|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Витамин K. Витамин к рефератРеферат.Министерство сельского хозяйства РФ ФГБОУ ВПО «Санкт-Петербургская государственная академия ветеринарной медицины» Кафедра кормления. На тему: Витамин К, общая характеристика,биологическое значение и роль в системе гемостаза. Выполнила: студентка 2 курса 9 группы ФВМ Бабанова А.А. Проверил: Санкт-Петербург 2013 Содержание.Введение Общая характеристика Биологическая характеристика Авитаминоз Роль в системе гемостаза Список литературы Приложение Введение.Витамин К получил своё название от латинского слова «коагуляция», что означает – свёртывание (крови). Под общим названием Витамин К понимают несколько соединений. Является противогеморрагическим средством. В 1929 году датский учёный Хенрик Дам исследовал последствия недостатка холестерина у цыплят, находившихся на лишённой холестерина диете.Через несколько недель у цыплят развилась геморрагия — кровоизлияние в подкожную клетчатку, мышцы и другие ткани. Добавление очищенного холестерина не устраняло патологических явлений. Оказалось, что целебным эффектом обладают зёрна злаков и другие растительные продукты. Наряду с холестерином из продуктов были выделены вещества, которые способствовали повышению свертывания крови. За этой группой витаминов закрепилось название витамины К, поскольку первое сообщение об этих соединениях было сделано в немецком журнале, где они назывались Koagulationsvitamin (витамины коагуляции). В 1939 году в лаборатории швейцарского ученого Каррера впервые был выделен из люцерны витамин К, его назвали филлохинон. В том же году американские биохимики Бинклей и Дойзи получили из гниющей рыбной муки вещество с антигеморрагическим действием, но с иными свойствами, чем препарат, выделенный из люцерны. Это вещество получило название витамин К2 в отличие от витамина из люцерны, названного витамином К1. В 1943 году Дам и Дойзи получили Нобелевскую премию за открытие и установление химической структуры витамина K. Общая характеристика.Витамин К относится к группе липофильных (жирорастворимых) и гидрофобных витаминов, необходимых для синтеза белков, обеспечивающих достаточный уровень коагуляции. Химически, является производным 2-метил-1,4-нафтохинона. Играет значительную роль в обмене веществ в костях и в соединительной ткани, а также в здоровой работе почек. Во всех этих случаях витамин участвует в усвоении кальция и в обеспечении взаимодействия кальция и витамина D. В других тканях, например, в лёгких и в сердце, тоже были обнаружены белковые структуры, которые могут быть синтезированы только с участием витамина К. Витамины группы K: витамин K1 (филлохинон, вещество, которое синтезируется в растениях и содержится в листьях.), витамин K2 (менахинон – синтезируется микроорганизмами в тонком отделе кишечника, а также клетками печени животных. Витамин К можно обнаружить во всех тканях животных), и синтетически полученные: витамин K3 (2-метил-1,4-нафтохинон), K4(2-метил-1,4-нафтогидрохинон), K5(2-метил-4-амино-1-нафтогидрохинон), K6(2-метил-1,4-диаминонафтохинон), K7(3-метил-4-амино-1-нафтогидрохинон). Наибольший интерес представляет K1 и K2. По химической природе обе разновидности природного витамина К являются нафтохинонами. Витамин К1 является 2-метил-3-фнтил-1,4-нафтохиноном, витамин К2 - 2-метил-3-дифарнезил-1,4-нафтохиноном. Основная часть витамина поступает в организм с пищей, частично синтезируется бактериями в кишечнике. В процессе всасывания витамина участвует желчь и для нормального усвоения в кишечнике должно быть некоторое количество жира. Некоторые бактерии, такие как кишечная палочка, найденная в толстом кишечнике, способны синтезировать витамин K2 , но не витамин K1.