. Таким образом, длительность импульса определяется длинной линии и равна отношению удвоенной длины линии к скорости распространения волн в ней. Генераторы модулирующих импульсов с искусственными длинными линиями получили самое широкое распространение в радиолокационной технике.
Для перехода к дециметровым и сантиметровым волнам ВЧ генератор с двухпроводными линиями оказался непригодным, поскольку длина линии составляет менее четверти длины волны. Кроме того, время пролета электрона в лампе оказывается больше периода колебаний, что полностью нарушает работоспособность триода. Выход был найден в использовании объемного резонатора. Объемный резонатор — ограниченный объем, внутри которого могут возбуждаться электромагнитные колебания. Обычно объемный резонатор — замкнутая полость с проводящими стенками, форма и размеры которой определяют частоту колебаний и конфигурацию электрических и магнитных полей, бывают прямоугольные, цилиндрические, тороидальные и др. форм. Объемным резонатором является также объем, заполненный средой с др. электрическими и магнитными свойствами. Применение объемных резонаторов позволило повысить резонансную частоту ВЧ контура, не уменьшая его размеров.
В годы второй мировой войны были разработаны конструкции принципиально новых генераторов сантиметровых волн — клистронов и магнетронов. В клистроне электронный луч формируется подобно тому, как это происходит в электронно — лучевой трубке. Луч проходит последовательно через два объемных резонатора, настроенных на одну и ту же частоту. Если к первому резонатору подвести СВЧ колебания, луч окажется промодулированным по скорости. Электроны, пролетевшие резонатор за один полупериод колебаний, ускоряются, поскольку электрическое поле разгоняет их, а электроны, пролетевшие за второй полупериод, замедляются, так как их тормозит электрическое поле, и их скорость уменьшается. По пути ко второму резонатору электроны сгруппировываются в «пакеты», поскольку быстрые электроны догоняют медленные. На еще большем расстоянии пакеты электронов снова рассеиваются. В том месте, где происходит группировка электронов стоит второй резонатор и возбуждается пакетами электронов или волнами их пространственного заряда. Энергия колебаний, отдаваемая электронами во второй резонатор, оказывается намного больше энергии, затраченной на модуляцию электронного луча. По такому принципу действует клистрон — усилитель. Его нетрудно превратить в генератор: достаточно часть энергии из второго резонатора направить обратно, в первый. В отражательном клистроне генерация осуществляется несколько иначе. Он содержит только один резонатор. Пролетевшие сквозь резонатор электроны возвращаются обратно специальным электродом — отражателем, на который подан отрицательный потенциал. Сгруппированные пакеты снова пролетают сквозь резонатор, отдавая запасенную энергию. Отражательные клистроны долгие годы служили гетеродинами в радиолокационных приемниках. Большую колебательную мощность отдает магнетрон — многорезонаторное электронное устройство. Он содержит мощный катод в виде трубки и еще более мощный анодный блок, выполненный из меди, с профрезерованными в нем резонаторами. Каждый резонатор открывается в сторону катода щелью. Вся конструкция помещается между полюсами мощного электромагнита так, чтобы магнитное поле было направлено по оси катода. На анод должно подаваться высокое положительное напряжение. Магнетроны дали возможность генерировать очень большие импульсные мощности на сантиметровых волнах, благодаря чему резко повысилась дальность действия и точность РЛС.
