referat.resurs.kz

 

Начальная

Windows Commander

Far
WinNavigator
Frigate
Norton Commander
WinNC
Dos Navigator
Servant Salamander
Turbo Browser

Winamp, Skins, Plugins
Необходимые Утилиты
Текстовые редакторы
Юмор

File managers and best utilites

Реферат: Изменение климата планеты Земля. Климат прошлого в истории нашей планеты реферат


Лекция 11. Климат, изменения климата в прошлом и настоящем

Изменения климата в прошлом и настоящем. Влияние некоторых факторов на изменение климата. Парниковый эффект. Последствия изменения климата. Киотский протокол

11.1. Изменения климата в прошлом и настоящем

Климат – многолетний режим погоды, определяемый географической широтой местности, высотой над уровнем моря, удаленностью местности от океана, рельефом суши и др. факторами.

В 1935 г. на метеорологическом конгрессе в Варшаве было предписано в качестве климатических величин принимать величины, осредненные за предшествующее тридцатилетие. Стало быть, в 1935 г. в качестве стандартного климата были приняты средние значения, допустим, среднемесячных или среднегодовых температур или количества осадков за 1901–1930 гг. Сейчас таковыми считаются 1971–2000 гг.

Климатическая система – самая сложная физическая система на планете. Она включает в себя все подвижные геосферы Земли, т. е. атмосферу, гидросферу, литосферу, биосферу вместе с человеком и всей его уже довольно масштабной антропогенной деятельностью.

Климат планеты определяется ее массой, расстоянием от Солнца и составом атмосферы. Атмосфера Земли состоит на 78 % из азота, 21 % кислорода. Оставшийся 1 % – водяной пар, СО2(0,03–0,04%), озон, метан, закись азота и др. Они задерживают часть тепла, испускаемого нагретой Солнцем земной поверхностью, и таким образом действуют, как одеяло, сохраняя на земной поверхности температуру примерно на 30 °С выше той, которая могла бы быть, если атмосфера состояла бы только из кислорода и азота. Эта природная система контроля температуры Земли получила названиеестественный парниковый эффект. Однако в последнее время вследствие антропогенной деятельности уровни основных парниковых газов повышаются, изменяя способность атмосферы поглощать энергию. Более плотный покров парниковых газов нарушает баланс между поступающей и исходящей энергией. В результате на планете устанавливаетсяусиленный парниковый эффект, имеющий чрезвычайно неблагоприятные последствия.

Приблизительно три четверти увеличения атмосферной концентрации СО2 в 1990-е гг. обусловлено сжиганием ископаемых видов топлива, а остальная часть приходится на изменения в землепользовании, включая вырубку лесов (в том числе для сельскохозяйственных нужд, расширения городов, под дороги и т. д.).

В прошлом климат Земли менялся не один раз. Исследования осадочных отложений земной коры, определение состава атмосферного воздуха по микроскопическим пузырькам воздуха, включенным в глетчерный лед, показывают, что на протяжении сотен миллионов лет в минувшие геологические эпохи климат нашей планеты весьма существенно отличался от нынешнего. Всего 10 000 лет назад Северная Европа и значительная часть Северной Америки были покрыты льдами. В то время над Европой лежал ледовый щит, содержащий примерно такой же объем льда, как современная Антарктида. Над Москвой максимальная толщина льда составляла 300–400 м, центр же ледового щита располагался над Скандинавией. Вторая такая же Антарктида располагалась над Северной Америкой. Эти ледовые щиты депонировали в себе такое огромное количество воды, что уровень Мирового океана был на 120 м ниже современного. Это значит, что все континенты, кроме Антарктиды, соединялись друг с другом сухопутными мостами и это явилось непосредственной причиной заселения Австралии и Америки. Сейчас уже определенно доказано, что заселение Америки происходило через так называемый Берингов мост.

Современные климатологи считают, что наступлением и отступлением ледниковых периодов управляет Берингов пролив. Происходит это таким образом. В силу каких-то пока не ясных причин – скорее всего, уменьшения солнечной активности – на планете снижается температура, и часть воды океанов замерзает. Из-за уменьшения объема жидкой воды Мирового океана пролив обнажается и превращается в Берингов перешеек, препятствующий поступлению вод Тихого океана в Арктику. При этом понижается уровень арктических вод, который тут же восполняется более теплой водой из Атлантического океана – арктические льды тают, и перешеек снова становится проливом. Ледниковый период заканчивается. Циклы «закрыть-открыть» пролив длятся многие тысячи лет.

По мере освобождения Земли от континентальных щитов наступил довольно продолжительный период, при котором температура была существенно выше современной: на 1–1,5 ºC. Этот период получил название климатического оптимума голоцена. Еще до того как появилась наука этот же самый период запечатлелся в памяти многих поколений людей как «золотой» век, отобранный у людей за совершенные ими грехи. В эпосах любого народа мира, у любой культуры мира существует представление о «золотом» веке. Это век чрезвычайно благоприятных природных и климатических условий, и это именно то, что предшествовало появлению человеческой цивилизации, тот самый климат, который властвовал на планете примерно в течение 4 тыс. лет (от 9 000 до 5 000 лет назад).

Другими выдающимися климатическими событиями являются так называемое потепление римского времени, потом снова значительное похолодание эпохи Великого переселения народов и далее (из того, что более или менее хорошо известно) – это пик на рубеже IиIIтысячелетия, так называемый средневековый климатический оптимум. Он получил известность, в частности, благодаря тому, что в это время произошло заселение Гренландии норманнами.

Динамика температуры Северного полушария в голоцене (в отклонениях от нормы 1951–1980 гг.) представлена на рис. 21. Как видно из рисунка, все изменения температуры сосредоточены в довольно узком диапазоне – 6 °С – разница глобальной температуры двух состояний Земли (ледниковый и межледниковый период). Это связано с работой климатической системы планеты.

Рис. 21. Динамика температуры Северного полушария в голоцене (в отклонениях от нормы 1951–1980 гг.) (по В. Клименко, 2010)

Однако в настоящее время климат планеты стремительно меняется. По данным Межправительственной группы экспертов ООН по изменению климата (IPCC), в период с 1906 по 2005 г. средняя температура Земли выросла на 0,74 градуса по Цельсию. МГЭИК также убеждена, что этот рост продолжится и в будущем. Из последних двадцати лет ХХ в. семнадцать оказались самыми теплыми за всю историю метеорологических наблюдений (начиная с середины XVIIв.), а 1995 г. был на 0,75 °С теплее климатической нормы конца прошлого века. Реальность потепления в настоящее время подтверждается наблюдениями за состоянием полярных шапок Земли. В частности, американские исследователи отмечают, что за последние 40 лет растаяло более 40 тыс. км3полярного льда. Есть и другие доказательства потепления климата. Так, например, группа шведских климатологов и океанологов проанализировала спутниковые данные за период с 1978 по 1995 г., которые позволяют определить состояние морских льдов в Арктике. Установлено, что за эти годы площадь плавучих льдов в Северном Ледовитом океане сократилась приблизительно на 610 тыс. км2. Время ледостава на озерах и реках средних и высоких широт Северного полушария сократилось за последнее столетие на 1–2 недели. Так, озеро Байкал замерзает на 11 дней позже и освобождается ото льда на пять дней раньше, чем 100 лет назад.

В среднем на территории России за 100 лет (1901–2000 гг.) стало теплее на 0,9 °С. В последние 50 лет скорость потепления увеличилась до 2,7 °С/100 лет, а после 1970 г. тренд потепления составил уже 4 °С /100 лет.На территории Сибири потепление идет с более высокой скоростью. Только за последние 100 лет 70 % береговых линий отступили в глубь, а уровень Мирового океана поднялся в среднем от 10 до 20 см. С потеплением климата возрастает число и разрушительная сила тайфунов. В период с 1920 по 1970 г. в мире фиксировалось около 40 ураганов в год. Но примерно с середины 1980-х гг. число ураганов удвоилось.

studfiles.net

Климат Земли в прошлом, настоящем, будущем. Его влияние на развитие цивилизации

Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение

высшего профессионального образования

«ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ УПРАВЛЕНИЯ»

Институт управления финансами и налогового администрирования

Кафедра управления инновациями в реальном секторе экономике

РЕФЕРАТ

По дисциплине «ЕНОИТ»

На тему: Климат Земли в прошлом, настоящем, будущем. Его влияние на развитие цивилизации

Работу выполнила:

Разгуляева Арина Николаевна

Менеджмент 1-1, 1 курс

Москва, 2014

СОДЕРЖАНИЕ

ВВЕДЕНИЕ

. КЛИМАТ ДОКЕМБРИЯ

. КЛИМАТ ПАЛЕОЗОЯ

. КЛИМАТ МЕЗОЗОЯ

. КЛИМАТИЧЕСКИЙ ОПТИМУМ

. КЛИМАТ СРЕДНЕВЕКОВЬЯ

. МАЛЫЙ ЛЕДНИКОВЫЙ ПЕРИОД

. КЛИМАТ БЛИЖАЙШЕГО БУДУЩЕГО

. ВЛИЯНИЕ КЛИМАТА НА РАЗВИТИЕ ЦИВИЛИЗАЦИИ

ЗАКЛЮЧЕНИЕ

СПИСОК ПЕРВОИСТОЧНИКОВ

ВВЕДЕНИЕ

Актуальность

В последнее десятилетие проблема изучения древних климатов приобрела особое значение в связи с возможностью их использования для уточнения прогнозирования климата ближайшего и отдаленного будущего. Особая важность проблемы будущего климата планеты определяется тем, что хозяйственная деятельность человека всецело зависит от климатических условий. Но в последние годы в результате хозяйственной деятельности людей возможны крупные изменения климата. Непреднамеренное глобальное загрязнение окружающей среды продуктами сжигания топлива, происходящее в региональном и глобальном масштабе, мелиоративные и ирригационные работы, строительство гидроэлектростанций и водохранилищ, уничтожение лесов на огромных площадях и т.д. могут вызвать климатические изменения, по своему характеру и размерам сходные с глобальными естественными изменениями климата, происходившими в геологическом прошлом.

Цель работы

Показать:

.Изменения климата Земли в течение её развития

.Взаимосвязь климата прошлого, настоящего и будущего

.Влияние климата на развитие цивилизации

1. Климат докембрия

Когда же возник климат на Земле? Термин "климат" был введен древнегреческим астрономом Гиппрахом из Никеи во 2 веке до нашей эры. По современным представлениям климат возник после того, как недра Земли стали разогреваться, и в них стали образовываться глубинные «реки», несущие тепло. В это время сквозь расплавленные участки земной коры на ее поверхность стали поступать различные соединения газа. Так образовывалась первая атмосфера. Она состояла из смеси углекислого газа, аммиака, азота, водяного пара, водорода, соединений серы и паров сильных кислот. Абсолютное преобладание в ней углекислого газа и большое содержание водяного пара способствовали тому, что такая атмосфера легко пропускала солнечный свет. В результате, это привело к сильному повышению температур, которые могли достигать порядка 500°C. К примеру, аналогичные температуры характерны для поверхности Венеры.

В дальнейшем в результате постепенного уменьшения количества углекислого газа, аммиака и водяного пара в атмосфере и появлением других газов так называемый парниковый эффект начал спадать. Температуры на Земле стали понижаться. Это, в свою очередь, способствовало конденсации паров воды. Возникла гидросфера. С её образованием начался новый этап развития органических веществ. Вода - та первая среда, в которой родилась и развивалась жизнь.

Первые микроскопические организмы появились более 3,8 млрд. лет назад. Это время было довольно неуютным для живых существ. Плотная атмосфера без кислорода, постоянно раскалывающаяся сильнейшими землетрясениями поверхность планеты, огромные потоки глубинного расплавленного вещества и постоянно выделяющиеся из недр газы. В воде не было условий, для развития организмов того времени. Вода постоянно была в кипящем состоянии. В такой среде могли существовать немногие микроскопические организмы.

Со временем внутренняя активность планеты затихала. Все меньше и меньше из глубин выделялось аммиака и углекислого газа, то, что попадало в атмосферу, использовалось на процессы окисления и использовалось микроскопическими организмами на образование кремнистых и карбонатных горных пород. Возможно, в связи с этим и началось снижение температуры на Земле. По геологическим масштабам оно произошло очень стремительно, и уже 2,5-2,6 млрд. лет назад, настолько сильно похолодало, что на земной поверхности началось первое оледенение.

Изучая возникшие в тот период напластования горных пород, геологи не раз замечали присутствие в них образований, похожих на современные морены. Это были хорошо отполированные валуны и скопления галек очень твердых пород с многочисленными штриховками и шрамами, которые могли быть оставлены только острыми краями горных пород, впаянных в лед. Все это свидетельствовало о ледниковой природе рельефа и горных пород, но в то же время противоречило существовавшему мнению о господстве в то далекое время высоких температур и очень теплого климата. Тщательное изучение следов оледенения в докембрийскую эпоху привело к тому, что были найдены неопровержимые доказательства существования в глубокой древности обширных ледниковых покровных оледенений.

В докембрии по развитию древних моренных отложений и связанных с ними образованиями выделяется существование следующих эпох оледенения. Наиболее древнее оледенение произошло 2500-2600 млн. лет назад, и носит название Гуронского. Морены этих лет известны в Европе, Южной Азии, Северной Америке и Западной Австралии.

Следы оледенения с возрастом около 950 млн. лет обнаружены в Гренландии, Норвегии и на острове Шпицберген. Около 750 млн. лет назад в Австралии, Китае, на эго-западе Африки и в Скандинавии произошло Стуртианское оледенение. Наиболее сильно выражено Варангианское оледенение, которое произошло 660-680 млн. лет назад. Данные ледниковые породы найдены в Северной Америке, Гренландии, на Шпицбергене, британских островах, в Скандинавии, во Франции, Китае, Австралии, Африке, Южной Америке и на Северо-востоке России.

Низкие температуры держались довольно длительный период. Затем температуры на земной поверхности повысились, льды растаяли, уровень Мирового океана повысился, и снова наступила благоприятная пора для расцвета микроскопических организмов и сине-зеленых водорослей.

2. Климат палеозоя

Палеозой начался колоссальным разливом морей, последовавшим за появлением обширных частей суши в позднем протерозое. Большинство геологов полагают, что в ту эпоху существовал единый огромный континентальный блок, называемый Пангея (в переводе с греческого - «вся земля»), который был со всех сторон окружен мировым океаном. Позднее этот единый континент распался на части.

Кембрийский период (570-490 млн. лет назад)

О климате Кембрийского периода имеются весьма скудные и отрывочные сведения. После развития покровного оледенения на многих континентах (Южная Америка, Африка, Австралия, Северная Европа) в начале кембрия наступило значительное потепление. Практически на всех континентах создавались тропические условия. Свидетельством этого является наличие богатого теплолюбивого комплекса морской фауны. Тропические побережья материков окаймляли гигантские рифы из строматолитов, во многом напоминавшие коралловые рифы современных тропических вод. Предполагается, что для морей Сибири в раннем кембрии температура воды не опускалась ниже 25° С.

Ордовикский период (490-440 млн. лет назад)

В течение ордовикского периода климат претерпел существенные изменения. На протяжении периода массивы суши смещались все дальше и дальше к югу. Старые ледниковые покровы кембрия растаяли, и уровень моря повысился. Большая часть суши была сосредоточена в теплых широтах. Анализ климатических условий этого периода позволяет считать, что в среднем и позднем ордовике наступило значительное похолодание, охватившее многие материки.

Силурийский период (440-400 млн. лет назад)

В самом начале силурийского периода на континентах продолжали господствовать сравнительно прохладные условия. Для этого времени известны небольшой мощности ледниковые образования в Боливии, на севере Аргентины и на востоке Бразилии. Не исключено, что ледники могла покрывать и некоторые районы Сахары. Гондвана надвинулась на Южный полюс. Массивы суши, образующие Северную Америку и Гренландию, сближались. В конечном итоге они столкнулись, образовав гигантский сверхматерик Лавразию. Это был период бурной вулканической активности и интенсивного горообразования. Похолодание в начале раннего силура сравнительно быстро сменилось потеплением, которое сопровождалось постепенной миграцией к полюсам субтропического климата. Если на северо-востоке Бразилии в начале раннего силура встречаются толщи морен, то позднее среди этих отложений начинают преобладать продукты выветривания, характерные для теплого климата. Потепление привело к возникновению в высоких и средних широтах климата, близкого к субтропическому.