В этих бактериях витамин K2 служит переносчиком электронов в процессе, называемым анаэробным дыханием. Например, такие молекулы, как лактаты, формиаты , являющиеся донорами электронов, с помощью фермента передают два электрона K2. Витамин K2 в свою очередь передает эти электроны молекулам — акцепторам электронов, таким как фумараты или нитраты, которые, соответственно, восстанавливаются до сукцинатов или нитритов. В результате таких реакций синтезируется клеточный источник энергии АТФ, подобно тому, как он синтезируется в эукариотических клетках с аэробным дыханием. Кишечная палочка способна осуществлять как аэробное, так и анаэробное дыхание, в котором участвуют интермедиаты менахиноны. Наиболее богаты витамином К1 зеленые листовые овощи, которые дают от 50 до 800 мкг витамина K на 100 г пищи. Также витамин К содержат: зеленыетоматы, плоды шиповника, листья шпината, капуста (брюссельская и цветная),крапива, хвоя, овес, соя, рожь, пшеница. Травы, богатые витамином К: люцерна, зеленый чай, ламинария, крапива, овес и пастушья сумка. Значительно меньше содержится витамина К в корнеплодах и фруктах. Из пищевых продуктов наиболее богатое содержание этого витамина в печени свиньи, яйцах. Витамин K является достаточно устойчивым к тепловым воздействиям. Но разрушается под действием ультрафиолетовых лучей и в щелочных (содовых) растворах. studfiles.net Реферат Витамин К | Опубликовать | скачать Реферат на тему: План:
ВведениеВитамин K1 (филлохинон). Содержит функциональное нафтохиноновое кольцо и алифатическую боковую цепь. Филлохинон имеет фитил в боковой цепи. Витамин К относится к группе липофильных (жирорастворимых) и гидрофобных витаминов, необходимых для синтеза белков, обеспечивающих достаточный уровень коагуляции. Химически, является производным 2-метил-1,4-нафтохинона. Играет значительную роль в обмене веществ в костях и в соединительной ткани, а также в здоровой работе почек. Во всех этих случаях витамин участвует в усвоении кальция и в обеспечении взаимодействия кальция и витамина D. В других тканях, например, в лёгких и в сердце, тоже были обнаружены белковые структуры, которые могут быть синтезированы только с участием витамина К. 1. Основные формы витамина КВитамин K определяют как группу липофильных (гидрофобных) витаминов. Витамин K2 (менахинон, менатетренон) продуцируется бактериями в кишечнике, поэтому его недостаточность проявляется редко, преимущественно при дисбактериозах. 2. Химическое строениеВитамин K2 (menaquinones). Боковая цепь может состоять из разного числа изопреноидных остатков. Витамин K — групповое название для ряда производных 2-метил-1,4-нафтохинона, сходного строения и близкой функции в организме. Обычно они имеют метилированный нафтохиноновый фрагмент с переменной по числу звеньев алифатической боковой цепью в положении 3 (см. рис. 1). Филлохинон (также именуемый витамином K1) содержит 4 изопреноидных звена, одно из которых является ненасыщенным. В природе найдены только два витамина группы К: выделенный из люцерны витамин K1 и выделенный из гниющей рыбной муки K2. Кроме природных витаминов К, в настоящее время известен ряд производных нафтохинона, обладающих антигеморрагическим действием, которые получены синтетическим путем. К их числу относятся следующие соединения: Витамин К3, (2-метил-1,4-нафтохинон), Витамин К4 (2-метил-1,4-нафтогидрохинон), Витамин К5 (2-метил-4-амино-1-нафтогидрохинон), Витамин К6 (2-метил-1,4-диаминонафтохинон), Витамин К7 (3-метил-4-амино-1-нафтогидрохинон) 3. ФизиологияВитамин K участвует в карбоксилировании остатков глутаминовой кислоты в полипептидных цепях некоторых белков. В результате такого ферментативного процесса происходит превращение остатков глутаминовой кислоты в остатки гамма-карбоксилглутаминовой кислоты (сокращенно Gla-радикалы). Остатки гамма-карбоксилглутаминовой кислоты (Gla-радикалы), благодаря двум свободным карбоксильным группам, участвуют в связывании кальция. Gla-радикалы играют важную роль в биологической активности всех известных Gla-белков.[1] В настоящее время обнаружены 14 человеческих Gla-белков, играющих ключевые роли в регулировании следующих физиологических процессов:
