Курсовая работа: Радиационная безопасность понятие и сущность. Радиационная безопасность реферат


Реферат: Радиационная безопасность

Радиационная безопасность

Введение.

Наверное, ни для кого не секрет, что вступление в 21 век немыслимо без такого источника энергии, каковым является атомное ядро. Для человечества те огромные запасы энергии, которые заключены внутри ядер являются практически неисчерпаемыми. Если в условиях современного роста населения Земли не будет произведен скорейший переход на ядерный источник энергии, то, в конце концов, настанет тот день, когда в топках и печах догорит последняя капля, горсть  природного топлива, и с этого рокового дня история человечества начнет стремительно продвигаться к своему логическому завершению (а может быть все начнется сначала, как в первобытные времена и...?).

Для того чтобы оценить все “плюсы” и “минусы”, которых вероятно столько же сколько и “плюсов”, но возникающих в совершенно других условиях, необходимо посмотреть на настоящее положение дел в области использования атомной энергии.

Атомная энергия широко применяется в большинстве отраслей промышленности. Контроль качества изделий, производящийся без их разрушения, может быть успешно осуществлен при использовании данного вида энергии. Получение новых полимеров, определение структуры и дефектов сплавов, исследование смазочных материалов в трущихся частях машин, холодная стерилизация перевязочных материалов и лекарственных средств, анализ жидких и газовых сред осуществляется с наибольшим успехом при непосредственном участии ядерной энергии.

Атомная энергия может быть переработана в другие виды, например, в электрическую (АЭС), энергию движения ледоколов или подводных лодок. Благодаря наличию ядерного реактора на борту ледокола имеется возможность круглогодичного плавания и, следовательно, навигации в северных широтах без частых дозаправок природным топливом [1].

Медицина также широко и успешно использует достижения в области атомной энергетики в лечении различных болезней таких, как злокачественные новообразования и неопухолевые заболевания. При лечении рака энергия, возникающая при распаде радионуклидов, используемых в медицине, поражает генетический аппарат трансформированных клеток, тем самым останавливает их рост [2].

При исследовании механизмов реакций в органической и неорганической химии используется метод меченых атомов. Этот метод сыграл немаловажную роль в обнаружении новых закономерностей в физике, медицине, металлургии, биологии [1]. Возможность определения генетического кода возникла после появления радиоавтографического анализа.

Обзор только позитивных аспектов использования атомной энергии рисует весьма радужную картину, но для оценки реальной ситуации, сложившейся в настоящий момент нельзя упускать из виду те негативные моменты, которые могут возникнуть при определенных условиях и привести к не всегда предсказуемым последствиям.

Наиболее чудовищное и смертельно опасное применение энергии ядер для всего человечества является развязывание атомной войны. Достаточно вспомнить, что  когда ядерный смерч разбушевавшейся материи уничтожил одномоментно 300 тыс. людских жизней, по данным прессы, при бомбардировке Хиросимы и Нагасаки в 1945 году, то становится понятным опасение мировой общественности перед лицом этой грозной силы. Очевидно, что чем больше энергия используемая во благо, тем больше ее может быть использовано во зло.

Количество несчастных случаев, связанных с атомной энергетикой, на АЭС, значительно меньше, чем в других областях человеческой деятельности [3]. Тем не менее, несколько лет назад происшедшая авария в Чернобыле заставляет пересмотреть наше отношение к организации безопасности работы АЭС и защиты от неконтролируемого развития ядерной реакции. Необходимо дальнейшее снижение вероятности возникновения аварийных ситуаций, хотя вероятно, полностью избежать их никогда не удастся. Все же количество жертв на ЧАЭС удалось значительно снизить, благодаря самоотверженной работе спасателей, которые под час не жалея своей жизни шли на риск, ради того, чтобы обеспечить нормальную жизнь населению, проживавшему поблизости с местом трагедии.

Стремительное развитие техники и технологии, по всей видимости, остановить нельзя, несмотря на мрачные вехи истории прогресса, такие как авария на химическом заводе в Бхопале, унесшая 2.5 тыс. человек, взрыв емкостей со сжиженным газом под Мехико (400 чел. погибло и более 4000 получили ранения), авария летательных аппаратов “Челленджер”, “Титан”, “Дельта”. Все выше сказанное подводит к тому, что внедрение атомной энергетики является неизбежным процессом в рамках настоящего исторического развития общества. Замена органического топлива ядерным решит еще одну глобальную экологическую проблему, связанную с нарастающим загрязнением окружающей среды, уменьшением доли кислорода в воздухе и парниковым эффектом, возникшей при использовании в качестве топлива нефти, мазута, угля [3].

Для того чтобы внедрение атомной энергетики и использование радиоактивности в народном хозяйстве не принесло большего ущерба, чем тот, который наносится природе в настоящий момент существует специальная дисциплина, именующаяся радиационной безопасностью,  рассмотрение определения, целей и задач, а так же физических основ которой будет осуществлено в следующем разделе.

Физические основы радиационной безопасности.

Цели и задачи.

Радиационная безопасность - новая научно практическая дисциплина, возникшая с момента создания атомной промышленности, решающая комплекс теоретических и практических задач, связанных с уменьшением возможности возникновения аварийных ситуаций и несчастных случаев на радиационно-опасных объектах. Ниже освящается весь комплекс задач, стоящих перед радиационной безопасностью.

Первой задачей радиационной безопасности является разработка критериев:

а) для оценки ионизирующего излучения как вредного фактора воздействия на отдельных людей, популяцию в целом и объекты окружающей среды;

б) способов оценки и прогнозирования радиационной обстановки, а также путей приведения ее в соответствие с выработанными критериями безопасности на основе создания комплекса технических, медико-санитарных и административно-организационных мероприятий, направленных на обеспечение безопасности  в условиях применения атомной энергии в сфере человеческой деятельности.  

Для разработки критериев используются многолетние наблюдения за людьми, работающими на объектах с уровнем радиации, превышающим фон, а также эксперименты с животными, искусственно подвергаемыми облучению. Развертывание радиационной обстановки при аварийных ситуаций прогнозируется на основе математических расчетов и данных, полученных при изучении случившихся аварий за весь период развития атомной промышленности и энергетики [3]. 

В настоящий момент существует разработанная система допустимых пределов воздействия ионизирующего излучения на человеческий организм, оформленная в виде законодательных документов Норм Радиационной Безопасности (НРБ) [4].

Второй немаловажной задачей радиационной безопасности является разработка систем радиационного контроля. Различные условия эксплуатации радиационных установок, набор используемых радиоактивных веществ, экономия материальных средств диктуют необходимость осознанного выбора средств и частоты измерения уровня радиации, концентрации радиоактивных веществ. Так, при эксплуатации g-дефектоскопов достаточно ограничиться контролем уровня g- излучения, а на радиохимических предприятиях наряду с указанным контролем необходимо проводить измерения концентрации радиоактивных газов в воздухе и уровень загрязнения рабочих помещений с целью не допустить пере облучение сотрудников.

Радиационная безопасность, кроме перечисленных выше задач, решает еще две функциональные задачи:

1) Снижение уровня облучения персонала и населения ниже (в крайнем случае, до) регламентируемого предела на основе следующих мероприятий: технических (создание защитных ограждений, автоматизация технологического процесса, очистка выбросов от радиоактивных веществ), медико-санитарных (обеспечение персонала средствами индивидуальной защиты-СИЗ, снабжение местных штабов ГО средствами защиты населения), организационных (создание специального графика работы в условиях пере облучения).

2)Создание эффективных систем радиационного контроля, позволяющих оперативно регистрировать изменения в радиационной обстановке.

Наконец необходимо отметить, что надежность систем радиационной безопасности намного выше, чем систем защиты  других отраслей промышленности. Это объясняется тем, что впервые использованная атомная энергия привела к серьезнейшим разрушениям и жертвам и тем самым вызвала относительно предвзятое отношение к ней, что пошло на пользу радиационной безопасности [3].

Теперь целесообразно перейти к вопросам воздействия ионизирующего излучения на вещество, видам облучения организма, а также расчету доз, получаемых организмом.

Ионизирующее излучение.

Излучение, взаимодействие которого со средой вызывает образование электрических зарядов называется ионизирующим [3]. Ионизирующее излучение представляет собой поток частиц, обладающих дискретным или непрерывным спектром энергии. Данные частицы могут иметь(a- частицы и электроны) или не иметь(g- кванты, нейтроны) электрического заряда.

При прохождении через вещество заряженных частиц происходит передача ими своей энергии, расходующейся на возбуждение и ионизацию атомов и молекул. Для количественного определения переданной веществу энергии вводят понятие линейной передачи энергии S:

S=dE/dl,

где dE-энергия, теряемая заряженной частицей в среде при прохождении элемента пути dl.

Заряженные частицы проходят разное расстояние в веществе в зависимости от их энергии и свойств мишени. Для количественного определения этого расстояния вводят понятие длины свободного пробега частицы. Можно показать, что длина свободного пробега обратно пропорциональна отношению Z/A, где Z-атомный номер атомов мишени, а А-их массовое число. В  мягкой биоткани пробег a- частиц составляет несколько десятков микрон, а электронов 0.02ч1.9 см[3].

g-кванты при прохождении через вещество способны взаимодействовать с ним тремя путями:

а) фотоэффект, при котором g-квант выбивает из электронной оболочки атома электрон и передает ему свою энергию;

б) комптоновское рассеяние, при котором g-квант выбивает из электронной оболочки атома электрон и передает ему часть своей энергии;

в) для g-квантов с энергиями превышающими 1.02 МэВ возможно образование электрон-позитронных пар при прохождении квантов в поле атомного ядра [6].

Нейтроны, проходя через вещество вызывают ядерные реакции так, что в конечном итоге образуются заряженные частицы.

В общем можно утверждать, что все виды перечисленных видов излучения являются ионизирующими. Далее необходимо рассмотреть каким образом ионизирующее излучение может воздействовать на организм.

Облучение организма.

Облучение организма можно подразделить на внешнее и внутреннее. Внешнее облучение возникает в результате попадания потока частиц в организм извне. Такое облучение могут создавать технологические установки, содержащие радиоактивные изотопы или ускорители частиц. Воздействие источника внешнего облучения на организм зависит от той энергии, которую несут частицы, величины их свободного пробега, расстояния от источника и его активности, а также времени облучения. Наибольшую опасность представляют источники нейтронного и g-излучения, так как нейтроны и g-кванты обладают наибольшей проникающей способностью.

Внутреннее облучение вызывается попавшими в организм радиоактивными веществами. Наибольшую опасность представляют собой a- радиоактивные источники, поскольку вся энергия излучения поглощается в непосредственной близости от местонахождения источника, принося наибольший вред [6].

Дозиметрия.

Поглощенная и экспозиционная доза.

Для определения меры той части энергии, которая поглощена веществом при облучении ионизирующим излучением используют понятие поглощенной дозы:

Dп=dEп/dm,

где dEп-энергия, поглощаемая элементом вещества массой dm. Единица дозы - Гр (грей) равна 1 Дж/кг. Поглощенную дозу чаще всего выражают, используя внесистемную единицу “рад”:

1рад=0.01 Дж/кг

Мощность дозы Рп выражает дозу, полученную в единицу времени:

Рп=Dп/t,

где t-время облучения. Эту величину измеряют в рад/с или рад/ч:

1рад/с=0.01 Вт/кг.

Для измерения поглощенной дозы g-излучения используют непосредственно измеряемую величину экспозиционной дозы Dэ, которая выражает ту часть энергии потока g-квантов, которая пошла на образование фотоэлектронов, комптоновских электронов и электрон-позитронных пар. Единица измерения в системе СИ-Кл/кг.  Чаще измеряют экспозиционную дозу в рентгенах:

1Р=2.58.10-4 Кл/кг.

Мощность экспозиционной дозы обычно измеряют в мкР/ч.

Можно показать, что, приближенно,  поглощенная биологической тканью доза g-излучения численно равна экспозиционной дозе в воздухе [6]. Для этого необходимо соблюдения в системе “электронного равновесия" - условия, при котором все электроны, образующиеся в результате взаимодействия g-излучения со средой, полностью в ней поглощаются, что, по всей вероятности, и происходит в действительности.

 Биологический эквивалент рада.

Различные виды ионизирующего излучения по-разному воздействуют на биологическую ткань. Для введения количественной характеристики биологического воздействия на организм вводят так называемый “коэффициент качества излучения”, который зависит от величины линейной передачи энергии. Эта зависимость приведена в таблице1.

Таблица 1

S, кеВ/мкм воды.

3.5 и  меньше

7

23

53

175

кк

1

2

5

10

20

Биологический эквивалент рада - доза любого излучения, обладающая тем же биологическим действием, что доза в 1 рад g-излучения. Коэффициенты качества приведены в таблице 2.

Таблица 2.

Виды излучения.

КК

g-излучение

1

b-излучение

1

a-излучение

10

Эквивалентная доза излучения сложного состава определяется по формуле:

 

где Dэкв  - эквивалентная поглощенная доза, бэр;

Dп,i и KKi  поглощенные дозы в радах и коэффициенты качества соответствующих компонент излучения.

Расчет доз, создаваемых источниками

b-, g-излучения.

На практике очень часто бывает оценить дозу излучения, которую получает человек при работе с радионуклидом и известным его энергетическим спектром, известной активности а, на известном расстоянии от него r, известное время t.

Расчет доз, создаваемых источниками g-излучения.

Предположим, что источник обладает энергетическим спектром с N линиями, энергия i-ой линии Еi, выход g-квантов на распад в i-ой линии спектра Рi, массовый коэффициент истинного поглощения g-излучения i-ой линии спектра mei, тогда в системе СИ получим значение дозы в Зв (зиверт) из следующего выражения [6]:

Однако существует более удобная формула, получаемая из вышеуказанной. Для этого сначала рассчитывают экспозиционную дозу в рентгенах (Р) по нижеприведенной формуле:

,

где Q-активность источника в мКи,

Кg  - ионизационная постоянная Р.см2/(ч.мКи),

r-расстояние до источника в см,

t-время облучения в ч.

Далее известно, что для биологической ткани, приближенно, экспозиционная доза в рентгенах численно равна поглощенной дозе в бэр.

Значение Кg  табулировано, но его можно вычислить по формуле:

где энергия выражена в МэВ, выходы g-квантов в долях единицы, а массовые коэффициенты истинного поглощения в см2/г.

Расчет доз, создаваемых источниками b- излучения.

Предположим, что имеется источник b- излучения с известными для него Еmax,i  и Rmax,i тогда можно рассчитать дозу, создаваемую источником, используя следующее выражение [6]:

где а-активность,

t-время,

m’i-линейный коэффициент ослабления b- излучения в воздухе.

Для выражения дозы в радах необходимо воспользоваться следующей формулой [6]:

,

где Q-активность источника в мКи,

r-расстояние до источника в см,

t-время облучения в ч,

Еmax,i-максимальная энергия источника, МэВ,

Rmax,i-максимальный пробег в г/см2.

Предельно допустимые дозы облучения.

Приведенные ниже значения предельных доз облучения, согласно НРБ- [4] определяются, как не наносящие вреда здоровью, при наблюдении современными методами за облучаемыми, при равномерном накоплении в течение 50-и лет (см таб.3).

Таблица 3 [6].

Группа органов

1

2

3

4

доза в год, бэр/год

5

15

30

75

В группы входят различные органы и ткани. Разбиение на группы приведено в таблице 4:

Таблица 4.

Группа.

Органы и ткани.

1

Все тело, костный мозг.

2

Легкие, желудочно-кишечный тракт.

3

Костная ткань, щитовидная железа.

4

Кисти рук.

В свете представленных данных необходимо проведение постоянного сравнения доз, получаемых работниками в сфере атомной энергетики, с предельными с целью защиты их от поражения радиацией.

Расчет защитных экранов от g-излучения.

Предположим, что имеется источник g-излучения сложного состава, создающий дозу D0,i  для каждой компоненты и полную дозу D0 без защитного экрана, и  известна предельная доза облучения Dпр, по данным НРБ, то сначала рассчитывают так называемую кратность ослабления ki для i-ой компоненты [6]:

а затем по таблице находят необходимую толщину защиты для имеющегося в наличие материала, выбирают максимальную и к ней прибавляют толщину слоя при k=2 для данной компоненты. Таким образом, можно вычислить толщину экрана для защиты от g-излучения из ряда доступных материалов (свинец, чугун, бетон).

Биологическое воздействие радиации.

Ионизирующее излучение в основном носит вред тем, что под его воздействием происходит разрушение генетического аппарата клеток, что приводит либо к их гибели, либо, что хуже для организма в целом, к трансформации с утраченной дифференцировкой. Такие клетки могут образовать злокачественную опухоль, прорастающую в органы и нарушающие их работу. При получении  определенной дозы облучения возникает так называемая лучевая болезнь [2], которая характеризуется поражением кроветворной системы, поражением слизистой оболочки тонкой кишки, нервной системы.

Степени тяжести лучевой болезни зависят от полученной организмом дозы. Существует острая и хроническая формы лучевой болезни.

Острая лучевая болезнь.

