Доклад: Классификация органических соединений. Виды связи. Специфические свойства органических соединени. Органическая химия реферат


Органическая химия — реферат

3) отщепления (элиминирования): Ch4-Ch3-Cl ® Ch3=Ch3 + HCl, C2H5ONa

4) изомеризации.

Реакции замещения характерны для всех классов органических соединений. Замещаться могут атомы водорода или атомы любого другого элемента, кроме углерода.

Реакции присоединения характерны для соединений с кратными связями, которые могут быть между атомами углерода, углерода и кислорода, углерода и азота и т. д., а также для соединений, содержащих атомы со свободными электронными парами или вакантными орбиталями.

К реакциям элиминирования способны соединения, содержащие электроотрицательные группировки. Легко отщепляются такие вещества, как вода, галогеноводороды, аммиак. К реакциям изомеризации без изменения углеродного скелета особенно склонны непредельные соединения и их производные.

II. Реакции с изменением  углеродного скелета. К этому  типу превращений органических  соединений относятся следующие  реакции:

1) удлинения цепи,

2) укорачивания цепи,

3) изомеризации цепи,

4) циклизации,

5) раскрытия цикла,

6) сжатия и расширения  цикла.

Химические реакции проходят с образованием различных промежуточных продуктов. Путь, по которому осуществляется переход от исходных веществ к конечным продуктам, называется механизмом реакции. В зависимости от механизма реакции они делятся на радикальные и ионные. Ковалентные связи между атомами А и В могут разрываться таким образом, что электронная пара или делится между атомами А и В, или передается одному из атомов. В первом случае частицы А и В, получив по одному электрону, становятся свободными радикалами. Происходит гомолитическое расщепление:

А : В ® А* + *В

Во втором случае электронная пара переходит к одной из частиц и образуются два разноименных иона. Поскольку образующиеся ионы имеют различные электронные структуры, этот тип разрыва связи называется гетеролитическим расщеплением:

А : В ® А+ + :В-

Положительный ион в реакциях будет стремиться присоединить к себе электрон, т. е. будет вести себя как электрофильная частица. Отрицательный ион - так называемая, нуклеофильная частица будет атаковать центры с избыточными положительными зарядами.

ОСНОВНЫЕ ЭТАПЫ РАЗВИТИЯ ХИМИИ

При изучении истории развития химии возможны два взаимно дополняющих подхода: хронологический и содержательный. При хронологическом подходе историю химии принято подразделять на несколько периодов. Следует учитывать, что периодизация истории химии, будучи достаточно условной и относительной, имеет скорее дидактический смысл. При этом на поздних этапах развития науки (в случае химии - уже с начала XIX века) в связи с её дифференциацией неизбежны отступления от хронологического порядка изложения, поскольку приходится отдельно рассматривать развитие каждого из основных разделов науки. Как правило, большинство историков химии выделяют следующие основные этапы её развития:

1. Предалхимический период: до III в. н.э.

В предалхимическом периоде теоретический и практический аспекты знаний о веществе развиваются относительно независимо друг от друга. Происхождение свойств вещества рассматривает античная натурфилософия, практические операции с веществом являются прерогативой ремесленной химии.

2. Алхимический период: III - XVI вв.

Алхимический период, в свою очередь, разделяется на три подпериода - александрийскую (греко-египетскую), арабскую и европейскую алхимию. Алхимический период - это время поисков философского камня, считавшегося необходимым для осуществления трансмутации металлов. В этом периоде происходит зарождение экспериментальной химии и накопление запаса знаний о веществе; алхимическая теория, основанная на античных философских представлениях об элементах, тесно связана с астрологией и мистикой. Наряду с химико-техническим "златоделием" алхимический период примечателен также и созданием уникальной системы мистической философии.

3. Период становления (объединения): XVII - XVIII вв.

В период становления химии как науки происходит её полная рационализация. Химия освобождается от натурфилософских и алхимических взглядов на элементы как на носители определённых качеств. Наряду с расширением практических знаний о веществе начинает вырабатываться единый взгляд на химические процессы и в полной мере использоваться экспериментальный метод. Завершающая этот период химическая революция окончательно придаёт химии вид самостоятельной (хотя и тесно связанной с другими отраслями естествознания) науки, занимающейся экспериментальным изучением состава тел.

4. Период количественных  законов (атомно-молекулярной теории): 1789 - 1860 гг.

Период количественных законов, ознаменовавшийся открытием главных количественных закономерностей химии - стехиометрических законов, и формированием атомно-молекулярной теории, окончательно завершает превращение химии в точную науку, основанную не только на наблюдении, но и на измерении.

5. Период классической  химии: 1860 г. - конец XIX в.

Период классической химии характеризуется стремительным развитием науки: создаётся периодическая система элементов, теория валентности и химического строения молекул, стереохимия, химическая термодинамика и химическая кинетика; блестящих успехов достигают прикладная неорганическая химия и органический синтез. В связи с ростом объёма знаний о веществе и его свойствах начинается дифференциация химии - выделение её отдельных ветвей, приобретающих черты самостоятельных наук.

6. Современный период: с  начала XX века по настоящее время.

В начале ХХ века происходит революция в физике: на смену системе знаний о материи, основанной на механике Ньютона, приходят квантовая теория и теория относительности. Установление делимости атома и создание квантовой механики вкладывают новое содержание в основные понятия химии. Успехи физики в начале XX века позволили понять причины периодичности свойств элементов и их соединений, объяснить природу валентных сил и создать теории химической связи между атомами. Появление принципиально новых физических методов исследования предоставило химикам невиданные ранее возможности для изучения состава, структуры и реакционной способности вещества. Всё это в совокупности обусловило в числе прочих достижений и блестящие успехи биологической химии второй половины XX века - установление строения белков и ДНК, познание механизмов функционирования клеток живого организма.

Содержательный подход к истории химии основывается на изучении того, как изменялись со временем теоретические основы науки. Вследствие изменений в теориях на всём протяжении существования химии постоянно менялось её определение. Химия зарождается как "искусство превращения неблагородных металлов в благородные"; Менделеев в 1882 г. определяет её как "учение об элементах и их соединениях". Определение из современного школьного учебника в свою очередь значительно отличается от менделеевского: "Химия - наука о веществах, их составе, строении, свойствах, взаимных превращениях и законах этих превращений".

Следует отметить, что изучение структуры науки мало способствует созданию представления о путях развития химии в целом: общепринятое деление химии на разделы основано на целом ряде различных принципов. Деление химии на органическую и неорганическую произведено по различию их предметов (каковое различие, кстати, может быть правильно понято только при историческом рассмотрении). Выделение физической химии основано на её близости к физике, аналитическая химия выделена по признаку используемого метода исследования. В целом общепринятое деление химии на разделы является в значительной степени данью исторической традиции; каждый раздел в той или иной степени пересекается со всеми остальными.

Основной задачей содержательного подхода к истории химии является, говоря словами Д.И. Менделеева, выделение "неизменного и общего в изменяемом и частном". Таким неизменным и общим для химических знаний всех исторических периодов является цель химии. Именно цель науки - не только теоретический, но и исторический её стержень.

Целью химии на всех этапах её развития является получение вещества с заданными свойствами. Эта цель, иногда именуемая основной проблемой химии, включает в себя две важнейших задачи - практическую и теоретическую, которые не могут быть решены отдельно друг от друга. Получение вещества с заданными свойствами не может быть осуществлено без выявления способов управления свойствами вещества, или, что то же самое, без понимания причин происхождения и обусловленности свойств вещества. Таким образом, химия есть одновременно и цель и средство, и теория и практика.

Теоретическая задача химии имеет ограниченное и строго определённое число способов решения, которые задаются структурной иерархией самого вещества, для которого можно выделить следующие уровни организации:

1. Субатомные частицы.

2. Атомы химических элементов.

3. Молекулы химических  веществ как унитарные (единые) системы.

4. Микро- и макроскопические  системы реагирующих молекул.

5. Мегасистемы (Солнечная система, Галактика и т.п.)

Объектами изучения химии является вещество на 2 - 4 уровнях организации. Исходя из этого, для разрешения проблемы происхождения свойств необходимо рассмотреть зависимость свойств вещества от трёх факторов:

1. От элементарного состава;

2. От структуры молекулы  вещества;

3. От организации системы.

Таким образом, иерархия изучаемых материальных объектов предопределяет иерархию т.н. концептуальных систем химии - относительно самостоятельных систем теорий, описывающих вещество на каком-либо уровне организации. Обычно выделяют три концептуальных системы, а именно:

1. Учение о составе;

2. Структурная химия;

3. Учение о химическом  процессе.

Следует отметить, что указанные концептуальные системы не противоречат друг другу и не сменяют одна другую, но являются взаимно дополняющими.

 

ЗАКЛЮЧЕНИЕ

Учение о составе возникло значительно раньше двух других концептуальных систем - уже в античной натурфилософии появляется понятие об элементах как о составных частях тел.

Структурная химия появляется в первой половине XIX-го века и исходит из следующего тезиса: свойства вещества определяются структурой молекулы вещества, т.е. её элементным составом, порядком соединения атомов между собой и их расположением в пространстве. Причиной появления структурной химии стало открытие явлений изомерии и металепсии (см. гл. V.2.), которые не могли быть объяснены в рамках существующих понятий. Для объяснения этих экспериментальных фактов предлагаются новые теории; объектом структурной химии становится молекула химического вещества как единое целое. Применительно к химической практике появление новой концептуальной системы означало в данном случае ещё и превращение химии из науки преимущественно аналитической в науку синтетическую.

Учение о химическом процессе, сформировавшееся во второй половине XIX столетия, исходит из посылки, что свойства вещества определяются его составом, структурой и организацией системы, в которой это вещество находится. Учение о процессе выделяется в самостоятельную концепцию химии, когда накапливаются экспериментальные факты, указывающие на то, что законы, управляющие химическими реакциями, не могут быть сведены к составу вещества и структуре его молекулы. Знания состава вещества и структуры молекул часто оказывается недостаточно для предсказания свойств вещества, которые в общем случае обусловлены ещё и природой сореагентов, относительными количествами реагентов, внешними условиями, в которых находится система, наличием в системе веществ, стехиометрически не участвующих в реакции (примесей, катализаторов, растворителя и т.п.). Предметом изучения химии на этом уровне становится вся кинетическая система, в которой состав вещества и структура его молекул представлены лишь как частности. Эмпирические понятия химического сродства и реакционной способности получают теоретическое обоснование в химической термодинамике, химической кинетике и учении о катализе. Создание учения о химическом процессе дало возможность решить важнейшие практические вопросы управления химическими превращениями, внедрить в химическую технологию принципиально новые процессы.

Таким образом, в рамках содержательного подхода история химии может быть рассмотрена как история возникновения и развития концептуальных систем, каждая из которых представляет собой принципиально новый способ решения основной задачи химии. Изучение органической химии начинают по обыкновению с алифатического ряда и с наиболее простого класса веществ - углеводородов.

 

СПИСОК ЛИТЕРАТУРЫ

1. Артеменко А. И., Практикум по органической химии. Учебное пособие для ВУЗов, М.: Высшая школа, 2001, с.187

2. Ким А.М., Органическая химия, 2004

3. Петров А.А., Бальян Х.В., Трощенко А.Т. Органическая химия: Учебник для вузов. - СПб: «Иван Фёдоров», 2002. - 624 с.

4. Травень В.Ф. Органическая химия: Учебник для вузов в 2-х томах. - М.: Академкнига, 2004. - Т.1. - 727 с., Т.2. - 582 с.

5. Чернобельская Г.М. "Методика обучения химии в средней школе" М.:Владос, 2000

 

 

 

 

 

 

 

 

referat911.ru

Реферат - Спирты - Органическая химия

1.Стрение этилого спирта.

Этиловый спирт С8Н6О-бесцветная жидкость со своебразным за- коном, легче воды Р=0,8г/см, кипит при t-78,3 С, хорошо раство- ряется в воде и сам является растворителем многих неорганиче- ских и органических веществ. Зная молекулярную формулу спирта и валентность элементов, попытаемся изобразить его строение. Напишим две структурные формулы.

