Чебышев, Пафнутий Львович. Пафнутий львович чебышев реферат


Реферат: Пафнутий Львович Чебышев

Корифей математики XIX века

 

    Пафнутий Львович Чебышев

 

Корнет казачьего полка Лев Павлович Чебышев и его супруга дали своему первому сыну, родившемуся 26 мая 1821 года в селе Окатово Калужской губернии, редкое имя Пафнутия. О детстве Пафнутия Львовича – великого русского математика мы знаем очень мало. Грамоте его обучала мама, а французкому и арифметике – двоюродная сестра. Учился Пафнутий и музыке, правда безуспешно, но не бесследно: занятия музыкой, как он признал впоследствии, приучили его “к точности и анализу”.

Вполне возможно также, что восприятие гармонии на музыкальных занятиях в сочетании с восприятием загадочных закономерностей мира чисел воспитывало в юном Чебышеве ощущение внутренней красоты и поэтичности математики.

Чтобы подготовить Пафнутия и его брата Павла к поступлению в университет, Чебышевы в 1832 году переехали в Москву. Для занятий с детьми были приглашены лучшие учителя.

В 1837 году шестнадцатилетний Пафнутий Чебышев становится студентом физико-математического отделения философского факультета Московского университета, отлично учился, в 1847 году с отличием оканчивает университет, защищает диссертацию на степень магистра.

В 1847 году он зачисляется адъюнктом Петербургского университета, а через два года, защитив диссертацию по “теории сравнений”, получает степень доктора математических наук, изберается профессором университета.

Задачки:

 

Как одно несказанное слово “убило” все простые числа.

Ученик: Натуральное число p>1 называется простым, если у него нет других делителей, кроме 1 и самого числа p.

Учитель: Ну и мог бы ты назвать хотя бы одно простое число?

Ученик: Много чисел могу назвать: 2,3,5,7,11, … .

Учитель: Остановись. У тебя нет оснований считать эти числа простыми. Ведь согласно данному тобой определению число простое, если оно делится только на себя и еденицу, но среди натурльных чисел нет таких.

Действительно, 7, например, делится не только на 7 и1, но и на -7 и на -1, Т. Е. имеет не 2 делителя, а 4. Получается, что простых чисел и вовсе нет. Ты их уничтожил, пропустив в определении просто всего лишь одно слово.

Задача-вопрос (1) . Какое это слово?

Задача (2) . Существует ли такое многозначное простое число, все цифры которого имеют общий делитель, больший еденицы?

Задача (3) . Простые числа 3,5,7 образуют арифметическую прогрессию с разностью d=2. Докажите, что другой тройки простых чисел, образующих арифметическую прогрессию d=2, нет.

Задача (4) . Напишите в строчку подряд первые 10 простых чисел – получится шестнадцати-значное число. Теперь вычеркните 10 цифр так, чтобы из оставшихся шести цифр без нарушения порядка их следования образовалось бы наибольшее возможное число.

Задача (5) . Ящик заполнен одинаковыми коробками, а коробки – кнопками. Сколько всего коробок в ящике, если кнопок в нем 3737, причем известно, что коробок меньше, чем кнопок в каждой коробке?

Ответы:

 

Ответ (1) . Натуральное число p>1 называется простым, если у него нет других натуральных делителей, кроме 1 и самого числа p.

Ответ (2) . Нет. Если бы его цифры имели общий делитель, то на него делилось бы и само это число.

Ответ (3) . Одно из трех чисел p, р+2, р+4 непременно делится на 3.

Ответ (4) . После вычеркивания десяти цифр должно получиться число 792 329.

Ответ (5) . 3737=37*101 оба множителя простые. Теперь ответ очевиден: коробок 37, а кнопок в каждой коробке 101.

 

www.referatmix.ru

Реферат Чебышев Пафнутий Львович

скачать

Реферат на тему:

220

План:

Введение

Пафну́тий Льво́вич Чебышев (произносится как «Чебышёв»[1]) (4 (16 мая) 1821, Окатово, Калужская губерния — 26 ноября (8 декабря) 1894, Санкт-Петербург) — русский математик и механик.

