wreferat.baza-referat.ru

Нейтронная бомба: история создания и принципы работы

Нейтронная бомба

Эпоха Холодной войны значительно добавила фобий человечеству. После Хиросимы и Нагасаки всадники Апокалипсиса обрели новые ипостаси и стали казаться реальными как никогда. Ядерные и термоядерные бомбы, биологическое оружие, «грязные» бомбы, баллистические ракеты – все это несло угрозу массового уничтожения для многомиллионных мегаполисов, стран и целых континентов.

Одной из самых впечатляющих «страшилок» того периода была нейтронная бомба – разновидность ядерного оружия, «заточенная» для уничтожения биологических объектов, при минимальном воздействии на материальные ценности. Советская пропаганда уделила много внимания этому ужасному оружию, изобретенному сумрачным гением заокеанских империалистов.

От этой бомбы нельзя было спрятаться, не спасал ни бетонный бункер, ни бомбоубежища, ни другие средства защиты. При этом после взрыва нейтронной бомбы здания, предприятия и прочие объекты инфраструктуры оставались нетронутыми и попадали прямо в лапы американской военщины. Рассказов о новом страшном оружии было так много, что в СССР про него начали сочинять анекдоты.

Что же из этих рассказов правда, а что вымысел? Как работает нейтронная бомба? Есть ли подобные боеприпасы на вооружении российской армии или вооруженных сил США? Ведутся ли разработки в этой области в наши дни?

Как работает нейтронная бомба

Нейтронная бомба – это разновидность ядерного оружия, основным поражающим фактором которого является поток нейтронного излучения. Вопреки распространенному мнению, после взрыва нейтронного боеприпаса образуется и ударная волна, и световое излучение, но большая часть энергии выделяемой энергии превращается в поток быстрых нейтронов. Нейтронная бомба относится к тактическому ядерному оружию.

Нейтронная бомба

Принцип действия нейтронных боеприпасов основан на свойстве быстрых нейтронов гораздо сильнее проникать через различные преграды, по сравнению с рентгеновским излучением, альфа, бета и гамма-частицами. Например, 150 мм брони способны удержать до 90% гамма-излучения и только 20% нейтронной волны. Грубо говоря, спрятаться от проникающего излучения нейтронного боеприпаса гораздо сложнее, чем от радиации обычной ядерной бомбы. Именно это свойство нейтронов и привлекло внимание военных.

Нейтронная бомба имеет ядерный заряд небольшой мощности, а также специальный блок (его обычно изготавливают из бериллия), который и является источником нейтронного излучения. После подрыва ядерного заряда большая часть энергии взрыва преобразуется в жесткое нейтронное излучение. На остальные факторы поражения — ударная волна, световой импульс, электромагнитное излучение — приходится лишь 20% энергии.

Однако все вышесказанное всего лишь теория, практическое применение нейтронного оружия имеет некоторые нюансы.

Земная атмосфера очень сильно гасит нейтронное излучение, поэтому дальность действия этого поражающего фактора не больше, чем дистанция поражения ударной волны. По этой же причине нет смысла изготавливать нейтронные боеприпасы большой мощности – излучение все равно быстро затухнет. Обычно нейтронные заряды имеют мощность около 1 кТ. При его подрыве происходит поражение нейтронным излучением в радиусе 1,5 км. На дистанции в 1350 метров от эпицентра оно опасно для жизни человека.

Нейтронная бомба

Кроме того, поток нейтронов вызывает в материалах — например, в броне — наведенную радиоактивность. Если посадить в танк, попавший под действие нейтронного оружия (на дистанциях около километра от эпицентра), новый экипаж, то он получит летальную дозу радиации в течение суток.

Не соответствует действительности распространенное мнение о том, что нейтронная бомба не уничтожает материальные ценности. После взрыва подобного боеприпаса образуется и ударная волна, и импульс светового излучения, зона сильных разрушений от которых имеет радиус примерно в один километр.

Нейтронные боеприпасы не слишком подходят для использования в земной атмосфере, зато они могут быть весьма эффективны в космическом пространстве. Там нет воздуха, поэтому нейтроны распространяются беспрепятственно на весьма значительные расстояния. Благодаря этому различные источники нейтронного излучения рассматриваются в качестве эффективного средства противоракетной обороны. Это так называемое пучковое оружие. Правда, в качестве источника нейтронов обычно рассматривается не нейтронные ядерные бомбы, а генераторы направленных нейтронных пучков – так называемые нейтронные пушки.

Нейтронная бомба

Использовать их в качестве средства для поражения баллистических ракет и боевых блоков предлагали еще разработчики рейгановской программы Стратегической оборонной инициативы (СОИ). При взаимодействии пучка нейтронов с материалами конструкции ракет и боеголовок возникает наведенная радиация, которая надежно выводит из строя электронику этих устройств.

Нейтронная бомба

После появления идеи нейтронной бомбы и начала работ по ее созданию стали разрабатываться методы защиты от нейтронного излучения. В первую очередь они были направлены на уменьшение уязвимости боевой техники и экипажа, находящегося в ней. Основным методом защиты от подобного оружия стало изготовление специальных видов брони, хорошо поглощающих нейтроны. Обычно в них добавляли бор – материал, прекрасно улавливающий эти элементарные частицы. Можно добавить, что бор входит в состав поглощающих стрежней ядерных реакторов. Еще одним способом уменьшить поток нейтронов является добавление в броневую сталь обедненного урана.

Вообще, практически вся боевая техника, созданная в 60-е – 70-е годы прошлого столетия, максимально защищена от большинства поражающих факторов ядерного взрыва.

История создания нейтронной бомбы

Атомные бомбы, взорванные американцами над Хиросимой и Нагасаки, принято относить к первому поколению ядерного оружия. Принцип его работы основан на реакции делений ядер урана или плутония. Ко второму поколению относится оружие, в принцип работы которого положены реакции ядерного синтеза – это термоядерные боеприпасы, первое из них было взорвано США в 1952 году.

К ядерному оружию третьего поколения относятся боеприпасы, после взрыва которых, энергия направляется на усиление того или иного фактора поражения. Именно к таким боеприпасам относятся нейтронные бомбы.

Впервые о создании нейтронной бомбы заговорили в середине 60-х годов, хотя, его теоретическое обоснование обсуждалось гораздо раньше – еще в середине 40-х годов. Считается, что идея создания подобного оружия принадлежит американскому физику Самуэлю Коену. Тактическое ядерное оружие, несмотря на его значительную мощь, не слишком эффективно против бронетехники, броня хорошо защищала экипаж практически от всех поражающих факторов ЯО.

Первое испытание нейтронного боевого устройства было проведено в США в 1963 году. Однако мощность излучения оказалась гораздо ниже той, на которую рассчитывали военные. На доводку нового оружия потребовалось более десяти лет: в 1976 году американцы провели очередные испытания нейтронного заряда, результаты которого оказались весьма впечатляющими. После этого было принято решение о создании 203-мм снарядов с нейтронной боевой частью и боеголовок для тактических баллистических ракет «Ланс».

Нейтронная бомба

В настоящее время технологиями, которые позволяют создавать нейтронное оружие, владеют США, Россия и Китай (возможно, Франция). Некоторые источники сообщают, что массовый выпуск подобных боеприпасов продолжался примерно до середины 80-х годов прошлого века. В этот момент в броню боевой техники стали повсеместно добавлять бор и обедненный уран, что практически полностью нейтрализовало основной поражающий фактор нейтронных боеприпасов. Это привело к постепенному отказу от этого вида оружия. Хотя, как обстоит ситуация на самом деле — неизвестно. Информация такого рода находится под многими грифами секретности и практически не доступна широкой общественности.

militaryarms.ru

Нейтронная бомба: история создания и принципы работы

Эпоха Холодной войны значительно добавила фобий человечеству. После Хиросимы и Нагасаки всадники Апокалипсиса обрели новые ипостаси и стали казаться реальными как никогда. Ядерные и термоядерные бомбы, биологическое оружие, «грязные» бомбы, баллистические ракеты – все это несло угрозу массового уничтожения для многомиллионных мегаполисов, стран и целых континентов.

Одной из самых впечатляющих «страшилок» того периода была нейтронная бомба – разновидность ядерного оружия, «заточенная» для уничтожения биологических объектов, при минимальном воздействии на материальные ценности. Советская пропаганда уделила много внимания этому ужасному оружию, изобретенному сумрачным гением заокеанских империалистов.

От этой бомбы нельзя было спрятаться, не спасал ни бетонный бункер, ни бомбоубежища, ни другие средства защиты. При этом после взрыва нейтронной бомбы здания, предприятия и прочие объекты инфраструктуры оставались нетронутыми и попадали прямо в лапы американской военщины. Рассказов о новом страшном оружии было так много, что в СССР про него начали сочинять анекдоты.

Что же из этих рассказов правда, а что вымысел? Как работает нейтронная бомба? Есть ли подобные боеприпасы на вооружении российской армии или вооруженных сил США? Ведутся ли разработки в этой области в наши дни?

Как работает нейтронная бомба

Нейтронная бомба – это разновидность ядерного оружия, основным поражающим фактором которого является поток нейтронного излучения. Вопреки распространенному мнению, после взрыва нейтронного боеприпаса образуется и ударная волна, и световое излучение, но большая часть выделяемой энергии превращается в поток быстрых нейтронов. Нейтронная бомба относится к тактическому ядерному оружию.

Принцип действия нейтронных боеприпасов основан на свойстве быстрых нейтронов гораздо сильнее проникать через различные преграды, по сравнению с рентгеновским излучением, альфа, бета и гамма-частицами. Например, 150 мм брони способны удержать до 90% гамма-излучения и только 20% нейтронной волны. Грубо говоря, спрятаться от проникающего излучения нейтронного боеприпаса гораздо сложнее, чем от радиации обычной ядерной бомбы. Именно это свойство нейтронов и привлекло внимание военных.

Нейтронная бомба имеет ядерный заряд небольшой мощности, а также специальный блок (его обычно изготавливают из бериллия), который и является источником нейтронного излучения. После подрыва ядерного заряда большая часть энергии взрыва преобразуется в жесткое нейтронное излучение. На остальные факторы поражения — ударная волна, световой импульс, электромагнитное излучение — приходится лишь 20% энергии.

Однако все вышесказанное всего лишь теория, практическое применение нейтронного оружия имеет некоторые нюансы.

Земная атмосфера очень сильно гасит нейтронное излучение, поэтому дальность действия этого поражающего фактора не больше, чем дистанция поражения ударной волны. По этой же причине нет смысла изготавливать нейтронные боеприпасы большой мощности – излучение все равно быстро затухнет. Обычно нейтронные заряды имеют мощность около 1 кТ. При его подрыве происходит поражение нейтронным излучением в радиусе 1,5 км. На дистанции в 1350 метров от эпицентра оно опасно для жизни человека.

Кроме того, поток нейтронов вызывает в материалах — например, в броне — наведенную радиоактивность. Если посадить в танк, попавший под действие нейтронного оружия (на дистанциях около километра от эпицентра), новый экипаж, то он получит летальную дозу радиации в течение суток.

Не соответствует действительности распространенное мнение о том, что нейтронная бомба не уничтожает материальные ценности. После взрыва подобного боеприпаса образуется и ударная волна, и импульс светового излучения, зона сильных разрушений от которых имеет радиус примерно в один километр.

Нейтронные боеприпасы не слишком подходят для использования в земной атмосфере, зато они могут быть весьма эффективны в космическом пространстве. Там нет воздуха, поэтому нейтроны распространяются беспрепятственно на весьма значительные расстояния. Благодаря этому различные источники нейтронного излучения рассматриваются в качестве эффективного средства противоракетной обороны. Это так называемое пучковое оружие. Правда, в качестве источника нейтронов обычно рассматривается не нейтронные ядерные бомбы, а генераторы направленных нейтронных пучков – так называемые нейтронные пушки.

Использовать их в качестве средства для поражения баллистических ракет и боевых блоков предлагали еще разработчики рейгановской программы Стратегической оборонной инициативы (СОИ). При взаимодействии пучка нейтронов с материалами конструкции ракет и боеголовок возникает наведенная радиация, которая надежно выводит из строя электронику этих устройств.

После появления идеи нейтронной бомбы и начала работ по ее созданию стали разрабатываться методы защиты от нейтронного излучения. В первую очередь они были направлены на уменьшение уязвимости боевой техники и экипажа, находящегося в ней. Основным методом защиты от подобного оружия стало изготовление специальных видов брони, хорошо поглощающих нейтроны. Обычно в них добавляли бор – материал, прекрасно улавливающий эти элементарные частицы. Можно добавить, что бор входит в состав поглощающих стрежней ядерных реакторов. Еще одним способом уменьшить поток нейтронов является добавление в броневую сталь обедненного урана.

Вообще, практически вся боевая техника, созданная в 60-е – 70-е годы прошлого столетия, максимально защищена от большинства поражающих факторов ядерного взрыва.

История создания нейтронной бомбы

Атомные бомбы, взорванные американцами над Хиросимой и Нагасаки, принято относить к первому поколению ядерного оружия. Принцип его работы основан на реакции делений ядер урана или плутония. Ко второму поколению относится оружие, в принцип работы которого положены реакции ядерного синтеза – это термоядерные боеприпасы, первое из них было взорвано США в 1952 году.

К ядерному оружию третьего поколения относятся боеприпасы, после взрыва которых, энергия направляется на усиление того или иного фактора поражения. Именно к таким боеприпасам относятся нейтронные бомбы.

Впервые о создании нейтронной бомбы заговорили в середине 60-х годов, хотя, его теоретическое обоснование обсуждалось гораздо раньше – еще в середине 40-х годов. Считается, что идея создания подобного оружия принадлежит американскому физику Самуэлю Коену. Тактическое ядерное оружие, несмотря на его значительную мощь, не слишком эффективно против бронетехники, броня хорошо защищала экипаж практически от всех поражающих факторов ЯО.

Первое испытание нейтронного боевого устройства было проведено в США в 1963 году. Однако мощность излучения оказалась гораздо ниже той, на которую рассчитывали военные. На доводку нового оружия потребовалось более десяти лет: в 1976 году американцы провели очередные испытания нейтронного заряда, результаты которого оказались весьма впечатляющими. После этого было принято решение о создании 203-мм снарядов с нейтронной боевой частью и боеголовок для тактических баллистических ракет «Ланс».

В настоящее время технологиями, которые позволяют создавать нейтронное оружие, владеют США, Россия и Китай (возможно, Франция). Некоторые источники сообщают, что массовый выпуск подобных боеприпасов продолжался примерно до середины 80-х годов прошлого века. В этот момент в броню боевой техники стали повсеместно добавлять бор и обедненный уран, что практически полностью нейтрализовало основной поражающий фактор нейтронных боеприпасов. Это привело к постепенному отказу от этого вида оружия. Хотя, как обстоит ситуация на самом деле — неизвестно. Информация такого рода находится под многими грифами секретности и практически не доступна широкой общественности.

armata1.ru

Ядерный взрыв. Нейтронное оружие. Защита от поражения при взрыве атомной, нейтронной и водородной бомбы

 

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ  РФ

 

Сочинский государственный  университет туризма и курортного дела

 

Факультет туристского бизнеса

 

 

 

 

 

 

 

 

 

КОНТРОЛЬНАЯ   РАБОТА

 

ПО ДИСЦИПЛИНЕ «Безопасность жизнедеятельности»

 

 

 

 

 

 

 

Тема: Ядерный взрыв. Нейтронное оружие. Защита от поражения при взрыве атомной, нейтронной и водородной бомбы.

 

 

 

 

 

 

 

 

 

 

 

Специальность 100103 –

«Социально-культурный сервис и туризм»

курс 4, группа 09-встт-ДО

Волощук Наталья Павловна

 

 

 

 

 

 

 

 

 

 

 

 

 

Сочи,  2012

Содержание:

 

Введение………………………………………………………………3

  1. Ядерный взрыв.
    1. Ядерное оружие. Виды ядерных взрывов. ……………4
    2. Поражающие факторы ядерного взрыва……………...6
  2. Нейтронная бомба.
    1. Конструкция…………………………………………….11
    2. Действие, особенности применения. ………………….11
    3. Защита……………………………………………………13

Заключение……………………………………………………………15

Список используемой литературы…………………………………..16

 

Введение

 

Современные военные средства поражения включают в себя оружие массового поражения (ядерное, термоядерное и нейтронное), химическое и биологическое (бактериологическое) оружие и средства поражения в обычном снаряжении (боеприпасы объемного взрыва (вакуумные  боеприпасы), зажигательные боеприпасы, фугасные, осколочные, бетонобойные, шариковые  и кумулятивные боеприпасы, высокоточное оружие - ВТО). Их применение может стать причиной возникновения чрезвычайных ситуаций.

Надо иметь в виду, что  даже в годы позитивного развития российско-американских отношений  сокращения ассигнований на военные  цели (в том числе на совершенствование  военных средств нападения) в  бюджетах США и ведущих стран  НАТО не наблюдается. Более того, США  в локальных агрессиях (в Персидском заливе, в Югославии) испытывают в  боевых условиях новые образцы современного оружия и боеприпасов в обычном  снаряжении. В апреле 1997 г. в США  на вооружение принята усовершенствованная  бомба В-61 модель 11, имеющая ядерный  заряд и способная проникать  в грунт на глубину не менее 15 м, а потом взрываться. Основное ее предназначение - уничтожение (повреждение) подземных сооружений (пунктов управления, узлов связи и т.д.), которых много, по заявлению военных специалистов США, в Ливии, Ираке, в государствах СНГ.

В агрессии стран НАТО против Югославии, США многократно применяли  новый тип бомбы в обычном  снаряжении - графитовое. При взрыве такой бомбы в окружающую среду разбрасываются нити металлизированного графита, которые вызывают замыкания в электросетях, энергетических установках, электродвигателях, что парализует работу объектов экономики на значительных территориях.

В Югославии войска НАТО применяли также боеприпасы с  сердечниками из сплавов обедненного  урана, что привело к радиоактивному заражению участков местности. При  этом уровень радиции превышал естественный фон в 1000 раз и более. 

    1. Ядерное  оружие. Виды ядерных взрывов.

 

  Ядерным называется оружие, поражающее действие которого обусловлено энергией, выделяющейся при ядерных реакциях деления или синтеза. Это оружие включает различные ядерные боеприпасы, средства управления ими и доставки к цели. Оно является самым мощным видом оружия массового поражения.

Ядерное оружие предназначено  для массового поражения людей, уничтожения или разрушения административных и промышленных центров, различных  объектов, сооружений, техники.

Поражающее действие ядерного взрыва зависит от мощности боеприпаса, вида взрыва, типа ядерного заряда. Мощность ядерного боеприпаса  характеризуется  тротиловым эквивалентом, т.е. массой тринитротолуола (тротила), энергия взрыва которого эквивалентна энергии взрыва данного  ядерного боеприпаса и измеряется в  тоннах, тысячах, миллионах тонн. По мощности ядерные боеприпасы подразделяются на сверхмалые (менее 1 тыс. т), средние (10-100 тыс. т), крупные (100 тыс. т - 1 млн. т) и сверхкрупные (более 1 млн. т).

Ядерные взрывы могут осуществляться на поверхности земли (воды), под  землей (водой) или в воздухе на различной высоте. Поэтому различают  следующие виды ядерных взрывов: наземный, подземный, подводный, воздушный  и высотный. Наиболее характерными видами ядерных взрывов являются наземный и воздушный. Они и представляют основную опасность для городов и объектов экономики.

Наземный ядерный взрыв - взрыв, произведенный на поверхности  земли или на такой высоте, когда  его светящаяся область касается поверхности земли и имеет  форму полусферы или усеченной  сферы. При наземном взрыве в грунте образуется воронка, диаметр и глубина  которой зависят от высоты, мощности взрыва и вида грунта.

Наземные взрывы применяют  для разрушения сооружений большой  прочности, а также в тех случаях, когда желательно сильное радиоактивное  заражение местности.

Воздушный ядерный взрыв - взрыв, минимальная высота которого над поверхностью земли определяется из условий, при этом светящаяся область  не касается поверхности земли и  имеет форму сферы. Различают  низкий  и высокий  воздушные  взрывы.

При низком воздушном взрыве за счет воздействия отраженной от поверхности земли ударной волны  светящаяся область может деформироваться  снизу. Воздушные ядерные взрывы применяются для разрушения малопрочных сооружений, поражения людей и техники на большой площади и когда нежелательно (нецелесообразно) сильное радиоактивное заражение местности.

Подводный взрыв - взрыв, произведенный  под водой на глубине, которая  может колебаться в больших пределах. При взрыве выбрасывается столб  воды с грибовидным облаком, которое  называется взрывным султаном.