Н Н Н Н

Н-С-О-С-Н (1) Н-С-С-О-Н

Н Н Н Н

Сопостовляя формулы,мы замечаем, что если справидлива первая из них, то в молекуле спирта все атомы водорода соеденены с молекулами углерода, и можно предполагать, что они одинаковы по свойствам. Если же истинна вторая формула, то один атом водорода в молекуле соединён с атомом углерода через кислород и он, по-всевидимому, будет отличаться от других водородных атомов. Оказывается, можно проверить опытом, одинаковы или различны по свойствам атомы в спирте. Поместим в пробирку со спиртом (не содержащий воды) кусочек натрия. Начинается реакция, сопровождающаяся выделением газа. Нетрудно установить, что это водород. При помощи другого, более сложного опыта можно определить, сколько атомов водорода выделяется при реакции из каждой молекулы спирта. В колбу с мелкими кусочками натрия (рис.1) приливается по каплям из воронки определённое количество спирта Выделяющийся из спирта водород вытесняет воду из двугорлой склянки в цилиндр. Обьём вытесненной воды в цилиндре соответствует обьёму выделевшегося водорода.Опыт показывает, что из 0,1 моль спирта удаётся получить 1,12л. водорода. Это означает, что из 1 моль спирта натрий вытесняет 1,12л. т.е. 0,5 моль водорода. Иначе говоря, из каждой молекулы спирта натрием вытесняется Только один атом водорода. Формула (1) не даёт обьяснения такому факту. Согласно этой формуле все атомы водорода равноцены. Наоборот, формула (2) отражает наличие одного атома, находящегося в особом положении : он соединён с атомом углерода через кислород ; можно заключать, что именно этот атом водорода связан менее прочно. Он и вытесняется натрием. Следовательно вторая из приведёных формул и будет структурной формулой этилого спирта. Чтобы подчеркнуть, что в молекуле спирта содержится гидроксильная чруппа-ОН, соединённая с

углеводородным радикалом, молекулярную формулу этилового спирта часто пишут так :

СН3-СН2-ОН или С2Н5ОН

Очивидно, здесь мы снова встречаемся с влиянием атомов друг на друга. Чтобы понять сущность этого влияния, обратимся к электроному строению молекулы. Характер связей С-СuC-Н нам уже хорошо известен – это ковалентные q –связи. Атом О2 образует с атомом “H” и с углеводородным радикалом такие же связи, при этом его наружный электронный слой дополняется до октета. Формула спирта в таком случае можно изобразить так : Н Н

Н С С О Н

Н Н

Однако распределение электронной плотности в молекуле спирта не такое равномерное, как в углеродах. Связь О-Н полимерная, так как наибольшая электронная плотность её смещена к атому О2, как элементу более электроотрицательному. Атом “Н” оказывается как бы более свободным от электронов, менее связаным с молекулой и поэтому может сравнительно легко вытесняется натрием. Смещение электронной плотности можно показать в формуле следующим образом

Н Н

Н-С-С-О Н

Н Н

О пространственном расположении атомов в молекуле спирта дают представление модели, изображённые на (рисунки 2)

Как видим, атом кислорода образует ковалентные связи с другими атомами под некоторым углом друг к другу, а не по прямой линии. Вспомним, что в наружном электронном слое наряду с двумя спаренными S-электронами и двумя спареными р-электронами имеются два неспареных р-электрона. Оси этих электронных облаков взаимно перпендикулярно. В направлении их и образуются ковалентные связи атома кислорода с другими атомами (фактически в следствии гибридизации и действия других факторов валентный угол несколько отклоняется от прямого). Мы знаем, что молекуле воды имеет подобное пространственное строение.

Гомологический ряд спиртов.

Этиловый спирт –один из членов гомологического ряда. Другие спирты ряда имеют аналогичное химическое и электронное строение. Первый член ряда метиловый спирт.

Н

Н –С –О –Н

Н

Ближащий следующий гомолог этилого спирта пропиловый спирт.

Н Н Н

Н –С –С –С –О –Н

Н Н Н

В молекулах спиртов может содержаться не одна, а две и больше гидроксильных групп как мы уже видели на примере реакции с натрием и убедимся ещё далее, наличие гидроксильных групп в молекулах обусловливает характерные химических свойства спиртов, т.е. их химическую функцию. Такие группы атомов называются функциональными группами. Спиртами называются органические вещества, молекулы которых содержат одну или несколько функциональных гидроксильных групп, соединённых с углеводородным радикалом

Они могут расматриваться поэтому как производные углеводородов, в молекулах которых один или несколько атомов водорода заменены на гидроксильные группы. Спирты приведённого высше ряда можно считать производно предельных углеводоров, в молекулах которых один атом водорода заменён на гидроксильную группу. Это гомологический ряд предельных одноатомных спиртов. Общая формула веществ этого ряда СпН2п+ОН или R-OH.

Таблица №1 Гомологический ряд предельных одноатомных спиртов.

Название спиртов Формула Температуракипения (t) Метиловый (метанол)Этиловый (этанол)Пропиловый (пропанол-1)Бутиловый (бутанол-1)Аниловый (пентанол-1)Гексиловый (гексанол-1)Гептиловый (гептанол-1) СН3ОНС2Н5ОНС3Н7ОНС4Н9ОНС5Н11ОНС6Н13ОНС7Н15ОН 64,778,397,2117,7137,8157,2176,3

Согласно систематической номеклатуре названия спиртов, производится от названий спиртов, соответствующих углеводородов с добавлением суфикса -0^ ; цифрой указывают атом углерода при котором находится гидроксильная группа. Нумерацию углеродных атомов начинают с того конца, к которому ближе функциональная группа. Изомерия спиртов обуславливается как изомерией углеводородного скелета, так и положением гидроксильной группы.

Химические свойства.

Спирты горят при поджигании, выделяет кислоту, например:

С2Н5ОН+3О2 -2СО+3Н2О+137

однако при горении у них наблюдаются и различия. Нальём по одному миллилитру разных спиртов в форфоровые чашки и подожжём жидкости. Заметим, что спирты –первые члены ряда – легко воспламеняются синеватым почти не светящимся пламенем, и после сгорания их остаётся чёрный налёт. Взаимодействие этилого спирта с натрием.

2С2Н5ОН+2Na –2C2Н5Оna+h3

Продукт замещения водорода в э.с. называется этилатом натрия, он может быть выделен после реакции в твёрдом виде. Также реагируют со щелочными металлами другие растворимые спирты образуя соответствующие алкоголиенты. Однако спирты к классу кислот не относятся, так как степень дисоциации их крайне незначительна, даже меньше чем у воды, их растворы неизменяют окраску индикаторов. Положение степени дисоциации спиртов по сравнению с водой можно обьяснить влиянием углеводородного радикала : смещение радикалом электронной плотности связи. 6 –0 в сторону атома кислород ведёт к увиличению на последнем частичного отрицательного заряда вседствии чего он прочнее удерживает атом водорода. Можно повысить стпень, если в молекулу ввести заместитель притягивающий к себе электроны химической связи. Так, степнь дисоциации если 2 –хлорэтанола ClCu2 –Ch3OH возрастает в несколько раз по сравнению с этанолом (этиловым спиртом). У спиртов может вступать не только гидроксильный атом водорода, но и вся гидроксильная группа. Если в колбе с присоеденённым к ней холодильником нагревать этиловый спирт с галогеноводородной кислотой, например с бромоводородной (для образования бромоводорода берут смесь бромида калия или бромида натрия с серной кислотой), то через некоторое время можно заметить, что в пробирке под слоем воды собирается тяжёлая жидкость–броэтан.

С2Н5ОН+НBr–С2Н5Br+h3O

Эта реакция тоже идёт с ионым расщиплением ковалентной связи С-О

Она напоминает нам реакцию оснований и этилового спирта, образуется бромистан. При нагревании с концентрированной кислотой в качестве католизатора спирты легко дигидратируются, т.е. отщепляет воду. Из этилового спирта при этом образуется этилен.

Н Н

Н –С –С –Н –СН2=СН2+Н2О

Н ОН

Дигидрация последующих ломологов приводит к получению других непредельных углеводородов.

Н Н Н

Н –С –С –С –Н СН3 –СН =СН2+Н2О

Н Н ОН

При несколько иных условиях дигидрация спиртов может, происходить с отщиплением молекулы воды не от каждой молекулы спирта, а от двух молекул. Так, при более слабом нагревания этилового спирта с серной кислотой (не выше +140 С и при избытке спирта) диэтиловый эфир.

С2Н5ОН+ОНС2Н5 –С2Н5 –О –С 2Н5+Н2О

Диэтиловый эфир –летучая, легко воспламеняющаяся жидкость, применяют в медицине в качестве наркоза. Он относится к классу простых эфиров–органических веществ, молекулы которых состоят из двух углеводородных радикалов, соединёных посредственно атома кислорода. С диэтиловым эфиром мы встречались когда выяснили строение этилового спирта. Из двух возможных структур отвечающих формуле С2Н6О, мы выбрали одну позволяющую понять свойства спирта. Другая не принетая нами формула хотя она также отвечает правилом важности, выражает стрение диментилового эфира. Имея одну и эту же молекулярную формулу, эти вещества, следовательно, являются изомерами, принадлежат к различным классам органических соединений.

Физические свойства.

Вы, несомненно обратили внимание, что, в отличие от ранее рассматривавшихся предельных и непредельных углеводородов, в данном гамологическом ряду ней газообразных веществ, уже первый член ряда –метиловый спирт –жидкость. Как обьяснить такое повышение температуры кипения веществ. Может тем, что при вступлении атома кислорода в молекулу сильно возрастёт молекулярная масса вещества Но у метилового спирта молекулярная масса –32, у пропана –44, однако и он представляет собой газообразное вещество. Тогда что же удерживает молекулы метилового спирта, сами по себе довольно лёгкие, в жидком состоянии ? В молекулах спирта, как мы выяснили, углеводородный радикал и атом кислорода не на одной прямой, а под некоторым углом друг к другу. У атома О2 имеются ещё свободные электронные пары. Поэтому он может взаимодействовать с атомом водорода другой молекуы, имеющий некоторый положительный заряд в результате смещения электронов к атому кислороду (рис.3 а). Так между атомами возникает водородная связь, которая обозначается в формулах точками :

Прочность водородной связи значительно меньше обычной ковалентной связи (примерно в десять раз). За счёт водородных связей молекулы спирта оказываются ассоциированными, как бы прилипли друг к другу. Поэтому на разрыв этих связей необходимо затратить дополнительную энергию, чтобы молекулы стали свободными и вещество преобрело летучесть. Это и является причиной более высокой температуры кипения всех спиртов по сравнению с соответствующими углеводородами. Теперь можно понять почему вода при такой небольшой молекулярной массе имеет необычно высокую температу кипения (рис.35). Водородные связи могут установливаться и между молекулами спирта и воды (рис.31в). Именно этим обьясняется растворимость спиртов в отличие от углеводородов, которые из-за малой полярности связей С–Н не образуют с водой водородных связей и поэтому не растворяется в ней. норастворимость спиртов в воде (вспомним, что члены гамологических рядов при сходстве свойств имеют индивидуальные различия). Если в равные обьёмом воды в стаканчиках мы прильём по одинаковому обьёму (например 5мл.), метилового, пропилового, этилового, бутилового и аминового спиртов и перемешаем жидкости, то заметим, что первые три спирта расворяются полностью а бутиловый и особенно аминовый спирты в меньшей степени. Понижение растворимости можно обьяснить тем, что, чем больше углеводородный радикал в молекуле спирта, тем труднее гидроксильной группе удержать такую молекулу в растворе за счёт образования водородных связей (углеводороды в воде не растворимы)

Применение и получение спиртов.

Получение. До начала 30-х годов 20 века его получали исключительно сбраживанием пищ углеводсодержащего сырья, и при обработки зерна (рожь, ячмень, кукуруза, овёс, просо). В 30-е по 50-е годы было разработанно несколько способов синтеза Э.С. из химического сырья например : лидрирования ацентальдецида и д.р.. Оси современных способов –односейадистная (прямая) гидраитация. Этилена (CU2=CU2+h3O –C2H5OH), осуществляется на фосфорно-кислотном католизаторе при 280-300 С и 7,2-8,3 Мн/м (72-83 кг/см ). Так, в США в 1976 г. было выработано около 800 тыс. тонн этонола, в т.ч. 550 тыс. тонн прямой гидротацией (остальное сбраживание пищевого сырья). В других странах (СССР, Франция и др.) Э.С. получают также двухстадийной (сернокислотной гидраитацией этилена при : 75-80 С и 2,48 Мн/м/24,8 нес/м ) этилен взаимодействует с концетрированой серной кислотой с образованием смеси моно и диэнтилеульфатов [С2Н5OSO2ОН и (С2Н5О)2SO2], которые затем гидрилизуясь при 100 С и 0,3-0,4 Мн/м дают Э.С. и Н2SO4. В ряде стран Э.С. получают также сбраживанием продуктов гидролиза растительных материалов. Очистку технических Э.С. проводят различными способами. Пищевой спирт-сырец, обычно освобождают от примесей (сивушные масла и др.) рекитификацией. Слинтентичиский Э.С. очищают от этилового эфира, ацетальдегида и др. рекитификаций в присутствии щёлочи и гидрированием в паровой фазе на никелевых католизаторах при 105 С и 0,52 Мн/м (5,2 кгс/см) Спирт –рекитификат представляет собой асеотропную смесь Э.С. с Водой (95,57% спирта t кипения 78,15 С. ). Для многих целей требуется обезвоженый, Т.Н. абсолютный, Э.С. Последний в промышленности готовят, воду в виде стройной азеотропной смеси вода-спирит-бензол (специальная добавка), а в лабороторных условиях- химическом связыванием воды различными реагентами, окисью кальция, металлическим кальцием или магнием Э.С., предназначеный для технических и бытовых целей, иногда денантурируют.

Применение.