Что же касается приемников сантиметровых волн, то наибольшее распространение получил супергетеродин с кристаллическим смесителем (СМ) на выходе. Специальный полупроводниковый диод с малой емкостью р — п перехода монтируется прямо в волноводе, идущем от антенного переключателя. К принимаемому сигналу добавляется сигнал местного гетеродина, собранного на маломощном отражательном клистроне. Частота гетеродина отличается от частоты принимаемых импульсов на значение, равное промежуточной частоте (ПЧ). Промежуточная частота выбирается в диапазоне 30...100 МГц, т.е. там, где сравнительно несложно получить большое усиление с помощью электронных ламп или транзисторов.
|
|
Основное усиление сигнала происходит в тракте ПЧ. Оно может достигать 10^6. Принимаются меры по выравниванию амплитуд сильных и слабых отраженных сигналов. К ним относятся усилители ПЧ с логарифмической амплитудной характеристикой, различные системы автоматической регулировки усиления. На входе приемника сильные сигналы от близких объектов и и слабые от далеких целей могут различаться на 100...120 дБ. В усилителе ПЧ эта разница уменьшается до 20...30 дБ, и тогда все отражения будут хорошо видны на экране индикатора. Последними элементами структурной схемы приемника являются детектор и усилитель видеоимпульсов.
Технические характеристики РЛС во многом зависят от конструкции приемо — передающей антенны. Энергию волн из волновода в открытое пространство можно передать посредством рупорной антенны. Хорошая рупорная антенна должна быть длинной, поскольку любые неоднородности в волноводе приводят к отражению распространяющейся энергии. Переход от волновода к рупору как раз и является такой неоднородностью, поэтому он должен быть достаточно плавным. Чтобы правильно сформировалась диаграмма направленности, поле в раскрыве антенны должно быть синфазным. Это значит, что колебания поля электромагнитной волны в различных точках раскрыва должны происходить одновременно. Но при распространении от рупора и вдоль его грани волна проходит разный путь и колебания на краях раскрыва запаздывают относительно колебаний в центре. Если разница путей достигает четверти, или даже половины длины волны, рупорная антенна окажется неэффективной. Для уменьшения указанной разницы путей, рупорные антенны делают длинными. Это не совсем удобно, поэтому в радиолокации предпочитают зеркальные антенны, а рупор используют в качестве облучателя зеркала. Чем больше размеры антенны, тем уже ее диаграмма направленности. Угловая ширина диаграммы направленности f связана с размером антенны формулой f=l/D, где угол f выражается в радианах.
Стремление увеличить дальность действия привело к тому, что радиолокация, как и многие другие области техники, пережила эпоху «гигантомании». Создавались все более мощные магнетроны, антенны все больших размеров, устанавливавшиеся на гигантских поворотных платформах. Мощность РЛС достигла 10 и более мегаватт в импульсе. Более мощные передатчики создавать было уже физически невозможно: резонаторы и волноводы не выдерживали высокой напряженности электромагнитного поля, в них происходили неуправляемые разряды. Появились данные и о биологической опасности высококонцентрированного излучения РЛС: у людей проживающих вблизи РЛС наблюдались заболевания кроветворной системы, воспаленные лимфатические узлы. Со временем появились нормы на предельную плотность потока СВЧ энергии, допустимые для работы человека (кратковременно допускается до 10 мВт/см^2).
Новые требования, предъявляемые к РЛС, привели к разработке совершенно новой техники, новых принципов радиолокации. В настоящее время на современных РЛС импульс посылаемый станцией представляет собой сигнал, закодированный по весьма сложному алгоритму ( наиболее распространен код Баркера), позволяющий получать данные повышенной точности и ряд дополнительных сведений о наблюдаемой цели. С появлением транзисторов и вычислительной техники мощные мегаваттные передатчики ушли в прошлое. На их смену пришли сложные системы РЛС средней мощности объединенные посредством ЭВМ. Благодаря внедрению информационных технологий стала возможна синхронная автоматическая работа нескольких РЛС. Радиолокационные комплексы постоянно совершенствуются, находят новые сферы применения. Однако есть еще масса неизученного, поэтому эта область науки еще долго будет интересна физикам, математикам, радиоинженерам; будет объектом серьезных научных работ и изысканий.