Основными поражающими факторами  подводного взрыва являются ударная  волна в воде, скорость распространения  которой равна скорости распространения  звука в воде, т. е. примерно 1500 м/с световое излучение и проникающая радиация, которые в этом случае в основном поглощаются толщей воды и водяными парами.

Точка, в которой находится  центр огненного шара, называется центром ядерного взрыва, а проекция центра взрыва на поверхность земли - эпицентром ядерного взрыва.

 

1.2. Поражающие факторы ядерного взрыва.

Огромное количество энергии, высвобождающейся при ядерном взрыве, расходуется на образование воздушной  ударной волны, светового излучения, проникающей радиации, электромагнитного  импульса, на радиоактивное заражение  местности. Все это называется поражающими  факторами ядерного взрыва. Рассмотрим их характеристики и поражающее действие.

Воздушная ударная волна представляет собой зону сильно сжатого воздуха, распространяющегося во все стороны от центра взрыва со сверхзвуковой скоростью. Передняя граница волны называется фронтом воздушной ударной волны.

Ударная волна имеет фазу сжатия и фазу разрежения. В фазе сжатия ударной волны давление выше атмосферного, а в фазе разрежения - ниже. Наибольшее давление воздуха  наблюдается на внешней границе  фазы сжатия - во фронте волны.

Воздушная ударная волна  ядерного взрыва способна наносить человеку различные травмы, в том числе  и смертельные. Площадь поражения  ударной волной при ядерном взрыве имеет значительно большие размеры, чем при взрыве боеприпасов в обычном снаряжении.

Поражение людей происходит как при непосредственном (прямом) воздействии воздушной ударной  волны, так и косвенным путем.

При непосредственном воздействии  ударной волны основной причиной появления травм у людей является мгновенное повышение давления воздуха, что воспринимается человеком как  резкий удар (обжатие человека). При  этом возможны повреждения внутренних органов, разрыв кровеносных сосудов, барабанных перепонок, сотрясение мозга, различные переломы и т.д. Кроме  того, скоростной напор воздуха, обусловливающий  метательное действие ударной волны, может отбросить человека на значительное расстояние и причинить ему при  ударе о землю (или препятствия) различные повреждения.

Метательное действие скоростного  напора воздуха заметно сказывается  в зоне с избыточным давлением  более 50 кПа, где скорость перемещения  воздуха более 100 м/с, что в 3 раза превышает скорость ураганного ветра.

Характер и тяжесть  поражения людей зависят от значений параметров ударной волны, положения  человека в момент взрыва и степени  его защищенности. При прочих равных условиях наиболее тяжелые поражения  получают люди, находящиеся в момент прихода ударной волны вне  укрытий в положении стоя. В  этом случае площадь воздействия  скоростного напора воздуха будет  примерно в 6 раз больше, чем в  положении человека лежа.

Поражения, возникающие под  действием ударной волны, подразделяются на легкие, средние, тяжелые и крайне тяжелые (смертельные).

Световое  излучение ядерного взрыва представляет собой электромагнитное излучение в ультрафиолетовой, видимой и инфракрасной областях спектра.

Источником светового  излучения является светящаяся область (огненный шар), состоящая из раскаленных  продуктов взрыва и воздуха. Из этой области излучается огромное количество лучистой энергии в чрезвычайно  короткий промежуток времени, вследствие чего происходят быстрый нагрев облучаемых предметов, обугливание или воспламенение  горючих материалов и ожог биологических  тканей.

На долю светового излучения  приходится 30-40% всей энергии ядерного или термоядерного взрыва.

Ожоги глазного дна возможны только при непосредственном взгляде  на взрыв. Ожоги век и роговицы глаза возникают при тех же величинах импульсов, что и ожоги  открытых участков кожи.

Временное ослепление, как  обратимое нарушение зрения, наступает  при внезапном изменении яркости  поля зрения, обычно ночью и в  сумерки. Ночью временное ослепление носит массовый характер и может  продолжаться от нескольких секунд до нескольких десятков минут.

Поражающее действие светового  излучения в лесу значительно  снижается, что приводит к уменьшению радиусов поражения людей в 1,5-2 раза по сравнению с открытой местностью. Однако необходимо помнить, что световое излучение при воздействии на некоторые материалы вызывает их воспламенение и приводит к возникновению  пожаров. В населенных пунктах они  возникают при световых импульсах  от 6 до 16 кал/см2 . При легкой дымке импульс уменьшается в 2 раза, при легком тумане - в 10 раз, при густом - в 20 раз.

Световое излучение в  сочетании с ударной волной приводит к многочисленным пожарам и взрывам  в результате разрушений в населенных пунктах газовых коммуникаций, повреждений  в электросетях и емкостей ГСМ.

Степень поражающего действия светового излучения резко снижается  при условии своевременного оповещения людей, использования ими защитных сооружений, естественных укрытий, (особенно лесных массивов и складок рельефа), индивидуальных средств защиты (защитной одежды, очков) и строгого выполнения противопожарных мероприятий.

Проникающей радиацией ядерного взрыва называют поток гамма-излучения и нейтронов, испускаемых из зоны и облака ядерного взрыва.

Источником проникающей  радиации является цепная ядерная реакция, протекающая в боеприпасе в момент взрыва, и радиоактивный распад осколков (продуктов) деления в облаке взрыва. Время действия проникающей радиации на наземные объекты составляет 15-25 с и определяется временем подъема  облака взрыва на такую высоту (2-3 км), при которой гамма-нейтронное излучение, поглощаясь толщей воздуха, практически не достигает поверхности земли. Гамма и нейтронное излучение, так же как альфа и бета-излучение, различаются по своему характеру, однако общим для них является то, что они могут ионизировать и возбуждать атомы той среды, в которой они распространяются.

Альфа- и бета-излучения также испускаются из зоны и облака ядерного взрыва, но в этом случае из-за своего кратковременного действия не оказывают поражающего действия на окружающую среду и человека.

Альфа-излучение представляет собой поток альфа-частиц распространяющихся с начальной скоростью около 20 000 км/с. Альфа-частицей называется ядро гелия, состоящее из 2-х нейтронов и 2-х протонов. Каждая альфа-частица несет с собой определенную энергию. Из-за относительно малой скорости и значительного заряда альфа-частицы взаимодействуют с веществом наиболее эффективно, так как обладают большой ионизирующей способностью, вследствие чего их проникающая способность незначительна. Лист бумаги полностью задерживает альфа-частицы. Надежной защитой от альфа-частиц при внешнем облучении является одежда человека.

Бета-излучение представляет собой поток бета-частиц. Бета-частицей называется излученный электрон или позитрон. Бета-частицы в зависимости от энергии излучения могут распространяться со скоростью, близкой к скорости света (200-270 тыс. км/с). Их заряд меньше, скорость больше, а масса в 700 раз меньше массы альфа-частиц. Поэтому бета-частицы обладают меньшей ионизирующей, но большей проникающей способностью, чем альфа-частицы. Одежда человека поглощает до 50% бета-частиц. Следует отметить, что бета-частицы почти полностью поглощаются оконными или автомобильными стеклами и металлическими экранами толщиной в несколько мм.

stud24.ru

Реферат Военная кафедра Оружее массового поражения

works.tarefer.ru

Реферат Нейтронное оружие

wreferat.baza-referat.ru

Реферат - «Атомное и термоядерное оружие»

Министерство образования и науки Российской Федерации

Федеральное агентство по образованию

Министерство промышленности и энергетики Российской Федерации

Федеральное агентство по атомной энергии

Национальный Исследовательский Ядерный университет

( МИФИ)

Государственный университет

Институт международных отношений

Кафедра 6. Общей физики.

Реферат на тему:

«Атомное и термоядерное оружие»

Подготовила Студентка 2 курса

Группы У4-02 :

^ Вартанова Анна Артёмовна

Научный руководитель:

Самедов Виктор Витальевич

Москва

2011 год

Содержание.

Введение……………………………………………………………..3

Атомное оружие. Что это?.................................................................4

История создания и развития ядерного оружия…………………..4

Принцип действия атомного оружия………………………………9

Поражающие факторы ядерного взрыва………………………….13

Термоядерное оружие. Что это?.......................................................26

История термоядерного оружия…………………………………...27

Заключение………………………………………………………….28

Список литературы…………………………………………………29

Введение.

Научные знания могут служить и целям гуманным, благородным, и целям варварским. Все зависит от того, в чьих руках находится наука и добытые ею результаты, кто и по каким соображениям занимается научной деятельностью, каковы моральные устои и социальные воззрения людей науки. Эти вопросы возникли перед человечеством именно в тот момент, когда атомная бомба стала реальной угрозой. За годы, отделяющие нас от того дня, когда была взорвана первая атомная бомба, история ее создания успела обрасти легендами. Об этом событии были написаны десятки книг, правдивых и ничего общего с исторической правдой не имеющих. Тема ядерного оружия по сей день горячо обсуждается во всем обществе и она является крайне актуальной в наши дни, и без сомнения останется таковой еще очень долгое время.

^ Атомное оружие. Что это?

(Ядерное оружие)

Ядерное оружие – оружие массового поражения и взрывного действия, поражающий эффект которого основан на использовании внутриядерной энергии, выделяющейся при ядерном взрыве. Ядерный взрыв – это процесс мгновенного выделения большого количества внутриядерной энергии в ограниченном объеме. Источником энергии при ядерном взрыве являются реакции деления ядер тяжелых элементов и синтеза ядер легких элементов.

Для ядерного взрыва характерны чрезвычайно высокая концентрация выделяющейся энергии и крайне малое время его протекания (доли миллисекунды). Он существенно отличается от взрыва обычных боеприпасов как масштабами, так и характером поражающих факторов.

^ История создания и развития ядерного оружия.

Как создавалось ядерное оружие. Первые испытания.

В 1905 Альберт Эйнштейн издал свою специальную теорию относительности. Согласно этой теории, соотношение между массой и энергией выражено уравнением E = mc^2, которое значит, что данная масса (m) связана с количеством энергии (E) равной этой массе, умноженной на квадрат скорости света (c). Очень малое количество вещества эквивалентно к большому количеству энергии. Например, 1 кг вещества, преобразованного в энергию был бы эквивалентен энергии, выпущенной, при взрыве 22 мегатонн тротила.

В 1938 г, в результате экспериментов немецких химиков Отто Хана и Фритца Страссманна (1902-80), им удается разбить атом урана на две приблизительно равных части при помощи бомбардировки урана нейтронами. Британский физик Отто Роберт Фриш (1904-79), объяснил как при делении ядра атома выделяется энергия.

В начале 1939 года французский физик Жолио-Кюри сделал вывод, что возможна цепная реакция, которая приведет к взрыву чудовищной разрушительной силы и что уран может стать источником энергии, как обычное взрывное вещество.

Это заключение стало толчком для разработок по созданию ядерного оружия. Европа была накануне Второй мировой войны, и потенциальное обладание таким мощным оружием подталкивало милитаристские круги на быстрейшее его создание, но тормозом стала проблема наличия большого количества урановой руды для широкомасштабных исследований.

Над созданием атомного оружия трудились физики Германии, Англии, США, Японии, понимая, что без достаточного количества урановой руды невозможно вести работы. США в сентябре 1940 года закупили большое количество требуемой руды по подставным документам у Бельгии, что и позволило им вести работы над созданием ядерного оружия полным ходом.

Перед началом Второй мировой войны Альберт Эйнштейн написал президенту США Франклину Рузвельту. В нем якобы говорится о попытках нацистской Германии очистить Уран-235, что может привести их к созданию атомной бомбы. Сейчас стало известно, что германские учёные были очень далеки от проведения цепной реакции. В их планы входило изготовление "грязной", сильно радиоактивной бомбы.

Как бы то ни было, правительством Соединённых Штатов было принято решение - в кратчайшие сроки создать атомную бомбу. Этот проект вошел историю как "Manhattan Project". Возглавил его Лесли Гровс. Следующие шесть лет, с 1939 по 1945, на проект Манхэттен было потрачено более двух биллионов долларов. В Oak Ridge, штат Теннеси, был построен огромный завод по очистке урана. H.C. Urey и Ernest O. Lawrence (изобретатель циклотрона) предложили способ очистки, основанный на принципе газовой диффузии с последующим магнитным разделением двух изотопов. Газовая центрифуга отделяла легкий Уран-235 от более тяжелого Урана-238.

На территории Соединенных Штатов, в Лос-Аламосе, в пустынных просторах штата Нью-Мексико, в 1942 году был создан американский ядерный центр. Над проектом работало множество учёных, главным же был Роберт Оппенгеймер. Под его началом были собраны лучшие умы того времени не только США и Англии, но практически всей Западной Европы. Над созданием ядерного оружия трудился огромный коллектив, включая 12 лауреатов Нобелевской премии. Работа в Лос-Аламосе, где находилась лаборатория, не прекращалась ни на минуту.

В Европе тем временем шла Вторая мировая война, и Германия проводила массовые бомбардировки городов Англии, что подвергало опасности английский атомный проект “Tub Alloys”, и Англия добровольно передала США свои разработки и ведущих ученых проекта, что позволило США занять ведущее положение в развитии ядерной физики (создания ядерного оружия).

16 июля 1945 года, в 5:29:45 по местному времени, яркая вспышка озарила небо над плато в горах Джемеза на севере от Нью-Мехико. Характерное облако радиоактивной пыли, напоминающее гриб, поднялось на 30 тысяч футов. Все что осталось на месте взрыва - фрагменты зеленого радиоактивного стекла, в которое превратился песок. Так было положено начало атомной эре.

К осени 1944 года, когда работы по созданию атомной бомбы подходили к завершению, в США был создан 509-й авиаполк “летающих крепостей” Б-29, командиром которого был назначен опытный летчик полковник Тиббетс. Полк приступил к регулярным длительным тренировочным полетам над океаном на высотах 10-13 тысяч метров. К лету 1945 года американцам удалось собрать две атомные бомбы, получившие названия "Малыш" и "Толстяк". Первая бомба весила 2722 кг и была снаряжена обогащенным Ураном-235. "Толстяк" с зарядом из Плутония-239 мощностью более 20 кт имела массу 3175 кг.

Президент США Г. Трумэн стал первым политическим руководителем, кто принял решение на применение ядерных бомб. С военной точки зрения необходимости таких бомбардировок густонаселенных японских городов не было. Но политические мотивы в этот период превалировали над военными.

10 мая 1945 года в “Пентагоне” собрался комитет по выбору целей для нанесения первых ядерных ударов. Для победного завершения Второй мировой войны необходимо было разгромить Японию – союзника гитлеровской Германии. Начало боевых действий назначено на 10 августа 1945 года. США хотели продемонстрировать всему миру, каким мощным оружием они обладают (для устрашения), поэтому первыми целями для ядерных ударов были выбраны японские города (Хиросима, Нагасаки, Кокура, Ниигата), которые не должны были подвергаться обычной бомбардировки с воздуха американскими ВВС.

Утром 6 августа 1945 г. над Хиросимой было ясное, безоблачное небо. Как и прежде, приближение с востока двух американских самолета (один из них назывался Энола Гей) на высоте 10-13 км не вызвало тревоги (т.к. каждый день они показывались в небе Хиросимы). Один из самолетов спикировал и что-то сбросил, а затем оба самолета повернули и улетели. Сброшенный предмет на парашюте медленно спускался и вдруг на высоте 600 м над землей взорвался. Это была бомба "Малыш".

9 августа еще одна бомба была сброшена над городом Нагасаки. Общие людские потери и масштабы разрушений от этих бомбардировок характеризуются следующими цифрами: мгновенно погибло от теплового излучения (температура около 5000 градусов С) и ударной волны - 300 тысяч человек, еще 200 тысяч получили ранение, ожоги, облучились. На площади 12 кв. км были полностью разрушены все строения. Только в одной Хиросиме из 90 тысяч строений было уничтожено 62 тысячи. Эти бомбардировки потрясли весь мир.

Считается, что это событие положило начало гонке ядерных вооружений и противостоянию двух политических систем того времени на новом качественном уровне. С середины 1945 года и по 1953 год американское военно-политическое руководство в вопросах строительства стратегических ядерных сил (СЯС) исходило из того, что США монопольно владеют ядерным оружием и могут достичь мирового господства путем ликвидации СССР в ходе ядерной войны.

Подготовка к такой войне началась практически сразу после разгрома гитлеровской Германии. Об этом свидетельствует директива Объединенного комитета военного планирования от 14 декабря 1945 года, где ставилась задача на подготовку атомной бомбардировки 20 советских городов - основных политических и промышленных центров Советского Союза (Москва, Ленинград, Горький, Куйбышев, Свердловск, Новосибирск, Омск, Саратов, Казань, Баку, Ташкент, Челябинск, Нижний Тагил, Магнитогорск, Пермь, Тбилиси, Новокузнецк, Грозный, Иркутск, Ярославль). При этом планировалось использовать весь наличный на то время запас атомных бомб (196 штук), носителями которых являлись модернизированные бомбардировщики В-29. Определялся и способ их применения - внезапный атомный "первый удар", который должен поставить советское руководство перед фактом бесперспективности дальнейшего сопротивления.

К середине 1948 года в Комитете начальников штабов был составлен план ядерной войны с СССР, получивший кодовое название "Чариотир". Он предусматривал, что война должна начаться "с концентрированных налетов с использованием атомных бомб против правительственных, политических и административных центров, промышленных городов и избранных предприятий нефтеочистительной промышленности с баз в западном полушарии и Англии". Только за первые 30 дней намечалось сбросить 133 ядерные бомбы на 70 советских городов. Среди Лос-Аламовских ученых над созданием атомной бомбы работал немецкий коммунист Клаус Фукс. Благодаря ему СССР всего через 4 года после американцев стал ядерной державой. Он в течение 1945 -1947 годов четыре раза передавал сведения по практическим и теоретическим вопросам создания атомной и водородных бомб, чем ускорил их появление в СССР.

Через 12 дней после сборки первой атомной бомбы в Лос-Аламосе мы получили описание ее устройства из Вашингтона и Нью-Йорка. Первая телеграмма поступила в Центр 13 июня, вторая - 4 июля 1945 года. Детальный доклад Фукса ("Чарльз") был доставлен диппочтой после того, как он встретился 19 сентября со своим курьером Гарри Голдом.

Доклад содержал тридцать три страницы текста с описанием конструкции атомной бомбы. Позднее было получено дополнительное сообщение по устройству атомной бомбы. Сообщение о том, что американцы взорвали атомное устройство впечатления на И.В. Сталина не произвело. Но последствия бомбардировок г. Хиросимы и г. Нагасаки потрясли его.

Сталин приказал Л. Берии продумать вопрос о создании собственного ядерного оружия. Последний хотел монополизировать руководство этими работами и сосредоточить их в своем ведомстве. Однако, Сталин этот план не принял. По его настоянию 20 августа 1945 года был образован специальный комитет по атомной энергии под руководством Л. Берия. Его заместителем назначили наркома боеприпасов Б.Л. Ванникова. В комитет вошли видные ученые А.Ф. Иоффе, П.Л. Капица и И.В. Курчатов.

В феврале 1945 года были захвачены немецкие документы о высококачественных запасах урана в районе Бухово - в Родопских горах, Болгария. Было создано советско-болгарское горное общество, которое занималось добычей урана. Урановая руда из Бухово была использована при пуске первого советского атомного реактора. В 1946 году в СССР были открыты и сразу же стали разрабатываться крупные месторождения урана более высокого качества.

Сообщение о том, что Советский Союз овладел секретом ядерного оружия вызвало у правящих кругов США желание как можно быстрее развязать превентивную войну. Был разработан план "Тройан", в котором предусматривалось начать боевые действия 1 января 1950 года. На то время США располагало 840 стратегическими бомбардировщиками в строевых частях, 1350 - в резерве и свыше 300 атомными бомбами.

В районе г. Семипалатинска был построен испытательный полигон. Ровно в 7.00 утра 29 августа 1949 года на этом полигоне было подорвано первое советское ядерное устройство под кодовым названием "РДС-1". План "Тройан", согласно которому на 70 городов СССР должны были быть сброшены атомные бомбы, был сорван из-за угрозы ответного удара. Событие, происшедшее на Семипалатинском полигоне, известило мир о создании в СССР ядерного оружия, что положило конец американскому монополизму на владение новым для человечества оружием.

^ Принцип устройства и действия ядерных боеприпасов.

Ядерными боеприпасами называются снаряженные ядерными (термоядерными) зарядами боевые части ракет, авиационные бомбы, артиллерийские снаряды, торпеды и инженерные управляемые мины (ядерные фугасы).