На многих производствах спирты применяются в качестве растворителей. В химической промышленности они используются для различных синтезов. Метиловый спирт в больших количествах идёт на получение формальдегида, используемого в производстве пластмасс уксусной кислоты и других органических веществ. В настоящее время разрабатывается много новых технологических процессов на основе использования метилового спирта как исходного продукта, поэтому значение его в промышленном производстве нужных народному хозяйству, веществ и материалов будет всё более возрастать. Перспективным считается использование метилового спирта в качестве моторного топлива т.к. добавка его к бензину повышает актановое число горючей смеси и снижает образование вредных веществ в выхлопных газах. Этиловый спирт в больших количествах идёт на производство синтетического каучука. Окислением спирта получают пищевую уксусную кислоту. Путём его дигидратации готовят диэтиловый (медицинский) эфир, с взаимодействием с хлороводородом получают хлорэтан, для местной анестозии. Спирт применяется при изготовлении многих лекарств. В парфюмерии он идёт на изготовление духов и адеколонов.

Охрана окружающей среды.

Спирты оказывают негативное воздействие на организм. Особенно ядовит метиловый спирт. Самое незначительное количество его при приёме внутрь разрушает зрительный нерв и вызывает необратимую слепоту. 5-10 мл спирта вызывает сильное отравление организма, а 30 мл могут привести к смертельному исходу. Этиловый спирт-наркотик, при приёме внутрь он вследствие высокой растворимости быстро всасывает в кровь и сильно действует на организм. Под влиянием спиртного у человека ослабляется внимание затормаживается реакция нарушается корреляция движения, появляется развязанность, грубость в поведении и т.д., всё это делает его неприятным в обществе. Но вследствии употребления алкоголя ещё более опасны, т.к. у пьющего человека появляется привыкание, погубное пристрастие к нему и в конце в концов он тяжело заболевает алкоголизмом. Спирт поражает слизистые оболочки желудочно-кишечного тракта, что ведёт к возникновению гастрита язвенной болезни желудка, двенадцатой кишки. Печень, где должно происходить разрушение спирта, не справляясь с нагрузкой, начинает перерождаться в результате возможен цирроз. Проникая в головной мозг спирт отравляюще действует на нервные клетки, что проявляется в нарушении сознания, речи, умственных способностей, в появлении, тяжёлых психических растройств и ведёт к деградации личности. Особенно опасен алкоголь для молодых людей, так как в растущем организме интенсивно протекают процессы обмена веществ и они особенно чувствительны к алкоголическому воздействию. Поэтому у молодых быстрея, чем у взрослых, может появиться заболевание – алкоголизм. Все виды спиртного должны быть полностью исключены из жизни молодёжи !!!

www.ronl.ru

Реферат - Развитие химии высокомолекулярных соединений

Содержание:

I. Введение.

II. Развитие химии высокомолекулярных соединений.

1. Синтез мономеров.

2. Исследование реакционной способности мономеров.

3. Развитие представлений о полемеризационных процессах.

4. Разработка основ теории поликонденсации.

5. Новые пути синтеза полимеров.

III. Заключение. IV. I. Введение. Исследования в области высокомолекулярных соединений — традиционное направление работ многих химических школ нашей страны. В свое время А. М. Бутлеров предложил рассматривать способность непредельных соединений к полимеризации в качестве критерия их реакционной способности. Отсюда берут свое начало классические работы в области полимеризационных и изомеризационных процессов А. Е. Фаворского, В. Н. Ипатьева и С. В. Лебедева. От исследований нефтяных углеводородов В. В. Марковниковым и затем Н. Д. Зелинским протягиваются нити к современным работам по синтезу всевозможных мономеров из нефтяного углеводородного сырья. С изучением углеводов П. П. Шо-рыгиным связаны работы его учеников в области химии высокомолекулярных соединений. Школу Н. Н. Семенова привело к исследованиям процессов полимеризации изучение цепных реакций. Коллективы, руководимые А. Е. Арбузовым и А. Н. Несмеяновым, изучали процессы в области элементоорганических соединений, приводящие к образованию больших молекул. В. А. Каргин с сотрудниками внесли существенный вклад в изучение физико-химии полимеров Первым крупным достижением высокомолекулярной органической химии был синтез каучука на основе бутадиена, впервые осуществленный в промышленных масштабах в начале 30-х годов по методу С. В. Лебедева. В 30—40-е годы советским химикам удалось решить целый ряд проблем, связанных с выяснением механизма свободно-радикальной полимеризации непредельных соединений. Это дало ученым ключ к познанию методов управления полимеризационными процессами. Большим достижением была разработка полимеризационных и поликонденсационных способов получения многих исключительно важных для техники материалов, в частности кремнийорганических высокомолекулярных соединений. На этой основе удалось организовать производство всевозможных пластмасс, химических волокон, пленок, клеев самого различного назначения. Значительные успехи достигнуты химиками, главным образом школой В. А. Каргина, в области изучения строения полимеров, что позволило перейти к решению задач модификации их физических свойств, к созданию научно обоснованных способов переработки полимеров в изделия. Родившись в стенах классической органической химии, химия высокомолекулярных соединений постепенно выделилась в самостоятельную область, которая впитала в себя достижения как органической, так и физической химии и широко пользуется методами исследования, заимствованными из физики. Очень велик и, по-видимому, будет все более возрастать, выход химии высокомолекулярных соединении в народное хозяйство. Однако, прежде чем достичь этого, потребовались десятки лет упорного труда наших химиков не только для изучения процессов формирования больших молекул — полимеров, но и для поиска промышленных методов синтеза их сырья— мономеров. II. Развитие химии высокомолекулярных соединений.

СИНТЕЗ МОНОМЕРОВ.

В конце 20-х — начале 30-х годов, когда налаживалось промышленное производство каучука, было более или менее ясно, как получать каучук из дивинила или изопрена, однако задача создания экономичного способа синтеза этих мономеров оставалась нерешенной. Требовалась большая предварительная работа по изысканию методов выделения изопентана из продуктов нефтепереработки и каталитической дегидрогенизации его с удовлетворительными выходами изопрена. Что же касается дивинила, то с ним дело обстояло проще. Тщательные и разносторонние исследования по каталитическому превращению спиртов, осуществленные в начале текущего столетия В. Н. Ипатьевым, указывали на принципиальную возможность его получения непосредственно из этилового спирта. Эту возможность претворил в жизнь в 1928 г. С. В. Лебедев, работы которого явились крупным вкладом в мировую науку. Предложенный Лебедевым метод синтеза дивинила превосходит не только ранее разработанные, но и те, которые появились позже и использовались в промышленности других стран. Наряду с синтезом дивинила из спирта уже с 30-х годов проводились систематические исследования, направленные на то, чтобы разработать промышленные методы получения дивинила и изопрена непосредственно из нефтяного сырья. Целый ряд работ был посвящен изучению кинетики и термодинамической стороны процессов:

а также подбору катализирующих систем. К ним относились, в частности, исследования А. А. Баландина и сотрудников, выполненные в Институте органической химии АН СССР, работы Г. Д. Любарского, М. Я. Кагана и С. Я. Пшежецкого в физико-химическом институте им. Л. Я. Карпова. В результате, уже в 40-х годах удалось найти условия и катализаторы реакций дегидрогенизации бутиленов в дивинил (с выходом, близким к термодинамически возможному — 37 % на пропущенный олефин) и бутана в бутилен. Систематические работы по дегидрогенизации пентанов и пентенов в изопрен начались лишь с 50-х годов. В них вместе со своими сотрудниками приняли участие Б. А. Казанский, Н. И. Шуйкин, Ю. Г. Мамедалиев и ряд других исследователей. Были достигнуты выходы изопрена свыше 30% на пропущенные исходные углеводороды. Изучая дегидрогенизацию изопентан-изопентеновых смесей, А. А. Баландин нашел условия, при которых изопрен получается с выходом 38% на исходный изопентан и около 90% на прореагировавшую смесь. Проблема поиска промышленных методов получения мономеров стояла не только перед исследователями, занятыми синтезом каучука, но и, по существу, являлась ключевой при синтезе полимеров на основе производных акриловой кислоты и самых различных виниловых эфиров. Немалая заслуга в решении этой проблемы принадлежит А. Е. Фаворскому и его школе. Так, в 30-х годах А. Е. Фаворский и И.Н.Назаров разработали метод синтеза винилэтинилкарбинолов, на основе которых Назаров затем получил разнообразные полимеры, нашедшие широкое применение в машиностроении, электротехнике, деревообделочной промышленности и т. д. в качестве склеивающих веществ. Синтез мономеров имел решающее значение и при получении всевозможных элементоорганических высокомолекулярных соединений. В этом направлении в СССР было проведено особенно много важных исследований. В 1935—1939 гг. ученые, прежде всего К. А. Андрианов и его сотрудники, нашли удобные методы синтеза эфиров ортокремневой кислоты и их производных, а также целого ряда других простейших кремнийорганических соединений и, показав исключительную склонность этих веществ к полимеризации и поликонденсации, проложили первые пути к синтезу обширного класса новых полимеров — полиорганосилоксанов.

2.ИССЛЕДОВАНИЕ РЕАКЦИОННОЙ СПОСОБНОСТИ МОНОМЕРОВ Впервые вопрос о причинах различной способности к полимеризации разных по строению непредельных соединений был поставлен А. М. Бутлеровым. Затем его решению были посвящены систематические исследования и других русских ученых. Изучая в начале 30-х годов полимеризацию диенов, приводящую к каучуку, С. В. Лебедев писал, что "...область синтетического каучука — это область нестойких органических молекул. Превращение дивинила и его гомологов в каучукоподобные полимеры — естественный для этих веществ переход от малостойкой молекулы мономера к более стойкой молекуле высокого частичного веса". С. В. Лебедев установил также, что различные производные этилена полимеризуются с различной скоростью и дают разные по качеству полимеры. Установить закономерности, связывающие химическое строение веществ с их способностью к полимеризации, оказалось возможным прежде всего на основе всестороннего учета стерических факторов и особенностей электронного строения мономеров, а также путем изучения кинетики полимеризацион-ных процессов. Значительные достижения в этой области принадлежат В. В. Коршаку. Обобщив огромный экспериментальный материал, относящийся к полимеризации ненасыщенных соединений (олефинов и диенов), В. В. Коршак пришел к весьма интересным и важным результатам. Он установил, что реакционная способность мономеров в известных пределах увеличивается с увеличением полярности. Однако прямая пропорциональность здесь соблюдается далеко не всегда. Например, у (С2Н5)2С = СН2 дипольный момент равен 0,50, а реакционная способность этого соединения значительно ниже, чем у изобутилена. Этот и другие факты побудили В. В. Коршака искать иные причины, определяющие способность соединения к полимеризации. Оказалось, что эти причины объясняются пространственными препятствиями. Большие заместители экранируют реакционные центры молекул мономера, причем степень влияния заместителей на полимеризацию прямо пропорциональна их объему и числу. Гипотеза В. В. Коршака дает возможность объяснить различное отношение одних и тех же мономеров к ионной и радикальной полимеризации. Так, например, замещенные этилены, у которых экранирующий эффект заместителей недостаточно велик, сравнительно активны при ионной полимеризации и не полимеризуются по радикальному механизму. Объясняется это тем, что силы взаимодействия между ионами в ионном процессе уменьшаются с увеличением расстояния в значительно меньшей степени, чем силы взаимодействия между радикалом и молекулой олефина в радикальной реакции. Поэтому при ионной полимеризации пространственные затруднения, вызываемые заместителями, сказываются меньше, чем при радикальной. Зависимость способности органических веществ к полимеризации от химического строения весьма плодотворно исследовалась также X. С. Багдасарьяном, А. Д. Абкиным и другими сотрудниками Физико-химического института им. Л. Я. Карпова. В конце 40-х — начале 50-х годов X. С. Багдасарьян в ряде своих работ показал, что реакционная способность мономеров прямо пропорциональна эффекту сопряжения л, -л- и -о-связей в их молекулах и обратно пропорциональна эффекту сопряжения "холостого" электрона со всеми другими электронами в радикале. Таким образом, активность молекул мономеров и активность радикалов, полученных на основе этих мономеров, находятся не в симбатных, а в антибатных отношениях: чем активнее молекула мономера, тем менее активным оказывается получаемый на ее основе радикал. В начале 60-х годов, благодаря исследованиям В. А. Каргина и В. А. Кабанова в области полимеризации, возникло новое направление, основанное на возможности изменения реакционной способности мономеров путем их кристаллизации или связывания в комплексы с другими веществами. Классические приемы увеличения равновесных концентраций целевых продуктов состояли, как известно, в изменении температуры и давления. В. А. Каргин и В. А. Кабанов предложили принципиально иной подход к решению вопроса об увеличении выхода полимера и степени полимеризации. Сущность этого подхода связана со своеобразным каталитическим влиянием комплексообразователей, в частности реакционной среды.

Схема превращения мономера М в полимер

никак не отражает взаимодействия молекул М и Мп со средой. Если это взаимодействие сильное, то введение в термодинамические и кинетические уравнения коэффициентов активностей, как это обычно делают в случае сравнительно слабых взаимодействий, утрачивает смысл. Тогда схему (I) целесообразно заменить другой:

где X — частица или совокупность частиц комплексообразователя, взаимодействующих с молекулой мономера и со звеньями макромолекулы. Взаимодействие между молекулами М, звеньями —М— и частицами Х способно кардинально влиять на механизм реакции. В отличие от чистого мономера его комплексу в ряде случаев "разрешено" полимеризоваться с образованием соответствующего комплекса полимера. Развиваемое В. А. Кар-гиным и В. А. Кабановым направление в области полимеризации открывает большие перспективы для моделирования синтеза полимерных цепей в живых клетках. Представим себе, что частицы Х в схеме (II) химически связаны в длинные цепи, т. е. образуют макромолекулы. Тогда молекулы мономера выстраиваются вдоль заранее синтезированных полимерных "матриц":

Мономер можно выбирать так, чтобы реакционноспособными оказались только молекулы М, которые будут образовывать связи со звеньями X. Тогда на каждой цепи Хn "вырастает" новая цепь Мп

Авторам удалось найти реальные системы (винил-пиридин + поликислоты), в которых самопроизвольно при комнатной температуре протекают реакции подобного типа. Макромолекулы поликислот выполняют функции полимерных каталитических "шаблонов".