Радиолокация
www.ronl.ru
2. Начало радиолокации. Первые работы по созданию радиолокационных систем начались в нашей стране в середине 30-х годов. Впервые идею радиолокации высказал научный сотрудник Ленинградского электрофизического института (ЛЭФИ) П.К. Ощепков еще в 1932 году. Позднее он же предложил идею импульсного излучения. 16 января 1934 года в Ленинградском физико - техническом институте (ЛФТИ) под председательством академика А. Ф. Иоффе состоялось совещание, на котором представители ПВО РККА поставили задачу обнаружения самолетов на высотах до 10 и дальности до 50 км в любое время суток и в любых погодных условиях. За работу взялись несколько групп изобретателей и ученых. Уже летом 1934 года группа энтузиастов, среди которых были Б. К. Шембель, В.В. Цимбалин и П. К. Ощепков, представила членам правительства опытную установку. Проект получил необходимое финансирование и в 1938 году был испытан макет импульсного радиолокатора, который имел дальность действия до 50 км при высоте цели 1,5 км. Создатели макета Ю, Б, Кобзарев, П, А, Погорелко и Н, Я, Чернецов в 1941 году за разработку радиолокационной техники были удостоены Государственной премии СССР. Дальнейшие разработки были направлены в основном на увеличение дальности действия и повышение точности определения координат. Станция РУС- 2 принятая летом 1940 года на вооружение войск ПВО не имела аналогов в мире по своим техническим характеристикам , она сослужила хорошую службу во время Великой Отечественной войны при обороне Москвы от налетов вражеской авиации. После войны перед радиолокационной техникой новые сферы применения во многих отраслях народного хозяйства. Без радаров теперь немыслимы авиация и судовождение. Радиолокационные станции исследуют планеты Солнечной системы и поверхность нашей Земли, определяют параметры орбит спутников и обнаруживают скопления грозовых облаков. За последние десятилетия радиолокационная техника неузнаваемо изменилась.
3. Основы радиолокации. Определение координат цели радаром производится с учетом выбранной системы координат. Выбор той или иной системы координат связан со сферой применения радиолокационной установки. Например, наземная радиолокационная станция (РЛС) наблюдения за воздушной обстановкой измеряет три координаты цели: азимут, угол места и наклонную дальность. Система координат обзорной РЛС: ( - азимут; (- угол места; R - наклонная дальность РЛС такого типа используются на аэродромах . Работает эта станция в сферической системе координат.
Различают два основных режима работы РЛС : режим обзора (сканирования) пространства и режим слежения за целью. В режиме обзора луч РЛС по строго определенной системе просматривает все пространство или заданный сектор. Антенна , например, может медленно поворачиваться по азимуту и в то же время быстро наклоняться вверх и вниз, сканируя по углу места. В режиме слежения антенна все время направлена на выбранную цель и специальные следящие системы поворачивают ее вслед за движущейся целью. Удаленность того или иного объекта определяется по запаздыванию отраженного сигнала относительно излучаемого. Запаздывание сигнала очень мало, поскольку радиоволны распространяются со скоростью, близкой к скорости света (300 000 км/с). Действительно, для самолета, находящегося на расстоянии 3 км от РЛС, запаздывание сигнала составит всего 20 мкс. Такой результат получается из - за того, что радиоволна проходит путь в обоих направлениях, к цели и обратно, так что общее расстояние, пройденное волной, составит 6 км. Однако при радиолокации Марса, успешно проведенной в начале 60-х годов, задержка сигнала составила около 11 мин, а это время малым назвать нельзя. Современная вычислительная техника способна с высокой точностью обрабатывать сигналы с ничтожным временем запаздывания, поэтому с помощью радаров можно регистрировать объекты, расположенные как на больших, так и на малых расстояниях от наблюдателя. Существует единственное существенное ограничение применения радаров в целях сверхдальних наблюдений - это ослабление сигнала. Если сигнал проходит большое расстояние, то