Острая лучевая болезнь развивается при кратковременном облучении всего организма, при получении им дозы от 1 до 100 и более Гр, а 1-3 дня. Летальным исходом, как правило, заканчиваются случаи, в которых организм получил более 10 Гр за 1-3 дня. При получении дозы до 10 Гр развивается острая лучевая болезнь 4-х степеней тяжести.

Острая лучевая болезнь легкой степени тяжести развивается при воздействии излучения в дозе 1-2.5 Гр. Первичная реакция (первые 2-3 дня) - головокружение, тошнота. Латентный период (около 1 месяца) - постепенное снижение первичных признаков. Восстановление полное.

Острая лучевая болезнь средней степени тяжести развивается при воздействии излучения в дозе 2.5-4 Гр. Первичная реакция (первые 1-2 часа) - головокружение, тошнота, рвота. Латентный период (около 25 дней) наличие изменения слизистых оболочек, инфекционных осложнений, возможен летальный исход.

Острая лучевая болезнь тяжелой степени развивается при воздействии излучения в дозе 4-10 Гр. Первичная реакция (первые 30-60 минут) - головная боль, повторная рвота, повышение температуры тела. Латентный период (около 15 дней) - инфекционные поражения, поражения слизистых оболочек, лихорадка. Частота летальных исходов выше, чем при средней степени тяжести.

Острая лучевая болезнь крайне тяжелой степени развивается при воздействии излучения в дозе более 10 Гр. Летальный исход почти неизбежен.

Лечение острой лучевой болезни заключается во введении в организм антибиотиков, с целью предотвратить инфекционные осложнения, введении в организм донорских тромбоцитов, пересадке костного мозга.

Хроническая лучевая болезнь возникает при ежедневном получении дозы в 0.005 Гр. Наблюдается развитие различных заболеваний, связанных с дисфункцией желез внутренней секреции, нарушение АД. Профилактика хронической лучевой болезни заключается в неукоснительном соблюдении принятых норм радиационной безопасности.

Заключение.

Несмотря на ту опасность, которую представляет атомная энергетика, она является той  экологически чистой индустрией, на которую возлагает свои надежды все передовое человечество. Маяки на трассе Северного морского пути и кардиостимуляторы сердца, АЭС и  ледоколы, системы пожарной охраны и g-дефектоскопы... вот, лишь далеко не полный список благ, где атомная энергетика успешно себя проявила. А сколько еще ждет впереди атомную энергетику трудно представить.

Список литературы

1. У.Я.Маргулис. Атомная энергия и радиационная безопасность. М., Энергоатомиздат, 1988г.

2. Краткая медицинская энциклопедия. В 2-хтомах /Под ред. академика РАМН В.И.Покровского. М.: НПО “Медицинская энциклопедия”, “Крон-Пресс” 1994.-Т.I.

3. Б.Льюин. Гены: Пер. с англ.-М.: Мир, 1987.

4. Нормы радиационной безопасности (НРБ-76.87) и Основы санитарных правил (ОСП-72/87). М., Энергоатомиздат, 1988г.

5. Радиоактивные индикаторы в химии. Основы метода: Учебное пособие для ун-тов/Лукьянов В.Б., Бердоносов С.С., Богатырев И.О. и др.; Под ред. Лукьянова В.Б.-3-е изд.-М.: Высш. шк.,  1985.

6.            Радиоактивные индикаторы в химии. Проведение эксперимента и обработка результатов. Учебное пособие для вузов. /Лукьянов В.Б., Бердоносов С.С., Богатырев И.О. и др.; М.: Высш. шк., 1977.

 

www.referatmix.ru

Реферат - Радиационная безопасность - Безопасность жизнедеятельности

Введение.

Наверное, ни для кого не секрет, что вступление в 21 век немыслимо без такого источника энергии, каковым является атомное ядро. Для человечества те огромные запасы энергии, которые заключены внутри ядер являются практически неисчерпаемыми. Если в условиях современного роста населения Земли не будет произведен скорейший переход на ядерный источник энергии, то, в конце концов, настанет тот день, когда в топках и печах догорит последняя капля, горсть природного топлива, и с этого рокового дня история человечества начнет стремительно продвигаться к своему логическому завершению (а может быть все начнется сначала, как в первобытные времена и...?).

Для того чтобы оценить все “плюсы” и “минусы”, которых вероятно столько же сколько и “плюсов”, но возникающих в совершенно других условиях, необходимо посмотреть на настоящее положение дел в области использования атомной энергии.

Атомная энергия широко применяется в большинстве отраслей промышленности. Контроль качества изделий, производящийся без их разрушения, может быть успешно осуществлен при использовании данного вида энергии. Получение новых полимеров, определение структуры и дефектов сплавов, исследование смазочных материалов в трущихся частях машин, холодная стерилизация перевязочных материалов и лекарственных средств, анализ жидких и газовых сред осуществляется с наибольшим успехом при непосредственном участии ядерной энергии.

Атомная энергия может быть переработана в другие виды, например, в электрическую (АЭС), энергию движения ледоколов или подводных лодок. Благодаря наличию ядерного реактора на борту ледокола имеется возможность круглогодичного плавания и, следовательно, навигации в северных широтах без частых дозаправок природным топливом [1].

Медицина также широко и успешно использует достижения в области атомной энергетики в лечении различных болезней таких, как злокачественные новообразования и неопухолевые заболевания. При лечении рака энергия, возникающая при распаде радионуклидов, используемых в медицине, поражает генетический аппарат трансформированных клеток, тем самым останавливает их рост [2].

При исследовании механизмов реакций в органической и неорганической химии используется метод меченых атомов. Этот метод сыграл немаловажную роль в обнаружении новых закономерностей в физике, медицине, металлургии, биологии [1]. Возможность определения генетического кода возникла после появления радиоавтографического анализа.

Обзор только позитивных аспектов использования атомной энергии рисует весьма радужную картину, но для оценки реальной ситуации, сложившейся в настоящий момент нельзя упускать из виду те негативные моменты, которые могут возникнуть при определенных условиях и привести к не всегда предсказуемым последствиям.

Наиболее чудовищное и смертельно опасное применение энергии ядер для всего человечества является развязывание атомной войны. Достаточно вспомнить, что когда ядерный смерч разбушевавшейся материи уничтожил одномоментно 300 тыс. людских жизней, по данным прессы, при бомбардировке Хиросимы и Нагасаки в 1945 году, то становится понятным опасение мировой общественности перед лицом этой грозной силы. Очевидно, что чем больше энергия используемая во благо, тем больше ее может быть использовано во зло.

Количество несчастных случаев, связанных с атомной энергетикой, на АЭС, значительно меньше, чем в других областях человеческой деятельности [3]. Тем не менее, несколько лет назад происшедшая авария в Чернобыле заставляет пересмотреть наше отношение к организации безопасности работы АЭС и защиты от неконтролируемого развития ядерной реакции. Необходимо дальнейшее снижение вероятности возникновения аварийных ситуаций, хотя вероятно, полностью избежать их никогда не удастся. Все же количество жертв на ЧАЭС удалось значительно снизить, благодаря самоотверженной работе спасателей, которые под час не жалея своей жизни шли на риск, ради того, чтобы обеспечить нормальную жизнь населению, проживавшему поблизости с местом трагедии.

Стремительное развитие техники и технологии, по всей видимости, остановить нельзя, несмотря на мрачные вехи истории прогресса, такие как авария на химическом заводе в Бхопале, унесшая 2.5 тыс. человек, взрыв емкостей со сжиженным газом под Мехико (400 чел. погибло и более 4000 получили ранения), авария летательных аппаратов “Челленджер”, “Титан”, “Дельта”. Все выше сказанное подводит к тому, что внедрение атомной энергетики является неизбежным процессом в рамках настоящего исторического развития общества. Замена органического топлива ядерным решит еще одну глобальную экологическую проблему, связанную с нарастающим загрязнением окружающей среды, уменьшением доли кислорода в воздухе и парниковым эффектом, возникшей при использовании в качестве топлива нефти, мазута, угля [3].

Для того чтобы внедрение атомной энергетики и использование радиоактивности в народном хозяйстве не принесло большего ущерба, чем тот, который наносится природе в настоящий момент существует специальная дисциплина, именующаяся радиационной безопасностью, рассмотрение определения, целей и задач, а так же физических основ которой будет осуществлено в следующем разделе.

Физические основы радиационной безопасности.

Цели и задачи.

Радиационная безопасность — новая научно практическая дисциплина, возникшая с момента создания атомной промышленности, решающая комплекс теоретических и практических задач, связанных с уменьшением возможности возникновения аварийных ситуаций и несчастных случаев на радиационно-опасных объектах. Ниже освящается весь комплекс задач, стоящих перед радиационной безопасностью.

Первой задачей радиационной безопасности является разработка критериев:

а) для оценки ионизирующего излучения как вредного фактора воздействия на отдельных людей, популяцию в целом и объекты окружающей среды;

б) способов оценки и прогнозирования радиационной обстановки, а также путей приведения ее в соответствие с выработанными критериями безопасности на основе создания комплекса технических, медико-санитарных и административно-организационных мероприятий, направленных на обеспечение безопасности в условиях применения атомной энергии в сфере человеческой деятельности.

Для разработки критериев используются многолетние наблюдения за людьми, работающими на объектах с уровнем радиации, превышающим фон, а также эксперименты с животными, искусственно подвергаемыми облучению. Развертывание радиационной обстановки при аварийных ситуаций прогнозируется на основе математических расчетов и данных, полученных при изучении случившихся аварий за весь период развития атомной промышленности и энергетики [3].

В настоящий момент существует разработанная система допустимых пределов воздействия ионизирующего излучения на человеческий организм, оформленная в виде законодательных документов Норм Радиационной Безопасности (НРБ) [4].

Второй немаловажной задачей радиационной безопасности является разработка систем радиационного контроля. Различные условия эксплуатации радиационных установок, набор используемых радиоактивных веществ, экономия материальных средств диктуют необходимость осознанного выбора средств и частоты измерения уровня радиации, концентрации радиоактивных веществ. Так, при эксплуатацииg-дефектоскопов достаточно ограничиться контролем уровня g- излучения, а на радиохимических предприятиях наряду с указанным контролем необходимо проводить измерения концентрации радиоактивных газов в воздухе и уровень загрязнения рабочих помещений с целью не допустить пере облучение сотрудников.

Радиационная безопасность, кроме перечисленных выше задач, решает еще две функциональные задачи:

1) Снижение уровня облучения персонала и населения ниже (в крайнем случае, до) регламентируемого предела на основе следующих мероприятий: технических (создание защитных ограждений, автоматизация технологического процесса, очистка выбросов от радиоактивных веществ), медико-санитарных (обеспечение персонала средствами индивидуальной защиты-СИЗ, снабжение местных штабов ГО средствами защиты населения), организационных (создание специального графика работы в условиях пере облучения).

2)Создание эффективных систем радиационного контроля, позволяющих оперативно регистрировать изменения в радиационной обстановке.

Наконец необходимо отметить, что надежность систем радиационной безопасности намного выше, чем систем защиты других отраслей промышленности. Это объясняется тем, что впервые использованная атомная энергия привела к серьезнейшим разрушениям и жертвам и тем самым вызвала относительно предвзятое отношение к ней, что пошло на пользу радиационной безопасности [3].

Теперь целесообразно перейти к вопросам воздействия ионизирующего излучения на вещество, видам облучения организма, а также расчету доз, получаемых организмом.

Ионизирующее излучение.

Излучение, взаимодействие которого со средой вызывает образование электрических зарядов называется ионизирующим [3]. Ионизирующее излучение представляет собой поток частиц, обладающих дискретным или непрерывным спектром энергии. Данные частицы могут иметь(a- частицы и электроны) или не иметь(g- кванты, нейтроны) электрического заряда.

При прохождении через вещество заряженных частиц происходит передача ими своей энергии, расходующейся на возбуждение и ионизацию атомов и молекул. Для количественного определения переданной веществу энергии вводят понятие линейной передачи энергии S:

S=dE/dl,

где dE-энергия, теряемая заряженной частицей в среде при прохождении элемента пути dl.

Заряженные частицы проходят разное расстояние в веществе в зависимости от их энергии и свойств мишени. Для количественного определения этого расстояния вводят понятие длины свободного пробега частицы. Можно показать, что длина свободного пробега обратно пропорциональна отношению Z/A, где Z-атомный номер атомов мишени, а А-их массовое число. В мягкой биоткани пробег a- частиц составляет несколько десятков микрон, а электронов 0.02ч1.9 см[3].

g-кванты при прохождении через вещество способны взаимодействовать с ним тремя путями:

а) фотоэффект, при котором g-квант выбивает из электронной оболочки атома электрон и передает ему свою энергию;

б) комптоновское рассеяние, при котором g-квант выбивает из электронной оболочки атома электрон и передает ему часть своей энергии;

в) для g-квантов с энергиями превышающими 1.02 МэВ возможно образование электрон-позитронных пар при прохождении квантов в поле атомного ядра [6].

Нейтроны, проходя через вещество вызывают ядерные реакции так, что в конечном итоге образуются заряженные частицы.

В общем можно утверждать, что все виды перечисленных видов излучения являются ионизирующими. Далее необходимо рассмотреть каким образом ионизирующее излучение может воздействовать на организм.

Облучение организма.

Облучение организма можно подразделить на внешнее и внутреннее. Внешнее облучение возникает в результате попадания потока частиц в организм извне. Такое облучение могут создавать технологические установки, содержащие радиоактивные изотопы или ускорители частиц. Воздействие источника внешнего облучения на организм зависит от той энергии, которую несут частицы, величины их свободного пробега, расстояния от источника и его активности, а также времени облучения. Наибольшую опасность представляют источники нейтронного и g-излучения, так как нейтроны и g-кванты обладают наибольшей проникающей способностью.

Внутреннее облучение вызывается попавшими в организм радиоактивными веществами. Наибольшую опасность представляют собой a- радиоактивные источники, поскольку вся энергия излучения поглощается в непосредственной близости от местонахождения источника, принося наибольший вред [6].

Дозиметрия.

Поглощенная и экспозиционная доза.

Для определения меры той части энергии, которая поглощена веществом при облучении ионизирующим излучением используют понятие поглощенной дозы:

Dп=dEп/dm,

где dEп-энергия, поглощаемая элементом вещества массой dm. Единица дозы — Гр (грей) равна 1 Дж/кг. Поглощенную дозу чаще всего выражают, используя внесистемную единицу “рад”:

1рад=0.01 Дж/кг

Мощность дозы Рп выражает дозу, полученную в единицу времени:

Рп=Dп/t,

где t-время облучения. Эту величину измеряют в рад/с или рад/ч:

1рад/с=0.01 Вт/кг.

Для измерения поглощенной дозы g-излучения используют непосредственно измеряемую величину экспозиционной дозы Dэ, которая выражает ту часть энергии потока g-квантов, которая пошла на образование фотоэлектронов, комптоновских электронов и электрон-позитронных пар. Единица измерения в системе СИ-Кл/кг. Чаще измеряют экспозиционную дозу в рентгенах:

1Р=2.58. 10-4 Кл/кг.

Мощность экспозиционной дозы обычно измеряют в мкР/ч.

Можно показать, что, приближенно, поглощенная биологической тканью доза g-излучения численно равна экспозиционной дозе в воздухе [6]. Для этого необходимо соблюдения в системе “электронного равновесия" — условия, при котором все электроны, образующиеся в результате взаимодействия g-излучения со средой, полностью в ней поглощаются, что, по всей вероятности, и происходит в действительности.

Биологический эквивалент рада.

Различные виды ионизирующего излучения по-разному воздействуют на биологическую ткань. Для введения количественной характеристики биологического воздействия на организм вводят так называемый “коэффициент качества излучения”, который зависит от величины линейной передачи энергии. Эта зависимость приведена в таблице1.

Таблица 1

S, кеВ/мкм воды. 3.5 и меньше 7 23 53 175
кк 1 2 5 10 20

Биологический эквивалент рада — доза любого излучения, обладающая тем же биологическим действием, что доза в 1 рад g-излучения. Коэффициенты качества приведены в таблице 2.

Таблица 2.

Виды излучения. КК
g-излучение 1
b-излучение 1
a-излучение 10

Эквивалентная доза излучения сложного состава определяется по формуле:

где Dэкв — эквивалентная поглощенная доза, бэр;

Dп,i и KKi поглощенные дозы в радах и коэффициенты качества соответствующих компонент излучения.

Расчет доз, создаваемых источниками

b-, g-излучения.

На практике очень часто бывает оценить дозу излучения, которую получает человек при работе с радионуклидом и известным его энергетическим спектром, известной активности а, на известном расстоянии от него r, известное время t.

Расчет доз, создаваемых источниками g-излучения.

Предположим, что источник обладает энергетическим спектром с N линиями, энергия i-ой линии Еi, выход g-квантов на распад в i-ой линии спектра Рi, массовый коэффициент истинного поглощения g-излучения i-ой линии спектра mei, тогда в системе СИ получим значение дозы в Зв (зиверт)из следующего выражения [6]:

Однако существует более удобная формула, получаемая из вышеуказанной. Для этого сначала рассчитывают экспозиционную дозу в рентгенах (Р) по нижеприведенной формуле:

,

где Q-активность источника в мКи,

Кg — ионизационная постоянная Р. см2 /(ч. мКи),

r-расстояние до источника в см,

t-время облучения в ч.

