Начальная

Windows Commander

Far
WinNavigator
Frigate
Norton Commander
WinNC
Dos Navigator
Servant Salamander
Turbo Browser

Winamp, Skins, Plugins
Необходимые Утилиты
Текстовые редакторы
Юмор

File managers and best utilites

78.Миелиновые и безмиелиновые нервные волокна. Строение и функция. Процесс миелинизации. Миелинизация нервных волокон реферат


Реферат Нервное волокно

скачать

Реферат на тему:

План:

    Введение
  • 1 Классификация Эрлангера-Гассера
  • 2 Классификация по Ллойду
  • 3 Миелинизация нервных волокон
  • Литература

Введение

Не́рвные воло́кна — отростки нейронов, покрытые глиальными оболочками.

В различных отделах нервной системы оболочки нервных волокон значительно отличаются по своему строению, что лежит в основе деления всех волокон на миелиновые и безмиелиновые. Те и другие состоят из отростка нервной клетки, лежащего в центре волокна, и поэтому называемого осевым цилиндром (аксоном), и окружающей его глиальной оболочки.

В зависимости от интенсивности функциональной нагрузки нейроны формируют тот или иной тип волокна. Для соматического отдела нервной системы, иннервирующей скелетную мускулатуру, обладающую высокой степенью функциональной нагрузки, характерен миелиновый тип нервных волокон, а для вегетативного отдела, иннервирующего внутренние органы — безмиелиновый тип.

1. Классификация Эрлангера-Гассера

Является наиболее полной классификацией нервных волокон по скорости проведения нервного импульса.

Тип волокна Функция Диаметр, мкм Скорость проведения, м/с Миелинизация
Афферентные — мышечные веретёна, сухожильные органы; эфферентные — скелетные мышцы 10-20 60-120 +
Афферентные — тактильное чувство; коллатерали Aα волокон к интрафузальным мышечным волокнам 7-15 40-90 +
Эфферентные — мышечные веретёна 4-8 15-30 +
Афферентные — температура, быстрое проведение боли 3-5 5-25 +
B Симпатические, преганглионарные; постганглионарные волокна цилиарного ганглия 1-3 3-15 прерывистая
C Симпатические, постганглионарные; афферентные — медленное проведение боли 0,3-1 0,5-2 -

2. Классификация по Ллойду

Классифицирует только афферентные нейроны.

Тип волокна Функция Диаметр, мкм Скорость проведения, м/с Миелинизация
Ia Мышечные веретёна 18-22 90-120 +
Ib Сухожильные рецепторы 15-18 60-90 +
II Механорецепторы кожи, вторичные мышечные веретёна 7-15 40-90 +
III Рецепторы связок 1-5 3-25 прерывистая
IV Болевые рецепторы, рецепторы соединительной ткани 0,1-1 0,5-2 -

3. Миелинизация нервных волокон

При формировании безмиелинового нервного волокна осевой цилиндр (отросток нейрона) погружается в тяж из леммоцитов, цитолеммы которых прогибаются и плотно охватывают осевой цилиндр в виде муфты, края которой смыкаются над ним, образуя дупликатуру клеточной мембраны — мезаксон. Соседние леммоциты входящие в состав сплошного глиального тяжа своими цитолеммами образуют простые контакты. Безмиелиновые нервные волокна имеют слабую изоляцию, допускающую переход нервного импульса с одного волокна на другое, как в области мезаксона, так и в области межлеммоцитарных контактов.

Миелиновые нервные волокна значительно толще безмиелиновых. Принцип образования их оболочек такой же, как и безмиелиновых, то есть осевые цилиндры также прогибают цитолемму глиоцитов, образуя линейный мезаксон. Однако, быстрый рост нейронов соматического отдела нервной системы, связанный с формированием и ростом всего организма, приводит к вытягиванию мезаксонов, многократному обращению леммоцитов вокруг осевых цилиндров. В результате образуются концентрические наслоения. При этом цитоплазма с ядром леммоцитов оттесняется в область последнего витка, образующего наружный слой оболочек волокна, называемой шванновской оболочкой или неврилеммой. Внутренний слой, состоящий из витков мезаксона, называется миелиновым или миелиновой оболочкой. Следствием того, что миелинизация происходит в процессе роста как отростков нейронов, так и самих леммоцитов, является постепенное увеличение количества витков и размеров мезаксона, то есть каждый последующий виток шире предыдущего. Следовательно, последний виток, содержащий цитоплазму с ядром леммоцита является самым широким. Толщина миелина по длине волокна неоднородна, а в местах контактов соседних леммоцитов слоистая структура исчезает и контактируют лишь наружные слои, содержащие цитоплазму и ядро. Места их контактов называются узловыми перехватами (перехватами Ранвье), возникающими вследствие отсутствия здесь миелина и истончения волокна.

В ЦНС миелинизация нервного волокна происходит за счет обхвата осевых цилиндров отростками олигодендроцитов.

Как мембранная структура миелин имеет липидную основу и при обработке окисями тяжёлых металлов окрашивается в тёмный цвет. Другие компоненты мембраны и промежутки не окрашиваются, поэтому периодически встречаются светлые полоски − насечки миелина (насечки Шмидта-Лантермана), которые соответствуют небольшим прослойкам цитоплазмы леммоцита.

В цитоплазме осевого цилиндра располагаются продольно ориентированные нейрофибриллы и митохондрии, которых больше в непосредственной близости к перехватам и в концевых аппаратах волокна. Цитолемма осевого цилиндра (аксона) называется аксолеммой. Она обеспечивает проведение нервного импульса, который представляет собой волну деполяризации аксолеммы. Если осевой цилиндр представлен нейритом, то в нём отсутствуют гранулы базофильного вещества.