он частично рассеивается, искажается и ослабевает и выделить его в приемнике из собственных шумов приемника и шумов иного происхождения зачастую крайне затруднительно. Ослабление сигнала при радиолокации вполне поддается расчету , который основан на простых физических соображениях. Если в какой - то точке излучается мощность Р , то поток мощности через единичную площадку, находящуюся на расстоянии R , будет пропорционален Р/4?R^2. В знаменателе стоит площадь сферы радиусом R, окружающей источник. Таким образом, при обычной радиосвязи мощность, принятая антенной, обратно пропорциональна квадрату расстояния. Этот закон - закон сферической расходимости пучка энергии - выполняется всегда при распространении волн в свободном пространстве. Даже если сконцентрировать излучаемую мощность в узкий луч и поток энергии возрастет в несколько раз ( этот коэффициент называется коэффициентом направленного действия антенны, КНД ), квадратичная зависимость от расстояния сохранится. Но в радиолокации радиосигнал преодолевает двойные расстояния, а сама облучаемая цель рассеивает энергию по всем направлениям , и если облучающий цель поток энергии ослабевает обратно пропорционально R^2 то приходящий к приемнику рассеяный поток еще ослабляется во столько же раз и оказывается обратно пропорциональным R^4. Это означает, что для повышения дальности действия РЛС в два раза при прочих равных условиях мощность ее передатчика надо повысить в 16 раз. Столь высокой ценой достигаются высокие характеристики современных РЛС.
4. Радиолокационная техника.
Рассмотрим структурные схемы простейших радиолокаторов. Доплеровская РЛС непрерывного излучения - самая простая из всех. Именно по такому принципу были построены первые «радиоуловители» самолетов. Она содержит генератор высокочастотных колебаний ( ГВЧ), передающую Апер и приемную Апр антенны, смеситель и усилитель низкой частоты биений (УНЧ) . На его выходе включаются либо наушники, либо частотомер.
Доплеровская РЛС не обнаруживает неподвижные предметы. Сигнал, отраженный от них имеет ту же самую частоту, что и излучаемый. Но если обнаруживаемый объект движется в направлении локатора или от него, частота отраженного сигнала изменяется вследствие эффекта Доплера (эффект Доплера - изменение длины волны l (или частоты), наблюдаемое при движении источника волн относительно их приемника. Характерен для любых волн (свет, звук и т. д.). При приближении источника к приемнику l уменьшается, а при удалении растет на величину l - lо = vlо/c, где lо - длина волны источника, c - скорость распространения волны, v - относительная скорость движения источника.) При радиолокации эффект Доплера проявляется вдвое сильнее. Самолет, летящий навстречу излучаемой локатором волне, встречает более частые колебания электромагнитного поля. Переизлучая их во время движения, он еще повышает их частоту. При удалении же самолета от локатора частота отраженного сигнала понижается. В приемную антенну попадают два сигнала: прямого прохождения (от излучающей антенны) и отраженный от цели. В смесителе они взаимодействуют, образуя разностную частоту биений, в точности равную доплеровской Fд=2foV/C где fo - частота излучаемого сигнала; С - радиальная скорость цели; V - скорость радиоволн, равная скорости света. Определить дальность доплеровским локатором нельзя, но если частоту излучаемых колебаний изменять в некоторых пределах, т.е. ввести в генератор частотную модуляцию, то появляется возможность измерить дальность. Первую опытную установку, действующую по такому принципу, построил известный ученый Б. К. Шембель и использовал ее при локации Крымских гор. Пусть частота передатчика изменяется по пилообразному закону. Частота отраженного сигнала будет изменяться также, но с запаздыванием на некоторое время t , время распространения волн до цели и обратно. Если частота передатчика в какой - то момент t 1 равна f 1 , то отраженный сигнал возвращается с этой же частотой. Но частота передатчика к времени t1 + t успеет измениться до значения f 1 + ? f, и в приемнике выделится сигнал биений с частотой ?f.
