Начальная

Windows Commander

Far
WinNavigator
Frigate
Norton Commander
WinNC
Dos Navigator
Servant Salamander
Turbo Browser

Winamp, Skins, Plugins
Необходимые Утилиты
Текстовые редакторы
Юмор

File managers and best utilites

Самые важные открытия человечества. Открытия современности реферат


Самые важные открытия человечества

Человечество не смогло бы существовать без постоянного прогресса, нахождения и внедрения новых технологий, изобретений и открытий. Сегодня многие из них уже устарели и в них нет необходимости, другие же, как колесо, служат до сих пор.

Водоворот времени проглотил многие открытия, а некоторые дождались своего признания и внедрения лишь спустя десятки и сотни лет. Проводились многочисленные вопросы с целью выяснить, какие же изобретения человечества являются самыми значительными.

Ясно одно - единого мнения нет. Тем не менее была составлена универсальная десятка наиболее великих открытий в истории человечества.

Удивительно, но оказалось, что достижения современной науки не поколебали значимости некоторых базовых открытий для большинства людей. Большинство изобретений настолько старые, что не представляется точно назвать имя их автора.

Огонь. Первое место оспорить сложно. Люди открыли полезные свойства огня довольно давно. С его помощью можно было согреться и освещать, менять вкусовые свойства пищи. Первоначально человек имел дело с "диким" огнем, возникающим от пожаров или извержений вулканов. Страх сменился любопытством, так пламя перекочевало в пещеру. Со временем человек научился сам добывать огонь, тот стал его постоянным спутником, основой хозяйства, защитой от зверей. В результате многие последующие открытия стали возможны лишь благодаря огню - керамика, металлургия, паровые машины и т.д. Путь к самостоятельному получению огня был долог - годами люди поддерживали домашний огонь в своих пещерах, пока не научились добывать его с помощью трения. Брались две палочки сухого дерева, в одной из которых была лунка. Первая ставилась на землю и прижималась. Вторую же вставляли в лунку и начинали быстро вращать между ладонями. Дерево нагревалось и воспламенялось. Конечно, такой процесс требовал определенной сноровки. С развитием человечества возникли и иные способы получения открытого огня.

Колесо. С этим открытием тесно связана и Повозка. Ученые полагают, что прообразом колеса стали катки, которые подкладывали под камни и стволы деревьев при их транспортировке. Наверное, тогда кто-то наблюдательный и подметил свойства вращающихся тел. Так, если бревно-каток в центре было тоньше, чем по краям, то оно передвигалось более равномерно, не отклоняясь по сторонам. Люди подметили это, и появилось приспособление, именуемое ныне скатом. Со временем конструкция менялась, от цельного бревна остались лишь два валика на концах, соединенных осью. Позже их вообще стали изготавливать отдельно, скрепляя лишь потом. Так и было открыто колесо, которое тотчас же стало применяться в первых повозках. Последующие века и тысячелетия люди немало потрудились над улучшением этого важного изобретения. Сначала сплошные колеса были жестко соединены с осью, вращаясь с ней. Но на повороте тяжелая повозка могла сломаться. Да и сами колеса были несовершенными, их первоначально выполняли из цельного куска дерева. Это приводило к тому, что первые повозки были довольно медленными и неповоротливыми, а в них запрягали сильных, но неторопливых волов. Крупным шагом в эволюции стало изобретение колеса со ступицей, насаженной на неподвижную ось. Чтобы уменьшить вес самого колеса в нем придумали вырезать надрезы, укрепляя для жесткости поперечными скрепами. В эпоху каменного века лучшего варианта создать было невозможно. А вот с приходом в жизнь человека металлов колеса получили металлические ободы и спицы, оно смогло вращаться в десятки раз быстрее и уже не боялось камней и износа. В повозку стали впрягаться быстроногие лошади, скорости заметно возросли. В итоге колесо стало открытием, которое дало, пожалуй, самый мощный толчок развитию всей техники.

Письменность. Мало кто будет отрицать значимость этого изобретения для всего развития человечества. Куда бы пошло развитие нашей цивилизации, если бы определенном этапе мы бы не научились фиксировать определенными символами нужную информацию. Это позволило сохранять ее и передавать. Очевидно, что без письменности наше общество в сегодняшнем виде попросту бы не существовало. Первые формы символов для передачи информации возникли около 6 тысяч лет назад. До этого человек пользовался более примитивными сигналами - дымом, ветками… Позже возникли и более сложные способы передачи данных, к примеру, инки использовали для этого узелки. Шнурки разного цвета завязывали в разнообразные узлы и крепили на палочку. Адресат же расшифровывал послание. Подобного рода письма практиковались и в Китае, Монголии. Однако сама письменность появилась лишь с изобретением графических символов. Сперва были приняты пиктографические письма. На них в виде рисунка люди схематически изображали явления, события, предметы. Пиктография была широко распространена еще в каменном веке, и ей особо учиться не надо было. Но для передачи сложных мыслей или абстрактных понятий такой вид письменности не годился. Со временем в пиктограммы стали вводиться условные знаки, обозначающие определенные понятия. Так, скрещенные руки символизировали обмен. Постепенно примитивные пиктограммы становились более четкими и определенными, письмо стало идеографическим. Высшей его формой стало иероглифическая письменность. Сначала она зародилась в Древнем Египте, затем распространилась на Дальний Восток - Японию, Китай. Такие символы уже позволяли отразить любые мысли, даже самые сложные. Но для постороннего человека понять тайну было очень сложно, да и для того, кто хотел научиться читать и писать, было необходимо выучить несколько тысяч знаков. В результате этим мастерством могли владеть лишь немногие. И только 4 тысячи лет назад древние финикийцы придумали алфавит и букв и звуков, который стал образцом для многих других народов. Финикийцы стали использовать 22 согласные буквы, каждая из которых обозначала отдельный звук. Новое письмо сделало возможным передачу любого слова графическим способом, да и обучиться письменности стало куда легче. Теперь она стала достоянием всего общества, этот факт послужил быстрому распространения алфавита по всему миру. Считается, что 80% из распространенных сегодня алфавитов имеют именно финикийские корни. Последние весомые изменения в финикийские буквы внесли греки - они стали обозначать буквами не только согласные, но и гласные звуки. Греческий алфавит в свою очередь лег в основу большинства европейских.

Бумага. Это изобретение тесно связано с предыдущим. Изобретателями же бумаги стали китайцы. Это тяжело назвать случайностью. С давних времен Китай славился не только любовью к книгам, но и сложной системой бюрократического управления с постоянными отчетами. Именно поэтому здесь была особая нужда к недорогому и компактному материалу для письма. До того, как появилась бумага, здесь писали на шелке и на бамбуковых дощечках. Однако эти материалы плохо подходили - шелк был дорогим, а бамбук - тяжелым и громоздким. Говорят, что для перевозки некоторых сочинений требовалась целая телега. Изобретение же бумаги пришло из операций по обработке шелковых коконов. Женщины варили их, а затем, разложив на циновку, перетирали до однородной массы. Из нее отцеживали воду, получая шелковую вату. После такой обработки на циновках оставался тонкий волокнистый слой, который после просушки превращался в бумагу, пригодную для письма. Позже для ее целенаправленного приготовления стали использовать бракованные кокона. Такая бумага называлась ватной и стоила довольно дорого. Со временем возник вопрос - а можно ли делать бумагу не только из шелка? Или для этих целей подойдет любое волокнисто сырье, желательно растительного происхождения. История гласит, что в 105 году некий чиновник Цай Лунь смог создать новый сорт бумаги из старых рыболовных сетей. Ее качество было сравнимо с шелковой, а цена куда ниже. Это открытие стало важным как для страны, так и для всей цивилизации. Люди получили качественный и доступный материал для письма, равноценной замены которому так и не нашли. Последующие века внесли в технологию изготовления бумаги несколько важных усовершенствований, сам процесс стал быстро развиваться. В IV веке бумага окончательно вытеснила бамбуковые дощечки, вскоре стало известно, что возможно производство из дешевого растительного сырья - коры деревьев, бамбука и тростника. Это было особенно важно, ведь именно бамбук произрастает в Китае в огромных количествах. Секреты производства хранились в строжайшем секрете несколько веков. Но в 751 году некоторые китайцы при столкновении с арабами попали к ним в плен. Так секрет стал известен и арабам, которые целых пять веков выгодно продавали бумагу в Европу. В 1154 году производству бумаги было налажено в Италии, вскоре мастерством овладели в Германии, Англии. В последующие века бумага получила широчайшее распространение, завоевывая все новые сферы применения. Ее значение столь велико, что нашу эру даже иногда именуют "бумажной".

Порох и огнестрельное оружие. Это европейское открытие сыграло огромную роль в истории человечества. Взрывчатую смесь умели делать многие, европейцы являлись последними из цивилизованных народов, кто научился делать это. Но именно они сумели извлечь практическую пользу от этого открытия. Первыми следствиями изобретения пороха стало развитие огнестрельного оружия и переворот в военном деле. Последовали и социальные сдвиги - непобедимые рыцари в доспехах отступили перед огнем пушек и ружей. Феодальное общество получило сильный удар, от которого уже не смогло оправиться. В результате и возникли могущественные централизованные государства. Сам же порох за много веков до появления в Европе был изобретен в Китае. Важной составной частью порошка являлась селитра, которая в некоторых районах страны вообще встречалась в самородном виде, напоминая снег. Поджигая смесь селитры с углем, китайцы стали наблюдать за небольшими вспышками. На рубеже V и VI веков свойства селитры были впервые описаны китайским медиком Тао Хун-цзином. С тех пор это вещество стало применяться и как составляющая часть некоторых лекарств. Появление первого образца пороха приписывают алхимику Сунь Сы-мяо, которые готовил смесь из серы и селитры, добавив к ним кусочки локустового дерева. При нагреве возникла сильная вспышка пламени, что и было зафиксировано ученым в своем трактате "Дань цзин". Состав пороха в дальнейшем был усовершенствован его коллегами, которые опытным путем установили три основных компонента - калиевую селитру, серу и уголь. Средневековые китайцы эффектов взрыва научно объяснить не смогли, но скоро приспособились использовать порох в военных целях. Однако революционного эффекта это не оказано. Дело в том, что смесь готовилась из неочищенных компонентов, что давало лишь зажигательный эффект. Лишь в XII-XIII веках китайцы создали оружие, напоминавшее огнестрельное, также были изобретены ракета и петарда. Вскоре секрет узнали монголы и арабы, а от них и европейцы. Вторичное открытие пороха приписывают монаху Бертольду Шварцу, который стал толочь в ступе измельченную смесь селитры, угля и серы. Взрыв опалил испытателю бороду, зато в его голову пришла мысль о том, что подобную энергию можно использовать для метания камней. Сперва порох был мукообразным, и пользоваться им было неудобно, так как порошок лип к стенкам стволов. После этого заметили, что гораздо удобнее пользоваться порохом в комках и зернах. Это давало к тому же больше газов при воспламенении.