Основными элементами ядерных боеприпасов являются: ядерный заряд, датчики подрыва, система автоматики, источник электрического питания и корпус

Корпус служит для компоновки всех элементов боеприпаса, предохранения их от механических и тепловых повреждений, придания боеприпасу необходимой баллистической формы, а также для повышения коэффициента использования ядерного горючего.

Датчики подрыва (взрывательные устройства) предназначены для подачи сигнала на приведение в действие ядерного заряда. Они могут быть контактного и дистанционного (неконтактного) типов.

^ Контактные датчики срабатывают в момент встречи боеприпаса с преградой, а дистанционные - на заданной высоте (глубине) от поверхности земли (воды).

Дистанционные датчики в зависимости от типа и назначе­ния ядерного боеприпаса могут быть временными, инерционны­ми, барометрическими, радиолокационными, гидростатическими и др.

Система автоматики включает систему предохранения, блок автоматики и систему аварийного подрыва.

^ Система предохранения исключает возможность случайного взрыва ядерного заряда при проведении регламентных работ, хра­нении боеприпаса и при полете его на траектории.

Блок автоматики срабатывает по сигналам, поступающим от датчиков подрыва и предназначен для формирования высоковольтного электрического импульса на приведение в действие ядерного заряда.

^ Система аварийного подрыва служит для самоуничтожения бое­припаса без ядерного взрыва в случае его отклонения от заданной траектории.

Источником питания всей электрической системы боеприпаса являются аккумуляторные батареи различных типов, которые обла­дают одноразовым действием и приводятся в рабочее состояние непосредственно перед его боевым применением.

Ядерный заряд представляет собой устройство для осуществле­ния ядерного взрыва Ниже будут рассмотрены существующие ти­пы ядерных зарядов и их принципиальное устройство.

^ Ядерные заряды

Устройства, предназначенные для осуществления взрывного процесса высвобождения внутриядерной энергии, называются ядерными зарядами.

Различают два основных вида ядерных зарядов:

1 - заряды, энергия взрыва которых обусловлена цепной реакци­ей делящихся веществ, переведенных в надкритическое состояние, - атомные заряды;

2 - заряды, энергия взрыва которых обусловлена термоядернойреакцией синтеза ядер, - термоядерные заряды.

Атомные заряды. Основным элементом атомных зарядов явля­ется делящееся вещество (ядерное взрывчатое вещество).

До взрыва масса ЯВВ находится в подкритическом состоянии. Для осуществления ядерного взрыва она переводится в надкритическое состояние. Используются два типа устройств, обеспечивающих формирование надкритической массы: пушечный н имплозивный.

В зарядах пушечного типа (рис. 2) ЯВВ состоит из двух или бо­лее частей, масса которых в отдельности меньше критической, что обеспечивает исключение самопроизвольного начала цепной ядер­ной реакции. При осуществлении ядерного взрыва отдельные части ЯВВ под действием энергии взрыва обычного взрывного вещества соединяются в одно целое и общая масса ЯВВ становится больше критической, что создает условия для цепной реакции взрывного характера.

Перевод заряда в надкритическое состояние осуществляется действием порохового заряда. Вероятность получения расчетной мощности взрыва в таких зарядах зависит от скорости сближения частей ЯВВ При недостаточных скоростях сближения коэффици­ент критичности может стать несколько больше единицы еще до момента непосредственного контакта частей ЯВВ. В этом случае реакция может начаться с одного начального центра деления под воздействием, например, нейтрона спонтанного деления, в резуль­тате чего происходит неполноценный взрыв с небольшим коэффи­циентом использования ядерного горючего

Преимуществом ядерных зарядов пушечного типа являются про­стота конструкции, малые габариты и масса, высокая механическая прочность, что позволяет создавать на их основе малогабаритные ядерные боеприпасы (артиллерийские снаряды, ядерные мины и др.).

В зарядах имплозивного типа (рис 3) для создания надкритической массы используется эффект имплозии - всестороннего обжа­тия ЯВВ силой взрыва обычного ВВ, которая приводит к резкому увеличению его плотности.

Эффект имплозии создает огромную концентрацию энергии в зоне ЯВВ и позволяет достичь давления, превышающего миллионы атмосфер, что приводит к увеличению плотности ЯВВ в 2 - 3 раза и уменьшению критической массы в 4 - 9 раз.

Для гарантированного имитирования цепной реакции деления и ее ускорения от искусственного источника нейтронов должен быть подан мощный импульс нейтронов в момент наивысшей имплозии Поскольку в таком состоянии ЯВВ находится в течение нескольких микросекунд, то момент посылки импульса нейтронов должен быть синхронизирован с моментом достижения наибольшей критичности.

Преимуществом атомных зарядов имплозивного типа является более высокий коэффициент использования ЯВВ, а также возмож­ность в определенных пределах менять мощность ядерного взрыва с помощью специального переключателя.

К недостаткам атомных зарядов относятся большие масса и га­бариты, низкая механическая прочность и чувствительность к тем­пературному режиму

Термоядерные заряды. В зарядах этого типа условия для реак­ции синтеза создаются за счет подрыва атомного заряда (детонато­ра) из урана-235, плутония-239 или калифорния-251 Термоядерные заряды могут быть нейтронными и комбинированными

В термоядерных нейтронных зарядах, (рис 4) в качестве термо­ядерного горючего используются дейтерий и тритий в чистом виде или в виде гидридов металлов "Запалом" реакции служит высоко­обогащенный плутоний-239 или калифорний-251, обладающие сравнительно небольшой величиной критической массы Это по­зволяет увеличить коэффициент термоядерности боеприпаса.

В термоядерных комбинированных зарядах (рис. 5) в качестве термоядерного горючего используется дейтерид лития (LiD). Для "запала" реакции синтеза служит реакция деления урана-235. В це­лях получения нейтронов высокой энергии для протекания реакции (1.18) уже в самом начале ядерного процесса в ядерный заряд по­мещается ампула с тритием (1Н3).Нейтроны же деления необходи­мы для получения трития из лития в начальный период реакции В последующем воспроизводство трития будет происходить за счет нейтронов, выделяющихся при реакциях синтеза дейтерия и трития, а также деления урана-238 (самого распространенного и наи­более дешевого природного урана), которым специально окружа­ется зона реакции в виде оболочки Наличие такой оболочки по­зволяет не только осуществить лавинообразную термоядерную реакцию, но и получить дополнительную энергию взрыва, так как при высокой плотности потока нейтронов с энергией более 10 МэВ реакция деления ядер урана-238 протекает достаточно эффектив­но При этом количество высвобождаемой энергии становится очень большим и в боеприпасах крупного и сверхкрупного калиб­ров может составить до 80 % всей энергии комбинированного термоядерного боеприпаса.

^ Классификация ядерных боеприпасов

Ядерные боеприпасы классифицируют по мощности выделяемой энергии ядерного заряда, а также по типу используемой в них ядерной реакции Для характеристики мощности боеприпаса применяется поня­тие "тротиловый эквивалент" -это такая масса тротила, энергия взрыва которого роена энергии, выделяемой при воздушном взрыве ядерного боеприпжа (заряда) Тротиловый эквивалент обозначается буквой § и измеряется в тоннах (т), тысячах тонн (кг), миллионах тонн (Мт)

По мощности ядерные боеприпасы условно подразделяются на пять калибров (таблица 1).

^ Классификация ядерных боеприпасов по мощности.

Таблица 1

Калибр ядерного боеприпаса

Тротиловый эквивалент тыс. т.

Сверхмалый

До 1

Малый

1-10

Средний

10-100

Крупный

100-1000

Сверхкрупный

Более 1000

Термодерными зарядами комплектуются боеприпасы сверхкрупного,

крупного и среднего калибров;

ядерными - сверхмалого, малого и среднего калибров.

По характеру протекаемых ядерных реакций боеприпасы классифицируются на боеприпасы "деления", "деления - синтеза", "деления - синтеза - деления". Принципиальное устройство этих боеприпасов рассмотрено ранее.

^ ПОРАЖАЮЩИЕ ФАКТОРЫ ЯДЕРНОГО ВЗРЫВА И ПРИНЦИПЫ ЗАЩИТЫ ОТ НИХ

При ядерном взрыве действуют пять поражающих факторов: ударная волна, световое излучение, проникающая радиация, радиоактивное заражение, проникающая радиация и электромагнитный импульс. Энергия ядерного взрыва распределяется примерно так: 50% расходуется на ударную волну, 35% – на световое излучение, 10% – на радиоактивное заражение, 4% – на проникающую радиацию и 1% – на электромагнитный импульс. Высокая температура и давление вызывают мощную ударную волну и световое излучение. Взрыв ядерного боеприпаса сопровождается выходом проникающей радиации, состоящей из потока нейтронов и гамма квантов. Облако взрыва содержит огромное количество радиоактивных продуктов – осколков деления ядерного горючего. По пути движения этого облака радиоактивные продукты из него выпадают, в результате чего происходит радиоактивное заражение местности, объектов и воздуха. Не равномерное движение электрических зарядов в воздухе под воздействием ионизирующих излучений приводит к образованию электромагнитного импульса. Так формируются основные поражающие факторы ядерного взрыва. Явления, сопровождающие ядерный взрыв, в значительной мере зависят от условий и свойств среды, в которой он происходит.

^ Ударная волна

Это основной поражающий фактор ядерного взрыва, который производит разрушение, повреждение зданий и сооружений, а также поражает людей и животных. Источником УВ является сильное давление, образующееся в центре взрыва (миллиарды атмосфер). Образовавшееся при взрыве раскаленные газы, стремительно расширяясь, передают давление соседним слоям воздуха, сжимая и нагревая их, а те в свою очередь воздействуют на следующие слои и т.д. В результате в воздухе со сверхзвуковой скоростью во все стороны от центра взрыва распространяется зона высокого давления.

Так, при взрыве 20-килотонного ядерного боеприпаса ударная волна за 2 секунды проходит 1000 м, за 5 секунд – 2000 м, за 8 сек – 3000 м. Передняя граница волны называется фронтом ударной волны. Степень поражения УВ зависит от мощности и положения на ней объектов. Поражающее действие УВ характеризуется величиной избыточного давления.

Избыточное давление – это разность между максимальным давлением во фронте УВ и нормальным атмосферным давлением, измеряется в Паскалях (ПА, кПА). Распространяется со сверх звуковой скоростью, УВ на своем пути разрушает здания и сооружения, образуя четыре зоны разрушений (полных, сильных, средних, слабых) в зависимости от расстояния: Зона полных разрушений — 50 кПА Зона сильных разрушений — 30-50 кПА. Зона средних разрушений — 20-30 кПА. Зона слабых разрушений — 10-20 кПА.

С ростом калибра ядерного боеприпаса радиусы поражения ударной волной растут пропорционально корню кубическому из мощности взрыва. При подземном взрыве возникает ударная волна в грунте, а при подводном в воде. Кроме того, при этих видах взрывов часть энергии расходуется на создание ударной волны и в воздухе . Ударная волна , распространяясь в грунте, вызывает повреждения подземных сооружений , канализации, водопровода; при распространении ее в воде наблюдается повреждение подводной части кораблей, находящихся даже на значительном расстоянии от места взрыва.

УВ действует на людей двумя способами:

Прямое действие УВ

Косвенное действие УВ ( летящими обломками сооружений, падающими стенами домов и деревьями, осколками стекла, камнями). Эти воздействия вызывают различные по степени тяжести поражения: Легкие поражения — 20-40 кПА (контузии, легкие ушибы). Средней тяжести — 40-60 кПА (потеря сознания, повреждение органов слуха, вывихи конечностей, кровотечение из носа и ушей, сотрясение мозга). Тяжелые поражение — более 60 кПА (сильные контузии, переломы конечностей, поражение внутренних органов). Крайне тяжелые поражения — более 100кПА ( со смертельным исходом). Эффективным способом защиты от прямого воздействия УВ будет укрытие в защитных сооружениях (убежищах, ПРУ, быстровозводимых населением). Для укрытия можно использовать канавы, овраги, пещеры, горные выработки, подземные переходы; можно просто лечь на землю в отдалении от зданий и сооружений.

^ Световое излучение

Световое излучение (СИ) – это поток лучистой энергии (ультрафиолетовые и инфракрасные лучи). Источником СИ является светящаяся область взрыва, состоящая из нагретых до высокой температуры паров и воздуха. СИ распространяется практически мгновенно и длится в зависимости от мощности ядерного боеприпаса (20-40 секунд). Однако не смотря на кратковременность своего воздействия эффективность действия СИ очень высока. СИ составляет 35% от всей мощности ядерного взрыва. Энергия светового излучения поглощается поверхностями освещаемых тел, которые при этом нагреваются. Температура нагрева может быть такой, что поверхность объекта обуглится, оплавится, воспламенится или объект испарится. Яркость светового излучения намного сильнее солнечного, а образовавшийся огненный шар при ядерном взрыве виден на сотни километров. Так, когда 1 августа 1958 г. американцы взорвали над островом Джонстон мегатонный ядерный заряд, огненный шар поднялся на высоту 145 км и был виден с расстояния 1160 км. Поражающее действие светового излучения характеризуется световым импульсом, т. е. количеством световой энергии, приходящейся за время излучения на 1 см2 поверхности, перпендикулярно расположенной к направлению световых лучей. За единицу измерения светового импульса принимают 1 кал/см2. Световое излучение может вызвать ожоги открытых участков тела, ослепление людей и животных, обугливание или возгорание различных материалов. Так, при световом импульсе 2—4 кал/см2 у незащищенных людей могут возникнуть ожоги первой степени, при 4—6 кал/см2— ожоги второй степени (образование пузырей), при 6— 12 кал/см2—ожоги третьей степени (полное омертвление кожных покровов), при световом импульсе более 12 кал/см2 кожа омертвляется на всю глубину и обугливается. Световое излучение способно вызвать массовые пожары в населенных пунктах, в лесах, степях, на полях, так как неокрашенные доски воспламеняются при световом импульсе 40—50 кал/см2; светлая хлопчатобумажная ткань—при 10—15 кал/см2, сено или солома— при 4—6 кал/см2. Защитить от светового излучения могут любые преграды, не пропускающие свет: укрытие, тень густого дерева, забор и т. п. Основным параметром, определяющим поражающую способность СИ, является световой импульс: это количество световой энергии на единицу площади поверхности, измеряемое в Джоулях (Дж/м2). Интенсивность СИ с увеличением расстояния уменьшается вследствие рассеивания и поглощения. Интенсивность светового излучения сильно зависит от метеорологических условий. Туман, дождь и снег ослабляют его интенсивность, и, наоборот, ясная и сухая погода благоприятствует возникновению пожаров и образованию ожогов.

Выделяются три основные зоны пожаров: Зона сплошных пожаров — 400-600 кДж/м2 (охватывает всю зону средних разрушений и часть зоны слабых разрушений). Зона отдельных пожаров —100-200 кДж/м2. (охватывает часть зоны средних разрушений и всю зону слабых разрушений). Зона пожаров в завалах — 700—1700 кДж/м2. ( Охватывает всю зону полных разрушений и часть зоны сильных разрушений). Поражение людей СИ выражается в появлении ожогов четырех степеней на кожном покрове и действием на глаза. Действие СИ на кожу вызывает ожоги: 1 – степени – краснота, припухлость, отек кожи – 100-200 кДж/м2, 2 – степени – образование пузырей – 200-400 кДж/м2, 3 – степени – образование язв и омертвление кожи – 400-600 кДж/м2 4 – степени – обугливание кожи, омертвление глубоких слоев кожи и тканей – более 600 кДж/м2. Действие СИ на глаза: Временное ослепление – до 30 мин. Ожоги роговицы и век. Ожог глазного дна – слепота. Защита ос СИ более проста, чем от других поражающих факторов, поскольку любая непрозрачная преграда может служить защитой. Полностью защищают от СИ убежища, ПРУ, перерытые быстро возводимые защитные сооружения, подземные переходы, подвалы, погреба. Для защиты зданий сооружений пользуются покраской их в светлые тона. Для защиты людей используют ткани, пропитанные огнестойкими составами, и средства для защиты глаз (очки, световые затворы).

Радиация

Проникающая радиация не однородна. Классический опыт, позволяющий обнаружить сложный состав радиоактивного излучения, состоял в следующем. Препарат радия помещали на дно узкого канала в куске свинца. Против канала находилась фотопластинка. На выходившее из канала излучение действовало сильное магнитное поле, линии индукции которого перпендикулярны лучу. Вся установка размещалась в вакууме. Под действием магнитного поля пучок распадался на три пучка. Две составляющие первичного потока отклонялись в противоположные стороны. Это указывало на наличие у этих излучений электрических зарядов противоположных знаков. При этом отрицательный компонент излучения отклонялся магнитным полем гораздо сильнее, чем положительный. Третья составляющая не отклонялась магнитным полем. Положительно заряженный компонент получил название альфа-лучей, отрицательно заряженный – бета-лучей и нейтральный – гамма-лучей.

Поток ядерного взрыва представляет собой поток альфа, бета, гамма излучений и нейтронов. Поток нейтронов возникает вследствие деления ядер радиоактивных элементов. Альфа-лучи представляют собой поток альфа-частиц (дважды ионизированных атомов гелия), бета-лучи – поток быстрых электронов или позитронов, гамма-лучи – фотонное (электромагнитное) излучение, по своей природе и свойствам не отличающееся от рентгеновских лучей. При прохождении проникающей радиации через любую среду ее действие ослабляется. Излучение разных видов оказывают неодинаковое воздействие на организм, что объясняется разной их ионизирующей способностью. Так альфа-излучения, представляющие собой тяжелые имеющие заряд частицы, обладают наибольшей ионизирующей способностью. Но их энергия, вследствие ионизации, быстро уменьшается. Поэтому альфа-излучения не способны проникнуть через наружный (роговой) слой кожи и не представляют опасности для человека до тех пор, пока вещества, испускающие альфа-частицы не попадут внутрь организма. Бета-частицы на пути своего движения реже сталкиваются с нейтральными молекулами, поэтому их ионизирующая способность меньше, чем у альфа-излучения. Потеря же энергии при этом происходит медленнее и проникающая способность в тканях организма больше (1-2 см). Бета-излучения опасны для человека, особенно при попадании радиоактивных веществ на кожу или внутрь организма.

Гамма-излучение обладает сравнительно небольшой ионизирующей активностью, но в силу очень высокой проникающей способности представляет большую опасность для человека. Ослабляющее действие ПР принято характеризовать слоем половинного ослабления, т.е. толщиной материала, проходя через который ПР уменьшается в два раза. Так, ПР ослабляют в два раза следующие материалы: Свинец – 1.8 см 4. Грунт, кирпич – 14 см Сталь – 2.8 см 5. Вода – 23 см Бетон – 10 см 6. Дерево – 30 см. Полностью защищают человека от воздействия ПР специальные защитные сооружения – убежища. Частично защищают ПРУ (подвалы домов, подземные переходы, пещеры, горные выработки) и быстровозводимые населением перекрытые защитные сооружения (щели). Самым надежным убежищем для населения являются станции метрополитена. Большую роль в защите населения от ПР играют противоради

www.ronl.ru

 

Начальная

Windows Commander

Far
WinNavigator
Frigate
Norton Commander
WinNC
Dos Navigator
Servant Salamander
Turbo Browser

Winamp, Skins, Plugins
Необходимые Утилиты
Текстовые редакторы
Юмор

File managers and best utilites

Нейтронная бомба: история создания и принципы работы. Нейтронная бомба реферат


Реферат Нейтронная бомба

Опубликовать скачать

Реферат на тему:

План:

    Введение
  • 1 Конструкция
  • 2 Действие, особенности применения
  • 3 Защита
  • 4 Нейтронное оружие и политика
  • 5 Пример эффектов взрыва нейтронного заряда на различных расстояниях
  • Примечания

Введение

Нейтро́нное ору́жие — разновидность ядерного оружия, у которого искусственно увеличена доля энергии взрыва, выделяющаяся в виде нейтронного излучения для поражения живой силы, вооружения противника и радиоактивного заражения местности при ограниченных поражающих воздействиях ударной волны и светового излучения. Из-за быстрого поглощения нейтронов атмосферой малоэффективны нейтронные боеприпасы большой мощности; эквивалентный тоннаж нейтронных боезарядов обычно не превышает нескольких килотонн[1] и их относят к тактическому ядерному оружию.

Нейтронное оружие, как и другие виды ядерного оружия, является неизбирательным оружием массового поражения.