Эта частота тем выше, чем больше расстояние до цели. Частотно - модулированные локаторы нашли свое применение в авиации, на судах, а также для выполнения операции стыковки космических кораблей на орбите, обеспечивающие очень хорошую точность определения дистанции. Наибольшее распространение получил импульсный способ определения дальности. Работой импульсного локатора управляет генератор импульсов (ГИ), следующих с относительно невысокой частотой повторения - порядка сотен импульсов в секунду. Мощные импульсы подаются на генератор высокой частоты (ГВЧ), вырабатывающий очень мощные короткие импульсы высокочастотных (ВЧ) колебаний. Через антенный переключатель (АП) ВЧ импульс поступает в антенну и излучается. После излучения импульса антенна подключается ко входу приемника (Пр). Одновременно с излучением импульса запускается генератор развертки (ГР), вырабатывающий линейно нарастающее пилообразное напряжение. Оно поступает на пластины горизонтального отклонения электронно - лучевой трубки, экран которой и является т.н. экраном РЛС.
Усиленный и продетектированный сигнал с выхода приемника подается на пластины вертикального отклонения. Что же можно наблюдать на экране? Прежде всего в самом начале линии развертки появится мощный импульс сигнала ВЧ генератора, который служит началом шкалы дальности. Спустя некоторое время, нужное для распространения волн, придут сигналы от целей. Луч к этому времени переместится правее. Чем дальше цель, тем дальше от начала развертки окажутся отраженные импульсы. А их амплитуда будет соответствовать интенсивности отраженного сигнала. По ней в какой - то мере можно судить о величине цели. Определять дальность на экране импульсного локатора достаточно просто: под линией развертки можно расположить шкалу. Но, поскольку такой способ уж очень несерьезен, в схему локатора ввели масштабные генераторы меток. Шкалу дальности стал рисовать электронный луч параллельно со своим основным назначением - индикацией целей. Генератор развертки совершенствовался, например достигнута возможность «растянуть» по горизонтали любое место линии развертки, чтобы подробнее рассмотреть отраженные сигналы в заданном интервале дальностей. У описанного индикатора ( он получил название «индикатор типа «А») есть существенный недостаток: он дает только дальность, а направление на цель надо определять по шкалам поворотного устройства антенны. Поэтому очень скоро был разработан другой индикатор (тип В), используемый в РЛС кругового обзора. Антенна этой станции вращается вокруг вертикальной оси, «просматривая» все азимутальные направления от 0 до 360 градусов. Структурная схема РЛС и порядок работы остаются прежними, но индикатор кругового обзора (ИКО) выполнен совсем по - другому. Пилообразное напряжение развертки подается на специальный кольцевой отклоняющий электрод, и линия развертки проходит по радиусу - от центра к краю экрана. Она поворачивается синхронно с антенной. Для поворота линии развертки на обычные отклоняющие пластины X и Y подают синусоидальные переменные напряжения в квадратуре, т.е. на одну пару пластин - косинусоидальное напряжение, а на другую синусоидальное. Частоты этих напряжений равны частоте вращения антенны и составляют доли герца. Луч при этом описывал бы круги на экране, но , поскольку имеется еще напряжение радиальной развертки на кольцевом электроде, изменяющееся значительно быстрее с частотой повторения излучаемых импульсов, луч чертит линию развертки, вращающуюся вместе с вращением антенны. Сигнал с выхода приемника подается на управляющий электрод (сетку) ЭЛТ и заставляет луч увеличивать яркость при наличии отраженных импульсов. Таким образом, на экране ИКО луч «рисует» радиолокационную карту местности. Место расположения самой РЛС соответствует центру экрана. Локатор кругового обзора хорошо подходит для морской навигации, дальнего обнаружения воздушных целей, диспетчерского контроля в аэропортах. Теперь все чаще переходят к секторному обзору, при котором антенна «осматривает» не весь горизонт, а только нужную его часть. Большие наземные РЛС снабжают индикаторами нескольких типов: кругового обзора для обнаружения целей и контроля обстановки, типа А для точного определения дальности и т.д. Если, например, диаграмма направленности антенны может «качаться» еще и по углу места (для этого обычно не наклоняют всю антенну, достаточно «качать» ее облучатель ), то применяют в дополнение к ИКО индикатор «дальность - высота». В нем луч развертывается по радиусу и «качается» в некотором секторе синхронно с антенной, а координаты выбраны прямоугольными. Такой индикатор наглядно покажет и высоту цели.