Средства коммуникаций - телефон, телеграф, радио, Интернет и другие. Еще 150 лет назад единственным способом обменом информацией между Европой и Англией, Америкой и колониями оставалась лишь пароходная почта. Люди узнавали о том, что происходило в других странах с опозданием на целые недели и даже месяцы. Так, новости из Европы в Америку шли минимум 2 недели. Именно поэтому появление телеграфа в корне решило эту проблему. В итоге техническая новинка появилась во всех концах планеты, позволяя новостям из одного полушария за считанные часы и минуты попадать в другое. В течении дня заинтересованные лица получали деловые и политические новости, биржевые сводки. Телеграф позволил передавать письменные сообщения на расстояния. Но вскоре изобретатели задумались о новом средстве коммуникации, которое смогло бы передавать на любые расстояния звуки человеческого голоса или музыку. Первые эксперименты по данному вопросу были проведены в 1837 году американским физиком Пейджем. Его простые, но наглядные опыты доказали, что в принципе возможно передавать звук с помощью электричества. Череда последующих опытов, открытий и внедрений привела к появлению в сегодняшней нашей жизни телефона, телевидения, Интернета и других современных средств коммуникации, перевернувших жизнь общества.

Автомобиль. Подобно некоторым предшествующим в списке величайшим изобретениями, автомобиль не только оказал влияние на свою эпоху, но и породил новую. Это открытие не ограничивается одной лишь сферой транспорта. Автомобиль сформировал современную индустрию, породил новые отрасли и перестроил само производство. Оно стало массовым и поточным. Даже планета изменилась - теперь ее опоясывают миллионы километров дорог, ухудшилась и экология. И даже психология человека стала другой. Сегодня влияние автомобиля настолько многопланово, что присутствует во всех сферах человеческой жизни. В истории изобретения было немало славных страниц, но самая интересная относится к первым годам его существования. Вообще, то, с какой стремительностью автомобиль достиг своей зрелости, не может не впечатлять. Всего за какую-то четверть века ненадежная игрушка превратилась в массовое и популярное транспортное средство. Сейчас в мире насчитывается около миллиарда машин. Главные же черты современного автомобиля сложились еще 100 лет назад. Предшественником бензинового автомобиля стал паромобиль. Еще в 1769 году француз Кюнью создал паровую телегу, которая могла перевозить до 3 тонн груза, передвигаясь, правда, со скорость до 4 км/час. Машина была неповоротливой, а работа с котлом была тяжелой и опасной. Но идея передвижения за счет пара увлекла последователей. В 1803 году Тривайтик построил первый в Англии паровой автомобиль, который мог перевозить до 10 пассажиров, разгоняясь до 15 км/час. Зеваки Лондона были в восторге! Автомобиль в современном понимании появился лишь с открытием двигателя внутреннего сгорания. В 1864 году на свет появилось транспортное средство австрийца Маркуса, которое двигалось за счет бензинового двигателя. Но слава официальных изобретателей автомобиля досталось двум немцам - Даймлеру и Бенцу. Последний являлся хозяином заводика по производству двухтактных газовых двигателей. Средств хватало для досуга и разработки собственных автомобилей. В 1891 году владелец завода резиновых изделий Эдуард Мишлен изобрел съемную пневматическую шину для велосипеда, а через 4 года шины стали производиться и для машин. В том же 1895 году шины были опробованы в ходе гонок, хотя и постоянно прокалывались, но стало ясно - они дают автомобилям плавность хода, делая езду более комфортной.

Электрическая лампочка. И это изобретение появилось в нашей жизни недавно, в конце XIX века. Сначала освещение появилось на улицах городов, а потом оно вошло и в жилые дома. Сегодня жизнь цивилизованного человека тяжело представить без электрического света. Такое открытие повлекло за собой огромные последствия. Электричество сделало переворот в энергетике, заставив значительно поменяться промышленность. В XIX столетии получили распространение два типа лампочек - дуговые и лампы накаливания. Первыми появились дуговые лампочки, свечение которых было основано на таком явлении, как вольтова дуга. Если соединить две проволочки, подключенные к сильному току, а затем раздвинуть их, то между их концами возникнет свечение. Впервые это явление наблюдал русский ученый Василий Петров в 1803 году, а англичанин Деви описал такой эффект лишь в 1810. Применение вольтовой дуги в качестве источника освещение было описано обеими учеными. Однако у дуговых ламп было неудобство - по мере выгорания электродов, их надо было постоянно подвигать друг к другу. Превышение расстояния между ними влекло за собой мерцание света. В 1844 году француз Фуко разработал первую дуговую лампу, в которой длину дуги можно было регулировать вручную. Уже через 4 года это изобретение было применено для освещения одной из площадей Парижа. В 1876 году русский инженер Яблочков усовершенствовал конструкцию - электроды, замененные угольками, располагались уже параллельно друг другу, а расстояние между концами всегда оставалось неизменным. В 1879 году американский изобретатель Эдисон взялся за усовершенствование конструкции. Он пришел к выводу, что для долгого и яркого свечения лампочки необходим подходящий материал для нити, а также создание вокруг разреженного пространство. Эдисон с размахом провел массу опытов, подсчитано, что было опробовано не менее 6 тысяч разнообразных соединений. Исследования стоили американцу 100 тысяч долларов. Эдисон постепенно стал использовать для нити металлы, в итоге остановился на обугленных бамбуковых волокнах. В итоге в присутствии 3 тысяч зрителей изобретатель публично продемонстрировал разработанные им электрические лампочки, осветив ими не только свой дом, но и несколько соседних улиц. Лампочка Эдисона стала первой, с длительным сроком службы и пригодная для массового производства.

Антибиотики. Это место отдано замечательным лекарственным средствам, в частности, пенициллину. Антибиотики стали одним из главных открытий прошлого века, перевернув медицину. Сегодня не все представляют, сколь многим обязаны таким лечебным препаратам. Многие удивятся, узнав, что еще в 80 лет назад десятки тысяч человек умирали от дизентерии, воспаление легких было смертельно опасной болезнью, сепсис грозил гибелью практически всем хирургическим пациентам, тиф был опасен и трудноизлечим, а легочная чума звучала как приговор. Но все эти страшные болезни, как и другие, прежде неизлечимые (туберкулез), были побеждены антибиотиками. Препараты оказали значительное влияние на военную медицину. Раньше большая часть солдат гибло вовсе не от пуль, а от загноившихся ран. Ведь туда проникали миллионы бактерий-кокков, которые вызывали гной, сепсис, гангрену. Максимум, что успевал сделать хирург - ампутировать пораженную часть тела. Оказалось, что бороться с опасными микроорганизмами можно с помощью их же собратьев. Некоторые из них в процессе своей жизнедеятельности выделяют вещества, которые способны уничтожать других микробов. Такая идея появилась еще в XIX веке. Луи Пастер открыл, что бациллы сибирской язвы погибают под воздействием некоторых других микробов. Со временем опыты и открытия дали мире пенициллин. Для видавших виды полевых хирургов это лекарство стало истинным чудом. На ноги вставали самые безнадежные больные, преодолев заражение крови или воспаление легких. Открытие и создание пенициллина считается одним из самых значимых открытий в истории всей медицины, дав огромный толчок для ее развития.

Парус и корабль. Парус возник в жизни человека давным-давно, когда появилось желание выходить в море и строить для этого лодки. Первым парусом являлась обычная звериная шкура. Моряку же приходилось руками держать ее и ориентировать постоянно относительно ветра. Когда людям пришла в голову идея использовать мачты и реи - неизвестно, но уже на самых древних изображениях кораблей времен египетской царицы Хатшепсут видны различные приспособления для работы с парусом, такелаж. Таким образом понятно, что парус возник еще в доисторические времена. Считается, что первые большие парусники появились в Египте, а Нил стал первой судоходной рекой. Ежегодно могучая река разливалась, отрезая друг от друга города и района. Вот и приходилось египтянам освоить судоходство. В то время корабли играли в хозяйственной жизни страны куда большую роль, чем повозки на колесах. Одной из первых разновидностью судов является барка, которой уже более 7 тысяч лет. Ее модели дошли до нас из храмов. Так как в Египте леса для строительства первых судов было немного, то для этих целей применялся папирус. Его особенности и определили конструкцию и форму кораблей. Они представляли собой серповидную ладью, связанную из пучков папируса, при этом нос и корма были изогнуты вверх. Корпус судна, для прочности, стягивался тросами. Со временем торговля с финикийцами дала стране ливанский кедр, в кораблестроение прочно вошло дерево. Композиции 5-тысячелетней давности дают основания считать. Что тогда египтяне использовали прямой парус, укрепленный на двуногой мачте. Плыть можно было только по ветру, а при боковом ветре мачту быстро убирали. Примерно 4600 лет назад стала применяться одноногая мачта, используемая и поныне. Судну стало легче ходить, оно получило возможность маневрирования. Однако на тот момент прямоугольный парус был весьма ненадежный, к тому же использовать его можно было лишь при попутном ветре. Вот и оказалось, что основным двигателем корабля того времени являлась мускульная сила гребцов. Тогда максимальная скорость кораблей фараонов составляла 12 км/час. Торговые суда совершали путешествия в основном вдоль берега, не выходя далеко в море. Следующий шаг в развитии кораблей сделали финикийцы, которые изначально имели прекрасный строительный материал. 5 тысяч лет назад, с началом развития морской торговли, финикийцы начали строить корабли. При этом их морские суда изначально имели конструктивные особенности от лодок. На однодревках устанавливались ребра жесткости, покрытые сверху досками. На мысль о такой конструкции финикийцев возможно подтолкнули скелеты животных. По сути, так и появились первые шпангоуты, применяемые до сих пор. Именно финикийцы создали первое килевое судно. В роли киля сначала выступали два ствола, соединенные под углом. Это дало суднам больше устойчивости, став основой для будущего развития судостроения и определив облик всех будущих кораблей.

www.molomo.ru

Доклад - Научные открытия - Наука и техника

Ф.Бэкон считал, что разработал метод научных открытий, в основе которого — постепенное движение от частностей ко все большим обобщениям. Он был уверен, что разработал метод открытия нового научного знания, которым может овладеть каждый. В основе этого метода открытия — индуктивное обобщение данных опыта. Бэкон писал: «Наш же путь открытия таков, что он немногое оставляет остроте и силе дарования, но почти уравнивает их. Подобно тому, как для проведения прямой линии или описания совершенного круга много значат твердость, умелость и испытанность руки, если действовать только рукой, — мало или совсем ничего не значат, если пользоваться циркулем или линейкой. Так обстоит и с нашим методом».

Бэкон построил довольно изощренную схему индуктивного метода, в которой учитываются случаи не только наличия изучаемого свойства, но и его различных степеней, а также отсутствия этого свойства в ситуациях, когда его проявление ожидалось.