Некоторые бактерии, такие как кишечная палочка, найденная в толстом кишечнике, способны синтезировать витамин K2 , но не витамин K1.)[5] В этих бактериях витамин K2 служит переносчиком электронов в процессе, называемым анаэробным дыханием. Например, такие молекулы, как лактаты, формиаты или NADH, являющиеся донорами электронов, с помощью фермента передают два электрона K2. Витамин K2 в свою очередь передает эти электроны молекулам — акцепторам электронов, таким, как фумараты или нитраты, которые соответственно восстанавливаются до сукцинатов или нитритов. В результате таких реакций, синтезируется клеточный источник энергии АТФ, подобно тому, как он синтезируется в эукариотических клетках с аэробным дыханием. Кишечная палочка способна осуществлять как аэробное, так и анаэробное дыхание, в котором участвуют интермедиаты менахиноны. 4. Роль в возникновении заболеванийДефицит витамина К может развиваться из-за нарушения усвоения пищи в кишечнике (такие как закупорка желчного протока), из-за терапевтического или случайного всасывания антагонистов витамина K, или, очень редко, дефицитом витамина К в рационе. В результате приобретенного дефицита витамина К Gla-радикалы формируются не полностью, вследствие чего Gla-белки не в полной мере выполняют свои функции. Вышеописанные факторы могут привести к следующему: обильные внутренние кровоизлияния, окостенение хрящей, серьёзная деформация развивающихся костей или отложения солей на стенках артериальных сосудов. В то же время переизбыток витамина К способствует увеличению тромбоцитов, увеличению вязкости крови, и как следствие крайне нежелательно употребление продуктов богатых витамином К для больных варикозом, тромбофлебитом, некоторыми видами мигреней, людям с повышенным уровнем холестерина (так как формирования тромбов начинается с утолщения артериальной стенки вследствие формирования холестериновой бляшки). 5. ИсторияВ 1929 году датский учёный Хенрик Дам (дат. Carl Peter Henrik Dam) исследовал последствия недостатка холестерола у цыплят, находившихся на лишённой холестерола диете.[6] Через несколько недель у цыплят развилась геморрагия — кровоизлияние в подкожную клетчатку, мышцы и другие ткани. Добавление очищенного холестерола не устраняло патологических явлений. Оказалось, что целебным эффектом обладают зёрна злаков и другие растительные продукты. Наряду с холестеролом из продуктов были выделены вещества, которые способствовали повышению свертывания крови. За этой группой витаминов закрепилось название витамины К, поскольку первое сообщение об этих соединениях было сделано в немецком журнале, где они назывались Koagulationsvitamin (витамины коагуляции). В 1939 году в лаборатории швейцарского ученого Каррера впервые был выделен из люцерны витамин К, его назвали филлохинон. В том же году американские биохимики Бинклей и Дойзи получили из гниющей рыбной муки вещество с антигеморрагическим действием, но с иными свойствами, чем препарат, выделенный из люцерны. Это вещество получило название витамин К2 в отличие от витамина из люцерны, названного витамином К1.[7] В 1943 году Дам и Дойзи получили Нобелевскую премию за открытие и установление химической структуры витамина K. 6. ДозировкиРекомендованная дневная норма для мужчин (25 лет) в США Dietary Reference Intake — (DRI) 120 мкг/сут. 7. ИсточникиВитамин K обнаружен в зелёных листовых овощах, таких, как шпинат и латук; в капустных — кормовой капусте, белокочанной капусте, цветной капусте, брокколи и брюссельской капусте; в таких растениях, как крапива, дымянка лекарственная[8], пшеница (отруби) и другие злаки, в некоторых фруктах, таких, как авокадо, киви и бананы; в мясе; коровьем молоке и молочных продуктах; яйцах; сое и продуктах из неё. Оливковое масло также содержит значительное количество витамина К. 8. ТоксичностьВозможны аллергические реакции. Примечания
Литература
Категории: Полициклические ароматические углеводороды, Витамины и витаминоподобные средства, Жирорастворимые витамины, Витамины, Кетоны, Хиноны, Коагулянты (в т ч факторы свертывания крови) гемостатики. Текст доступен по лицензии Creative Commons Attribution-ShareAlike. |
I. Витамины |
|
1. Общие сведения | 3 |
2. Витаминные недостаточности | 8 |
3. Клинические проявления и диагностика отдельных видов витаминной недостаточности | 10 |
4. Классификация | 10 |
5. Заготовка | 11 |
6. Хранение | 11 |
|
|
II. ВИТАМИНЫ К |