Девонский период (400-350 млн. лет)

Ученые считают, что поскольку в девонский период на материках были широко представлены теплолюбивые виды организмов и осадочных образований, то колебания температурного режима вряд ли выходили за пределы тропического климата. Девонский период был временем величайших катаклизмов на нашей планете. Европа, Северная Америка и Гренландия столкнулись между собой, образовав огромный северный сверхматерик Лавразию. При этом с океанского дна были вытолкнуты кверху огромные массивы осадочных пород, сформировавшие громадные горные системы на востоке Северной Америки и на западе Европы. Эрозия поднимающихся горных хребтов привела к образованию большого количества гальки и песка. Из них сформировались обширные отложения красного песчаника. Реки выносили в моря горы осадков. Образовались обширные болотистые дельты, что создавало идеальные условия для животных, осмелившихся сделать первые, столь важные шаги из воды на сушу. К концу периода уровень моря понизился. Климат со временем потеплел и стал более резким, с чередованием периодов ливневых дождей и жесткой засухи. Обширные районы материков стали безводными.

Каменноугольный период (350-285 млн. лет)

В раннем карбоне на планете господствовал влажный тропический климат. Об этом свидетельствует широкое распространение карбонатных отложений, теплолюбивый тип морской фауны. Влажные тропические условия характерны для значительной части континентов как северного, так и южного полушария. В среднем и особенно позднем карбоне отчетливо проявляется климатическая зональность. Одной из характерных особенностей этого времени является значительное похолодание и появление в южном полушарии крупных ледниковых покровов, что в свою очередь привело к резкому сокращению субтропического и тропического поясов и общему понижению температуры. Даже в экваториальном поясе средние температуры в позднем карбоне понизились на 3-5°C. Также вместе с похолоданием в ряде областей появились признаки иссушения климата.

Пермский период (285-230 млн. лет)

Климат пермского периода характеризовался резко выраженной зональностью и возрастающей засушливостью. В целом можно сказать, что он был близок к современному. Для ранней перми, за исключением западного полушария, выделяются тропический, субтропический и умеренный пояса с различным режимом увлажнения. В начале периода продолжалось оледенение, начавшееся в карбоне. Оно было развито на южных материках. Постепенно климат становится очень сухим. Пермь характеризуется наиболее обширными пустынями в истории планеты: пески покрывали даже территорию Сибири.

3. Климат мезозоя

Триасовый период (230-190 млн. лет)

В триасовый период на Земле господствовал равнинный рельеф, который предопределил широкое распространение однотипных климатов на обширных площадях. Климат позднего триаса характеризовался высокими температурами и резко возросшей степенью испаряемости. Для эпохи раннего и среднего триаса трудно провести термическую зональность, так как практически повсеместно распространены показатели только высоких температур. Относительно прохладные условия существовали на крайнем северо-востоке Евразии и на северо-западе Североамериканского континента. Ландшафты суши оставались опустыненными, а растительность произрастала только на обводненных низменностях. Мелкие моря и озёра интенсивно испарялись, из-за чего вода в них стала очень солёной.

Юрский период (190-135 млн. лет)

В течение ранней и средней юры существовала не только термическая зональность, но и зональность, вызванная различием во влажности. В среднеюрскую эпоху существовали тропический, субтропический и умеренный пояса с различным режимом увлажнения. В пределах тропического и экваториального поясов происходило интенсивное химическое выветривание, произрастала теплолюбивая растительность, а в мелководных морях обитала тропическая фауна. В позднеюрскую эпоху по характеру температурного режима выделяются тропические, субтропические и умеренные пояса. Температура для позднеюрской эпохи колебалась в пределах 19-31,5°C. Для позднеюрской эпохи отсутствуют достоверные индикаторы, позволяющие выделить экваториальный пояс. Вероятно, экваториальные условия с сезонным увлажнением существовали в основном в Бразилии и Перу. На Африканском континенте и в Южной Евразии в экваториальной части, вероятно, преобладали пустынные ландшафты.

Меловой период (135-65 млн. лет)

В течение меловой эпохи на Земле существовали экваториальный, обширный тропический, субтропический и умеренный пояса.70 миллионов лет назад Земля охлаждалась. На полюсах сформировались ледяные шапки. Зимы становились суровее. Температура падала местами ниже +4 градусов. Для динозавров мелового периода этот перепад был резким и весьма ощутимым. Такие колебания температуры были вызваны расколом Пангеи, а затем Гондваны и Лавразии. Уровень моря поднялся и опустился. Струйные течения в атмосфере изменились, вследствие чего изменились и течения в океане. В конце мелового периода температура стала резко подниматься. Существует гипотеза, согласно которой причиной этих изменений являлись океаны: вместо того, чтобы поглощать тепло они, возможно, отражали его обратно - в атмосферу. Тем самым они вызвали парниковый эффект.

4. Климатический оптимум

Около 15 тыс. лет назад началось потепление. Ледниковый покров стал уменьшаться и отступать. Вслед за ним перемещались растения, которые постепенно осваивала все новые и новые ареалы. На протяжении климатического оптимума площадь морских полярных льдов в Северном Ледовитом океане значительно уменьшилась. Средняя температура вод в Арктике была на несколько градусов выше, чем в настоящее время. О наличии сравнительно высоких температур в то время свидетельствует существенное расширение ареала обитания некоторых животных. Теплый климат в Европе способствовал перемещению на север многих видов растений. В течение климатического оптимума сильно повысилась граница линии снегов. В горах леса поднялись почти на 400-500 м выше современного уровня. Если температура в период климатического оптимума в средних широтах повсеместно повысилась, то влажность менялась очень неравномерно. Она увеличивалась на севере европейской части России, а южнее 50-х широт она, наоборот, снижалась. В связи с этим ландшафты степей, полупустынь и пустынь располагались севернее современных. В Средней Азии, на Ближнем и Среднем Востоке влажность во время климатического оптимума была намного выше, чем в настоящее время. Теплый и влажный климат всего 10 тыс. лет назад существовал во всех ныне засушливых областях Азии и Африки.

Стоит обратить внимание на историю пустыни Сахара. Примерно 10- 12 тыс. лет назад на юге нынешней Сахары располагались два огромных пресных озера с густой тропической растительностью на берегах, не уступавшие по своим размерам современному Каспийскому морю. Однако благоприятный период климатического оптимума быстро подошел к концу. Все чаще стала появляться засуха, и наконец, под напором песков растительность исчезла, реки и озера высохли.

Следы потепления хорошо сохранились даже в Антарктиде. В частности, это следы водной эрозии, показывающие, что временами лед в Антарктиде оттаивал, и потоки воды размывали талый грунт.

Во время климатического оптимума было не только тепло, но и влажно, особенно в тех районах, которые в настоящее время принято считать засушливыми. Общее потепление привело к смещению к полюсам климатических поясов, изменилась атмосферная циркуляция. На ныне засушливые области выпадало большое количество осадков. Если внимательно изучить на карте поверхность современных пустынь, хорошо заметны сухие русла, по которым ранее протекали реки, и блюдцеобразной формы низины, бывшие в прошлом озерами.

Климат оказывал прямое воздействие на хозяйственную деятельность людей. С началом климатического оптимума наступает один из самых благоприятных этапов в жизни человечества. Для этого периода характерен не только высокий уровень изготовления орудий из камня, но и переход на оседлый образ жизни. Возникновение земледелия и скотоводства было связано не только с изменением климатических условий, но и с неразумной хозяйственной деятельностью. Благоприятный климат способствовал широкому распространению лесов и диких животных. Люди искали, добывали и потребляли в пищу то, что было не сложно достать, что давала природа. Но взамен ничего не создавали. С течением времени количество животных, особенно крупных, стало сокращаться. Людям проще было вместе убить крупное животное, чем долго выслеживать несколько мелких. Кроме того, охотники убивали наиболее сильных и приспособленных животных, а больные и старые доставались хищникам. Тем самым первобытные люди подрывали основу воспроизводства животных.

Неуспешная охота, длительные переходы в поисках животных, количество которых сильно сокращалась, побудили древних людей начать одомашнивать животных. Древнейшими районами одомашнивания были территории нынешней пустыни Сахары, междуречье Тигра и Евфрата, Инда и Ганга. Племена скотоводов в первое время кочевали, чтобы найти пригодные пастбища. Численность скота увеличивалась, стало тяжелее находить открытые участки. Скотоводы, как и земледельцы, стали жечь леса и использовать свободную землю для пастбищ и пашен. Освоение земель в зонах, подверженных климатическим изменениям, приводило к нарушению веками сложившегося равновесия. Изменялся влагооборот и температурный режим Земли. Массовый выпас скота способствовал быстрой деградации почвенного покрова. Уничтоженные леса, саванны и пастбища не восстанавливались. При наступлении засухи в связи с наступающим похолоданием в областях некогда пышных лесов и саванн возникли полупустынные и пустынные ландшафты.

По сохранившимся эрозионным отметкам в речных долинах установлено, что полноводность Нила, Тигра, Евфрата, Инда, Ганга и других рек в прошлом довольно сильно изменялась. Почти на 3 м опустился после климатического оптимума уровень Мирового океана. В условиях засушливости людям необходимо было развивать орошаемое земледелие. Сохранились сложные ирригационные сооружения, созданные руками древнего человека. Развитие поливного земледелия не помогло, а только отдалило полное истощение почвы. Под напором наступающих песков перестали существовать многие древние поселения.

Этот период можно назвать первым экологическим кризисом. В дальнейшем неразумное хозяйствование и вмешательство человека во многие природные процессы не раз приводили к весьма нежелательным результатам, некоторые заканчивались катастрофами.

5. Климат средневековья

Климатический оптимум окончился во II тыс. до н. э. Наступило похолодание, которое продолжалось вплоть до IV в. н. э. После этого на Земле вновь стало теплее. Теплый период продолжался с IV по XIII в., т. е. охватил раннее средневековье.

В Европе растительность средиземноморья уже не смогла преодолеть Альпы. Но все-таки почти на сотню километров к северу переместились границы произрастания теплолюбивой растительности. В Исландии снова стали выращивать зерно. Виноград выращивали на всем южном побережье Балтийского моря и даже в Англии. Самый пик потепления в Исландии пришелся на XI- XII вв. Было тепло везде: в Америке и в Азии. Древние летописи Китая сообщают, что в VII-X вв. в долине Хуанхэ росли мандарины, это означает, что климат этих территорий был субтропическим, а не умеренным, как в настоящее время. В период малого климатического оптимума влажный климат господствовал в Кампучии, Индии, странах Ближнего и Среднего Востока, Египте, Мавритании и странах, расположенных на юге пустыни Сахара.

Развитие человеческого общества, различные события в жизни народов и государств, межгосударственные отношения документально хорошо зафиксированы в Европе. Многие народы населяли этот континент в раннем средневековье, но в качестве примера остановимся на жизни викингов, так как их саги рассказывают много о природных условиях конца I и начала II тыс. Выходцы из Скандинавии, викинги, в России их называли варягами, совершали дальние переходы, захватывали чужие страны и осваивали новые земли. Завоеваниям и переходам викингов способствовало потепление климата. В X в. викинги открыли Гренландию. Своим названием этот остров обязан тем, что в то время он представился викингам в виде безбрежного зеленого ковра. На 25 судах 700 человек со скарбом и скотом переплыли Северную Атлантику и основали в Гренландии несколько крупных поселений. Поселенцы в Гренландии занимались скотоводством и, вероятно, возделывали зерновые. Трудно себе представить, что Гренландия, этот безмолвный и покрытый толстым ледяным панцирем остров, всего тысячу лет назад мог быть цветущим. Однако на самом деле это было так. Викинги пробыли в Гренландии недолго. Под натиском наступающего льда и развивающегося похолодания они вынуждены были покинуть этот огромный остров. Лед хорошо сохранил дома, хозяйственные постройки и предметы утвари викингов, а также следы пребывания скота и даже остатки зерновых.

На небольших деревянных судах, которые обладали прекрасными мореходными качествами, викинги совершали плавание не только в западном направлении и доплывали до берегов Канады, но и плавали далеко на север. Они открыли Шпицберген, неоднократно входили в Белое море и достигали устья Северной Двины. Все это дает основание считать, что в начале II тыс. в Арктике вероятнее всего, многолетний толстый лед отсутствовал. На Шпицбергене недавно обнаружены остатки ископаемой тундровой почвы, имеющей возраст всего 1100 лет. Следовательно, в X-XI вв. и даже раньше на Шпицбергене не только отсутствовал ледниковый покров, но и располагались тундровые и лесотундровые ландшафты.

Причины малого климатического оптимума средневековья:

1.Повышенная солнечная активность

.Редкие извержения вулканов

.Периодические колебания Гольфстрима, связанные с изменением солености океанской воды, которая в свою очередь зависит от изменений объемов ледников

6. Малый ледниковый период

После теплой эпохи наступило новое похолодание, которое получило название малого ледникового периода. Этот период продолжался с XIV до конца XIX в. Малый ледниковый период делится на три фазы.

Первая фаза (XIV-XV века)

Исследователи полагают, что наступление малого ледникового периода было связано с замедлением течения Гольфстрима около 1300 года. В 1310-х годах Западная Европа пережила настоящую экологическую катастрофу. После традиционно тёплого лета 1311 года последовали четыре хмурых и дождливых лета 1312-1315 годов. Сильные дожди и необыкновенно суровые зимы привели к гибели нескольких урожаев и вымерзанию фруктовых садов в Англии, Шотландии, северной Франции и Германии. Зимние заморозки стали поражать даже северную Италию. Прямым следствием первой фазы малого ледникового периода стал массовый голод первой половины XIV века.

Примерно с 1370-х годов температура в Западной Европе стала медленно повышаться, массовый голод и неурожаи прекратились. Однако холодное, дождливое лето было частым явлением на протяжении всего XV века. Зимой часто наблюдались снегопады и заморозки на юге Европы. Относительное потепление началось только в 1440-е годы, и оно сразу привело к подъёму сельского хозяйства. Однако температуры предшествовавшего климатического оптимума восстановлены не были. Для Западной и Центральной Европы снежные зимы стали обычным явлением.

Существенным было влияние малого ледникового периода и на Северную Америку. На восточном побережье Америки было чрезвычайно холодно, в то время как центральные и западные районы территории современных нам США стали настолько сухими, что Средний Запад превратился в регион пыльных бурь; горные леса полностью выгорели.

В Гренландии стали наступать ледники, летнее оттаивание грунтов становилось всё более кратковременным, и к концу века здесь прочно установилась вечная мерзлота. Выросло количество льда в северных морях, и предпринимавшиеся в последующие века попытки достигнуть Гренландии обычно заканчивались неудачей.

Вторая фаза (XVI век)

Вторая фаза ознаменовалась временным повышением температуры. Возможно, это было связано с некоторым ускорением течения Гольфстрима. Другое объяснение «межледниковой» фазы XVI века - максимальная солнечная активность. В Европе вновь было зафиксировано повышение среднегодовых температур, хотя уровень предшествовавшего климатического оптимума достигнут не был. В некоторых летописях даже упоминаются факты «бесснежных зим» середины XVI века. Однако приблизительно с 1560 года температура начала медленно понижаться. По-видимому, это было связано с началом снижения солнечной активности. 19 февраля 1600 года произошло извержение вулкана Уайнапутина, сильнейшее за всю историю Южной Америки. Считается, что это извержение было причиной больших климатических изменений в начале XVII века.