1. Биография

Чебышев родился в деревне Окатово, Боровского уезда, Калужской губернии в семье богатого землевладельца Льва Павловича. Первоначальное воспитание и образование получил дома, грамоте его обучила мать Аграфена Ивановна, арифметике и французскому языку — двоюродная сестра Авдотья Квинтильановна Сухарёва. Кроме того, с детства Пафнутий Львович занимался музыкой.

В 1832 году семья переезжает в Москву, чтобы продолжить образование взрослеющих детей. В Москве с Пафнутием Львовичем математикой и физикой занимается П. Н. Погоревский, один из лучших учителей Москвы, у которого в том числе учился Иван Тургенев.

Летом 1837 года Чебышев начинает изучение математики в Московском университете на втором философском отделении. Одним из учителей, которые более всего на него повлияли в дальнейшем, был Николай Брашман, который познакомил его с работами французского инженера Жана-Виктора Понселе.

В 1838 году, участвуя в студенческом конкурсе, получил серебряную медаль за работу по нахождению корней уравнения n-ной степени. Оригинальная работа была закончена уже в 1838 году и сделана на основе алгоритма Ньютона. За работу Чебышев был отмечен как самый перспективный студент.

В 1841 году в России случился голод, и семья Чебышева не могла больше его поддерживать. Однако Пафнутий Львович был полон решимости продолжить свои занятия. Он успешно заканчивает университет и защищает диссертацию.

В 1847 году Чебышев утверждён в звании доцента и начинает читать лекции по алгебре и теории чисел в Петербургском университете.

В 1850 году Чебышев защищает докторскую диссертацию и становится профессором Петербургского университета. Эту должность он занимал до старости.

В 1863 году особая «Комиссия Чебышева» принимала деятельное участие от Совета Санкт-Петербургского университета в разработке Университетского устава. Университетский устав, подписанный Александром II 18 июня 1863 года, предоставлял автономию университету как корпорации профессоров. Этот устав просуществовал до эпохи контрреформ правительства Александра III и рассматривался историками как наиболее либеральный и удачливый университетский регламент в России XIX — начала XX веков.

П. Л. Чебышев скончался 8 декабря 1894 года за письменным столом. Погребён в родном имении, в селе Спас-Прогнанье (ныне Жуковского района Калужской области) у храма Преображения Господня, рядом с могилами родителей.

2. Научная деятельность

Чебышев считается одним из основоположников теории приближения функций. Работы также в теории чисел, теории вероятностей, механике.

Учёная деятельность Чебышева, начавшаяся в 1843 году появлением в свет небольшой заметки «Note sur une classe d’intégrales définies multiples» («Journ. de Liouville», т. VIII), не прекращалась до конца его жизни. Последний его мемуар «О суммах, зависящих от положительных значений какой-либо функции», вышел в свет уже после его кончины (1895, «Mem. de l’Ас. des sc. de St.-Peters.»).

Из многочисленных открытий Чебышева надо упомянуть прежде всего работы по теории чисел. Начало их положено в прибавлениях к докторской диссертации Чебышева: «Теория сравнений», напечатанной в 1849 году. В 1850 году появился знаменитый «Mémoire sur les nombres premiers»,[2] где даны асимптотические оценки для суммы ряда \sum \frac{1}{p\log p} по всем простым числам p.

В 1867 году во II томе «Московского Математического Сборника» появился другой весьма замечательный мемуар Чебышева «О средних величинах», в котором дана теорема, лежащая в основе различных вопросов теории вероятностей и заключающая в себе знаменитую теорему Якова Бернулли как частный случай.

Этих двух работ было бы достаточно, чтобы увековечить имя Чебышева. По интегральному исчислению особенно замечателен мемуар 1860 года,[3] в котором для заданного многочлена x4 + αx3 + βx2 + γx + δ с рациональными коэффициентами даётся алгоритм определения такого числа A, что выражение \frac{x+A}{\sqrt{x^4+\alpha x^3 + \beta x^2 + \gamma x + \delta}} интегрировалось в логарифмах, и вычисления соответствующего интеграла.