Далее известно, что для биологической ткани, приближенно, экспозиционная доза в рентгенах численно равна поглощенной дозе в бэр.

Значение Кg табулировано, но его можно вычислить по формуле:

где энергия выражена в МэВ, выходы g-квантов в долях единицы, а массовые коэффициенты истинного поглощения в см2 /г.

Расчет доз, создаваемых источниками b- излучения.

Предположим, что имеется источник b- излучения с известными для него Еmax,i и Rmax,i тогда можно рассчитать дозу, создаваемую источником, используя следующее выражение [6]:

где а-активность,

t-время,

m’i -линейный коэффициент ослабления b- излучения в воздухе.

Для выражения дозы в радах необходимо воспользоваться следующей формулой [6]:

,

где Q-активность источника в мКи,

r-расстояние до источника в см,

t-время облучения в ч,

Еmax,i -максимальная энергия источника, МэВ,

Rmax,i -максимальный пробег в г/см2 .

Предельно допустимые дозы облучения.

Приведенные ниже значения предельных доз облучения, согласно НРБ- [4] определяются, как не наносящие вреда здоровью, при наблюдении современными методами за облучаемыми, при равномерном накоплении в течение 50-и лет (см таб.3).

Таблица 3 [6].

Группа органов 1 2 3 4
доза в год, бэр/год 5 15 30 75

В группы входят различные органы и ткани. Разбиение на группы приведено в таблице 4:

Таблица 4.

Группа. Органы и ткани.
1 Все тело, костный мозг.
2 Легкие, желудочно-кишечный тракт.
3 Костная ткань, щитовидная железа.
4 Кисти рук.

В свете представленных данных необходимо проведение постоянного сравнения доз, получаемых работниками в сфере атомной энергетики, с предельными с целью защиты их от поражения радиацией.

Расчет защитных экранов от g-излучения.

Предположим, что имеется источник g-излучения сложного состава, создающий дозу D0,i для каждой компоненты и полную дозу D0без защитного экрана, и известна предельная доза облучения Dпр, по данным НРБ, то сначала рассчитывают так называемую кратность ослабления ki для i-ой компоненты [6]:

а затем по таблице находят необходимую толщину защиты для имеющегося в наличие материала, выбирают максимальную и к ней прибавляют толщину слоя при k=2 для данной компоненты. Таким образом, можно вычислить толщину экрана для защиты от g-излучения из ряда доступных материалов (свинец, чугун, бетон).

Биологическое воздействие радиации.

Ионизирующее излучение в основном носит вред тем, что под его воздействием происходит разрушение генетического аппарата клеток, что приводит либо к их гибели, либо, что хуже для организма в целом, к трансформации с утраченной дифференцировкой. Такие клетки могут образовать злокачественную опухоль, прорастающую в органы и нарушающие их работу. При получении определенной дозы облучения возникает так называемая лучевая болезнь [2], которая характеризуется поражением кроветворной системы, поражением слизистой оболочки тонкой кишки, нервной системы.

Степени тяжести лучевой болезни зависят от полученной организмом дозы. Существует острая и хроническая формы лучевой болезни.

Острая лучевая болезнь.

Острая лучевая болезнь развивается при кратковременном облучении всего организма, при получении им дозы от 1 до 100 и более Гр, а 1-3 дня. Летальным исходом, как правило, заканчиваются случаи, в которых организм получил более 10 Гр за 1-3 дня. При получении дозы до 10 Гр развивается острая лучевая болезнь 4-х степеней тяжести.

Острая лучевая болезнь легкой степени тяжести развивается при воздействии излучения в дозе 1-2.5 Гр. Первичная реакция (первые 2-3 дня) — головокружение, тошнота. Латентный период (около 1 месяца) — постепенное снижение первичных признаков. Восстановление полное.

Острая лучевая болезнь средней степени тяжести развивается при воздействии излучения в дозе 2.5-4 Гр. Первичная реакция (первые 1-2 часа) — головокружение, тошнота, рвота. Латентный период (около 25 дней) наличие изменения слизистых оболочек, инфекционных осложнений, возможен летальный исход.

Острая лучевая болезнь тяжелой степени развивается при воздействии излучения в дозе 4-10 Гр. Первичная реакция (первые 30-60 минут) — головная боль, повторная рвота, повышение температуры тела. Латентный период (около 15 дней) — инфекционные поражения, поражения слизистых оболочек, лихорадка. Частота летальных исходов выше, чем при средней степени тяжести.

Острая лучевая болезнь крайне тяжелой степени развивается при воздействии излучения в дозе более 10 Гр. Летальный исход почти неизбежен.

Лечение острой лучевой болезни заключается во введении в организм антибиотиков, с целью предотвратить инфекционные осложнения, введении в организм донорских тромбоцитов, пересадке костного мозга.

Хроническая лучевая болезнь возникает при ежедневном получении дозы в 0.005 Гр. Наблюдается развитие различных заболеваний, связанных с дисфункцией желез внутренней секреции, нарушение АД. Профилактика хронической лучевой болезни заключается в неукоснительном соблюдении принятых норм радиационной безопасности.

Заключение.

Несмотря на ту опасность, которую представляет атомная энергетика, она является той экологически чистой индустрией, на которую возлагает свои надежды все передовое человечество. Маяки на трассе Северного морского пути и кардиостимуляторы сердца, АЭС и ледоколы, системы пожарной охраны и g-дефектоскопы… вот, лишь далеко не полный список благ, где атомная энергетика успешно себя проявила. А сколько еще ждет впереди атомную энергетику трудно представить.

Список литературы

1. У.Я.Маргулис. Атомная энергия и радиационная безопасность. М., Энергоатомиздат, 1988г.

2. Краткая медицинская энциклопедия. В 2-хтомах /Под ред. академика РАМН В.И.Покровского. М.: НПО “Медицинская энциклопедия”, “Крон-Пресс” 1994.-Т.I.

3. Б.Льюин. Гены: Пер. с англ.-М.: Мир, 1987.

4. Нормы радиационной безопасности (НРБ-76.87) и Основы санитарных правил (ОСП-72/87). М., Энергоатомиздат, 1988г.

5. Радиоактивные индикаторы в химии. Основы метода: Учебное пособие для ун-тов/Лукьянов В.Б., Бердоносов С.С., Богатырев И.О. и др.; Под ред. Лукьянова В.Б.-3-е изд.-М.: Высш. шк., 1985.

6. Радиоактивные индикаторы в химии. Проведение эксперимента и обработка результатов. Учебное пособие для вузов. /Лукьянов В.Б., Бердоносов С.С., Богатырев И.О. и др.; М.: Высш. шк., 1977.

www.ronl.ru

Курсовая работа - Радиационная безопасность понятие и сущность

Реферат на тему

Радиационная безопасность человека

Выполнила ученица

1 курса

факультета почвоведения Конопляникова Юлия

Содержание

Глава 1. Определение понятия…………………………………………3

Глава 2. Влияние ионизирующего излучения на человека…………..5

Глава 3. Способы защиты от ионизирующего излучения……………7

Глава 4. Действия при возникновении радиационной опасности…...8

Литература……………………………………………………….………9

Глава 1. Определение понятия.

Радиационная безопасность — состояние защищенности настоящего и будущего поколений людей от вредного для их здоровья воздействия ионизирующего излучения.

Ионизирующее излучение — излучение, которое создается при радиоактивном распаде, ядерных превращениях, торможении заряженных частиц в веществе и образует при взаимодействии со средой ионы разных типов. [1]

Наиболее значимы следующие типы ионизирующего излучения:

· коротковолновое электромагнитное излучение (рентгеновское и гамма-излучения),

· потоки заряженных частиц: бета-частиц (электронов и позитронов), альфа-частиц (ядер атома гелия-4), протонов, других ионов, мюонов и др., а также нейтронов. [2]

Источники ионизирующего излучения могут быть природные и искусственные.

В природе ионизирующее излучение обычно генерируется в результате

· спонтанного радиоактивного распада радионуклидов,

· ядерных реакций (синтез и индуцированное деление ядер, захват протонов, нейтронов, альфа-частиц и др.),

· ускорения заряженных частиц в космосе (природа такого ускорения космических частиц до конца не ясна).

Искусственными источниками ионизирующего излучения являются:

· искусственные радионуклиды (генерируют альфа-, бета- и гамма-излучения),

· ядерные реакторы (генерируют главным образом нейтронное и гамма-излучение),

· радионуклидные нейтронные источники,

· ускорители элементарных частиц (генерируют потоки заряженных частиц, а также тормозное фотонное излучение), рентгеновские аппараты (генерируют тормозное рентгеновское излучение).

· медицинские препараты,

· многочисленные контрольно-измерительные устройства (дефектоскопия металлов, контроль качества сварных соединений), которые используются в сельском хозяйстве, геологической разведке, при борьбе со статическим электричеством и др. [3], [4]

В России радиационная безопасность регулируется федеральным законом от 9 января 1996 г. N 3-ФЗ «О радиационной безопасности населения» (с изменениями от 22 августа 2004 г.), принятом Государственной Думой 5 декабря 1995 года, определяющим правовые основы обеспечения радиационной безопасности населения в целях охраны его здоровья.

Глава 2. Влияние ионизирующего излучения на человека.

Существуют различные виды воздействия ионизирующего излучения на организмы. Характер воздействия в значительной степени зависит от того, находится ли радионуклид внутри организма (таким образом организм подвергается внутреннему облучению) или он расположен вне организма (внешнее облучение).

Воздействие на организм a-частиц.

a-Частицы (ядра ) из-за своего сравнительно большого заряда (+ 2) и большой массы испытывают частые столкновения с молекулами и атомами среды и поэтому растрачивают всю энергию на небольшом пути. Длина пробега a-частиц в воздухе не превышает 10 см, а путь, который они проходят в тканях человека, составляет десятые доли миллиметра. Таким образом, если источник a-частиц расположен, например, на расстоянии 1 м от человека, то до него они просто не долетят, как бы ни была велика активность источника. Поэтому роль a-радиоактивных нуклидов во внешнем облучении организма ничтожна.

Но если такой радионуклид попал внутрь организма (с воздухом, водой или пищей), то вся энергия a-частиц будет израсходована на небольшом отрезке, причем встретившиеся на их пути молекулы будут разрушены (превратятся в ионы или нейтральные химически очень активные частицы, свободные радикалы). Свободные радикалы вступают в новые химические реакции с молекулами, составляющими организм. Эти реакции носят цепной характер. В результате в организме накапливаются заметные количества чужеродных, часто сильно ядовитых веществ. Конечно, прохождение через организм одной или даже десяти a-частиц вреда не принесет — слишком мало число образовавшихся при этом свободных радикалов и ионов. Но если число попавших в организм ядер a-радионуклида велико, может наступить его серьезное поражение — лучевая болезнь.

Важно, что после прохождения a-частиц через клетки организма (впрочем, похожее воздействие оказывают b-частицы и g-лучи), в них могут происходить нежелательные нарушения (мутации) наследственных структур. Эти нарушения могут стать причиной онкологических и наследственных заболеваний.

Вредное воздействие на организм b-частицы могут оказать как при внутреннем, так и при внешнем облучении. Длина пробега b-частиц в тканях организма значительно больше, чем a-частиц. При этом разрушенные молекулы располагаются не так близко друг к другу, как в случае воздействия a-частиц, и поэтому при одинаковом числе прошедших через организм частиц обоих видов и их равной исходной энергии вред от воздействия b-частиц меньше.

g-Лучи обладают намного более высокой проникающей способностью. Они проходят через ткани тела на значительно большие расстояния, чем a- или b-частицы. Поэтому, если g-излучатель находится внутри организма, испускаемое им g-излучение поглощается в организме обычно только частично (производя в нем при поглощении те же разрушения, что и a- или b-излучение). Частично же g-излучение покидает организм. Разумеется, эта его часть вредного воздействия на организм не оказывает. Вред от g-излучения в большой степени может проявиться при внешнем облучении, даже тогда, когда источник g-излучения расположен от организма на большом расстоянии и находится, например, за бетонной стеной. [5]

Таким образом, воздействие ионизирующего излучения может повреждать клетки человеческого организма двумя способами. Один из них – генетические повреждения, которые изменяют гены и хромосомы. Они могут проявиться в виде генетических дефектов у потомков. Другой способ – соматические повреждения, которые наносят вред в течение жизни. Примерами служат ожоги, некоторые виды лейкемии, выкидыши, глазные катаракты, раковые заболевания костей, щитовидной железы, молочной железы и лёгких, а также лучевая болезнь.

Глава 3. Способы защиты от ионизирующего излучения.

Методы и средства защиты от ионизирующих излучений включают в себя организационные, гигиенические, технические и лечебно-профилактические мероприятия, а именно:

· увеличение расстояния между оператором и источником;

· сокращение продолжительности работы в поле излучения;

· экранирование источника излучения;

· дистанционное управление;

· использование манипуляторов и роботов;

· полная автоматизация технологического процесса;

· использование средств индивидуальной защиты и предупреждение знаком радиационной опасности;

· постоянный контроль уровня излучения и доз облучения персонала.

— знак радиационной опасности.

Защита от внутреннего облучения заключается в устранении непосредственного контакта работающих с радиоактивными источниками и предотвращение попадания их излучения в воздух рабочей зоны.

Необходимо руководствоваться нормами радиационной безопасности, в которых приведены категории облучаемых лиц, дозовые пределы и мероприятия по защите, и санитарными правилами, которые регламентируют размещение помещений и установок, место работ, порядок получения, учета и хранения источников излучения, требования к вентиляции, пылегазоочистке, обезвреживанию радиоактивных отходов и др. [6]

Глава 4. Действия при возникновении радиационной опасности.

При сообщении о радиационной опасности населению необходимо оперативно выполнить следующие мероприятия:

1. Укрыться за стенами (деревянные стены ослабляют ионизирующее излучение в 2 раза, кирпичные – в 10 раз, углублённые деревянные укрытия – в 7 раз, кирпичные или бетонные – в 40 – 100 раз).

2. Закрыть форточки, люки, уплотнить рамы и дверные проёмы.

3. Создать запас питьевой воды в закрытых сосудах.

4. Провести йодную профилактику: таблетки йодистого калия принимать после еды с чаем или водой 1 раз в день в течение 7 суток по 1 таблетке (0,125 г)

5. Начать готовиться к возможной эвакуации: собрать документы, деньги, минимум одежды и консервированной еды на 2 – 3 суток. Всё упаковать в полиэтиленовые пакеты.

6. Соблюдать правила личной гигиены: использовать в пищу только консервированные продукты; употреблять её только в закрытых помещениях, тщательно промыв перед этим руки мылом и прополоскав рот 0,5%-ным раствором питьевой соды. Не пить воду из открытых источников, накрыть колодцы крышками или полиэтиленовой плёнкой; избегать длительного пребывания на загрязнённой территории; входя в помещение оставлять «грязную» обувь на лестничной площадке.

7. При передвижении по открытой местности использовать подручные средства защиты:

· Органов дыхания – смоченной водой марлевой повязкой, носовым платком или любой частью одежды.

· Кожи и волос – прикрыть любыми предметами одежды, на ноги надеть резиновые сапоги.

Эти рекомендации не исчерпывают всех мер защиты, однако, соблюдение перечисленных правил или хотя бы их части – вынужденная необходимость, позволяющая намного уменьшить риск неблагоприятных радиационных последствий в чрезвычайных ситуациях.

Литература

[1] — Федеральный закон от 9 января 1996 г. N 3-ФЗ «О радиационной безопасности населения» (с изменениями от 22 августа 2004 г.)

[2] — Ионизирующие излучения и их измерения. Термины и понятия. М.: Стандартинформ, 2006.

[3] ru.wikipedia.org/wiki/Ионизирующее_излучение

[4] www.znakcomplect.ru/safety18.php

[5] www.pereplet.ru/obrazovanie/stsoros/1168.html

[6] Фомин А.Д

«Организация охраны труда на предприятии в современных условиях»

Новосибирск, изд-во «Модус, 1997 г.

www.ronl.ru

Реферат - Радиационная безопасность - БЖД

Введение.

Наверное, ни для кого не секрет, что вступление в 21 век немыслимо без такого источника энергии, каковым является атомное ядро. Для человечества те огромные запасы энергии, которые заключены внутри ядер являются практически неисчерпаемыми. Если в условиях современного роста населения Земли не будет произведен скорейший переход на ядерный источник энергии, то, в конце концов, настанет тот день, когда в топках и печах догорит последняя капля, горсть  природного топлива, и с этого рокового дня история человечества начнет стремительно продвигаться к своему логическому завершению (а может быть все начнется сначала, как в первобытные времена и...?).

Для того чтобы оценить все “плюсы” и “минусы”, которых вероятно столько же сколько и “плюсов”, но возникающих в совершенно других условиях, необходимо посмотреть на настоящее положение дел в области использования атомной энергии.