3.РАЗВИТИЕ ПРЕДСТАВЛЕНИЙ О ПОЛИМЕРИЗАЦИОННЫХ ПРОЦЕССАХ Наряду с выяснением вопросов кинетики и механизма отдельных реакций полимеризации проводились также исследования и более общего характера; они охватывали результаты изучения многих реакций полимеризации и представляли уже обобщения, определенные теоретические концепции. Наиболее удачными из них первоначально оказались те, которые примыкали к цепной теории,— может быть потому, что этой теории особенно "повезло". Ведь ученые принимали самое активное участие в создании основ цепной теории и уже в 20-х годах фактически стали лидерами в этой области. Идеи о приложении теории цепных реакций к явлениям полимеризации впервые были выдвинуты в 30-х годах одновременно несколькими исследователями. Н. Н. Семенов осветил этот вопрос в своей книге, вышедшей в 1934 г. Затем, наряду с отдельными работами, к систематическим исследованиям в этой области приступили С. С. Медведев и сотрудники. С.С.Медведев и его сотрудники прежде всего экспериментально подтвердили представления о развитии полимеризационных цепей через свободные радикалы, а затем детально изучили начальный акт полимеризации — инициирование. В дальнейшем изучение реакции инициирования тесно переплелось с исследованиями реакционной активности радикалов и мономеров(Н.Н.Семенов, X. С. Багдасарьян, А.Д.Аб-кин). В изучении процессов инициирования радикальной полимеризации, кроме С. С. Медведева и его сотрудников, принимали участие еще многие советские химики. Наиболее систематические исследования в этом направлении проводили Б. А. Долгоплоек и сотрудники, открывшие явление окислительно-восстановительного инициирования радикальных процессов. Полученные ими результаты позволили химикам оперировать широкой гаммой всевозможных инициаторов радикальной полимеризации, дифференцирование применять их в соответствии с их активностью, осуществлять полимеризацию даже в тех случаях, когда она казалась невозможной (например, виниловые эфиры+радикалы с неспаренным электроном у углерода), и, наконец, посредством только одних инициаторов в известной степени управлять реакцией и получать полимеры с наиболее высоким молекулярным весом. В решение сложных вопросов, относящихся к следующему элементарному акту-развитию полимеризационных цепей, советские химики внесли свой очень важный вклад. С. С. Медведев и сотрудники показали, что весь процесс полимеризации, инициированной свободными радикалами, протекает при помощи последних; растущая цепь полимера является свободным радикалом. Образование полимера происходит за счет взаимодействия свободного радикала с двойной связью мономера:

Характер роста цепи определяет структуру полимерной молекулы. Исследования Б. А. Долгоплоска, А. А. Короткова, А. Л. Клебанского и других, главным образом ленинградских химиков, позволили точно определять тип присоединения мономеров к растущей цепи при радикальной, а в равной мере и при ионной полимеризации, что сыграло большую роль в решении задачи воссоздания натурального каучука. С середины 50-х годов появилось новое и, как оказалось, очень важное направление исследований, также связанное с радикальным ростом, или, лучше сказать, с формированием полярной макромолекулы. В результате детального изучения полимеризационных процессов выяснилось, что наряду с более или менее изученными реакциями имеет место ряд дополнительных, вторичных реакций, в которых принимает участие уже сформировавшаяся цепь полимера. Эти вторичные процессы часто существенно изменяют структуру и свойства полимеров. Начало этому направлению исследований было положено работами С. Е. Бреслера, С. Я. Френкеля и сотрудников, которые установили "аномально" сложные мультимодальные молекулярновесовые распределения образцов полимеров и объяснили это удвоением и утроением молекулярных весов отдельных групп молекул вследствие вторичных реакций. Большим вкладом в учение о кинетике реакций полимеризации служат проведенные в последние годы исследования Н.С. Ениколопяна и сотрудников, в результате которых была установлена ранее не известная элементарная реакция, происходящая при полимеризации гетероциклических соединений — реакция передачи цепи с разрывом. Сущность вновь открытого элементарного акта состоит в том, что растущий полимерный активный центр атакует "готовую" или растущую макромолекулу по "закону случая" — в любом месте цепи — с образованием новой макромолекулы и нового активного центра. Если при передаче цепи с разрывом растущий активный центр отличается по химическому составу от атакуемой макромолекулы, то образуется блок-сополимер. Одним из важных практических следствий успешных работ в области изучения радикальных процессов является теломери-зация — преднамеренный обрыв роста цепи с целью синтеза "теломеров" — соединений содержащих активные группы по обоим концам молекулы, например

В начале 50-х годов к разработке методов синтеза этих важных бифункциональных производных с использованием теломеризации приступил большой коллектив химиков Академии наук СССР и Государственного института азотной промышленности под руководством А. Н. Несмеянова и Р. X. Фрейдлиной. При этом были изучены как сами процессы теломеризации — их кинетика, механизм реакций, так и химические превращения полученных продуктов, а на их основе — новых волокнистых материалов. Если о теории радикальной полимеризации теперь можно говорить как о самостоятельном разделе цепной теории, или как о единой концепции, причем такой, которая в значительной степени создана трудами советских ученых, то применительно к ионной полимеризации этого сказать нельзя. Единой теории ионной полимеризации пока не существует. По-видимому, можно лишь утверждать, что она начала формироваться, подобно теории радикальной полимеризации, как ответвление более общих кинетических теорий, а именно теории кислотно-основного катализа Бренстеда — Лоури — Дэвис —Измайлова и цепной теории.

4.РАЗРАБОТКА ОСНОВ ТЕОРИИ ПОЛИКОНДЕНСАЦИИ

Поликонденсация как путь синтеза высокомолекулярных соединений разработана в основном школой В. В. Коршака. По мнению В. В. Коршака, полимеризация и поликонденсация — "частные случаи тех двух основных типов реакций, на которые можно разбить все превращения в органической химии: это реакции присоединения и реакции замещения". Следовательно, под реакцией поликонденсации нужно понимать процесс образования высокомолекулярных соединений из низкомолекулярных исходных веществ, который одновременно сопровождается выделением какого-либо низкомолекулярного продукта (воды, спирта и т. п.). В связи с тем, что целый ряд высокомолекулярных соединений может быть получен как полимеризацией, так и поликонденсацией:

В. В. Коршак положил в основу классификации высокомолекулярных соединений принцип химического строения, способный определить все их свойства и не зависящий от путей синтеза. В. В. Коршак и его сотрудники выяснили роль деструктивных реакций в процессе поликонденсации: ацидолиза и аминолиза полиамидов, алкоголиза полиэфиров. Они нашли, что эти реакции ускоряются с повышением температуры и определенным образом зависят от молекулярного веса поликонденсата, рН среды и природы деструктирующего агента. Г. С. Петров тщательно изучил формолиз мочевино- формальдегидных смол и фенолиз фенолоформаль- дегидных смол, предложив соответствующие меры подавления этих реакций при синтезе высокомолекулярных соединений. В. В. Коршаком исследована кинетика обменных реакций между полиамидами разного молекулярного веса и полиэфирами (амидолиз и эфиролиз). В результате было установлено, что процессы поликонденсации, для которых характерна обратимость, представляют сложные системы обменных равновесных и деструктивных реакций. Особенно важным является установление большой роли обменных реакций между растущими макромолекулами и исходными веществами, которые определяют весь характер реакции, ее основные закономерности и молекулярно-весовое распределение образующегося полимера. Весьма существенное значение для построения теории процессов поликонденсации имело установленное В. В. Коршаком и сотрудниками "правило неэквивалентности функциональных групп", позволяющее понять закономерности роста макромолекулы в процессах поликонденсации и дающее в руки исследователю мощный рычаг для управления величиной молекулярного веса образующегося полимера.

5.НОВЫЕ ПУТИ СИНТЕЗА ПОЛИМЕРОВ Химиками были открыты принципиально новые методы синтеза полимеров, отличающиеся не только своей практической значимостью, но и оригинальностью путей получения продуктов. Детальное изучение открытых С. С. Наметкиным и Л. Н. Абакумовской реакций гидродегидрополимеризации

имело большое значение для осуществления очистки нефтяных дистиллятов, получения синтетических смазочных масел и полимерных продуктов посредством серной, фосфорной кислот и других катализаторов. Сюда же относятся весьма интересные реакции гидродимеризации, открытые в 1942 г. А. Д. Петровым и Л. И. Анцус:

Я. Т. Эйдус, Н. Д. Зелинский и сотрудники открыли реакции гидроконденсации и гидрополимеризации олефинов. Изучая механизм синтезов на основе окиси углерода и водорода, авторы экспериментально доказали важную роль метиленовых радикалов в формировании цепи предельных углеводородов: nCh3 —СnН2 На этом основании был сделан вывод, что этилен, прибавленный к исходной смеси, должен включаться в процесс полимеризации метиленовых радикалов. Проверка подтвердила эту гипотезу и привела к открытию новой реакции — каталитической гидроконденсации окиси углерода с олефинами. Резкое уменьшение в исходных продуктах окиси углерода и водорода привело к открытию реакций гидрополимеризации олефинов:

В ходе этих работ дано первое экспериментальное доказательство радикально-цепного механизма синтезов на основе СО + Н2; при этом развитие цепей в данном случае осуществляется на поверхности — это плоские или закрепленные цепи. Одним из новых оригинальных путей синтеза высокомолекулярных соединений явился метод полирекомбинации, открытый В. В. Коршаком, С. Л. Сосиным и сотрудниками:

и т. д. При молярном соотношении инициирующей перекиси к исходному углеводороду 2:1 молекулярный вес полимера достигает 10 000 и более. Благодаря использованию реакции полирекомбинации, в полимер могут быть превращены насыщенные углеводороды, эфиры и другие вещества, не способные полимеризоваться обычными путями. III. Заключение. Практически все полиолефины, кислород- и азотсодержащие поликонденсаты и полимерные вещества, элементоорганические высокомолекулярные соединения так или иначе нашли выход в жизнь.

IV.Список использованной литературы: 1. «Развитие органической химии в СССР» издательство «Наука».

2. Н.Н.Семянов «Цепные реакции» ОНТИ, 1934 г.

3. В.И.Кузнецов, Е.В.Волонский «Развитие химии высокомолекулярных соединений». 4.

1

12

www.ronl.ru

Предисловие

Учебное пособие включает в себя конспект 17 лекций, охватывающий все разделы читаемого курса.

В пособии в компактной и доступной форме представлен обширный теоретический и фактический материал по изучению строения, свойств, получения и применения органических соединений различных классов. В работу включены краткие как исторические, так и современные сведения о достижениях в области органической химии.

Пособие предназначено для организации самостоятельной работы студентов при подготовке к лекционным, практическим занятиям, итоговому контролю и выполнению домашних заданий и контрольных работ по дисциплине.

Учебное пособие по органической химии предназначено для студентов по направлениям подготовки 050100.62 – «Естественнонаучное образование» профиля «Химия», 020400.62 - «Биология» профиля «Биоэкология», 280700. 62 – профиль «Техносферная безопасность», а также может быть полезным студентам других специальностей и направлений.

  Химия (органическая химия) [Текст] : учебно-методический комплекс по дисциплине : конспект лекций / М-во образования и науки Рос. Федерации, ФГБОУ ВПО "Хакасский государственный университет им. Н. Ф. Катанова" ; [сост. Л. А. Фисун]. - Абакан : Изд-во ФГБОУ ВПО "Хакасский государственный университет им. Н. Ф. Катанова", 2014. - 136 с.

Лекция №1. Введение. Предмет органической химии. Основные этапы ее развития

План

1. Предмет органической химии.

2. Основные исторические этапы развития органической химии.

3. Основные источники органических соединений.

4. Теория химического строения им. А.М. Бутлерова.

Органическая химия – наука, всесторонне изучающая органические соединения. Органические соединения – это углеводороды и их функциональных производные.

Органические соединения известны человеку с глубокой древности: этиловый спирт, уксусная кислота, масла, растительные красители и другие. Однако систематическое изучение органических соединений началось во второй половине 18 века.

Термины «органическая химия», «органические вещества» введены в начале 19 века (1809г.) шведом Й.Я. Берцелиусом для обозначения веществ, выделяемых из животных и растительных организмов. В настоящее время известно более 10 миллионов органических соединений, при этом число синтетических органических соединений несравнимо больше веществ, встречающихся в природе.

Таблица 1.