Наиболее оригинальными, как по сущности вопроса, так и по методу решения, являются работы Чебышева «О функциях, наименее уклоняющихся от нуля». Важнейший из этих мемуаров — мемуар 1857 года под заглавием «Sur les questions de minima qui se rattachent à la représentation approximative des fonctions» (в «Мем. Акад. Наук»). Профессор Клейн в своих лекциях, прочитанных в Гёттингенском университете в 1901 году, называл этот мемуар «удивительным» (wunderbar). Его содержание вошло в классическое сочинение I. Bertrand Traité du Calcul diff. et integral. В связи с этими же вопросами находится и работа Чебышева «О черчении географических карт». Этот цикл работ считается основанием теории приближений. В связи с вопросами «о функциях, наименее уклоняющихся от нуля», находятся и работы Чебышева по практической механике, которой он занимался много и с большой любовью.

Также замечательны работы Чебышева об интерполировании, в которых он даёт новые формулы, важные как в теоретическом, так и практическом отношениях.

Одним из любимых приёмов Чебышёва, которым он особенно часто пользовался, было приложение свойств алгебраических непрерывных дробей к различным вопросам анализа.

К работам последнего периода деятельности Чебышева относятся исследования «О предельных значениях интегралов» («Sur les valeurs limites des intégrales», 1873). Совершенно новые вопросы, поставленные здесь Чебышевым, разрабатывались затем его учениками. Последний мемуар Чебышева 1895 года относится к той же области.

Общественная деятельность Чебышева не исчерпывалась его профессурой и участием в делах Академии наук. В качестве члена Ученого комитета Министерства просвещения он рецензировал учебники, составлял программы и инструкции для начальных и средних школ. Он был одним из организаторов Московского математического общества и первого в России математического журнала — «Математический сборник».

В течение сорока лет Чебышев принимал активное участие в работе военного артиллерийского ведомства и работал над усовершенствованием дальнобойности и точности артиллерийской стрельбы. В курсах баллистики до наших дней сохранилась формула Чебышева для вычисления дальности полета снаряда. Своими трудами Чебышев оказал большое влияние на развитие русской артиллерийской науки.

2.1. Ученики Чебышева

Для Чебышева не меньшее значение, чем конкретные научные результаты, всегда имела задача создания и развития российской математической школы[4].

Чебышев продолжал учить своих учеников и по окончании ими университетского курса, направляя их первые шаги на научном поприще, путём бесед и драгоценных указаний на плодотворные вопросы. Чебышев создал школу русских математиков, из которых многие известны и в настоящее время. Среди прямых учеников Чебышева — такие известные математики, как:

3. Труды

3.1. Статьи

4. Оценки и память

Заслуги Чебышева оценены были учёным миром достойным образом.

В 1944 году Академия наук СССР учредила премию имени П. Л. Чебышева «за лучшие исследования в области математики и теории механизмов и машин».

Характеристика его учёных заслуг очень хорошо выражена в записке академиков А. А. Маркова и И. Я. Сонина, читанной в первом после смерти Чебышева заседании Академии. В этой записке, между прочим, сказано:

Труды Чебышева носят отпечаток гениальности. Он изобрёл новые методы для решения многих трудных вопросов, которые были поставлены давно и оставались нерешёнными. Вместе с тем он поставил ряд новых вопросов, над разработкой которых трудился до конца своих дней.

Известный математик Шарль Эрмит заявил, что Чебышев «является гордостью русской науки и одним из величайших математиков Европы», а профессор Стокгольмского университета Миттаг-Леффлер утверждал, что Чебышев — гениальный математик и один из величайших аналистов всех времен.

Его избрали своим членом:

Именем П. Л. Чебышева названы:

4.1. В филателии

Примечания

  1. «По его собственному признанию, надо произносить: Чебышёв», см. Рыбников К. А. История математики, в двух томах. — С. 286.
  2. Chebyshev, P.L. Mémoire sur les nombres premiers - books.google.com/books?id=TGBtAAAAMAAJ&pg=PA51. — 1850.
  3. Chebyshev, P.L. Sur l’intégration de la différentielle \frac{x+A}{\sqrt{x^4+\alpha x^3 + \beta x^2 + \gamma x + \delta}}dx - books.google.com/books?id=TGBtAAAAMAAJ&pg=PA517. — 1860.
  4. П. Л. Чебышев был не только хорошим лектором, но и замечательным научным руководителем, обладавшим редкой способностью удачно выбирать и точно ставить перед молодыми исследователями новые вопросы, рассмотрение которых обещало привести к ценным открытиям. Математика XIX века / Колмогоров А. Н., Юшкевич А. П. (ред.). — М.: Наука, 1978. — Т. I. — С. 218.
  5. Чебышевский Сборник - www.tspu.tula.ru/res/math/c_sbor/index.html