Атомная энергия широко применяется в большинстве отраслей промышленности. Контроль качества изделий, производящийся без их разрушения, может быть успешно осуществлен при использовании данного вида энергии. Получение новых полимеров, определение структуры и дефектов сплавов, исследование смазочных материалов в трущихся частях машин, холодная стерилизация перевязочных материалов и лекарственных средств, анализ жидких и газовых сред осуществляется с наибольшим успехом при непосредственном участии ядерной энергии.

Атомная энергия может быть переработана в другие виды, например, в электрическую (АЭС), энергию движения ледоколов или подводных лодок. Благодаря наличию ядерного реактора на борту ледокола имеется возможность круглогодичного плавания и, следовательно, навигации в северных широтах без частых дозаправок природным топливом [1].

Медицина также широко и успешно использует достижения в области атомной энергетики в лечении различных болезней таких, как злокачественные новообразования и неопухолевые заболевания. При лечении рака энергия, возникающая при распаде радионуклидов, используемых в медицине, поражает генетический аппарат трансформированных клеток, тем самым останавливает их рост [2].

При исследовании механизмов реакций в органической и неорганической химии используется метод меченых атомов. Этот метод сыграл немаловажную роль в обнаружении новых закономерностей в физике, медицине, металлургии, биологии [1]. Возможность определения генетического кода возникла после появления радиоавтографического анализа.

Обзор только позитивных аспектов использования атомной энергии рисует весьма радужную картину, но для оценки реальной ситуации, сложившейся в настоящий момент нельзя упускать из виду те негативные моменты, которые могут возникнуть при определенных условиях и привести к не всегда предсказуемым последствиям.

Наиболее чудовищное и смертельно опасное применение энергии ядер для всего человечества является развязывание атомной войны. Достаточно вспомнить, что  когда ядерный смерч разбушевавшейся материи уничтожил одномоментно 300 тыс. людских жизней, по данным прессы, при бомбардировке Хиросимы и Нагасаки в 1945 году, то становится понятным опасение мировой общественности перед лицом этой грозной силы. Очевидно, что чем больше энергия используемая во благо, тем больше ее может быть использовано во зло.

Количество несчастных случаев, связанных с атомной энергетикой, на АЭС, значительно меньше, чем в других областях человеческой деятельности [3]. Тем не менее, несколько лет назад происшедшая авария в Чернобыле заставляет пересмотреть наше отношение к организации безопасности работы АЭС и защиты от неконтролируемого развития ядерной реакции. Необходимо дальнейшее снижение вероятности возникновения аварийных ситуаций, хотя вероятно, полностью избежать их никогда не удастся. Все же количество жертв на ЧАЭС удалось значительно снизить, благодаря самоотверженной работе спасателей, которые под час не жалея своей жизни шли на риск, ради того, чтобы обеспечить нормальную жизнь населению, проживавшему поблизости с местом трагедии.

Стремительное развитие техники и технологии, по всей видимости, остановить нельзя, несмотря на мрачные вехи истории прогресса, такие как авария на химическом заводе в Бхопале, унесшая 2.5 тыс. человек, взрыв емкостей со сжиженным газом под Мехико (400 чел. погибло и более 4000 получили ранения), авария летательных аппаратов “Челленджер”, “Титан”, “Дельта”. Все выше сказанное подводит к тому, что внедрение атомной энергетики является неизбежным процессом в рамках настоящего исторического развития общества. Замена органического топлива ядерным решит еще одну глобальную экологическую проблему, связанную с нарастающим загрязнением окружающей среды, уменьшением доли кислорода в воздухе и парниковым эффектом, возникшей при использовании в качестве топлива нефти, мазута, угля [3].

Для того чтобы внедрение атомной энергетики и использование радиоактивности в народном хозяйстве не принесло большего ущерба, чем тот, который наносится природе в настоящий момент существует специальная дисциплина, именующаяся радиационной безопасностью,  рассмотрение определения, целей и задач, а так же физических основ которой будет осуществлено в следующем разделе.

Физические основы радиационной безопасности.

Цели и задачи.

Радиационная безопасность — новая научно практическая дисциплина, возникшая с момента создания атомной промышленности, решающая комплекс теоретических и практических задач, связанных с уменьшением возможности возникновения аварийных ситуаций и несчастных случаев на радиационно-опасных объектах. Ниже освящается весь комплекс задач, стоящих перед радиационной безопасностью.

Первой задачей радиационной безопасности является разработка критериев:

а) для оценки ионизирующего излучения как вредного фактора воздействия на отдельных людей, популяцию в целом и объекты окружающей среды;

б) способов оценки и прогнозирования радиационной обстановки, а также путей приведения ее в соответствие с выработанными критериями безопасности на основе создания комплекса технических, медико-санитарных и административно-организационных мероприятий, направленных на обеспечение безопасности  в условиях применения атомной энергии в сфере человеческой деятельности.  

Для разработки критериев используются многолетние наблюдения за людьми, работающими на объектах с уровнем радиации, превышающим фон, а также эксперименты с животными, искусственно подвергаемыми облучению. Развертывание радиационной обстановки при аварийных ситуаций прогнозируется на основе математических расчетов и данных, полученных при изучении случившихся аварий за весь период развития атомной промышленности и энергетики [3]. 

В настоящий момент существует разработанная система допустимых пределов воздействия ионизирующего излучения на человеческий организм, оформленная в виде законодательных документов Норм Радиационной Безопасности (НРБ) [4].

Второй немаловажной задачей радиационной безопасности является разработка систем радиационного контроля. Различные условия эксплуатации радиационных установок, набор используемых радиоактивных веществ, экономия материальных средств диктуют необходимость осознанного выбора средств и частоты измерения уровня радиации, концентрации радиоактивных веществ. Так, при эксплуатацииg-дефектоскопов достаточно ограничиться контролем уровня g- излучения, а на радиохимических предприятиях наряду с указанным контролем необходимо проводить измерения концентрации радиоактивных газов в воздухе и уровень загрязнения рабочих помещений с целью не допустить пере облучение сотрудников.

Радиационная безопасность, кроме перечисленных выше задач, решает еще две функциональные задачи:

1) Снижение уровня облучения персонала и населения ниже (в крайнем случае, до) регламентируемого предела на основе следующих мероприятий: технических (создание защитных ограждений, автоматизация технологического процесса, очистка выбросов от радиоактивных веществ), медико-санитарных (обеспечение персонала средствами индивидуальной защиты-СИЗ, снабжение местных штабов ГО средствами защиты населения), организационных (создание специального графика работы в условиях пере облучения).

2)Создание эффективных систем радиационного контроля, позволяющих оперативно регистрировать изменения в радиационной обстановке.

Наконец необходимо отметить, что надежность систем радиационной безопасности намного выше, чем систем защиты  других отраслей промышленности. Это объясняется тем, что впервые использованная атомная энергия привела к серьезнейшим разрушениям и жертвам и тем самым вызвала относительно предвзятое отношение к ней, что пошло на пользу радиационной безопасности [3].

Теперь целесообразно перейти к вопросам воздействия ионизирующего излучения на вещество, видам облучения организма, а также расчету доз, получаемых организмом.

Ионизирующее излучение.

Излучение, взаимодействие которого со средой вызывает образование электрических зарядов называется ионизирующим [3]. Ионизирующее излучение представляет собой поток частиц, обладающих дискретным или непрерывным спектром энергии. Данные частицы могут иметь(a- частицы и электроны) или не иметь(g- кванты, нейтроны) электрического заряда.

При прохождении через вещество заряженных частиц происходит передача ими своей энергии, расходующейся на возбуждение и ионизацию атомов и молекул. Для количественного определения переданной веществу энергии вводят понятие линейной передачи энергии S:

S=dE/dl,

где dE-энергия, теряемая заряженной частицей в среде при прохождении элемента пути dl.

Заряженные частицы проходят разное расстояние в веществе в зависимости от их энергии и свойств мишени. Для количественного определения этого расстояния вводят понятие длины свободного пробега частицы. Можно показать, что длина свободного пробега обратно пропорциональна отношению Z/A, где Z-атомный номер атомов мишени, а А-их массовое число. В  мягкой биоткани пробег a- частиц составляет несколько десятков микрон, а электронов 0.02ч1.9 см[3].

g-кванты при прохождении через вещество способны взаимодействовать с ним тремя путями:

а) фотоэффект, при котором g-квант выбивает из электронной оболочки атома электрон и передает ему свою энергию;

б) комптоновское рассеяние, при котором g-квант выбивает из электронной оболочки атома электрон и передает ему часть своей энергии;

в) для g-квантов с энергиями превышающими 1.02 МэВ возможно образование электрон-позитронных пар при прохождении квантов в поле атомного ядра [6].

Нейтроны, проходя через вещество вызывают ядерные реакции так, что в конечном итоге образуются заряженные частицы.

В общем можно утверждать, что все виды перечисленных видов излучения являются ионизирующими. Далее необходимо рассмотреть каким образом ионизирующее излучение может воздействовать на организм.

Облучение организма.

Облучение организма можно подразделить на внешнее и внутреннее. Внешнее облучение возникает в результате попадания потока частиц в организм извне. Такое облучение могут создавать технологические установки, содержащие радиоактивные изотопы или ускорители частиц. Воздействие источника внешнего облучения на организм зависит от той энергии, которую несут частицы, величины их свободного пробега, расстояния от источника и его активности, а также времени облучения. Наибольшую опасность представляют источники нейтронного и g-излучения, так как нейтроны и g-кванты обладают наибольшей проникающей способностью.

Внутреннее облучение вызывается попавшими в организм радиоактивными веществами. Наибольшую опасность представляют собой a- радиоактивные источники, поскольку вся энергия излучения поглощается в непосредственной близости от местонахождения источника, принося наибольший вред [6].

Дозиметрия.

Поглощенная и экспозиционная доза.

Для определения меры той части энергии, которая поглощена веществом при облучении ионизирующим излучением используют понятие поглощенной дозы:

Dп=dEп/dm,

где dEп-энергия, поглощаемая элементом вещества массой dm. Единица дозы — Гр (грей) равна 1 Дж/кг. Поглощенную дозу чаще всего выражают, используя внесистемную единицу “рад”:

1рад=0.01 Дж/кг

Мощность дозы Рп выражает дозу, полученную в единицу времени:

Рп=Dп/t,

где t-время облучения. Эту величину измеряют в рад/с или рад/ч:

1рад/с=0.01 Вт/кг.

Для измерения поглощенной дозы g-излучения используют непосредственно измеряемую величину экспозиционной дозы Dэ, которая выражает ту часть энергии потока g-квантов, которая пошла на образование фотоэлектронов, комптоновских электронов и электрон-позитронных пар. Единица измерения в системе СИ-Кл/кг.  Чаще измеряют экспозиционную дозу в рентгенах:

1Р=2.58.10-4 Кл/кг.

Мощность экспозиционной дозы обычно измеряют в мкР/ч.

Можно показать, что, приближенно,  поглощенная биологической тканью доза g-излучения численно равна экспозиционной дозе в воздухе [6]. Для этого необходимо соблюдения в системе “электронного равновесия" — условия, при котором все электроны, образующиеся в результате взаимодействия g-излучения со средой, полностью в ней поглощаются, что, по всей вероятности, и происходит в действительности.

  Биологический эквивалент рада.

Различные виды ионизирующего излучения по-разному воздействуют на биологическую ткань. Для введения количественной характеристики биологического воздействия на организм вводят так называемый “коэффициент качества излучения”, который зависит от величины линейной передачи энергии. Эта зависимость приведена в таблице1.

Таблица 1

S, кеВ/мкм воды. 3.5 и  меньше 7 23 53 175 кк 1 2 5 10 20

Биологический эквивалент рада — доза любого излучения, обладающая тем же биологическим действием, что доза в 1 рад g-излучения. Коэффициенты качества приведены в таблице 2.

Таблица 2.

Виды излучения. КК g-излучение 1 b-излучение 1 a-излучение 10

Эквивалентная доза излучения сложного состава определяется по формуле:

 

где Dэкв  — эквивалентная поглощенная доза, бэр;

Dп,i и KKi  поглощенные дозы в радах и коэффициенты качества соответствующих компонент излучения.

Расчет доз, создаваемых источниками

b-, g-излучения.

На практике очень часто бывает оценить дозу излучения, которую получает человек при работе с радионуклидом и известным его энергетическим спектром, известной активности а, на известном расстоянии от него r, известное время t.

Расчет доз, создаваемых источниками g-излучения.

Предположим, что источник обладает энергетическим спектром с N линиями, энергия i-ой линии Еi, выход g-квантов на распад в i-ой линии спектра Рi, массовый коэффициент истинного поглощения g-излучения i-ой линии спектра mei, тогда в системе СИ получим значение дозы в Зв (зиверт) из следующего выражения [6]:

Однако существует более удобная формула, получаемая из вышеуказанной. Для этого сначала рассчитывают экспозиционную дозу в рентгенах (Р) по нижеприведенной формуле:

,

где Q-активность источника в мКи,

Кg  — ионизационная постоянная Р.см2/(ч.мКи),

r-расстояние до источника в см,

t-время облучения в ч.

Далее известно, что для биологической ткани, приближенно, экспозиционная доза в рентгенах численно равна поглощенной дозе в бэр.

Значение Кg  табулировано, но его можно вычислить по формуле:

где энергия выражена в МэВ, выходы g-квантов в долях единицы, а массовые коэффициенты истинного поглощения в см2/г.

Расчет доз, создаваемых источниками b- излучения.

Предположим, что имеется источник b- излучения с известными для него Еmax,i  и Rmax,i тогда можно рассчитать дозу, создаваемую источником, используя следующее выражение [6]:

где а-активность,

t-время,

m’i-линейный коэффициент ослабления b- излучения в воздухе.

Для выражения дозы в радах необходимо воспользоваться следующей формулой [6]:

,

где Q-активность источника в мКи,

r-расстояние до источника в см,

t-время облучения в ч,

Еmax,i-максимальная энергия источника, МэВ,

Rmax,i-максимальный пробег в г/см2.

Предельно допустимые дозы облучения.

Приведенные ниже значения предельных доз облучения, согласно НРБ- [4] определяются, как не наносящие вреда здоровью, при наблюдении современными методами за облучаемыми, при равномерном накоплении в течение 50-и лет (см таб.3).

Таблица 3 [6].

Группа органов 1 2 3 4 доза в год, бэр/год 5 15 30 75

В группы входят различные органы и ткани. Разбиение на группы приведено в таблице 4:

Таблица 4.

Группа. Органы и ткани. 1 Все тело, костный мозг. 2 Легкие, желудочно-кишечный тракт. 3 Костная ткань, щитовидная железа. 4 Кисти рук.

В свете представленных данных необходимо проведение постоянного сравнения доз, получаемых работниками в сфере атомной энергетики, с предельными с целью защиты их от поражения радиацией.

Расчет защитных экранов от g-излучения.

Предположим, что имеется источник g-излучения сложного состава, создающий дозу D0,i  для каждой компоненты и полную дозу D0 без защитного экрана, и  известна предельная доза облучения Dпр, по данным НРБ, то сначала рассчитывают так называемую кратность ослабления ki для i-ой компоненты [6]:

а затем по таблице находят необходимую толщину защиты для имеющегося в наличие материала, выбирают максимальную и к ней прибавляют толщину слоя при k=2 для данной компоненты. Таким образом, можно вычислить толщину экрана для защиты от g-излучения из ряда доступных материалов (свинец, чугун, бетон).

Биологическое воздействие радиации.

Ионизирующее излучение в основном носит вред тем, что под его воздействием происходит разрушение генетического аппарата клеток, что приводит либо к их гибели, либо, что хуже для организма в целом, к трансформации с утраченной дифференцировкой. Такие клетки могут образовать злокачественную опухоль, прорастающую в органы и нарушающие их работу. При получении  определенной дозы облучения возникает так называемая лучевая болезнь [2], которая характеризуется поражением кроветворной системы, поражением слизистой оболочки тонкой кишки, нервной системы.

Степени тяжести лучевой болезни зависят от полученной организмом дозы. Существует острая и хроническая формы лучевой болезни.

Острая лучевая болезнь.

Острая лучевая болезнь развивается при кратковременном облучении всего организма, при получении им дозы от 1 до 100 и более Гр, а 1-3 дня. Летальным исходом, как правило, заканчиваются случаи, в которых организм получил более 10 Гр за 1-3 дня. При получении дозы до 10 Гр развивается острая лучевая болезнь 4-х степеней тяжести.

Острая лучевая болезнь легкой степени тяжести развивается при воздействии излучения в дозе 1-2.5 Гр. Первичная реакция (первые 2-3 дня) — головокружение, тошнота. Латентный период (около 1 месяца) — постепенное снижение первичных признаков. Восстановление полное.

Острая лучевая болезнь средней степени тяжести развивается при воздействии излучения в дозе 2.5-4 Гр. Первичная реакция (первые 1-2 часа) — головокружение, тошнота, рвота. Латентный период (около 25 дней) наличие изменения слизистых оболочек, инфекционных осложнений, возможен летальный исход.