5. Конструкции отдельных элементов РЛС .
Мощный генератор высокой частоты для локаторов, работающих в диапазоне метровых волн, выполняется на электронных лампах, как правило, триодах. Но колебательный контур, состоящий из катушки и конденсатора, уже не пригоден, поскольку катушка для частот в десятки и сотни мегагерц должна быть маленькой, а это несовместимо с высокой мощностью колебаний. Поэтому катушка вырождается в отрезок двухпроводной линии, выполненной из толстых медных трубок. Линия настраивается передвижным короткозамкнутым мостиком. Симметричная линия лучше всего совмещается с двухтактным генератором. Конденсатора в контуре нет - его роль выполняют междуэлектродные емкости ламп. Через них осуществляется и обратная связь. Часть переменного анодного напряжения через емкость анод - катод возбуждает другой контур - линию, включенную между катодами ламп. Ее настройкой подбирают нужную для возбуждения колебаний фазу напряжения обратной связи. Сетки ламп заземляют по высокой частоте. Отбор мощности ВЧ колебаний осуществляют петлей связи, расположенной вблизи анодной линии. Напряжение анодного питания подают на короткозамкнутый мостик этой линии через ВЧ дроссель (катушку индуктивности), изолирующий источник питания от ВЧ колебаний. Генератор будет работать в импульсном режиме, если его питать не постоянным анодным напряжением, а мощными высоковольтными импульсами. Они генерируются в устройстве с тиратроном - газоразрядной лампой, поджигаемой управляющим импульсом. Пока тиратрон погашен, накопительный конденсатор С заряжается через дроссель с большой индуктивностью L от высоковольтного источника. Ток заряда невелик, а время заряда может достичь периода повторения импульсов. Короткий запускающий импульс поджигает тиратрон, и генератор ВЧ оказывается подключенным к накопительному конденсатору, заряженному до высокого потенциала (десятки киловольт). Генерируется очень короткий радиоимпульс, причем анодный ток ВЧ генератора может достичь десятков ампер. Заряд конденсатора расходуется в течение нескольких микросекунд или даже долей микросекунды, генерация прекращается, и тиратрон гаснет. Конденсатор С снова начинает медленно заряжаться через дроссель L. Если бы ВЧ генератор работал при такой мощности несколько дольше, то электроды лампы неминуемо расплавились бы , выгорели или испарились. Только благодаря краткости импульсов ничего этого не происходит, а средняя мощность генератора оказывается для него невысокой и вполне безопасной. Импульсный модулятор с накопительным конденсатором имеет один существенный недостаток. По мере расходования заряда конденсатора при генерировании радиоимпульса напряжение на нем быстро падает, а с ним - и мощность высокочастотных колебаний. В результате генерируется остроконечный радиоимпульс с пологим спадом. Гораздо выгоднее работать с прямоугольными импульсами, мощность которых в течение их длительности остается примерно постоянной. Прямоугольные импульсы будут генерироваться описанным генератором, если накопительный конденсатор заменить искусственной длинной линией, разомкнутой на свободном конце; например, может использоваться отрезок коаксиального кабеля. Волновое сопротивление линии должно равняться сопротивлению генератора ВЧ колебаний со стороны зажимов питания, т.е. отношению его анодного напряжения к анодному току. В момент поджигания тиратрона вдоль длинной линии пойдет волна напряжения, разряжающая линию. Процесс закончится, когда волна напряжения, отразившись от разомкнутого конца линии, вернется к аноду тиратрона. Линия будет разряжена полностью, и тиратрон погаснет. Таким образом, длительность импульса определяется длинной линии и равна отношению удвоенной длины линии к скорости распространения волн в ней. Генераторы модулирующих импульсов с искусственными длинными линиями получили самое широкое распространение в радиолокационной технике. Для перехода к дециметровым и сантиметровым волнам