Литература

wreferat.baza-referat.ru

Реферат Пафнутий Чебышев

скачать

Реферат на тему:

220

План:

Введение

Пафну́тий Льво́вич Чебышев (произносится как «Чебышёв»[1]) (4 (16 мая) 1821, Окатово, Калужская губерния — 26 ноября (8 декабря) 1894, Санкт-Петербург) — русский математик и механик.

1. Биография

Чебышев родился в деревне Окатово, Боровского уезда, Калужской губернии в семье богатого землевладельца Льва Павловича. Первоначальное воспитание и образование получил дома, грамоте его обучила мать Аграфена Ивановна, арифметике и французскому языку — двоюродная сестра Авдотья Квинтильановна Сухарёва. Кроме того, с детства Пафнутий Львович занимался музыкой.

В 1832 году семья переезжает в Москву, чтобы продолжить образование взрослеющих детей. В Москве с Пафнутием Львовичем математикой и физикой занимается П. Н. Погоревский, один из лучших учителей Москвы, у которого в том числе учился Иван Тургенев.

Летом 1837 года Чебышев начинает изучение математики в Московском университете на втором философском отделении. Одним из учителей, которые более всего на него повлияли в дальнейшем, был Николай Брашман, который познакомил его с работами французского инженера Жана-Виктора Понселе.

В 1838 году, участвуя в студенческом конкурсе, получил серебряную медаль за работу по нахождению корней уравнения n-ной степени. Оригинальная работа была закончена уже в 1838 году и сделана на основе алгоритма Ньютона. За работу Чебышев был отмечен как самый перспективный студент.

В 1841 году в России случился голод, и семья Чебышева не могла больше его поддерживать. Однако Пафнутий Львович был полон решимости продолжить свои занятия. Он успешно заканчивает университет и защищает диссертацию.

В 1847 году Чебышев утверждён в звании доцента и начинает читать лекции по алгебре и теории чисел в Петербургском университете.

В 1850 году Чебышев защищает докторскую диссертацию и становится профессором Петербургского университета. Эту должность он занимал до старости.

В 1863 году особая «Комиссия Чебышева» принимала деятельное участие от Совета Санкт-Петербургского университета в разработке Университетского устава. Университетский устав, подписанный Александром II 18 июня 1863 года, предоставлял автономию университету как корпорации профессоров. Этот устав просуществовал до эпохи контрреформ правительства Александра III и рассматривался историками как наиболее либеральный и удачливый университетский регламент в России XIX — начала XX веков.

П. Л. Чебышев скончался 8 декабря 1894 года за письменным столом. Погребён в родном имении, в селе Спас-Прогнанье (ныне Жуковского района Калужской области) у храма Преображения Господня, рядом с могилами родителей.

2. Научная деятельность

Чебышев считается одним из основоположников теории приближения функций. Работы также в теории чисел, теории вероятностей, механике.

Учёная деятельность Чебышева, начавшаяся в 1843 году появлением в свет небольшой заметки «Note sur une classe d’intégrales définies multiples» («Journ. de Liouville», т. VIII), не прекращалась до конца его жизни. Последний его мемуар «О суммах, зависящих от положительных значений какой-либо функции», вышел в свет уже после его кончины (1895, «Mem. de l’Ас. des sc. de St.-Peters.»).

Из многочисленных открытий Чебышева надо упомянуть прежде всего работы по теории чисел. Начало их положено в прибавлениях к докторской диссертации Чебышева: «Теория сравнений», напечатанной в 1849 году. В 1850 году появился знаменитый «Mémoire sur les nombres premiers»,[2] где даны асимптотические оценки для суммы ряда \sum \frac{1}{p\log p} по всем простым числам p.