Острая лучевая болезнь тяжелой степени развивается при воздействии излучения в дозе 4-10 Гр. Первичная реакция (первые 30-60 минут) — головная боль, повторная рвота, повышение температуры тела. Латентный период (около 15 дней) — инфекционные поражения, поражения слизистых оболочек, лихорадка. Частота летальных исходов выше, чем при средней степени тяжести.

Острая лучевая болезнь крайне тяжелой степени развивается при воздействии излучения в дозе более 10 Гр. Летальный исход почти неизбежен.

Лечение острой лучевой болезни заключается во введении в организм антибиотиков, с целью предотвратить инфекционные осложнения, введении в организм донорских тромбоцитов, пересадке костного мозга.

Хроническая лучевая болезнь возникает при ежедневном получении дозы в 0.005 Гр. Наблюдается развитие различных заболеваний, связанных с дисфункцией желез внутренней секреции, нарушение АД. Профилактика хронической лучевой болезни заключается в неукоснительном соблюдении принятых норм радиационной безопасности.

Заключение.

Несмотря на ту опасность, которую представляет атомная энергетика, она является той  экологически чистой индустрией, на которую возлагает свои надежды все передовое человечество. Маяки на трассе Северного морского пути и кардиостимуляторы сердца, АЭС и  ледоколы, системы пожарной охраны и g-дефектоскопы… вот, лишь далеко не полный список благ, где атомная энергетика успешно себя проявила. А сколько еще ждет впереди атомную энергетику трудно представить.

Список литературы

1. У.Я.Маргулис. Атомная энергия и радиационная безопасность. М., Энергоатомиздат, 1988г.

2. Краткая медицинская энциклопедия. В 2-хтомах /Под ред. академика РАМН В.И.Покровского. М.: НПО “Медицинская энциклопедия”, “Крон-Пресс” 1994.-Т.I.

3. Б.Льюин. Гены: Пер. с англ.-М.: Мир, 1987.

4. Нормы радиационной безопасности (НРБ-76.87) и Основы санитарных правил (ОСП-72/87). М., Энергоатомиздат, 1988г.

5. Радиоактивные индикаторы в химии. Основы метода: Учебное пособие для ун-тов/Лукьянов В.Б., Бердоносов С.С., Богатырев И.О. и др.; Под ред. Лукьянова В.Б.-3-е изд.-М.: Высш. шк.,  1985.

6.            Радиоактивные индикаторы в химии. Проведение эксперимента и обработка результатов. Учебное пособие для вузов. /Лукьянов В.Б., Бердоносов С.С., Богатырев И.О. и др.; М.: Высш. шк., 1977.

www.ronl.ru

Доклад - Радиационная безопасность - Безопасность жизнедеятельности

Введение.

Наверное, ни для кого не секрет, что вступление в 21 век немыслимо без такого источника энергии, каковым является атомное ядро. Для человечества те огромные запасы энергии, которые заключены внутри ядер являются практически неисчерпаемыми. Если в условиях современного роста населения Земли не будет произведен скорейший переход на ядерный источник энергии, то, в конце концов, настанет тот день, когда в топках и печах догорит последняя капля, горсть природного топлива, и с этого рокового дня история человечества начнет стремительно продвигаться к своему логическому завершению (а может быть все начнется сначала, как в первобытные времена и...?).

Для того чтобы оценить все “плюсы” и “минусы”, которых вероятно столько же сколько и “плюсов”, но возникающих в совершенно других условиях, необходимо посмотреть на настоящее положение дел в области использования атомной энергии.

Атомная энергия широко применяется в большинстве отраслей промышленности. Контроль качества изделий, производящийся без их разрушения, может быть успешно осуществлен при использовании данного вида энергии. Получение новых полимеров, определение структуры и дефектов сплавов, исследование смазочных материалов в трущихся частях машин, холодная стерилизация перевязочных материалов и лекарственных средств, анализ жидких и газовых сред осуществляется с наибольшим успехом при непосредственном участии ядерной энергии.

Атомная энергия может быть переработана в другие виды, например, в электрическую (АЭС), энергию движения ледоколов или подводных лодок. Благодаря наличию ядерного реактора на борту ледокола имеется возможность круглогодичного плавания и, следовательно, навигации в северных широтах без частых дозаправок природным топливом [1].

Медицина также широко и успешно использует достижения в области атомной энергетики в лечении различных болезней таких, как злокачественные новообразования и неопухолевые заболевания. При лечении рака энергия, возникающая при распаде радионуклидов, используемых в медицине, поражает генетический аппарат трансформированных клеток, тем самым останавливает их рост [2].

При исследовании механизмов реакций в органической и неорганической химии используется метод меченых атомов. Этот метод сыграл немаловажную роль в обнаружении новых закономерностей в физике, медицине, металлургии, биологии [1]. Возможность определения генетического кода возникла после появления радиоавтографического анализа.

Обзор только позитивных аспектов использования атомной энергии рисует весьма радужную картину, но для оценки реальной ситуации, сложившейся в настоящий момент нельзя упускать из виду те негативные моменты, которые могут возникнуть при определенных условиях и привести к не всегда предсказуемым последствиям.

Наиболее чудовищное и смертельно опасное применение энергии ядер для всего человечества является развязывание атомной войны. Достаточно вспомнить, что когда ядерный смерч разбушевавшейся материи уничтожил одномоментно 300 тыс. людских жизней, по данным прессы, при бомбардировке Хиросимы и Нагасаки в 1945 году, то становится понятным опасение мировой общественности перед лицом этой грозной силы. Очевидно, что чем больше энергия используемая во благо, тем больше ее может быть использовано во зло.

Количество несчастных случаев, связанных с атомной энергетикой, на АЭС, значительно меньше, чем в других областях человеческой деятельности [3]. Тем не менее, несколько лет назад происшедшая авария в Чернобыле заставляет пересмотреть наше отношение к организации безопасности работы АЭС и защиты от неконтролируемого развития ядерной реакции. Необходимо дальнейшее снижение вероятности возникновения аварийных ситуаций, хотя вероятно, полностью избежать их никогда не удастся. Все же количество жертв на ЧАЭС удалось значительно снизить, благодаря самоотверженной работе спасателей, которые под час не жалея своей жизни шли на риск, ради того, чтобы обеспечить нормальную жизнь населению, проживавшему поблизости с местом трагедии.

Стремительное развитие техники и технологии, по всей видимости, остановить нельзя, несмотря на мрачные вехи истории прогресса, такие как авария на химическом заводе в Бхопале, унесшая 2.5 тыс. человек, взрыв емкостей со сжиженным газом под Мехико (400 чел. погибло и более 4000 получили ранения), авария летательных аппаратов “Челленджер”, “Титан”, “Дельта”. Все выше сказанное подводит к тому, что внедрение атомной энергетики является неизбежным процессом в рамках настоящего исторического развития общества. Замена органического топлива ядерным решит еще одну глобальную экологическую проблему, связанную с нарастающим загрязнением окружающей среды, уменьшением доли кислорода в воздухе и парниковым эффектом, возникшей при использовании в качестве топлива нефти, мазута, угля [3].

Для того чтобы внедрение атомной энергетики и использование радиоактивности в народном хозяйстве не принесло большего ущерба, чем тот, который наносится природе в настоящий момент существует специальная дисциплина, именующаяся радиационной безопасностью, рассмотрение определения, целей и задач, а так же физических основ которой будет осуществлено в следующем разделе.

Физические основы радиационной безопасности.

Цели и задачи.

Радиационная безопасность — новая научно практическая дисциплина, возникшая с момента создания атомной промышленности, решающая комплекс теоретических и практических задач, связанных с уменьшением возможности возникновения аварийных ситуаций и несчастных случаев на радиационно-опасных объектах. Ниже освящается весь комплекс задач, стоящих перед радиационной безопасностью.

Первой задачей радиационной безопасности является разработка критериев:

а) для оценки ионизирующего излучения как вредного фактора воздействия на отдельных людей, популяцию в целом и объекты окружающей среды;

б) способов оценки и прогнозирования радиационной обстановки, а также путей приведения ее в соответствие с выработанными критериями безопасности на основе создания комплекса технических, медико-санитарных и административно-организационных мероприятий, направленных на обеспечение безопасности в условиях применения атомной энергии в сфере человеческой деятельности.

Для разработки критериев используются многолетние наблюдения за людьми, работающими на объектах с уровнем радиации, превышающим фон, а также эксперименты с животными, искусственно подвергаемыми облучению. Развертывание радиационной обстановки при аварийных ситуаций прогнозируется на основе математических расчетов и данных, полученных при изучении случившихся аварий за весь период развития атомной промышленности и энергетики [3].

В настоящий момент существует разработанная система допустимых пределов воздействия ионизирующего излучения на человеческий организм, оформленная в виде законодательных документов Норм Радиационной Безопасности (НРБ) [4].

Второй немаловажной задачей радиационной безопасности является разработка систем радиационного контроля. Различные условия эксплуатации радиационных установок, набор используемых радиоактивных веществ, экономия материальных средств диктуют необходимость осознанного выбора средств и частоты измерения уровня радиации, концентрации радиоактивных веществ. Так, при эксплуатацииg-дефектоскопов достаточно ограничиться контролем уровня g- излучения, а на радиохимических предприятиях наряду с указанным контролем необходимо проводить измерения концентрации радиоактивных газов в воздухе и уровень загрязнения рабочих помещений с целью не допустить пере облучение сотрудников.

Радиационная безопасность, кроме перечисленных выше задач, решает еще две функциональные задачи:

1) Снижение уровня облучения персонала и населения ниже (в крайнем случае, до) регламентируемого предела на основе следующих мероприятий: технических (создание защитных ограждений, автоматизация технологического процесса, очистка выбросов от радиоактивных веществ), медико-санитарных (обеспечение персонала средствами индивидуальной защиты-СИЗ, снабжение местных штабов ГО средствами защиты населения), организационных (создание специального графика работы в условиях пере облучения).

2)Создание эффективных систем радиационного контроля, позволяющих оперативно регистрировать изменения в радиационной обстановке.

Наконец необходимо отметить, что надежность систем радиационной безопасности намного выше, чем систем защиты других отраслей промышленности. Это объясняется тем, что впервые использованная атомная энергия привела к серьезнейшим разрушениям и жертвам и тем самым вызвала относительно предвзятое отношение к ней, что пошло на пользу радиационной безопасности [3].

Теперь целесообразно перейти к вопросам воздействия ионизирующего излучения на вещество, видам облучения организма, а также расчету доз, получаемых организмом.

Ионизирующее излучение.

Излучение, взаимодействие которого со средой вызывает образование электрических зарядов называется ионизирующим [3]. Ионизирующее излучение представляет собой поток частиц, обладающих дискретным или непрерывным спектром энергии. Данные частицы могут иметь(a- частицы и электроны) или не иметь(g- кванты, нейтроны) электрического заряда.

При прохождении через вещество заряженных частиц происходит передача ими своей энергии, расходующейся на возбуждение и ионизацию атомов и молекул. Для количественного определения переданной веществу энергии вводят понятие линейной передачи энергии S:

S=dE/dl,

где dE-энергия, теряемая заряженной частицей в среде при прохождении элемента пути dl.

Заряженные частицы проходят разное расстояние в веществе в зависимости от их энергии и свойств мишени. Для количественного определения этого расстояния вводят понятие длины свободного пробега частицы. Можно показать, что длина свободного пробега обратно пропорциональна отношению Z/A, где Z-атомный номер атомов мишени, а А-их массовое число. В мягкой биоткани пробег a- частиц составляет несколько десятков микрон, а электронов 0.02ч1.9 см[3].

g-кванты при прохождении через вещество способны взаимодействовать с ним тремя путями:

а) фотоэффект, при котором g-квант выбивает из электронной оболочки атома электрон и передает ему свою энергию;

б) комптоновское рассеяние, при котором g-квант выбивает из электронной оболочки атома электрон и передает ему часть своей энергии;

в) для g-квантов с энергиями превышающими 1.02 МэВ возможно образование электрон-позитронных пар при прохождении квантов в поле атомного ядра [6].

Нейтроны, проходя через вещество вызывают ядерные реакции так, что в конечном итоге образуются заряженные частицы.

В общем можно утверждать, что все виды перечисленных видов излучения являются ионизирующими. Далее необходимо рассмотреть каким образом ионизирующее излучение может воздействовать на организм.

Облучение организма.

Облучение организма можно подразделить на внешнее и внутреннее. Внешнее облучение возникает в результате попадания потока частиц в организм извне. Такое облучение могут создавать технологические установки, содержащие радиоактивные изотопы или ускорители частиц. Воздействие источника внешнего облучения на организм зависит от той энергии, которую несут частицы, величины их свободного пробега, расстояния от источника и его активности, а также времени облучения. Наибольшую опасность представляют источники нейтронного и g-излучения, так как нейтроны и g-кванты обладают наибольшей проникающей способностью.

Внутреннее облучение вызывается попавшими в организм радиоактивными веществами. Наибольшую опасность представляют собой a- радиоактивные источники, поскольку вся энергия излучения поглощается в непосредственной близости от местонахождения источника, принося наибольший вред [6].

Дозиметрия.

Поглощенная и экспозиционная доза.

Для определения меры той части энергии, которая поглощена веществом при облучении ионизирующим излучением используют понятие поглощенной дозы:

Dп=dEп/dm,

где dEп-энергия, поглощаемая элементом вещества массой dm. Единица дозы — Гр (грей) равна 1 Дж/кг. Поглощенную дозу чаще всего выражают, используя внесистемную единицу “рад”:

1рад=0.01 Дж/кг

Мощность дозы Рп выражает дозу, полученную в единицу времени:

Рп=Dп/t,

где t-время облучения. Эту величину измеряют в рад/с или рад/ч:

1рад/с=0.01 Вт/кг.

Для измерения поглощенной дозы g-излучения используют непосредственно измеряемую величину экспозиционной дозы Dэ, которая выражает ту часть энергии потока g-квантов, которая пошла на образование фотоэлектронов, комптоновских электронов и электрон-позитронных пар. Единица измерения в системе СИ-Кл/кг. Чаще измеряют экспозиционную дозу в рентгенах:

1Р=2.58. 10-4 Кл/кг.

Мощность экспозиционной дозы обычно измеряют в мкР/ч.

Можно показать, что, приближенно, поглощенная биологической тканью доза g-излучения численно равна экспозиционной дозе в воздухе [6]. Для этого необходимо соблюдения в системе “электронного равновесия" — условия, при котором все электроны, образующиеся в результате взаимодействия g-излучения со средой, полностью в ней поглощаются, что, по всей вероятности, и происходит в действительности.

Биологический эквивалент рада.

Различные виды ионизирующего излучения по-разному воздействуют на биологическую ткань. Для введения количественной характеристики биологического воздействия на организм вводят так называемый “коэффициент качества излучения”, который зависит от величины линейной передачи энергии. Эта зависимость приведена в таблице1.

Таблица 1

S, кеВ/мкм воды. 3.5 и меньше 7 23 53 175
кк 1 2 5 10 20

Биологический эквивалент рада — доза любого излучения, обладающая тем же биологическим действием, что доза в 1 рад g-излучения. Коэффициенты качества приведены в таблице 2.

Таблица 2.

Виды излучения. КК
g-излучение 1
b-излучение 1
a-излучение 10

Эквивалентная доза излучения сложного состава определяется по формуле:

где Dэкв — эквивалентная поглощенная доза, бэр;

Dп,i и KKi поглощенные дозы в радах и коэффициенты качества соответствующих компонент излучения.

Расчет доз, создаваемых источниками

b-, g-излучения.

На практике очень часто бывает оценить дозу излучения, которую получает человек при работе с радионуклидом и известным его энергетическим спектром, известной активности а, на известном расстоянии от него r, известное время t.

Расчет доз, создаваемых источниками g-излучения.

Предположим, что источник обладает энергетическим спектром с N линиями, энергия i-ой линии Еi, выход g-квантов на распад в i-ой линии спектра Рi, массовый коэффициент истинного поглощения g-излучения i-ой линии спектра mei, тогда в системе СИ получим значение дозы в Зв (зиверт)из следующего выражения [6]:

Однако существует более удобная формула, получаемая из вышеуказанной. Для этого сначала рассчитывают экспозиционную дозу в рентгенах (Р) по нижеприведенной формуле:

,

где Q-активность источника в мКи,

Кg — ионизационная постоянная Р. см2 /(ч. мКи),

r-расстояние до источника в см,

t-время облучения в ч.

Далее известно, что для биологической ткани, приближенно, экспозиционная доза в рентгенах численно равна поглощенной дозе в бэр.

Значение Кg табулировано, но его можно вычислить по формуле:

где энергия выражена в МэВ, выходы g-квантов в долях единицы, а массовые коэффициенты истинного поглощения в см2 /г.

Расчет доз, создаваемых источниками b- излучения.

Предположим, что имеется источник b- излучения с известными для него Еmax,i и Rmax,i тогда можно рассчитать дозу, создаваемую источником, используя следующее выражение [6]:

где а-активность,

t-время,

m’i -линейный коэффициент ослабления b- излучения в воздухе.