1. Конструкция

Нейтронный заряд конструктивно представляет собой обычный ядерный заряд малой мощности, к которому добавлен блок, содержащий небольшое количество термоядерного топлива (смесь дейтерия и трития с большим содержанием последнего, как источника быстрых нейтронов). При подрыве взрывается основной ядерный заряд, энергия которого используется для запуска термоядерной реакции. Большая часть энергии взрыва при применении нейтронного оружия выделяется в результате запущенной реакции синтеза. Конструкция заряда такова, что до 80 % энергии взрыва составляет энергия потока быстрых нейтронов, и только 20 % приходится на остальные поражающие факторы (ударную волну, электромагнитный импульс, световое излучение).

2. Действие, особенности применения

Мощный поток нейтронов не задерживается обычной стальной бронёй и намного сильнее проникает сквозь преграды, чем рентгеновское или гамма-излучение, не говоря уже об альфа- и бета- частицах. В частности, 150 мм броневой стали задерживают до 90 % гамма-излучения и лишь 20 % быстрых нейтронов[1]. Благодаря этому нейтронное оружие способно поражать живую силу противника на значительном расстоянии от эпицентра взрыва и в бронетехнике, где обеспечивается надёжная защита от поражающих факторов обычного ядерного взрыва. Наиболее сильными защитными свойствами обладают материалы, в состав которых входит водород - например, вода, парафин, полиэтилен, полипропилен и т.д[2]. По конструктивным и экономическим соображениям защиту часто выполняют из бетона, влажного грунта — 25-35 см эти материалы ослабляют поток быстрых нейтронов в 10 раз, а 50 см — до 100 раз[1], поэтому стационарные фортификационные сооружения обеспечивают надёжную защиту как от обычных, так и от нейтронных ядерных боеприпасов.

Поражающее действие нейтронного оружия на технику обусловлено взаимодействием нейтронов с конструкционными материалами и радиоэлектронной аппаратурой, что приводит к появлению наведённой радиоактивности и, как следствие, нарушению функционирования. В биологических объектах под действием излучения происходит ионизация живой ткани, приводящая к нарушению жизнедеятельности отдельных систем и организма в целом, развитию лучевой болезни. На людей действует как само нейтронное излучение, так и наведённая радиация. В технике и предметах под действием потока нейтронов могут образовываться мощные и долго действующие источники радиоактивности, приводящие к поражению людей в течение длительного времени после взрыва, на местности наведённая радиоактивность опасна для здоровья человека от нескольких часов до нескольких суток[1].

Из-за сильного поглощения и рассеивания нейтронов в атмосфере дальность поражения нейтронным излучением, по сравнению с дальностью поражения незащищённых целей ударной волной от взрыва обычного ядерного заряда той же мощности, невелика[1]. Поэтому изготовление нейтронных зарядов высокой мощности нецелесообразно — излучение всё равно не дойдёт дальше, а прочие поражающие факторы окажутся снижены. Реально производимые нейтронные боеприпасы имеют мощность не более 1 кт. Подрыв такого боеприпаса создаёт зону поражения нейтронным излучением радиусом около 1,5 км (незащищённый человек получит опасную для жизни дозу радиации на расстоянии 1350 м). Вопреки распространённому мнению, нейтронный взрыв вовсе не оставляет материальные ценности невредимыми: зона сильных разрушений ударной волной для того же килотонного заряда имеет радиус около 1 км.

3. Защита

Нейтронные боеприпасы разрабатывались в 1960—1970-х годах, главным образом, для повышения эффективности поражения бронированных целей и живой силы, защищённой бронёй и простейшими укрытиями. Бронетехника 1960-х годов, разработанная с учётом возможности применения на поле боя ядерного оружия, чрезвычайно устойчива ко всем его поражающим факторам. Другим мотивом разработки нейтронных зарядов было их использование в системах противоракетной обороны. Для защиты от массированного ракетного удара в эти годы на вооружение ставились зенитно-ракетные комплексы с ядерной боевой частью, но применение обычного ядерного оружия против высотных целей сочли недостаточно эффективным, поскольку основной поражающий фактор — ударная волна, — в разрежённом воздухе на большой высоте и, тем более, в космосе не образуется, световое излучение поражает боеголовки только в непосредственной близости от центра взрыва, а гамма-излучение поглощается оболочками боеголовок и не может нанести им серьёзного вреда. В таких условиях превращение максимальной части энергии взрыва в нейтронное излучение могло позволить более надёжно поражать ракеты противника.

Естественно, после появления сообщений о разработке нейтронного оружия стали разрабатываться и методы защиты от него. Были разработаны новые типы брони, которая уже способна защитить технику и её экипаж от нейтронного излучения. Для этой цели в броню добавляются листы с высоким содержанием бора, являющегося хорошим поглотителем нейтронов, а в броневую сталь добавляется обеднённый уран . Кроме того, состав брони подбирается так, чтобы она не содержала элементов, дающих под действием нейтронного облучения сильную наведённую радиоактивность.

4. Нейтронное оружие и политика

Работы над нейтронным оружием велись в нескольких странах с 1960-х годов. Впервые технология его производства была разработана в США во второй половине 1970-х. Сейчас возможностью выпуска такого оружия обладают также Россия и Франция.

Опасность нейтронного оружия, как и вообще ядерного оружия малой и сверхмалой мощности, заключается не столько в возможности массового уничтожения людей (это можно сделать и многими другими, в том числе давно существующими и более эффективными для этой цели видами ОМП), сколько в стирании грани между ядерной и обычной войной при его использовании. Поэтому в ряде резолюций Генеральной Ассамблеи ООН отмечаются опасные последствия появления новой разновидности оружия массового поражения — нейтронного, и содержится призыв к его запрещению. В 1978 г., когда в США ещё не был решён вопрос о производстве нейтронного оружия, СССР предложил договориться об отказе от его применения и внёс на рассмотрение Комитета по разоружению проект международной конвенции о его запрещении. Проект не нашёл поддержки у США и других западных стран. В 1981 г. в США начато производство нейтронных зарядов, но в настоящее время они не стоят на вооружении.

5. Пример эффектов взрыва нейтронного заряда на различных расстояниях

Рассто-яние[# 1] Давление

[# 2]

Радиация

[# 3]

Защита бетон[# 4] Защита земля[# 4] Примечания
Действие воздушного взрыва нейтронного заряда мощностью 1 кт на высоте ~ 150 м
0 м ~108 МПа [1] Окончание реакции, начало разлёта вещества бомбы. Благодаря конструктивным особенностям заряда значительная часть энергии взрыва выделяется в виде нейтронного излучения.
от центра ~50 м 0,7 МПа n·105Гр ~2-2,5 м ~3-3,5 м Граница светящейся сферы диаметром ~100м [3], время свечения ок. 0,2 сек.
эпицентр 0 м 0,2 МПа ~35.000 Гр 1,65 м 2,3 м Эпицентр взрыва. Человек в обычном убежище - гибель или крайне тяжёлая лучевая болезнь [1, 7]. Разрушение убежищ, рассчитанных на 100 кПа [7].
170 м 0,15 МПа Сильные повреждения танков [4].
300 м 0,1 МПа 5.000 Гр 1,32 м 1,85 м Человек в убежище - лучевая болезнь от лёгкой до тяжёлой степени [1, 7].
340 м 0,07 МПа Лесные пожары [4].
430 м 0,03 МПа 1.200 Гр 1,12 м 1,6 м Человек — "смерть под лучом". Сильные повреждения сооружений [4].
500 м 1000 Гр 1,09 м 1,5 м Человек гибнет от радиации сразу ("под лучом") или через несколько минут.
550 м 0,028 МПа Средние повреждения сооружений [4].
700 м 150 Гр 0,9 м 1,15 м Гибель человека от радиации через несколько часов.
760 м ~0,2 МПа 80 Гр 0,8 м 1 м
880 м 0,014 МПа Средние повреждения деревьев [4].
910 м 30 Гр 0,65 м 0,7 м Человек гибнет через несколько суток; лечение - уменьшение страданий.
1.000 м 20 Гр 0,6 м 0,65 м Человек - — " —. Стёкла приборов окрашиваются в тёмно-бурый цвет.
1.200 м ~0,01 МПа 6,5-8,5 Гр 0,5 м 0,6 м Крайне тяжёлая лучевая болезнь; гибнут до 90% пострадавших [6, 7].
1.500 м 2 Гр 0,3 м 0,45 м Средняя лучевая болезнь; гибнут до 80% [6], при лечении до 50% [4].
1.650 м 1 Гр 0,2 м 0,3 м Лёгкая лучевая болезнь [7]. Без лечения могут погибнуть до 50% [4].
1.800 м ~0,005 МПа 0,75 Гр 0,1 м Радиационные изменения в крови [4].
2.000 м 0,15 Гр Доза может быть опасна для больного лейкемией [4].
Рассто-яние[# 1] Давление

[# 2]

Радиация

[# 3]

Защита бетон[# 4] Защита земля[# 4] Примечания
Примечания
  1. ↑ 12 Расстояние в первых двух строках от центра взрыва, делее расстояние от эпицентра взрыва.
  2. ↑ 12 Избыточное давление вещества на фронте падающей ударной волны в мегапаскалях (МПа), рассчитано в соответствии с данными для взрыва мощностью 1 кт на высоте 190 м [8] (С. 13) по формуле подобия параметров ударной волны для различных мощностей зарядов (С. 10 там же) с учётом того, что по ударной волне нейтронный боеприпас мощностью 1кт примерно эквивалентен обычному ядерному 0,5кт [5]:R1/R2 = (q1/q2)1/3,где R1 и R2 — расстояния на которых будет наблюдаться одинаковое давление ударной волны;q1 и q2 — мощности сопоставляемых зарядов.
  3. ↑ 12 Суммарное значения доз радиации нейтронов и гамма-лучей в греях (Гр).
  4. ↑ 1234 Защита отдельно из обычного плотного бетона или из сухой земли; имеется в виду слой вещества в перекрытии заглублённого бетонного или деревоземляного сооружения, необходимый для снижения внешней дозы радиации до считающейся приемлемой в убежище дозы в 50 Рентген = 0,5 Гр.
При составлении использовалась литература 1. Безопасность жизнедеятельности. Защита населения и территорий в чрезвычайных ситуациях: учебное пособие для сотруд. высш. учеб. заведений. / [Я.Р.Вешняков и др.] - М.: Изд. центр "Академия", 2007. - С. 133 - 138. - ISBN 978-5-7695-3392-1; 2. Большая Советская Энциклопедия, 30 том. Изд. 3-е. М., "Советская Энциклопедия", 1978.; 3. Действие ядерного оружия. Пер. с англ. М., Воениздат, 1965.; 4. Иванов, Г. Нейтронное оружие. // Зарубежное военное обозрение, 1982, №12. - С. 50 - 54; 5. Защита от оружия массового поражения. М., Воениздат, 1989.; 6. Козлов, В.Ф. Справочник по радиационной безопасности. М., 1987.; 7. Миргородский В.Р. Безопасность жизнедеятельности. Раздел III. Защита объектов печати в чрезвычайных ситуациях: Курс лекций / Под ред. Н.Н. Пахомова. М.: Изд-во МГУП, 2001. 8. Убежища гражданской обороны. Конструкции и расчёт / В.А. Котляревский, В.И. Ганушкин, А.А. Костин и др.; Под ред. В.А. Котляревского. - М.: Стройиздат, 1989. ISBN 5-274-00515-2.

Примечания

  1. ↑ 12345 Основы современного общевойскового боя - militera.lib.ru/science/tactic/02.html
  2. Защита организма от излучений ионизирующих - www.cultinfo.ru/fulltext/1/001/008/044/654.htm
скачатьДанный реферат составлен на основе статьи из русской Википедии. Синхронизация выполнена 10.07.11 02:33:52Похожие рефераты: Нейтронная терапия, Нейтронная оптика, Нейтронная активация, Нейтронная звезда, Нейтронная физика, Гей-бомба, Бомба, Кассетная бомба, Худой (бомба).

Категории: Ядерное оружие.