|
1. История открытия | 11 |
2. Химическое строение | 12 |
3. Физико-химические свойства | 14 |
4. Специфичность строения. Гомовитамины и антивитамины К | 15 |
5. Биохимические функции | 17 |
6. Связь с витаминами | 19 |
7. Биосинтез | 19 |
8. Авитаминоз | 20 |
9. Распространение в природе и потребность | 21 |
Литература: | 22 |
I. Витамины
1. Общие сведения
Витамины – низкомолекулярные органические соединения различной химической природы, абсолютно необходимые для нормальной жизнедеятельности организмов. Являются незаменимыми веществами, так как за исключением никотиновой кислоты они не синтезируются организмом человека и поступают главным образом в составе продуктов питания. Некоторые витамины могут продуцироваться нормальной микрофлорой кишечника. В отличии от всех других жизненно важных пищевых веществ (незаменимых аминокислот, полиненасыщенных жирных кислот и т.д.) витамины не обладают пластическими свойствами и не используются организмом в качестве источника энергии. Участвуя в разнообразных химических превращениях, они оказывают регулирующее влияние на обмен веществ и тем самым обеспечивают нормальное течение практически всех биохимических и физиологических процессов в организме.
Известно 13 незаменимых пищевых веществ, которые безусловно являются витаминами. Их принято делить на водорастворимые и жирорастворимые. Водорастворимые включают витамин С и витамины группы В: тиамин, рибофлавин, пантотеновую кислоту, В6, В12, ниацин, фолат и биотин. Жирорастворимыми являются витамины А, Е, D и К. Большинство известных витаминов представлено не одним, а несколькими соединениями (витамерами), обладающими сходной биологической активностью. Для наименования групп подобных родственных соединений применяют буквенные обозначения; витамеры принято обозначать терминами, отражающими их химическую природу. Примером может служить витамин В6, группа которого включает три витамера: пиродоксин, пиридоксаль и пиридоксамин. Принятая терминология не является общепризнанной, поэтому допускаются разнообразные обозначения витамина, за исключением устаревших.
Наряду с витаминами известна группа витаминоподобных соединений. К ним относят холин, инозит, оротовую, липоевую и парааминобензойную кислоты, карнитин, биофлавоноиды (рутин, кверцетин и чайные катехины) и ряд других соединений, обладающие теми или иными свойствами витаминов. Витаминоподобные соединения не имеют, однако всех основных признаков, присущих истинным витаминам, и, следовательно, таковыми не являются. В частности, холин и инозит, входя в состав соответствующих фосфолипидов, выполняют в организме пластическую функцию. Оротовая и липоевая кислоты, а также карнитин синтезируются в организме. Парааминобензойная кислота является витамином только для микроорганизмов, для человека и животных она биологически неактивна. Метилметионинсульфония хлорид (витамин U) обладает терапевтическим эффектом при ряде заболеваний, но не выполняет каких-либо жизненно важных функций в организме. То же в значительной мере относится и к биофлавоноидам (витамин Р) – растительным фенолам, обладающим капилляроукрепляющим действием.
Остальные жирорастворимые витамины могут синтезироваться в организме из своих предшественников – так называемых провитаминов. Известны провитамины А (каротины) и группы D (некоторые стерины). Каротины, поступающие в организм в составе продуктов растительного происхождения, расщепляются под воздействием специфического фермента с образованием ретинола (наибольшей биологической активностью обладает -каротин). Эргостерин и 7-дегидрохолестерин превращаются в витамины группы D (эргокальциферол и холекальциферол соответственно) под действием ультрафиолетового излучения определенной длины волны. Эргостерин содержится в продуктах растительного происхождения; его высоким содержанием отличаются дрожжи, используемые для получения синтетического эргокальциферола. 7-Дигидрохолестерин входит в состав липидов кожи человека и животных; синтез холекальциферола осуществляется под действием ультрафиолетового излучения Солнца (или искусственных источников).