Для выражения дозы в радах необходимо воспользоваться следующей формулой [6]:

,

где Q-активность источника в мКи,

r-расстояние до источника в см,

t-время облучения в ч,

Еmax,i -максимальная энергия источника, МэВ,

Rmax,i -максимальный пробег в г/см2 .

Предельно допустимые дозы облучения.

Приведенные ниже значения предельных доз облучения, согласно НРБ- [4] определяются, как не наносящие вреда здоровью, при наблюдении современными методами за облучаемыми, при равномерном накоплении в течение 50-и лет (см таб.3).

Таблица 3 [6].

Группа органов 1 2 3 4
доза в год, бэр/год 5 15 30 75

В группы входят различные органы и ткани. Разбиение на группы приведено в таблице 4:

Таблица 4.

Группа. Органы и ткани.
1 Все тело, костный мозг.
2 Легкие, желудочно-кишечный тракт.
3 Костная ткань, щитовидная железа.
4 Кисти рук.

В свете представленных данных необходимо проведение постоянного сравнения доз, получаемых работниками в сфере атомной энергетики, с предельными с целью защиты их от поражения радиацией.

Расчет защитных экранов от g-излучения.

Предположим, что имеется источник g-излучения сложного состава, создающий дозу D0,i для каждой компоненты и полную дозу D0без защитного экрана, и известна предельная доза облучения Dпр, по данным НРБ, то сначала рассчитывают так называемую кратность ослабления ki для i-ой компоненты [6]:

а затем по таблице находят необходимую толщину защиты для имеющегося в наличие материала, выбирают максимальную и к ней прибавляют толщину слоя при k=2 для данной компоненты. Таким образом, можно вычислить толщину экрана для защиты от g-излучения из ряда доступных материалов (свинец, чугун, бетон).

Биологическое воздействие радиации.

Ионизирующее излучение в основном носит вред тем, что под его воздействием происходит разрушение генетического аппарата клеток, что приводит либо к их гибели, либо, что хуже для организма в целом, к трансформации с утраченной дифференцировкой. Такие клетки могут образовать злокачественную опухоль, прорастающую в органы и нарушающие их работу. При получении определенной дозы облучения возникает так называемая лучевая болезнь [2], которая характеризуется поражением кроветворной системы, поражением слизистой оболочки тонкой кишки, нервной системы.

Степени тяжести лучевой болезни зависят от полученной организмом дозы. Существует острая и хроническая формы лучевой болезни.

Острая лучевая болезнь.

Острая лучевая болезнь развивается при кратковременном облучении всего организма, при получении им дозы от 1 до 100 и более Гр, а 1-3 дня. Летальным исходом, как правило, заканчиваются случаи, в которых организм получил более 10 Гр за 1-3 дня. При получении дозы до 10 Гр развивается острая лучевая болезнь 4-х степеней тяжести.

Острая лучевая болезнь легкой степени тяжести развивается при воздействии излучения в дозе 1-2.5 Гр. Первичная реакция (первые 2-3 дня) — головокружение, тошнота. Латентный период (около 1 месяца) — постепенное снижение первичных признаков. Восстановление полное.

Острая лучевая болезнь средней степени тяжести развивается при воздействии излучения в дозе 2.5-4 Гр. Первичная реакция (первые 1-2 часа) — головокружение, тошнота, рвота. Латентный период (около 25 дней) наличие изменения слизистых оболочек, инфекционных осложнений, возможен летальный исход.

Острая лучевая болезнь тяжелой степени развивается при воздействии излучения в дозе 4-10 Гр. Первичная реакция (первые 30-60 минут) — головная боль, повторная рвота, повышение температуры тела. Латентный период (около 15 дней) — инфекционные поражения, поражения слизистых оболочек, лихорадка. Частота летальных исходов выше, чем при средней степени тяжести.

Острая лучевая болезнь крайне тяжелой степени развивается при воздействии излучения в дозе более 10 Гр. Летальный исход почти неизбежен.

Лечение острой лучевой болезни заключается во введении в организм антибиотиков, с целью предотвратить инфекционные осложнения, введении в организм донорских тромбоцитов, пересадке костного мозга.

Хроническая лучевая болезнь возникает при ежедневном получении дозы в 0.005 Гр. Наблюдается развитие различных заболеваний, связанных с дисфункцией желез внутренней секреции, нарушение АД. Профилактика хронической лучевой болезни заключается в неукоснительном соблюдении принятых норм радиационной безопасности.

Заключение.

Несмотря на ту опасность, которую представляет атомная энергетика, она является той экологически чистой индустрией, на которую возлагает свои надежды все передовое человечество. Маяки на трассе Северного морского пути и кардиостимуляторы сердца, АЭС и ледоколы, системы пожарной охраны и g-дефектоскопы… вот, лишь далеко не полный список благ, где атомная энергетика успешно себя проявила. А сколько еще ждет впереди атомную энергетику трудно представить.

Список литературы

1. У.Я.Маргулис. Атомная энергия и радиационная безопасность. М., Энергоатомиздат, 1988г.

2. Краткая медицинская энциклопедия. В 2-хтомах /Под ред. академика РАМН В.И.Покровского. М.: НПО “Медицинская энциклопедия”, “Крон-Пресс” 1994.-Т.I.

3. Б.Льюин. Гены: Пер. с англ.-М.: Мир, 1987.

4. Нормы радиационной безопасности (НРБ-76.87) и Основы санитарных правил (ОСП-72/87). М., Энергоатомиздат, 1988г.

5. Радиоактивные индикаторы в химии. Основы метода: Учебное пособие для ун-тов/Лукьянов В.Б., Бердоносов С.С., Богатырев И.О. и др.; Под ред. Лукьянова В.Б.-3-е изд.-М.: Высш. шк., 1985.

6. Радиоактивные индикаторы в химии. Проведение эксперимента и обработка результатов. Учебное пособие для вузов. /Лукьянов В.Б., Бердоносов С.С., Богатырев И.О. и др.; М.: Высш. шк., 1977.

www.ronl.ru

Реферат - Основные принципы обеспечения радиационной безопасности

Основные принципы обеспечения радиационной безопасности

Радиационная безопасность персонала, населения и окружающей природной среды считается обеспеченной, если соблюдаются основные принципы радиационной безопасности (обоснование, оптимизация, нормирование) и требования радиационной защиты, установленные Федеральным законом «О радиационной безопасности населения», НРБ-99 и действующими санитарными правилами.

Контроль за реализацией основных принципов должен осуществляться путем проверки выполнения следующих требований:

1. Принцип обоснования должен применяться на стадии принятия решения уполномоченными органами при проектировании новых источников излучения и радиационных объектов, выдаче лицензий и утверждении нормативно-технической документации на использование источников излучения, а также при изменении условий их эксплуатации (приложение 1).

В условиях радиационной аварии принцип обоснования относится не к источникам излучения и условиям облучения, а к защитному мероприятию. При этом в качестве величины пользы следует оценивать предотвращенную данным мероприятием дозу. Однако мероприятия, направленные на восстановление контроля над источниками излучения, должны проводиться в обязательном порядке.

2. Принцип оптимизации предусматривает поддержание на возможно низком и достижимом уровне как индивидуальных (ниже пределов, установленных НРБ-99), так и коллективных доз облучения, с учетом социальных и экономических факторов

В условиях радиационной аварии, когда вместо пределов доз действуют более высокие уровни вмешательства, принцип оптимизации должен применяться к защитному мероприятию с учетом предотвращаемой дозы облучения и ущерба, связанного с вмешательством.

3. Принцип нормирования, требующий непревышения установленных Федеральным законом «О радиационной безопасности населения» и НРБ-99 индивидуальных пределов доз и других нормативов радиационной безопасности, должен соблюдаться всеми организациями и лицами, от которых зависит уровень облучения людей.

4. Для контроля за эффективными и эквивалентными дозами облучения, регламентированными НРБ-99, вводится система дополнительных производных нормативов от пределов доз в виде допустимых значений: мощности дозы, годового поступления радионуклидов в организм и других показателей.

Поскольку производные нормативы при техногенном облучении рассчитаны для однофакторного воздействия и каждый из них исчерпывает весь предел дозы, то их использование должно быть основано на условии непревышения единицы суммой отношений всех контролируемых величин к их допустимым значениям.

5. Для предупреждения использования установленного для населения предела дозы только на один техногенный источник излучения или на ограниченное их количество должны применяться квоты на основные техногенные источники облучения.

Обоснование значений квот должно содержаться в проектах радиационных объектов. Рекомендации по установлению квот приведены в приложении 2.

Оценка состояния радиационной безопасности

1. Оценка действующей системы обеспечения радиационной безопасности в организации и в каждом регионе должна основываться на следующих основных показателях, предусмотренных Федеральным законом «О радиационной безопасности населения»:

— характеристика радиоактивного загрязнения окружающей среды;

— анализе обеспечения мероприятий по радиационной безопасности и выполнения норм, правил и гигиенических нормативов в области радиационной безопасности;

— вероятности радиационных аварий и их масштабе;

— степени готовности к эффективной ликвидации радиационных аварий и их последствий;

— анализе доз облучения, получаемых отдельными группами населения от всех источников ионизирующего излучения;

— числе лиц, подвергшихся облучению выше установленных пределов доз облучения.

2. Все вышеуказанные показатели необходимо представить в радиационно-гигиенических паспортах организаций и территорий, характеризующих уровень обеспечения радиационной безопасности работников данной организации или населения территории, которые разработаны и утверждены в порядке, установленном Правительством Российской Федерации.

3. Анализ данных, приведенных в радиационно-гигиенических паспортах организаций и территорий, следует проводить путем сопоставления их с требованиями НРБ-99 и настоящих Правил, с данными предыдущих лет и с аналогичными показателями других организаций и территорий.

4. Для оценки состояния радиационной безопасности используется показатель радиационного риска. В наибольшей степени этот риск характеризует суммарная накопленная эффективная доза от всех источников излучения. Значимость каждого источника излучения следует оценивать по его вкладу в суммарную эффективную дозу.

Пути обеспечения радиационной безопасности

1. Радиационная безопасность на объекте и вокруг него обеспечивается за счет:

— качества проекта радиационного объекта;

— обоснованного выбора района и площадки для размещения радиационного объекта;

— физической защиты источников излучения;

— зонирования территории вокруг наиболее опасных объектов и внутри них;

— санитарно-эпидемиологической оценки и лицензирования деятельности с источниками — условий эксплуатации технологических систем; излучения;

— санитарно-эпидемиологической оценки изделий и технологий;

— наличия системы радиационного контроля;

— планирования и проведения мероприятий по обеспечению радиационной безопасности персонала и населения при нормальной работе объекта, его реконструкции и выводе из эксплуатации;

— повышения радиационно-гигиенической грамотности персонала и населения.

2. Радиационная безопасность персонала обеспечивается:

— ограничениями допуска к работе с источниками излучения по возрасту, полу, состоянию здоровья, уровню предыдущего облучения и другим показателям;

— знанием и соблюдением правил работы с источниками излучения;

— достаточностью защитных барьеров, экранов и расстояния от источников излучения, а также ограничением времени работы с источниками излучения;

— созданием условий труда, отвечающих требованиям НРБ-99 и настоящих Правил;

— применением индивидуальных средств защиты;

— соблюдением установленных контрольных уровней;

— организацией радиационного контроля;

— организацией системы информации о радиационной обстановке;

— проведением эффективных мероприятий по защите персонала при планировании повышенного облучения в случае угрозы и возникновении аварии.

3. Радиационная безопасность населения обеспечивается:

— созданием условий жизнедеятельности людей, отвечающих требованиям НРБ-99 и настоящих Правил;

— установлением квот на облучение от разных источников излучения;

— организацией радиационного контроля;

— эффективностью планирования и проведения мероприятий по радиационной защите в нормальных условиях и в случае радиационной аварии;

— организацией системы информации о радиационной обстановке.

4. При разработке мероприятий по снижению доз облучения персонала и населения следует исходить из следующих основных положений:

— индивидуальные дозы должны в первую очередь снижаться там, где они превышают допустимый уровень облучения;

— мероприятия по коллективной защите людей в первую очередь должны осуществляться в отношении тех источников излучения, где возможно достичь наибольшего снижения коллективной дозы облучения при минимальных затратах;

— снижение доз от каждого источника излучения должно, прежде всего, достигаться за счет уменьшения облучения критических групп для этого источника излучения.

5. Применение радиоактивных веществ в различных областях хозяйства путем их введения в вырабатываемую продукцию (независимо от физического состояния продукции) разрешается при наличии санитарно- эпидемиологического заключения, выдаваемого федеральным органом исполнительной власти, уполномоченным осуществлять государственный санитарно-эпидемиологический надзор.

Общие требования к контролю за радиационной безопасностью

1. Радиационный контроль охватывает все основные виды воздействия ионизирующего излучения на человека, перечисленные в п. 1.3 НРБ-99.

2. Целью радиационного контроля является получение информации об индивидуальных и коллективных дозах облучения персонала, пациентов и населения при всех условиях жизнедеятельности человека, а также сведений о всех регламентируемых величинах, характеризующих радиационную обстановку.

3. Объектами радиационного контроля являются:

— персонал групп А и Б при воздействии на них ионизирующего излучения в производственных условиях;

— пациенты при выполнении медицинских рентгенорадиологических процедур;

— население при воздействии на него природных и техногенных источников излучения;

— среда обитания человека.

4. Контроль за радиационной безопасностью в организации, где планируется обращение с источниками излучения, разрабатывается на стадии проектирования. В разделе «Радиационный контроль» определяются виды и объем радиометрического и дозиметрического контроля, перечень необходимых радиометрических и дозиметрических приборов, вспомогательного оборудования, размещение стационарных приборов и точек постоянного и периодического контроля, состав необходимых помещений, а также штат работников, осуществляющих радиационный контроль. На проект необходимо иметь санитарно-эпидемиологическое заключение органов государственного санитарно-эпидемиологического надзора.

Контроль за радиационной безопасностью, определенный проектом, уточняется в зависимости от конкретной радиационной обстановки в данной организации и на прилегающей территории, и согласовывается с органами государственного санитарно-эпидемиологического надзора.

5. В организации, в зависимости от объема и характера работ, производственный контроль за радиационной безопасностью осуществляется специальной службой или лицом, ответственным за радиационную безопасность, прошедшим специальную подготовку.

6. Производственный контроль за радиационной безопасностью в организации, где происходит облучение работников природными источниками излучения в дозе более 1 мЗв в год, также осуществляется специальной службой или лицом, ответственным за радиационную безопасность.

7. Порядок проведения производственного контроля за радиационной безопасностью специальной службой (или лицом, ответственным за радиационную безопасность), определяющий ее задачи с учетом особенностей и условий выполняемых ею работ, согласовывается с органами государственного санитарно-эпидемиологического надзора.

8. Радиационный контроль организаций и территорий предусматривает проведение контроля и учета индивидуальных доз облучения работников (персонала) и населения. Регистрация доз облучения персонала и населения должна проводиться в соответствии с единой государственной системой контроля и учета доз облучения.

9. Средства измерений должны применяться по назначению и периодически проходить поверку, калибровку и сличение в установленном порядке.

10. Анализ результатов производственного контроля за радиационной безопасностью осуществляется в каждой организации и результаты оценки ежегодно заносятся в радиационно-гигиенические паспорта организаций и территорий.

11. Данные контроля за радиационной безопасностью используются для оценки радиационной обстановки, установления контрольных уровней, разработки мероприятий по снижению доз облучения и оценки их эффективности, ведения радиационно-гигиенических паспортов организаций и территорий.

12. Для лиц, у которых накопленная доза от одного из основных видов облучения (по п. 1.3 НРБ-99) превышает 0,5 Зв, должна, по возможности, проводиться реконструкция (восстановление) доз от остальных видов облучения.

Поставка, учет, хранение и перевозка источников излучения

1. Поставка организациям источников излучения и изделий, содержащих их, проводится по заказам-заявкам (рекомендуемая форма указана в приложении 5). Поставка источников излучения, предназначенных для градуировки и поверки дозиметрической и радиометрической аппаратуры, проводится без специальных разрешений, если их характеристики соответствуют требованиям п. 1.8 Правил.

2. Передача из одной организации в другую источников излучения и указанных изделий с характеристиками, превышающими значения, указанные в п. 1.8 Правил, производится с обязательной информацией органов государственного санитарно-эпидемиологического надзора по месту нахождения как передающей, так и принимающей источники излучения организации.

3. Согласование и регистрация заказов-заявок на получение, передачу источников излучения и изделий, их содержащих, разрешается только для организаций, имеющих лицензию на деятельность в области обращения с источниками ионизирующего излучения.

4. Организация, получившая источники излучения, извещает об этом органы государственного санитарно-эпидемиологического надзора в 10- дневный срок.

5. Эксплуатирующая организация обеспечивает сохранность источников излучения и должна обеспечить такие условия получения, хранения, использования и списания с учета всех источников излучения, при которых исключается возможность их утраты или бесконтрольного использования.

6. Лицо, назначенное ответственным за учет и хранение источников излучения, осуществляет регулирование их приема и передачи по установленным формам (приложения 6 — 8).

7. Все поступившие в организацию источники излучения должны учитываться в приходно-расходном журнале, а сопроводительные документы должны передаваться в бухгалтерию для оприходования.