Третья фаза (условно XVII - начало XIX века)

Третья фаза стала наиболее холодным периодом малого ледникового периода. Пониженная активность Гольфстрима совпала по времени с наиболее низким после V в. до н. э. уровнем солнечной активности. После сравнительно тёплого XVI века в Европе резко снизилась среднегодовая температура. Глобальная температура понизилась на 1-2 градуса по Цельсию. На юге Европы часто повторялись суровые и продолжительные зимы, в 1621-1669 годах замерзал пролив Босфор, а зимой 1708-1709 годов у берегов замерзало Адриатическое море. По всей Европе наблюдался всплеск смертности.

Новую волну похолодания Европа пережила в 1740-е годы. В это десятилетие в ведущих столицах Европы - Париже, Петербурге, Вене, Берлине и Лондоне - отмечались регулярные метели и снежные заносы. Во Франции неоднократно наблюдалась снежная пурга. В Швеции и Германии, по свидетельствам современников, сильные метели нередко заметали дороги. Аномальные морозы отмечались в Париже в 1784 году. До конца апреля город находился под устойчивым снежным и ледовым покровом. Температура колебалась от -7 до -10 °C.

Причины малого ледникового периода:

1.Усиление активности вулканов, пепел которых затмевал солнечный свет

.Понижение солнечной активности

.Замедление Гольфстрима

7. Климат ближайшего будущего

Каким же будет климат? Одни считают, что на планете будет похолодание. Конец XIX и XX столетие - это передышка, подобная той, какая была в средние века. После потепления температура вновь понизится и наступит новый ледниковый период. Другие говорят, что температуры будут непрерывно повышаться.

В результате хозяйственной деятельности человека в атмосферу во все возрастающем количестве поступает углекислый газ, создающий тепличный эффект; Окислы азота вступают в химические реакции с озоном, разрушают преграду, благодаря которой существует на Земле не только человечество, но и все живое. Хорошо известно, что озоновый экран препятствует проникновению ультрафиолетового излучения, которое пагубно воздействует на живой организм. Уже сейчас в крупных городах и промышленных центрах повышена тепловая радиация. В ближайшем будущем этот процесс усилится. Тепловые выбросы, в настоящее время оказывающие влияние на погоду, в будущем будут интенсивнее воздействовать на климат.

Установлено, что в земной атмосфере прогрессивно снижается количество углекислого газа. В течение всей геологической истории содержание этого газа в атмосфере довольно сильно менялось. Было время, когда углекислого газа в атмосфере было в 15-20 раз больше, чем в настоящее время. Температура Земли в этот период была довольно высокой. Но стоило количеству углекислоты в атмосфере снизиться, как температуры понижались.

Прогрессивное снижение углекислого газа в атмосфере началось около 30 млн. лет назад и продолжается ныне. Расчеты показывают, что уменьшение атмосферной углекислоты будет происходить и в будущем. В результате снижения количества углекислого газа произойдет новое сильнейшее похолодание, наступит оледенение. Это может случиться через несколько сотен тысяч лет.

Это достаточно пессимистическая картина будущего нашей Земли. Но здесь не учитывается влияние хозяйственной деятельности человечества на климат. А оно настолько велико, что равноценно некоторым природным явлениям. В предстоящие десятилетия основное воздействие на климат будут оказывать, по крайней мере, три фактора: скорость роста выработки различных видов энергетики, главным образом тепловой; увеличение содержания углекислого газа в атмосфере в результате активной хозяйственной деятельности людей; изменение концентрации атмосферного аэрозоля.

В наше столетие естественная убыль атмосферной углекислоты не только была приостановлена в результате хозяйственной деятельности человечества, но в 50-е и 60-е годы начали медленно повышаться концентрации углекислого газа в атмосфере. Это было обусловлено развитием промышленности, резко возросшим количеством сжигаемого топлива, необходимого для выработки тепла и энергии.

Значительное влияние на содержание атмосферной углекислоты и формирование климата оказывают вырубки лесных массивов, продолжающиеся во все возрастающих размерах, как в тропических странах, так и в умеренном поясе. Уменьшение площади лесных массивов приводит к двум весьма нежелательным для человечества последствиям. Во-первых, сокращается процесс переработки углекислого газа и выделение растениями свободного кислорода в атмосферу. Во-вторых, при вырубке лесов, как правило, оголяется земная поверхность, а это приводит к тому, что солнечная радиация отражается сильнее и вместо нагревания и сохранения тепла в приземной части поверхность, наоборот, охлаждается.

Однако при прогнозе климата будущего надо исходить из реально существующих тенденций, вызванных хозяйственной деятельностью человека. Анализ многочисленных материалов по антропогенным факторам, воздействующим на климат, позволил советскому ученому М.И. Будыко еще в начале 70-х годов дать достаточно реалистический прогноз, согласно которому увеличивающаяся концентрация атмосферной углекислоты приведет к повышению средних температур приземной части воздуха к началу XXI в. Этот прогноз в то время был практически единственным, так как многие климатологи считали, что процесс похолодания, начавшийся в 40-е годы нынешнего столетия, будет продолжаться. Время подтвердило правильность прогноза. Еще 25 лет назад содержание углекислого газа в атмосфере составляло 0,029 %, но за прошедшие годы оно увеличилось на 0,004%. Эта, в свою очередь, привело к возрастанию средних глобальных температур почти на 0,5°C.

Каким образом распределятся температуры на земном шаре после повышения? Наибольшие изменения температуры приземной части воздуха будут происходить в современных арктическом и субарктическом поясах в зимний и осенний сезон. В Арктике средняя температура воздуха в зимний сезон возрастет почти на 2,5- 3°C. Такое потепление в области развития морских арктических льдов приведет к их постепенной деградации. Таяние начнется в периферических частях ледникового щита и медленно будет смещаться в центральные районы. Постепенно толщина льда и площадь ледяного покрова будут уменьшаться.

В связи с изменением температурного режима в ближайшие десятилетия должен стать другим и характер водного режима земной поверхности. Глобальное потепление на планете всего на 1° приведет к уменьшению количества осадков в значительной части степной и лесостепной зон умеренного климатического пояса примерно на 10-15 % и к увеличению примерно на такую же величину увлажненной зоны в субтропическом поясе. Причины такого глобального изменения заключаются в существенном изменении атмосферной циркуляции, которая происходит в результате уменьшения разности температур между полюсами и экватором, между океаном и континентами. В период потепления таяние льдов в горах и особенно в полярных областях вызовет повышение уровня Мирового океана. Увеличившаяся площадь зеркала водной поверхности будет оказывать сильное влияние на формирование атмосферных фронтов, облачности, увлажненности и в значительной степени повлияет на рост испаряемости с поверхности морей и океанов.

Предполагается, что в первой четверти XXI в. в тундровой зоне, которая к тому времени полностью исчезнет и заменится таежной, осадки в основном будут выпадать в виде дождей и общая сумма осадков намного превысит современные. Она достигнет величины 500-600 мм в год. Учитывая, что средние летние температуры в современной тундровой зоне повысятся до 15-20°С, а средние зимние - до минус 5-8 °С, эти области перейдут в пояс умеренного климата. Здесь возникнут ландшафты хвойных лесов (таежная область), но не исключена возможность появления зоны смешанных лесов.

При развитии потепления в Северном полушарии расширение географических или ландшафтно-климатических областей будет происходить в северном направлении. Сильно расширятся области равномерного и переменного увлажнения. Что же касается областей с недостаточным увлажнением, то смена температурного режима отразится на миграции областей пустынь и полупустынь. Увеличивающееся увлажнение в тропических и экваториальных областях вызовет постепенно сокращение пустынных и полупустынных ландшафтов. Они будут сокращаться на южных границах. Однако взамен этого произойдет расширение их к северу. Засушливые области как бы будут мигрировать к северу. Предполагается также расширение в пределах умеренного пояса лесостепных и степных областей за счет сокращения зоны широколиственных лесов.

8. Влияние климата на развитие цивилизации

климат ледниковый докембрийский

Хозяйственная деятельность человека во многом зависит от климата и определяется им. На заре развития человеческого общества климат был одним из главных факторов, который определял выбор человеком мест обитания и охоты, мест собирания, а в дальнейшем и выращивание определенных продуктов питания и т.д. Климат оказывал влияние даже на развитие цивилизации. Так, в период потепления исландские поселенцы посылали своих колонистов на запад Гренландии. В результате похолодания колония в Гренландии пришла в упадок, а в дальнейшем усиление холода привело к уничтожению и основных колоний норманнов в Исландии.

Последовательное усиление засухи на территории Ближнего и Среднего Востока, происходившее в 1 тысячелетии до н.э., привело к уничтожению многих крупнейших для своего времени городов и поселений. Многие из них в дальнейшем оказались погребенными под слоем песка наступающих пустынь. Следовательно, изменение климата в ту или иную сторону приводило к весьма серьезным последствиям для развития цивилизаций.

Исторические данные дают огромный материал, свидетельствующий о том, что похолодание или засуха в древности приводили к резкому сокращению сельскохозяйственной продукции и в связи с этим периодически наступали голодные годы.

Согласно многочисленным оценкам климатологов, изменяющийся климат может оказать влияние на производство продовольствия, как в региональном, так и в глобальном масштабе. Так, например, после второй мировой войны урожайность зерновых культур возросла вследствие внедрения новой технологии в обработке почвы, возделывания, правильного внесения необходимого количества удобрений, вывода новых засухоустойчивых и морозоустойчивых сортов и т.д. В последнее десятилетие мировое продовольственное производство росло на 3% в год главным образом за счет ввода новых площадей под сельскохозяйственные угодья. Но вместе с тем прирост продовольственного производства, происходивший в течение 60-х годов 20 в., резко снизился в начале 70-х годов и главным образом в 1972 г. в результате неблагоприятного влияния климатических аномалий.

Большое влияние оказывает климат на распределение водных и энергетических ресурсов. Не вызывает сомнения тот факт, что колебания климата выражаются и в изменении циркуляции атмосферы, общего количества атмосферных осадков, режима выпадения осадков и общего количества речного стока. Несмотря на то, что системы водоснабжения и водохранилища спроектированы с определенными запасами, учитывающими погодные изменения в связи с возможными изменениями режима выпадения атмосферных осадков в будущем, в регионах, расположенных в засушливом климате, могут возникнуть большие проблемы с водоснабжением населенных пунктов и промышленных объектов.

В определенной мере изменения климата, как в сторону похолодания, так и потепления в будущем внесут свои коррективы в выработку и потребление энергии. Невозобновляемость топливных ресурсов и неуклонное их сокращение с течением времени создают дополнительные проблемы, которые особенно рельефно выражаются при наступлении похолоданий.

Несмотря на столь очевидную зависимость хозяйственной деятельности человека от климата, технические средства, уровень развития науки и особенно рост технических возможностей в обозримом будущем могут сильно изменить характер воздействия климатических изменений.

Заключение

Рассматривая процесс формирования и развития климата Земли с исторической стороны, можно прийти к выводу о том, что в течение последних 600 млн. лет климат неоднократно с определенной периодичностью менялся. В соответствии с климатическими колебаниями происходило изменение природных условий, менялся состав атмосферы, развивалась органическая жизнь, расширялись ареалы обитания растений и животных. С течением времени возникали новые типы климата и неизвестные раннее ландшафтно-климатические условия.

Многочисленные исследования климатологов разных стран свидетельствуют о том, что хозяйственная деятельность человека, связанная с сжиганием ископаемого топлива во все возрастающем количестве, а также сокращение лесных массивов в конечном счете приведут к изменению химического состава атмосферы. Можно ожидать, что в ближайшие десятилетия концентрация углекислого газа в атмосфере возрастет до полутора, а в первой четверти 21 века - почти в 2 раза по сравнению с современной эпохой. Для надежного прогнозирования, и, главное, для определения генерального направления хозяйственной деятельности человека в ближайшие десятилетия необходимо правильно представить себе не только характер или тенденцию изменения температуры, но и дать объективную характеристику ожидаемых изменений в природных условиях. Этому неоценимую помощь оказывает определение времени существования аналогичных климатических условий в геологическом прошлом и сопоставлении природных условий с предполагаемым в будущем.

Список первоисточников

1. Ясаманов Н.А. Занимательная климатология. 1989.

. Ясаманов Н.А. Древние климаты Земли. 1985

. Википедия - свободная энциклопедия. http://ru.wikipedia.org/wiki/Малый_ледниковый_период

. http://www.fio.vrn.ru/2004/7/index.htm

. BBC «Климатические войны» (документальный фильм) 2008

Теги: Климат Земли в прошлом, настоящем, будущем. Его влияние на развитие цивилизации  Реферат  Биология

dodiplom.ru

Реферат - Климаты прошлых эпох

Дмитровский филиал Астраханский Государственный Технический Университет

РЕФЕРАТ

на тему:

Климаты прошлых эпох

Выполнил: Гарсия Д.А.

Рыбное, 2008

Содержание

Введение

1. Изменение климата в Фанерозое

2. Изменение климата в Четвертичный период

Введение

На протяжении геологической истории Земли вместе со всей земной природой менялись состав атмосферы, ее масса, менялся и климат. По современным представлениям, за этот период времени многократно изменялись очертания материков, конфигурация и высота горных систем, площадь суши и океана, происходили колебания эксцентриситета орбиты Земли и наклон вращения Земли к плоскости орбиты. Следовательно, неизбежно происходили изменения климатических и географических факторов климата.

1. Изменение климата в Фанерозое

Начало палеозоя характеризовалось теплым климатом. Основные массы суши были сосредоточены в тропических и умеренных широтах. Южный и Северный полюса омывались океаном, и это препятствовало образованию льда. Похолодание климата, приведшее к новому крупному оледенению, отмечено около 450 млн. лет назад в позднем ордовике. К этому времени на поверхности земного шара произошли значительные перемещения материковых плит: на западе существовали обособленные друг от друга древние аналоги Северной Америки и Евразии. На востоке материки объединились в суперконтинент Гондвана, в который входили Африка, Южная Америка, Индия, Антарктида и Австралия. Позднеордовикский Южный полюс находился на месте нынешней Сахары. Здесь развилось большое покровное оледенение. Во время этого оледенения ледниковые щиты достигали толщины 2 км.

К силуру, т.е. 440 млн. лет назад, средняя температура снова выросла примерно до 20°С. Это на 5°С выше современной температуры. Климат стал более теплым. Потепление продолжалось и в девоне (от 400 до 350 млн. лет назад), когда средняя температура Земли достигала 25°С. Во многих районах бурно развивалась растительность, климат был тропическим. Такие же условия сохранились и в карбоне. Однако, в течение каменноугольного периода происходило похолодание. Каменноугольные период, охватывающий интервал 350-285 млн. лет назад, был временем, когда образовался суперконтинент Пангея, простиравшийся от Северного до Южного полюсов. В начале Перми мощное покровное оледенение стало максимальным. Средняя температура упала до 8°С. Глубокое похолодание климата имело существенное влияние на развитие растительного и животного мира. К концу пермского периода вымерло 75% семейств земноводных и свыше 80% пресмыкающихся. Но определенные виды растений, наоборот, сумели приспособиться к холодному климату.

В начале триасового периода (230 млн. лет назад) все основные массивы суши были спаяны в единый суперконтинент – Пангею. Впоследствии в Юрском периоде Пангея стала распадаться. Открылся широкий пролив между южным суперконтинентом Гондваной и северным суперконтинентом Лавразией, часть которого оказалась затопленной. Гондвана раскололась на Южную Америку, Африку, Индию, Антарктиду и Австралию. В течение триасового периода происходило постепенное потепление. Юрский период характеризовался теплыми температурами на всем своем протяжении. Юрскому климату была свойственна широтная зональность. В Юрский период на Земле царствовали динозавры. В меловой период, т.е.135 млн. лет назад, климат оставался теплым, средняя температура была 25°С. В Западной Европе средние годовые температуры в Европе достигали 18-22°С. В целом меловой период был теплее современного, хотя широтная зональность была отчетливой даже в самые теплые века мела.