Литература

  • Савельев А. В. Моделирование логики самоорганизации активности нервного пучка эфаптическими взаимодействиями аксонного уровня // сб.: Моделирование неравновесных систем. — Институт вычислительного моделирования СО РАН, Красноярск: 2004. — С. 142-143.

wreferat.baza-referat.ru

Реферат Нервные волокна

скачать

Реферат на тему:

План:

    Введение
  • 1 Классификация Эрлангера-Гассера
  • 2 Классификация по Ллойду
  • 3 Миелинизация нервных волокон
  • Литература

Введение

Не́рвные воло́кна — отростки нейронов, покрытые глиальными оболочками.

В различных отделах нервной системы оболочки нервных волокон значительно отличаются по своему строению, что лежит в основе деления всех волокон на миелиновые и безмиелиновые. Те и другие состоят из отростка нервной клетки, лежащего в центре волокна, и поэтому называемого осевым цилиндром (аксоном), и окружающей его глиальной оболочки.

В зависимости от интенсивности функциональной нагрузки нейроны формируют тот или иной тип волокна. Для соматического отдела нервной системы, иннервирующей скелетную мускулатуру, обладающую высокой степенью функциональной нагрузки, характерен миелиновый тип нервных волокон, а для вегетативного отдела, иннервирующего внутренние органы — безмиелиновый тип.

1. Классификация Эрлангера-Гассера

Является наиболее полной классификацией нервных волокон по скорости проведения нервного импульса.

Тип волокна Функция Диаметр, мкм Скорость проведения, м/с Миелинизация
Афферентные — мышечные веретёна, сухожильные органы; эфферентные — скелетные мышцы 10-20 60-120 +
Афферентные — тактильное чувство; коллатерали Aα волокон к интрафузальным мышечным волокнам 7-15 40-90 +
Эфферентные — мышечные веретёна 4-8 15-30 +
Афферентные — температура, быстрое проведение боли 3-5 5-25 +
B Симпатические, преганглионарные; постганглионарные волокна цилиарного ганглия 1-3 3-15 прерывистая
C Симпатические, постганглионарные; афферентные — медленное проведение боли 0,3-1 0,5-2 -

2. Классификация по Ллойду

Классифицирует только афферентные нейроны.

Тип волокна Функция Диаметр, мкм Скорость проведения, м/с Миелинизация
Ia Мышечные веретёна 18-22 90-120 +
Ib Сухожильные рецепторы 15-18 60-90 +
II Механорецепторы кожи, вторичные мышечные веретёна 7-15 40-90 +
III Рецепторы связок 1-5 3-25 прерывистая
IV Болевые рецепторы, рецепторы соединительной ткани 0,1-1 0,5-2 -

3. Миелинизация нервных волокон

При формировании безмиелинового нервного волокна осевой цилиндр (отросток нейрона) погружается в тяж из леммоцитов, цитолеммы которых прогибаются и плотно охватывают осевой цилиндр в виде муфты, края которой смыкаются над ним, образуя дупликатуру клеточной мембраны — мезаксон. Соседние леммоциты входящие в состав сплошного глиального тяжа своими цитолеммами образуют простые контакты. Безмиелиновые нервные волокна имеют слабую изоляцию, допускающую переход нервного импульса с одного волокна на другое, как в области мезаксона, так и в области межлеммоцитарных контактов.

Миелиновые нервные волокна значительно толще безмиелиновых. Принцип образования их оболочек такой же, как и безмиелиновых, то есть осевые цилиндры также прогибают цитолемму глиоцитов, образуя линейный мезаксон. Однако, быстрый рост нейронов соматического отдела нервной системы, связанный с формированием и ростом всего организма, приводит к вытягиванию мезаксонов, многократному обращению леммоцитов вокруг осевых цилиндров. В результате образуются концентрические наслоения. При этом цитоплазма с ядром леммоцитов оттесняется в область последнего витка, образующего наружный слой оболочек волокна, называемой шванновской оболочкой или неврилеммой. Внутренний слой, состоящий из витков мезаксона, называется миелиновым или миелиновой оболочкой. Следствием того, что миелинизация происходит в процессе роста как отростков нейронов, так и самих леммоцитов, является постепенное увеличение количества витков и размеров мезаксона, то есть каждый последующий виток шире предыдущего. Следовательно, последний виток, содержащий цитоплазму с ядром леммоцита является самым широким. Толщина миелина по длине волокна неоднородна, а в местах контактов соседних леммоцитов слоистая структура исчезает и контактируют лишь наружные слои, содержащие цитоплазму и ядро. Места их контактов называются узловыми перехватами (перехватами Ранвье), возникающими вследствие отсутствия здесь миелина и истончения волокна.

В ЦНС миелинизация нервного волокна происходит за счет обхвата осевых цилиндров отростками олигодендроцитов.

Как мембранная структура миелин имеет липидную основу и при обработке окисями тяжёлых металлов окрашивается в тёмный цвет. Другие компоненты мембраны и промежутки не окрашиваются, поэтому периодически встречаются светлые полоски − насечки миелина (насечки Шмидта-Лантермана), которые соответствуют небольшим прослойкам цитоплазмы леммоцита.

В цитоплазме осевого цилиндра располагаются продольно ориентированные нейрофибриллы и митохондрии, которых больше в непосредственной близости к перехватам и в концевых аппаратах волокна. Цитолемма осевого цилиндра (аксона) называется аксолеммой. Она обеспечивает проведение нервного импульса, который представляет собой волну деполяризации аксолеммы. Если осевой цилиндр представлен нейритом, то в нём отсутствуют гранулы базофильного вещества.