ВЧ генератор с двухпроводными линиями оказался непригодным, поскольку длина линии составляет менее четверти длины волны. Кроме того, время пролета электрона в лампе оказывается больше периода колебаний , что полностью нарушает работоспособность триода. Выход был найден в использовании объемного резонатора . Объемный резонатор - ограниченный объем, внутри которого могут возбуждаться электромагнитные колебания. Обычно объемный резонатор - замкнутая полость с проводящими стенками, форма и размеры которой определяют частоту колебаний и конфигурацию электрических и магнитных полей, бывают прямоугольные, цилиндрические, тороидальные и др. форм. Объемным резонатором является также объем, заполненный средой с др. электрическими и магнитными свойствами. Применение объемных резонаторов позволило повысить резонансную частоту ВЧ контура , не уменьшая его размеров. В годы второй мировой войны были разработаны конструкции принципиально новых генераторов сантиметровых волн - клистронов и магнетронов. В клистроне электронный луч формируется подобно тому, как это происходит в электронно - лучевой трубке. Луч проходит последовательно через два объемных резонатора, настроенных на одну и ту же частоту. Если к первому резонатору подвести СВЧ колебания, луч окажется промодулированным по скорости. Электроны, пролетевшие резонатор за один полупериод колебаний, ускоряются, поскольку электрическое поле разгоняет их, а электроны, пролетевшие за второй полупериод, замедляются, так как их тормозит электрическое поле, и их скорость уменьшается. По пути ко второму резонатору электроны сгруппировываются в «пакеты» , поскольку быстрые электроны догоняют медленные. На еще большем расстоянии пакеты электронов снова рассеиваются. В том месте, где происходит группировка электронов стоит второй резонатор и возбуждается пакетами электронов или волнами их пространственного заряда. Энергия колебаний , отдаваемая электронами во второй резонатор, оказывается намного больше энергии , затраченной на модуляцию электронного луча. По такому принципу действует клистрон - усилитель. Его нетрудно превратить в генератор: достаточно часть энергии из второго резонатора направить обратно, в первый. В отражательном клистроне генерация осуществляется несколько иначе. Он содержит только один резонатор. Пролетевшие сквозь резонатор электроны возвращаются обратно специальным электродом - отражателем, на который подан отрицательный потенциал. Сгруппированные пакеты снова пролетают сквозь резонатор, отдавая запасенную энергию. Отражательные клистроны долгие годы служили гетеродинами в радиолокационных приемниках. Большую колебательную мощность отдает магнетрон - многорезонаторное электронное устройство. Он содержит мощный катод в виде трубки и еще более мощный анодный блок, выполненный из меди, с профрезерованными в нем резонаторами. Каждый резонатор открывается в сторону катода щелью. Вся конструкция помещается между полюсами мощного электромагнита так, чтобы магнитное поле было направлено по оси катода. На анод должно подаваться высокое положительное напряжение. Магнетроны дали возможность генерировать очень большие импульсные мощности на сантиметровых волнах, благодаря чему резко повысилась дальность действия и точность РЛС. Что же касается приемников сантиметровых волн, то наибольшее распространение получил супергетеродин с кристаллическим смесителем (СМ) на выходе . Специальный полупроводниковый диод с малой емкостью р - п перехода монтируется прямо в волноводе, идущем от антенного переключателя. К принимаемому сигналу добавляется сигнал местного гетеродина , собранного на маломощном отражательном клистроне. Частота гетеродина отличается от частоты принимаемых импульсов на значение, равное промежуточной частоте (ПЧ). Промежуточная частота выбирается в диапазоне 30...100 МГц, т.е. там, где сравнительно несложно получить большое усиление с помощью электронных ламп или транзисторов.