В конце мелового периода происходит великое вымирание морской и наземной мезозойской флоры и фауны – погибли аммониты, белемниты, динозавры и значительная часть морского планктона. Причиной этой природной катастрофы, вероятно, было относительно кратковременное похолодание, вызванное выбросом в атмосферу огpомного количества аэрозолей, которые уменьшили приток солнечной радиации к земной поверхности до значений, понизивших глобальную температуру на 2,9°С относительно предшествующего времени и температуру морской воды в полярных районах до 7 -8°С.

Oтносительно причины выброса аэрозолей в атмосферу существуют две точки зрения. Одни ученые считают, что выброс аэрозолей в атмосферу произошел в результате столкновения Земли с астероидом. Об этом свидетельствует прослойка в породах на границе между мезозоем и кайнозоем с повышенным содержанием иридия, который приносится на Землю из космоса. Другие связывают выброс аэрозолей в атмосферу с взрывным усилением в это время вулканизма, отмечая, что при извержениях наряду с пеплом и газами мог переноситься и иридий, который содержится в ультраосновных породах мантии. Как бы то ни было, но к концу мелового периода глобальная температура снова повысилась и превышала современную на 7-10°С.

Таким образом, на рубеже между мезозоем и кайнозоем климат Земли отличался мягкостью, был теплым и влажным, льдов в полярных районах не было, контраст между экватором и полюсами составлял 15-16°С, в то время как сейчас он меняется от 30°С летом до 60°С зимой.

Кайнозойская эра, которая началась 65 млн. лет назад, вначале характеризовалась теплым климатом. В палеоцене сохранялись высокие температуры: средняя глобальная температура в это время превышала современную примерно на 8-9°С, средняя годовая температура на широте Лондона (51° с.ш.), например, была не менее 21°С (сейчас она равна 10°С), средний меридиональный градиент экватор — полюс был равен 15-17°С, т.е. примерно в два раза меньше, чем летом нашего времени.

Затем начиная с позднего эоцена (примерно 44 млн. лет назад) началось устойчивое ступенеобразное понижение глобальной температуры. Уже к середине олигоцена (30-35 млн. лет назад) температура поверхности воды в экваториальных широтах Тихого океана понизилась до 17-18°С, а придонных вод — до 5°С. В миоцене начиная с 23 млн. лет назад началось потепление, которое достигло пика в период между 19 и 15 млн. лет назад. Оно охватило все континенты. Средние годовые температуры, например в Центральной Европе, не опускались ниже 18-20°С, а годовые суммы осадков составляли не менее 1000 мм, в Западной Сибири среднегодовая температура воздуха не опускалась ниже 10-12°С.

Новое резкое падение температуры началось с середины миоцена, примерно 15 млн. лет назад. К концу этого периода температура придонных вод составляла 2°С. Она характеризует климатические условия в полярных широтах земного шара, поскольку придонные воды — это опустившиеся в полярных районах воды и растекшиеся затем по дну без изменения своей температуры

Примерно в это время началось оледенение Антарктиды сначала в горах, а 15 млн. лет назад и на всем материке. Современная температура придонных вод в полярной области равна -l°С, а в районе экватора 1-2°С. Таким образом, тенденция к понижению температуры в течение кайнозойской эры от палеоцена к плиоцену, наблюдавшаяся в полярных районах, характеризует также условия на всем земном шаре. Причем, если до раннего плиоцена не обнаруживается больших колебаний средней температуры Земли, то, начиная со среднего плиоцена, фиксируются значительные колебания средних температур с амплитудой, достигающей 10°С в течение периодов, длящихся несколько десятков тысяч лет.

Так, в начале плиоцена 5,0 млн. лет назад началось потепление, вызвавшее таяние ледникового щита Антарктиды и горных ледников Северного полушария. Это привело к мощной глобальной трансгрессии (4,7-4,4 млн. лет назад), поднявшей уровень мирового океана на 100 м. Однако около 3,3-3,2 млн. лет назад началось новое глобальное похолодание, которое характеризовалось резким возрастанием нестабильности климата. Похолодание привело к появлению ледниковых щитов в Северном полушарии, в частности к возникновению первого покровного оледенения в Северной Америке (2,8-2,4 млн. лет назад), распространившегося до Великих озер, к росту континентальных ледниковых щитов в Антарктиде и резкому падению уровня Мирового океана. Понижение уровня океана привело к обнажению больших участков суши и, таким образом, к увеличению континентального климата, а также изменило условия водообмена между различными бассейнами и, вероятно, привело к потере связи между Тихим, Индийским и Атлантическим океанами в тропических широтах. Появление мощного ледникового покрова в Антарктиде привело к увеличению альбедо и уменьшению солнечной радиации, получаемой Землей, к охлаждению вод циркумполярного течения вокруг Антарктиды и, следовательно, понижению температуры придонных вод всего Мирового океана.

2. Изменение климата в Четвертичный период

Плейстоцен (продолжительность 1,5±0,5 млн. лет) в течение долгого времени был синонимом названия «ледниковый период», поскольку считалось, что оледенение в Северном полушарии началось только в плейстоцене. Но оледенение в Южном полушарии началось в миоцене 15 млн. лет назад, а в Северном полушарии ледовые щиты появились 3 млн. лет назад. В течение плейстоцена происходила смена похолоданий климата и межледниковий.

Плейстоцен начинается оледенением Гюнц 1,2-1,0 млн. лет назад. Южная граница гюнцского оледенения достигла 56° с.ш. В Европе и 40° с.ш. в Америке. Гюнц закончился гюнц-миндельским потеплением 1,0-0,76 млн. лет назад.

В Северо-Западной Европе во время этого межледниковья были распростанены широколиственные леса, средняя годовая температура равнялась 9°С.

Далее наступило классическое оледенение Альп – миндель — примерно 790-580 тыс. лет назад. По некоторым данным в эту эпоху наблюдалась максимальная площадь ледяного покрова. В Западной Европе скандинавский ледовый щит распространялся далеко на юг, захватив Англию. На территории России во время Окского оледенения южный край ледника достигал устья Камы. Далее последовало Миндель-Рисское межледниковье (580-350 тыс. лет назад). В Европе температура воздуха летом была выше на 2-3° С выше, чем в современный период. Виноград распространился на Британские острова, Данию и Польшу. В центре России в это время росли широколиственные леса: граб, липа, тис, грецкий орех. Были также и хвойные леса. Миндель-рисское межледниковье является одним из самых теплых времен плейстоцена.

Вслед за этим межледниковьем наступило новое похолодание – Рисский ледниковый период (350-150 тыс. лет назад). Последнее оледенение, названное на территории Западной Европы Вюрм-Висла, в нашей стране – валдайским и зырянским, а в Северной Америке – висконсинским, началось 115 тыс. лет назад. В Евразии началось образование и накопление льда над Скандинавским нагорьем. Распространение ледникового покрова на Западную Европу привело к исчезновению лесов в Англии, Нидерландах, Германии и на северо-западе современной России. Уровень Мирового океана понизился примерно на 60 м ниже современного положения.

В позднем Вюрме – с 25 тыс. лет назад до 10 тыс. лет назад – продолжалось похолодание климата и наступление ледникового покрова, который достиг максимального за весь вюрмский период размера 21 тыс. лет назад. Уровень поверхности Мирового океана был на 85 м ниже современного.

В центре субтропических антициклональных круговоротов температура повышалась. В среднем для Земного шара температура поверхностных вод Мирового океана была на 2,3°С ниже, чем в настоящее время. Расчеты показали, что климат эпохи оледенения в континентальных областях, не покрытых льдами, был существенно холоднее. В Восточной Европе температура была на 10-15°С ниже современной. В среднем для Земли воздух был на 5°С холоднее современного, а климат суше.

Позже началось отступание Скандинавского и Северо-Американского ледниковых щитов.

Заключение

Таким образом, изменение климата в кайнозое и плейстоцене объясняется следующим образом. Постепенное уменьшение концентрации СО2 в олигоцене и миоцене, расположение Антарктиды в районе Южного полюса, увеличение поверхности суши и ее высоты дали начало постепенному похолоданию климата, которое привело сначала к оледенению Антарктиды, а затем и полярных районов Северного полушария. Как только оледенение достигло критической величины, климатическая система атмосфера-океан-ледники-суша становится неустойчивой, и начинаются колебания климатических параметров.

Рассматривая плейстоцен в последовательности климатов, можно сказать, что это холодный период.

www.ronl.ru

Реферат: Изменение климата планеты Земля

ИЗМЕНЕНИЕ КЛИМАТА НА ЗЕМЛЕ

От составителя

Изменение окружающей среды происходит не только в результате антропогенного воздействия, но и под влиянием естественных причин. Это относится прежде всего к климату. Рассматривая проблемы глобального изменения климата, истощения озонового слоя в атмосфере Земли, предлагаемые меры по сокращению эмиссии парниковых и озонразрушающих газов, следует проанализировать возможное соотношение естественных и искусственных причин тревожащих человечество отклонений от признаваемого им оптимума состояния окружающей среды.

Среди многочисленной литературы по климату и причинам его изменения особое место занимает популярная книга К.С. Лосева “Климат: вчера, сегодня... и завтра?”, в которой сочетается научная глубина изложения с легкой формой, уже адаптированной для учебных целей. Приведенные ниже фрагменты из этой книги в сочетании с выдержками из нескольких статей достаточны для первого знакомства с указанной проблемой.

Проблема потепления климата изложена в учебниках и доступном докладе Гринпис “Глобальное потепление”(М.: Изд-во МГУ, 1993).

Ранняя история изменения климата на Земле

<...> Развитие микроорганизмов, похожих на современные сине-зеленые водоросли, и было началом конца восстановительной атмосферы, а вместе с ней и первичной климатической системы. Этот этап эволюции начинается около 3 млрд лет назад, а возможно и раньше, что подтверждает возраст отложений строматолитов, являющихся продуктом жизнедеятельности первичных одноклеточных водорослей. Находки их в Южной Африке датируются 2,7–2,9 млрд лет. <...> (С. 47)

<...> Заметные количества свободного кислорода появляются около 2,2 млрд лет назад – атмосфера становится окислительной. Об этом свидетельствуют геологические вехи: появление сульфатных осадков – гипсов, и в особенности развитие так называемых красноцветов – пород, образовавшихся из древних поверхностных отложений, содержавших железо, которые разлагались под воздействием физико-химических процессов, выветривания. Красноцветы отмечают начало кислородного выветривания горных пород.

О.Г. Сорохтин в последнее время выдвинул новую гипотезу, согласно которой в результате непрерывно идущего процесса формирования ядра Земли из зоны его формирования выделяется избыток кислорода, “просачивающегося” к поверхности планеты и участвующего в формировании атмосферы. По О.Г. Сорохтину, именно таким путем атмосфера стала окислительной, а возможно даже, что она с самого начала имела некоторое количество кислорода.

Предполагается, что около 1,5 млрд лет назад содержание кислорода в атмосфере достигло “точки Пастера”, т.е. 1/100 части современного. Точка Пастера означала появление аэробных организмов, перешедших к окислению при дыхании с высвобождением при этом значительно большей энергии, чем при анаэробном брожении. Опасное ультрафиолетовое излучение уже не проникало в воду глубже 1 м, так как в кислородной атмосфере возник пока еще очень тонкий озоновый слой. 1/10 части современного содержания кислорода атмосфера достигла более 600 млн лет назад. Озоновый экран стал более мощным, и организмы распространились во всей толще океана, что привело к настоящему взрыву жизни. А вскоре, когда на сушу вышли первые самые примитивные растения, уровень содержания кислорода в атмосфере быстро достиг современного и даже превзошел его. Предполагается, что после этого “всплеска” содержания кислорода продолжались его затухающие колебания, которые, возможно, имеют место и в наше время. Так как фотосинтетический кислород тесно связан с потреблением углекислого газа организмами, то и содержание последнего в атмосфере испытывало колебания.

Вместе с изменениями атмосферы другие черты стал приобретать и океан. Аммиак, содержавшийся в воде, был окислен, изменились формы миграции железа, сера была окислена в окись серы. Вода из хлоридно-сульфидной стала хлоридно-карбонатно-сульфатной. В морской воде оказалось растворенным огромное количество кислорода, почти в 1000 раз больше, чем в атмосфере. Появились новые растворенные соли. Масса океана продолжала расти, но теперь медленнее, чем на первых этапах, что привело к затоплению срединно-океанических хребтов, которые были открыты океанологами только во второй половине нашего века. <...> (С. 47–48)

<...> О необычайно большой роли фактора жизни в формировании и эволюции всех компонентов климатической системы свидетельствуют следующие цифры. За 10 млн лет фотосинтез перерабатывает массу воды, равную всей гидросфере; примерно за 4 тыс. лет обновляется весь кислород атмосферы, а всего за 6–7 лет поглощается вся углекислота атмосферы. Это означает, что за время развития биосферы вся вода Мирового океана не менее 300 раз прошла через ее организмы, а кислород атмосферы возобновлялся не менее 1 млн раз! Между тем современная масса живого вещества в биосфере Земли составляет всего 2,42*1018 г. Эта масса в основном находится на суше, в океане ее на порядок меньше – 3,2*1017 г. <...> (С. 49)

<...> Океан является основным поглотителем тепла, поступающего к поверхности Земли от Солнца. Он отражает только 8% потока солнечного излучения, а 92% поглощает его верхний слой. 51% полученного тепла затрачивается на испарение, 42% тепла уходит из океана в виде длинноволнового излучения, так как вода, подобно всякому нагретому телу, излучает тепловые (инфракрасные) лучи, остальные 7% тепла нагревают воздух при прямом контакте (турбулентный обмен). Океан, нагреваясь в основном в тропических широтах, переносит тепло течениями в умеренные и полярные широты и охлаждается.

Средняя температура поверхности океана равна 17,8 °С, что почти на 3 градуса выше средней температуры воздуха у поверхности Земли в целом. Самый теплый – Тихий океан, средняя температура его вод 19,4 °С, а самый холодный (со средней температурой воды -0,75 °С) – Северный Ледовитый океан. Средняя температура воды всей толщи океана гораздо ниже поверхностной температуры – всего 5,7 °С, но она все же на 22,7 °С выше средней температуры всей земной атмосферы. Из этих цифр следует, что океан выступает как основной аккумулятор солнечного тепла. <...> (С. 52)

Человек появился в эпоху оледенения

<...> 25 тыс. лет назад начинается последнее разрастание ледниковых покровов. Своего максимума в северном полушарии они достигли 18 тыс. лет назад. <...> (С. 92)

<...> Кульминация оледенения продолжалась недолго, уже 16 тыс. лет назад началась его общая деградация, а 5 тыс. лет спустя объем льда сократился вдвое. В это время наступило небольшое похолодание, которое приостановило разрушение ледниковых покровов, но уже 8 тыс. лет назад Скандинавский ледниковый покров исчез полностью. В Северной Америке последние следы некогда грандиозного Лаврентийского ледникового покрова перестали существовать примерно 6 тыс. лет назад. Быстрая деградация ледниковых покровов объясняется не только климатическими условиями, но и самим механизмом движения льда, особенностями механики гигантского ледяного тела, находящегося на поверхности Земли в условиях, близких к точке плавления этого материала. <...>

История колебаний климата и оледенения за последние 3 млн лет приводят к выводу о том, что при существующем состоянии климатической системы регулятором колебаний служит Антарктический ледниковый покров. С одной стороны, он не позволяет критической пороговой температуре воздуха подняться более чем на 2 °С во время межледниковий, так как, находясь в благоприятных условиях существования у Южного полюса, при общей деградации оледенение всегда сохраняет площадь не менее 10 млн км2. С другой стороны, в периоды развития и наступления ледников его край не может продвинуться далеко, так как открытый океан препятствует этому. В связи с этим при наступлении ледников в северном полушарии в южном сохраняется сравнительно теплая обстановка, в чем не последнюю роль играет большая “океаничность” этого полушария. В результате процесс развития оледенения тормозится в глобальном масштабе. Трудно представить, как далеко могло бы зайти оледенение на нашей планете, если бы южное полушарие было менее океаническим, а южнополярный континент имел значительно большие размеры.<...>(С. 93)

<...> Оригинальная гипотеза известна как пульсационная гипотеза Уилсона. Похолодание может быть связано с особенностями движения Антарктического ледникового покрова. Периодически в пределах этого покрова могут возникать быстро движущиеся потоки льда гигантских размеров, которые выбрасываются в океан, формируют шельфовый ледник и огромную массу айсбергов. Выброс может составлять несколько миллионов кубических километров льда. Увеличение площади ледникового покрова и масса тающих айсбергов приводят к глобальному понижению температуры и служат спусковым механизмом нового цикла оледенения. Зарождение такой пульсации Антарктического ледникового покрова происходит в межледниковья, так как быстрые гигантские потоки льда могут сформироваться только при условии его прогревания. Таким образом, потепление приводит к новому ледниковому периоду. <...>

<...> Астрономическая гипотеза, разработанная в 20-х годах нашего века югославским геофизиком М. Миланковичем. В соответствии с гипотезой Миланковича полушария Земли в результате изменения элементов ее движения могут получать меньшее или большее количество солнечной радиации, что отражается на глобальной температуре. Миланкович выделил три элемента движения. Один – колебания земной оси. Если посмотреть на ось сверху, то оказывается, что она описывает в пространстве круг за время приблизительно 25 тыс. лет, т.е. как бы покачивается по отношению к Солнцу.