Текст доступен по лицензии Creative Commons Attribution-ShareAlike.
Содержание 1. Введение 2. Ядерное оружие: 2.1. Предпосылки создания атомного оружия; 2.2. Испытание атомного оружия; 2.3. Применение первого атомного оружия; 2.4. Поражающие факторы ядерного взрыва; 2.5. Нейтронная бомба; 2.6. Очаги ядерного поражения. 3. Химическое оружие: 3.1. Смертельные отравляющие вещества; 3.2. Отравляющие вещества, временно выводящие из строя; 4. Биологическое оружие 5. Оружие будущего: 5.1. Плазменное; 5.2. Лазерное; 5.3. Психотронное; 5.4. Пульсовое; 5.5. HAARP; 5.6. Гравитационное; 5.7. Биологическое. 6. Заключение 7. Список используемой литературы Введение На всех этапах развития человек постоянно стремился к обеспечению личной безопасности и сохранению своего здоровья. Это стремления было мотивацией многих его действий и поступков. Создание надежного жилища, не что иное, как стремление обеспечить себя и семью защитой от опасных и вредных факторов. Сегодня мир обладает новейшими технологиями в области связи, вычислительной и бытовой техники. Человечество радуется достижениям науки и техники, однако не надо забывать, что и военная промышленность не стоит на месте. К сожалению, люди не становятся с годами добрее. Алчность, стремление к власти – вот те чувства, которые толкают людей на развязывание войн, и этого не избежать никогда. Ежедневно в мире идут перестрелки, совершаются теракты, взрывы, гибнут люди, и когда-нибудь это «где-то» может быть и у нас. Не стоит думать, что все войны уже позади, надо быть готовыми ко всему. Научные знания могут служить как целям гуманным и благородным, так и целям варварским. Все зависит от того, в чьих руках находится наука и добытые ею результаты, кто и по каким соображениям занимается научной деятельностью, каковы моральные устои и социальные воззрения людей науки. С развитием научно-технического прогресса люди поняли, что должны быть подготовлены и к ликвидации последствий своей деятельности, таких как аварии или применения оружия. Обучение населения защите от воздействия оружия массового поражения и других средств нападения противника – вот одна из основных задач Гражданской обороны России. Поэтому, в своем реферате я постараюсь не только дать основные характеристики видов оружия, рассмотреть его воздействие на окружающую среду, людей, животных, но и описать меры по защите от него, а также другие способы. К видам оружия массового поражения (ОМП) относятся ядерное, химическое, биологическое и другие виды, способные уничтожать массы людей и животных, вызывать разрушения, наносить ущерб окружающей среде. В зависимости от вида примененно­го противником оружия массового по­ражения могут образовываться очаги ядерного, химического, бактериологи­ческого (биологического) поражения и зоны радиоактивного, химического и бактериологического (биологического) заражения. Очаги поражения могут возникать и при применении обычных средств поражения противника. При воздействии двух видов и более ору­жия массового поражения образуется очаг комбинированного поражения. Первичные действия поражающих факторов ОМП и других средств на­падения противника могут привести к возникновению взрывов, пожаров, за­топлений местности и распростране­нию на ней сильнодействующих ядо­витых веществ. При этом образуются вторичные очаги поражения. Остановимся более подробно на каждом виде оружия массового поражения. Ядерное оружие За годы, отделяющие нас от того дня, когда была взорвана первая атомная бомба, история ее создания успела обрасти легендами. Об этом событии были написаны десятки книг, правдивых и ничего общего с исторической правдой не имеющих. Предпосылки создания атомного оружия Немецкие физики первые начали работу по созданию атомной бомбы, но до самого конца войны союзники по антигитлеровской коалиции не имели точных сведений о том, на каком этапе находятся эти работы. Ученые-атомники США, среди которых было много эмигрантов из Европы, опасались, что фашисты создадут ядерное оружие прежде, чем закончится война, и сделали все возможное, чтобы развернуть аналогичные разработки в США. Они начинали работать над бомбой, руководствуясь высокими побуждениями: такое оружие было необходимо на случай, если гитлеровская армия получит его первой и использует на полях сражений. Но когда они завершили свое дело, стало ясно, что у фашистов бомбы нет и не будет, и Германия стоит на пороге полного поражения. Но тут вмешались американские политики и военные, решившие подвергнуть атомной бомбардировке Японию, хотя в этом уже не было необходимости. В США любят говорить, атом является уроженцем Америки. Это не так. На рубеже XIX и XX вв. расщеплением атома занимались главным образом европейские ученые. Бор, находившийся в США с января по май 1939 г., много сделал в этот период для быстрой разработки теории, которая впоследствии привела к доказательству особой способности урана-235 и плутония к расщеплению. Таким образом, к середине 1939 г. ученые мира располагали важными теоретическими сведениями в области ядерной физики, которые позволили выдвинуть обширную программу развития исследований. Эти открытия произвели в научном мире сенсацию. В физике началась новая, атомная эра! С трудом убедив власти США, физики получили возможность в глубочайшей тайне, вдали от войны, работать над проблемой овладения энергией атомного ядра, над подготовкой ядерного реактора. Это был подлинный заговор науки против фашизма, но участники заговора не до конца представляли себе будущее. Все работы по созданию атомной бомбы протекали в обстановке абсолютной секретности. Очень немногие знали о том, что скрывается за вывеской Манхэттенского проекта. Даже госдепартамент США до начала Ялтинской конференции в феврале 1945 г. ничего не знал о проекте создания атомной бомбы. О целях проекта не было известно и объединенному комитету начальников штабов. Знали лишь отдельные лица, по выбору президента Ф. Рузвельта. Спасаясь от фашистского террора, многие выдающиеся ученые вынуждены были эмигрировать на американский континент. Эмиграция ученых объяснялась в основном усиленным проникновением нацистской идеологии на университетские кафедры Германии, где перестали уважать способности и таланты, а провозглашали верность фашизму, прославляли чистоту “арийского” происхождения. Одновременно с поисками и отбором специалистов в своей стране американцы вели настоящую охоту за секретной научно-технической информацией, а также за учеными-атомниками в Европе. Американцы весьма ревностно относились к работам по урановой проблеме, которые велись союзниками — Англией и Францией. В самом начале Рузвельт и Черчилль пришли к следующему соглашению: большие атомные заводы будут строиться в США, где им не угрожают немецкие бомбы, но англичане внесут свой вклад в разработку атомной бомбы. Однако,как только англичане заговорили о собственной атомной бомбе, все двери для них наглухо закрылись. Испытания атомного оружия 12 июля 1945 г. на уединенную авиационную базу Аламогордо в штате Нью- Мексика, избранную местом первого испытания первой атомной бомбы, доставили самую главную деталь атомной бомбы — плутониевый заряд. Испытание нового оружия состоялось в 5 часов 30 минут 16 июля 1945 г. Ослепительная вспышка неестественно белого света прорезала предутреннюю мглу. Казалось, будто много солнц соединилось в одном и разом осветило полигон, позади которого четко обозначились горы. Через несколько секунд раздался оглушительный взрыв, и мощная волна пронеслась над убежищами, свалив на землю нескольких солдат, не успевших лечь. Огненный шар стал расти, все больше и больше увеличиваясь в диаметре. Вскоре его поперечник составлял уже полтора километра. Огненный шар уступил место столбу клубящегося дыма, который поднялся на высоту 12 км, приняв форму гигантского гриба, ставшего впоследствии зловещим символом ядерного взрыва. А потом задрожала земля и вновь раздался грохот. Это был первый крик новорожденного: атомный век появился на свет. Мощность взорванной бомбы превзошла все ожидания. Как только позволила обстановка, несколько танков “Шерман”, выложенные изнутри свинцовыми плитами, ринулись в район взрыва. На одном из них находился Ферми, которому не терпелось увидеть результаты своего труда. Его глазам предстала мертвая, выжженная земля, на которой в радиусе полутора километров было все уничтожено все живое. Песок спекся в стекловидную зеленоватую корку, покрывающую землю. В огромной воронке лежали изуродованные остатки стальной башни. В стороне валялся исковерканный, перевернутый на бок стальной ящик. Мощность взрыва оказалась равной 20 тыс. т тринитротолуола. Такой эффект могли вызвать 2 тысячи самых крупных бомб времен второй мировой войны, которые за их небывалую по тем масштабам силу называли “разрушители кварталов”. Применение первого атомного оружия Едва смолкли громовые раскаты первого ядерного взрыва, а в Сан-Франциско уже грузили на борт самого быстроходного крейсера военно-морских сил США “Индианополис” атомные бомбы, предназначенные для бомбардировки японских городов. Бомбы были доставлены на остров Тиниан, с которого американские бомбардировщики ежедневно совершали налеты на Японию. Бомбы были собраны на авиационной базе. Специальное авиационное соединение ждало приказа. Как известно, многие ученые-атомники надеялись, что ультиматум, в котором объективно оценивалось положение Японии после капитуляции гитлеровской Германии и конкретно излагались гибельные для нее последствия, должен склонить силы рассудка в Японии к капитуляции. Ученые считали, что США обрушат на Японию свое новое оружие, обладающее ни с чем не сравнимой мощью, лишь в случае ее отказа принять ультиматум. Кабинет Судзуки 28 июля отклонил Потсдамскую декларацию, что дало правительству США желанный предлог для атомной бомбардировки японских городов. Через две недели на жителей двух городов — Хиросима и Нагасаки — обрушился атомный смерч, раскрыв смысл туманных формулировок ультиматума. Но те, кто взял на себя ответственность за нанесение ядерного удара и похвалялся в свое время проявленной при этом “решительностью”, не прочь все же снять с себя ответственность теперь. И вот наступила последняя ночь Хиросимы... 6 августа 1945 г. 8 часов 11 минут, огненный шар обрушился на город. В одно мгновение он сжег заживо и искалечил сотни тысяч людей. Тысячи домов превратились в пепел, который потоком воздуха был подброшен ввысь на несколько километров. Город вспыхнул как факел... Смертоносные частицы начали свою разрушительную работу в радиусе полутора километров. Бомба, сброшенная на Хиросиму, соответствовала по силе взрыва заряду в 20 тыс. т тринитротолуола. Диаметр огненного шара составлял 17 м, температура — 300 тыс. градусов. В результате атомной бомбардировки погибло свыше 240 тыс. жителей Хиросимы (в момент бомбардировки население составляло около 400 тыс.человек). Вашингтон издал приказ — в течение 9 дней информировать население Японии о судьбе Хиросимы: составить на японском языке листовки с описанием результатов атомной бомбардировки и фотографиями разрушенного города, а затем сбросить их над территорией Японии. В листовках говорилось: “Мы обладаем мощным оружием, которого никогда не знали люди... Если у вас есть сомнения на этот счет, посмотрите, что произошло в Хиросиме, когда одна-единственная бомба была сброшена на этот город. Прежде чем мы применим еще одну такую бомбу, мы предлагаем, чтобы вы обратились к вашему императору с требованием капитулировать”. Еще до того как одна из листовок попала на территорию Японии, был отдан приказ о новой атомной бомбардировке. На пресс-конференции 7 августа генерал Спаатс на вопрос корреспондентов, будет ли сброшена вторая бомба, только улыбнулся: на 11 августа была запланирована вторая атака. Однако бомба была сброшена раньше намеченного срока. Утром 8 августа служба погоды сообщила, что цель №2 (Кокура) 11августа будет закрыта облачностью. Приказ № 39 поступил через несколько часов: боевой вылет назначался в ночь на 9 августа. На совещании летчики узнали, что главная цель второй операции — Кокура, в северной части острова Кюсю. Запасной целью был Нагасаки... Против этой “кандидатуры” было многое: Нагасаки шесть раз подвергался бомбардировкам, хотя и не очень значительным; местность, на которой расположен город, изрезана долинами и холмами, поэтому взрыв не мог дать здесь наибольшего эффекта; в Нагасаки расположен лагерь, в котором находились американские и английские военнопленные. Но когда самолет капитана Маркворда подлетал к Кокуре, то обнаружилось, что все затянуто дымом от горевшего сталелитейного завода; и поэтому вторая бомба была сброшена на Нагасаки. В этот раз погибло около 73 тыс. человек, еще 35 тыс. умерли после долгих мучений. Поражающие факторы ядерного взрыва. Ядерный взрыв способен мгновенно уничтожить или вывести из строя незащищенных людей, открыто стоящую технику, сооружения и различные материальные средства. Поражающее действие ядерного взрыва определяется механическим воздействием ударной волны, тепло­вым воздействием светового излуче­ния, радиационным воздействием про­никающей радиации и радиоактивного заражения. Для некоторых элементов объектов поражающим фактором явля­ется электромагнитное излучение (электромагнитный импульс) ядерного взрыва. Распределение энергии между по­ражающими факторами ядерного взрыва зависит от вида взрыва и ус­ловий, в которых он происходит. При взрыве в атмосфере примерно 50 % энергии взрыва расходуется на обра­зование ударной волны, 30—40%— на световое излучение, до 5 % — на проникающую радиацию и электромаг­нитный импульс и до 15 %—на радио­активное заражение. Рассмотрим их. а) Ударная волна в большинстве случаев является основным поражающим фактором ядерного взрыва. По своей природе она подобна ударной волне обычного взрыва, но действует более продолжительное время и обладает гораздо большей разрушительной силой. Ударная волна ядерного взрыва может на значительном расстоянии от центра взрыва наносить поражения людям, разрушать сооружения и повреждать боевую технику. Ударная волна представляет собой область сильного сжатия воздуха, распространяющуюся с большой скоростью во все стороны от центра взрыва. Скорость распространения ее зависит от давления воздуха во фронте ударной волны; вблизи центра взрыва она в несколько раз превышает скорость звука, но с увеличением расстояния от места взрыва резко падает. За первые 2 сек ударная волна проходит около 1000 м, за 5 сек-2000 м, за 8 сек - около 3000 м. Поражающее действие ударной волны на людей и разрушающее действие на боевую технику, инженерные сооружения и материальные средства прежде всего определяются избыточным давлением и скоростью движения воздуха в ее фронте. Незащищенные люди могут, кроме того поражаться летящими с огромной скоростью осколками стекла и обломками разрушаемых зданий, падающими деревьями, а также разбрасываемыми частями боевой техники, комьями земли , камнями и другими предметами , приводимыми в движение скоростным напором ударной волны . Наибольшие косвенные поражения будут наблюдаться в населенных пунктах и в лесу; в этих случаях потери войск могут оказаться большими, чем от непосредственного действия ударной волны. Ударная волна способна наносить поражения и в закрытых помещениях, проникая туда через щели и отверстия. Поражения, наносимые ударной волной, подразделяются на легкие, средние, тяжелые и крайне тяжелые. Легкие поражения характеризуются временным повреждением органов слуха, общей легкой контузией, ушибами и вывихами конечностей. Тяжелые поражения характеризуются сильной контузией всего организма; при этом могут наблюдаться повреждения головного мозга и органов брюшной полости, сильное кровотечение из носа и ушей, тяжелые переломы и вывихи конечностей. Степень поражения ударной волной зависит прежде всего от мощности и вида ядерного взрыва. При воздушном взрыве мощностью 20 кТ легкие травмы у людей возможны на расстояниях до 2,5 км, средние — до 2 км, тяжелые — до 1,5 км от эпицентра взрыва. С ростом калибра ядерного боеприпаса радиусы поражения ударной волной растут пропорционально корню кубическому из мощности взрыва. При подземном взрыве возникает ударная волна в грунте, а при подводном — в воде. Кроме того, при этих видах взрывов часть энергии расходуется на создание ударной волны и в воздухе. Ударная волна, распространяясь в грунте, вызывает повреждения подземных сооружений, канализации, водопровода; при распространении ее в воде наблюдается повреждение подводной части кораблей, находящихся даже на значительном расстоянии от места взрыва. б) Световое излучение ядерного взрыва представляет собой поток лучистой энергии, включающей ультрафиолетовое, видимое и инфракрасное излучение. Источником светового излучения является светящаяся область, состоящая из раскаленных продуктов взрыва и раскаленного воздуха. Яркость светового излучения в первую секунду в несколько раз превосходит яркость Солнца. Поглощенная энергия светового излучения переходит в тепловую, что приводит к разогреву поверхностного слоя материала. Нагрев может быть настолько сильным, что возможно обугливание или воспламенение горючего материала и растрескивание или оплавление негорючего, что может приводить к огромным пожарам. При этом действие светового излучения ядерного взрыва эквивалентно массированному применению зажигательного оружия. Кожный покров человека также поглощает энергию светового излучения, за счет чего может нагреваться до высокой температуры и получать ожоги. В первую очередь ожоги возникают на открытых участках тела, обращенных в сторону взрыва. Если смотреть в сторону взрыва незащищенными глазами, то возможно поражение глаз, приводящее к полной потере зрения. Ожоги, вызываемые световым излучением, не отличаются от обычных, вызываемых огнем или кипятком. Они тем сильнее, чем меньше расстояние до взрыва и чем больше мощность боеприпаса. При воздушном взрыве поражающее действие светового излучения больше, чем при наземном той же мощности. В зависимости от воспринятого светового импульса ожоги делятся на три степени. Ожоги первой степени проявляются в поверхностном поражении кожи: покраснении, припухлости, болезненности. При ожогах второй степени на коже появляются пузыри. При ожогах третьей степени наблюдается омертвление кожи и образование язв. При воздушном взрыве боеприпаса мощностью 20 кТ и прозрачности атмосферы порядка 25 км ожоги первой степени будут наблюдаться в радиусе 4,2 км от центра взрыва; при взрыве заряда мощностью 1 МгТ это расстояние увеличится до 22,4 км. Ожоги второй степени проявляются на расстояниях 2,9 и 14,4 км и ожоги третьей степени — на расстояниях 2,4 и 12,8 км соответственно для боеприпасов мощностью 20 кТ и 1МгТ. в) Проникающая радиация представляет собой невидимый поток гамма квантов и нейтронов, испускаемых из зоны ядерного взрыва. Гамма кванты и нейтроны распространяются во все стороны от центра взрыва на сотни метров. С увеличением расстояния от взрыва количество гамма квантов и нейтронов, проходящее через единицу поверхности, уменьшается. При подземном и подводном ядерных взрывах действие проникающей радиации распространяется на расстояния, значительно меньшие, чем при наземных и воздушных взрывах, что объясняется поглощением потока нейтронов и гамма квантов водой. Зоны поражения проникающей радиацией при взрывах ядерных боеприпасов средней и большой мощности несколько меньше зон поражения ударной волной и световым излучением. Для боеприпасов с небольшим тротиловым эквивалентом (1000 тонн и менее) наоборот, зоны поражающего действия проникающей радиацией превосходят зоны поражения ударной волной и световым излучением. Поражающее действие проникающей радиации определяется способностью гамма квантов и нейтронов ионизировать атомы среды, в которой они распространяются. Проходя через живую ткань, гамма кванты и нейтроны ионизируют атомы и молекулы, входящие в состав клеток, которые приводят к нарушению жизненных функций отдельных органов и систем. Под влиянием ионизации в организме возникают биологические процессы отмирания и разложения клеток. В результате этого у пораженных людей развивается специфическое заболевание, называемое лучевой болезнью. Для оценки ионизации атомов среды, а, следовательно, и поражающего действия проникающей радиации на живой организм введено понятие дозы облучения (или дозы радиации), единицей измерения которой является рентген (р). Дозе радиации 1 р соответствует образование в одном кубическом сантиметре воздуха приблизительно 2 миллиардов пар ионов. В зависимости от дозы излучения различают три степени лучевой болезни. Первая (легкая) возникает при получении человеком дозы от 100 до 200 р. Она характеризуется общей слабостью, легкой тошнотой, кратковременным головокружением, повышением потливости; личный состав, получивший такую дозу, обычно не выходит из строя. Вторая (средняя) степень лучевой болезни развивается при получении дозы 200-300 р; в этом случае признаки поражения — головная боль, повышение температуры, желудочно-кишечное расстройство — проявляются более резко и быстрее, личный состав в большинстве случаев выходит из строя. Третья (тяжелая) степень лучевой болезни возникает при дозе свыше 300 р; она характеризуется тяжелыми головными болями , тошнотой , сильной общей слабостью, головокружением и другими недомоганиями; тяжелая форма нередко приводит к смертельному исходу. г) Радиоактивное заражение людей, боевой техники, местности и различных объектов при ядерном взрыве обусловливается осколками деления вещества заряда и непрореагировавшей частью заряда, выпадающими из облака взрыва, а также наведенной радиоактивностью. С течением времени активность осколков деления быстро уменьшается, особенно в первые часы после взрыва. Так, например, общая активность осколков деления при взрыве ядерного боеприпаса мощностью 20 кТ через один день будет в несколько тысяч раз меньше, чем через одну минуту после взрыва. При взрыве ядерного боеприпаса часть вещества заряда не подвергается делению, а выпадает в обычном своем виде; распад ее сопровождается образованием альфа-частиц. Наведенная радиоактивность обусловлена радиоактивными изотопами, образующимися в грунте в результате облучения его нейтронами, испускаемыми в момент взрыва ядрами атомов химических элементов, входящих в состав грунта. Образовавшиеся изотопы, как правило, бета-активны, распад многих из них сопровождается гамма-излучением. Периоды полураспада большинства из образующихся радиоактивных изотопов, сравнительно невелики - то одной минуты до часа. В связи с этим наведенная активность может представлять опасность лишь в первые часы после взрыва и только в районе, близком к его эпицентру. Основная часть долгоживущих изотопов сосредоточена в радиоактивном облаке, которое образуется после взрыва . Высота поднятия облака для боеприпаса мощностью 10 кТ равна 6 км, для боеприпаса мощностью 10 МгТ она составляет 25 км. По мере продвижения облака из него выпадают сначала наиболее крупные частицы, а затем все более и более мелкие, образуя по пути движения зону радиоактивного заражения, так называемый след облака. Размеры следа зависят главным образом от мощности ядерного боеприпаса, а также от скорости ветра и могут достигать в длину несколько сотен и в ширину нескольких десятков километров. Поражения в результате внутреннего облучения появляются в результате попадания радиоактивных веществ внутрь организма через органы дыхания и желудочно-кишечный тракт. В этом случае радиоактивные излучения вступают в непосредственный контакт с внутренними органами и могут вызвать сильную лучевую болезнь; характер заболевания будет зависеть от количества радиоактивных веществ, попавших в организм. На вооружение, боевую технику и инженерные сооружения радиоактивные вещества не оказывают вредного воздействия. д) Электромагнитный импульс воздействует прежде всего на радиоэлектронную и электронную аппаратуру (пробой изоляции, порча полупроводниковых приборов, перегорание предохранителей и т.д.). Электромагнитный импульс представляет собой возникающее на очень короткое время мощное электрическое поле. Нейтронная бомба – принцип действия заряда с увеличенным выходом излучения. Целью создания нейтронного оружия в 60-х - 70-х годах являлось получение тактической боеголовки, главным поражающим фактором в котором являлся бы поток быстрых нейтронов, излучаемых из области взрыва. Радиус зоны смертельного уровня нейтронного облучения в таких зарядах может даже превосходить радиусы поражения ударной волной или световым излучением. Создание такого оружия обусловила низкая эффективность обычных тактических ядерных зарядов против бронированных целей, таких как танки, бронемашины и т. п. Благодаря наличию бронированного корпуса и системы фильтрации воздуха бронетехника способна противостоять всем поражающим факторам ядерного взрыва и может эффективно решать боевые задачи даже в относительно близких к эпицентру районах. Поток нейтронов же с легкостью проходит даже через толстую стальную броню. При мощности в 1 кт смертельная доза облучения в 8000 рад, которая ведет к немедленной и быстрой смерти (минуты), будет получена экипажем танка Т-72 на расстоянии в 700 м. При обычном атомном взрыве этой же мощности аналогичное расстояние будет равняться 360 м. Дополнительно, нейтроны создают в конструкционных материалах (например, броне танка) наведенную радиоактивность. Она может быть довольно сильной: скажем, если в рассмотренный выше Т-72 сядет новый экипаж, то он получит летальную дозу в течение 24 часов. Для нейтронного взрыва характер­ны те же поражающие факторы, одна­ко несколько по-иному распределяется энергия взрыва: 8—10%—на образо­вание ударной волны, 5—8 % — на световое излучение и около 85 % рас­ходуется на образование нейтронного и гамма-излучений (проникающей ра­диации). Т.