8. Радионуклидные источники излучения учитываются по радионуклиду, наименованию препарата, фасовке и активности, указанным в сопроводительных документах. Приборы, аппараты и установки, в которых используются радионуклидные источники излучения, учитываются по наименованиям и заводским номерам с указанием активности и номера каждого источника излучения, входящего в комплект.

Генераторы короткоживущих радионуклидов учитываются по их наименованиям и заводским номерам с указанием номинальной активности материнского нуклида.

Устройства, генерирующие ионизирующее излучение, учитываются по наименованиям, заводским номерам и году выпуска.

9. Радионуклиды, полученные в организации с помощью генераторов, ускорителей, ядерных реакторов и т.п., учитываются по фасовкам, препаратам и активностям в приходно-расходном журнале.

10. Источники излучения выдаются ответственным лицом из мест хранения по требованиям с письменного разрешения руководителя организации или лица, им уполномоченного (приложение 6). Выдача и возврат источников излучения регистрируется в приходно-расходном журнале

В случае увольнения (перевода) лиц, допущенных к работам с источниками излучения, администрация принимает по акту все числящиеся за ними источники излучения.

11. Расходование радионуклидов, используемых в открытом виде, оформляется внутренними актами, составляемыми исполнителями работ с участием лиц, ответственных за учет и хранение источников излучения и за производственный радиационный контроль. Акты утверждаются администрацией организации и служат основанием для учета движения радиоактивных веществ (приложение 8).

12. Ежегодно комиссия, назначенная руководителем организации, производит инвентаризацию радиоактивных веществ, радиоизотопных приборов, аппаратов, установок. В случае обнаружения хищений и потерь источников излучения администрации следует немедленно информировать вышестоящую организацию, органы государственного санитарно-эпидемиологического надзора.

13. Источники излучения, не находящиеся в работе, должны храниться в специально отведенных местах или в оборудованных хранилищах, обеспечивающих их сохранность и исключающих доступ к ним посторонних лиц. Активность радионуклидов, находящихся в хранилище, не должна превышать значений, указанных в санитарно-эпидемиологическом заключении.

14. При создании временных хранилищ вне территории организации, в т.ч. для гамма-дефектоскопических аппаратов, используемых в полевых условиях, необходимо иметь санитарно-эпидемиологическое заключение органов государственного санитарно-эпидемиологического надзора на соответствие условий работы с источниками излучения (физическими факторами воздействия на человека) санитарным правилам. Мощность дозы на наружной поверхности такого хранилища или его ограждения, исключающего доступ посторонних лиц, не должна превышать 1,0 мкГр/ч.

Временное хранение упаковок с радиоактивными веществами на открытых площадках и общих складах транспортных организаций допускается при наличии санитарно-эпидемиологического заключения на соответствие санитарным правилам.

15. Специально оборудованные помещения-хранилища должны, как правило, размещаться на уровне нижних отметок здания (незатопляемый подвал, 1 этаж).

16. Отделка и оборудование помещения для хранения открытых источников излучения должны отвечать требованиям, предъявляемым к помещениям для работ соответствующего класса, но не ниже II класса.

17. Устройства для хранения радионуклидных источников излучения (ниши, колодцы, сейфы) должны быть сконструированы так, чтобы при закладке или извлечении отдельных источников излучения персонал не подвергался облучению от остальных источников излучения. Дверцы секций и упаковки с радионуклидами (контейнеры и др.) должны легко открываться и иметь отчетливую маркировку с указанием наименования радионуклида и его активности. Лицо, ответственное за учет и хранение источников излучения, должно иметь карту-схему их размещения в хранилище.

Стеклянные емкости, содержащие радиоактивные жидкости, должны быть помещены в металлические или пластмассовые упаковки.

18. Радионуклиды, при хранении которых возможно выделение радиоактивных газов, паров или аэрозолей, должны храниться в вытяжных шкафах, боксах, камерах, с очистными фильтрами на вентсистемах, в закрытых сосудах, выполненных из несгораемых материалов, с отводом образующихся газов.

Хранилище должно быть оборудовано круглосуточно работающей вытяжной вентиляцией.

При хранении радиоактивных веществ с высокой активностью должна предусматриваться система их охлаждения. При хранении делящихся материалов должны быть обеспечены меры ядерной безопасности. При хранении легко воспламеняющихся или взрывоопасных материалов должны быть предусмотрены меры, обеспечивающие их взрыво- и пожаробезопасность.

19. Радионуклидные источники излучения, не пригодные для дальнейшего использования, должны своевременно списываться и сдаваться на переработку или захоронение. Копия акта о приеме источников излучения на захоронение передается в органы государственного санитарно- эпидемиологического надзора.

20. Транспортирование радионуклидных источников внутри помещений, а также на территории организации должно производиться в контейнерах и упаковках на специальных транспортных средствах, с учетом физического состояния источников излучения, их активности, вида излучения, габаритов и массы упаковки, с соблюдением условий безопасности.

21. Транспортные средства, специально предназначенные для перевозки радиоактивных веществ и ядерных материалов за пределами организации, должны иметь санитарно-эпидемиологическое заключение (приложение 9). Требования безопасности при транспортировании радионуклидных источников за пределами организации регламентируются отдельными санитарными правилами.

22. Уровни радиоактивного загрязнения поверхности транспортных средств не должны превышать значений, приведенных в таблице 3.5.1.

Допустимые уровни

радиоактивного загрязнения поверхности транспортных средств, част/(см2 х мин)

———————————————————————————————————————————————————————————————————————

| | Вид загрязнения |

| |———————————————————————————————————————————————————|

|Объект загрязнения | Снимаемое | Неснимаемое |

| | (нефиксированное) | (фиксированное) |

| | | |

| |—————————————————————————|—————————————————————————|

| | Альфа- | Бета- | Альфа- | Бета- |

| | активные | активные | активные | активные |

| |радионуклиды|радионуклиды|радионуклиды|радионуклиды|

|———————————————————|————————————|————————————|————————————|————————————|

|Наружная | Не | Не | Не | 200 |

|поверхность |допускается |допускается |регламенти- | |

|охранной тары | | руется | |

|контейнера | | | | |

|———————————————————|————————————|————————————|————————————|————————————|

|Наружная | Не | Не | Не | 200 |

|поверхность |допускается |допускается |регламенти- | |

|вагона-контейнера | | | руется | |

|———————————————————|————————————|————————————|————————————|————————————|

|Внутренняя | 1,0 | 100 | Не | 2000 |

|поверхность | | |регламенти- | |

|охранной тары | | руется | |

|контейнера | | | | |

|———————————————————|————————————|————————————|————————————|————————————|

|Наружная | 1,0 | 100 | Не | 2000 |

|поверхность | | |регламенти- | |

|транспортного | | | руется | |

|контейнера | | | | |

———————————————————————————————————————————————————————————————————————

3.6. Вывод из эксплуатации радиационных объектов (источников излучения)

1. Решение о продлении срока эксплуатации или выводе радиационного объекта (источника излучения) из эксплуатации, а также выбор его варианта принимаются после комплексного обследования радиационного и технического состояния технологических систем и оборудования, строительных конструкций и прилегающей территории объекта.

2. На радиационных объектах I категории не позднее, чем за 5 лет до назначенного срока окончания эксплуатации, должен быть разработан детальный проект вывода из эксплуатации всего объекта или отдельной его части, согласованный с органами государственного надзора за радиационной безопасностью. Для объектов II категории проект вывода из эксплуатации должен быть разработан не позднее, чем за 3 года до окончания срока эксплуатации, а для объектов III категории — за 1 год.

3. В проекте вывода радиационного объекта из эксплуатации должны быть предусмотрены мероприятия по обеспечению безопасности на различных этапах вывода его из эксплуатации: остановке, консервации, демонтаже, перепрофилировании, ликвидации или захоронении, а также при проведении ремонтных работ.

4. Проект вывода из эксплуатации радиационного объекта должен содержать:

— подготовку необходимого оборудования для проведения демонтажных работ;

— методы и средства дезактивации демонтируемого оборудования;

— порядок утилизации радиоактивных отходов.

5. При выводе радиационного объекта из эксплуатации следует оценить ожидаемые индивидуальные и коллективные дозы облучения персонала и населения.

6. Работы по выводу радиационных объектов из эксплуатации должны выполняться специально подготовленным персоналом объекта или персоналом других организаций, имеющих соответствующую лицензию. В необходимых случаях подготовка персонала должна проводиться на макетах и тренажерах, имитирующих основные операции предстоящих работ.

7. Вопрос о возможном продлении срока эксплуатации источников излучения должен решаться комиссией в составе представителей организации, использующей источник излучения, и органов государственного надзора за радиационной безопасностью, а при необходимости и представителей предприятия-изготовителя. В заключении комиссией определяются возможность, условия и срок дальнейшего использования источника излучения.

www.ronl.ru

Реферат на тему "Радиационная безопасность населения"

Содержание

Введение1. Информационно просветительская и научно-исследовательская деятельность в области экологии в Республике Башкортостан в области экологической безопасности2. Законодательная база радиационной безопасности населения3. Проблемы и методы профориентации и профотбора, определения профпригодностиЗаключениеСписок использованных источников

Введение

В данной контрольной работе по дисциплине «Безопасность жизнедеятельности» были рассмотрены темы информационно просветительской и научно-исследовательской деятельности в области экологии в Республике Башкортостан в области экологической безопасности; законодательной базы радиационной безопасности населения; проблем и методов профориентации и профотбора, определения профпригодности.

Цель безопасности жизнедеятельности — снижение смертности и потерь здоровья людей от внешний факторов и причин. Создание защиты человека в техносфере от внешних негативных воздействий антропогенного, техногенного и естественного происхождения. Объектом защиты является человек.

Задачи БЖД:

В ходе работы были использована различные учебники и учебно-методические пособия таких авторов как Белов С.В., Занько Н.Г., Зотов В.И., Вишняков Я.Д., Арустамов Е.А. и другие.

1. Информационно просветительская и научно-исследовательская деятельность в области экологии в Республике Башкортостан в области экологической безопасности

В системе образования Республики Башкортостан созданы условия для непрерывного экологического образования учащихся, воспитания бережного отношения к природным ресурсам и оно начинается с дошкольного возраста. Более 60 дошкольных образовательных учреждений республики  имеют экологическую направленность своей образовательной деятельности. В настоящее время продолжается работа по организации новых экологических базовых дошкольных учреждений.

В республике должное внимание уделяется экологическому воспитанию и образованию младших и старших школьников. В начальной школе вопросы экологии включены в содержание курса «Окружающий мир». В основной школе содержание экологии реализуется через экологизацию традиционных предметов, в первую очередь, предметов образовательной области «Естествознание».

Нужна помощь в написании?

На третьей ступени общего образования в 10-11-х классах химико-биологического, биолого-географического и естественнонаучного профилей в учебный план общеобразовательных учреждений республики в качестве элективного предмета включен отдельный курс «Экология», изучаются различные спецкурсы и модули.

В республике  изданы  учебно-методический комплекс в составе учебника «Экология Башкортостана», книги для учителя «Экология Башкортостана», «Популярный экологический словарь учителя школ Башкортоста­на», а также пособия  для учащихся «Растения Башкортостана»  и «Молодильные яблоки для планеты Земля» под руководством профессора Б.М. Миркина.

В республике функционирует существует довольно обширная сеть учреждений дополнительного образования детей эколого-биологической направленности. Данными учреждениями проводится большая работа по воспитанию у подрастающего поколения бережного отношения к природным ресурсам, окружающей среде. На сегодняшний день в Башкортостане действуют свыше 100 школьных лесничеств, ежегодно работают около 80 ученических производственных бригад.

Традиционно в республике проводятся такие республиканские массовые экологические мероприятия, как выставка «Юннат года»,  заочный конкурс «Зеленый наряд школы»,  заочные конкурсы на лучший учебно-опытный участок, ученическую производственную бригаду, школьное лесничество,  конкурсы учебно-исследовательских работ по теме охраны и восстановления водных ресурсов, «Моя Малая Родина»,  «Молодежь Башкортостана исследует окружающую среду», «Человек на Земле», экологическая олимпиада школьников, фотоконкурс «Башкортостан мой заповедный», экологические акции «Скворец», «Кормушка», «Первоцвет», смотры-конкурсы «Весна», «Зеленый целитель», экологическая акция «Живая вода Башкортостана» в рамках Всероссийской акции «Малым рекам – большую жизнь», заочный конкурс «Марш парков», конкурс «Подрост», слет юных экологов и лесоводов, фестиваль «Друзья заповедных островов», экологические лагеря «Юный эколог», «Исследователи родного края», «Юный журналист-эколог», конкурс уголков живой природы в образовательных учреждениях, конкурс юных журналистов-экологов «Зеленое перо», научная эколого-биологическая олимпиада в системе дополнительного образования детей.

С целью повышения квалификации учителей школ, педагогов дополнительного образования детей традиционно в республике проводятся: учебно-методическая школа по организации полевых экологических исследований с учащимися, семинар для заведующих учебно-опытными участками, руководителей школьных лесничеств и ученических производственных бригад, курсы по фитодизайну.

В последние годы широкое распространение получила учебно-исследовательская деятельность, которая предполагает изучение учащимися различных  экологических проблем как глобального, так и локального характеров. В ходе изучения литературы, проведения исследований школьники более глубоко изучают экологические проблемы и учатся бережно относиться к окружающей природной среде. Тематика представления учебно-исследовательских работ и экологических проектов год от года становится более разнообразной, интересной, охватывает все новые области взаимоотношений  человека, живых организмов и окружающей их среды.

В Республике Башкортостан создана уникальное экологическое издание – Республиканская юношеская газета «Экорост», на страницах которой юные экологи республики отражают республиканские и российские новости о состоянии и работе по охране окружающей среды, размещают информацию об экологических акциях, слетах, олимпиадах, достижениях науки и техники в области биологии и экологии, а также опыт педагогов-новаторов в области экологического образования.

В системе послевузовского экологического образования активно работает Башкирский межотраслевой институт охраны труда, экологии и безопасности на производстве (НОУ «Межотраслевой институт»), а также ГУП «Табигат» – специализированное природоохранное предприятие. Цель данных учреждений – дать основные базовые знания в области экологии, экологического права и управления природопользованием государственным служащим, специалистам промышленности, сельского и лесного хозяйства, формирование и развитие комплексной системы управления отходами производства и потребления в Республике Башкортостан в целях стратегии устойчивого развития региона, а также создать условия для постоянного углубления экологических знаний педагогов образовательных учреждений республики.

Вопросы сохранения окружающей среды и биологического разнообразия регулярно обсуждаются в республиканских, городских и районных газетах, а также в специализированных изданиях – журнале «Башкирский экологический вестник», журнале «Табигат», республиканской юношеской экологической газете «Экорост».

Комплекс мероприятий по экологическому воспитанию и образованию учащихся, реализуемый на протяжении ряда лет в Республике Башкортостан, показал свою эффективность. Обучающиеся образовательных учреждений республики ежегодно становятся победителями и призерами экологических мероприятий всероссийского и международного уровня, получают гранты Президента Российской Федерации  по поддержке талантливой молодежи в рамках приоритетного Национального проекта «Образование». На территории Республики Башкортостан проводятся массовые экологические мероприятия и Всероссийского уровня: VI Всероссийский слет ученических производственных бригад, Всероссийская экологическая олимпиада школьников. Многие обучающиеся СЮН и ЭБЦ становятся студентами средних и высших учебных заведений республики эколого-биологической направленности. Только за последний год их было более 400 человек.

Нужна помощь в написании?

Несмотря на имеющиеся положительные моменты в системе экологического образования в Республике Башкортостан, имеется и  ряд не решенных вопросов. В республике не завершена разработка нормативной базы организации экологического образования на всех уровнях, не уделяется должного внимания созданию научно-методических пособий по вопросам экологического воспитания в семье. Не закончено формирование системы непрерывного экологического образования и воспитания. Во многих образовательных учреждениях экологическое образование не обеспечено достаточным финансированием, что не позволяет создать современные экологические кабинеты и лаборатории.

В Республике Башкортостан постоянно проводятся различные семинары, форумы, научно-практические конференции, а также конкурсы на лучшие НИР как на базе университетов республики, так и организованные Министерством природопользования и экологии Республики Башкортостан.

Основными целями проведения научных мероприятий являются улучшения качества подготовки специалистов в области охраны окружающей среды и рационального использования природных ресурсов, а также для повышения мотивации студентов к изучению дисциплин, связанных с охраной природы, и расширения научных исследований в области экологии.

На конференциях рассматриваются такие темы, как:

– Экологическое состояние района, поселения, города, особо охраняемых природных территорий Республики Башкортостан;– Оценка состояния и охрана природных сред Республики Башкортостан;– Экологические проблемы и пути их решения;– Экологический мониторинг природных сред, ландшафтов, урбанизированных объектов;– Экобезопасность природных сред, продуктов питания Республики Башкортостан;– Информационные системы в экологии;– Экология мегаполиса;– Экология человека;– Ресурсосберегающие, экологически безопасные технологии;– Экономика и правовые основы природопользования;– Биосфера. Экосистемы. Показатели качества окружающей среды;– Функционирование системы «Природа-Человек-Техника»;– Техногенная нагрузка на экосистемы. Экологические принципы природопользования;– Экологически безопасный туризм в особо охраняемых природных территориях, пути решения проблем.