Декарт считал, что метод получения нового знания опирается на интуицию и дедукцию.

«Эти два пути, — писал он, — являются самыми верными путями к знанию, и ум не должен допускать их больше — все другие надо отвергать как подозрительные и ведущие к заблуждению».

Декарт сформулировал 4 универсальные правила для руководства ума в поисках нового знания:

«Первое — никогда не принимать за истинное ничего, что я не признал бы таким с очевидностью, то есть тщательно избегать поспешности и предубеждения включать в свои суждения только то, что представляется моему уму столь ясно и отчетливо, что никоим образом не сможет дать повод к сомнению.

Второе — делить каждую из рассматриваемых мною трудностей на столько частей, сколько потребуется, чтобы лучше их разрешить.

Третье — располагать свои мысли в определенном порядке, начиная с предметов простейших и легко познаваемых, и восходить мало-помалу, как по ступеням, до познания наиболее сложных, допуская существование порядка даже среди тех, которые в естественном ходе вещей не предшествуют друг другу.

И последнее — делать всюду перечни настолько полные и обзоры столь всеохватывающие, чтобы быть уверенным, что ничего не пропущено».

В современной методологии науки осознано, что индуктивные обобщения не могут осуществить скачок от эмпирии к теории.

Эйнштейн писал об этом так: «В настоящее время известно, что наука не может вырасти на основе одного только опыта и что при построении науки мы вынуждены прибегать к свободно создаваемым понятиям, пригодность которых можно a posteriori проверить опытным путем. Эти обстоятельства ускользали от предыдущих поколений, которым казалось, что теорию можно построить чисто индуктивно, не прибегая к свободному, творческому созданию понятий. Чем примитивнее состояние науки, тем легче исследователю создавать иллюзию по поводу того, что он будто бы является эмпириком. Еще в XIX в. Многие верили, что ньютоновский принцип — »hypotheses non fingo" — должен служить фундаментом всякой здравой естественной науки.

В последнее время перестройка всей системы теоретической физики в целом привела к тому, что признание умозрительного характера науки стало всеобщим достоянием".

При характеристике перехода от эмпирических данных к теории важно подчеркнуть, что чистый опыт, т.е. такой, который не определялся бы теоретическими представлениями, вообще не существует.

По этому поводу К.Поппер писал так: «Представление о том, что наука развивается от наблюдения к теории все еще широко распространено. Однако вера в то, что мы можем начать научные исследования не имея чего-то похожего на теорию, является абсурдной. Двадцать пять лет тому назад я пытался внушить эту мысль группе студентов-физиков в Вене, начав свою лекцию следующими словами: „Возьмите карандаш и бумагу, внимательно наблюдайте и описывайте ваши наблюдения!“ Они спросили, конечно, что именно они должны наблюдать. Ясно, что простая инструкция „Наблюдайте!“ является абсурдной… Наблюдение всегда носит избирательный характер. Нужно избрать объект, определенную задачу, иметь некоторый интерес, точку зрения, проблему...»

Роль теории в развитии научного знания ярко проявляется в том, что фундаментальные теоретические результаты могут быть получены без непосредственного обращения к эмпирии.

Классический пример построения фундаментальной теории без непосредственного обращения к эмпирии — это создание Эйнштейном общей теории относительности. Частная теория относительности тоже была создана в результате рассмотрения теоретической проблемы (опыт Майкельсона не имел для Эйнштейна существенного значения).

Новые явления могут быть открыты в науке и путем эмпирических, и путем теоретических исследований. Классический пример открытия нового явления на уровне теории — это открытие позитрона П.Дираком.

Развитие современных научных теорий показывает, что их основные принципы не являются очевидными в декартовском смысле. В каком-то смысле ученый открывает исходные принципы теории интуитивно. Но эти принципы далеки от декартовской очевидности: и принципы геометрии Лобачевского, и основания квантовой механики, теории относительности, космологии Большого взрыва и т.д.

Попытки построения различного рода логик открытия прекратились еще в прошлом веке как полностью несостоятельные. Стало очевидным, что никакой логики открытия, никакого алгоритма открытий в принципе не существует.

www.ronl.ru

Величайшие научные открытия - Mentamore

На протяжении веков было бесчисленное множество величайших научных открытий, которые потрясли мир и внесли изменения в существование человечества. Многие из этих  открытий  улучшали и украшали нашу жизнь, делали её более комфортной и безопасной. Бывали случаи, что идеи ученых, воплощенные на практике, несли за собой угрозу, разрушения и зло. А большая часть событий современного научного мира в будущем приведут к последствиям или же достижениям, о которых сейчас можно лишь догадываться.

величайшие научные открытия человека

Тем не менее, среди этого огромного количества   научных открытий есть те,  без которых наша жизнь имела бы совершенно иной вид и иное содержание.  Мы попытались создать список из 10 величайших научных открытий всех времен в произвольном порядке. Возможно, с чем-то вы не сможете согласиться. А, может быть, у вас на этот счет совершенно иное мнение. Попробуйте  создать свой список  и  выдвинуть его на обсуждение.

1. Электричество

Это поистине магическая сила, явление без которого мы бы в прямом и переносном смысле остались бы в темноте. Ни лампы  в вечернее время, ни телевизора , компьютера, лифта, обогревателя, микроволновой печки…тут действительно можно перечислять до бесконечности.   Ведь наше общество в высшей степени зависимо от электричества, которое питает так  горячо любимый  нами  образ жизни.

эллектричество

2.Пенициллин

Действительно, каким гением должен быть человек, чтобы увидев кусочек плесени на хлебе подумать о том, что это может быть лекарством, которое спасет жизни миллионов.  И таким гением  был  Александр Флемминг.  Именно ему мы обязаны существованием антибиотиков. Конечно, не все происходит быстро, ведь после обнаружения бактерицидного действия плесневого гриба Флеммингом, должно было пройти больше 10 лет, чтобы другие выдающиеся деятели Х.У. Флори и Э. Чейн сумели ввести в промышленное производство, а ,соответственно, массовое пользование этот антибиотик.

пенициллин

3. Порох

Заслуга открытия пороха приписывается китайским  алхимикам, жившим в 9 веке. С момента открытия, эту гремучую смесь использовали для охоты, войны, развлечений. В своё время порох способствовал развитию ракетных технологий.  Несмотря на то, что порох во многом служил не для хороших целей, все- таки мы должны отдать должное и включить его в список самых великих научных открытий, история выглядела бы в корне иначе, не будь в руках человека этой субстанции.

порох

4. Колесо

Было ли это научное открытие, случайная находка или же выдающееся изобретение? Мир возможно так никогда и не узнает.  Археологические раскопки обнаружили прототип колеса, который датируется пятым тысячелетием до нашей эры. Изобретение колеса стало катализатором развития науки в целом. А в частности усовершенствованием ремесел и механики, важнейшее значение это изобретение имело также в хозяйственной жизни людей.

изобретение колеса

5. Пластик

В 1969 году Джон Весли Хайат открыл способ производства вещества, которое стало революцией в повседневной жизни людей.  Пластик. Сегодня большая часть предметов быта, а другими словами,  окружающей нас искусственной среды состоит из пластика. Пластиковые стулья, одноразовые пакеты, упаковка,   техника, игрушки и многое, многое другое.  Что примечательно, так это возможность вторичной переработки этого материала.

пластик

6. Компьютер

Невозможно приписать изобретение компьютера лишь одному ученому,  так как компьютер в современном виде преобразовывался постепенно из различных приборов. И конечно каждый согласится  с тем, какое  громадное значение  эта техника имеет в нашем мире. Она организует нашу жизнь, делает  её более упорядоченной и совершенной. Мы имеем неограниченный доступ к любого вида информации на расстоянии вытянутой руки. Человечество достигло уровня глобальной коммуникации, явления, о котором еще 20 лет никто не слышал.

открытие компьютера

7. Печатный станок.

Это изобретение не кажется таким уж значимым на первый взгляд, но, призадумавшись, вы увидите всю его весомость. Станок Гутенберга открыл дверь возможности публикации знаний и информации,  массового распространения этих знаний. Доступ книгам больше не был привилегией избранного числа людей.  Независимость мышления индивидуума стала ключевым элементом общества, книгопечатание унифицировало знания и литературу.

 первый печатный станок

8. Механические часы.

Время, по сути, было мерой событий еще задолго до изобретения хронометра.  В основном оно определялось по движению солнца на небе.  Фактически не существовало универсального времени, лишь время строго определенное для конкретной местности. И то, что изобретение часов сделало возможным, вскоре стало обязательным.  В мире, управляемом часами, ты либо  «во время»,  либо «опережаешь график»,  или же «опаздываешь».

механические часы

9. Телескоп

Изобретение телескопа доказало тот факт, что Земля это  не больше чем круглый кусок камня в необъятном космическом пространстве, а не центр всего , в том числе и вселенной. Многие не согласились в тот момент, и некоторые не соглашаются по сей день.

 телескоп

10. Туалет

Проведите такой эксперимент: вообразите современный мегаполис, будь-то Лондон, Нью-Йорк или Токио без туалета. Ведь это невозможно. Современные города могут существовать благодаря умению людей обеспечивать плотно заселенные места чистой водой, и избавляться от отходов.  Без туалетов и водопровода не смогут функционировать  ни один небоскреб, ни одно высотное здание. Уберите многоэтажные дома, офисные центры и гипермаркеты из вашей картины мира, и вам придется изменить всю картину в целом.

туалет

mentamore.com

Великие научные открытия XX века, топ 25

Практически каждый, кто интересуется историей развития науки, техники и технологий — хоть раз в своей жизни задумывался над тем, каким путем могло бы пойти развитие человечества без знания математики или, например, не будь у нас такого необходимого предмета как колесо, ставшего чуть ли не основой развития человечества. Однако зачастую рассматриваются и удостаиваются внимания лишь ключевые открытия, в то время как открытия менее известные и распространенные порой попросту не упоминаются, что, впрочем, не делает их незначительными, ведь каждое новое знание дает человечеству возможность забраться на ступеньку выше в своем развитии.

XX век и его научные открытия превратился в настоящий Рубикон, перейдя который, прогресс ускорил свой шаг в несколько раз, отождествляя себя со спортивным болидом за которым невозможно угнаться. Для того, что бы сейчас удержаться на гребне научной и технологической волны, необходимы не дюжие навыки. Конечно, можно читать научные журналы, различного рода статьи и работы ученых, которые бьются над решением той или иной задачи, однако даже в этом случае угнаться за прогрессом не получится, а стало быть остается наверстывать упущенное и наблюдать.

Альберт Эйнштейн автор теории относительности

Как известно, для того, что бы смотреть в будущее, необходимо знать прошлое. Поэтому сегодня речь пойдет именно о XX веке, веке открытий, который изменил образ жизни и окружающий нас мир. Стоит сразу отметить, что это не будет список лучших открытий века или какой-либо иной топ, это будет краткий осмотр части тех открытий, которые изменяли, а возможно и изменяют мир.