Литература

  • Савельев А. В. Моделирование логики самоорганизации активности нервного пучка эфаптическими взаимодействиями аксонного уровня // сб.: Моделирование неравновесных систем. — Институт вычислительного моделирования СО РАН, Красноярск: 2004. — С. 142-143.

wreferat.baza-referat.ru

78.Миелиновые и безмиелиновые нервные волокна. Строение и функция. Процесс миелинизации.

Нервные волокна.

Отростки нервных клеток, покрытые оболочками, называются волокнами. По строению оболочек различают миелиновые и безмиелиновые нервные волокна. Отросток нервной клетки в нервном волокне называют осевым цилиндром, или аксоном.

В ЦНС оболочки отростков нейронов образуют отростки олигодендроглиоцитов, а в перефирической – нейролеммоциты.

Безмиелиновые нервные волокна располагаются преимущественно в периферической вегетативной нервной системе. Их оболочка представляет собой тяж нейролеммоцитов, в который погружены осевые цилиндры. Безмиелиновое волокно, в котором находятся несколько осевых цилиндров, называется волокном кабельного типа. Осевые цилиндры из одного волокна могут переходить в соседнее.

Процесс образования безмиелинового нервного волокна происходит следующим образом. При появлении отростка в нервной клетке рядом с ним появляется тяж нейролеммоцитов. Отросток нервной клетки (осевой цилиндр) начинает погружаться в тяж нейролеммоцитов, увлекая плазмолемму вглубь цитоплазмы. Сдвоенная плазмолемма называется мезаксоном. Таким образом, осевой цилиндр располагается на дне мезаксона (подвешен на мезаксоне). Снаружи безмиелиновое волокно покрыто базальной мембраной.

Миелиновые нервные волокна располагаются преимущественно в соматической нервной системе, имеют значительно больший диаметр по сравнению с безмиелиновыми—достигает до 20 мкм. Осевой цилиндр тоже более толстый. Миелиновые волокна окрашиваются осмием в черно-коричневый цвет. После окрашивания в оболочке волокна видны 2 слоя: внутренний миелиновый и наружный, состоящий из цитоплазмы, ядра и плазмолеммы, который называется неврилеммой. В центре волокна проходит неокрашенный (светлый) осевой цилиндр.

В миелиновом слое оболочки видны косые светлые насечки (incisio myelinata). По ходу волокна имеются сужения, через которые не переходит миелиновый слой оболочки. Эти сужения называются узловыми перехватами (nodus neurofibra). Через эти перехваты проходит только неврилемма и базальная мембрана, окружающая миелиновое волокно. Узловые перехваты являются границей между двумя смежными леммоцитами. Здесь от нейролеммоцита отходят короткие выросты диаметром около 50 нм, заходящие между концами таких же отростков смежного нейролеммоцита.

Участок миелинового волокна, расположенный между двумя узловыми перехватами, называется межузловым, или интернодальным, сегментом. В пределах этого сегмента рас-полагается всего лишь 1 нейролеммоцит.

Миелиновый слой оболочки — это мезаксон, навернутый на осевой цилиндр.

Формирование миелинового волокна. Вначале процесс образования миелинового волокна сходен с процессом образованием безмиелинового, т. е. осевой цилиндр погружается в тяж нейролеммоцитов и образуется мезаксон. После этого мезаксон удлиняется и навертывается на осевой цилиндр, оттесняя цитоплазму и ядро на периферию. Вот этот, навернутый на осевой цилиндр, мезаксон и есть миелиновый слой, а наружный слой оболочки — это оттесненные к периферии ядра и цитоплазма нейролеммоцитов.

Миелиновые волокна отличаются от безмиелиновых по строению и функции. В частности, скорость движения им¬пульса по безмиелиновому нервному волокну составляет 1-2 м в секунду, по миелиновому — 5-120 м в секунду. Объясняется это тем, что по миелиновому волокну импульс движется сальтоторно (скачкообразно). Это значит, что в пределах узлового перехвата импульс движется по неврилемме осевого цилиндра в виде волны деполяризации, т. е. медленно; в пределах межузлового сегмента импульс движется как электрический ток, т. е. быстро. В то же время импульс по безмиелиновому волокну движется только в виде волны деполяризации.

На электронограмме хорошо видно отличие миелинового волокна от безмиелинового — мезаксон послойно навернут на осевой цилиндр.

studfiles.net

Реферат Нервные отростки

скачать

Реферат на тему:

План:

    Введение
  • 1 Классификация Эрлангера-Гассера
  • 2 Классификация по Ллойду
  • 3 Миелинизация нервных волокон
  • Литература

Введение

Не́рвные воло́кна — отростки нейронов, покрытые глиальными оболочками.

В различных отделах нервной системы оболочки нервных волокон значительно отличаются по своему строению, что лежит в основе деления всех волокон на миелиновые и безмиелиновые. Те и другие состоят из отростка нервной клетки, лежащего в центре волокна, и поэтому называемого осевым цилиндром (аксоном), и окружающей его глиальной оболочки.

В зависимости от интенсивности функциональной нагрузки нейроны формируют тот или иной тип волокна. Для соматического отдела нервной системы, иннервирующей скелетную мускулатуру, обладающую высокой степенью функциональной нагрузки, характерен миелиновый тип нервных волокон, а для вегетативного отдела, иннервирующего внутренние органы — безмиелиновый тип.

1. Классификация Эрлангера-Гассера

Является наиболее полной классификацией нервных волокон по скорости проведения нервного импульса.