2. Законодательная база радиационной безопасности населения

При определенных уровнях воздействия радиация вызывает серьезные изменения в состоянии здоровья. Правильная организация технологического процесса, проведение необходимых защитных мероприятий, обеспечение тщательного контроля за условиями труда могут уменьшить уровень воздействия радиационного фактора. [3, 85]

Основными  юридическими документами, регламентирующими требования Федерального закона «О радиационной безопасности населения» в форме основных пределов доз, допустимых уровней воздействия ионизирующего излучения и других требований по ограничению облучения человека являются «Нормы радиационной безопасности НРБ-99/2009» и «Основные санитарные правила обеспечения радиационной безопасности» (ОС-ПОРБ-99). Никакие другие нормативные и методические документы не должны противоречить требованиям названных норм и правил.

Нормы распространяются на следующие виды воздействия ионизирующего излучения на человека:

– в условиях нормальной эксплуатации техногенных источников излучения;

– в результате радиационной аварии;

– от природных источников излучения;

– при медицинском облучении. [3, 93]

Основу системы радиационной безопасности, сформулированной в НРБ-2009, составляют современные международные научные рекомендации, опыт стран, достигших высокого уровня радиационной защиты населения, и отечественный опыт. Данные мировой науки показывают, что соблюдение Международных основных норм безопасности, которые легли в основу НРБ-2009, надежно гарантирует безопасность работающих с источниками излучения и всего населения.

Ответственность за соблюдение норм радиационной безопасности устанавливается в соответствии со статьей 55 Закона Российской Федерации «О санитарно-эпидемиологическом благополучии населения». [3, 95]

Согласно Федерального закона «О радиационной безопасности населения» граждане Российской Федерации, иностранные граждане и лица без гражданства, проживающие на территории Российской Федерации, имеют право на радиационную безопасность. Это право обеспечивается за счет проведения комплекса мероприятий по предотвращению радиационного воздействия на организм человека ионизирующего излучения выше установленных норм. Радиационная безопасность населения – состояние защищенности настоящего и будущего поколений людей от вредного для их здоровья воздействия ионизирующего излучения. При работе с радиоактивными веществами первоочередное значение приобретает обеспечение безопасности обслуживающего персонала, населения и окружающей природной среды.

Радиационная безопасность считается обеспеченной, если соблюдаются основные принципы радиационной безопасности (обоснование, оптимизация, нормирование) и требования радиационной защиты, установленные упомянутым законом, Нормами радиационной безопасности (НРБ-2009) и Основными санитарными правилами обеспечения радиационной безопасности (ОСПОРБ-99). [3, 103]

Основными принципами обеспечения радиационной безопасности являются:

1) принцип нормирования – непревышение допустимых пределов индивидуальных доз облучения граждан от всех источников ионизирующего излучения;

2) принцип обоснования – запрещение всех видов деятельности по использованию источников ионизирующего излучения, при которых полученная для человека и общества польза не превышает риск возможного вреда, причиненного дополнительным к естественному радиационному фону облучением;

3) принцип оптимизации – поддержание на возможно низком и достижимом уровне с учетом экономических и социальных факторов индивидуальных доз облучения и числа облучаемых лиц при использовании любого источника ионизирующего излучения.

При радиационной аварии система радиационной безопасности населения основывается на следующих принципах:

1) предполагаемые мероприятия по ликвидации последствий радиационной аварии должны приносить больше пользы, чем вреда;

2) виды и масштаб деятельности по ликвидации последствий радиационной аварии должны быть реализованы таким образом, чтобы польза от снижения дозы ионизирующего излучения, за исключением вреда, причиненного указанной деятельностью, была максимальной.

Нужна помощь в написании?

Радиационная безопасность обеспечивается:

1) проведением комплекса мер правового, организационного, инженернотехнического, санитарно-гигиенического, медико-профилактического, воспитательного и образовательного характера;

2) осуществлением органами государственной власти Российской Федерации, органами государственной власти субъектов Российской Федерации, органами местного самоуправления, общественными объединениями, другими юридическими лицами и гражданами мероприятий по соблюдению правил, норм и нормативов в области радиационной безопасности;

3) информированием населения о радиационной обстановке и мерах по обеспечению радиационной безопасности;

4) обучением населения в области обеспечения радиационной безопасности.

При планировании и проведении мероприятий по обеспечению радиационной безопасности, принятии решений в области обеспечения радиационной безопасности, анализе эффективности указанных мероприятий органами государственной власти, органами местного самоуправления, а также организациями, осуществляющими деятельность с использованием источников ионизирующего излучения, проводится оценка радиационной безопасности.

Оценка радиационной безопасности осуществляется по следующим основным показателям:

1) характеристика радиоактивного загрязнения окружающей среды;

2) анализ обеспечения мероприятий по радиационной безопасности и выполнения норм, правил и гигиенических нормативов в области радиационной безопасности;

3) вероятность радиационных аварий и их масштаб;

4) степень готовности к эффективной ликвидации радиационных аварий и их последствий;

5) анализ доз облучения, получаемых отдельными группами населения от всех источников ионизирующего излучения;

6) число лиц, подвергшихся облучению выше установленных пределов доз облучения.

Результаты оценки ежегодно заносятся в радиационно-гигиенические паспорта организаций, территорий. Порядок разработки радиационно-гигиенических паспортов организаций, территорий утверждается Правительством Российской Федерации.

При обращении с источниками ионизирующего излучения организации обязаны:

1) соблюдать требования настоящего Федерального закона, других федеральных законов и иных нормативных правовых актов Российской Федерации, а также законов и иных нормативных правовых актов субъектов Российской Федерации, норм, правил и нормативов в области обеспечения радиационной безопасности;

2) планировать и осуществлять мероприятия по обеспечению радиационной безопасности;

3) проводить работы по обоснованию радиационной безопасности новой (модернизируемой) продукции, материалов и веществ, технологических процессов и производств, являющихся источниками ионизирующего излучения, для здоровья человека;

4) осуществлять систематический производственный контроль за радиационной обстановкой на рабочих местах, в помещениях, на территориях организаций, в санитарно-защитных зонах и в зонах наблюдения, а также за выбросом и сбросом радиоактивных веществ;

5) проводить контроль и учет индивидуальных доз облучения работников;

6) проводить подготовку и аттестацию руководителей и исполнителей работ, специалистов служб производственного контроля, других лиц, постоянно или временно выполняющих работы с источниками ионизирующего излучения, по вопросам обеспечения радиационной безопасности;

7) организовывать проведение предварительных (при поступлении на работу) и периодических медицинских осмотров персонала;

8) регулярно информировать персонал об уровнях ионизирующего излучения на их рабочих местах и о величине полученных ими индивидуальных доз облучения;

9) своевременно информировать федеральные органы исполнительной власти, уполномоченные осуществлять государственное управление, государственный надзор и контроль в области радиационной безопасности, органы исполнительной власти субъектов Российской Федерации об аварийных ситуациях, о нарушениях технологического регламента, создающих угрозу радиационной безопасности;

10) выполнять заключения, постановления, предписания должностных лиц уполномоченных на то органов исполнительной власти, осуществляющих государственное управление, государственный надзор и контроль в области обеспечения радиационной безопасности;

11) обеспечивать реализацию прав граждан в области обеспечения радиационной безопасности.

В целях защиты населения и работников от влияния природных радионуклидов должны осуществляться:

1) выбор земельных участков для строительства зданий и сооружений с учетом уровня выделения радона из почвы и гамма-излучения;

2) проектирование и строительство зданий и сооружений с учетом предотвращения поступления радона в воздух этих помещений;

3) проведение производственного контроля строительных материалов, приемка зданий и сооружений в эксплуатацию с учетом уровня содержания радона в воздухе помещений и гамма-излучения природных радионуклидов;

4)эксплуатация зданий и сооружений с учетом уровня содержания радона в них и гамма-излучения природных радионуклидов.

При невозможности выполнения нормативов путем снижения уровня содержания радона и гамма-излучения природных радионуклидов в зданиях и сооружениях должен быть изменен характер их использования.

Запрещается использовать строительные материалы и изделия, не отвечающие требованиям к обеспечению радиационной безопасности.

Продовольственное сырье, пищевые продукты, питьевая вода и контактирующие с ними в процессе изготовления, хранения, транспортирования и реализации материалы и изделия должны отвечать требованиям к обеспечению радиационной безопасности и подлежат производственному контролю в соответствии с настоящим Федеральным законом.

При проведении медицинских рентгенорадиологических процедур следует использовать средства защиты граждан.

Дозы облучения граждан при проведении медицинских рентгенорадиологических процедур должны соответствовать нормам, правилам и нормативам в области радиационной безопасности.

По требованию гражданина ему предоставляется полная информация об ожидаемой или о получаемой им дозе облучения и о возможных последствиях при проведении медицинских рентгенорадиологических процедур.

Гражданин имеет право отказаться от медицинских рентгенорадиологических процедур, за исключением профилактических исследований, проводимых в целях выявления заболеваний, опасных в эпидемиологическом отношении.

Контроль и учет индивидуальных доз облучения, полученных гражданами при использовании источников ионизирующего излучения, проведении медицинских рентгенорадиологических процедур, а также обусловленных естественным радиационным и техногенно измененным радиационным фоном, осуществляются в рамках единой государственной системы контроля и учета индивидуальных доз облучения, создаваемой в порядке, определяемом Правительством Российской Федерации.

3. Проблемы и методы профориентации и профотбора, определения профпригодности

Для успешного решения указанных задач кадровые службы должны работать в тесном контакте с руководителями всех уровней и узкими специалистами «человековедческих» наук. Руководители лучше всех осведомлены о требованиях, предъявляемых  конкретной деятельностью к людям, занимающимся ею, о потребностях в кадрах, о профессиональном мастерстве. В большинстве случаев именно руководители делают запрос кадровым службам о подборе требуемых специалистов. Хорошо, когда руководители понимают при этом круг задач кадровых служб, а специалисты – кадровики обладают коммерческим опытом и хорошо разбираются в каждодневных проблемах своей фирмы. В решении кадровых задач на всех этапах работы необходимы знания в области юриспруденции, экономики, социологии и психологии.

Профориентация при наборе сотрудников является прерогативой маркетинга кадровой службы, в чьи задачи входит предоставление потенциальным сотрудникам полной и достоверной информации о характере и содержании предстоящего труда по той или иной профессии. Профотбор – это стадия процедуры набора сотрудников, которая существенно сокращает число кандидатов на предлагаемую вакансию. На профориентацию может откликнуться большое число кандидатов, но фирме нужны лишь те из них, которые не только считают, что они подходят на конкретную должность, но и соответствуют ей по мнению кадровой службы, основанному на результатах собеседования с кандидатом, опросов или его тестирования.

Профориентация построена  на сопоставлении психологических качеств  индивида с качествами необходимыми для какой-либо профессии. Совокупность качеств необходимых для профессии  ложатся в основу профпригодности.

Все люди отличаются один от другого по своим личным качествам. И среди этих качеств есть такие, которые называют профессионально ценными. Так, например, хирургу, электрогазосварщику, скрипачу важна высокая культура движений, животновод должен быть заботливым и дальновидным,  чертежник – скрупулезно аккуратным и т.д. Если существует понятия «профессионально ценные качества человека, то можно составить список, где будут отдельно указаны ценные и неценные качества. Любое качество в одном случае является профессионально ценным, а в другом будет противодействовать успешной работе. Так, общительный человек испытывает неудовлетворенность работой сосредоточенности в «одиночку» и наоборот, если его работа связана с общением.

При анализе профессиональной пригодности отдельно взятого человека к конкретной профессии надо помнить, что профессионально ценные качества не рядоположены, а образуют нечто ценное, систему.

Существуют разные степени профпригодности:

  1. Непригодность (к данной профессии) Она может быть временной или практически непреодолимой. О непригодности стоит говорить, когда отклонение в здоровье не совместимые с данной профессией. А также противопоказания могут быть и педагогическими.
  2. Годность (к той или иной профессии или группе таковых) Эта степень характеризуется тем, что нет противопоказаний. То есть, есть реальный шанс, что человек будет хорошим специалистом в этой области.
  3. Соответствие (данного человека данной области деятельности). Характеризуется не только отсутствием противопоказаний, но и наличием личных качеств которые годны для выбора данной профессии  или группе профессий.
  4. Призвание (данного человека данной области деятельности). Эти степень профпригодности характеризуется тем, что во всех основных элементах ее структуры есть явные признаки соответствия человека требованиям деятельности. Речь идет о признаках, которыми человек выделяется среди равных себе по обучению и развитию.
  5. Методы тестирования должны быть надежными, достоверными. Достоверность метода отбора характеризует его неподверженность систематическим ошибкам при измерениях, то есть его состоятельность при различных условиях. На практике достоверность при вынесении суждений достигается сравнением результатов двух или более аналогичных тестов. Другой путь повышения достоверности – сравнение результатов нескольких альтернативных методов отбора (например, тест и беседа). Если результаты одинаковые или сходные, можно считать результат достоверным.
  6. Кроме этого, необходимо учитывать обоснованность принятых критериев отбора. Под обоснованностью понимается то, с какой степенью точности данный результат, метод или критерий прогнозирует возможный потенциал кандидата.
  7. Наилучший результат достигается тогда, когда методы отбора комбинируются, т.е. важно правильно организовать весь процесс.
  8. Процесс отбора обычно состоит из нескольких ступеней, которые следует пройти “кандидатам”. На каждой ступени часть их отсеивается по разным причинам.

Только при положительном результате предыдущих этапов претенденту предлагает пройти этап тестирования. Тестирование может быть психологическим, профессиональным, психофизиологическим, интеллектуальным. В каждом конкретном случае разрабатывается специальная программа тестирования, т.н. батарея тестов, соответствующая запросу данной вакансии. Тестирование может проводиться в один день или несколько дней, индивидуально или с группой. Важно, чтобы батарея тестов была правильно сформирована и тест измерял именно те качества, которые являются важными для той или иной должности.

Последний этап – проверка рекомендаций. Практика показывает, что, разговаривая с предыдущим руководителем, с коллегами кандидата, можно не только выяснить о нем какую-либо информацию, но и получить интересные рекомендации относительно того, в чем этот человек силен, какие с ним могут быть проблемы, что ему удается хорошо, что не очень. При сопоставлении этого с результатами исследований и интервью, картина становится почти законченной и ясной.

Мероприятия по подбору специалиста заканчиваются принятием решения о рекомендации на работу тех или иных кандидатов и представлением претендента работодателю.

Заключение

В данной контрольной работе были рассмотрены следующие темы:

Использовалась литература авторов Литвинцевой Н.А., Магуры М., Устинова О.А., Рахманова Б.Н., Пономарева В.М., Грибкова О.И., а так же текст Федерального закона “О радиационной безопасности населения” и различные интернет-источники.

В Республике Башкортостан постоянно проводятся различные семинары, форумы, научно-практические конференции, а также конкурсы на лучшие НИР как на базе университетов республики, так и организованные Министерством природопользования и экологии Республики Башкортостан.

Основными целями проведения научных мероприятий являются улучшения качества подготовки специалистов в области охраны окружающей среды и рационального использования природных ресурсов, а также для повышения мотивации студентов к изучению дисциплин, связанных с охраной природы, и расширения научных исследований в области экологии.

На конференциях рассматриваются такие темы, как:

– Экологическое состояние района, поселения, города, особо охраняемых природных территорий Республики Башкортостан;

– Оценка состояния и охрана природных сред Республики Башкортостан;

– Экологические проблемы и пути их решения и др.

Что касается законодательной базы радиационной безопасности населения основными  юридическими документами, регламентирующими требования Федерального закона «О радиационной безопасности населения» в форме основных пределов доз, допустимых уровней воздействия ионизирующего излучения и других требований по ограничению облучения человека являются «Нормы радиационной безопасности НРБ-99/2009» и «Основные санитарные правила обеспечения радиационной безопасности» (ОС-ПОРБ-99).

Список использованных источников

1. Федеральный закон “О радиационной безопасности населения” № 3-ФЗ от 09.01.96 г.Основная литература1. Литвинцева Н.А. «Психологические аспекты подбора и проверки персонала» изд-во ЗАО “Бизнес-школа «Интел-синтез»”, 1997 г. – 400 с.2. Магура М., Поиск и отбор персонала. М.:Интел-Синтез, 2001, 272 стр.3. Устинов О.А., Рахманов Б.Н., Пономарев В.М., Грибков О.И. Радиационная безопасность: Учебное пособие. – М.: МИИТ, 2010. – 296 с.Интернет-источники1. Республиканская целевая программа «Экологическое образование населения Республики Башкортостан» на 2012-2017 годы – http://old.zilair.su/programma.pdf2. Российский Союз Молодых Ученых – Общероссийская общественная организация – http://bash.rosmu.ru

nauchniestati.ru


Смотрите также