Второй – изменение наклона земной оси по отношению к плоскости орбиты (эклиптики) Земли. Такие изменения происходят с периодичностью 41 тыс. лет и достигают 3 градусов. Третий элемент движения связан с изменением формы орбиты от почти круговой до несколько вытянутой – эллиптической. При этом различие в удалении от Солнца составляет около 5 млн км. Предполагается, что раньше оно было больше.

Рассчитав совместное влияние всех трех факторов, Миланкович смог определить периоды, когда те или иные широтные зоны Земли получают наименьшее количество солнечного излучения. По всей видимости, эти периоды и должны соответствовать периодам формирования и развития покровных ледников в северном полушарии. Впоследствии другие исследователи, в том числе советские, внеся небольшие уточнения, подтвердили расчеты изменений движения Земли и притока солнечной радиации, выполненные Миланковичем. Эта гипотеза получила косвенное подтверждение благодаря анализу климатических ритмов при изучении колонок глубоководных морских осадков, относящихся к последним 500 тыс. лет, содержания тяжелого изотопа кислорода, а также видового состава двух видов морских организмов (радиосолярий) – все три индикатора характеризуют разные стороны климатической системы – температуру, распреснение и засоление океана в результате таяния и образования ледниковых покровов. Индикаторы подтвердили существование трех циклов изменения климатической системы с периодичностью, соответствующей периодичности факторов Миланковича. Наиболее резкие изменения происходили с периодичностью 100 тыс. лет, менее выраженные – с периодичностью 42 тыс. лет, а самые небольшие – 24 тыс. лет. <...> (С. 95–96)

<...> Последний интервал, во время которого мы живем, носит название голоцена. Это отрезок времени с начала нынешнего межледниковья, начавшегося 10 тыс. лет назад и по времени соответствующего благоприятному для потепления сочетанию факторов Миланковича. Межледниковье тоже не является застывшим миром, хотя оно и не столь богато событиями, как ледниковый период. В голоцене происходили заметные климатические колебания, которые хорошо прослеживаются как с помощью палеотемпературных, так и других методов реконструкции климата прошлого.

Ранняя часть голоцена характеризовалась потеплением, которое перешло около 8 тыс. лет назад в интервал, известный как “климатический оптимум” и продолжавшийся около 2,5 тыс. лет. В период оптимума средняя температура воздуха была выше современной, отмечена также повышенная увлажненность, в частности в пустынях Сахаре и Раджастхане в Индии. О более высокой температуре говорят хорошо сохранившиеся индикаторы климата прошлого, в частности находки стволов деревьев, произраставших на берегах Северного Ледовитого океана в Сибири, в Гренландии и на острове Элсмир. Исландию в этот период наполовину покрывали березовые леса, которые сейчас занимают не более 1% территории. В горах повысилась граница леса, а ледяной покров Северного Ледовитого океана сократился по площади почти вдвое по сравнению с современным. В Сахаре найдены остатки многих животных, которые могли жить только при наличии водоемов со стоячими и текучими водами, обнаружены остатки богатой растительности. По существующим оценкам, в Европе было теплее на 2 °С, чем сейчас, причем в основном в летний период, так как многие вечнозеленые растения – тис, падуб, и др. – контролируются зимней температурой и в это время на север не продвигались. Потепление, хотя и не столь сильное, как в северном полушарии, было отмечено и в южном.

Климатический оптимум 5,5 тыс. лет назад сменился похолоданием, затем наступило новое потепление, кульминация которого пришлась на период около 4 тыс. лет назад. Следующее за ним новое похолодание совпало с периодом войн за Трою и путешествий Одиссея.

Следует сказать, что климатологи различают геологические, исторические и современные изменения климата. Ранее речь шла о геологических изменениях, которые изучаются только геологическими и геофизическими методами. К историческим относятся изменения климата, происходившие в период развития цивилизации до начала инструментальных наблюдений. При изучении их в дополнение к геологическим и геофизическим методам используются археологические памятники и памятники письменности. Современные изменения климата относятся только к периоду инструментальных наблюдений.

Вслед за первым историческим похолоданием с кульминацией около 3 тыс. лет назад началось новое потепление, продолжавшееся и в первом тысячелетии нашей эры, известное как “малый климатический оптимум”. Этот период можно назвать также периодом забытых географических открытий, в отличие от периода Великих географических открытий XV и XVI вв. Открывателями новых земель были ирландские монахи, которые в середине первого тысячелетия благодаря улучшившимся вследствие потепления условиям мореплавания в Северной Атлантике смогли открыть Фарерские острова, Исландию и , как теперь предполагают, Америку. Вслед за ними эти открытия повторили норманнские викинги, которые в конце этого тысячелетия заселили Фарерские острова и Исландию, открыли и заселили Гренландию, а в самом начале последнего тысячелетия нашей эры добрались до Америки. Такая широкая экспансия норманнов в северные страны и отсутствие в исландских сагах того времени упоминаний о морских льдах как препятствии для мореплавания указывают на очень теплые условия. Норманнские поселенцы в Гренландии занимались не только добычей рыбы и зверя, но и скотоводством. Они заплывали очень далеко на север. Так, каменные пирамиды норманнов, служившие им ориентирами, обнаружены на 79 градусе с.ш. на берегу пролива Смита, разделяющего остров Элсмир и Гренландию.

Потепление раннего средневековья привело к уменьшению увлажненности в Европе, свидетельства чего найдены в отложениях торфяников в Средней Европе. На Руси до конца Х в. также были благоприятные климатические условия: редко случались неурожаи, не было очень суровых зим и сильных засух. Вспомним, что именно в это благоприятное время был открыт и интенсивно использовался путь “из варяг в греки”.

В первой четверти нашего тысячелетия начинается постепенное похолодание. Священник Ивар Бордсон, живший в XVI в., отметил появившийся морской лед, который отрезал Гренландию от Исландии и привел к гибели поселения норманнов. Последние сведения о норманнских поселенцах в Гренландии относятся к 1500 г. Одновременно очень суровыми стали условия в Исландии, где XVI–XVII столетия были временами тяжелых испытаний. Достаточно сказать, что с начала похолодания до 1800 г. население страны из-за голода сократилось вдвое. В Скандинавских странах стали часто повторяться серии суровых зим, неурожаи, начали наступать ледники. На равнинах Европы похолодание также сопровождалось сериями суровых зим, замерзанием ранее не замерзавших водоемов, частыми неурожаями, падежом скота. В Альпах и на Кавказе ледники продвинулись вперед, кое-где вклинившись в леса, понизилась снеговая линия и участился сход снежных лавин. Местами ледники перекрыли дороги, построенные еще римлянами. Жители высокогорных селений были вынуждены покинуть их. Советский гляциолог Г.К. Тушинский высказал в связи с этим гипотезу о том, что похолодание привело к гибели государства аланов на Кавказе, а многие их поселения были уничтожены снежными лавинами и наступавшими ледниками.

Сохранились и другие интересные факты, отражающие суровые условия этой эпохи. Так, на плавучих льдинах эскимосы могли достигать Шотландии, так как в XIV и XVIII вв. льды несколько раз блокировали побережье Норвегии и крупные льдины выносило к Шотландии. Согласно историческим хроникам, в 1750 г. на отмель у острова Бель-Иль у берегов Франции был вынесен гренландский айсберг, который затем таял в течение года.

На Руси начало второго тысячелетия нашей эры ознаменовалось резким ухудшением климатических условий. Начался период страшных гроз, великих засух, суровых зим. В 1143 г. в Новгородской земле четыре месяца шли дожди. Самым тяжелым оказался XV в. – засухи сменились годами с сильными дождями, наводнениями и небывалыми грозами. Голод и эпидемии унесли десятки тысяч жителей. С XI по XVII в. – за семь столетий – на Руси в целом и в отдельных районах было 200 голодных лет, т.е. практически каждые 3–4 года (Борисенков Е.П., Пасецкий В.М. Экстремальные природные явления в русских летописях XI–XVII веков. Гидрометеоиздат, 1983.)

В целом эта ближайшая к нам эпоха похолодания, известная как малый ледниковый период, продолжалась до XIX в. и сменилась новым потеплением. Геологические и геофизические следы малого ледникового периода, как и письменные источники, говорят о том, что это было явление глобального характера – оно проявлялось в северном полушарии от Западной Европы до Китая, Японии и в Северной Америке. В южном полушарии следы похолодания не столь четки, но они тоже есть.

На графике изменения средней температуры воздуха у поверхности Земли для периода голоцена можно видеть, что после климатического оптимума в начале голоцена при всех последующих спадах и подъемах температуры отмечается общая тенденция к похолоданию.

Человек появился в эпоху кайнозойского оледенения. Сам человек и его человекообразные предки относятся к семейству гоминид. В Южной и Восточной Африке найдены остатки гоминид, известные как австралопитеки, которых считают прямыми предками человека. Возраст этих находок около 5 млн лет. Последующая эволюция около 2–3 млн лет назад привела австралопитеков к разделению на так называемых массивных австралопитеков, которые затем вымерли, и на гоминид, известных как гомо габилис – человек умелый, а затем как гомо эректус – человек прямоходящий. С появлением человека умелого совпадают и самые первые находки примитивных орудий труда в слоях возрастом 2,2–2,0 млн лет, а также первые признаки использования огня. На следующих этапах эволюции сформировался современный человек.

Становление и развитие гомо сапиенс – человека разумного – происходило на фоне смены ледниковых периодов и межледниковых, когда колебания температуры за промежутки времени в десятки тысяч лет были соизмеримы с изменениями температуры за десятки миллионов лет кайнозойской эры. Именно в это чрезвычайно изменчивое время человек быстро развивался даже в самых суровых условиях, вблизи кромки наступающих ледников, о чем рассказывают разнообразные археологические находки. В условиях последнего валдайского ледникового периода человек широко расселился по планете, воспользовавшись в том числе коротким интервалом отступления Лаврентийского ледникового покрова, чтобы 25 тыс. лет назад по коридору между ним и Кордильерским ледниковым щитом проникнуть через Северную Америку в Центральную и Южную.

Весь наш современный исторический мир полностью укладывается в рамки последнего геологического интервала – голоцена. За короткий, с геологической точки зрения – почти мгновенный, промежуток времени человек стал ведущим звеном природы. Численность людей неимоверно возросла, мощь их орудий труда уже начинают сравнивать с мощностью потока солнечной энергии к Земле, но зависимость человека от колебаний климата во многих отношениях осталась почти такой же, как в библейские времена. <...> (С. 97–101)

Современное изменение климата

<...> Инструментальные наблюдения за климатом, развернувшиеся в XIX в., зарегистрировали начало потепления, которое продолжалось до первой половины XX в. Но это потепление было обнаружено не сразу. Советский океанолог Н.М. Книпович в 1921 г. выявил, что воды Баренцева моря стали заметно теплее. В 20-х годах появилось много сообщений о признаках потепления в Арктике. Сначала даже считалось, что это потепление касается только Арктической области. Такой термин, как “потепление Арктики в 30-х годах”, и сейчас нередок в художественной и даже научной литературе. Однако более поздний анализ привел к выводу, что это было глобальное потепление. Значительно раньше, чем климатологи, потепление заметили гляциологи, которые уже к концу XIX в. установили заметное отступление ледников в Альпах, на Кавказе, в Скалистых горах Северной Америки.

Изменение температуры воздуха в период потепления лучше всего изучено в северном полушарии, где в этот период было сравнительно много метеорологических станций. Тем не менее и в южном полушарии оно было выявлено достаточно уверенно. Особенностью потепления было то, что в высоких полярных широтах северного полушария оно было выражено более четко и ярко. Для отдельных районов Арктики повышение температуры было весьма внушительным. Так, в Западной Гренландии она повысилась на 5 °С, а на Шпицбергене даже на 8–9 °С за период от 1912–1926 гг. до конца 30-х годов.

Наибольшее глобальное повышение средней температуры у поверхности Земли во время кульминации потепления составляло всего 0,6 °С, но даже с таким небольшим изменением – на порядок меньшим, чем в период от ледниковой к межледниковой обстановке, и в несколько раз меньшим, чем в ближайшем климатическом оптимуме и во время малого ледникового периода, – было связано заметное изменение климатической системы.

На потепление бурно реагировали горные ледники, которые повсеместно отступали, причем величина отступания исчислялась сотнями метров. На Кавказе, например, общая площадь оледенения сократилась за это время на 10%, а толщина льда в ледниках уменьшилась на 50–100 м. Существовавшие в Арктике сложенные льдом острова растаяли, и на их месте остались лишь подводные отмели. Ледяной покров Северного Ледовитого океана сильно сократился, что позволило обычным судам заплывать в высокие широты: в 1925 г. парусная шхуна смогла обогнуть Шпицберген, а в 1932 г. известный советский океанолог Н.Н. Зубов на небольшом боте обошел вокруг Земли Франца-Иосифа. Такая обстановка в Арктике способствовала освоению Северного морского пути, позволяя обычным неледокольным судам совершать сквозное плавание по нему в течение одной навигации. В целом общая площадь морских льдов в период навигации в это время сократилось более чем на 10% по сравнению с XIX в., т.е. почти на 1 млн км2. К 1940 г. по сравнению с началом ХХ в. в Гренландском море ледовитость сократилась вдвое, а в Баренцевом почти на 30%.

Повсюду происходило отступание границы многолетней мерзлоты на север. В европейской части СССР она местами отступала на сотни километров, увеличилась глубина протаивания мерзлых грунтов, а температура мерзлой толщи повысилась на 1,5–2 °С.

Потепление сопровождалось изменением увлажненности отдельных районов. Советский климатолог О.А. Дроздов выявил, что в эпоху потепления 30-х годов в районах недостаточного увлажнения возросло количество засух, охватывающих большие территории. Такие засухи отмечались в СССР, а также в Соединенных Штатах, где они известны как знаменитые засухи 30-х годов под наименованием “даст боул”, что в переводе с английского означает “пыльный котел”. Сравнение холодного периода с 1815 по 1919 г. и теплого с 1920 по 1976 г., показало, что каждые десять лет в первый период наблюдалась одна крупная засуха, тогда как во второй – две. В период потепления из-за уменьшения количества осадков произошло значительное падение уровня Каспийского моря и ряда других внутренних водоемов.

Потепление повлекло за собой изменение границ распространения многих животных. В Гренландии стал гнездоваться сизоголовый дрозд, в Испании появились ласточки и скворцы. Перелетные птицы весной стали появляться в среднем на 10 дней раньше. Потепление океанических вод, особенно заметное на севере, привело к изменению мест нереста и откорма промысловых рыб.