Распространение углерода в природе

Источники углерода

Количество, 109т

Источники углерода

Количество, 109т

Газы- гидраты

104

Наземная растительность

830

Уголь,нефть, газ

5000

Торф

500

Почва

1400

Атмосфера

3,6

Вода

980

Морские растения

3,0

Органические соединения образованы небольшим числом элементов - углеродом, водородом, серой, кислородом, азотом, фосфором. В состав организма человека, например, входит 24 элемента, на долю четырех из них – углерода, водорода, кислорода и азота приходится около 99% соединений. Архитектура, состав и строение органических соединений весьма разнообразны, разнообразны и уникальны их свойства.

Современная органическая химия характеризуется достаточно развитыми теоретическими представлениями, позволяющими систематизировать, объяснять и прогнозировать свойства, существование органических соединений и их роль в жизни человека.

Фундаментом теоретической органической химии является теория химического строения им. А.М. Бутлерова (1861 год), основные положения которой сформулированы следующим образом:

1. Атомы в молекулах соединяются между собой в определенной последовательности, согласно их валентности. Химическое строение – это определенная последовательность расположения связей между атомами.

2. Свойства органических веществ зависят не только от природы и числа атомов, но и от химического строения. Каждое химическое соединение имеет только одну химическую формулу, которая дает представление об его химических свойствах.

3. Явление существования нескольких соединений с одинаковым качественным и количественным составом, но с разными строением и свойствами, называется изомерией, а сами соединения – изомерами.

4. Атомы в молекулах оказывают друг на друга взаимное влияние. Химический характер каждого конкретного атома в молекуле зависит от природы связанных с ним атомов.

5. Химическое строение соединения может быть установлено по его химическим и физическим свойствам. И, наоборот, зная строение, можно определить его свойства.

Теория химического строения позволила систематизировать фактический материал органической химии, объяснять ее закономерности, предсказывать новые факты.

Достижения современной теории связаны с развитием стереохимических представлений, электронной теории, квантовой химии, глубоким проникновением физико-химических, физических и математических методов исследований, применением компьютерных технологий.

На рубеже 20 и 21 веков органическая химия достигла впечатляющих успехов в понимании тонких механизмов химических реакций, выявлении закономерностей влияния структуры на свойства органических соединений, направленного синтеза необходимых веществ и материалов.

Многие направления органической химии развивались в последние десятилетия столь интенсивно, что выросли в самостоятельные научные дисциплины – стереохимия, химия высокомолекулярных соединений и полимеров, химия природных и физиологически активных соединений, химия элементоорганических соединений, физическая органическая химия, химия гетероциклов, биоорганическая химия, молекулярная биология и т.д.

studfiles.net

Доклад - Классификация органических соединений. Виды связи. Специфические свойства органических соединени

Казахский Гуманитарно-Юридический Инновационный Университет

Кафедра: Информационных технологий и экономики

СРСП №1

На тему: «Классификация органических соединений. Виды связи. Специфические свойства органических соединений. Структурные формулы. Изомерия.»

Выполнил: Студент I-го курса, группа Э-124

Увашов Азамат

Проверила: Абылкасымова Б. Б

г.Семей 2010 год

Содержание

1. Введение

2. Классификация органических соединений

3. Виды связи

4. Структурные формулы

5. Специфические свойства органических соединений

6. Изомерия

Введение

Трудно представить прогресс в какой бы то ни было области хозяйства без химии – в частности, без органической химии. Все сферы хозяйства связаны с современной химической наукой и технологией.

Органическая химия изучает вещества, содержащие в своем составе углерод, за исключением окиси углерода, углекислого газа и солей угольной кислоты (эти соединения по свойствам ближе к неорганическим соединениям).

Как наука органическая химия до середины XVIII века не существовала. К тому времени различали три вида химии: химию животных, растительную и минеральную. Химия животных изучала вещества, входящие в состав животных организмов; растительная – вещества, входящие в состав растений; минеральная – вещества, входящие в состав неживой природы. Этот принцип, однако, не позволял отделить органические вещества от неорганических. Например, янтарная кислота относилась к группе минеральных веществ, так как ее получали перегонкой ископаемого янтаря, поташ входил в группу растительных веществ, а фосфат кальция – в группу животных веществ, так как их получали прокаливанием соответственно растительных (древесина) и животных (кости) материалов.

В первой половине XIX века было предложено выделить соединения углерода в самостоятельную химическую дисциплину – органическую химию.

Среди ученых в то время господствовало виталистическое мировоззрение, согласно которому органические соединения образуются только в живом организме под влиянием особой, сверхъестественной «жизненной силы». Это означало, что получить органические вещества путем синтеза из неорганических невозможно, что между органическими и неорганическими соединениями лежит непреодолимая пропасть. Витализм настолько укрепился в умах ученых, что долгое время не предпринималось никаких попыток синтеза органических веществ. Однако витализм был опровергнут практикой, химическим экспериментом.

Развитие органической химии в настоящее время достигло уровня, позволяющего начать решение такой основополагающей проблемы органической химии, как проблема количественного соотношения структуры вещества и его свойства, в качестве которого может выступать любое физическое свойство, биологическая активность любого строго заданного типа решение задач такого типа осуществляется с использованием математических методов.

Классификация органических соединений.

Огромное количество органических соединений классифицируют с учетом строения углеродной цепи (углеродного скелета) и наличия в молекуле функциональных групп.

На схеме представлена классификация органических соединений в зависимости от строения углеродной цепи.

Органические соединения

¯

¯

Ациклические (алифатические)

(соединения с открытой цепью)

Циклические

(соединения с замкнутой цепью)

¯

¯

¯

¯

Насыщенные (предельные)

Ненасыщенные (непредельные)

Карбоциклические (цикл состоит только из атомов углерода)

Гетероциклические (цикл состоит из атомов углерода и других элементов)

¯

¯

Алициклические (алифатические циклические)

Ароматические

В качестве основы при классификации приняты углеводороды, их считают базовыми соединениями в органической химии. Все остальные органические соединения рассматривают как их производные.

При систематизации углеводородов принимают во внимание строение углеродного скелета и тип связей, соединяющих атомы углерода.

I. АЛИФАТИЧЕСКИЕ (aleiphatos. греч. масло) углеводороды представляют собой линейные или разветвленные цепочки и не содержат циклических фрагментов, они образуют две крупные группы.

1. Предельные или насыщенные углеводороды (названы так потому, что не способны что-либо присоединять) представляют собой цепочки атомов углерода, соединенных простыми связями и окруженных атомами водорода. В том случае, когда цепочка имеет разветвления, к названию добавляют приставку изо. Простейший насыщенный углеводород – метан, с него начинается ряд этих соединений.

НАСЫЩЕННЫЕ УГЛЕВОДОРОДЫ

ОБЪЕМНЫЕ МОДЕЛИ НАСЫЩЕННЫХ УГЛЕВОДОРОДОВ. Валентности углерода направлены к вершинам мысленного тетраэдра, в результате цепочки насыщенных углеводородов представляют собой не прямые, а ломаные линии.

Основные источники насыщенных углеводородов – нефть и природный газ. Реакционная способность насыщенных углеводородов очень низкая, они могут реагировать только с наиболее агрессивными веществами, например, с галогенами или с азотной кислотой. При нагревании насыщенных углеводородов выше 450 С° без доступа воздуха разрываются связи С-С и образуются соединения с укороченной углеродной цепью. Высокотемпературное воздействие в присутствии кислорода приводит к их полному сгоранию до СО2 и воды, что позволяет эффективно использовать их в качестве газообразного (метан – пропан) или жидкого моторного топлива (октан).

При замещении одного или нескольких атомов водорода какой-либо функциональной (т.е. способной к последующим превращениям) группой образуются соответствующие производные углеводородов. Соединения, содержащие группировку С-ОН, называют спиртами, НС=О – альдегидами, СООН – карбоновыми кислотами (слово «карбоновая» добавляют для того, чтобы отличить их от обычных минеральных кислот, например, соляной или серной). Соединение может содержать одновременно различные функциональные группы, например, СООН и Nh3, такие соединения называют аминокислотами. Введение в состав углеводорода галогенов или нитрогрупп приводит соответственно к галоген- или нитропроизводным.

НЕНАСЫЩЕННЫЕ УГЛЕВОДОРОДЫ в виде объемных моделей. Валентности двух атомов углерода, соединенных двойной связью, расположены в одной плоскости, что можно наблюдать при определенных углах поворота, в этот момент вращение молекул приостанавливается.

Наиболее характерно для ненасыщенных углеводородов присоединение по кратной связи, что позволяет синтезировать на их основе разнообразные органические соединения.

АЛИЦИКЛИЧЕСКИЕ УГЛЕВОДОРОДЫ. Из-за определенной направленности связей у атома углерода молекула циклогексана представляет собой не плоский, а изогнутый цикл – в форме кресла (/ -/ ), что отчетливо видно при определенных углах поворота (в этот момент вращение молекул приостанавливается)

Помимо показанных выше существуют иные варианты соединения циклических фрагментов, например, они могут иметь один общий атом, (так называемые, спироциклические соединения), либо соединяться таким образом, чтобы два или более атомов были общими для обоих циклов (бициклические соединения), при объединении трех и более циклов возможно также образование углеводородных каркасов.

ГЕТЕРОЦИКЛИЧЕСКИЕ СОЕДИНЕНИЯ. Их названия сложились исторически, например, фуран получил название от фуранового альдегида – фурфурола, получаемого из отрубей (лат. furfur – отруби). Для всех показанных соединений реакции присоединения затруднены, а реакции замещения проходят достаточно легко. Таким образом, это ароматические соединения небензольного типа.

Ароматический характер этих соединений подтверждается плоским строением циклов, что отчетливо заметно в тот момент, когда их вращение приостанавливается

Разнообразие соединений этого класса увеличивается дополнительно за счет того, что гетероцикл может содержать два и более гетероатомов в цикле

ВИДЫ СВЯЗИ

Химическая связь — это взаимодействие частиц (атомов, ионов), осуществляемое путем обмена электронами. Различают несколько видов связи. При ответе на данный вопрос следует подробно остановиться на характеристике ковалентной и ионной связи. Ковалентная связь образуется в результате обобществления электронов (с образованием общих электронных пар), которое происходит в ходе перекрывания электронных облаков. В образовании ковалентной связи участвуют электронные облака двух атомов. Различают две основные разновидности ковалентной связи:

а) неполярную и б) полярную.

а) Ковалентная неполярная связь образуется между атомами неметалла одного и того химического элемента. Такую связь имеют простые вещества, например О2; N2; C12. Можно привести схему образования молекулы водорода: (на схеме электроны обозначены точками). б) Ковалентная полярная связь образуется между атомами различных неметаллов.

Схематично образование ковалентной полярной связи в молекуле НС1 можно изобразить так:

Общая электронная плотность оказывается смещенной в сторону хлора, в результате чего на атоме хлора возникает частичный отрицательный заряд , а на атоме водорода — частичный положительный . Таким образом, молекула становится полярной:

Ионной называется связь между ионами, т. е. заряженными частицами, образовавшимися из атома или группы атомов в результате присоединения или отдачи электронов. Ионная связь характерна для солей и щелочей.

Сущность ионной связи лучше рассмотреть на примере образования хлорида натрия. Натрий, как щелочной металл, склонен отдавать электрон, находящийся на внешнем электронном слое. Хлор же, наоборот, стремится присоединить к себе один электрон. В результате натрий отдает свой электрон хлору. В итоге образуются противоположно заряженные частицы — ионы Na+ и Сl-, которые притягиваются друг к другу. При ответе следует обратить внимание, что вещества, состоящие из ионов, образованы типичными металлами и неметаллами. Они представляют собой ионные кристаллические вещества, т. е. вещества, кристаллы которых образованы ионами, а не молекулами.

После рассмотрения каждого вида связи следует перейти к их сравнительной характеристике.

Для ковалентной неполярной, полярной и ионной связи общим является участие в образовании связи внешних электронов, которые еще называют валентными. Различие же состоит в том, насколько электроны, участвующие в образовании связи, становятся общими. Если эти электроны в одинаковой мере принадлежат обоим атомам, то связь ковалентное неполярная; если эти электроны смещены к одному атому больше, чем другому, то связь ковалентная полярная. В случае, если электроны, участвующие в образовании связи, принадлежат одному атому, то связь ионная.

Металлическая связь — связь между ион-атомами в кристаллической решетке металлов и сплавах, осуществляемая за счет притяжения свободно перемещающихся (по кристаллу) электронов (Mg, Fe).

Все вышеперечисленные отличия в механизме образования связи объясняют различие в свойствах веществ с разными видами связей.

СТРУКТУРНАЯ ФОРМУЛА

Структурная формула — это разновидность химической формулы, графически описывающая расположение и порядок связи атомов в соединении, выраженное на плоскости. Связи в структурных формулах обозначаются валентными черточками.

Часто используются структурные формулы, где связи с атомами водорода не обозначаются валентными черточками (тип 2). В другом типе структурных формул (скелетных), применяемых для крупных молекул в органической химии, не указываются атомы водорода связанные с углеродными атомами и не обозначаются атомы углерода (тип 3).

С помощью разных типов условных обозначений, используемых в структурных формулах, указываются также координационные связи, водородные связи, стереохимия молекул, делокализованные связи, локализация зарядов и т.д.