е. в зоне поражения техника и сооружения могут оставаться невредимыми, а люди получают смертельные поражения. Очаг ядерного поражения. Очагом ядерного поражения называется территория, в пределах которой в результате воздействия ядерного оружия произошли массовые поражения людей, сельскохозяйственных животных, растений и (или) разрушения и повреждения зданий и сооружений. Он характеризуется: количеством пораженных; размерами площадей поражения; зонами заражения с различными уровнями радиации; зонами пожаров, затопления, разрушения и повреждения зданий и сооружений; частичным разрушением, повреждением или завалом защитных сооружений. Поражение людей и животных в очаге может быть от воздействия ударной волны, светового излучения, проникающей радиации и радиоактивного заражения, а также от воздействия вторичных факторов поражения. Степень разрушения элементов производственного комплекса объекта определяется в основном действием ударной волны, светового излучения, вторичных факторов поражения, а для некоторых объектов - также действием проникающей радиации и электромагнитного импульса. Одновременное непосредственное и косвенное действие всех поражающих факторов ядерного взрыва на людей, оказавшихся в очаге, утяжеляет степень поражения. Очаг ядерного поражения условно делят на зоны: полных (ударная волна с давлением на внешней границе свыше 50 кПа), сильных (от 50 до 30 кПа), средних (от 30 до 20 кПа) или слабых (20-10 кПа) разрушений. В первом случае полностью разрушаются все здания и сооружения, образуются сплошные завалы; во втором местные завалы и сильные разрушения, большинство убежищ сохраняется; в третьем – средние разрушения (трещины), но от светового облучения возникают сплошные пожары, и в последнем случае – небольшие повреждения (выбиты стекла, двери) и лишь локальные пожары. Химическое оружие Химическое оружие – это отравляющие вещества и средства их боевого применения (ракеты, артиллерийские снаряды, мины, авиационные бомбы, химические фугасы, ручные химические гранаты, ядовито-дымные шашки). Поражающее действие химического оружия основано на токсичных свойствах химических соединений, которые, находясь в парообразном, жидком или аэрозольном состоянии, могут проникать в организм через органы дыхания, кожные покровы, слизистые оболочки, пищевой тракт. Первое применявшееся химические оружие - "Греческий огонь", состоящий из соединений серы, выбрасываемый из труб во время морских сражений, описал Плутарх, а также гипнотические средства, описанные шотландским историком Букананом, вызывающие непрерывную диарею по описанию греческих авторов и целый диапазон препаратов, включая мышьяксодержащие соединения и слюну бешеных собак, что было описано Леонардо да Винчи. В индийских источниках IV века до н. э. существовали описания алкалоидов и токсинов, включая абрин (соединение близкое к рицину, компоненту яда, с помощью которого был отравлен болгарский диссидент Г. Марков в 1979 году). Негативное отношение к отравителям сдерживало использование химикатов в военных целях, до середины XIX века. До тех пор когда, предполагая, что соединения серы, могут быть использованы в военных целях, Адмирал сэр Томас Кохран (десятый граф Сандерлендский) в 1855 году применил диоксид серы как боевое отравляющее вещество, что было с негодованием встречено Британским военным истеблишментом. Химическое оружие - оружие массового поражения. Оно предназначено для уничтожения живой силы; может быть использовано и для заражения местности, вооружения, боевой техники и различных тыловых объектов; обладает рядом боевых свойств, отличающих его от др. видов оружия. Отравляющие вещества (ОВ) способны распространяться в больших объёмах воздуха на значительных площадях, проникать в различные укрытия и сооружения, не оборудованные в противохимическом отношении, а также в танки и др. боевые машины. ОВ сохраняют поражающее действие от нескольких десятков минут (нестойкие ОВ) до нескольких часов и суток (стойкие ОВ). Эффективность химического оружия в значительной степени зависит от метеорологических условий и характера местности. Например, при наличии ветра зараженный воздух может перемещаться на большие расстояния и поражать живую силу вне района непосредственного химического нападения. К химическому оружию можно также отнести химические средства уничтожения растений - гербициды и дефолианты. Впервые химическое оружие (хлор) было применено во время 1-й мировой войны (1914-1918 гг.) немецкими войсками 22 апреля 1915 г. в районе г. Ипр (Бельгия). Серо-зеленый туман хлора, выпущенный немцами, накрыл через несколько минут все опорные пункты французских войск и поразил 15 тыс. человек. Маленький городок стал (как позже Хиросима) символом одного из величайших преступлений против человечества. В первую мировую войну были "апробированы" и другие отравляющие вещества: дифосген (1915 г.), хлорпикрин (1916 г.), синильная кислота (1915 г.), иприт (1917 г.) В ходе войны 0В широко использовали армии и других государств. Применение химического оружия было запрещено Женевским протоколом (1925 г.), который ратифицировали (или присоединились к нему) многие государства, в том числе и СССР. Однако некоторые государства нарушали этот протокол (например, Италия использовала химическое оружие в войне против Эфиопии в 1935-36 гг.). После своего появления в первой мировой войне химическое оружие в основном используется как средство психологического и дипломатического сдерживания. Несмотря на военную доктрину, многие страны разрабатывали у себя химическое оружие. Во время 2-й мировой войны (1939-45 гг.) фашистская Германия широко развернула подготовку химического оружия, ежегодная мощность её химической промышленности (к 1943 г.) составляла 180 тыс.тонн отравляющих веществ. Однако, опасаясь ответного удара, она не решилась его применить. Советский Союз всегда выступал решительным противником использования этого вида оружия. После войны, несмотря на его запрещение, в капиталистических странах были найдены высокотоксичные отравляющие вещества, во много раз превышающие по своей токсичности ОВ периода 1-й мировой войны. США применяли химическое оружие во Вьетнаме. Весной 1997 г. был ратифицирован глобальный договор запрета химического оружия, который был подписан более чем 80-ти государствами. Тактическая классификация подразделяет 0В на группы по боевому назначению: I. Смертельные - вещества, предназначенные для уничтожения живой силы, к которым относятся ОВ нервно-паралитического, кожно-нарывного, общеядовитого и удушающего действия; II. Временно выводящие живую силу из строя - вещества, позволяющие решать тактические задачи по выведению живой силы из строя на сроки от нескольких минут до нескольких суток. К ним относятся психотропные вещества (инкапаситанты) и раздражающие вещества (ирританты). I. Смертельные ОВ По воздействию на организм человека боевые токсические химические вещества (БТХВ) делятся на нервно-паралитические, удушающие, общеядовитые, кожно- нарывные, токсины (ботулинический, фитотоксиканты, стафилококковый энтеротоксин и рицин), раздражающие и психохимические. Дадим краткую характеристику каждого вида: 1. БТХВ нервно-паралитического воздействия – это высокотоксичные вещества, поражающие нервную систему. Это V-газы, зарин и др. Зарин - (Ch4)2CHOP(O)Ch4(F) - бесцветная жидкость, температура кипения 151,5 гр. Цельсия, отравляющее вещество нервно-паралитического действия, смертельная концентрация в воздухе 0,2 мг/л; концентрация около 0,002 вызывает сильный миоз (сужение зрачка). Использовался в токийском тоннели в марте 1995 г. Зоман - (Ch4)3CCH(Ch4)OP(O)Ch4(F) - бесцветная жидкость, температура кипения 42 гр. Цельсия, отравляющее вещество нервно-паралитического действия, смертельная концентрация в воздухе 0,2 мг/л; концентрация около 0,002 вызывает сильный миоз (сужение зрачка), по действию зоман схож с зарином. VX - как и все нервные агенты, это бесцветная жидкость. Точная формула стала известна только в 70-х годах XX века, хотя до этого VX производился в течение нескольких лет. Агент VX - один из самых известных токсичных субстанций, которые можно производить в больших количествах. Всего пара капелек в воздухе могут убить несколько человек. Табун - (Ch4)2NPO(OC2H5)(CN) - бесцветная жидкость, температура кипения 237 - 240 гр. Цельсия, отравляющее вещество нервно-паралитического действия, смертельная концентрация в воздухе 0,4 мг/л (1 мин), вызывает сильный миоз, при проникновении через кожу - 50 - 70 мг / кг. Изобретен немецким химиком Герхардом Шрадером в середине 30-х годов, использовался нацистами в своих газовых камерах. Зарин, зоман, VX - наиболее часто встречающиеся сегодня отравляющие вещества, используемые в химическом оружии. Они воздействуют на организм через органы дыхания, кожу, при потреблении воды и еды. Признаками поражения являются: слюнотечение, сужение зрачка (миоз), затрудненное дыхание, рвота, судороги, паралич. Для защиты используются противогаз и защитная одежда. При оказании помощи пострадавшему на него одевают противогаз и вводят противоядие. Открытые части тела, а также одежду обрабатывают противохимической жидкостью. 2. БТХВ удушающего воздействия влияют на организм через органы дыхания. Наиболее характерным является фосген. Фосген – бесцветный газ с неприятным запахом прелого сена, гнилых яблок, получается при взаимодействии окиси углерода (угарного газа) с хлором в присутствии катализатора – активированного угля. В газообразном состоянии тяжелее воздуха в 3,5 раза. Плохо растворим в воде. Температура кипения +8 С. Он может образовываться при термическом разложении хлорированных углеводородов. Особенностью поражения фосгена является отсутствие выраженных явлений раздражающего действия и наличие скрытого периода. Симптомы отравления являются результатом непосредственного воздействия на дыхательные пути и легочные мембраны. Фосген поражает организм только при вдыхании его паров. Газообразный фосген поступает в организм через органы дыхания и вызывает отек легких. При вдыхании фосгена человек ощущает сладковатый неприятный вкус во рту, затем появляются покашливание, головокружение и общая слабость. Попадая в легкие, фосген приводит к определенным биохимическим структурным изменениям легочной ткани и каппилярах, повышая проницаемость последних, что приводит к заполнению альвиол плазмой крови (отек легких).По выходу из зараженного воздуха признаки отравления быстро проходят, наступает период так называемого мнимого благополучия. Пораженный чувствует себя здоровым. Этот период опасен тем, что несмотря на отсутствие внешних проявлений, в организме пострадавшего развиваются изменения, завершающиеся отеком легких. Отягощяющими факторами являются охлаждение, физическая нагрузка, психическое напряжение. Токсический отек легких развивается быстро. И через 4-6 часов у пораженного наступает резкое ухудшение состояния: быстро развиваются синюшное окрашивание губ, щек, носа; появляются общая слабость, головная боль, учащенное дыхание, сильно выраженная одышка, мучительный кашель с отделением жидкой, пенистой, розоватого цвета мокроты указывает на развитие отека легких. Температура тела поднимается до 38-39°С. Процесс отравления фосгеном достигает кульминационной фазы в течение 2-3 суток. При благоприятном течении болезни у пораженного постепенно начнет улучшаться состояние здоровья, а в тяжелых случаях поражения наступает смерть. При первой помощи на пораженного надевают противогаз, выводят из зараженной атмосферы, предоставляют покой, облегчают дыхание, укрывают от холода, дают горячее питье. 3. БТХВ общеядовитого действия воздействуют на организм также через органы дыхания. Наиболее часто используемыми являются синильная кислота и хлорциан. Синильная кислота — бесцветная, быстро испаряющаяся жидкость с запахом горького миндаля. На открытой местности быстро улетучивается, не заражает местность и технику. Дегазация помещений, убежищ и закрытых машин производится проветриванием. Синильная кислота может применяться химическими авиабомбами крупного калибра. Поражение наступает при вдыхании зараженного воздуха (возможно поражение через кожу при длительном действии очень высоких концентраций). Средствами защиты от синильной кислоты являются противогаз, убежища и техника, оснащенные фильтровентиляционными установками. При поражении появляются неприятный металлический привкус и жжение во рту, онемение кончика языка, покалывание в области глаз, царапанье в горле, состояние беспокойства, слабость и головокружение. Затем появляется чувство страха, расширяются зрачки, пульс становится редким, а дыхание неравномерным. Пораженный теряет сознание и начинается приступ судорог, за которыми наступает паралич. Смерть наступает от остановки дыхания. Хлорциан - бесцветный газ. Температура кипения -12.6°С. Он относится к БТХВ удушающего, раздражающего и общеядовитого действия. Воздействует на организм через органы дыхания. Смертельная концентрация в воздухе 0.4 мг/л. По токсичному действию превосходит синильную кислоту. Механизм действия хлорциана аналогичен действию синильной кислоты, но из-за присутствия в молекуле подвижного атома хлора он обладает удушающим воздействием. Для оказания помощи надо раздавать ампулу с противоядием и ввести ее под противогаз. 4. БТЗВ кожно-нарывного действия обладают многосторонним поражающим фактором. Был применен 12 мая 1917 года еще при одном сражении на Ипре. На этот раз немецкие войска использовали боевое отравляющее вещество кожно-нарывного и общетоксического действия – 2,2 -дихлордиэтилсульфид, получивший после этого название "иприт". Иприт представляет собой слегка желтоватую (перегнанный) или темно-бурую жидкость с запахом чеснока или горчицы, хорошо растворимую в органических растворителях и плохо растворимую в воде. Иприт тяжелее воды, замерзает при температуре около 14°С. Легко впитывается в различные лакокрасочные покрытия, резинотехнические и пористые материалы, что приводит к их глубинному заражению. На воздухе иприт испаряется медленно. Основное боевое состояние иприта капельно-жидкое или аэрозольное. Однако иприт способен создавать опасные концентрации своих паров за счет естественного испарения с зараженной местности. В боевых условиях иприт может быть применен артиллерией (минометами), авиацией с помощью бомб и выливных приборов, а также фугасами. Поражение личного состава достигается путем заражения приземного слоя воздуха парами и аэрозолями иприта, заражением аэрозолями и каплями иприта открытых участков кожи, обмундирования, снаряжения, вооружения и военной техники и участков местности. Характерная особенность иприта - наличие периода скрытого действия (поражение выявляется не сразу, а через некоторое время - 4 часа и более). БТХВ кожно-нарывного действия в капельно-жидком и парообразном состоянии поражают кожу и глаза, при вдыхании паров - дыхательные пути и легкие, при попадании с пищей и водой - органы пищеварения. Признаками поражения являются покраснение кожи, образование мелких пузырей, которые затем сливаются в крупные и через двое - трое суток лопаются, переходя в труднозаживающие язвы. При любом местном поражений БТХВ вызывают общее отравление организма, которое проявляется в повышении температуры, недомогании, полной потере дееспособности. Минимальная доза, вызывающая образование нарывов на коже, составляет 0,1 мг/см2. Легкие поражения глаз наступают при концентрации 0,001 мг/л и экспозиции 30 мин. Смертельная доза при действии через кожу 70 мг/кг (скрытый период действия до 12ч и более). Смертельная концентрация при действии через органы дыхания в течение 1,5 ч - около 0,015 мг/л (скрытый период 4 - 24 ч). Защита от иприта - противогаз и средства защиты кожи. 5. Токсинами называются химические вещества белковой природы микробного, растительного или животного происхождения, способные при попадании в организм человека или животного вызывать их заболевание и гибель. В армии США на табельном снабжении находятся вещества ХR (Икс-Ар) и РG (Пи- Джи), относящиеся к новым высокотоксичным 0В. Вещество ХR—ботулинический токсин бактериального происхождения, попадая в организм, вызывает тяжелое поражение нервной системы. Относится к классу смертельных 0В. ХR представляет собой мелкий порошок от белого до желтовато- коричневого цвета, легко растворяется в воде. Применяется в виде аэрозолей авиацией, артиллерией или ракетными средствами, легко проникает в организм человека через слизистые поверхности дыхательных путей, пищеварительный тракт и глаза. Имеет скрытый период действия от 3 ч до 2 суток. Признаки поражения появляются внезапно и начинаются ощущением сильной слабости, общей подавленности, тошнотой, рвотой, запорами. Через 3—4 ч. после начала развития симптомов поражения появляется головокружение, зрачки расширяются и перестают реагировать на свет. Зрение неотчетливое, часто двоение в глазах. Кожа становится сухой, ощущаются сухость во рту и чувство жажды, сильные боли в желудке. Трудно глотать. При не смертельном отравлении выздоровление наступает через 2—6 мес. Первая помощь при поражении токсинами. Прекратить поступление токсина в организм (надеть противогаз или респиратор при нахождении зараженной атмосфере, промыть желудок при отравлении зараженной водой или пищей), доставить на медицинский пункт и оказать квалифицированную медицинскую помощь. Защитой от токсинов ХR и РG являются противогаз или респиратор, вооружение, военная техника и убежища, оснащенные фильтровентиляционными установками. 6. Фитотоксиканты - химические вещества, вызывающие поражение растительности. Растения, обработанные этими ОВ, теряют листву, засыхают и погибают. Для военных целей применяются специальные высокотоксичные рецептуры. На вооружении армии США находятся «оранжевая», «белая» и «синяя» рецептуры. Применение этих рецептур осуществляется путем разбрызгивания из специальных устройств с самолетов и вертолетов. При применении «оранжевой» рецептуры спустя неделю происходит полная гибель растительности. В случае применения «белой» и «синей» рецептур через 2—3 дня происходит полное опадание и уничтожение листьев, а через 7—10 дней — гибель растительности. При применении «оранжевой» и «белой» рецептур растительность не восстанавливается в течение всего сезона, а при применении «синей» рецептуры происходит полная стерилизация почвы, и растительность не восстанавливается в течение ряда лет. II. ОВ, временно выводящие из строя 1. БТХВ раздражающего действия (CS, адамсит и др.) вызывают острое жжение и боль во рту, горле, глазах, сильное слезотечение, кашель. Адамсит - ОВ раздражающего действия. Желтые кристаллы (технический продукт имеет темно-зеленый цвет). Температура плавления 195С, при температуре 410С возгоняется с образованием устойчивого аэрозоля. Плохо растворим в воде и органических растворителях, хорошо в ацетоне. Химически стоек, устойчив к детонации и нагреванию. Вызывает коррозию железа и медных сплавов. Адамсит раздражает верхние дыхательные пути. Пороговая концентрация раздражающего действия аэрозоля - 0.0001 мг/л, непереносимая - 0.0004 мг/л. Защита от адамсита - противогаз. Впервые синтезирован Р.Адамсом в конце 1-й мировой войны. 2. БТХВ психохимического действия специфически действуют на центральную нервную систему и вызывают психические (галлюцинации, страх) или физические (слепота, глухота) расстройства. В настоящее время на вооружении армий западных государств стоит ОВ Би-Зет (ВZ). Это белое кристаллическое вещество без запаха, нерастворимое в воде, хорошо растворяется в хлороформе, дихлорэтане и подкисленной воде. Основное боевое состояние — аэрозоль. Применяется с помощью авиационных кассет и генераторов аэрозолей. ВZ поражает организм при вдыхании зараженного воздуха и приема зараженной пищи и воды. Действие ВZ начинает проявляться через 0,5—3 ч. При действии малых концентраций наступают сонливость и снижение боеспособности. При действии больших концентраций на начальном этапе в течение нескольких часов наблюдаются учащенное сердцебиение, сухость кожи и сухость во рту, расширение зрачков и снижение боеспособности. В последующие 8 ч. наступают оцепенение и заторможенность речи. Затем следует период возбуждения, продолжающийся до 4 суток. Через 2-3 дня после воздействия 0В начинается постепенное возвращение к нормальному состоянию. Первая помощь. На пораженного надеть противогаз и удалить его из очага поражения. При выходе на незараженную местность произвести частичную санитарную обработку открытых участков тела с помощью ИПП. вытрясти обмундирование, глаза и носоглотку промыть чистой водой. Защита от ВZ—противогаз, техника и убежища, оснащенные фильтровентиляционными установками. Еще одним боевым токсичным веществом, временно выводящим живую силу из строя, является стафилококковый энтеротоксин, который применяется в виде аэрозолей. В организм попадает с вдыхаемым воздухом и с зараженной водой и пищей. Имеет скрытый период действия несколько минут. Симптомы поражения сходны с пищевым отравлением. Начальные признаки поражения: слюнотечение, тошнота, рвота. Сильная резь в животе и водянистый понос. Высшая степень слабости. Симптомы длятся 24 ч., все это время пораженный небоеспособен. Рицин - токсин применяется в виде аэрозолей. В организм попадает с вдыхаемым воздухом и с зараженной водой и пищей. Имеет скрытый период действия - несколько часов. Начальные признаки поражения - расстройство функций почек и печени, кровавый понос, разрушение мембран эритроцитов, поражение центральной нервной системы, проявляющееся в виде нервно судорожных эффектов. Для рицина характерно волновое развитие отравления с эпизодическими состояниями мнимого благополучия. Для человека LD50 - составляет 0.3 мг/кг. По ингаляционной токсичности сопоставим с зарином, но без смертельного исхода. Тактическая классификация 0В не совсем совершенна. Так, а группу смертельных ОВ объединены самые разнообразные по физиологическому действию соединения, причем все они являются лишь потенциально смертельными, ибо конечный результат действия 0В зависит от его токсичности, поступившей в организм дозы и условий применения. Она не учитывает и таких важных факторов, как химическая дисциплина живой силы, подвергающейся химическому нападению, обеспеченность ее средствами защиты, качество средств защиты, состояние вооружения и военной техники. Тем не менее, ее используют при изучении свойств конкретных соединений. Нередко пользуются классификацией, основанной на учете быстроты и продолжительности поражающего действия ОВ. К быстродействующим относят нервно-паралитические, общеядовитые, раздражающие и некоторые психотропные вещества, т. е. те, которые за несколько минут приводят к смертельному исходу или к утрате боеспособности. К медленно действующим веществам относят кожно- нарывные, удушающие и отдельные психотропные вещества, способные уничтожить или временно вывести из строя людей и животных только после периода скрытого действия, длящегося от одного до нескольких часов. В зависимости от продолжительности сохранения поражающей способности ОВ подразделяют на нестойкие (летучие) и стойкие. Поражающее действие первых исчисляется минутами (АС, СG), вторых может продолжаться от нескольких часов до нескольких недель после их применения в зависимости от погодных условий и характера местности (VХ, GD, НD). Подобное подразделение 0В также условно, поскольку кратковременно действующие 0В в холодное время года нередко становятся долгодействующими. Систематизация в соответствии с задачами и способами их применения основана на выделении веществ, используемых в наступательных, оборонительных боевых действиях, а также в засадах или при диверсиях. Иногда различают также группы химических средств уничтожения растительности или удаления листвы, средств разрушения некоторых материалов и иные группы средств решения конкретных боевых задач. Условность всех этих классификаций очевидна. В современных вооруженных силах стран блока НАТО химическое оружие состоит на вооружении и постоянно совершенствуется. Некоторые иностранные военные теоретики считают, что оно в отдельных случаях может быть более эффективным, чем ядерное, и имеет перед ним ряд преимуществ: оно способно поражать человека без уничтожения материальных ценностей, является оружием "низкой себестоимости". Большинство аналитиков соглашаются в том, что использование химического оружия неизбежно вызовет ответ в виде использования ядерного оружия, и это главная причина, почему химическое оружие так редко используется. Любая нация или политические террористы, ищущие законности и международной поддержки, вызовут только возмущение и ответные действия, если ими было применено химическое оружие, невзирая ни на какие обстоятельства. Тем не менее, многие страны ведут разработку химического оружия, нарушая тем самым договор. Бытует мнение, что схема действий мирового терроризма скоро изменится, и вероятность использования экстремистскими организациями химического оружия повышается. Все страны должны соблюдать договор о нераспространении оружия массового поражения. При обнаружении у страны, которой запрещено производить ОМП, признаков производства атомного, биологического либо химического оружия, программа по производству ОМП должна быть свернута, а все разработки уничтожены, во избежание применения против нее военной силы. Угроза применения химического оружия требует подготовки эффективных мер защиты войск и населения. Биологическое оружие Биологическое оружие является оружием массового поражения людей, сельскохозяйственных животных и растений. Вот определение, данное в Энциклопедии: «Биологическое оружие - микроорганизм, вирус или другой биологической агент, а также любое вещество, произведенное живым организмом или полученное методом генной инженерии, или любое его производное, а равно средства их доставки, созданные с целью вызвать гибель, заболевание или иное неполноценное функционирование человеческого или другого живого организма, заражение окружающей природной среды, продовольствия, воды или иных материальных объектов». Этот вид оружия массового поражения обладает высокой боевой эффективностью, позволяющей поражать большие площади при малом расходе сил и средств. Оно вызывает поражение (заболевание) при попадании в организм в ничтожно малых количествах. Инфекционные заболевания, вызванные применением некоторых видов их возбудителей, при определённых условиях могут распространяться из одного очага заражения в другой, вызывать заболевания большого числа людей (эпидемию). Его действие основано на использовании болезнетворных свойств микроорганизмов (бактерий, риккетсий, грибков, а также вырабатываемых некоторыми бактериями токсинов). Основу поражающего действия БО составляют специально отобранные для боевого применения биоагенты, способные вызвать у людей, животных и растений массовые тяжелые заболевания и гибель. В зависимости от размеров строения и биологических свойств они подразделяются на: бактерии, вирусы, риккетсии, грибки, спирохеты и простейшие. Последние два класса микроорганизмов в качестве биологических средств поражения, по мнению специалистов, значения не имеют. Бактерии - одноклеточные микроорганизмы растительной природы, весьма разнообразные по своей форме. Их размеры от 0,5 до 8-10 мкм. Почти все виды бактерий, используемых в качестве средств поражения, несложно выращивать на искусственных питательных средах, а массовое их получение возможно с помощью оборудования и процессов, используемых промышленностью при производстве антибиотиков, витаминов и продуктов современного бродильного производства. К классу бактерий относятся возбудители большинства наиболее опасных заболеваний человека, таких, как чума, холера, сибирская язва, сап и др. Вирусы - обширная группа микроорганизмов, имеющих размеры от 0,08 до 0,35 мкм. Они способны жить и размножаться только в живых клетках за счет использования биосинтетического аппарата клетки хозяина, т.