Тип волокна Функция Диаметр, мкм Скорость проведения, м/с Миелинизация
Афферентные — мышечные веретёна, сухожильные органы; эфферентные — скелетные мышцы 10-20 60-120 +
Афферентные — тактильное чувство; коллатерали Aα волокон к интрафузальным мышечным волокнам 7-15 40-90 +
Эфферентные — мышечные веретёна 4-8 15-30 +
Афферентные — температура, быстрое проведение боли 3-5 5-25 +
B Симпатические, преганглионарные; постганглионарные волокна цилиарного ганглия 1-3 3-15 прерывистая
C Симпатические, постганглионарные; афферентные — медленное проведение боли 0,3-1 0,5-2 -

2. Классификация по Ллойду

Классифицирует только афферентные нейроны.

Тип волокна Функция Диаметр, мкм Скорость проведения, м/с Миелинизация
Ia Мышечные веретёна 18-22 90-120 +
Ib Сухожильные рецепторы 15-18 60-90 +
II Механорецепторы кожи, вторичные мышечные веретёна 7-15 40-90 +
III Рецепторы связок 1-5 3-25 прерывистая
IV Болевые рецепторы, рецепторы соединительной ткани 0,1-1 0,5-2 -

3. Миелинизация нервных волокон

При формировании безмиелинового нервного волокна осевой цилиндр (отросток нейрона) погружается в тяж из леммоцитов, цитолеммы которых прогибаются и плотно охватывают осевой цилиндр в виде муфты, края которой смыкаются над ним, образуя дупликатуру клеточной мембраны — мезаксон. Соседние леммоциты входящие в состав сплошного глиального тяжа своими цитолеммами образуют простые контакты. Безмиелиновые нервные волокна имеют слабую изоляцию, допускающую переход нервного импульса с одного волокна на другое, как в области мезаксона, так и в области межлеммоцитарных контактов.

Миелиновые нервные волокна значительно толще безмиелиновых. Принцип образования их оболочек такой же, как и безмиелиновых, то есть осевые цилиндры также прогибают цитолемму глиоцитов, образуя линейный мезаксон. Однако, быстрый рост нейронов соматического отдела нервной системы, связанный с формированием и ростом всего организма, приводит к вытягиванию мезаксонов, многократному обращению леммоцитов вокруг осевых цилиндров. В результате образуются концентрические наслоения. При этом цитоплазма с ядром леммоцитов оттесняется в область последнего витка, образующего наружный слой оболочек волокна, называемой шванновской оболочкой или неврилеммой. Внутренний слой, состоящий из витков мезаксона, называется миелиновым или миелиновой оболочкой. Следствием того, что миелинизация происходит в процессе роста как отростков нейронов, так и самих леммоцитов, является постепенное увеличение количества витков и размеров мезаксона, то есть каждый последующий виток шире предыдущего. Следовательно, последний виток, содержащий цитоплазму с ядром леммоцита является самым широким. Толщина миелина по длине волокна неоднородна, а в местах контактов соседних леммоцитов слоистая структура исчезает и контактируют лишь наружные слои, содержащие цитоплазму и ядро. Места их контактов называются узловыми перехватами (перехватами Ранвье), возникающими вследствие отсутствия здесь миелина и истончения волокна.

В ЦНС миелинизация нервного волокна происходит за счет обхвата осевых цилиндров отростками олигодендроцитов.

Как мембранная структура миелин имеет липидную основу и при обработке окисями тяжёлых металлов окрашивается в тёмный цвет. Другие компоненты мембраны и промежутки не окрашиваются, поэтому периодически встречаются светлые полоски − насечки миелина (насечки Шмидта-Лантермана), которые соответствуют небольшим прослойкам цитоплазмы леммоцита.

В цитоплазме осевого цилиндра располагаются продольно ориентированные нейрофибриллы и митохондрии, которых больше в непосредственной близости к перехватам и в концевых аппаратах волокна. Цитолемма осевого цилиндра (аксона) называется аксолеммой. Она обеспечивает проведение нервного импульса, который представляет собой волну деполяризации аксолеммы. Если осевой цилиндр представлен нейритом, то в нём отсутствуют гранулы базофильного вещества.

Литература

  • Савельев А. В. Моделирование логики самоорганизации активности нервного пучка эфаптическими взаимодействиями аксонного уровня // сб.: Моделирование неравновесных систем. — Институт вычислительного моделирования СО РАН, Красноярск: 2004. — С. 142-143.

wreferat.baza-referat.ru

Нервное волокно, строение, миелинизация и демиелинизация нервных волокон

Нервное волокно – это удлиненный отросток нейронов, покрытый леммоцитами и миелиновой или безмиелиновой оболочкой. Основной  его функцией является проводимость нервных импульсов. В периферической и центральной нервной системе преобладают мякотные (миелиновые) нервные волокна, которые иннервируют скелетную мускулатуру, безмякотные находятся в симпатическом отделе вегетативной системы и распространяются на внутренние органы. Волокна, не имеющие оболочки, называются голыми осевыми цилиндрами.

Миелинизация

строение нервных волокон

Нервное волокно имеет в основе отросток нейрона, который образует своеобразную ось. Снаружи он окружен миелиновой оболочкой с биомолекулярной липидной основой, состоящей из большого количества витков мезаксона, который по спирали накручивается на нейроновую ось. Таким образом, происходит миелинизация нервных волокон.

Миелиновые нервные волокна периферической системы сверху дополнительно покрыты вспомогательными Шванновскими клетками, поддерживающими аксон и питающими тело нейрона. Поверхность мякотной мембраны имеет интервалы – перехваты Ранвье, в этих местах осевой цилиндр прикрепляется к наружной Шванновской мембране.