Исследования рентгеновского излучения в начале 20 века

Для того, что бы говорить об открытиях, следует охарактеризовать само понятие. За основу возьмем следующее определение:

Открытие — новое достижение, совершаемое в процессе научного познания природы и общества; установление неизвестных ранее, объективно существующих закономерностей, свойств и явлений материального мира.

Что было до Большого Взрыва

Топ 25 великих научных открытий XX века

  1. Квантовая теория Планка. Он вывел формулу, определяющую форму спектральной кривой излучения и универсальную постоянную. Открыл мельчайшие частицы – кванты и фотоны, с помощью которых Эйнштейн объяснил природу света. В 20-х годах Квантовая теория переросла в квантовую механику.
  2. Открытие рентгеновского излучения – электромагнитное излучение с широким диапазоном длин волн. Открытие Х-лучей Вильгельмом Рёнтгеном сильно повлияло на жизнь человека и сегодня без них невозможно представить современную медицину.
  3. Теория относительности Эйнштейна. В 1915 году Эйнштейн ввел понятие относительности и вывел важную формулу, связавшую энергию и массу. Теория относительности объяснила суть гравитации – она возникает вследствие искривления четырехмерного пространства, а не результате взаимодействия тел в пространстве.
  4. Открытие пенициллина. Плесневый гриб Penicillium notatum, попадая к культуре бактерий, вызывает полную их гибель – это было доказано Александром Флеммингом. В 40-х годах был разработана производственная технология пенициллина, который в дальнейшем стал выпускаться в промышленном масштабе.
  5. Волны де Бройля. В 1924 году было выяснено, что корпускулярно-волновой дуализм присущ всем частицам, а не только фотонам. Бройль представил их волновые свойства в математическом виде. Теория позволила развить концепцию квантовой механики, объяснила дифракцию электронов и нейтронов.
  6. Открытие структуры новой спирали ДНК. 1953 году была получена новая модель строения молекулы, путем объединения сведений рентгеноструктурного анализа ДНК Розалин Франклин и Мориса Уилкинса и теоретических разработок Чаргаффа. Ее вывели Френсис Крик и Джеймс Уотсон.
  7. Планетарная модель атома Резерфорда. Он вывел гипотезу о строении атома и извлек энергию из атомных ядер. Модель объясняет основы закономерности заряженных частиц.
  8. Катализаторы Циглера-Ната. В 1953 году они осуществили поляризацию этилена и пропилена.
  9. Открытие транзисторов. Прибор, состоящий из 2-х p-n переходов, которые направлены навстречу друг другу. Благодаря его изобретению Юлием Лилиенфельдом, техника начала уменьшаться в размерах. Первый действующий биполярный транзистор в 1947 представили Джон Бардин, Уильям Шокли и Уолтер Браттейн.
  10. Создание радиотелеграфа. Изобретение Александра Попова с помощью азбуки Морзе и радиосигналов впервые спасло корабль на рубеже 19 и 20 веков. Но первым запатентовал аналогичное изобретение Гулиельмо Марконе.
  11. Открытие нейтронов. Эти незаряженные частицы с массой, немного большей, чем у протонов позволили без препятствий проникать в ядро и дестабилизировать его. Позже было доказано, что под воздействием этих частиц ядра делятся, но возникает еще больше нейтронов. Так была открыта искусственная радиоактивность.
  12. Методика экстракорпорального оплодотворения (ЭКО). Эдварс и Стептоу придумали, как извлечь из женщины неповрежденную яйцеклетку, создали в пробирке оптимальные для ее жизни и роста условия, придумали, как ее оплодотворить и в какое время вернуть обратно в тело матери.
  13. Первый полет человека в космос. В 1961 году именно Юрий Гагарин первым осуществил этот знаменательный полет, ставший реальным воплощением мечты о звездах. Человечество узнало, что пространство между планетами преодолимо, и в космосе могут спокойно находиться бактерии, животные и даже человек.
  14. Открытие фуллерена. В 1985 году учеными была открыта новая разновидность углерода – фуллерен. Сейчас из-за своих уникальных свойств он используется во многих приборах. На основе этой методики, были созданы нанотрубки из углерода – скрученные и сшитые слои графита. Они показывают самые разнообразные свойства: от металлических до полупроводниковых.
  15. Клонирование. В 1996 ученым удалось получить первый клон овцы, названной Долли. Яйцеклетку выпотрошили, вставили в нее ядро взрослой овцы и подсадили в матку. Долли стала первым животным, которому удалось выжить, остальные эмбрионы разных животных погибли.
  16. Открытие черных дыр. В 1915 году Карлом Шварцшильдом была выдвинута гипотеза о существовании области во времени и пространстве, гравитация которой настолько велика, что ее не могут покинуть даже объекты, движущиеся со скоростью света — черных дыр.
  17. Теория Большого взрыва. Это космологическая общепринятая модель, в которой описано ранее развитие Вселенной, находившейся в сингулярном состоянии, характеризующемся бесконечной температурой и плотностью вещества. Начало модели было положено Эйнштейном в 1916 году.
  18. Открытие реликтового излучения. Это космическое микроволновое фоновое излучение, сохранившееся с начала образования Вселенной и равномерно ее заполняющее. В 1965 году его существование было экспериментально подтверждено, и оно служит одним из основных подтверждений теории Большого взрыва.
  19. Приближение к созданию искусственного интеллекта. Это технология создания интеллектуальных машин, впервые получившая определение в 1956 году Джоном Маккарти. Согласно ему, исследователи для решения конкретных задач могут использовать методы понимания человека, которые биологически могут не наблюдаются у людей.
  20. Изобретение голография. Этот особый фотографический метод предложен в 1947 году Дэннисом Габором, в котором при помощи лазера регистрируются и восстанавливаются трехмерные изображения объектов, близкие к реальным.
  21. Открытие инсулина. В 1922 году Фредериком Бантингом был получен гормон поджелудочной железы, и сахарный диабет перестал быть фатальным заболеванием.
  22. Группы крови. Это открытие в 1900-1901 разделило кровь на 4 группы: О, А, В и АВ. Стало возможным правильное переливание крови человеку, которое не заканчивалось бы трагически.
  23. Математическая теория информации. Теория Клода Шеннона дала возможность определения емкости коммуникационного канала.
  24. Изобретение Нейлона. Химик Уоллес Карозерс в 1935 году открыл способ получения этого полимерного материала. Он открыл некоторые его разновидности с высокой вязкостью даже при больших температурах.
  25. Открытие стволовых клеток. Они являются прародительницами всех имеющихся клеток в организме человека и имеют способность самообновляться. Их возможности велики и еще только начинают исследоваться наукой.

Большой Взрыв инфографика

Несомненно, что все эти открытия — лишь малая часть того, что XX век показал обществу и нельзя сказать, что лишь эти открытия были значимыми, а все остальные стали лишь фоном, это совсем не так.

Вильгельм Рентген - ученый, открывший рентгеновское излучение в 20 веке

Именно прошлый век показал нам новые границы Вселенной, увидела свет Теория относительности Эйнштейна, были открыты квазары (сверхмощные источники излучения в нашей Галактике), открыты и созданы первые углеродные нанотрубки, обладающие уникальной сверхпроводимостью и прочностью.

История открытия пенициллина

Все эти открытия, так или иначе — лишь вершина айсберга, который включает в себя более чем сотню значимых открытий за прошедшее столетие. Естественно, что все они стали катализатором изменений в мире, в котором мы с вами сейчас живем и несомненным остается тот факт, что на этом изменения не заканчиваются.

20й век можно смело назвать если не «золотым», то уж точно «серебряным» веком открытий, однако оглядываясь назад и сравнивая новые достижения с прошлыми, думается, что в будущем нас ждет еще не мало интереснейших великих открытий, собственно, преемник прошлого века, нынешний XXI лишь подтверждает эти взгляды.

www.sciencedebate2008.com

Реферат: "Научные открытия XIX века"

Выдержка из работы

Введение

Научной революции XIX в. предшествовали выдающиеся открытия в науке XVII—XVIII вв. и становление ее как социального института. Появление экспериментального знания и рационалистического типа мышления способствовало последующему ее упорядочиванию в XIX в. Она становится научной системой, изучающей процессы происхождения и развития предметов явлений, организмов и их связей.

В XIX в. происходит дифференциация отдельных отраслей научных знаний на более узкие специальные отрасли (в самостоятельные науки выделяются экспериментальная психология, социология, культурология) и в то же время — интеграция наук (именно в это время возникает астрофизика, биохимия, физическая химия, геохимия), оформляется и новая отрасль знаний — технические науки. В течение столетия были сделаны неслыханную ранее количество открытий, а на основе накопленного экспериментального, аналитического материала разработан обобщающие теории.

Принципиально новым являлось утверждение идеи развития и принципа взаимосвязи в природе, т. е. к появлению принципов диалектики в научном исследовании. Научный эксперимент в механике привел к установлению связи науки и производства. На базе механики, физики и математики разрабатывалась техника и технология. И, наконец, классические представления человечества о времени и пространстве были разрушены теорией относительности Альберта Эйнштейна.

Таким образом, XIX-й век заложил основы для развития науки 20-го столетия и создал предпосылки для многих будущих изобретений и технологических нововведений, которыми мы пользуемся в настоящее время. Научные открытия были сделаны во многих областях и оказали большое влияние на дальнейшее развитие.

Технический прогресс неудержимо продвигался. Кому же мы благодарны за те комфортные условия, в которых сейчас живет современное человечество?

Цель работы: рассмотреть общую характеристику XIX века, а также некоторые научные открытия и их влияние на экономическое мировое развитие.

Работа состоит из введения, двух глав основной части, заключения и списка литературы.

1. XIX век — эпоха научных революций

Как уже отмечалось, в индустриальной цивилизации, утвердившейся в Европе в XIX столетии, главной ценностью стали считать научно-технический прогресс. И это не случайно. Как отметил П. Сорокин, «лишь только один XIX в. принес открытий и изобретений больше, чем все предшествующие столетия вместе взятые».

XIX век был воплощением неслыханного технического прогресса, были сделаны научные и технические открытия, которые привели к изменению образа жизни людей: его начало ознаменовалось освоением силы пара, созданием паровых машин и двигателей, которые позволили осуществить промышленный переворот, перейти от мануфактурного производства к промышленному, фабричному. Страны Европы и Северной Америки покрылись сетью железных дорог, что в свою очередь содействовало развитию промышленности и торговли. Начался выпуск первых синтетических материалов, искусственных волокон.