В 1867 году во II томе «Московского Математического Сборника» появился другой весьма замечательный мемуар Чебышева «О средних величинах», в котором дана теорема, лежащая в основе различных вопросов теории вероятностей и заключающая в себе знаменитую теорему Якова Бернулли как частный случай.

Этих двух работ было бы достаточно, чтобы увековечить имя Чебышева. По интегральному исчислению особенно замечателен мемуар 1860 года,[3] в котором для заданного многочлена x4 + αx3 + βx2 + γx + δ с рациональными коэффициентами даётся алгоритм определения такого числа A, что выражение \frac{x+A}{\sqrt{x^4+\alpha x^3 + \beta x^2 + \gamma x + \delta}} интегрировалось в логарифмах, и вычисления соответствующего интеграла.

Наиболее оригинальными, как по сущности вопроса, так и по методу решения, являются работы Чебышева «О функциях, наименее уклоняющихся от нуля». Важнейший из этих мемуаров — мемуар 1857 года под заглавием «Sur les questions de minima qui se rattachent à la représentation approximative des fonctions» (в «Мем. Акад. Наук»). Профессор Клейн в своих лекциях, прочитанных в Гёттингенском университете в 1901 году, называл этот мемуар «удивительным» (wunderbar). Его содержание вошло в классическое сочинение I. Bertrand Traité du Calcul diff. et integral. В связи с этими же вопросами находится и работа Чебышева «О черчении географических карт». Этот цикл работ считается основанием теории приближений. В связи с вопросами «о функциях, наименее уклоняющихся от нуля», находятся и работы Чебышева по практической механике, которой он занимался много и с большой любовью.

Также замечательны работы Чебышева об интерполировании, в которых он даёт новые формулы, важные как в теоретическом, так и практическом отношениях.

Одним из любимых приёмов Чебышёва, которым он особенно часто пользовался, было приложение свойств алгебраических непрерывных дробей к различным вопросам анализа.

К работам последнего периода деятельности Чебышева относятся исследования «О предельных значениях интегралов» («Sur les valeurs limites des intégrales», 1873). Совершенно новые вопросы, поставленные здесь Чебышевым, разрабатывались затем его учениками. Последний мемуар Чебышева 1895 года относится к той же области.

Общественная деятельность Чебышева не исчерпывалась его профессурой и участием в делах Академии наук. В качестве члена Ученого комитета Министерства просвещения он рецензировал учебники, составлял программы и инструкции для начальных и средних школ. Он был одним из организаторов Московского математического общества и первого в России математического журнала — «Математический сборник».

В течение сорока лет Чебышев принимал активное участие в работе военного артиллерийского ведомства и работал над усовершенствованием дальнобойности и точности артиллерийской стрельбы. В курсах баллистики до наших дней сохранилась формула Чебышева для вычисления дальности полета снаряда. Своими трудами Чебышев оказал большое влияние на развитие русской артиллерийской науки.

2.1. Ученики Чебышева

Для Чебышева не меньшее значение, чем конкретные научные результаты, всегда имела задача создания и развития российской математической школы[4].

Чебышев продолжал учить своих учеников и по окончании ими университетского курса, направляя их первые шаги на научном поприще, путём бесед и драгоценных указаний на плодотворные вопросы. Чебышев создал школу русских математиков, из которых многие известны и в настоящее время. Среди прямых учеников Чебышева — такие известные математики, как:

3. Труды

3.1. Статьи

4. Оценки и память

Заслуги Чебышева оценены были учёным миром достойным образом.

В 1944 году Академия наук СССР учредила премию имени П. Л. Чебышева «за лучшие исследования в области математики и теории механизмов и машин».

Характеристика его учёных заслуг очень хорошо выражена в записке академиков А. А. Маркова и И. Я. Сонина, читанной в первом после смерти Чебышева заседании Академии. В этой записке, между прочим, сказано:

Труды Чебышева носят отпечаток гениальности. Он изобрёл новые методы для решения многих трудных вопросов, которые были поставлены давно и оставались нерешёнными. Вместе с тем он поставил ряд новых вопросов, над разработкой которых трудился до конца своих дней.

Известный математик Шарль Эрмит заявил, что Чебышев «является гордостью русской науки и одним из величайших математиков Европы», а профессор Стокгольмского университета Миттаг-Леффлер утверждал, что Чебышев — гениальный математик и один из величайших аналистов всех времен.