Химическое строение всех известных витаминов полностью установлено. Выяснены и исследованы их свойства и специфические функции в организме. Вместе с тем имеющиеся данные о механизме действия ряда витаминов не являются исчерпывающими. Специфические функции многих витаминов определяются их связью с различными ферментами. Большинство водорастворимых витаминов (группа В) участвует в образовании коферментов и простетических групп ферментов, которые взаимодействуют с белковым компонентом (апоферментом), приобретают каталитическую активность и непосредственно включаются в разнообразные химические реакции. Таким образом, витамины принимают опосредованное участие во многих обменных процессах: энергетическом (тиамин, рибофлавин, ниацин), биосинтезе и превращениях аминокислот и белков (витамины В6 и В12), различных превращениях жирных кислот и стероидных гормонов (пантотеновая кислота), нуклеиновых кислот (фолат) и других физиологически активных соединений. Некоторые жирорастворимые витамины также выполняют коферментные функции. Витамин А в форме ретиналя является простетической группой зрительного белка родопсина, участвующего в процессе фоторецепсии; в форме ретинилфосфата он играет роль кофермента – переносчика остатков сахаров в биосинтезе гликопротеидов клеточных мембран. Витамин К осуществляет коферментные функции при биосинтезе ряда белков, связывающих кальций (в частности, протромбина), участвующих в процессе свертывания крови. Функции витаминов, не являющимися предшественниками образования коферментов и простетических групп ферментов, весьма разнообразны и связаны с осуществлением и регуляцией различных биохимических и физиологических процессов. Так, витамин D играет важную роль в обеспечении организма кальцием и поддержании его гомеостаза, влияет на процессы дифференцировки клеток эпителиальной и костной ткани, кроветворной и иммунной систем.
Необходимым условием реализации специфических функций витаминов в обмене веществ является нормальное осуществление их собственного обмена: всасывания в кишечнике, транспорта к тканям, превращения в биологически активные формы. Эти процессы протекают при участии специфических белков. Так, всасывание и перенос витаминов кровью происходят, как правило, с помощью специальных транспортных белков. Превращение витаминов в коферменты и простетические группы или в активные метаболиты (витамины группы D), а также последующее взаимодействие их с апоферментами осуществляется с помощью специфических ферментов: пиридоксалькиназа, в частности, катализирует превращение пиридоксаля (витаминВ6) в пиридоксальфосфат, синтез тиаминдифосфата из тиамина протекает при участии тиаминпирофосфокиназы. Таким образом, возможный дефект биосинтеза какого – либо специфического белка, участвующего в процессах ассимиляции витаминов, неизбежно приводит к различным расстройствам обмена тех или иных витаминов и соответственно их функций в организме.
Снижение или полная потеря биологического эффекта витаминов может быть вызвана так называемыми антивитаминами – веществами, имеющими структурное сходство с витаминами или вызывающими модификацию их химической природы. Действие структуроподобных антивитаминов основано на конкурентных взаимоотношениях с витаминами (в частности, в биосинтезе коферментов, их взаимодействия с апоферментами): заняв место витаминов в структуре фермента, антивитамины не выполняют их специфических функций, в связи с чем развиваются различные расстройства процессов метаболизма. Вторую группу составляют антивитамины биологического происхождения, разрушающие или связывающие молекулы витаминов: например, ферменты тиаминазы вызывают распад молекулы тиамина, яичный белок связывает биотин в биологически неактивный комплекс.
Некоторые антивитамины обладают антимикробной активностью и применяются в качестве химиотерапевтических средств. Так, сульфаниламидные препараты являются антивитаминами парааминобензойной кислоты, используемой бактериями для синтеза необходимого для их жизнедеятельности фолата ; сульфаниламид, вытесняющий парааминобензойную кислоту из комплекса с ферментом, способствует таким образом снижению проста бактерий и их гибели. Аминоптерин и аметоптерин (антивитамины фолата) тормозят синтез белка и нуклеиновых кислот в клетках и применяются для лечения больных с некоторыми злокачественными новообразованиями.