Научные открытия в области физики, химии, биологии, астрономии, геологии, медицины следовали одно за другим. Вслед за открытием Майклом Фарадеем явления электромагнитной дуги, Джеймс Максвелл предпринимает исследование электромагнитных полей, разрабатывает электромагнитную теорию света. Анри Беккерель, Пьер Кюри и Мария Склодовская-Кюри, изучая явление радиоактивности, поставили под вопрос прежнее понимание закона сохранения энергии.

Физическая наука проделала путь от атомной теории материи Джона Дальтона — к раскрытию сложной структуры атома. После обнаружения Дж. Дж. Томпсоном в 1897 г. первой элементарной частицы электрона последовали планетарные теории строения атома Эрнеста Резерфорда и Нильса Бора. Развиваются междисциплинарные исследования — физическая химия, биохимия, химическая фармакология.

Если сформулированный в 1869 г. Дмитрием Ивановичем Менделеевым периодический закон химических элементов установил зависимость между их атомными весами, то открытие внутреннего строения атома выявило связь между порядковым номером элемента в периодической системе и числом электронов в слоях оболочки атома.

В биологии появляются теории клеточного строения всех организмов Т. Швана, генетической наследственности Грегора Иоганна Менделя, опираясь на которые Август Вейсман и Томас Морган создали основы генетики. Основываясь на исследованиях в области физиологии высшей нервной деятельности, И. П. Павлов разработал теорию условных рефлексов.

Подлинную революцию в науке произвели труды великого ученого-натуралиста Чарльза Дарвина «Происхождение видов» и «Происхождение человека», которые иначе, чем христианское учение, трактовали возникновение мира и человека.

Достижения в области биологии и химии дали мощный толчок развитию медицины. Французский бактериолог Луи Пастер разработал метод предохранительных прививок против бешенства и других заразных болезней, механизм стерилизации и пастеризации различных продуктов, заложил основы учения об иммунитете. Немецкий микробиолог Роберт Кох и его ученики открыли возбудителей туберкулеза, брюшного тифа, дифтерита и других болезней, создали против них лекарства. В арсенале врачей появились новые лекарственные препараты и инструменты. Врачи стали применять аспирин и пирамидон, был изобретен стетоскоп, открыты рентгеновские лучи.

XIX век — «машинный век», — и это совершенно правильно, ведь именно тогда началось производство машин с помощью самих машин. От механической прялки «Дженни» человечество шагнуло к первому современному станку из металла, а от него — к автоматическому ткацкому станку Жаккара.

XIX в. называют «эпохой стали», — именно тогда уровень производства стали становится показателем экономической мощи страны. Железо и сталь вытесняют дерево.

Если XVII—XVIII вв. были эпохой ветряных мельниц, то с конца XVIII в. начинается эпоха пара. В 1784 г. Дж. Уатт изобрел паровой двигатель. А уже в 1803 в. появляется первый автомобиль с паровым двигателем. 17 августа 1807 г совершилась пробная поездка парохода Фультона «Клермон», а в 1814 г. появился на свет паровоз Дж. Стеф-фенсона.

Революцию в средствах транспорта дополнило развитие морских сообщений. Благодаря пару плавание перестало зависеть от силы ветра, и преодоление океанического пространства совершалось во все более и более короткие сроки. В конце XIX в. появляется автомобиль Г. Даймлера и К. Бенца, имеющий высокоэкономичный двигатель, работающий на жидком топливе, а в 1903 г. — первый самолет братьев У, и О. Райт. Параллельно шло строительство и совершенствование дорог, мостов, тоннелей, каналов (Суэцкий канал, 1859−1869)

XIX век — это век электричества. После открытия В. В. Петровым явления электрической дуги С. Морзе изобрел электрический телеграф, а А. Бэлл — телефон, а Т. Эдисон — фонограф. Появляются радиоприемники А. С. Попова и Г. Маркони, кинематограф братьев Люмьер. Важным новшеством стало электрическое освещение городов, конка уступала место трамваю. В 1863 г. появилась первая подземная железная дорога «Метрополитен», а к концу века метро функционировало уже в Лондоне, Париже, Нью-Йорке, Будапеште, Париже и других городах. Жизнь человека радикально изменилась. Благодаря открытиям и изобретениям техническое господство над пространством, временем и материей выросло безраздельно. Начался небывалый пространственно-временной рост цивилизации — в духовный мир человека входили новые территории и новые пласты прошлого.

Познание раздвинуло свои границы вглубь и вширь. Одновременно возникли и новые способы преодоления времени и пространства — новая техника с ее скоростями, средствами связи способствовала тому, что человек смог вместить в себе больший отрезок космического, любую точку планеты. Вселенная как бы одновременно сузилась и расширилась, все пришли в соприкосновение со всеми. Мир качественно преобразился.

В следующей главе мы более подробно раскроем некоторые научные открытия XIX века.

2. Научные открытия XIX века

2.1 Джеймс Кларк Максвелл (1831−1879)

Важнейшим фактором изменений облика мира является расширение горизонтов научных знаний. Ключевой особенностью в развитии науки этого периода времени является широкое применение электричества во всех отраслях производства. И люди уже не могли отказаться от использования электричества, ощутив его существенные преимущества. В это время ученые начали плотно изучать электромагнитные волны и их влияние на различные материалы.

Большим достижением науки XIX в. была выдвинутая английским ученым Д. Максвеллом электромагнитная теория света (1865 г.), которая обобщила исследования и теоретические выводы многих физиков разных стран в отраслях электромагнетизма, термодинамики и оптики.

Максвелл хорошо известен тем, что сформулировал четыре уравнения, которые явились выражением основных законов электричества и магнетизма. Эти две области широко исследовались до Максвелла на протяжении многих лет, и было хорошо известно, что они взаимосвязаны. Однако хотя уже были открыты различные законы электричества и они были истинными для специфических условий, до Максвелла не существовало ни одной общей и единообразной теории.

Д. Максвелл пришел к мысли о единстве и взаимосвязь электрических и магнитных полей, создал на этой основе теорию электромагнитного поля, согласно которой, возникнув в любой точке пространства, электромагнитное поле распространяться в нем со скоростью, равной скорости света. Таким образом он установил связь световых явлений с электромагнетизмом.

В своих четырех уравнениях, коротких, но довольно сложных, Максвелл сумел точно описать поведение и взаимодействие электрических и магнитных полей. Тем самым он трансформировал это сложное явление в единую, доступную для понимания теорию. Уравнения Максвелла находили широкое применение в прошлом веке как в теоретических, так и прикладных науках. Главным достоинством уравнений Максвелла было то, что они являются общими уравнениями, употребимыми при всех обстоятельствах. Все известные прежде законы электричества и магнетизма можно вывести из уравнений Максвелла, равно как и многие другие прежде неизвестные результаты.

Наиболее важные из этих результатов были выведены самим Максвеллом. Из его уравнений можно сделать вывод, что существует периодическое колебание электромагнитного поля. Начавшись, такие колебания, названные электромагнитными волнами, будут распространяться в пространстве. Из своих уравнений Максвелл сумел вывести, что скорость таких электромагнитных волн составила бы приблизительно 300 000 километров (186 000 миль) в секунду Максвелл увидел, что эта скорость равняется скорости света. Из этого он сделал правильный вывод о том, что свет сам состоит из электромагнитных волн. Таким образом, уравнения Максвелла являются не только основными законами электричества и магнетизма, они являются основными законами оптики. И действительно, все ранее известные законы оптики можно вывести из его уравнений, точно так же, как неизвестные ранее результаты и взаимосвязи. Видимый свет является не только возможным видом электромагнитного излучения.

Уравнения Максвелла показали, что могут существовать другие электромагнитные волны, отличающиеся от видимого света по длине волн и частоте. Эти теоретические выводы были впоследствии наглядно подтверждены Генрихом Герцем, который сумел как создавать, так и выпрямлять невидимые волны, существование которых предсказал Максвелл.

Впервые на практике наблюдать распространения электромагнитных волн удалось немецкому физику Г. Герцу (1883). Он также определил, что скорость их распространения — 300 тыс. км/сек. Парадоксально, но он считал, что электромагнитные волны не будут иметь практического применения. А уже через несколько лет, на основе этого открытия А. С. Попов применил их для передачи первой в мире радиограммы. Она состояла всего из двух слов: «Генрих Герц».

Сегодня мы с успехом используем их для телевидения. Рентгеновские лучи, гамма-лучи, инфракрасные лучи, ультрафиолетовые лучи являются еще одним примером электромагнитного излучения. Все это можно изучить посредством уравнений Максвелла. Хотя Максвелл добился признания главным образом благодаря его эффектному вкладу в электромагнетизм и оптику, он сделал также вклад в другие области науки, включая астрономическую теорию и термодинамику (изучение тепла). Предметом особого его интереса была кинетическая теория газов. Максвелл понял, что не все молекулы газа движутся с одинаковой скоростью. Одни молекулы движутся медленнее, другие быстрее, а некоторые движутся с очень высокой скоростью. Максвелл вывел формулу, которая определяет, какая частица молекулы данного газа будет двигаться при любой установленной скорости. Эта формула, получившая название «распределение Максвелла», широко используется в научных уравнениях и находит значительное применение во многих областях физики.

Это изобретение стало основой для современных технологий беспроводной передачи информации, радио и телевидения, в том числе всех видов мобильной связи, в основе работы которых лежит принцип передачи данных посредствам электромагнитных волн. После экспериментального подтверждения реальности электромагнитного поля было сделано фундаментальное научное открытие: существуют различные виды материи, и каждому из них присущи свои законы, не сводимые к законам механики Ньютона.

О роли Максвелла в развитии науки превосходно сказал американский физик Р. Фейнман: «В истории человечества (если посмотреть на нее, скажем, через десять тысяч лет) самым значительным событием девятнадцатого столетия, несомненно, будет открытие Максвеллом законов электродинамики. На фоне этого важного научного открытия гражданская война в Америке в том же десятилетии будет выглядеть провинциальным происшествием».

2.2 Чарльз Дарвин (1809 — 1882)

XIX век стал временем торжества эволюционной теории. Чарльз Дарвин одним из первых осознал и наглядно продемонстрировал, что все виды живых организмов эволюционируют во времени от общих предков.

Обобщив идеи Ж. Ламарка о зависимости эволюции организмов от приспособленности их к окружающей среде, Ч. Лайеля об образовании земных слоев в зависимости от деятельности сил природы, клеточную теорию Т. Шванна и М. Шлейдена и собственные многолетние исследования, Дарвин в 1859 издал труд «Происхождение видов» (полное название: «Происхождение видов методом естественного отбора, или выживание благоприятствуемых пород в борьбе за жизнь»), в которой изложил выводы о том, что виды растений и животных не постоянны, а изменчивы, что современный животный мир сформировался в результате длительного процесса развития.

Основной движущей силой эволюции Дарвин назвал естественный отбор и неопределённую изменчивость. Правда, о причинах изменчивости видов Дарвин, по его словам, выдвинул лишь «догадливые» предположение. Эти причины удалось разгадать австрийскому исследователю Г. Менделю, который сформулировал законы наследственности.