Его избрали своим членом:

Именем П. Л. Чебышева названы:

4.1. В филателии

Примечания

  1. «По его собственному признанию, надо произносить: Чебышёв», см. Рыбников К. А. История математики, в двух томах. — С. 286.
  2. Chebyshev, P.L. Mémoire sur les nombres premiers - books.google.com/books?id=TGBtAAAAMAAJ&pg=PA51. — 1850.
  3. Chebyshev, P.L. Sur l’intégration de la différentielle \frac{x+A}{\sqrt{x^4+\alpha x^3 + \beta x^2 + \gamma x + \delta}}dx - books.google.com/books?id=TGBtAAAAMAAJ&pg=PA517. — 1860.
  4. П. Л. Чебышев был не только хорошим лектором, но и замечательным научным руководителем, обладавшим редкой способностью удачно выбирать и точно ставить перед молодыми исследователями новые вопросы, рассмотрение которых обещало привести к ценным открытиям. Математика XIX века / Колмогоров А. Н., Юшкевич А. П. (ред.). — М.: Наука, 1978. — Т. I. — С. 218.
  5. Чебышевский Сборник - www.tspu.tula.ru/res/math/c_sbor/index.html

Литература

wreferat.baza-referat.ru

Пафнутий Львович Чебышев

Корифей математики XIX векаПафнутий Львович Чебышев

Корнет казачьᴇᴦᴏ полка Лев Павлович Чебышев и его супруга дали своему первому сыну, родившемуся 26 мая 1821 года в селе Окаᴛᴏʙо Калужской губернии, редкое имя Пафнутия. О детстве Пафнутия Львовича – великого русского математика мы знаем очень мало. Грамоте его обучала мама, а французкому и арифметике – двоюродная сестра. Учился Пафнутий и музыке, правда безуспешно, но не бесследно: занятия музыкой, как он признал впоследствии, приучили его “к точности и анализу”.

Вполне возможно также, что восприятие гармонии на музыкальных занятиях в сочетании с восприятием загадочных закономерностей мира чисел воспитывало в юном Чебышеве ощущение внутренней красоты и поэтичности математики.

Для того чтобы подгоᴛᴏʙить Пафнутия и его брата Павла к поступлению в университет, Чебышевы в 1832 году переехали в Москву. Важно понимать - для занятий с детьми были приглашены лучшие учителя.

В 1837 году шестнадцатилетний Пафнутий Чебышев становится студентом физико-математического отделения философского факультета Московского университета, отлично учился, в 1847 году с отличием оканчивает университет, защищает диссертацию на степень магистра.

В 1847 году он зачисляется адъюнктом Петербургского университета, а через два года, защитив диссертацию по “теории сравнений”, получает степень доктора математических наук, изберается профессором университета.

Задачки:

Как одно несказанное слово “убило” все простые числа.

Ученик: Натуральное число p>1 называется простым, если у него нет других делителей, кроме 1 и самого числа p.

Учитель: Ну и мог бы ты назвать хотя бы одно простое число?

Ученик: Много чисел могу назвать: 2,3,5,7,11, … .

Учитель: Остановись. Информация с сайта Бигреферат.ру / bigreferat.ru У тебя нет оснований считать эти числа простыми. Ведь согласно данному тобой определению число простое, если оно делится только на себя и еденицу, но среди натурльных чисел нет таких.

Действительно, 7, к примеру , делится не только на 7 и1, но и на -7 и на -1, Т. Е. имеет не 2 делителя, а 4. Получается, что простых чисел и вовсе нет. Ты их уничтожил, пропустив в определении просто всего лишь одно слово.

Задача-вопрос (1) . Какое это слово?

Задача (2) . Существует ли такое многозначное простое число, все цифры которого имеют общий делитель, больший еденицы?

Задача (3) . Простые числа 3,5,7 образуют арифметическую прогрессию с разностью d=2. Докажите, что другой тройки простых чисел, образующих арифметическую прогрессию d=2, нет.

Задача (4) . Напишите в строчку подряд первые 10 простых чисел – получится шестнадцати-значное число. Теперь вычеркните 10 цифр таким образом, чтобы из оставшихся шести цифр без нарушения порядка их следования образовалось бы наибольшее возможное число.