Миелиновый слой не обладает электропроводящими свойствами, их имеют перехваты. Возбуждение происходит в ближайшем к месту воздействия внешнего раздражителя интервале Ранвье. Импульс передается скачкообразно, от одного перехвата к другому, это обеспечивает высокую скорость распространения импульса.

Миелиновые нервные волокна  регулируют обмен веществ в мышечной ткани, обладают высоким сопротивлением по отношению к биоэлектрическому току.

Промежутки Ранвье генерируют и усиливают импульсы. У волокон центральной нервной системы нет Шванновской мембраны, эту функцию выполняют олигодендроглии.

Безмякотные ткани имеют несколько осевых цилиндров, у них нет миелинового слоя и перехватов, сверху покрыты Шванновскими клетками, между ними и цилиндрами образуются щелевидные пространства. Волокна имеют слабую изоляцию, допускают распространение импульса из одного отростка нейрона в другой, на всем протяжении контактируют с окружающей средой, скорость проведения импульсов гораздо ниже, чем у мякотных волокон, при этом организму требуется большее количество энергии.

Из мякотных и безмякотных отростков нейронов формируются крупные нервные стволы, которые, в свою очередь, разветвляются на более мелкие пучки и заканчиваются нервными окончаниями (рецепторные, двигательные, синапсы).

Нервные окончания – это конец миелиновых и безмиелиновых нервных волокон, который формирует межнейронные контакты, рецепторные и двигательные окончания.

Принципы классификации

типы нервных волокон

Разные типы нервных волокон имеют неодинаковую скорость проведения импульсов возбуждения, это зависит от их диаметра, длительности потенциала действия и степени миелинизации. Существует прямо пропорциональная зависимость между скоростью и диаметром волокна.

Структурно-функциональный метод классификации нервных волокон Эрлангера-Гассера по скорости проведения нервных импульсов:

  • Миелиновое нервное волокно группы А: α, β, Υи δ. Самый большой диаметр и толстую оболочку имеют ткани α – 20 мк, они обладают хорошей скорость проводимости импульсов – 120 м/сек. Эти ткани иннервируют источник возбуждения из столба спинного мозга к скелетным рецепторам мышц, сухожильям, отвечают за тактильные ощущения.

Остальные типы волокон имеют меньший диаметр (12 мк), скорость проведения импульса. Эти ткани передают сигналы от внутренних органов, источников боли в ЦНС.

  • Миелиновые волокна группы В относятся к автономной нервной системе. Общая скорость проведения импульса составляет 14 м/сек, потенциал действия в 2 раза больше, чем у волокон группы А. Миелиновая оболочка слабо выражена.
  • Безмиелиновые волокна группы С имеют очень маленький диаметр (0,5 мк) и скорость возбуждения (6 м/сек). Эти ткани иннервируют симпатическую нервную систему. К данной группе также относятся волокна, которые проводят импульсы от центров боли, холода, тепла и давления.

Отростки нейронов делят на афферентные и эфферентные. Первый тип обеспечивает передачу импульсов от рецепторов тканей в центральную нервную систему. Второй тип передает возбуждение от ЦНС к рецепторам тканей.

Функциональная классификация нервных волокон афферентного типа по Ллойду-Ханту:

Демиенилизация

волокно

Процесс демиелинизации нервных волокон – это патологическое повреждение миелиновой оболочки, которое вызывает нарушение функционирования тканей. Вызывают патологию воспалительные процессы, метаболические нарушения, нейроинфекция, интоксикация или ишемия тканей. Миелин замещается фиброзными бляшками, в результате нарушается проведение импульсов.

Первый тип демиелинизации – это миелинопатия, вызванная аутоиммунными реакциями организма, болезнью Канавана, синдромом Гийена-Барре, амиотрофией Шарко-Мари-Тута.

Второй тип – это миелинокластия. Патология характеризуется наследственной предрасположенностью к разрушению миелиновой оболочки (болезнь Бинсвангера).

Демиелинизирующие заболевания

регенерация нервного волокна

Заболевания, приводящие к разрушению миелиновой оболочки, чаще всего имеют аутоиммунную природу, другой причиной может быть лечение нейролептиками или наследственная предрасположенность. Разрушение липидного слоя вызывает снижение скорости проведения импульсов раздражения.

Заболевания разделяют на те, которые затрагивают центральную нервную систему и патологии, повреждающие периферическую сеть. Болезни, которые влияют на работу ЦНС:

  • Миелопатия спинного мозга возникает в результате сдавливания миелиновых волокон межпозвоночными грыжами, опухолями, костными осколками, после инсульта спинного мозга. У больных снижается чувствительность, мышечная сила в области поражения, возникают парезы рук или ног, нарушается работа кишечника, мочевыводящей системы, развивается атрофия мышц нижних конечностей.
  • Лейкодистрофия головного мозга вызывает поражение белого вещества. У пациентов нарушена координация движений, они не могут держать равновесие. Развивается мышечная слабость, появляются непроизвольные судороги, нервный тик. Постепенно ухудшается память, интеллектуальные способности, зрение и слух. На поздних стадиях возникает слепота, глухота, полный паралич, трудности во время проглатывания пищи.
  • Мелкоочаговая лейкоэнцефалопатия головного мозга чаще всего поражает мужчин старше 60 лет. Основными причинами является артериальная гипертензия и наследственная предрасположенность. У пациентов ухудшается память и внимание, появляется заторможенность, трудности с речью. Замедляется походка, нарушается координация движений, появляется недержание мочи, больному тяжело глотать пищу.
  • Синдром осмотической демиелинизации характеризуется распадом миелиновых оболочек в тканях головного мозга. У больных отмечается расстройство речевого аппарата, постоянное чувство сонливости, депрессии или повышенная возбудимость, мутизм, парез всех конечностей. На ранних стадиях заболевания процесс демиелинизации обратим.
  • Рассеянный склероз проявляется онемением одной или двух конечностей, частичная или полная потеря зрения, боль при движении глаз, головокружение, быстрая утомляемость, тремор конечностей, нарушение координации движений, покалывание в различных частях тела.
  • Болезнь Девика – это воспалительный аутоиммунный недуг, который поражает зрительный нерв и ствол спинного мозга. К симптомам относится различная степень нарушения зрения, вплоть до слепоты, парапарезы, тетрапарезы, нарушение функционирования органов малого таза.