Дарвин приводит множество доказательств повышения приспособленности организмов к условиям среды, обусловленной естественным отбором. Это, например, широкое распространение среди животных покровительственной окраски, делающей их менее заметными в местах обитания: ночные бабочки имеют окраску тела, соответствующую поверхности, на которой они проводят день; самки открыто гнездящихся птиц (глухарь, тетерев, рябчик) имеют окраску оперения, почти не отличимую от окружающего фона; на Крайнем Севере многие животные окрашены в белый цвет (куропатки, медведи) и т. д. Многие животные, имеющие специальные защитные приспособления от поедания их другими животными, имеют, кроме того, предупреждающую окраску (например, ядовитые или несъедобные виды). У некоторых животных распространена угрожающая окраска в виде ярких отпугивающих пятен (например, у хомяка брюшко имеет яркую окраску). Многие животные, не имеющие специальных средств защиты, по форме тела и окраске подражают защищенным (мимикрия). У многих из них имеются иглы, колючки, хитиновый покров, панцирь, раковина, чешуя и т. п. У животных большую роль в качестве приспособлений играют различного рода инстинкты (инстинкт заботы о потомстве, инстинкты, связанные с добыванием пищи, и т. д.). Среди растений широко распространены самые разнообразные приспособления к перекрестному опылению, рассеиванию плодов и семян. Все эти приспособления могли появиться лишь в результате естественного отбора, обеспечивая существование вида в определенных условиях.

Вместе с тем Дарвин отмечает, что приспособленность организмов к среде обитания (их целесообразность), наряду с совершенством, носит относительный характер. Это означает, что при изменении условий полезные признаки могут оказаться бесполезными или даже вредными. Например, у водных растений, поглощающих воду и растворенные в ней вещества всей поверхностью тела, слабо развита корневая система, но хорошо развиты поверхность побега и воздухоносная ткань — аэренхима, образованная системой межклетников, пронизывающих все тело растения. Это увеличивает поверхность соприкосновения с окружающей средой, обеспечивая лучший газообмен, и позволяет растениям полнее использовать свет и поглощать углекислый газ. Но при пересыхании водоема такие растения очень быстро погибнут. Все их приспособительные признаки, обеспечивающие их процветание в водной среде, оказываются бесполезными вне ее.

Другой важный результат эволюции — нарастание многообразия видов естественных групп, т. е. систематическая дифференцировка видов. Общее нарастание многообразия органических форм весьма усложняет те взаимоотношения, которые возникают между организмами в природе. Поэтому в ходе исторического развития наибольшее преимущество получают, как правило, высокоорганизованные формы, в результате чего осуществляется поступательное развитие органического мира на Земле от низших форм к высшим. Вместе с тем, констатируя факт прогрессивной эволюции, Дарвин не отрицает морфофизиологического регресса (т.е. эволюции форм, приспособление которых к условиям среды идет через упрощение организации), а также такого направления эволюции, которое не вызывает ни усложнения, ни упрощения организации живых форм. Сочетание различных направлений эволюции приводит к одновременному существованию форм, различающихся по уровню организации.

Сущность эволюционного учения заключается в следующих основных положениях:

— Все виды живых существ, населяющих Землю, никогда не были кем-то созданы.

— Возникнув естественным путем, органические формы медленно и постепенно преобразовывались и совершенствовались в соответствии с окружающими условиями.

— В основе преобразования видов в природе лежат такие свойства организмов, как наследственность и изменчивость, а также постоянно происходящий в природе естественный отбор. Естественный отбор осуществляется через сложное взаимодействие организмов друг с другом и с факторами неживой природы; эти взаимоотношения Дарвин назвал борьбой за существование.

— Результатом эволюции является приспособленность организмов к условиям их обитания и многообразие видов в природе.

Дарвиновская концепция эволюции сводится к ряду логичных, проверяемых в эксперименте и подтвержденных огромным количеством фактических данных положений:

1. В пределах каждого вида живых организмов существует огромный размах индивидуальной наследственной изменчивости по морфологическим, физиологическим, поведенческим и любым другим признакам. Эта изменчивость может иметь непрерывный, количественный, или прерывистый качественный характер, но она существует всегда.

2. Все живые организмы размножаются в геометрической прогрессии.

3. Жизненные ресурсы для любого вида живых организмов ограничены, и поэтому должна возникать борьба за существование либо между особями одного вида, либо между особями разных видов, либо с природными условиями. В понятие «борьба за существование» Дарвин включил не только собственно борьбу особи за жизнь, но и борьбу за успех в размножении.

4. В условиях борьбы за существование выживают и дают потомство наиболее приспособленные особи, имеющие те отклонения, которые случайно оказались адаптивными к данным условиям среды. Это принципиально важный момент в аргументации Дарвина. Отклонения возникают не направленно — в ответ на действие среды, а случайно. Немногие из них оказываются полезными в конкретных условиях. Потомки выжившей особи, которые наследуют полезное отклонение, позволившее выжить их предку, оказываются более приспособленными к данной среде, чем другие представители популяции.

5. Выживание и преимущественное размножение приспособленных особей Дарвин назвал естественным отбором.

6. Естественный отбор отдельных изолированных разновидностей в разных условиях существования постепенно ведет к дивергенции (расхождению) признаков этих разновидностей и, в конечном счете, к видообразованию.

На этих постулатах, безупречных с точки зрения логики и подкрепленных огромным количеством фактов, была создана современная теория эволюции.

Главным результатом эволюции является совершенствование приспособленности организмов к условиям обитания, что влечет за собой совершенствование их организации. В результате действия естественного отбора сохраняются особи с полезными для их процветания признаками.

Главная заслуга Дарвина в том, что он установил механизм эволюции, объясняющий как многообразие живых существ, так и их изумительную целесообразность, приспособленность к условиям существования. Этот механизм — постепенный естественный отбор случайных ненаправленных наследственных изменений.

В 1871 выходит его книга «Происхождение человека и половой отбор», где выдвинул и обосновал гипотезу о происхождении человека от обезьяноподобных предков. Учение Дарвина произвело ошеломляющее впечатление на общественное сознание.

Существование эволюции было признано большинством учёных. Эволюционная теория Дарвина представляет собой целостное учение об историческом развитии органического мира. Она охватывает широкий круг проблем, важнейшими из которых являются доказательства эволюции, выявление движущих сил эволюции, определение путей и закономерностей эволюционного процесса и др. Идеи и открытия Дарвина в переработанном виде формируют фундамент современной синтетической теории эволюции и составляют основу биологии, как обеспечивающие логическое объяснение биоразнообразия.

2.3 Пьер-Симон Лаплас (1749−1827)

научный открытие максвелл дарвин лаплас

Научная деятельность Лапласа была чрезвычайно разнообразной. Научное наследие Лапласа относится к области небесной механики, математики и математической физики.

Его перу принадлежат фундаментальные работы по дифференциальным уравнениям, в частности по интегрированию методом «каскадов» уравнений с частными производными. Он ввел в математику шаровые функции, которые применяются для нахождения общего решения уравнения Лапласа и при решении задач математической физики для областей, ограниченных сферическими поверхностями.

В алгебре Лапласу принадлежит важная теорема о представлении определителей суммой произведений дополнительных миноров.

Лаплас является одним из создателей теории вероятностей; развил и систематизировал результаты, полученные другими математиками, упростил методы доказательства. Для разработки созданной им математической теории вероятностей Лаплас ввёл так называемые производящие функции и широко применял преобразование, носящее его имя (преобразование Лапласа). Теория вероятностей явилась основой для изучения всевозможных статистических закономерностей, в особенности в области естествознания.

Доказал теорему об отклонении частоты появления события от его вероятности, которая теперь называется предельной теоремой Муавра-Лапласа.

Развил теорию ошибок. Ввел теоремы сложения и умножения вероятностей, понятия производящих функций и математического ожидания.

Наибольшее количество исследований Лапласа относится к небесной механике. Он стремился все видимые движения небесных тел объяснить, опираясь на закон всемирного тяготения Ньютона, и это ему удалось. Лаплас доказал устойчивость Солнечной системы; показал, что средняя скорость движения Луны зависит от эксцентриситета земной орбиты, а тот в свою очередь меняется под действием притяжения планет. Лаплас доказал, что это движение долгопериодическое и что через некоторое время Луна станет двигаться замедленно. Он определил величину сжатия Земли у полюсов. В 1780 г. Лаплас предложил новый способ вычисления орбит небесных тел. Пришел к выводу, что кольцо Сатурна не может быть сплошным, иначе оно было бы неустойчивым. Предсказал сжатие Сатурна у полюсов; установил законы движения спутников Юпитера. Полученные результаты были опубликованы Лапласом в его пятитомном классическом сочинении «Трактат о небесной механике» (1798−1825гг.)

В физике Лаплас вывел формулу для скорости распространения звука в воздухе, создал ледяной колориметр. Получил барометрическую формулу для вычисления изменения плотности воздуха с высотой, учитывающего его влажность, выполнил ряд работ по теории капиллярности и установил закон (носящий его имя), который позволяет определить величину капиллярного давления и тем самым записать условие механического равновесия для подвижных (жидких) поверхностей раздела.

Недавно ученые имели возможность еще раз оценить прозорливость Лапласа. В «Изложении системы мира» приводится доказательство того, что «сила притяжения небесного тела могла бы быть столь велика, что от него не будет исходить свет». Это произойдет, если у тела будет та же плотность, что и у Земли, а диаметр равен 250 диаметрам Солнца. Другими словами, первая космическая скорость в поле тяготения этого тела превышает скорость света. Таким образом, Лаплас был первым, кто обратил внимание на возможность существования «черных дыр». Жизнь Лапласа в значительной степени отражает сложность эпохи, в которую он жил. Однако через всю своею жизнь он про нес верность науке, ни при каких обстоятельствах не прерывая занятий. Роль Лапласа в истории науки трудно переоценить. «…Лаплас был рожден для того, чтобы все углублять, отодвигать все границы, чтобы решать то, что казалось неразрешимым. Он кончил бы науку о небе, если бы эта наука могла быть окончена».

2.4 Джон Дальтон (1766 — 1844)

Наука XIX в. ознаменована и революцией в химии. В развитии химии XIX века проблема химического состава веществ была главной, т.к. в это время мануфактурное производство сменилось машинным, а для последнего была необходима широкая сырьевая база. В промышленном производстве стала преобладать переработка огромных масс вещества растительного и животного происхождения. В производстве стали участвовать вещества с различными (часто противоположными) качествами, состоящие лишь из нескольких химических элементов органического происхождения: углерод, водород, кислород, сера, фосфор. Объяснение этому широкому разнообразию органических соединений, возникших на базе ограниченного числа химических элементов, ученые стали искать не только в составе, но и в структуре соединения этих элементов. Кроме того, многочисленные лабораторные эксперименты и опыты убедительно доказывали, что свойства полученных в результате химических реакций веществ зависят не только от элементов, но и от взаимосвязи и взаимодействия элементов в процессе реакции. Поэтому химики стали все больше обращаться к проблеме структуры вещества и взаимодействию составных элементов вещества.