Задача (5) . Ящик заполнен одинаковыми коробками, а коробки – кнопками. Сколько всего коробок в ящике, если кнопок в нем 3737, причем известно, что коробок меньше, чем кнопок в каждой коробке?

Ответы:

Ответ (1) . Натуральное число p>1 называется простым, если у него нет других натуральных делителей, кроме 1 и самого числа p.

Ответ (2) . Нет. Если бы его цифры имели общий делитель, то на него делилось бы и само это число.

Ответ (3) . Одно из трех чисел p, р+2, р+4 непременно делится на 3.

Ответ (4) . После вычеркивания десяти цифр должно получиться число 792 329.

Ответ (5) . 3737=37*101 оба множителя простые. Теперь ответ очевиден: коробок 37, а кнопок в каждой коробке 101.

Похожие документы

Многочлены Лежандра, Чебышева и Лапласа

СОДЕРЖАНИЕ   Введение 1.  Многочлены Лежандра 2.  Многочлены Чебышева 3.  Преобразование Лапласа 4.  Обращение преобразования Лапласа с помощью многочленов, ортогональных на конечном промежутке 4.1 Постановка задачи 4.2.Обращение преобразования Лапласа с помощью смещенных многочленов Лежандра...

Выдающиеся люди статистики. П.Л. Чебышев

Тамбовский государственный университет им. Г. Р. Державина Академия экономики и предпринимательства Кафедра экономической теории и истории Реферат по статистике на тему: «Выдающиеся люди статистики. П.Л.Чебышев» Подготовил: студент 201 гр. Прилепская Алина ...

Академик Рудницкий Степан Львович

Рудницкий Степан Львович (1877, Перемышль, ныне Польша – 1937, расстрелян) — украинский географ, окончил философский факультет Львовского университета, доктор философии (1901), академик Всеукраинской Академии Наук (1929). В 1918 г. советник правительства Западно-украинской народной республики по политико-экономическим вопросам. В дальнейшем профессор Академии торговли (Вена) и Украинского вольного университета (Прага). В 1926 г. переезжает в советскую Украину, работает в Харькове, организатор и директор Украинского Научно-исследовательского института географии и картографии. В 1933 г. репрессирован. Написал несколько трудов по политической географии: "Украина и великие державы"(1920, на немецком языке), "Украинское дело с точки зрения политической географии"(1923) и др. В 1994 г. во Львове издан сборник трудов ученого "Почему мы хотим самостоятельную Украину?"...

Пафнутий Львович Чебышев

Корнет казачьего полка Лев Павлович Чебышев и его супруга дали своему первому сыну, родившемуся 26 мая 1821 года в селе Окатово Калужской губернии, редкое имя Пафнутия. О детстве Пафнутия Львовича – великого русского математика мы знаем очень мало. Грамоте его обучала мама, а французкому и арифметике – двоюродная сестра. Учился Пафнутий и музыке, правда безуспешно, но не бесследно: занятия музыкой, как он признал впоследствии, приучили его “к точности и анализу”....

Полиномы Чебышева

Содержание Введение Интерполяция многочленами Методы интерполяции Лагранжа и Ньютона Сплайн-аппроксимация Метод наименьших квадратов Полиномы Чебышева Практическое задание Введение Допустим, задана функция y (x), это означает, что любому допустимому значению х сопоставлено значение у. Но иногда оказывается, что найти это значение очень трудно. Например, у (х) может быть определено как решение сложной задачи, в которой х играет роль параметра или у (х) измеряется в дорогостоящем эксперименте. В этом случае можно вычислить небольшую таблицу значений функции, но прямое нахождение этой функции при большом числе значений аргумента будет практически невозможно. Функция у (х) может существовать в каких-нибудь физико-технических или математических расчётах, где её необходимо будет многократно вычислять. В этой ситуации удобно заменить функцию у (х) приближённой формулой, то есть подобрать некоторую функцию j (х), которая приближается в некотором смысле к у (х) и просто вычисляется. Затем при всех значениях аргумента полагать, что у (х)" j (х)...

bigreferat.ru


Смотрите также