СПЕЦИФИЧЕСКИЕ СВОЙСТВА ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

Реакции органических соединений имеют некоторые специфические особенности. В реакциях неорганических соединений обычно участвуют ионы; эти реакции протекают очень быстро, иногда мгновенно при нормальной температуре. В реакциях органических соединений обычно участвуют молекулы; при этом одни ковалентные связи разрываются, а другие образуются. Такие реакции протекают медленнее ионных (например, десятки часов), и для их ускорения часто требуется повысить температуру или добавить катализатор. Наиболее часто используют в качестве катализаторов кислоты и основания. Обычно протекает не одна, а несколько реакций, так что выход нужного продукта очень часто составляет менее 50%. В связи с этим в органической химии употребляют не химические уравнения, а схемы реакций без указания стехиометрических соотношений.

Реакции органических соединений могут протекать очень сложным образом и вовсе не обязательно соответствовать простейшей относительной записи. Как правило, простая стехиометрическая реакция на самом деле происходит в несколько последовательных стадий. В качестве промежуточных соединений (интермедиатов) в многостадийных процессах могут возникать карбкатионы R+, карбанионы R-, свободные радикалы, карбены: СХ2, катион-радикалы (например, анион-радикалы (например, Аr ) и другие нестабильные частицы, живущие доли секунды. Подробное описание всех изменений, которые происходят на молекулярном уровне в процессе превращения реагентов в продукты, называется механизмом реакции.

Исследование влияния строения органических соединений на механизм их реакций изучает физическая органическая химия, основы которой заложили К.Инголд, Робинсон и Л.Гаммет (1930-е гг.).

Реакции органических соединений могут классифицированы в зависимости от способа разрыва и образования связей, метода возбуждения реакции, ее молекулярности и др.

ИЗОМЕРИЯ

ИЗОМЕРИЯ (греч. isos – одинаковый, meros – часть) – одно из важнейших понятий в химии, главным образом, в органической. Вещества могут иметь одинаковый состав и молекулярную массу, но различное строение и соединения, содержащие в своем составе одни и те же элементы в одинаковом количестве, но различающиеся пространственным расположением атомов или групп атомов, называют изомерами. Изомерия является одной из причин того, что органические соединения так многочисленны и разнообразны.

Изомерия была впервые обнаружена Ю.Либихом в 1823, который установил, что серебряные соли гремучей и изоциановой кислот: Ag-О-N=C и Ag-N=C=O имеют одинаковый состав, но разные свойства. Термин «Изомерия» в 1830 ввел И.Берцелиус, предположивший, что различия в свойствах соединений одинакового состава возникают из-за того, что атомы в молекуле расположены в неодинаковом порядке. Представления об изомерии окончательно сформировались после создания A.M.Бутлеровым теории химического строения (1860-е). Основываясь на положениях этой теории, он предположил, что должно существовать четыре различных бутанола. К моменту создания теории был известен лишь один бутанол (СН3 )2СНСН2 ОН, получаемый из растительного сырья.

Последовавший затем синтез всех изомеров бутанола и определение их свойств стали убедительным подтверждением теории.

Согласно современному определению два соединения одинакового состава считают изомерами, если их молекулы нельзя совместить в пространстве так, чтобы они полностью совпадали. Совмещение, как правило, проделывают мысленно, в сложных случаях используют пространственные модели, либо расчетные методы. Есть несколько причин возникновения изомерии.

Структурная изомерия

Обусловлена, как правило, различиями в строении углеводородного скелета либо неодинаковым расположением функциональных групп или кратных связей.

Изомерия углеводородного скелета. Насыщенные углеводороды, содержащие от одного до трех атомов углерода (метан, этан, пропан), не имеют изомеров. Для соединения с четырьмя атомами углерода С4 Н10 (бутан) возможно существование двух изомеров, для пентана С5 Н12 – трех изомеров, для гексана С6 Н14 – пяти

С увеличением числа атомов углерода в молекуле углеводорода количество возможных изомеров резко возрастает. Для гептана С7 Н16 существует девять изомеров, для углеводорода С14 Н30 – 1885 изомеров, для углеводорода С20 Н42 – свыше 366 000.

В сложных случаях вопрос о том, являются ли два соединения изомерами, решают, используя различные повороты вокруг валентных связей (простые связи это допускают, что в определенной степени соответствует их физическим свойствам). После перемещения отдельных фрагментов молекулы (не допуская при этом разрыва связей) накладывают одну молекулу на другую. Если две молекулы полностью совпадают, то это не изомеры, а одно и то же соединение:

Изомеры, отличающиеся структурой скелета, обычно имеют разные физические свойства (температура плавления, температура кипения и т.п.), что позволяет отделить один от другого. Изомерия такого типа существует и у ароматических углеводородов.

www.ronl.ru

Реферат - Классификация органических соединений. Виды связи. Специфические свойства органических соединени

Казахский Гуманитарно-Юридический Инновационный Университет

Кафедра: Информационных технологий и экономики

СРСП №1

На тему: «Классификация органических соединений. Виды связи. Специфические свойства органических соединений. Структурные формулы. Изомерия.»

Выполнил: Студент I-го курса, группа Э-124

Увашов Азамат

Проверила: Абылкасымова Б. Б

г.Семей 2010 год

Содержание

1. Введение

2. Классификация органических соединений

3. Виды связи

4. Структурные формулы

5. Специфические свойства органических соединений

6. Изомерия

Введение

Трудно представить прогресс в какой бы то ни было области хозяйства без химии – в частности, без органической химии. Все сферы хозяйства связаны с современной химической наукой и технологией.

Органическая химия изучает вещества, содержащие в своем составе углерод, за исключением окиси углерода, углекислого газа и солей угольной кислоты (эти соединения по свойствам ближе к неорганическим соединениям).

Как наука органическая химия до середины XVIII века не существовала. К тому времени различали три вида химии: химию животных, растительную и минеральную. Химия животных изучала вещества, входящие в состав животных организмов; растительная – вещества, входящие в состав растений; минеральная – вещества, входящие в состав неживой природы. Этот принцип, однако, не позволял отделить органические вещества от неорганических. Например, янтарная кислота относилась к группе минеральных веществ, так как ее получали перегонкой ископаемого янтаря, поташ входил в группу растительных веществ, а фосфат кальция – в группу животных веществ, так как их получали прокаливанием соответственно растительных (древесина) и животных (кости) материалов.

В первой половине XIX века было предложено выделить соединения углерода в самостоятельную химическую дисциплину – органическую химию.

Среди ученых в то время господствовало виталистическое мировоззрение, согласно которому органические соединения образуются только в живом организме под влиянием особой, сверхъестественной «жизненной силы». Это означало, что получить органические вещества путем синтеза из неорганических невозможно, что между органическими и неорганическими соединениями лежит непреодолимая пропасть. Витализм настолько укрепился в умах ученых, что долгое время не предпринималось никаких попыток синтеза органических веществ. Однако витализм был опровергнут практикой, химическим экспериментом.

Развитие органической химии в настоящее время достигло уровня, позволяющего начать решение такой основополагающей проблемы органической химии, как проблема количественного соотношения структуры вещества и его свойства, в качестве которого может выступать любое физическое свойство, биологическая активность любого строго заданного типа решение задач такого типа осуществляется с использованием математических методов.

Классификация органических соединений.

Огромное количество органических соединений классифицируют с учетом строения углеродной цепи (углеродного скелета) и наличия в молекуле функциональных групп.

На схеме представлена классификация органических соединений в зависимости от строения углеродной цепи.

Органические соединения

¯

¯

Ациклические (алифатические)

(соединения с открытой цепью)

Циклические

(соединения с замкнутой цепью)

¯

¯

¯

¯

Насыщенные (предельные)

Ненасыщенные (непредельные)

Карбоциклические (цикл состоит только из атомов углерода)

Гетероциклические (цикл состоит из атомов углерода и других элементов)

¯

¯

Алициклические (алифатические циклические)

Ароматические

В качестве основы при классификации приняты углеводороды, их считают базовыми соединениями в органической химии. Все остальные органические соединения рассматривают как их производные.

При систематизации углеводородов принимают во внимание строение углеродного скелета и тип связей, соединяющих атомы углерода.

I. АЛИФАТИЧЕСКИЕ (aleiphatos. греч. масло) углеводороды представляют собой линейные или разветвленные цепочки и не содержат циклических фрагментов, они образуют две крупные группы.

1. Предельные или насыщенные углеводороды (названы так потому, что не способны что-либо присоединять) представляют собой цепочки атомов углерода, соединенных простыми связями и окруженных атомами водорода. В том случае, когда цепочка имеет разветвления, к названию добавляют приставку изо. Простейший насыщенный углеводород – метан, с него начинается ряд этих соединений.

НАСЫЩЕННЫЕ УГЛЕВОДОРОДЫ

ОБЪЕМНЫЕ МОДЕЛИ НАСЫЩЕННЫХ УГЛЕВОДОРОДОВ. Валентности углерода направлены к вершинам мысленного тетраэдра, в результате цепочки насыщенных углеводородов представляют собой не прямые, а ломаные линии.

Основные источники насыщенных углеводородов – нефть и природный газ. Реакционная способность насыщенных углеводородов очень низкая, они могут реагировать только с наиболее агрессивными веществами, например, с галогенами или с азотной кислотой. При нагревании насыщенных углеводородов выше 450 С° без доступа воздуха разрываются связи С-С и образуются соединения с укороченной углеродной цепью. Высокотемпературное воздействие в присутствии кислорода приводит к их полному сгоранию до СО2 и воды, что позволяет эффективно использовать их в качестве газообразного (метан – пропан) или жидкого моторного топлива (октан).

При замещении одного или нескольких атомов водорода какой-либо функциональной (т.е. способной к последующим превращениям) группой образуются соответствующие производные углеводородов. Соединения, содержащие группировку С-ОН, называют спиртами, НС=О – альдегидами, СООН – карбоновыми кислотами (слово «карбоновая» добавляют для того, чтобы отличить их от обычных минеральных кислот, например, соляной или серной). Соединение может содержать одновременно различные функциональные группы, например, СООН и Nh3, такие соединения называют аминокислотами. Введение в состав углеводорода галогенов или нитрогрупп приводит соответственно к галоген- или нитропроизводным.

НЕНАСЫЩЕННЫЕ УГЛЕВОДОРОДЫ в виде объемных моделей. Валентности двух атомов углерода, соединенных двойной связью, расположены в одной плоскости, что можно наблюдать при определенных углах поворота, в этот момент вращение молекул приостанавливается.

Наиболее характерно для ненасыщенных углеводородов присоединение по кратной связи, что позволяет синтезировать на их основе разнообразные органические соединения.

АЛИЦИКЛИЧЕСКИЕ УГЛЕВОДОРОДЫ. Из-за определенной направленности связей у атома углерода молекула циклогексана представляет собой не плоский, а изогнутый цикл – в форме кресла (/ -/ ), что отчетливо видно при определенных углах поворота (в этот момент вращение молекул приостанавливается)

Помимо показанных выше существуют иные варианты соединения циклических фрагментов, например, они могут иметь один общий атом, (так называемые, спироциклические соединения), либо соединяться таким образом, чтобы два или более атомов были общими для обоих циклов (бициклические соединения), при объединении трех и более циклов возможно также образование углеводородных каркасов.

ГЕТЕРОЦИКЛИЧЕСКИЕ СОЕДИНЕНИЯ. Их названия сложились исторически, например, фуран получил название от фуранового альдегида – фурфурола, получаемого из отрубей (лат. furfur – отруби). Для всех показанных соединений реакции присоединения затруднены, а реакции замещения проходят достаточно легко. Таким образом, это ароматические соединения небензольного типа.

Ароматический характер этих соединений подтверждается плоским строением циклов, что отчетливо заметно в тот момент, когда их вращение приостанавливается

Разнообразие соединений этого класса увеличивается дополнительно за счет того, что гетероцикл может содержать два и более гетероатомов в цикле

ВИДЫ СВЯЗИ

Химическая связь — это взаимодействие частиц (атомов, ионов), осуществляемое путем обмена электронами. Различают несколько видов связи. При ответе на данный вопрос следует подробно остановиться на характеристике ковалентной и ионной связи. Ковалентная связь образуется в результате обобществления электронов (с образованием общих электронных пар), которое происходит в ходе перекрывания электронных облаков. В образовании ковалентной связи участвуют электронные облака двух атомов. Различают две основные разновидности ковалентной связи:

а) неполярную и б) полярную.

а) Ковалентная неполярная связь образуется между атомами неметалла одного и того химического элемента. Такую связь имеют простые вещества, например О2; N2; C12. Можно привести схему образования молекулы водорода: (на схеме электроны обозначены точками). б) Ковалентная полярная связь образуется между атомами различных неметаллов.

Схематично образование ковалентной полярной связи в молекуле НС1 можно изобразить так:

Общая электронная плотность оказывается смещенной в сторону хлора, в результате чего на атоме хлора возникает частичный отрицательный заряд , а на атоме водорода — частичный положительный . Таким образом, молекула становится полярной:

Ионной называется связь между ионами, т. е. заряженными частицами, образовавшимися из атома или группы атомов в результате присоединения или отдачи электронов. Ионная связь характерна для солей и щелочей.