Витамины обладают высокой биологической активностью и требуются организму в очень небольшом количестве, соответствующем физиологической потребности, которая варьирует в пределах от нескольких микрограммов до нескольких десятков миллиграммов. Потребность в каждом конкретном витамине также подвержена колебаниям, обусловленным действием различных факторов, которые учитываются в рекомендуемых нормах потребления витаминов, подвергающихся периодическому уточнению и пересмотру. Существенное влияние на потребность в витаминах оказывают возраст и пол человека, характер и интенсивность его труда. Потребность в витаминах значительно возрастает при особых физиологических состояниях организма: у женщин – во время беременности, в период лактации, у детей – в период интенсивного роста, следует иметь в виду, что любые причины, изменяющие интенсивность обмена веществ, существенно влияют и на обмен витаминов в организме, повышая их расход в процессе жизнедеятельности. В частности, потребность в витаминах значительно возрастает под влиянием некоторых климатических и погодных условий, способствующих длительному переохлаждению или перегреванию организма, сопровождающихся резкими перепадами температуры атмосферного воздуха. Повышенная потребность в витаминах развивается при интенсивной физической нагрузке, нервно – психическом напряжении, в условиях воздействия неблагоприятных факторов окружающей среды, при ряде патологических состояний (например, при гипоксии). Повышенный расход витаминов возникает при болезнях желудочно-кишечного тракта, печени и почек, повышенная потребность в витаминах отмечается при некоторых эндокринных заболеваниях, например, гипотиреозе, функциональной недостаточности коры надпочечников. В пожилом и старческом возрасте повышенная потребность в витаминах обусловлена ухудшением всасывания и утилизации витаминов, а также различными диетическими ограничениями.
Недостаточное потребление витаминов ведет к нарушениям, зависящих от них биохимических (главным образом ферментативных) процессов и физиологических функций организма, обуславливает серьезные расстройства обмена веществ, поэтому исследование витаминной обеспеченности человека имеет важное диагностическое значение. С этой целью обычно определяют содержание витаминов и продуктов их обмена в крови и моче, исследуют активность ферментов, в состав которых в виде кофермента или простетической группы входит конкретный витамин, а также другие биохимические и физиологические показатели, характеризующие осуществление тем или иным витамином его специфических функций. Другой подход заключается в изучении фактического питания обследуемых людей и оценке поступления витаминов с пищей с помощью справочных таблиц, отражающих химический состав потребляемых продуктов, ил непосредственного определения содержания витаминов в потребляемых продуктах и биологических объектах, используют различные колориметрические, спектрофотометрические и флюорометрические методы, а также методы микробиологического анализа. Все большее распространение получают методы высокоэффективной жидкостной хроматографии, позволяющие наиболее полно и точно определить дефицит витаминов в организме, что особенно важно при стертой картине витаминной недостаточности.
Организм человека не способен запасать витамины на более или менее длительное время, они должны поступать регулярно, в полном наборе и соответствии физиологической потребности. Вместе с тем приспособительное возможности организма достаточно велики, и в течении определенного времени дефицит витаминов практически не проявляется: расходуются витамины, депонированные в органах и тканях, включаются и другие компенсаторные механизмы обменного характера. Только после израсходования депонированных витаминов возникают различные расстройства обмена веществ. Однако постоянное недостаточное потребление витаминов, даже не характеризующееся какими-либо клиническими проявлениями гиповитаминоза, отрицательно сказывается на состоянии здоровья человека: ухудшается самочувствие, снижаются работоспособность и сопротивляемость к респираторным и другим инфекционным заболеваниям, усиливается воздействие на организм неблагоприятных факторов среды обитания. Недостаточное потребление с пищей некоторых витаминов (особенно С и А) является фактором риска ишемической болезни сердца и ряда злокачественных новообразований. В частности, многолетние исследования больших контингентов людей, проведенные английскими и американскими специалистами, показали, что частота заболеваний раком полости рта, желудочно-кишечного тракта и легких при низком уровне витамина А в крови в 2-4 раза выше, чем при оптимальной обеспеченности этим витамином. Недостаточная обеспеченность витаминами беременных и кормящих женщин причиняет ущерб здоровью матери и ребенка, является одной из причин недоношенности, врожденных пороков, нарушений физического и умственного развития детей. В детском и юношеском возрасте недостаточное потребление витаминов отрицательно сказывается на показателях общего физического развития, препятствует формированию здорового жизненного статуса, обуславливает постепенное развитие обменных нарушений и хронических заболеваний.
turboreferat.ru
|
..:::Счетчики:::.. |
|
|
|
|