е. являются внутриклеточными паразитами. Вирусы являются причиной более чем 75 заболеваний человека, среди которых такие высоко опасные, как натуральная оспа, желтая лихорадка и др. Риккетсии - группа микроорганизмов, занимающая промежуточное положение между бактериями и вирусами. Размеры их - от 0,3 до 0,5 мкм. Риккетсии спор не образуют, устойчивы к высушиванию, замораживанию и колебаниям относительной влажности воздуха, однако достаточно чувствительны к действию высоких температур и дезинфицирующих средств. Заболевания, вызываемые риккетсиями, называются реккетсиозами; среди них такие высоко опасные, как сыпной тиф, пятнистая лихорадка Скалистых гори др. В естественных условиях реккетсиозы передаются человеку в основном через кровососущих членистоногих, в организме которых возбудители обитают часто как безвредные паразиты. Грибки - одно- или многоклеточные микроорганизмы растительного происхождения. Их размеры от 3 до 50 мкм и более. Грибки могут образовывать спорны обладающие высокой устойчивостью к замораживанию, высушиванию, действию солнечных лучей и дезинфицирующих средств. Заболевания, вызываемые патогенными грибками, носят название микозов. Среди них такие тяжелые инфекционные заболевания людей, как кокцидиоадомикоз, блаотомикоз, гистоплазмоз и др. В состав биологического оружия входят рецептуры болезнетворных микроорганизмов и средства доставки их к цели (ракеты, авиационные бомбы и контейнеры, аэрозольные распылители, артиллерийские снаряды и др.). Это особо опасное оружие, так как оно способно вызывать на обширных территориях массовые заболевания, оказывать поражающее воздействие в течение длительного времени, имеет продолжительный скрытый (инкубационный) период действия. Микробы и токсины трудно обнаружить во внешней среде, они могут проникать вместе с воздухом в негерметизированные укрытия и помещения. В 1972 г. СССР подписал, а в 1975 г. ратифицировал международную Конвенцию о запрещении разработки, производства и накопления запасов бактериологического (биологического) и токсинного оружия и об их уничтожении. К бактериальным средствам относятся болезнетворные микробы и вырабатываемые ими токсины. Для снаряжения бактериологического оружия могут быть использованы возбудители следующих заболеваний: чума, холера, сибирская язва, ботулизм, мелиодиоз, тиф, грипп, малярия, дизентерия и др. Чума - острое инфекционное заболевание. Возбудителем является микроб, не обладающий высокой устойчивостью вне организма; в мокроте, выделяемой человеком, он сохраняет свою жизнеспособность до 10 дней. Инкубационный период составляет 1 - 3 суток. Заболевание начинается остро: появляется общая слабость, озноб, головная боль, температура быстро повышается, сознание затемняется. Наиболее опасна так называемая легочная форма чумы. Ею можно заболеть, вдыхая воздух, содержащий возбудителя чумы. Признаки заболевания: наряду с тяжелым общим состоянием появляются боль в груди и кашель с выделением большого количества мокроты с чумными бактериями; силы больного быстро падают, наступает потеря сознания; смерть наступает в результате нарастающей сердечнососудистой слабости. Заболевание длится от 2 до 4 дней. Холера - острое инфекционное заболевание, характеризующееся тяжелым течением и склонностью к быстрому распространению. Возбудитель холеры - холерный вибрион - малоустойчив к внешней среде, в воде сохраняется в течение нескольких месяцев. Инкубационный период при холере продолжается от нескольких часов до 6 дней, в среднем 1 - 3 дня. Основные признаки поражения холерой: рвота, понос; судороги; рвотные массы и испражнения больного холерой принимают вид рисового отвара. С жидкими испражнениями и рвотой больной теряет большое количество жидкости, быстро худеет, температура тела у него понижается до 35 о. В тяжелых случаях заболевание заканчивается смертью. Сибирская язва - острое заболевание, которое поражает главным образом сельскохозяйственных животных, а от них может передаваться людям. Возбудитель сибирской язвы проникает в организм через дыхательные пути, пищеварительный тракт, поврежденную кожу. Заболевание наступает через 1-3 суток; оно протекает в трех формах: легочной, кишечной и кожной. Легочная форма сибирской язвы представляет собой своеобразное воспаление легких: температура тела резко повышается, появляется кашель с выделением кровянистой мокроты, сердечная деятельность ослабевает и при отсутствии лечения через 2-3 дня наступает смерть. Кишечная форма заболевания проявляется в язвенном поражении кишечника, острых болях в животе, кровяной рвоте, поносе; смерть наступает через 3-4 дня. При кожной форме сибирской язвы поражаются открытые участки тела (руки, ноги, шея, лицо). На месте попадания микробов возбудителя появляется зудящее пятно, которое через 12-15 часов превращается в пузырек с мутной или кровянистой жидкостью. Пузырек вскоре лопается, образуя черный струп, вокруг которого появляются новые пузырьки, увеличивая размер струпа до 6-9 см (карбункул). Карбункул болезненный, вокруг него образуется массивный отек. При прорыве карбункула возможно заражение крови и смерть. При благоприятном течении болезни через 5-6 дней температура у больного снижается, болезненные явления постепенно проходят. Трагические события 1979 г. в Свердловске памятны многим людям. В то время была разработана живая сибиреязвенная вакцина СТИ, которую применяют для профилактики заболевания. Прививку делают людям и животным в районах, где бывают вспышки этой болезни. Вакцина хорошо защищает от этой инфекции. Также лечат больных сибирской язвой пенициллином или биомицином. Раннее начало лечения дает хорошие результаты. В тяжелых случаях больному одновременно с антибиотиками вводится сибиреязвенная лечебная сыворотка. Ботулизм вызывается ботулиническим токсином, являющимся одним из наиболее сильных ядов, известных в настоящее время. Заражение может произойти через дыхательные пути, пищеварительный тракт, поврежденную кожу и слизистые оболочки. Инкубационный период - от 2 часов до суток. Токсин ботулизма поражает центральную нервную систему, блуждающий нерв и нервный аппарат сердца; заболевание характеризуется нервно - паралитическими явлениями. Вначале появляются общая слабость, головокружение, давление в подложечной области, нарушения желудочно-кишечного тракта; затем развиваются паралитические явления: паралич главных мышц, мышц языка, мягкого неба, гортани, лица; далее - паралич мышц желудка и кишечника, вследствие чего наблюдается метеоризм и стойкий запор. Температура тела больного обычно низкая. В тяжелых случаях смерть может наступить через несколько часов после начала заболевания в результате паралича дыхания. Мелиодиоз - инфекционное заболевание человека и грызунов, похоже на сап. Возбудитель, за схожесть с сапом называется палочкой ложного сапа. Микроб - тонкая палочка, не образует спор, обладает подвижностью из за присутствия пучка жгутиков на одном конце, устойчив к высушиванию, при температуре 26-28 градусов сохраняет жизнеспособность в почве до месяца,в воде - более 40 дней. Заражение происходит при употреблении в пищу загрязненных продуктов питания и воды, а также может проникнуть в организм через поврежденные кожные покровы и слизистые оболочки глаз, носа и т.д. При искусственном распространении, т.е. в случае применения данного заболевания в качестве компонента биологического оружия, микробы мелиодиоза могут быть распылены в воздухе или использованы для заражения пищи и продуктов питания. При острой форме заболевание начинается с озноба, рвоты и поноса, резко повышается температура до 40-41 градусов. Больной жалуется на сильную головную боль и вскоре теряет сознание. Развивается одышка, кашель с отделением кровянистой мокроты, появляются головные боли, сильные боли в нервах и частях желудка. В легких развиваются воспалительные очаги, отмечаются рвота, понос, который нередко сменяется запором. На второй неделе болезни возникают гнойные очаги под кожей, в мышцах и костях. Смерть наступает на 10-15 сутки. Защитой от данных заболеваний служит ношение в зараженной зоне защитной одежды, снаряжения, противогаза и обязательная дезинфекция продуктов питания и воды. Для ликвидации последствий бактериологического нападения необходимо своевременно определить вид примененного возбудителя, а для предупреждения распространения данного заболевания вооружение, технику, побывавшую в зонах заражения, следует дезинсектировать. Основным признаком применения биологического оружия являются симптомы и проявившиеся признаки массового заболевания людей и животных, что окончательно подтверждается специальными лабораторными исследованиями. Также для поражения животных можно применять вирусы ящура, чумы рогатого скота и птицы; растений - возбудителей ржавчины хлебных злаков, фитофтороза картофеля и пр. Заболевание передается от больных к здоровым и вызывает эпидемии. К средствам защиты относятся – вакцинно-сывороточные препараты, антибиотики, сульфамидные и другие лекарства, средства индивидуальной и коллективной защиты. Основными формами борьбы с эпидемиями являются обсервация и карантин. Места, подвергшиеся воздействию бактериальных средств, служащие угрозой их распространения называют очагом биологического поражения. Их границы вычисляют по пробам внешней среды (почвы, воды, воздуха), а также выявлением зараженных и больных. Это место блокируется, вокруг ставится охрана. А в самом очаге поражения проводится комплекс противоэпидемических и санитарно- гигиенических мероприятий: экстренная профилактика; санитарная обработка населения; дезинфекция различных зараженных объектов. При необходимости уничтожают насекомых, клещей и грызунов (дезинсекция и дератизация). Биологическое оружие - запрещенное средство войны. Этот запрет, закреплен ст. 23 Приложения к 4-й Гаагской конвенции 1907 г. (Законы и обычаи войны). С полной ясностью его запрещение установлено Женевским протоколом 1925 г., который ратифицировали (или присоединились к нему) св. 60 государств, в том числе СССР. Несмотря на запрещение Б. о., попытки его использования имели место неоднократно. В 1-ю мировую войну немецкие агенты на некоторых фронтах пытались заражать возбудителем сапа лошадей в расположении противника, а возбудителями сибирской язвы и сапа заражали лошадей и скот, которых отправляли из Южной Америки во Францию. Перед 2-й мировой войной 1939-45 гг. империалистическая Япония и фашистская Германия тайно готовились к применению БО, что подтверждено в 1946 г. на Нюрнбергском процессе и в 1949 г. материалами судебного процесса в Хабаровске. Японцы в 1939 г.применяли некоторые виды биологического оружия против монгольских и китайских войск, а затем и против мирного населения Китая. В результате этого в ряде районов возникло несколько вспышек чумы (например, в районе Нинбо в 1940г.) и других опасных заболеваний. Советский трибунал осудил 12 японских военных преступников, виновных в подготовке и применении БО. После 2-й мировой войны 1939-45 гг. разработка БО, методов и средств его применения большое развитие получили в США, Великобритании, Канаде, ФРГ, Израиле и некоторых других странах, реакционные круги которых пытаются устрашить народы перспективой применения его наряду с ядерным и химическим. В ряде стран создана база для массового производства биологического оружия и осуществляется подготовка соответствующих специалистов. В прессе США рекламируется развитие средств и методов массового производства болезнетворных микробов и токсинов, например, получение в чистом кристаллическом виде токсина ботулизма, являющегося одним из наиболее действенных биологических ядов. Представители военных и промышленных кругов США давно заявили о своём стремлении создать средства вооруженной борьбы "низкой себестоимости" и высокой эффективности, позволяющие поражать человека без уничтожения материальных ценностей. Человек – единственное живое существо на Земле, убивающее себе подобных без всякой необходимости, да еще и получающее от этого определенное удовольствие. Он изобретает все новые и новые способы, новые виды оружия. Все виды вооружений, которые мы рассмотрим в данной главе - реальны и существуют, а некоторые уже вовсю используются военными. Это не отрывок из фантастического романа. Это жестокая реальность. Оружие будущего Railgun Coilgun Название происходит от слова «rail» (англ. «рельса»). Дело в том, что основной принцип работы рейлгана – разгон снаряда магнитным полем. Ток от источника подается на первую рельсу, а с него на арматуру, далее на вторую рельсу и обратно в источник. В итоге в двух рельсах-проводниках возникает магнитное поле, которое порождает силу Лоренса, с помощью которой снаряд в итоге разгоняется до бешеных скоростей. Технически все ироисходит довольно просто: на рельсы в очень короткий промежуток времени поступает колоссальный заряд, а дальше все идет так, как описано. Использовать этот вид оружия мешают два немаловажных фактора. Первый – энергопотребление. Для питания рейлгана средних размеров еле-еле будет хватать целой электростанции. Ну, а второй, решающий фактор – это износ. Ствол реального испытуемого рейлгана приходил в негодность после двух выстрелов из-за соприкосновения арматуры с проводниками на сверхвысокой скорости. У койлгана же запас прочности выше, но величина износостойкости будет расти только с уменьшением скорости снаряда. По сути, он устроен гораздо проще рейлгана. Он представляет собой нечто вроде катушки медной проволоки с вынутым сердечником, Тем не менее, койлган тоже нельзя назвать идеальным стволом, хотя по размерам он гораздо меньше. Во-первых, несмотря на огромную разницу в энергопотреблении, он не обеспечивает должного, в военном смысле этого слова, разгона снаряда. Во- вторых, для одного выстрела ему потребуется шесть 9-вольтовых батареек, а его скорострельность пока что не превышает 12 выстрелов в час. Такая маленькая скорость вызвана паузами между выстрелами, которые необходимы для перезарядки конденсаторов. Зато мощь.. Плазменное оружие Плазма – четвертое состояние вещества, идущее вслед за газообразным. Она представляет собой ионизированный газ, в котором электростатическое взаимодействие между частицами настолько большое, что самопроизвольное разделение зарядов происходит лишь в очень малых, по сравнению с размерами газового облака, областях пространства. Средняя температура плазмы – около 10 млн. градусов по Цельсию, хотя с помощью установки ТОКАМАК ученые смогли добиться повышения температуры до 200 млн.градусов. Собственно, установка ТОКАМАК (ТОроидальная Камера с Магнитной Катушкой) – единственное устройство, в котором удалось получить стабильную плазму в течение длительного периода времени (около секунды). Никакие другие варианты пока невозможны, в том числе и ручное плазменное оружие. Дело в том, что плазма по своей природе чрезвычайно неустойчива и стремится к постоянному расширению, удерживать от которого ее можно только с помощью магнитного поля большой мощности. А микровариант ТОКАМАК невозможен, потому что для питания магнитных катушек – «ловушек» для плазмы требуется энергий целой ГЭС. Но даже если решится вопрос с питанием, остается еще одна проблема: после выхода из плазмообразователя плазменное облако полетит не в ствол – оно его расплавит и рассеется в пространстве. Лазерное оружие Лазер действует как мощный интенсивный световой луч, сконцентрированный таким образом, что не ослабляет напора и не отклоняется от своей траектории. Энергия выделяется благодаря контролируемой химической реакции. Потенциально лазер представляет собой мощное оружие, его луч рассекает пространство буквально со скоростью света и может преодолевать огромную дистанцию с минимальной потерей интенсивности. Радиус действия лазера может составлять десятки и даже тысячи километров. Так, например, новый лазер американского производства способен поражать любой артиллерийский снаряд в полете, что и было доказано в ходе проведенных американскими военными испытаний. Мобильный тактический лазер был наведен на быстро движущийся снаряд и поразил его пучком концентрированных фотонов. Два года назад этот вид оружия успешно сбил ракетный снаряд, выпущенный из «Катюши», а недавно проведенные испытания доказали, что лазер способен поразить и меньшую по размерам цель, передвигающуюся с еще большей скоростью. Психотронное оружие Особенность психотронного воздействия состоит в том, что сознание человека не только помутняется, но и становится управляемым. То есть мало того, что объект выводится из состояния психического равновесия, можно заставить его совершить любые действия, вплоть до убийства. Принцип работы этого вида оружия прост: есть два способа. Первый – гипноз, осуществляемый живыми гипнотизерами, т.е. такими людьми. И второй способ – технологический. Существуют определенные частоты волн, которые воздействуют на психику человека определенным образом. Еще в 60-е годы американцы добились весьма ощутимых результатов: они создали частоты, которые действовали только на очаги сознания, регулирующие простейшие действия, например: спать, есть, убивать. Но прошло время, и сегодняшние возможности позволяют оперировать человеческой психикой и человеческими поступками в гораздо более широком диапазоне. Уже созданы приборы, которые создают волны на частотах, позволяющих варьировать более сложные психические реакции. При этом надо учитывать, что такие приборы способны действовать на очень большом расстоянии. То есть облучатель может находиться в полукилометре от тебя, он может пробивать бетонные заграждения и т.д. Этот вид оружия уже несколько лет – реальность. Эксперименты проводились еще в КГБ. Пульсовое оружие Под пульсовым оружием подразумевается оружие, поражающее электронным импульсом – молнией. Настоящую молнию пока что создать невозможно, т.к. ее мощность куда выше мощности выходного тока АЭС, но зато создать нечто похожее и меньшей мощности реально. В конце 20-х Гринделл Меттьюз удивил своими опытами военные ведомства многих стран. В основе установки был сильный источник ультрафиолетовых лучей, закрытый прозрачным, но непроницаемым для обычных световых лучей фильтром. Ультрафиолетовые лучи ионизируют воздух, делая его способным проводит электрический ток. Это и было главным в конструкции пульсовой установки: без сильноионизированного канал к цели импульс поразил бы оператора, т.к. тот находился ближе всего к точке образования. Столб воздуха, проводящего ток, играл роль проводника, по которому можно подавать электричество в нужное место. Напряжением в несколько тысяч вольт он пробивал метровые слои ионизированного воздуха, создавая в них искры, похожие на молнию. Они делали свое дело: зажигали порох, выводили из строя обмотку электромотора, магнето бензинового двигателя. Во время одной из таких опытов был даже убит кролик. Сходный эффект можно было бы получить и при помощи простого электроразряда, но для пробивания каждого метра обычного воздуха требуется большее напряжение. Меттьюз сумел уменьшить напряжение пробоя во много раз – до технически приемлемой величины. Он же научился направлять разряд молнии точно в цель, решив таким образом серьезную задачу передачи электроэнергии по воздуху. Но отсутствие источник ультрафиолетовых лучей достаточной мощности ограничило применение его аппарата на большие расстояния, а значит, и в военных целях. Теперь же современные технический уровень позволяет вновь вернуться к принципам этой установки на новом уровне, используя например лазеры или СВЧ-излучение. HAARP Попробуем представить себе, что самые важный заводы или военные базы вдруг разрушаются неожиданным землетрясением. Или на поля противника насылается засуха, смертельные болезни на его города. И ничего нельзя сделать. Очень давно геофизики отметили, что ионосфера подобна гигантскому зеркалу, которое отражает процессы в глубоких недрах планеты. Давно отмечено, что землетрясения вызывают возмущения в ионосфере, и подчас содроганиям недр сопутствуют призрачные огни в небесах. Давно известно и то, что возмущения в ионосфере влияют на погодные катаклизмы. Недавно военные подтвердили, что при неаккуратном разогреве верхнего слоя атмосферы вполне могут обнаружиться катастрофические последствия планетного характера. Официально HAARP – это проект исследования свечения высокоатмосферных слоев. Однако данный аппарат имеет гораздо более широкие возможности. Делом в том, что проект основан на использовании огромной электромагнитной пушки, направленной на верхние слои атмосферы с высокой точностью. Иначе говоря, это электромагнитное оружие огромной мощности, передатчик, который можно сравнить с колоссальной микроволновой печью, чье излучение может быть сфокусировано в любой точке земного шара. Это система электронной трансляции, которая в настоящее врем находится в руках армии США. Это военный проект. Выглядит оружие так: на территории в 60 кв.км развернута решетка антенны, фактически – сеть из 360 антенн, составляющих излучатель сверхвысоких частот. Они посылают радиоволны в частоте 2,8-10 Мегагерц и мощностью в 1,7 млрд.Ватт. Тут есть радар некогерентного излучения в антенной диаметров 20 метров, лазерные локаторы, магнитометры, компьютеры для обработки сигналов и управления антенным полем. Газовая электростанция и шесть дизель-генераторов снабжают энергией это фантастическое сооружение. Гравитационное оружие Возможно, у Российской армии тоже есть подобные разработки. Гравитационное оружие способно вызывать цунами, землетрясения, наводнения и т.п. Условно этот вид оружия можно разбить на следующие типы: 1. Лучевое гравитационное оружие. Обладает узким лучом с повышенной плотностью энергии. При достаточной мощности этот луч будет работать как гравитационный резак. 2. Граворужие направленного действия. Подразумевает воздействие в некотором секторе, приводящее к гравитационному разрушению объемных (звездных) систем. 3. Силовые защитные экраны. Это оружие силы. Они частично или полностью прикрывают объект от поражения. Для надежной защиты энергия, задействованная для создания такого экрана, должна быть большой. А для реализации этой теории необходимо следующее: 1. Накопитель гравитонов большой емкости. 2. Устройство, фокусирующее пучок гравитонов в узкий луч или сектор. 3. Источник питания, достаточный для реализации первых двух пунктов. Биологическое оружие В Сибири и на Дальнем Востоке до сих пор ходит легенда, что энцефалитные клещи, которые с начала тридцатых годов неожиданно появились в СССР в районе расположения Дальневосточной Красной армии – это не фокус природы, а результат диверсии. Рассекреченная после второй мировой войны тайная лаборатория Квантунской армии, располагавшаяся по ту сторону границы – в Манчжурии, вполне могла быть источником этой напасти. Так это или нет, но клещевой энцефалит до сих пор каждый год уносит жизни людей. Американские военные вложили 25 млн.долларов в исследования, целью которых является создание управляемых биологически систем, использование повадок животных в военных технологиях и т.п. Чтобы самолеты летали как птицы, подлодки плавали как рыбы. Сейчас же ученые, работающие на Пентагон, уверены, что производством меда возможности пчел не ограничиваются, и обучают их поиску взрывчатых веществ, полагая, что насекомые в этом деле могут превзойти собак. Существует мнение, что этих же самых пчел можно будет использовать и в качестве биологического оружия – как программируемых распространителей заразы. Выше я рассмотрел многие новинки прогресса, Конечно, существуют и другие более странные виды вооружений, которые держатся в тайне. Пороховое оружие продержится еще лет 20-30, после чего перейдет в разряд вооружения отсталых африканских стран, и современные гранатометы будут использоваться для охоты на слонов. А плазменное оружие будет. Пока сложно представить, как оно будет выглядеть, но военные не упустят такую возможность! Оружие, способное пробить абсолютно любую броню, от которого не спасет ни одно убежище. Импульсное оружие тоже будет неплохо справляться с ролью систем ПВО – но до массового появления систем, подобных ХААРП, этого многоцелевого комплекса, способного осуществлять как оборонительные мероприятия, так и подготовку вражеской территории (или ее полное уничтожение) к последующему вторжению. В качестве ручного оружия будут широко использоваться лазеры и импульсные винтовки. Ну а для управления массами будет использоваться (или уже используется) психотронное оружие. Заключение В своем реферате я коснулся лишь малой части глобальной темы об оружии массового поражения. Я попытался дать краткие характеристики трем основным типам ОМП и чуть-чуть обрисовать перспективы дальнейшего его развития. Конечно, я был бы счастлив в этом заключении написать, что все это наше прошлое и впереди нас ждет только светлое будущее без войн, потрясений, разрух и смертей. К сожалению, это не так. Земля опасно перенасыщена оружием. Его арсеналы таят в себе огромную опасность для всей планеты, именно планеты, а не отдельных стран. Их создание поглощает огромные материальные средства, которые можно было бы использовать для борьбы с болезнями, неграмотностью, нищетой в ряде районов мира. Некоторые виды оружия уже открыто стоят на вооружении и постоянно совершенствуются. Так, например, военные специалисты НАТО считают, что химическое оружие в отдельных случаях может быть более эффективным, чем ядерное, и имеет перед ним ряд преимуществ: оно способно поражать человека без уничтожения материальных ценностей, является оружием "низкой себестоимости". И хотя большинство аналитиков соглашаются в том, что использование химического оружия неизбежно вызовет ответ в виде использования ядерного оружия, и это главная причина, почему химическое оружие так редко используется. Любая нация или политические террористы, ищущие законности и международной поддержки, вызовут только возмущение и ответные действия, если ими было применено химическое оружие, невзирая ни на какие обстоятельства. Тем не менее, многие страны ведут разработку химического оружия, нарушая тем самым договор. Бытует мнение, что схема действий мирового терроризма скоро изменится, и вероятность использования экстремистскими организациями химического оружия повышается. Также во многих странах проводится активная работа по увеличению биологического оружия. Его разработка проводится под прикрытием законных медико-биологических исследований. Контроль за этими мероприятиями затруднён, так как это оружие можно изготовить в небольших лабораториях. Что я могу сказать! Применение любого вида оружия массового поражения - тягчайшее преступление против человечности. Оно является грубым нарушением общепринятых норм международного права. Человечество не может позволить, чтобы решение вопроса о том, быть или не быть войне, находилось в руках безответственных и недальновидных государственных деятелей. В современную эпоху в решении вопросов войны и мира не должно быть места случайностям. Преступная по отношению ко всему человечеству, бессмысленная для решения спорных международных проблем и политических конфликтов термоядерная война была лишь политикой национального самоубийства для тех, кто осмелился бы ее развязать. При любом ее исходе мир оказался бы в неизмеримо худшем положении, чем до нее, так что участи погибших могли бы, пожалуй, позавидовать оставшиеся в живых. Все страны должны соблюдать договор о нераспространении оружия массового поражения. При обнаружении у страны, которой запрещено производить ОМП, признаков производства атомного, биологического либо химического оружия, программа по производству ОМП должна быть свернута, а все разработки уничтожены, во избежание применения против нее военной силы. И только тогда все мы, наши дети и дети наших детей смогут жить под ясным, синим небом, трудиться на благо Родины и не бояться за свое будущее! Список использованной литературы 1. Богданов И.А. Патология, клиника и терапия при поражения ОВ. – СПб, «Медицина», 2001. 2. Богданов Р.Г. Ядерное безумие в ранге государственной политики. _ М., «Наука», 1994. 3. Большой Энциклопедический Словарь. Гл. ред. Прохорова А.М. Изд-ние второе. – М., «Большая Российская Энциклопедия», СПб, «Норинт», 1998. 4. Военная стратегия. Сб.ст. – М., «Красная звезда», 1991. 5. Военная токсикология и защита от оружия массового поражения. – Тверь, «Знание», 1980. 6. Давыдов С.Л. Ядерный взрыв в космосе, на земле и под землей. – М., «Просвещение», 1984. 7. Кувшинский Д.Д. Военно-медицинская подготовка. - М., «Медицина», 1989. 8. Морохов И.Д. «Хиросима». – М., «Красная звезда», 1989. 9. Основы безопасности жизнедеятельности. Под ред. Сюнькова В.Я. Учебное пособие для 10-11 классов. Часть 1. – М., Московские учебники и Картолитография. 1998. 10. Памятка населению по защите от атомного, химического и бактериологического оружия. – СПб, «Нева», 1999. 11. Рожнятовский Т. И., Жултовский З.А. Биологическая война. Угроза и действительность. – М., «Медицина», 2001. 12. Розбери Т. Мир или чума. Биологическая война и как предотвратить ее. Перевод с англ. – М., «Медицина», 2000. 13. Хакер. Журнал № 53. Май 2003 года. Опубликовать скачать