Сущность ионной связи лучше рассмотреть на примере образования хлорида натрия. Натрий, как щелочной металл, склонен отдавать электрон, находящийся на внешнем электронном слое. Хлор же, наоборот, стремится присоединить к себе один электрон. В результате натрий отдает свой электрон хлору. В итоге образуются противоположно заряженные частицы — ионы Na+ и Сl-, которые притягиваются друг к другу. При ответе следует обратить внимание, что вещества, состоящие из ионов, образованы типичными металлами и неметаллами. Они представляют собой ионные кристаллические вещества, т. е. вещества, кристаллы которых образованы ионами, а не молекулами.

После рассмотрения каждого вида связи следует перейти к их сравнительной характеристике.

Для ковалентной неполярной, полярной и ионной связи общим является участие в образовании связи внешних электронов, которые еще называют валентными. Различие же состоит в том, насколько электроны, участвующие в образовании связи, становятся общими. Если эти электроны в одинаковой мере принадлежат обоим атомам, то связь ковалентное неполярная; если эти электроны смещены к одному атому больше, чем другому, то связь ковалентная полярная. В случае, если электроны, участвующие в образовании связи, принадлежат одному атому, то связь ионная.

Металлическая связь — связь между ион-атомами в кристаллической решетке металлов и сплавах, осуществляемая за счет притяжения свободно перемещающихся (по кристаллу) электронов (Mg, Fe).

Все вышеперечисленные отличия в механизме образования связи объясняют различие в свойствах веществ с разными видами связей.

СТРУКТУРНАЯ ФОРМУЛА

Структурная формула — это разновидность химической формулы, графически описывающая расположение и порядок связи атомов в соединении, выраженное на плоскости. Связи в структурных формулах обозначаются валентными черточками.

Часто используются структурные формулы, где связи с атомами водорода не обозначаются валентными черточками (тип 2). В другом типе структурных формул (скелетных), применяемых для крупных молекул в органической химии, не указываются атомы водорода связанные с углеродными атомами и не обозначаются атомы углерода (тип 3).

С помощью разных типов условных обозначений, используемых в структурных формулах, указываются также координационные связи, водородные связи, стереохимия молекул, делокализованные связи, локализация зарядов и т.д.

СПЕЦИФИЧЕСКИЕ СВОЙСТВА ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

Реакции органических соединений имеют некоторые специфические особенности. В реакциях неорганических соединений обычно участвуют ионы; эти реакции протекают очень быстро, иногда мгновенно при нормальной температуре. В реакциях органических соединений обычно участвуют молекулы; при этом одни ковалентные связи разрываются, а другие образуются. Такие реакции протекают медленнее ионных (например, десятки часов), и для их ускорения часто требуется повысить температуру или добавить катализатор. Наиболее часто используют в качестве катализаторов кислоты и основания. Обычно протекает не одна, а несколько реакций, так что выход нужного продукта очень часто составляет менее 50%. В связи с этим в органической химии употребляют не химические уравнения, а схемы реакций без указания стехиометрических соотношений.

Реакции органических соединений могут протекать очень сложным образом и вовсе не обязательно соответствовать простейшей относительной записи. Как правило, простая стехиометрическая реакция на самом деле происходит в несколько последовательных стадий. В качестве промежуточных соединений (интермедиатов) в многостадийных процессах могут возникать карбкатионы R+, карбанионы R-, свободные радикалы, карбены: СХ2, катион-радикалы (например, анион-радикалы (например, Аr ) и другие нестабильные частицы, живущие доли секунды. Подробное описание всех изменений, которые происходят на молекулярном уровне в процессе превращения реагентов в продукты, называется механизмом реакции.

Исследование влияния строения органических соединений на механизм их реакций изучает физическая органическая химия, основы которой заложили К.Инголд, Робинсон и Л.Гаммет (1930-е гг.).

Реакции органических соединений могут классифицированы в зависимости от способа разрыва и образования связей, метода возбуждения реакции, ее молекулярности и др.

ИЗОМЕРИЯ

ИЗОМЕРИЯ (греч. isos – одинаковый, meros – часть) – одно из важнейших понятий в химии, главным образом, в органической. Вещества могут иметь одинаковый состав и молекулярную массу, но различное строение и соединения, содержащие в своем составе одни и те же элементы в одинаковом количестве, но различающиеся пространственным расположением атомов или групп атомов, называют изомерами. Изомерия является одной из причин того, что органические соединения так многочисленны и разнообразны.

Изомерия была впервые обнаружена Ю.Либихом в 1823, который установил, что серебряные соли гремучей и изоциановой кислот: Ag-О-N=C и Ag-N=C=O имеют одинаковый состав, но разные свойства. Термин «Изомерия» в 1830 ввел И.Берцелиус, предположивший, что различия в свойствах соединений одинакового состава возникают из-за того, что атомы в молекуле расположены в неодинаковом порядке. Представления об изомерии окончательно сформировались после создания A.M.Бутлеровым теории химического строения (1860-е). Основываясь на положениях этой теории, он предположил, что должно существовать четыре различных бутанола. К моменту создания теории был известен лишь один бутанол (СН3 )2СНСН2 ОН, получаемый из растительного сырья.

Последовавший затем синтез всех изомеров бутанола и определение их свойств стали убедительным подтверждением теории.

Согласно современному определению два соединения одинакового состава считают изомерами, если их молекулы нельзя совместить в пространстве так, чтобы они полностью совпадали. Совмещение, как правило, проделывают мысленно, в сложных случаях используют пространственные модели, либо расчетные методы. Есть несколько причин возникновения изомерии.

Структурная изомерия

Обусловлена, как правило, различиями в строении углеводородного скелета либо неодинаковым расположением функциональных групп или кратных связей.

Изомерия углеводородного скелета. Насыщенные углеводороды, содержащие от одного до трех атомов углерода (метан, этан, пропан), не имеют изомеров. Для соединения с четырьмя атомами углерода С4 Н10 (бутан) возможно существование двух изомеров, для пентана С5 Н12 – трех изомеров, для гексана С6 Н14 – пяти

С увеличением числа атомов углерода в молекуле углеводорода количество возможных изомеров резко возрастает. Для гептана С7 Н16 существует девять изомеров, для углеводорода С14 Н30 – 1885 изомеров, для углеводорода С20 Н42 – свыше 366 000.

В сложных случаях вопрос о том, являются ли два соединения изомерами, решают, используя различные повороты вокруг валентных связей (простые связи это допускают, что в определенной степени соответствует их физическим свойствам). После перемещения отдельных фрагментов молекулы (не допуская при этом разрыва связей) накладывают одну молекулу на другую. Если две молекулы полностью совпадают, то это не изомеры, а одно и то же соединение:

Изомеры, отличающиеся структурой скелета, обычно имеют разные физические свойства (температура плавления, температура кипения и т.п.), что позволяет отделить один от другого. Изомерия такого типа существует и у ароматических углеводородов.

www.ronl.ru

Реферат - Методы органической химии

Методы органической химии для студентов 5 курса “Химия” направление 510500, специализация 510503 “Органическая химия”

Факультет физико-математических и естественных наук

Кафедра органической химии

Обязательный курс

Объем учебной нагрузки: 54 час. – лекции, 54 час. – лабораторные работы

Цель курса

Основной целью курса является изучение основных методов введения функциональных групп в молекулы органических соединений. В процессе обучения рассматривается теоретический материал курса, который закрепляется проведением конкретных синтезов. Учитывая длительность экспериментов(6-8 часов), каждый студент из представленного перечня лабораторных работ может выполнить 3-4 работы.

Содержание курса

ВВЕДЕНИЕ

Часть I. ИДЕНТИФИКАЦИЯ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

Физические методы

Тема 1. Инфракрасная спектроскопия. Понятие о характеристических частотах. Типы задач и возможности ИК - спектроскопии: отнесение полос, сопоставление спектра и строения вещества, идентификация, функциональный анализ.

Тема 2. Электронная спектроскопия. Электронные переходы, проявляющиеся в УФ и видимой областях спектра. Классификация полос. Типы задач и возможности УФ - спектроскопии: идентификация, количественный анализ, выявление сопряжения.

Тема 3. Спектры ПМР. Химический сдвиг как характеристика положения протона в молекуле. Расщепление пиков в результате взаимодействия неравноценных протонов. Представление о способах оценки структуры органического вещества по спектру ПМР.

Тема 4. Macс - спектрометрия. Молекулярный ион и фрагментация молекул.

Тема 5. Хроматография. Использование хроматографических методов (бумажной, тонкослойной, газожидкостной хроматографии и ионофореза) для выделения и идентификации вещества.

Химические методы

Реакции обнаружения функциональных групп в органических соединениях.

Тема 6. Спирты. Реакции обнаружения: ксантагенатовая и гидроксамовая пробы, проба Лукаса, действие щелочных растворов солей меди. Производные: уретаны, эфиры бензойной и других кислот, соли с хлористым S-бензилтиуронием. ИК - спектры гидроксильных соединений. Водородная связь в ИК - спектрах.

Тема 7. Фенолы. Реакции обнаружения: проба с хлорным железом, действие брома, щелочей. Производные: уретаны, дифенилуретаны, эфиры 3,5-динитробензойной кислоты, продукты бромирования.

Тема 8. Альдегиды и кетоны. Реакции обнаружения: проба с реактивами Фелинга, Толленса, с фуксинсернистой кислотой, йодоформная проба. Производные: 2,4-динитрофенилгидразоны, семикарбазоны, оксимы, производные димедона. Карбонильные полосы в ИК - и УФ - спектрах.

Тема 9. Карбоновые кислоты. Реакции обнаружения: растворимость в разбавленных растворах едкого натра, бикарбоната и карбоната натрия, гидроксамовая проба, осаждение свинцовых и серебряных солей. Производные: амиды, анилиды, толуидины, S-бензилтиурониевые соли, нитробензиловые и фенациловые эфиры.

Тема 10. Амины. Реакции обнаружения: растворимость в разбавленных кислотах, карбиламиновая проба, проба на диазотирование и сочетание. Производные: замещенные мочевины и тиомочевины, амиды, фталаминовые кислоты, четвертичные аммониевые соли, пикраты, пикролонаты. Идентификация аминокислот с помощью ионофореза и хроматографии на бумaгe. ИК-спектры аминов и амидов.

Тема 11. Нитросоединения. Реакции обнаружения: проба с гидратом закиси железа, действие азотистой кислоты на первичные и вторичные алифатические нитросоединения. Реакция Коновалова (проба с хлорным железом). Проявление нитрогруппы в спектрах.

Тема 12. Галогенопроизводные. Реакции обнаружения: проба Бельштейна, проба с азотнокислым серебром. Производные: нафталиды, пикраты S-алкилизотиомочевины. Производные арилгалогенидов - галогензамещенные нитропроизводные и арил-сульфамиды.

Тема 13. Соединения с кратными связями. Реакции обнаружения: действие раствора брома в четыреххлористом углероде, обесцвечивание раствора перманганата калия. Спектральное обнаружение двойной связи.

Часть II. ОСНОВНЫЕ МЕТОДЫ ОРГАНИЧЕСКОЙ ХИМИИ

Тема 1. Нитрование. Прямое и непрямое нитрование. Нитрующие агенты. Нитрование ароматических соединений. Понятие о механизме реакции. Нитроний – катион. Влияние заместителей на нитрование ароматических соединений. Правила ориентации. Нитрование 6ензола, толуола, фенола, анилина, нафталина, бензойной кислоты, хлорбензола. Защита аминогруппы и альдегидной группы при нитровании. Побочные реакции при нитровании ароматических соединений. Нитрование фурана, пиррола, тиофена, пиридина.

Нитросоединения алифатического ряда. Реакция Коновалова. Парофазное нитрование. Понятие о механизме нитрования алифатических соединений. Непрямое нитрование. Peaкция замены галоида и сульфогруппы на нитрогруппу. Получение нитрометана из хлоруксусной кислоты. Идентификация нитросоединений.

Тема 2. Сульфирование. Сульфирующие агенты. Сульфирование ароматических соединений. Обратимость реакций. Влияние концентрации серной кислоты и температуры на ход сульфирования. Сульфирование бензола, толуола, нафталина, фенола, антрахинона. Влияние катализаторов. Получение сульфаниловой кислоты. Побочные реакции при сульфировании. Получение хлорангидридов сульфокислот. Особенности выделения и идентификации сульфокислот. Обмен сульфогруппы на Н , ОН и СN -группы. Сульфирование парафинов и олефинов. Реакция сульфохлорирования. Сульфирование гетероциклических соединений.

Тема 3. Галогенирование. Агенты галогенирования: свободные галоиды, галогеноводородные кислоты, галоидные соединения фосфора, хлористый тионил, диоксандибромид, N-бpoмcукцинимид.

Классификация методов синтеза галогенопроизводных по механизмам реакций: свободнорадикальное замещение водорода галогеном, электрофильное присоединение галогена и галогеноводородов по кратной связи, электрофильное замещение в ароматических соединениях, нуклеофильное замещение гидроксила.

Галогенирование ароматических соединений как реакция электрофильного замещения. Механизм реакции, роль катализатора. Условия введения галогена в ароматическое ядро и в боковую цепь. Различие в механизмах обеих реакций и в свойствах полученных галогенопроизводных. Галогенирование гетероциклических соединений. Реакция галогенометилирования. Радикальное замещение водорода галогеном.