Симптомы заболеваний зависят от области поражения миелиновых волокон. Выявить процесс демиелинизации можно с помощью компьютерной томографии, магниторезонансной терапии. Признаки поражения периферической нервной системы обнаруживаются на электромиографии.

nashinervy.ru

Реферат Нервные отростки

скачать

Реферат на тему:

План:

    Введение
  • 1 Классификация Эрлангера-Гассера
  • 2 Классификация по Ллойду
  • 3 Миелинизация нервных волокон
  • Литература

Введение

Не́рвные воло́кна — отростки нейронов, покрытые глиальными оболочками.

В различных отделах нервной системы оболочки нервных волокон значительно отличаются по своему строению, что лежит в основе деления всех волокон на миелиновые и безмиелиновые. Те и другие состоят из отростка нервной клетки, лежащего в центре волокна, и поэтому называемого осевым цилиндром (аксоном), и окружающей его глиальной оболочки.

В зависимости от интенсивности функциональной нагрузки нейроны формируют тот или иной тип волокна. Для соматического отдела нервной системы, иннервирующей скелетную мускулатуру, обладающую высокой степенью функциональной нагрузки, характерен миелиновый тип нервных волокон, а для вегетативного отдела, иннервирующего внутренние органы — безмиелиновый тип.

1. Классификация Эрлангера-Гассера

Является наиболее полной классификацией нервных волокон по скорости проведения нервного импульса.

Тип волокна Функция Диаметр, мкм Скорость проведения, м/с Миелинизация
Афферентные — мышечные веретёна, сухожильные органы; эфферентные — скелетные мышцы 10-20 60-120 +
Афферентные — тактильное чувство; коллатерали Aα волокон к интрафузальным мышечным волокнам 7-15 40-90 +
Эфферентные — мышечные веретёна 4-8 15-30 +
Афферентные — температура, быстрое проведение боли 3-5 5-25 +
B Симпатические, преганглионарные; постганглионарные волокна цилиарного ганглия 1-3 3-15 прерывистая
C Симпатические, постганглионарные; афферентные — медленное проведение боли 0,3-1 0,5-2 -

2. Классификация по Ллойду

Классифицирует только афферентные нейроны.

Тип волокна Функция Диаметр, мкм Скорость проведения, м/с Миелинизация
Ia Мышечные веретёна 18-22 90-120 +
Ib Сухожильные рецепторы 15-18 60-90 +
II Механорецепторы кожи, вторичные мышечные веретёна 7-15 40-90 +
III Рецепторы связок 1-5 3-25 прерывистая
IV Болевые рецепторы, рецепторы соединительной ткани 0,1-1 0,5-2 -

3. Миелинизация нервных волокон

При формировании безмиелинового нервного волокна осевой цилиндр (отросток нейрона) погружается в тяж из леммоцитов, цитолеммы которых прогибаются и плотно охватывают осевой цилиндр в виде муфты, края которой смыкаются над ним, образуя дупликатуру клеточной мембраны — мезаксон. Соседние леммоциты входящие в состав сплошного глиального тяжа своими цитолеммами образуют простые контакты. Безмиелиновые нервные волокна имеют слабую изоляцию, допускающую переход нервного импульса с одного волокна на другое, как в области мезаксона, так и в области межлеммоцитарных контактов.

Миелиновые нервные волокна значительно толще безмиелиновых. Принцип образования их оболочек такой же, как и безмиелиновых, то есть осевые цилиндры также прогибают цитолемму глиоцитов, образуя линейный мезаксон. Однако, быстрый рост нейронов соматического отдела нервной системы, связанный с формированием и ростом всего организма, приводит к вытягиванию мезаксонов, многократному обращению леммоцитов вокруг осевых цилиндров. В результате образуются концентрические наслоения. При этом цитоплазма с ядром леммоцитов оттесняется в область последнего витка, образующего наружный слой оболочек волокна, называемой шванновской оболочкой или неврилеммой. Внутренний слой, состоящий из витков мезаксона, называется миелиновым или миелиновой оболочкой. Следствием того, что миелинизация происходит в процессе роста как отростков нейронов, так и самих леммоцитов, является постепенное увеличение количества витков и размеров мезаксона, то есть каждый последующий виток шире предыдущего. Следовательно, последний виток, содержащий цитоплазму с ядром леммоцита является самым широким. Толщина миелина по длине волокна неоднородна, а в местах контактов соседних леммоцитов слоистая структура исчезает и контактируют лишь наружные слои, содержащие цитоплазму и ядро. Места их контактов называются узловыми перехватами (перехватами Ранвье), возникающими вследствие отсутствия здесь миелина и истончения волокна.

В ЦНС миелинизация нервного волокна происходит за счет обхвата осевых цилиндров отростками олигодендроцитов.