Первым ученым, который добился значительных успехов в новом направлении развития химии, стал английский химик Джон Дальтон, который вошел в историю химии как первооткрыватель закона кратных отношений и создатель основ атомной теории. Дж. Далтон показал, что каждый элемент природы составляет совокупность атомов, строго одинаковых между собой и обладающих единым атомным весом. Благодаря этой теории в химию проникли идеи системного развития процессов.

Все свои теоретические выводы он получил на основе сделанного им самим открытия, что два элемента могут соединяться друг с другом в разных соотношениях, но при этом каждая новая комбинация элементов представляет собой новое соединение. Подобно древним атомистам, Дальтон исходил из положения о корпускулярном строении материи, но, основываясь на сформулированном Лавуазье понятии химического элемента, полагал, что все атомы каждого отдельного элемента одинаковы и характеризуются тем, что обладают определенным весом, который он назвал атомным весом. Таким образом, каждый элемент обладает своим атомным весом, но этот вес относителен, так как абсолютный вес атомов определить невозможно. В качестве условной единицы атомного веса элементов Дальтон принимает атомный вес самого легкого из всех элементов — водорода, и сопоставляет с ним вес других элементов. Для экспериментального подтверждения этой идеи необходимо, чтобы элемент соединился с водородом, образуя определенное соединение. Если этого не происходит, то необходимо, чтобы данный элемент соединялся с другим элементом, о котором известно, что он способен соединяться с водородом. Зная вес этого другого элемента относительно водорода, можно всегда найти отношение веса данного элемента к принятому за единицу веса водорода.

Рассуждая таким образом, Дальтон составил первую таблицу относительных атомных весов водорода, азота, углерода, серы и фосфора, приняв за единицу атомную массу водорода. Эта таблица и была самой важной работой Дальтона.

Дальтон так убедительно представил свою теорию, что за двадцать лет ее приняло большинство ученых. Более того, химики стали следовать программе, предложенной в книге: точное определение относительных атомных весов, анализ химических соединений по весу, определение точных комбинаций атомов, которые составляют каждый вид молекул. Успех этой программы, конечно, был ошеломляющим. Трудно переоценить важность гипотезы существования атомов. Это основное понятие в современной химии. К тому же это еще стали неоценимым прологом к многим направлениям современной физики.

Заключение

В данной работе кратко дана общая характеристика XIX века, а также более подробно рассмотрены некоторые научные открытия рассматриваемого периода.

Бурное развитие науки в XIX веке, привело к значительному числу открытий принципиального характера, положивших начало новым направлениям научно-технического прогресса, и которые привели к изменению образа жизни всего человечества.

Дж. Максвелл — английский физик, создатель классической электродинамики, который сформулировал четыре уравнения, которые явились выражением основных законов электричества и магнетизма.

Дж. Дальтон — английский химик и естествоиспытатель, ввел в науку теорию атома. Сделав это, он подал ключевую идею, которая с тех пор вызвала огромный прогресс в химии.

Пьер С. Лаплас — французский математик, физик и астроном, известен работами в области небесной механики, дифференциальных уравнений, один из создателей теории вероятностей. Заслуги Лапласа в области чистой и прикладной математики и особенно в астрономии громадны: он усовершенствовал почти все отделы этих наук.

Эволюционная теория Ч. Дарвина, английского натуралиста — целостное учение об историческом развитии органического мира, которая охватывает широкий круг проблем, важнейшими из которых являются доказательства эволюции, выявление движущих сил эволюции, определение путей и закономерностей эволюционного процесса и др.

Список используемой литературы

1. Бляхер Л. Я. История биологии с древнейших времён до начала ХХ века. Основные черты учения Ч. Дарвина / Л. Я. Бляхер. — М.: Наука, 1972. — С. 112−122.

2. Гиндикин С. Г. Рассказы о физиках и математиках / С. Г. Гиндикин. — М. :МЦНМО, 2001. — 448 с.

3. Ельяшевич М. А. Вклад Максвелла в развитие молекулярной физики и статистических методов / М. А. Ельяшевич, Т. С. Протько. // УФН. — 1981. — С. 381−423.

4. История мировой культуры (мировых цивилизаций). Европейская культура XIX века / Под ред. Г. В. Драча. — Ростов-на-Дону: Феникс, 2004. — 544 с.

5. Культурология / Под ред. Г. В. Драча. — М.: Альфа-М, 2003. — 432 с.

6. Культурология. Краткий тематический словарь / Г. В. Драч, Т. П. Матяш. — Ростов н/Д: Феникс, 2001. — 192 с.

7. Нивен У. Жизнь и научная деятельность Дж.К. Максвелла (краткий очерк 1890 года) / У. Нивен // Дж.К. Максвелл. Материя и движение. — Ижевск: РХД, 2001. — С. 14−39.

8. Самин Д. К. 100 великих научных открытий / Д. К Самин. — М.: Вече, 2002. — 480 с.

9. Харт Майкл Х. 100 великих людей Майкл / Х. Харт. — М.: Вече, 1998. — 544 с.

10. Чайковский Ю. В. Наука о развитии жизни. Опыт теории эволюции / Ю. В. Чайковский. — М.: Товарищество научных изданий КМК, 2006. — 712 с.

Показать Свернуть

westud.ru

20 самых важных открытий 21 века — ❶ Интересные факты ❶

За 15 лет с начала нового тысячелетия люди и не заметили, что попали в иной мир: мы живем в другой Солнечной системе, умеем ремонтировать гены и управлять протезами силой мысли. Ничего этого в XX столетии не было. Источник

ГЕНЕТИКА

Геном человека полностью секвенирован

20 самых важных открытий 21 века20 самых важных открытий 21 века

Робот сортирует ДНК человека в чашках Петри для проекта The Human Genome

Проект «Человеческий геном» (The Human Genome Project) начался в 1990 году, в 2000-м был выпущен рабочий черновик структуры генома, полный геном — в 2003 году. Однако и сегодня дополнительный анализ некоторых участков еще не закончен. В основном он был выполнен в университетах и исследовательских центрах США, Канады и Великобритании. Секвенирование генома имеет решающее значение для разработки лекарств и понимания того, как устроено человеческое тело.

Генная инженерия вышла на новый уровень

В последние годы был разработан революционный метод манипуляции ДНК при помощи так называемого CRISP-механизма. Эта методика позволяет избирательно редактировать определенные гены, что раньше было невозможно.

МАТЕМАТИКА

Доказана теорема Пуанкаре

20 самых важных открытий 21 века

20 самых важных открытий 21 века В 2002 году российский математик Григорий Перельман доказал теорему Пуанкаре, одну из семи задач тысячелетия (важные математические проблемы, решение которых не найдено в течение десятков лет). Перельман показал, что исходная трехмерная поверхность (если в ней нет разрывов) обязательно будет эволюционировать в трехмерную сферу. За эту работу он получил престижную «медаль Филдса», аналог Нобелевской премии в математике.

АСТРОНОМИЯ

Открыта карликовая планета Эрида

Впервые Эриду сфотографировали еще 21 октября 2003 года, но заметили на снимках только в начале 2005-го. Ее открытие стало последней каплей в спорах о судьбе Плутона (продолжать ли его считать планетой или нет), что изменило привычный образ Солнечной системы.

Обнаружена вода на Марсе

В 2005 году аппарат «Марс Экспресс» Европейского космического агентства обнаружил большие залежи водяного льда недалеко от поверхности — это очень важно для последующей колонизации Красной планеты.

ФИЗИКА

Глобальное потепление — быстрее, чем ожидалось

20 самых важных открытий 21 века

20 самых важных открытий 21 века В 2015 году ученые из Всемирного центра мониторинга ледников при Цюрихском университете (Швейцария) под руководством доктора Михаэля Цемпа, работая совместно с коллегами из 30 стран, установили, что темп таяния ледников на Земле к настоящему времени, по сравнению c усредненными показателями за XX век, вырос в два-три раза.

Обнаружена квантовая телепортация

Такая телепортация отличается от телепортации, о которой любят говорить фантасты, — при ней материя или энергия не передаются на расстояние. Эксперименты по передаче квантовых состояний на большие расстояния были удачно проведены за последние 15 лет не менее чем десятком научных групп. Квантовая телепортация очень важна для создания сверхзащищенных шифров и квантовых компьютеров.

Экспериментально подтверждено существование графена

20 самых важных открытий 21 века

20 самых важных открытий 21 века Его двумерная (толщиной в один атом) кристаллическая решетка проявляет необычные электрофизические свойства. Впервые графен был получен Андреем Геймом и Константином Новоселовым в 2004 году (Нобелевская премия за 2010-й). Его планируется использовать в электронике (в сверхтонких и сверхбыстрых транзисторах), композитах, электродах и т. д. Кроме того, графен — второй по прочности материал на свете (на первом месте — карбин).

Доказано существование кварк-глюонной плазмы

В 2012 году эксперименты физиков, работающих с ускорителем RHIC в Брукхейвенской национальной лаборатории (США), попали в Книгу рекордов Гиннесса с формулировкой «за самую высокую температуру, полученную в лабораторных условиях». Сталкивая ионы золота на ускорителе, ученые добились возникновения кварк-глюонной плазмы с температурой 4 триллиона °С (в 250 тысяч раз горячее, чем в центре Солнца). Спустя примерно микросекунду после Большого взрыва Вселенная была наполнена как раз такой плазмой.

Найден бозон Хиггса

20 самых важных открытий 21 века

20 самых важных открытий 21 века Существование этой элементарной частицы, отвечающей за массу всех прочих частиц, теоретически было предсказано Питером Хиггсом еще в 1960-х годах. А найдена она была во время экспериментов на Большом адронном коллайдере в 2012-м (за что Хиггс, совместно с Франсуа Энглером, получил Нобелевскую премию 2013 года).

БИОЛОГИЯ

Людей поделили на три энтеротипа

В 2011 году ученые из Германии, Франции и нескольких других исследовательских центров доказали, что по генетике населяющих нас бактерий люди делятся на три категории, или энтеротипа. Энтеротип человека проявляется в разной реакции на еду, лекарства и диеты, и потому стало ясно, что никаких универсальных рецептов в этих областях существовать не может.

Создана первая синтетическая бактериальная клетка

В 2010 году ученые из Института Крейга Вентера (был одним из лидеров гонки по расшифровке человеческого генома) создали первую полностью синтетическую хромосому с геномом. Когда ее встроили в бактериальную клетку, лишенную генетического материала, она начала функционировать и делиться по предписанным новым геномом законам. В перспективе синтетический геном позволит создавать вакцины против новых вирусных штаммов за часы, а не за недели, производить эффективное биотопливо, новые пищевые продукты и т. д.