Н.М. Книпович в связи с такими явлениями отметил, что “в какие-нибудь полтора десятка лет и даже более короткий промежуток времени произошли такие изменения в распределении представителей морской фауны, какие связываются обыкновенно с представлением о долгих геологических промежутках”.

После 40-х годов стала проявляться тенденция к похолоданию. Льды в северном полушарии стали снова наступать. В первую очередь это выразилось в росте площади ледяного покрова Северного Ледовитого океана. С начала 40-х и до конца 60-х годов площадь льда в арктическом бассейне возросла на 10%. Горные ледники в Альпах и на Кавказе, а также в горах Северной Америки, ранее быстро отступавшие, или замедляли отступление, или даже начали снова наступать.

В 60-е и 70-е годы возрастает число климатических аномалий. Это были суровая зима 1967/68 г. в СССР и три суровые зимы с 1972 по 1977 г. в Соединенных Штатах. В этот же период в Европе отмечается серия очень мягких зим. В Восточной Европе в 1972 г. – очень сильная засуха, а в 1976 г. – на редкость дождливое лето. Из других аномалий можно вспомнить необычайно большое количество айсбергов у берегов Ньюфаундленда в летние периоды 1971–1973 гг., частые и сильные штормы в Северном море между 1972 и 1976 г. Но аномалии охватили не только умеренную зону северного полушария. С 1968 по 1973 г. длилась сильнейшая засуха в Сахеле и Африке. Дважды, в 1976 и 1979 г., сильные заморозки губят кофейные плантации в Бразилии. В Японии по данным метеорологических наблюдений установлено, что за десятилетие 1961–1972 гг. число месяцев с необычно низкими значениями температуры было вдвое больше, чем с высокими значениями, а число месяцев с недостаточными осадками также почти вдвое превышало число месяцев с избытком осадков. На карте климатических аномалий для 1972 г. видно, что аномалии охватывали больше половины территории суши и проявлялись как в северном, так и в южном полушариях.

Начало 80-х годов также ознаменовалось серьезными и обширными аномалиями. Зима 1981/82 г. в Соединенных Штатах и Канаде была одной из самых холодных. Термометры показывали температуру воздуха более низкую, чем в последние несколько десятилетий, а в 75 городах, в том числе в Чикаго, морозы побили все предыдущие рекорды. 230 американцев погибли от холода. Зимой 1983/84 г. снова отмечались очень низкие температуры на обширных территориях в Соединенных Штатах, в том числе во Флориде. На редкость холодной была зима в Великобритании.

В Австралии летом 1982/83 г. была одна из самых драматических засух за всю историю континента, получившая название “великая сушь”. Она охватила всю восточную и южную часть континента и сопровождалась сильными лесными пожарами. В то же время Китай заливали дожди, продолжавшиеся три месяца. В Индии задержался сезон муссонных дождей. В Индонезии и на Филиппинах свирепствовали засухи. Над Тихим океаном пронеслись сильнейшие тайфуны. Побережье Южной Америки и засушливый Средний Запад США оказались залитыми дождями, которые затем сменились засухой. <...> (С. 101–105)

Печатается по тексту:

Лосев К.С. Климат : вчера, сегодня... и завтра? Л.: Гидрометеоиздат, 1985.

Периодическая печать о проблемах климата

Природа, 1992. № 6. Новости науки. С. 117.

<...> Все вулканы Земли ежегодно поставляют в окружающую среду от 130 до 175 млн т диоксида углерода, а индустриальная деятельность – 22 млрд т диоксида углерода в год.

Самый крупный поставщик диоксида углерода из вулканов – Этна: 25 млн т/год, что эквивалентно 4 ТЭЦ мощностью по 1 ГВт.

Обычно один действующий вулкан дает 1,3 млн т диоксида углерода.<...>

Наука и жизнь. 1990. № 4. С. 39. “Океан поднимается” (О чем пишут научно-популярные журналы мира).

<...> ...Последние 100 лет вода поднимается в среднем на 1,2 миллиметра в год. <...>

<...> ...В диапазоне 10–20 градусов Цельсия при нагревании на один градус литр воды увеличивается в объеме на 0,15 кубического сантиметра. Немного, но при пересчете на объем Мирового океана (1307,5 кубического километра) цифры становятся вполне чувствительными.<...>

Нью-Йорк Таймс, недельное обозрение “Наука”. 1993. 14–27 сентября.

Первая расцветшая в мире империя засохла на корню

<...> Аккадцы под предводительством Саргона установили контроль над городами по берегам реки Евфрат и над плодородными долинами к северу – теперь это Сирия, Ирак и, частично, юг Турции. Но всего лишь столетие продолжалось процветание, после чего Аккадская империя рухнула, а причины столь неожиданного крушения исторической наукой были утеряны.

Аккадская империя, полагают, была поражена 300-летней засухой, которая буквально иссушила и обезводила это могучее государство. Микроскопические исследования увлажненности почв показали, что засуха пришла внезапно, а последствия оказались крайне тяжелыми: Великая сушь началась примерно в 2200 г. до н.э.

Аккадские города на плодородной северной равнине были покинуты их жителями. Тексты, выбитые на глиняных табличках, рассказывают о массовых единовременных переселениях на юг. Такие миграции, приведшие к удвоению населенности южных городов, довели до нехватки пищи и воды, а недостаточность пищевых и водных ресурсов обернулась внутренней борьбой и, в конечном счете, падением династии, основанной Саргоном. <...>

<...> ...Связь между резкими изменениями климата и упадком владычества Аккада представляется завершающим штрихом к картине всеобъемлющего и вездесущего экологического кризиса, погубившего в те века многие общества по всему Среднему Востоку.

Исполинские извержения вулканов, случившиеся на территории нынешней Турции в самом начале Великой суши, говорят ученые, вряд ли способны были запустить столь затянувшееся изменение климата.<...>

Природа. 1993. № 8.

Подборка информационных материалов, отражающих последние достижения климатологии, под общим заголовком: “Климат: проблемы изучения и прогнозирования”. (С. 94–105)

Оценка состояния климата Земли

<...> За последнее столетие средние температуры земной поверхности повысились на 0,3–0,6 °С; уровень Мирового океана поднялся в среднем на 10–20 см; начиная с 1973 г. среднегодовая площадь снегового покрова в северном полушарии сократилась на 8%. <...>

<...> ...Если человечество <...> не примет мер по ограничению выброса парниковых газов, средние температуры на поверхности планеты будут расти примерно на 0,3 °С в десятилетие (возможная ошибка в пределах 0,2–0,5 °С), а уровень моря только за счет теплового расширения вод – подниматься на 2–4 см в десятилетие.<...>

Что за потеплением – подъем или падение уровня океана?

<...> ...Во время глобального потепления Антарктическое оледенение не сокращалось, а, напротив, разрасталось. <...>

<...> ...И в наше время, несмотря на глобальное потепление (за столетие – примерно на 0,6 °С), снеговая линия в Канадской Арктике, на о. Баффина и на Аляске продвигается к югу, а увеличение мощности Гренландского оледенения должно приводить к падению (а не повышению!) уровня Мирового океана примерно на 0,45 мм/год <...>

<...> ...Горные ледники начали отступать около 100 лет назад; то же можно сказать и о некоторых районах Антарктического полуострова <...>

<...> ...В прошлом масштабы оледенения возрастали как раз в периоды потепления, а не похолодания. <...>

Солнечная активность и климат

<...> ...За столетний период с 1880 по 1990 г. – общее потепление составило 0,8 °С.<...>

<...> ...Количество выделяемой Солнцем энергии в большей степени зависит от длительности цикла, чем от числа пятен.

Надежная согласованность между вариациями солнечной активности и климатическими изменениями, происшедшими после 1750 г., достигается лишь при учете парникового эффекта. Хотя в период с 1750 по 1850 г. из двух этих процессов доминировала солнечная активность, затем положение стало меняться в пользу химического состава атмосферы, т.е. парникового эффекта. <...>

Состоится ли потепление?

<...> С решительным опровержением утверждений большинства математических моделей, что к середине ХХI в. удвоение количества диоксида углерода в атмосфере приведет к повышению средней температуры на Земле в пределах от 1,5 до 4,5 °С, выступил климатолог Д. Линдзен (Массачусетский технологический институт, Кембридж, США). <...>

<...> ...Глобальные температуры весьма слабо зависят как от изменения общей солнечной радиации, так и от количества парниковых газов в атмосфере; главным образом климат зависит от распределения поступающей солнечной энергии, а не от ее количества, перемены же в атмосферной концентрации диоксида углерода на это не влияют. Примером такого отчетливого воздействия служат “биения” земной орбиты (описанные югославским геофизиком Миланковичем) <...>

<...> Линдзен утверждает, что через полвека реальные климатические сдвиги либо окажутся близки к нулю, либо едва достигнут 1,5 °С. <...>

<...> ...Недавние работы в области физики облаков свидетельствуют об их охлаждающей роли в тепловом балансе Земли.

Т. Палмер (Ридинг, Великобритания) призывает различать термины “парниковый эффект” и “глобальное потепление”: по его мнению, потепление, которое отмечается в последнее десятилетие и включает четыре из пяти самых теплых года за всю историю наблюдений, не связано с изменениями в концентрации диоксида углерода. <...>

Извержение: к потеплению или похолоданию?

<...> ...Извержение вулкана Пинатубо на Филиппинах в 1991 г. привело к охлаждению поверхности Земли в среднем на 0,5 °С. <...>

<...> ...Ход температур земной поверхности в ближайшие месяцы после 12 крупнейших извержений, начиная с Кракатау в 1883 г. до Пинатубо в 1991 г., точно соответствует разработанной математической модели (А. Робок и Мао Цзяньпин; Университет штата Мэриленд, США), учитывающей региональные потепления стратосферы. Этим, по мнению авторов модели, и объясняется тот факт, что в 1991–1992 гг. зима в Евразии и Северной Америке была весьма теплой, а на Ближнем Востоке стояли сильные холода. <...>

 

 

Последствия грядущего потепления для Юго-Восточной Азии

<...> На основе накопившихся за последние годы данных принято, что к 2090 г. потепление приведет к несколько большему повышению уровня моря – на 1 м против 60 см, учитывавшихся в предыдущих моделях. По новому прогнозу, средняя температура к концу изучаемого периода поднимется в Индонезии на 3 °С, в Малайзии – на 3–4 °С, в Таиланде – на 3–6 °С.

На северо-западе Явы наступление соленых морских вод может сократить урожай риса на 270 тыс. т/год (90% нынешней урожайности).

Потепление увеличит потребность в воде для ирригации и снизит возможности выращивания двух урожаев в год на одной площади.

<...> ...Выход тропических ураганов в странах этого региона станет более частым явлением. <...>

Как изменится климат Африки

<...> Площадь Африки, классифицируемая с 1931 г. как засушливая и сверхзасушливая, увеличилась почти на 54 млн га, что составляет 1,8% площади всего континента. Влажная зона потеряла при этом 26 млн га. <...>

<...> ...Основной климатический сдвиг состоит в переходе от полупустынь к пустыням и от засушливых районов к сверхзасушливым условиям <...>

Лишь 2% территории стали более влажными. <...>

www.referatmix.ru

Реферат: Изменение климата планеты Земля

Изменение окружающей среды происходит не только в результате антропогенного воздействия, но и под влиянием естественных причин. Это относится прежде всего к климату. Рассматривая проблемы глобального изменения климата, истощения озонового слоя в атмосфере Земли, предлагаемые меры по сокращению эмиссии парниковых и озонразрушающих газов, следует проанализировать возможное соотношение естественных и искусственных причин тревожащих человечество отклонений от признаваемого им оптимума состояния окружающей среды.

Среди многочисленной литературы по климату и причинам его изменения особое место занимает популярная книга К.С. Лосева “Климат: вчера, сегодня... и завтра?”, в которой сочетается научная глубина изложения с легкой формой, уже адаптированной для учебных целей. Приведенные ниже фрагменты из этой книги в сочетании с выдержками из нескольких статей достаточны для первого знакомства с указанной проблемой.

Проблема потепления климата изложена в учебниках и доступном докладе Гринпис “Глобальное потепление”(М.: Изд-во МГУ, 1993).

Ранняя история изменения климата на Земле

<...> Развитие микроорганизмов, похожих на современные сине-зеленые водоросли, и было началом конца восстановительной атмосферы, а вместе с ней и первичной климатической системы. Этот этап эволюции начинается около 3 млрд лет назад, а возможно и раньше, что подтверждает возраст отложений строматолитов, являющихся продуктом жизнедеятельности первичных одноклеточных водорослей. Находки их в Южной Африке датируются 2,7–2,9 млрд лет. <...> (С. 47)

<...> Заметные количества свободного кислорода появляются около 2,2 млрд лет назад – атмосфера становится окислительной. Об этом свидетельствуют геологические вехи: появление сульфатных осадков – гипсов, и в особенности развитие так называемых красноцветов – пород, образовавшихся из древних поверхностных отложений, содержавших железо, которые разлагались под воздействием физико-химических процессов, выветривания. Красноцветы отмечают начало кислородного выветривания горных пород.

Возможно вы искали - Реферат: Концепции современного естествознания

О.Г. Сорохтин в последнее время выдвинул новую гипотезу, согласно которой в результате непрерывно идущего процесса формирования ядра Земли из зоны его формирования выделяется избыток кислорода, “просачивающегося” к поверхности планеты и участвующего в формировании атмосферы. По О.Г. Сорохтину, именно таким путем атмосфера стала окислительной, а возможно даже, что она с самого начала имела некоторое количество кислорода.

Предполагается, что около 1,5 млрд лет назад содержание кислорода в атмосфере достигло “точки Пастера”, т.е. 1 /100 части современного. Точка Пастера означала появление аэробных организмов, перешедших к окислению при дыхании с высвобождением при этом значительно большей энергии, чем при анаэробном брожении. Опасное ультрафиолетовое излучение уже не проникало в воду глубже 1 м, так как в кислородной атмосфере возник пока еще очень тонкий озоновый слой. 1 /10 части современного содержания кислорода атмосфера достигла более 600 млн лет назад. Озоновый экран стал более мощным, и организмы распространились во всей толще океана, что привело к настоящему взрыву жизни. А вскоре, когда на сушу вышли первые самые примитивные растения, уровень содержания кислорода в атмосфере быстро достиг современного и даже превзошел его. Предполагается, что после этого “всплеска” содержания кислорода продолжались его затухающие колебания, которые, возможно, имеют место и в наше время. Так как фотосинтетический кислород тесно связан с потреблением углекислого газа организмами, то и содержание последнего в атмосфере испытывало колебания.

Вместе с изменениями атмосферы другие черты стал приобретать и океан. Аммиак, содержавшийся в воде, был окислен, изменились формы миграции железа, сера была окислена в окись серы. Вода из хлоридно-сульфидной стала хлоридно-карбонатно-сульфатной. В морской воде оказалось растворенным огромное количество кислорода, почти в 1000 раз больше, чем в атмосфере. Появились новые растворенные соли. Масса океана продолжала расти, но теперь медленнее, чем на первых этапах, что привело к затоплению срединно-океанических хребтов, которые были открыты океанологами только во второй половине нашего века. <...> (С. 47–48)

<...> О необычайно большой роли фактора жизни в формировании и эволюции всех компонентов климатической системы свидетельствуют следующие цифры. За 10 млн лет фотосинтез перерабатывает массу воды, равную всей гидросфере; примерно за 4 тыс. лет обновляется весь кислород атмосферы, а всего за 6–7 лет поглощается вся углекислота атмосферы. Это означает, что за время развития биосферы вся вода Мирового океана не менее 300 раз прошла через ее организмы, а кислород атмосферы возобновлялся не менее 1 млн раз! Между тем современная масса живого вещества в биосфере Земли составляет всего 2,42*1018 г. Эта масса в основном находится на суше, в океане ее на порядок меньше – 3,2*1017 г. <...> (С. 49)

<...> Океан является основным поглотителем тепла, поступающего к поверхности Земли от Солнца. Он отражает только 8% потока солнечного излучения, а 92% поглощает его верхний слой. 51% полученного тепла затрачивается на испарение, 42% тепла уходит из океана в виде длинноволнового излучения, так как вода, подобно всякому нагретому телу, излучает тепловые (инфракрасные) лучи, остальные 7% тепла нагревают воздух при прямом контакте (турбулентный обмен). Океан, нагреваясь в основном в тропических широтах, переносит тепло течениями в умеренные и полярные широты и охлаждается.