Как мембранная структура миелин имеет липидную основу и при обработке окисями тяжёлых металлов окрашивается в тёмный цвет. Другие компоненты мембраны и промежутки не окрашиваются, поэтому периодически встречаются светлые полоски − насечки миелина (насечки Шмидта-Лантермана), которые соответствуют небольшим прослойкам цитоплазмы леммоцита.

В цитоплазме осевого цилиндра располагаются продольно ориентированные нейрофибриллы и митохондрии, которых больше в непосредственной близости к перехватам и в концевых аппаратах волокна. Цитолемма осевого цилиндра (аксона) называется аксолеммой. Она обеспечивает проведение нервного импульса, который представляет собой волну деполяризации аксолеммы. Если осевой цилиндр представлен нейритом, то в нём отсутствуют гранулы базофильного вещества.

Литература

  • Савельев А. В. Моделирование логики самоорганизации активности нервного пучка эфаптическими взаимодействиями аксонного уровня // сб.: Моделирование неравновесных систем. — Институт вычислительного моделирования СО РАН, Красноярск: 2004. — С. 142-143.

www.wreferat.baza-referat.ru

2.Нервные волокна. Морфо-функциональная характеристика миелиновых и безмиелиновых нервных волокон. Регенерация нервных волокон.

Отростки нервных клеток, покрытые оболочками, называются нервными волокнами. По строению оболочек различают миелиновые и безмиелиновые нервные волокна

Безмиелиновые нервные волокна находятся преимущественно в составе автономной, или вегетативной, нервной системы. Нейролеммоциты оболочек безмиелиновых нервных волокон, располагаясь плотно, образуют тяжи. Такие волокна, содержащие несколько осевых цилиндров, называются волокнами кабельного типа. По мере погружения осевых цилиндров в тяж нейролеммоцитов оболочки последних прогибаются, плотно охватывают осевые цилиндры и, смыкаясь над ними, образуют глубокие складки, на дне которых и располагаются отдельные осевые цилиндры. Сближенные в области складки участки оболочки нейролеммоцита образуют сдвоенную мембрану — мезаксон, на которой как бы подвешен осевой цилиндр.

Миелиновые нервные волокна встречаются как в центральной, так и в периферической нервной системе.

Встречаются в ЦНС и ПС.

● Скорость проведения нервного импульса выше, чем в безмиел новых нервных волокнах.

● Волокна толще.

● Содержат один осевой цилиндр.

● В составе оболочки имеется миелиновый слой (спирально закрученный длинный мезаксон).

● Встречаются насечки миелина

(насечки Шмидта –Лантермана).

● Имеются узловые перехв

Регенерация зависит от места травмы. Как в центральной, так и в периферической нервной системе погибшие нейроны не восстанавливаются. Полноценной регенерации нервных волокон в центральной нервной системе обычно не происходит, но нервные волокна в составе периферических нервов обычно хорошо регенерируют.

3.Взаимодействие структур клетки в процессе метаболизма (на примере синтеза секреторных белков).

Гранулярная (шероховатая) ЭПС – непосредственное место

синтеза экспортных (секреторных) белков. Синтезируемая на рибосоме пептидная цепь проникает своим лидерным концом через мембрану в полость ЭПС, где затем оказывается весь белок и формируется его третичная структура. Здесь же (в просвете цистерн ЭПС) начинается модификация белков – связывание их с углеводами или иными компонентами. Таким образом, наличие в клетке хорошо раз-витой гранулярной ЭПС свидетельствует о высокой интенсивности белкового синтеза – особенно в отношении секреторных (экспортных) белков.

Билет №49.

1.Тимус. Строение и функциональное значение. Характеристика постэмбрионального кроветворения в тимусе. Эндокринная функция тимуса. Понятие о возрастной и акцидентальной инволюции тимуса.

Вилочковая железа, или тимус — центральный орган лимфоцитопоэза и иммуногенеза. Из костномозговых предшественников Т-лимфоцитов в нем происходит их антигенНЕзависимая дифференцировка в Т-лимфоциты, разновидности которых осуществляют реакции клеточного иммунитета и регулируют реакции гуморального иммунитета.

Развитие. Тимус является эпителиальным органом, развивается из энтодермы.

Закладка тимуса у человека происходит в конце первого месяца внутриутробного развития из эпителия глоточной кишки, в области главным образом III и IV пар жаберных карманов в виде тяжей многослойного эпителия. Дистальная часть зачатков III пары, утолщаясь, образует тело тимуса, а проксимальная вытягивается, подобно выводному протоку экзокринной железы.

Строение

Снаружи вилочковая железа покрыта соединительнотканной капсулой. От нее внутрь органа отходят перегородки, разделяющие железу на дольки. В каждой дольке различают корковое и мозговое вещество. В основе органа лежит эпителиальная ткань, состоящая из отростчатых клеток - эпителиоретикулоцитов. Для всех эпителиоретикулоцитов характерно наличие десмосом, тонофиламентов и белков кератинов, продуктов главного комплекса гистосовместимости на своих мембранах.

СТРОЕНИЕ ВИЛОЧКОВОЙ ЖЕЛЕЗЫ

● строма 1. Капсула 2. трабекулы

● паренхима

○ дольки

3. корковое вещество 4. Мозговое вещество

КОРКОВОЕ ВЕЩЕСТВО ДОЛЬКИ ТИМУСА

● Подкапсулярная область – Т-лимфобласты

● Основная часть коры – созревающие Т-лимфоциты

● Строма – эпителиоретикулоциты

● Вспомогательные клетки

МОЗГОВОЕ ВЕЩЕСТВО ДОЛЬКИ ТИМУСА

● Рециркулирующие Т- лимфоциты

● Эпителиоретикулярные клетки

○ Секреторные

○ Опорные

● Тельца Гассаля

● Вспомогательные клетки

○ Макрофаги

Синтез гормона тимозина, необходимого в эмбриональном периоде для нормальной закладки и развития периферических лимфоидных органов, а в постнатальном периоде для регуляции функцией периферических лимфоидных органов; синтез инсулиноподобного фактора, фактора роста клеток, кальцитониноподобный фактор.