Удачно записаны и перезаписаны воспоминания

20 самых важных открытий 21 века

20 самых важных открытий 21 века Начиная с 2010 года несколько исследовательских групп (США, Франция, Германия) научились записывать в мозг мышей ложные воспоминания, стирать реальные, а также превращать приятные воспоминания в неприятные. До человеческого мозга дело пока не дошло, но осталось недолго.

Получены «этичные» (не из эмбрионов) плюрипотентные стволовые клетки

В 2012 году Синъя Яманака совместно с Джоном Гёрдоном стали лауреатами Нобелевской премии за открытие 2006 года — получение плюрипотентных стволовых клеток мыши путем эпигенетического перепрограммирования. За последующее десятилетие не менее десятка научных групп добились впечатляющих успехов в данной области, в том числе с человеческими клетками. Это предвещает скорые прорывы в терапии рака, регенеративной медицине, а также в клонировании человека (или его органов).

ПАЛЕОНТОЛОГИЯ

Впервые обнаружены мягкие ткани динозавра

20 самых важных открытий 21 века20 самых важных открытий 21 века

Мэри Швейцер руководила научной группой, которая описала коллаген, выделенный из бедренной кости Tyrannosaurus reх

Молекулярный палеонтолог Университета Северной Каролины Мэри Швейцер в 2005 году в окаменевшей конечности подростка-тираннозавра из Монтаны (возрастом 65 млн лет) обнаружила мягкие ткани. Ранее считалось, что любые белки разложатся максимум за несколько тысяч лет, поэтому никто их в окаменелостях и не искал. После этого мягкие ткани (коллаген) были обнаружены и в других древнейших образцах.

У людей обнаружены гены неандертальцев и «денисовского человека»

20 самых важных открытий 21 века20 самых важных открытий 21 века

Участники международного симпозиума «Переход к верхнему палеолиту в Евразии: культурная динамика и развитие рода Homo» осматривают место раскопок в центральном зале Денисовой пещеры

Из работ двух научных групп стало ясно, что от 1 до 3% генома среднестатистического европейца или азиата восходит к неандертальцам. Но у каждого современного индивидуума присутствуют несхожие неандертальские аллели (различные формы одного и того же гена), поэтому общая сумма «неандертальских» генов куда выше, до 30%. «Наследники» неандертальцев (скрещивание происходило около 45 тысяч лет назад) — в основном европейцы; у азиатов в геноме присутствуют следы скрещивания с еще одним гоминидом — «денисовским человеком». Самые «чистые» Homo sapiens — уроженцы Африканского континента.

МЕДИЦИНА

По дыханию распознана ранняя стадия рака легких

20 самых важных открытий 21 века

20 самых важных открытий 21 века Год назад группа израильских, американских и британских ученых разработала устройство, которое способно точно идентифицировать рак легких и определить, в какой стадии он находится. Основой устройства стал анализатор дыхания со встроенным наночипом NaNose, способный «вынюхать» раковую опухоль с 90-процентной точностью, даже когда раковый узелок практически незаметен. В скором времени стоит ожидать анализаторов, которые смогут по «запаху» определять и другие виды рака.

Разработано первое полностью автономное искусственное сердце

20 самых важных открытий 21 века

20 самых важных открытий 21 века Специалисты американской компании Abiomed разработали первое в мире полностью автономное постоянное искусственное сердце для имплантаций (AbioCor). Искусственное сердце предназначено для пациентов, у которых невозможно лечение собственного сердца или имплантация донорского.

БИОНИКА

Созданы биомеханические устройства и протезы, контролируемые усилием мысли

20 самых важных открытий 21 века20 самых важных открытий 21 века

Американец Зак Вотер испытал бионический ножной протез, поднявшись по лестнице на 103-й этаж небоскреба Уиллис-тауэр, расположенного в Чикаго

В 2013 году появились первые опытные образцы «умных» протезов с обратной связью (эмуляцией осязательных ощущений), которые позволяют человеку чувствовать то, что «ощущает» протез. В 2010-х годах созданы и отдельные от человека устройства, управляемые только через мысленный интерфейс (иногда с инвазивными контактами, но чаще это похоже на головной обруч с сухим электродом), — компьютерные игры и тренажеры, манипуляторы, транспорт и пр.

ЭЛЕКТРОНИКА

Перейден петафлопсный барьер

В 2008 году новый суперкомпьютер в Лос-Аламосе (США) заработал со скоростью более квадриллиона (тысяча триллионов) операций в секунду. Следующий барьер, эксафлопсный (квинтиллион операций в секунду) будет достигнут в ближайшие годы. Системы с такой невероятной скоростью необходимы в первую очередь для высокопроизводительных вычислений — обработки данных научных экспериментов, климатического моделирования, финансовых операций и т. д.

Фото: Alamy, SPL, Newscom / Legion Media, SPL / Legion Media (X2), Photo courtesy of North Carolina State University, Reuters / Pix- Stream, Александр Кряжев / РИА Новости, Reuters / Pix-Stream, Michael Hoch, Maximilien Brice / © 2008 CERN, for the benefit of the CMS Collaboration, AP / East News

20 самых важных открытий 21 века

xn----8sbnaaptsc2amijz6hg.com

Лучшие открытия XXI века | Science Debate

Мы уже рассматривали XX век и его открытия, в корне изменившие наш мир, однако даже сейчас человечество в плане развития технологий и прогресса, видит лишь верхушку айсберга. Впрочем, это ничуть не остужает пыл ученых и исследователей различных мастей, а напротив – лишь подогревает их интерес.

Сегодня речь пойдет о нашем времени, которое все мы помним и знаем. Мы поговорим об открытиях, которые так или иначе стали настоящим прорывом в области науки и начнем, пожалуй, с самого значимого. Тут стоит оговориться, что самое значимое открытие не всегда значимо для обывателя, а в первую очередь важно для научного мира.

Первую позицию занимает совсем недавнее открытие, однако, его значимость для современной физики колоссальна, это открытие учеными «частицы-бога» или, как ее обычно называют – бозон Хиггса. По сути, открытие этой частицы объясняет причину возникновения массы у других элементарных частиц.

открытия 21 века

Стоит отметить, что доказать существование бозона Хиггса пытались на протяжении 45 лет, однако удалось это сделать лишь недавно. Еще в 1964 году Питер Хиггс, в честь которого названа частица, предсказывал ее существование, однако практически доказать это не было возможности.

большой адронный коллаидер

Но 26 апреля 2011 года, по просторам интернета волной прошла новость о том, что с помощью Большого адронного коллайдера, находящегося рядом с Женевой, ученым, наконец, удалось обнаружить искомую и ставшую чуть ли не легендарной частицу. Однако учеными это не сразу подтвердилось и лишь в июне 2012 года специалисты заявили о своей находке. Впрочем, к окончательному выводу пришли лишь в марте 2013 года, когда ученые ЦЕРН сделали заявление о том, что обнаруженная частица действительно является бозоном Хиггса.

бозон хиггса

Не смотря на то, что открытие этой частицы стало знаковым для научного мира, практическое ее использование на данном этапе развития остается под вопросом. Сам Питер Хиггс комментируя возможность использования бозона сказал следующее «Существование бозона длится лишь что-то около одной квинтиллионной доли секунды, и мне сложно представить, как столько короткоживущую частицу можно использовать. Частицы, которые живут миллионную долю секунды, сейчас, впрочем, находят применение в медицине». Так, в свое время, известный английский физик-экспериментатор, на вопрос о пользе и практическом применении открытой им магнитной индукции сказал «А какая польза может быть от новорожденного ребенка?» и этим, пожалуй, закрыл данную тему.

Вторую позицию среди самых интересных, перспективных и амбициозных проектов человечества в XXI веке занимает расшифровка генома человека. Проект «Геном человека» не зря имеет славу самого важного проекта в сфере биологических исследований, а работа над ним началась еще в 1990 году, хотя стоит упомянуть о том, что данный вопрос рассматривался и в 80-ых годах XX века.

Цель проекта была ясна – изначально планировалось определение последовательности более трех миллиардов нуклеотидов (нуклеотиды составляют ДНК), а так же определить более 20 тысяч генов в геноме человека. Впрочем, позже, несколько исследовательских групп расширили задачу. Стоит так же отметить, что исследование, завершившееся в 2006 году, израсходовало $3 млрд.

проект геном человека

Этапы проекта можно разбить на несколько частей:

1990-ый год. Конгресс США выделяет средства на изучение генома человека.1995-ый год. Публикуется первая полная последовательность ДНК живого организма. Рассматривалась бактерия Haemophilus influenzae1998-ой год. Публикуется первая последовательность ДНК многоклеточного организма. Рассматривался плоский червь Caenorhabditis elegans.1999-ый год. На данном этапе расшифровано более двух десятков геномов.2000-ый год. Было объявлено о «первой сборке генома человека» — первая реконструкция генома человека.2001-ый год. Первый набросок генома человека.2003-ий год. Полная расшифровка ДНК, остается расшифровать первую хромосому человека.2006-ой год. Последний этап работы по расшифровке полного генома человека.

Несмотря на то, что ученые всего мира строили грандиозные планы на момент окончания проекта, ожидания не оправдались. На данный момент научная общественность признала проект провальным по своей сути, однако говорить, что он был абсолютно бесполезен ни в коем случае нельзя. Новые данные позволили ускорить темпы развития, как медицины, так и биотехнологии.

И третью, последнюю позицию в сегодняшнем перечне занимает… Собственно, третья позиция останется свободной. Это не говорит о том, что больше никаких важных и интересных открытий не произошло – напротив, открытий и достижений в области науки более чем достаточно, однако определиться, какое именно из них достойно стоять на этой позиции мы предоставим вам. Можно посчитать это если не домашним заданием, то нашим желанием пообщаться и узнать мнение многих людей.

марсоход на красной планете

Так, например, кто-то может считать, что открытие воды на Марсе является отличным поводом объявить это достижение кандидатом на роль бронзового призера, иные же не согласятся и заявят, что получение нового материала – графена, куда более значимое событие. Так или иначе, каждый имеет право на свое мнение и мы уверены, что поделившись своими мыслями, вы сможете заинтересовать других и узнать много нового.

www.sciencedebate2008.com


Смотрите также

 

..:::Новинки:::..

Windows Commander 5.11 Свежая версия.

Новая версия
IrfanView 3.75 (рус)

Обновление текстового редактора TextEd, уже 1.75a

System mechanic 3.7f
Новая версия

Обновление плагинов для WC, смотрим :-)

Весь Winamp
Посетите новый сайт.

WinRaR 3.00
Релиз уже здесь

PowerDesk 4.0 free
Просто - напросто сильный upgrade проводника.

..:::Счетчики:::..

 

     

 

 

.