Основное усиление сигнала происходит в тракте ПЧ . Оно может достигать 10^6. Принимаются меры по выравниванию амплитуд сильных и слабых отраженных сигналов. К ним относятся усилители ПЧ с логарифмической амплитудной характеристикой , различные системы автоматической регулировки усиления. На входе приемника сильные сигналы от близких объектов и и слабые от далеких целей могут различаться на 100...120 дБ. В усилителе ПЧ эта разница уменьшается до 20...30 дБ, и тогда все отражения будут хорошо видны на экране индикатора. Последними элементами структурной схемы приемника являются детектор и усилитель видеоимпульсов. Технические характеристики РЛС во многом зависят от конструкции приемо - передающей антенны. Энергию волн из волновода в открытое пространство можно передать посредством рупорной антенны. Хорошая рупорная антенна должна быть длинной , поскольку любые неоднородности в волноводе приводят к отражению распространяющейся энергии. Переход от волновода к рупору как раз и является такой неоднородностью, поэтому он должен быть достаточно плавным. Чтобы правильно сформировалась диаграмма направленности , поле в раскрыве антенны должно быть синфазным. Это значит, что колебания поля электромагнитной волны в различных точках раскрыва должны происходить одновременно. Но при распространении от рупора и вдоль его грани волна проходит разный путь и колебания на краях раскрыва запаздывают относительно колебаний в центре. Если разница путей достигает четверти, или даже половины длины волны, рупорная антенна окажется неэффективной. Для уменьшения указанной разницы путей, рупорные антенны делают длинными. Это не совсем удобно, поэтому в радиолокации предпочитают зеркальные антенны , а рупор используют в качестве облучателя зеркала . Чем больше размеры антенны , тем уже ее диаграмма направленности. Угловая ширина диаграммы направленности ? связана с размером антенны формулой ?=?/D , где угол ? выражается в радианах.
Стремление увеличить дальность действия привело к тому, что радиолокация, как и многие другие области техники, пережила эпоху «гигантомании». Создавались все более мощные магнетроны, антенны все больших размеров, устанавливавшиеся на гигантских поворотных платформах. Мощность РЛС достигла 10 и более мегаватт в импульсе. Более мощные передатчики создавать было уже физически невозможно: резонаторы и волноводы не выдерживали высокой напряженности электромагнитного поля, в них происходили неуправляемые разряды. Появились данные и о биологической опасности высококонцентрированного излучения РЛС : у людей проживающих вблизи РЛС наблюдались заболевания кроветворной системы, воспаленные лимфатические узлы. Со временем появились нормы на предельную плотность потока СВЧ энергии, допустимые для работы человека (кратковременно допускается до 10 мВт/см^2). Новые требования, предъявляемые к РЛС, привели к разработке совершенно новой техники, новых принципов радиолокации. В настоящее время на современных РЛС импульс посылаемый станцией представляет собой сигнал, закодированный по весьма сложному алгоритму ( наиболее распространен код Баркера), позволяющий получать данные повышенной точности и ряд дополнительных сведений о наблюдаемой цели. С появлением транзисторов и вычислительной техники мощные мегаваттные передатчики ушли в прошлое. На их смену пришли сложные системы РЛС средней мощности объединенные посредством ЭВМ. Благодаря внедрению информационных технологий стала возможна синхронная автоматическая работа нескольких РЛС. Радиолокационные комплексы постоянно совершенствуются, находят новые сферы применения. Однако есть еще масса неизученного, поэтому эта область науки еще долго будет интересна физикам, математикам, радиоинженерам; будет объектом серьезных научных работ и изысканий.
www.ronl.ru