Похожий материал - Реферат: Основные представления о специальной и общей теории относительности

Средняя температура поверхности океана равна 17,8 °С, что почти на 3 градуса выше средней температуры воздуха у поверхности Земли в целом. Самый теплый – Тихий океан, средняя температура его вод 19,4 °С, а самый холодный (со средней температурой воды -0,75 °С) – Северный Ледовитый океан. Средняя температура воды всей толщи океана гораздо ниже поверхностной температуры – всего 5,7 °С, но она все же на 22,7 °С выше средней температуры всей земной атмосферы. Из этих цифр следует, что океан выступает как основной аккумулятор солнечного тепла. <...> (С. 52)

Человек появился в эпоху оледенения

<...> 25 тыс. лет назад начинается последнее разрастание ледниковых покровов. Своего максимума в северном полушарии они достигли 18 тыс. лет назад. <...> (С. 92)

<...> Кульминация оледенения продолжалась недолго, уже 16 тыс. лет назад началась его общая деградация, а 5 тыс. лет спустя объем льда сократился вдвое. В это время наступило небольшое похолодание, которое приостановило разрушение ледниковых покровов, но уже 8 тыс. лет назад Скандинавский ледниковый покров исчез полностью. В Северной Америке последние следы некогда грандиозного Лаврентийского ледникового покрова перестали существовать примерно 6 тыс. лет назад. Быстрая деградация ледниковых покровов объясняется не только климатическими условиями, но и самим механизмом движения льда, особенностями механики гигантского ледяного тела, находящегося на поверхности Земли в условиях, близких к точке плавления этого материала. <...>

История колебаний климата и оледенения за последние 3 млн лет приводят к выводу о том, что при существующем состоянии климатической системы регулятором колебаний служит Антарктический ледниковый покров. С одной стороны, он не позволяет критической пороговой температуре воздуха подняться более чем на 2 °С во время межледниковий, так как, находясь в благоприятных условиях существования у Южного полюса, при общей деградации оледенение всегда сохраняет площадь не менее 10 млн км2 . С другой стороны, в периоды развития и наступления ледников его край не может продвинуться далеко, так как открытый океан препятствует этому. В связи с этим при наступлении ледников в северном полушарии в южном сохраняется сравнительно теплая обстановка, в чем не последнюю роль играет большая “океаничность” этого полушария. В результате процесс развития оледенения тормозится в глобальном масштабе. Трудно представить, как далеко могло бы зайти оледенение на нашей планете, если бы южное полушарие было менее океаническим, а южнополярный континент имел значительно большие размеры.<...>(С. 93)

<...> Оригинальная гипотеза известна как пульсационная гипотеза Уилсона. Похолодание может быть связано с особенностями движения Антарктического ледникового покрова. Периодически в пределах этого покрова могут возникать быстро движущиеся потоки льда гигантских размеров, которые выбрасываются в океан, формируют шельфовый ледник и огромную массу айсбергов. Выброс может составлять несколько миллионов кубических километров льда. Увеличение площади ледникового покрова и масса тающих айсбергов приводят к глобальному понижению температуры и служат спусковым механизмом нового цикла оледенения. Зарождение такой пульсации Антарктического ледникового покрова происходит в межледниковья, так как быстрые гигантские потоки льда могут сформироваться только при условии его прогревания. Таким образом, потепление приводит к новому ледниковому периоду. <...>

Очень интересно - Реферат: Концепции современного естествознания

<...> Астрономическая гипотеза, разработанная в 20-х годах нашего века югославским геофизиком М. Миланковичем. В соответствии с гипотезой Миланковича полушария Земли в результате изменения элементов ее движения могут получать меньшее или большее количество солнечной радиации, что отражается на глобальной температуре. Миланкович выделил три элемента движения. Один – колебания земной оси. Если посмотреть на ось сверху, то оказывается, что она описывает в пространстве круг за время приблизительно 25 тыс. лет, т.е. как бы покачивается по отношению к Солнцу.

Второй – изменение наклона земной оси по отношению к плоскости орбиты (эклиптики) Земли. Такие изменения происходят с периодичностью 41 тыс. лет и достигают 3 градусов. Третий элемент движения связан с изменением формы орбиты от почти круговой до несколько вытянутой – эллиптической. При этом различие в удалении от Солнца составляет около 5 млн км. Предполагается, что раньше оно было больше.

Рассчитав совместное влияние всех трех факторов, Миланкович смог определить периоды, когда те или иные широтные зоны Земли получают наименьшее количество солнечного излучения. По всей видимости, эти периоды и должны соответствовать периодам формирования и развития покровных ледников в северном полушарии. Впоследствии другие исследователи, в том числе советские, внеся небольшие уточнения, подтвердили расчеты изменений движения Земли и притока солнечной радиации, выполненные Миланковичем. Эта гипотеза получила косвенное подтверждение благодаря анализу климатических ритмов при изучении колонок глубоководных морских осадков, относящихся к последним 500 тыс. лет, содержания тяжелого изотопа кислорода, а также видового состава двух видов морских организмов (радиосолярий) – все три индикатора характеризуют разные стороны климатической системы – температуру, распреснение и засоление океана в результате таяния и образования ледниковых покровов. Индикаторы подтвердили существование трех циклов изменения климатической системы с периодичностью, соответствующей периодичности факторов Миланковича. Наиболее резкие изменения происходили с периодичностью 100 тыс. лет, менее выраженные – с периодичностью 42 тыс. лет, а самые небольшие – 24 тыс. лет. <...> (С. 95–96)

<...> Последний интервал, во время которого мы живем, носит название голоцена. Это отрезок времени с начала нынешнего межледниковья, начавшегося 10 тыс. лет назад и по времени соответствующего благоприятному для потепления сочетанию факторов Миланковича. Межледниковье тоже не является застывшим миром, хотя оно и не столь богато событиями, как ледниковый период. В голоцене происходили заметные климатические колебания, которые хорошо прослеживаются как с помощью палеотемпературных, так и других методов реконструкции климата прошлого.

Ранняя часть голоцена характеризовалась потеплением, которое перешло около 8 тыс. лет назад в интервал, известный как “климатический оптимум” и продолжавшийся около 2,5 тыс. лет. В период оптимума средняя температура воздуха была выше современной, отмечена также повышенная увлажненность, в частности в пустынях Сахаре и Раджастхане в Индии. О более высокой температуре говорят хорошо сохранившиеся индикаторы климата прошлого, в частности находки стволов деревьев, произраставших на берегах Северного Ледовитого океана в Сибири, в Гренландии и на острове Элсмир. Исландию в этот период наполовину покрывали березовые леса, которые сейчас занимают не более 1% территории. В горах повысилась граница леса, а ледяной покров Северного Ледовитого океана сократился по площади почти вдвое по сравнению с современным. В Сахаре найдены остатки многих животных, которые могли жить только при наличии водоемов со стоячими и текучими водами, обнаружены остатки богатой растительности. По существующим оценкам, в Европе было теплее на 2 °С, чем сейчас, причем в основном в летний период, так как многие вечнозеленые растения – тис, падуб, и др. – контролируются зимней температурой и в это время на север не продвигались. Потепление, хотя и не столь сильное, как в северном полушарии, было отмечено и в южном.

Вам будет интересно - Реферат: Гипотезы происхождения жизни на Земле

Климатический оптимум 5,5 тыс. лет назад сменился похолоданием, затем наступило новое потепление, кульминация которого пришлась на период около 4 тыс. лет назад. Следующее за ним новое похолодание совпало с периодом войн за Трою и путешествий Одиссея.

Следует сказать, что климатологи различают геологические, исторические и современные изменения климата. Ранее речь шла о геологических изменениях, которые изучаются только геологическими и геофизическими методами. К историческим относятся изменения климата, происходившие в период развития цивилизации до начала инструментальных наблюдений. При изучении их в дополнение к геологическим и геофизическим методам используются археологические памятники и памятники письменности. Современные изменения климата относятся только к периоду инструментальных наблюдений.

Вслед за первым историческим похолоданием с кульминацией около 3 тыс. лет назад началось новое потепление, продолжавшееся и в первом тысячелетии нашей эры, известное как “малый климатический оптимум”. Этот период можно назвать также периодом забытых географических открытий, в отличие от периода Великих географических открытий XV и XVI вв. Открывателями новых земель были ирландские монахи, которые в середине первого тысячелетия благодаря улучшившимся вследствие потепления условиям мореплавания в Северной Атлантике смогли открыть Фарерские острова, Исландию и , как теперь предполагают, Америку. Вслед за ними эти открытия повторили норманнские викинги, которые в конце этого тысячелетия заселили Фарерские острова и Исландию, открыли и заселили Гренландию, а в самом начале последнего тысячелетия нашей эры добрались до Америки. Такая широкая экспансия норманнов в северные страны и отсутствие в исландских сагах того времени упоминаний о морских льдах как препятствии для мореплавания указывают на очень теплые условия. Норманнские поселенцы в Гренландии занимались не только добычей рыбы и зверя, но и скотоводством. Они заплывали очень далеко на север. Так, каменные пирамиды норманнов, служившие им ориентирами, обнаружены на 79 градусе с.ш. на берегу пролива Смита, разделяющего остров Элсмир и Гренландию.

Потепление раннего средневековья привело к уменьшению увлажненности в Европе, свидетельства чего найдены в отложениях торфяников в Средней Европе. На Руси до конца Х в. также были благоприятные климатические условия: редко случались неурожаи, не было очень суровых зим и сильных засух. Вспомним, что именно в это благоприятное время был открыт и интенсивно использовался путь “из варяг в греки”.

В первой четверти нашего тысячелетия начинается постепенное похолодание. Священник Ивар Бордсон, живший в XVI в., отметил появившийся морской лед, который отрезал Гренландию от Исландии и привел к гибели поселения норманнов. Последние сведения о норманнских поселенцах в Гренландии относятся к 1500 г. Одновременно очень суровыми стали условия в Исландии, где XVI–XVII столетия были временами тяжелых испытаний. Достаточно сказать, что с начала похолодания до 1800 г. население страны из-за голода сократилось вдвое. В Скандинавских странах стали часто повторяться серии суровых зим, неурожаи, начали наступать ледники. На равнинах Европы похолодание также сопровождалось сериями суровых зим, замерзанием ранее не замерзавших водоемов, частыми неурожаями, падежом скота. В Альпах и на Кавказе ледники продвинулись вперед, кое-где вклинившись в леса, понизилась снеговая линия и участился сход снежных лавин. Местами ледники перекрыли дороги, построенные еще римлянами. Жители высокогорных селений были вынуждены покинуть их. Советский гляциолог Г.К. Тушинский высказал в связи с этим гипотезу о том, что похолодание привело к гибели государства аланов на Кавказе, а многие их поселения были уничтожены снежными лавинами и наступавшими ледниками.

Похожий материал - Реферат: Происхождение человека

Сохранились и другие интересные факты, отражающие суровые условия этой эпохи. Так, на плавучих льдинах эскимосы могли достигать Шотландии, так как в XIV и XVIII вв. льды несколько раз блокировали побережье Норвегии и крупные льдины выносило к Шотландии. Согласно историческим хроникам, в 1750 г. на отмель у острова Бель-Иль у берегов Франции был вынесен гренландский айсберг, который затем таял в течение года.

На Руси начало второго тысячелетия нашей эры ознаменовалось резким ухудшением климатических условий. Начался период страшных гроз, великих засух, суровых зим. В 1143 г. в Новгородской земле четыре месяца шли дожди. Самым тяжелым оказался XV в. – засухи сменились годами с сильными дождями, наводнениями и небывалыми грозами. Голод и эпидемии унесли десятки тысяч жителей. С XI по XVII в. – за семь столетий – на Руси в целом и в отдельных районах было 200 голодных лет, т.е. практически каждые 3–4 года (Борисенков Е.П., Пасецкий В.М. Экстремальные природные явления в русских летописях XI–XVII веков. Гидрометеоиздат, 1983.)

В целом эта ближайшая к нам эпоха похолодания, известная как малый ледниковый период, продолжалась до XIX в. и сменилась новым потеплением. Геологические и геофизические следы малого ледникового периода, как и письменные источники, говорят о том, что это было явление глобального характера – оно проявлялось в северном полушарии от Западной Европы до Китая, Японии и в Северной Америке. В южном полушарии следы похолодания не столь четки, но они тоже есть.

На графике изменения средней температуры воздуха у поверхности Земли для периода голоцена можно видеть, что после климатического оптимума в начале голоцена при всех последующих спадах и подъемах температуры отмечается общая тенденция к похолоданию.

cwetochki.ru

Реферат - Изменение климата планеты Земля

ИЗМЕНЕНИЕ КЛИМАТА НА ЗЕМЛЕ

От составителя

Изменение окружающей среды происходит не только в результате антропогенного воздействия, но и под влиянием естественных причин. Это относится прежде всего к климату. Рассматривая проблемы глобального изменения климата, истощения озонового слоя в атмосфере Земли, предлагаемые меры по сокращению эмиссии парниковых и озонразрушающих газов, следует проанализировать возможное соотношение естественных и искусственных причин тревожащих человечество отклонений от признаваемого им оптимума состояния окружающей среды.

Среди многочисленной литературы по климату и причинам его изменения особое место занимает популярная книга К.С. Лосева “Климат: вчера, сегодня… и завтра?”, в которой сочетается научная глубина изложения с легкой формой, уже адаптированной для учебных целей. Приведенные ниже фрагменты из этой книги в сочетании с выдержками из нескольких статей достаточны для первого знакомства с указанной проблемой.

Проблема потепления климата изложена в учебниках и доступном докладе Гринпис “Глобальное потепление”(М.: Изд-во МГУ, 1993).

Ранняя история изменения климата на Земле

<...> Развитие микроорганизмов, похожих на современные сине-зеленые водоросли, и было началом конца восстановительной атмосферы, а вместе с ней и первичной климатической системы. Этот этап эволюции начинается около 3 млрд лет назад, а возможно и раньше, что подтверждает возраст отложений строматолитов, являющихся продуктом жизнедеятельности первичных одноклеточных водорослей. Находки их в Южной Африке датируются 2,7–2,9 млрд лет. <...> (С. 47)

<...> Заметные количества свободного кислорода появляются около 2,2 млрд лет назад – атмосфера становится окислительной. Об этом свидетельствуют геологические вехи: появление сульфатных осадков – гипсов, и в особенности развитие так называемых красноцветов – пород, образовавшихся из древних поверхностных отложений, содержавших железо, которые разлагались под воздействием физико-химических процессов, выветривания. Красноцветы отмечают начало кислородного выветривания горных пород.

О.Г. Сорохтин в последнее время выдвинул новую гипотезу, согласно которой в результате непрерывно идущего процесса формирования ядра Земли из зоны его формирования выделяется избыток кислорода, “просачивающегося” к поверхности планеты и участвующего в формировании атмосферы. По О.Г. Сорохтину, именно таким путем атмосфера стала окислительной, а возможно даже, что она с самого начала имела некоторое количество кислорода.