ВОЗРАСТНАЯ ИНВОЛЮЦИЯ

● уменьшение количества лимфоцитов

● липидные включения в клетках соединительной ткани

● развитие жировой ткани

● сохранение слоистых телец Гассаля

АКЦИДЕНТАЛЬНАЯ ИНВОЛЮЦИЯ

● выброс Т-лимфоцитов в кровь

● массовая гибель лимфоцитов

● разрастание эпителиоретикулоцитов

○ набухание

○ секреторные включения гликопротеидов

○ образование фолликулоподобных структур

ТИМУС - центральный орган лимфоцитопоэза и иммуногенеза. Тимус закладывается в начале 2-го месяца эмбрионального развития из эпителия 3-4-х жаберных карманов как экзокринная железа. В дальнейшем тяж соединяющий железу с эпителием жаберных карманов подвергается обратному развитию. В конце 2-го месяца орган заселяется лимфоцитами. Строение тимуса - снаружи орган покрыт сдт капсулой, от которой внутрь отходят перегородки из рыхлой сдт и делят орган на дольки. Основу паренхимы тимуса составляет сетчатый эпителий: эпителиальные клетки отросчатые, соединяются друг с другом отростками и образуют петлистую сеть, в петлях которой располагаются лимфоциты (тимоциты). В центральной части дольки стареющие эпителиальные клетки образуют слоистые тимусные тельца или тельца Гассаля - концентрически наслоенные эпителиальные клетки с вакуолями, гранулами кератина и фибриллярными волокнами в цитоплазме. Количество и размеры телец Гассаля с возрастом увеличивается. Функция сетчатого эпителия: 1. Создает специфическое микроокружение для созревающих лимфоцитов. 2. Синтез гормона тимозина, необходимого в эмбриональном периоде для нормальной закладки и развития периферических лимфоидных органов, а в постнатальном периоде для регуляции функцией периферических лимфоидных органов; синтез инсулиноподобного фактора, фактора роста клеток, кальцитониноподобный фактор. 3. Трофическая - питание созревающих лимфоцитов. 4. Опорно-механическая функция - несущий каркас для тимоцитов. В петлях сетчатого эпителия располагаются лимфоциты (тимоциты), особенно их много по периферии дольки, поэтому эта часть дольки темнее и называется корковой частью. Центр дольки содержит меньше лимфоцитов, поэтому эта часть светлее и называется мозговой частью дольки. В корковом веществе тимуса происходит "обучение" Т-лимфоцитов, т.е. они приобретают способность распознавать "свое" или "чужое". В чем суть этого обучения? В тимусе образуются лимфоциты строго специфичные (имеющие строго комплементарные рецепторы) для всех возможно мыслимых А-генов, даже против своих клеток и тканей, но в процессе "обучения" все лимфоциты имеющие рецепторы к своим тканям уничтожаются, оставляются только те лимфоциты, которые направлены против чужеродных Антигенов. Вот поэтому в корковом веществе наряду с усиленным размножением видим и массовую гибель лимфоцитов. Таким образом в тимусе из предшественников Т-лимфоцитов образуются субпопуляции Т-лимфоцитов, которые в последующем попадают в периферические лимфоидные органы, дозревают и функционируют. После рождения масса органа в течении первых 3-х лет быстро увеличивается, медленный рост продолжается до возраста полового созревания, после 20 лет паренхима тимуса начинает замещаться жировой тканью, но минимальное количество лимфоидной ткани сохраняется до глубокой старости. Акцидентальная инволюция тимуса (АИТ): Причиной акцидентальной инволюции тимуса могут быть чрезмерно сильные раздражители ( травма, инфекции, интоксикации, сильные стрессы и т.д.). Морфологически АИТ сопровождается массовой миграцией лимфоцитов из тимуса в кровоток, массовой гибелью лимфоцитов в тимусе и фагоцитозом погибших клеток макрофагами (иногда фагоцитоз и нормальных, не погибших лимфоцитов), разрастанием эпителиальной основы тимуса и усилением синтеза тимозина, стиранием границы между корковой и мозговой частью долек. Биологичесое значение АИТ: 1. Гибнущие лимфоциты являются донорами ДНК, которая транспортируется макрофагами в очаг поражения и используется там пролиферирующими клетками органа. 2. Массовая гибель лимфоцитов в тимусе является проявлением селекции и элиминации Т-лимфоцитов, имеющих рецепторы против собственных тканей в очаге поражения и направлена на предотвращение возможной аутоагрессии. 3. Разрастание эпителиальнотканной основы тимуса, усиление синтеза тимозина и других гормоноподобных веществ направлены на повышение функциональной активности периферических лимфоидных органов, усилению метаболических и регенераторных процессов в пораженном органе.

studfiles.net


Смотрите также

 

..:::Новинки:::..

Windows Commander 5.11 Свежая версия.

Новая версия
IrfanView 3.75 (рус)

Обновление текстового редактора TextEd, уже 1.75a

System mechanic 3.7f
Новая версия

Обновление плагинов для WC, смотрим :-)

Весь Winamp
Посетите новый сайт.

WinRaR 3.00
Релиз уже здесь

PowerDesk 4.0 free
Просто - напросто сильный upgrade проводника.

..:::Счетчики:::..

 

     

 

 

.