Методы введения галогена в олефины в аллильное положение. Термическое хлорирование пропилена.

Присоединение бромистого водорода к С=С-связи в присутствии перекисей (эффект Хараша).

Полигалогенопроиэводные. Реакция теломеризации и ее механизм.

Электрофильное присоединение галогена и галогеноводородов по кратной связи. Присоединение галогенов к олефинам. Условия этой реакции и ее механизм. Стереоспецифичность реакции галогенирования циклоолефинов.

Присоединение галогенов к ацетиленам и диеновым углеводородам.

Гидрогалогенирование олефинов. Зависимость течения этой реакции от природы олефина, галогеноводорода, условий реакций. Правило Марковникова. Механизм реакции гидрогалогенирования.

Галогенирование карбонильных соединений. Получение  - и -галогензамещенных карбонильных соединений. Галоформная реакция. Метод введения галогенов в  - положение карбоновых кислот (реакция Геля-Фольгарда-Зелинского).

Замещение галогенов в алкилгалогенидах. Подвижность галогенов. Гидролиз алкилгалогенидов как реакция нуклеофильного замещения. Механизмы SNl и SN2. Влияние на скорость и тип нуклеофильного замещения различных факторов: структуры исходного вещества (электронные и пространственные факторы), нуклеофильной активности замещающей группы, природы замещаемой группы и растворителя.

Тема 4. Восстановление нитрогруппы. Восстановление нитрогруппы в ароматическом ряду. Восстанавливающие агенты. Восстановление в щелочной, нейтральной и кислой средах. Продукты неполного восстановления - нитрозосоединения, арилгидроксиламины, азокси-, азо- и гидразосоединения. Перегруппировка продуктов неполного восстановления. Бензидиновая и семидиновая перегруппировки.

Восстановление в кислой среде. Техническое получение анилина. Парциальное восстановление. Получение нитроаминов, диаминов, аминофенолов.

Тема 5. Аминирование. Введение аминогруппы путем замены атома водорода в ароматическом или гетероциклическом ядре. Реакция Чичибабина. Замена галоида на аминогруппу (реакция Гофмана). Синтез первичных аминов из галогенидов и фталимида калия, галогенидов и уротропина. Синтез вторичных аминов взаимодействием галогенидов с цианамидами металлов. Замена гидроксильной группы на аминогруппу. Условия реакции. Совместная каталитическая дегидратация бутандиола и аммиака (аминов). Замена гидроксильной группы на аминогруппу в ароматическом ряду (реакция Бухерера). Реакции простых эфиров и -окисей с аммиаком и аминами. Получение этаноламинов. Синтез аминов из альдегидов и кетонов. Восстановительное аминирование. Восстановление оксимов и оснований Шиффа. Реакция Лейкарта. Перегруппировка Бекмана, ее механизм. Аминометилирование кетонов, фенолов, гетероциклических соединений (реакция Манниха). Получение аминов из производных кислот. Перегруппировка Гофмана, Курциуса, Шмидта. Восстановление нитрилов в амины (реакция Вышнеградского). Разделение смесей аминов.

Тема 6. Восстановление кислородсодержащих органических соединений. Общие представления об окислительно-восстановительных процессах в органической химии.

Восстанавливающие агенты; металлы: натрий, амальгама натрия, магний, цинк, алюминий; комплексные гидриды металлов: алюмогидрид лития, боргидриды щелочных металлов; алкоголяты алюминия; йодистоводородная кислота. Органические восстановители.

Восстановление кислот и их производных до альдегидов, спиртов и углеводородов. Реакция Пириа, каталитическое гидрирование хлорангидридов кислот по Розенмунду-Зайцеву. Получение альдегидов из нитрилов и гидразидов кислот. Получение спиртов из кислот действием алюмогидрида лития; восстановление сложных эфиров действием натрия и спирта (Буво-Блан).

Восстановление альдегидов и кетонов. Получение спиртов действием изопропилата алюминия (Меервейн-Пондорфф-Верлей). Восстановление действием натрия, амальгамы натрия и амальгамированного магния. Образование пинаконов, механизм реакции. Реакция Канниццаро, «перекрестная» реакция Канниццаро. Реакция Тищенко. Восстановление карбонильных соединений действием алюмогидрида лития и боргидридов металлов. Получение углеводородов из карбонильных coeдинений дейcтвием амальгамированного цинка (Клемменсен) и гидразингидрата (Кижнер). Видоизменения реакции Кижнера. Восстановление -, -непредельных карбонильных соединений. Восстановление хинонов.

Методы прямого и косвенного восстановления гидроксилсодержащих соединений (спиртов и фенолов).

Тема 7. Окисление. Окисляющие агенты: кислород, озон; окислы металлов - хромовый ангидрид, двуокись марганца, двуокись свинца, четырехокись осмия, окись серебра, двуокись селена; перекисные соединения: перекись водорода, надуксусная и моноперфталевая кислота, кислота Каро; соли: перманганат калия, бихроматы, гипохлорит натрия, тетраацетат свинца; кислоты; азотная, серная, хлорноватистая, йодная.

Окисление двойной углерод-углеродной связи. Каталитическое получение окиси этилена. Действие на олефины надкислот (реакция Прилежаева). Транс-размыкание эпоксидного кольца как SN2 реакция. Образование цис-гликолей по реакции Вагнера. Озонирование двойной связи. Установление структуры олефинов путем озонолиза. Окисление углеводородов до спиртов, альдегидов и кетонов, кислот. Двуокись селена, как специфический реагент окисления в аллильном положении и получении альдегидов.

Особые случаи окисления углеводородов. Кумольный процесс. Образование гидроперекиси кумола и распад её до фенола и ацетона. Окисление ароматических углеводородов до хинонов. Получение малеинового ангидрида из бензола и фталевого ангидрида из нафталина.

Окисление спиртов и диолов. Окисление Бекмановской смесью; возможные побочные реакции. Окисление по Оппенауеру. Каталитическое дегидрирование спиртов. Окисление гликолей с расщеплением углерод-углеродной связи (тетраацетат свинца и йодная кислота). Получение кислот из спиртов.

Окисление альдегидов и кетонов. Аутоокисление бензойного альдегида. Окисление альдегидной группы в углеводах. Правило Попова окисления кетонов. Окисление кетонов действием надкислот (Байер-Виллигер). Понятие о биохимическом окислении.

Тема 8. Диазотирование. Значение диазосоединений в органическом синтезе и промышленности азокрасителей.

Реакция диазотирования, её механизм. Роль минеральной кислоты в реакции диазотирования. Контроль за реакцией диазотирования. Особые случаи диазотирования: слабоосновные амины, диамины. Различные формы диазосоединений. Гетеролитический и гомолитический распад диазосоединений. Реакции диазосоединений с выделением азота. Замена диазогрупп на водород, гидроксил, галоиды, циан - и нитрогруппу. Реакция гомолитического арилирования (Гомберг-Бахман). Разложение двойных диазониевых солей (А.Н.Несмеянов).

Реакции диазосоединений без выделения азота. Восстановление до арилгидразинов. Азосочетание как реакция электрофильного замещения. Выбор pH среды при азосочетании с аминами и фенолами. Влияние заместителей в бензольном ядре на активность диазо - и азокомпонентов в реакции азосочетания.

Примеры получения азокрасок – гелиантина, конго, нафтоловый синечерный.

Часть III. РЕАКЦИИ С ОБРАЗОВАНИЕМ С-С – СВЯЗИ

Тема 1. Алкилирование. Алкилирующие агенты: галоидные алкилы, непредельные углеводороды, спирты. Механизм реакции алкилирования по Фриделю-Крафтсу. Катализаторы алкилирования и их активность. Выделение -комплексов. Влияние заместителей в ароматическом ядре на лёгкость алкилирования. Побочные реакции при алкилировании: изомеризация алкильного радикала, полиалкилирование, реакция диспропорционирования. Реакции ди- и полигалогенпроизводных с ароматическими углеводородами.

Карбены, их образование, строение. межмолекулярные и внутримолекулярные реакции внедрения, молекулярные реакции присоединения.

Реакция Вюрца. Ион-радикалы.

Тема 2. Ацилирование. Ацилирующие агенты. получение кетонов по Фриделю-Крафтсу; механизм реакции. Внутримолекулярное ацилирование. Получение кетонов гетероциклического ряда.

Синтез ароматических альдегидов с помощъю окиси углерода и хлористого водорода (Гаттерман-Кох), синильной кислоты и хлористого водорода (Гаттерман), формилирование с помощью диметилформамида и хлорокиси фосфора (реакция Вильсмайера).

Получение ароматических кислот. Синтез салициловой кислоты (Кольбе-Шмитт).

Тема 3. Конденсация карбонильных соединений. Пподвижность - водородных атомов в карбонильных соединениях - альдегидах и кетонах, -дикетонах, сложных эфирах карбоновых и кетокарбоновых кислот. Метиленовый и карбонильный компоненты в реакциях конденсации.

Тема 4. Конденсация альдегидов и кетонов. Альдольная и кротоновая конденсации. Механизм реакции, роль катализаторов (оснований и кислот). Сравнительная активность альдегидов и кетонов.

Конденсации альдегидов с малоновой кислотой, эфирами галоидозамещенных кислот, нитросоединениями, ацетиленом, циклопентадиеном, синильной кислотой. Конденсация ароматических альдегидов с ангидридами кислот (реакция Перкина), с ароматическими аминами и фенолами. Синтез трифенилметановых красителей. Бензоиновая конденсация, её механизм. Влияние заместителей на бензоиновую конденсацию.

Тема 5. Конденсация сложных эфиров. Синтез эфиров - кетонокислот (конденсация Кляйзена). Механизм реакции синтеза ацетоуксусного эфира. Конденсирующие средства. Обратимость реакции. Использование эфиров муравьиной и щавелевой кислот в реакции Кляйзена.

Конденсация эфиров дикарбоновых кислот (циклизация по Дикману). Конденсация сложных эфиров с кетонами нитрилами. Ацилоиновая конденсация. Циклизация динитрилов по Циглеру.

Применение ацетоуксусного эфира для синтеза кетонов и кислот.

Тема 6. Диеновый синтез (реакция Дильса-Альдера). Диеновые компоненты реакции Дильса-Альдера. Алифатические, циклические и гетероциклические диены (дивинил и его гомологи, циклопентадиен, циклогексадиен, фуран, винилциклогексен).

Диенофилы: акролеин, акриловая кислота и ее производные, непредельные нитросоединения, малеиновый ангидрид, фумаровая кислота, хиноны, ацетилендикарбоновая кислота. Влияние электронодонорных и электроноакцепторных групп на активность диена и диенофила в реакции Дильса-Альдера.

Структурная направленность диенового синтеза. Стереоспецифичность реакции (эндо- и экзоформы). Условия проведения реакции, образование моно- и диаддуктов (хиноны, ацетилендикарбоновая кислота). Синтез мостиковых структур (эндоксо- и эндометиленциклогексановые системы). Реакция заместительного присоединения.

Перечень лабораторных работ

1. Бензилиденанилин.

2. п-Нитроанилин из бензилиденанилина.

3. Фурфурилэтиламин из фурфурола, этиламина и муравьиной кислоты.

4. Фурфуриловый спирт и пирослизевая кислота из фурфурола.

5. Фенилпиразолин из коричного альдегида и гидразина.

6. Сильван (из фурфурола и гидразина).

7. Пинакон из ацетофенона.

8. Пинакон из циклогексанона.

9. Адипиновая кислота из циклогексанона.

10. п-Этоксиацетофенон из фенетола и хлористого ацетила.

11. п-Ацетиланизол из анизола и хлористого ацетила.

12. 1-Нитропентанол из масляного альдегида и нитрометана.

13. п-Бензохинон из гидрохинона.

14. Гидрокоричная кислота из коричной кислоты.

15. Коричный спирт из коричного альдегида.

Полученные студентом соединения идентифицируются химическими методами (получение производных) и спектральными характеристиками (ИК, масс-, ЯМР- спектроскопия).

Выполненные работы должны быть оформлены и защищены в присутствии преподавателя, ведущего курс и группы студентов.

ЛИТЕРАТУРА

Обязательная

1. Г. Беккер – Введение в электронную теорию органических реакций, М., Мир, 1965.

2. О.А. Реутов, А.Л. курц, К.П. Бутин – Органическая химия, том 1-4, М., изд-во МГУ, 1999.

3. Ю.С. Шабаров. Органическая химия, М., Химия, 2000.

4. А.Е. Агрономов – Избранные главы органической химии., М., Химия, 1990.

5. П. Сайкс.- Механизмы реакций в органической химии, М., Химия, 2000.

Дополнительная

1. Органикум.- перевод с немецкого. М., Мир, 1992.

2. Л. Физер., М. Физер. – Реагенты для органического синтеза. том I-VII, М., Мир, 1978.

3. К. Бюллер, Д. Пирсон. – Органические синтезы. часть 1-2, М., Мир, 1973.

4. Л. Титце, Т. Айхер. – Препаративная органическая химия. М., Мир, 1999.

Программа составлена Михайловой Н.М.,

к.х.н, доц., кафедры органической химии,

факультета физико-математиче

www.ronl.ru


Смотрите также