Реферат на тему:

План:

    Введение
  • 1 Конструкция
  • 2 Действие, особенности применения
  • 3 Защита
  • 4 Нейтронное оружие и политика
  • 5 Пример эффектов взрыва нейтронного заряда на различных расстояниях
  • Примечания

Введение

Нейтро́нное ору́жие — разновидность ядерного оружия, у которого искусственно увеличена доля энергии взрыва, выделяющаяся в виде нейтронного излучения для поражения живой силы, вооружения противника и радиоактивного заражения местности при ограниченных поражающих воздействиях ударной волны и светового излучения. Из-за быстрого поглощения нейтронов атмосферой малоэффективны нейтронные боеприпасы большой мощности; эквивалентный тоннаж нейтронных боезарядов обычно не превышает нескольких килотонн[1] и их относят к тактическому ядерному оружию.

Нейтронное оружие, как и другие виды ядерного оружия, является неизбирательным оружием массового поражения.

1. Конструкция

Нейтронный заряд конструктивно представляет собой обычный ядерный заряд малой мощности, к которому добавлен блок, содержащий небольшое количество термоядерного топлива (смесь дейтерия и трития с большим содержанием последнего, как источника быстрых нейтронов). При подрыве взрывается основной ядерный заряд, энергия которого используется для запуска термоядерной реакции. Большая часть энергии взрыва при применении нейтронного оружия выделяется в результате запущенной реакции синтеза. Конструкция заряда такова, что до 80 % энергии взрыва составляет энергия потока быстрых нейтронов, и только 20 % приходится на остальные поражающие факторы (ударную волну, электромагнитный импульс, световое излучение).

2. Действие, особенности применения

Мощный поток нейтронов не задерживается обычной стальной бронёй и намного сильнее проникает сквозь преграды, чем рентгеновское или гамма-излучение, не говоря уже об альфа- и бета- частицах. В частности, 150 мм броневой стали задерживают до 90 % гамма-излучения и лишь 20 % быстрых нейтронов[1]. Благодаря этому нейтронное оружие способно поражать живую силу противника на значительном расстоянии от эпицентра взрыва и в бронетехнике, где обеспечивается надёжная защита от поражающих факторов обычного ядерного взрыва. Наиболее сильными защитными свойствами обладают материалы, в состав которых входит водород - например, вода, парафин, полиэтилен, полипропилен и т.д[2]. По конструктивным и экономическим соображениям защиту часто выполняют из бетона, влажного грунта — 25-35 см эти материалы ослабляют поток быстрых нейтронов в 10 раз, а 50 см — до 100 раз[1], поэтому стационарные фортификационные сооружения обеспечивают надёжную защиту как от обычных, так и от нейтронных ядерных боеприпасов.

Поражающее действие нейтронного оружия на технику обусловлено взаимодействием нейтронов с конструкционными материалами и радиоэлектронной аппаратурой, что приводит к появлению наведённой радиоактивности и, как следствие, нарушению функционирования. В биологических объектах под действием излучения происходит ионизация живой ткани, приводящая к нарушению жизнедеятельности отдельных систем и организма в целом, развитию лучевой болезни. На людей действует как само нейтронное излучение, так и наведённая радиация. В технике и предметах под действием потока нейтронов могут образовываться мощные и долго действующие источники радиоактивности, приводящие к поражению людей в течение длительного времени после взрыва, на местности наведённая радиоактивность опасна для здоровья человека от нескольких часов до нескольких суток[1].

Из-за сильного поглощения и рассеивания нейтронов в атмосфере дальность поражения нейтронным излучением, по сравнению с дальностью поражения незащищённых целей ударной волной от взрыва обычного ядерного заряда той же мощности, невелика[1]. Поэтому изготовление нейтронных зарядов высокой мощности нецелесообразно — излучение всё равно не дойдёт дальше, а прочие поражающие факторы окажутся снижены. Реально производимые нейтронные боеприпасы имеют мощность не более 1 кт. Подрыв такого боеприпаса создаёт зону поражения нейтронным излучением радиусом около 1,5 км (незащищённый человек получит опасную для жизни дозу радиации на расстоянии 1350 м). Вопреки распространённому мнению, нейтронный взрыв вовсе не оставляет материальные ценности невредимыми: зона сильных разрушений ударной волной для того же килотонного заряда имеет радиус около 1 км.

3. Защита

Нейтронные боеприпасы разрабатывались в 1960—1970-х годах, главным образом, для повышения эффективности поражения бронированных целей и живой силы, защищённой бронёй и простейшими укрытиями. Бронетехника 1960-х годов, разработанная с учётом возможности применения на поле боя ядерного оружия, чрезвычайно устойчива ко всем его поражающим факторам. Другим мотивом разработки нейтронных зарядов было их использование в системах противоракетной обороны. Для защиты от массированного ракетного удара в эти годы на вооружение ставились зенитно-ракетные комплексы с ядерной боевой частью, но применение обычного ядерного оружия против высотных целей сочли недостаточно эффективным, поскольку основной поражающий фактор — ударная волна, — в разрежённом воздухе на большой высоте и, тем более, в космосе не образуется, световое излучение поражает боеголовки только в непосредственной близости от центра взрыва, а гамма-излучение поглощается оболочками боеголовок и не может нанести им серьёзного вреда. В таких условиях превращение максимальной части энергии взрыва в нейтронное излучение могло позволить более надёжно поражать ракеты противника.

Естественно, после появления сообщений о разработке нейтронного оружия стали разрабатываться и методы защиты от него. Были разработаны новые типы брони, которая уже способна защитить технику и её экипаж от нейтронного излучения. Для этой цели в броню добавляются листы с высоким содержанием бора, являющегося хорошим поглотителем нейтронов, а в броневую сталь добавляется обеднённый уран . Кроме того, состав брони подбирается так, чтобы она не содержала элементов, дающих под действием нейтронного облучения сильную наведённую радиоактивность.

4. Нейтронное оружие и политика

Работы над нейтронным оружием велись в нескольких странах с 1960-х годов. Впервые технология его производства была разработана в США во второй половине 1970-х. Сейчас возможностью выпуска такого оружия обладают также Россия и Франция.

Опасность нейтронного оружия, как и вообще ядерного оружия малой и сверхмалой мощности, заключается не столько в возможности массового уничтожения людей (это можно сделать и многими другими, в том числе давно существующими и более эффективными для этой цели видами ОМП), сколько в стирании грани между ядерной и обычной войной при его использовании. Поэтому в ряде резолюций Генеральной Ассамблеи ООН отмечаются опасные последствия появления новой разновидности оружия массового поражения — нейтронного, и содержится призыв к его запрещению. В 1978 г., когда в США ещё не был решён вопрос о производстве нейтронного оружия, СССР предложил договориться об отказе от его применения и внёс на рассмотрение Комитета по разоружению проект международной конвенции о его запрещении. Проект не нашёл поддержки у США и других западных стран. В 1981 г. в США начато производство нейтронных зарядов, но в настоящее время они не стоят на вооружении.

5. Пример эффектов взрыва нейтронного заряда на различных расстояниях

Рассто-яние[# 1] Давление

[# 2]

Радиация

[# 3]

Защита бетон[# 4] Защита земля[# 4] Примечания
Действие воздушного взрыва нейтронного заряда мощностью 1 кт на высоте ~ 150 м
0 м ~108 МПа [1] Окончание реакции, начало разлёта вещества бомбы. Благодаря конструктивным особенностям заряда значительная часть энергии взрыва выделяется в виде нейтронного излучения.
от центра ~50 м 0,7 МПа n·105Гр ~2-2,5 м ~3-3,5 м Граница светящейся сферы диаметром ~100м [3], время свечения ок. 0,2 сек.
эпицентр 0 м 0,2 МПа ~35.000 Гр 1,65 м 2,3 м Эпицентр взрыва. Человек в обычном убежище - гибель или крайне тяжёлая лучевая болезнь [1, 7]. Разрушение убежищ, рассчитанных на 100 кПа [7].
170 м 0,15 МПа Сильные повреждения танков [4].
300 м 0,1 МПа 5.000 Гр 1,32 м 1,85 м Человек в убежище - лучевая болезнь от лёгкой до тяжёлой степени [1, 7].
340 м 0,07 МПа Лесные пожары [4].
430 м 0,03 МПа 1.200 Гр 1,12 м 1,6 м Человек — "смерть под лучом". Сильные повреждения сооружений [4].
500 м 1000 Гр 1,09 м 1,5 м Человек гибнет от радиации сразу ("под лучом") или через несколько минут.
550 м 0,028 МПа Средние повреждения сооружений [4].
700 м 150 Гр 0,9 м 1,15 м Гибель человека от радиации через несколько часов.
760 м ~0,2 МПа 80 Гр 0,8 м 1 м
880 м 0,014 МПа Средние повреждения деревьев [4].
910 м 30 Гр 0,65 м 0,7 м Человек гибнет через несколько суток; лечение - уменьшение страданий.
1.000 м 20 Гр 0,6 м 0,65 м Человек - — " —. Стёкла приборов окрашиваются в тёмно-бурый цвет.
1.200 м ~0,01 МПа 6,5-8,5 Гр 0,5 м 0,6 м Крайне тяжёлая лучевая болезнь; гибнут до 90% пострадавших [6, 7].
1.500 м 2 Гр 0,3 м 0,45 м Средняя лучевая болезнь; гибнут до 80% [6], при лечении до 50% [4].
1.650 м 1 Гр 0,2 м 0,3 м Лёгкая лучевая болезнь [7]. Без лечения могут погибнуть до 50% [4].
1.800 м ~0,005 МПа 0,75 Гр 0,1 м Радиационные изменения в крови [4].
2.000 м 0,15 Гр Доза может быть опасна для больного лейкемией [4].
Рассто-яние[# 1] Давление

[# 2]

Радиация

[# 3]

Защита бетон[# 4] Защита земля[# 4] Примечания
Примечания
  1. ↑ 12 Расстояние в первых двух строках от центра взрыва, делее расстояние от эпицентра взрыва.
  2. ↑ 12 Избыточное давление вещества на фронте падающей ударной волны в мегапаскалях (МПа), рассчитано в соответствии с данными для взрыва мощностью 1 кт на высоте 190 м [8] (С. 13) по формуле подобия параметров ударной волны для различных мощностей зарядов (С. 10 там же) с учётом того, что по ударной волне нейтронный боеприпас мощностью 1кт примерно эквивалентен обычному ядерному 0,5кт [5]:R1/R2 = (q1/q2)1/3,где R1 и R2 — расстояния на которых будет наблюдаться одинаковое давление ударной волны;q1 и q2 — мощности сопоставляемых зарядов.
  3. ↑ 12 Суммарное значения доз радиации нейтронов и гамма-лучей в греях (Гр).
  4. ↑ 1234 Защита отдельно из обычного плотного бетона или из сухой земли; имеется в виду слой вещества в перекрытии заглублённого бетонного или деревоземляного сооружения, необходимый для снижения внешней дозы радиации до считающейся приемлемой в убежище дозы в 50 Рентген = 0,5 Гр.
При составлении использовалась литература 1. Безопасность жизнедеятельности. Защита населения и территорий в чрезвычайных ситуациях: учебное пособие для сотруд. высш. учеб. заведений. / [Я.Р.Вешняков и др.] - М.: Изд. центр "Академия", 2007. - С. 133 - 138. - ISBN 978-5-7695-3392-1; 2. Большая Советская Энциклопедия, 30 том. Изд. 3-е. М., "Советская Энциклопедия", 1978.; 3. Действие ядерного оружия. Пер. с англ. М., Воениздат, 1965.; 4. Иванов, Г. Нейтронное оружие. // Зарубежное военное обозрение, 1982, №12. - С. 50 - 54; 5. Защита от оружия массового поражения. М., Воениздат, 1989.; 6. Козлов, В.Ф. Справочник по радиационной безопасности. М., 1987.; 7. Миргородский В.Р. Безопасность жизнедеятельности. Раздел III. Защита объектов печати в чрезвычайных ситуациях: Курс лекций / Под ред. Н.Н. Пахомова. М.: Изд-во МГУП, 2001. 8. Убежища гражданской обороны. Конструкции и расчёт / В.А. Котляревский, В.И. Ганушкин, А.А. Костин и др.; Под ред. В.А. Котляревского. - М.: Стройиздат, 1989. ISBN 5-274-00515-2.

Примечания

  1. ↑ 12345 Основы современного общевойскового боя - militera.lib.ru/science/tactic/02.html
  2. Защита организма от излучений ионизирующих - www.cultinfo.ru/fulltext/1/001/008/044/654.htm
скачатьДанный реферат составлен на основе статьи из русской Википедии. Синхронизация выполнена 10.07.11 02:33:52Похожие рефераты: Нейтронное излучение, Сай (оружие), Гэ (оружие), Оса (оружие), Дзё (оружие), Узи (оружие), Яри (оружие), Лук (оружие), Дао (оружие).

Категории: Ядерное оружие.

Текст доступен по лицензии Creative Commons Attribution-ShareAlike.

Смотрите также

 

..:::Новинки:::..

Windows Commander 5.11 Свежая версия.

Новая версия
IrfanView 3.75 (рус)

Обновление текстового редактора TextEd, уже 1.75a

System mechanic 3.7f
Новая версия

Обновление плагинов для WC, смотрим :-)

Весь Winamp
Посетите новый сайт.

WinRaR 3.00
Релиз уже здесь

PowerDesk 4.0 free
Просто - напросто сильный upgrade проводника.

..:::Счетчики:::..

 

     

 

 

.