Предполагается, что около 1,5 млрд лет назад содержание кислорода в атмосфере достигло “точки Пастера”, т.е. 1 /100 части современного. Точка Пастера означала появление аэробных организмов, перешедших к окислению при дыхании с высвобождением при этом значительно большей энергии, чем при анаэробном брожении. Опасное ультрафиолетовое излучение уже не проникало в воду глубже 1 м, так как в кислородной атмосфере возник пока еще очень тонкий озоновый слой. 1 /10 части современного содержания кислорода атмосфера достигла более 600 млн лет назад. Озоновый экран стал более мощным, и организмы распространились во всей толще океана, что привело к настоящему взрыву жизни. А вскоре, когда на сушу вышли первые самые примитивные растения, уровень содержания кислорода в атмосфере быстро достиг современного и даже превзошел его. Предполагается, что после этого “всплеска” содержания кислорода продолжались его затухающие колебания, которые, возможно, имеют место и в наше время. Так как фотосинтетический кислород тесно связан с потреблением углекислого газа организмами, то и содержание последнего в атмосфере испытывало колебания.

Вместе с изменениями атмосферы другие черты стал приобретать и океан. Аммиак, содержавшийся в воде, был окислен, изменились формы миграции железа, сера была окислена в окись серы. Вода из хлоридно-сульфидной стала хлоридно-карбонатно-сульфатной. В морской воде оказалось растворенным огромное количество кислорода, почти в 1000 раз больше, чем в атмосфере. Появились новые растворенные соли. Масса океана продолжала расти, но теперь медленнее, чем на первых этапах, что привело к затоплению срединно-океанических хребтов, которые были открыты океанологами только во второй половине нашего века. <...> (С. 47–48)

<...> О необычайно большой роли фактора жизни в формировании и эволюции всех компонентов климатической системы свидетельствуют следующие цифры. За 10 млн лет фотосинтез перерабатывает массу воды, равную всей гидросфере; примерно за 4 тыс. лет обновляется весь кислород атмосферы, а всего за 6–7 лет поглощается вся углекислота атмосферы. Это означает, что за время развития биосферы вся вода Мирового океана не менее 300 раз прошла через ее организмы, а кислород атмосферы возобновлялся не менее 1 млн раз! Между тем современная масса живого вещества в биосфере Земли составляет всего 2,42*1018 г. Эта масса в основном находится на суше, в океане ее на порядок меньше – 3,2*1017 г. <...> (С. 49)

<...> Океан является основным поглотителем тепла, поступающего к поверхности Земли от Солнца. Он отражает только 8% потока солнечного излучения, а 92% поглощает его верхний слой. 51% полученного тепла затрачивается на испарение, 42% тепла уходит из океана в виде длинноволнового излучения, так как вода, подобно всякому нагретому телу, излучает тепловые (инфракрасные) лучи, остальные 7% тепла нагревают воздух при прямом контакте (турбулентный обмен). Океан, нагреваясь в основном в тропических широтах, переносит тепло течениями в умеренные и полярные широты и охлаждается.

Средняя температура поверхности океана равна 17,8 °С, что почти на 3 градуса выше средней температуры воздуха у поверхности Земли в целом. Самый теплый – Тихий океан, средняя температура его вод 19,4 °С, а самый холодный (со средней температурой воды -0,75 °С) – Северный Ледовитый океан. Средняя температура воды всей толщи океана гораздо ниже поверхностной температуры – всего 5,7 °С, но она все же на 22,7 °С выше средней температуры всей земной атмосферы. Из этих цифр следует, что океан выступает как основной аккумулятор солнечного тепла. <...> (С. 52)

Человек появился в эпоху оледенения

<...> 25 тыс. лет назад начинается последнее разрастание ледниковых покровов. Своего максимума в северном полушарии они достигли 18 тыс. лет назад. <...> (С. 92)

<...> Кульминация оледенения продолжалась недолго, уже 16 тыс. лет назад началась его общая деградация, а 5 тыс. лет спустя объем льда сократился вдвое. В это время наступило небольшое похолодание, которое приостановило разрушение ледниковых покровов, но уже 8 тыс. лет назад Скандинавский ледниковый покров исчез полностью. В Северной Америке последние следы некогда грандиозного Лаврентийского ледникового покрова перестали существовать примерно 6 тыс. лет назад. Быстрая деградация ледниковых покровов объясняется не только климатическими условиями, но и самим механизмом движения льда, особенностями механики гигантского ледяного тела, находящегося на поверхности Земли в условиях, близких к точке плавления этого материала. <...>

История колебаний климата и оледенения за последние 3 млн лет приводят к выводу о том, что при существующем состоянии климатической системы регулятором колебаний служит Антарктический ледниковый покров. С одной стороны, он не позволяет критической пороговой температуре воздуха подняться более чем на 2 °С во время межледниковий, так как, находясь в благоприятных условиях существования у Южного полюса, при общей деградации оледенение всегда сохраняет площадь не менее 10 млн км2. С другой стороны, в периоды развития и наступления ледников его край не может продвинуться далеко, так как открытый океан препятствует этому. В связи с этим при наступлении ледников в северном полушарии в южном сохраняется сравнительно теплая обстановка, в чем не последнюю роль играет большая “океаничность” этого полушария. В результате процесс развития оледенения тормозится в глобальном масштабе. Трудно представить, как далеко могло бы зайти оледенение на нашей планете, если бы южное полушарие было менее океаническим, а южнополярный континент имел значительно большие размеры.<...>(С. 93)

<...> Оригинальная гипотеза известна как пульсационная гипотеза Уилсона. Похолодание может быть связано с особенностями движения Антарктического ледникового покрова. Периодически в пределах этого покрова могут возникать быстро движущиеся потоки льда гигантских размеров, которые выбрасываются в океан, формируют шельфовый ледник и огромную массу айсбергов. Выброс может составлять несколько миллионов кубических километров льда. Увеличение площади ледникового покрова и масса тающих айсбергов приводят к глобальному понижению температуры и служат спусковым механизмом нового цикла оледенения. Зарождение такой пульсации Антарктического ледникового покрова происходит в межледниковья, так как быстрые гигантские потоки льда могут сформироваться только при условии его прогревания. Таким образом, потепление приводит к новому ледниковому периоду. <...>

<...> Астрономическая гипотеза, разработанная в 20-х годах нашего века югославским геофизиком М. Миланковичем. В соответствии с гипотезой Миланковича полушария Земли в результате изменения элементов ее движения могут получать меньшее или большее количество солнечной радиации, что отражается на глобальной температуре. Миланкович выделил три элемента движения. Один – колебания земной оси. Если посмотреть на ось сверху, то оказывается, что она описывает в пространстве круг за время приблизительно 25 тыс. лет, т.е. как бы покачивается по отношению к Солнцу.

Второй – изменение наклона земной оси по отношению к плоскости орбиты (эклиптики) Земли. Такие изменения происходят с периодичностью 41 тыс. лет и достигают 3 градусов. Третий элемент движения связан с изменением формы орбиты от почти круговой до несколько вытянутой – эллиптической. При этом различие в удалении от Солнца составляет около 5 млн км. Предполагается, что раньше оно было больше.

Рассчитав совместное влияние всех трех факторов, Миланкович смог определить периоды, когда те или иные широтные зоны Земли получают наименьшее количество солнечного излучения. По всей видимости, эти периоды и должны соответствовать периодам формирования и развития покровных ледников в северном полушарии. Впоследствии другие исследователи, в том числе советские, внеся небольшие уточнения, подтвердили расчеты изменений движения Земли и притока солнечной радиации, выполненные Миланковичем. Эта гипотеза получила косвенное подтверждение благодаря анализу климатических ритмов при изучении колонок глубоководных морских осадков, относящихся к последним 500 тыс. лет, содержания тяжелого изотопа кислорода, а также видового состава двух видов морских организмов (радиосолярий) – все три индикатора характеризуют разные стороны климатической системы – температуру, распреснение и засоление океана в результате таяния и образования ледниковых покровов. Индикаторы подтвердили существование трех циклов изменения климатической системы с периодичностью, соответствующей периодичности факторов Миланковича. Наиболее резкие изменения происходили с периодичностью 100 тыс. лет, менее выраженные – с периодичностью 42 тыс. лет, а самые небольшие – 24 тыс. лет. <...> (С. 95–96)

<...> Последний интервал, во время которого мы живем, носит название голоцена. Это отрезок времени с начала нынешнего межледниковья, начавшегося 10 тыс. лет назад и по времени соответствующего благоприятному для потепления сочетанию факторов Миланковича. Межледниковье тоже не является застывшим миром, хотя оно и не столь богато событиями, как ледниковый период. В голоцене происходили заметные климатические колебания, которые хорошо прослеживаются как с помощью палеотемпературных, так и других методов реконструкции климата прошлого.

Ранняя часть голоцена характеризовалась потеплением, которое перешло около 8 тыс. лет назад в интервал, известный как “климатический оптимум” и продолжавшийся около 2,5 тыс. лет. В период оптимума средняя температура воздуха была выше современной, отмечена также повышенная увлажненность, в частности в пустынях Сахаре и Раджастхане в Индии. О более высокой температуре говорят хорошо сохранившиеся индикаторы климата прошлого, в частности находки стволов деревьев, произраставших на берегах Северного Ледовитого океана в Сибири, в Гренландии и на острове Элсмир. Исландию в этот период наполовину покрывали березовые леса, которые сейчас занимают не более 1% территории. В горах повысилась граница леса, а ледяной покров Северного Ледовитого океана сократился по площади почти вдвое по сравнению с современным. В Сахаре найдены остатки многих животных, которые могли жить только при наличии водоемов со стоячими и текучими водами, обнаружены остатки богатой растительности. По существующим оценкам, в Европе было теплее на 2 °С, чем сейчас, причем в основном в летний период, так как многие вечнозеленые растения – тис, падуб, и др. – контролируются зимней температурой и в это время на север не продвигались. Потепление, хотя и не столь сильное, как в северном полушарии, было отмечено и в южном.

Климатический оптимум 5,5 тыс. лет назад сменился похолоданием, затем наступило новое потепление, кульминация которого пришлась на период около 4 тыс. лет назад. Следующее за ним новое похолодание совпало с периодом войн за Трою и путешествий Одиссея.

Следует сказать, что климатологи различают геологические, исторические и современные изменения климата. Ранее речь шла о геологических изменениях, которые изучаются только геологическими и геофизическими методами. К историческим относятся изменения климата, происходившие в период развития цивилизации до начала инструментальных наблюдений. При изучении их в дополнение к геологическим и геофизическим методам используются археологические памятники и памятники письменности. Современные изменения климата относятся только к периоду инструментальных наблюдений.

Вслед за первым историческим похолоданием с кульминацией около 3 тыс. лет назад началось новое потепление, продолжавшееся и в первом тысячелетии нашей эры, известное как “малый климатический оптимум”. Этот период можно назвать также периодом забытых географических открытий, в отличие от периода Великих географических открытий XV и XVI вв. Открывателями новых земель были ирландские монахи, которые в середине первого тысячелетия благодаря улучшившимся вследствие потепления условиям мореплавания в Северной Атлантике смогли открыть Фарерские острова, Исландию и, как теперь предполагают, Америку. Вслед за ними эти открытия повторили норманнские викинги, которые в конце этого тысячелетия заселили Фарерские острова и Исландию, открыли и заселили Гренландию, а в самом начале последнего тысячелетия нашей эры добрались до Америки. Такая широкая экспансия норманнов в северные страны и отсутствие в исландских сагах того времени упоминаний о морских льдах как препятствии для мореплавания указывают на очень теплые условия. Норманнские поселенцы в Гренландии занимались не только добычей рыбы и зверя, но и скотоводством. Они заплывали очень далеко на север. Так, каменные пирамиды норманнов, служившие им ориентирами, обнаружены на 79 градусе с.ш. на берегу пролива Смита, разделяющего остров Элсмир и Гренландию.

Потепление раннего средневековья привело к уменьшению увлажненности в Европе, свидетельства чего найдены в отложениях торфяников в Средней Европе. На Руси до конца Х в. также были благоприятные климатические условия: редко случались неурожаи, не было очень суровых зим и сильных засух. Вспомним, что именно в это благоприятное время был открыт и интенсивно использовался путь “из варяг в греки”.

В первой четверти нашего тысячелетия начинается постепенное похолодание. Священник Ивар Бордсон, живший в XVI в., отметил появившийся морской лед, который отрезал Гренландию от Исландии и привел к гибели поселения норманнов. Последние сведения о норманнских поселенцах в Гренландии относятся к 1500 г. Одновременно очень суровыми стали условия в Исландии, где XVI–XVII столетия были временами тяжелых испытаний. Достаточно сказать, что с начала похолодания до 1800 г. население страны из-за голода сократилось вдвое. В Скандинавских странах стали часто повторяться серии суровых зим, неурожаи, начали наступать ледники. На равнинах Европы похолодание также сопровождалось сериями суровых зим, замерзанием ранее не замерзавших водоемов, частыми неурожаями, падежом скота. В Альпах и на Кавказе ледники продвинулись вперед, кое-где вклинившись в леса, понизилась снеговая линия и участился сход снежных лавин. Местами ледники перекрыли дороги, построенные еще римлянами. Жители высокогорных селений были вынуждены покинуть их. Советский гляциолог Г.К. Тушинский высказал в связи с этим гипотезу о том, что похолодание привело к гибели государства аланов на Кавказе, а многие их поселения были уничтожены снежными лавинами и наступавшими ледниками.

Сохранились и другие интересные факты, отражающие суровые условия этой эпохи. Так, на плавучих льдинах эскимосы могли достигать Шотландии, так как в XIV и XVIII вв. льды несколько раз блокировали побережье Норвегии и крупные льдины выносило к Шотландии. Согласно историческим хроникам, в 1750 г. на отмель у острова Бель-Иль у берегов Франции был вынесен гренландский айсберг, который затем таял в течение года.

На Руси начало второго тысячелетия нашей эры ознаменовалось резким ухудшением климатических условий. Начался период страшных гроз, великих засух, суровых зим. В 1143 г. в Новгородской земле четыре месяца шли дожди. Самым тяжелым оказался XV в. – засухи сменились годами с сильными дождями, наводнениями и небывалыми грозами. Голод и эпидемии унесли десятки тысяч жителей. С XI по XVII в. – за семь столетий – на Руси в целом и в отдельных районах было 200 голодных лет, т.е. практически каждые 3–4 года (Борисенков Е.П., Пасецкий В.М. Экстремальные природные явления в русских летописях XI–XVII веков. Гидрометеоиздат, 1983.)

В целом эта ближайшая к нам эпоха похолодания, известная как малый ледниковый период, продолжалась до XIX в. и сменилась новым потеплением. Геологические и геофизические следы малого ледникового периода, как и письменные источники, говорят о том, что это было явление глобального характера – оно проявлялось в северном полушарии от Западной Европы до Китая, Японии и в Северной Америке. В южном полушарии следы похолодания не столь четки, но они тоже есть.

На графике изменения средней температуры воздуха у поверхности Земли для периода голоцена можно видеть, что после климатического оптимума в начале голоцена при всех последующих спадах и подъемах температуры отмечается общая тенденция к похолоданию.

Человек появился в эпоху кайнозойского оледенения. Сам человек и его человекообразные предки относятся к семейству гоминид. В Южной и Восточной Африке найдены остатки гоминид, известные как австралопитеки, которых считают прямыми предками человека. Возраст этих находок около 5 млн лет. Последующая эволюция около 2–3 млн лет назад привела австралопитеков к разделению на так называемых массивных австралопитеков, которые затем вымерли, и на гоминид, известных как гомо габилис – человек умелый, а затем как гомо эректус – человек прямоходящий. С появлением человека умелого совпадают и самые первые находки примитивных орудий труда в слоях возрастом 2,2–2,0 млн лет, а также первые признаки использования огня. На следующих этапах эволюции сформировался современный человек.

Становление и развитие гомо сапиенс – человека разумного – происходило на фоне смены ледниковых периодов и межледниковых, когда колебания температуры за промежутки времени в десятки тысяч лет были соизмеримы с изменениями температуры за десятки миллионов лет кайнозойской эры. Именно в это чрезвычайно изменчивое время человек быстро развивался даже в самых суровых условиях, вблизи кромки наступающих ледников, о чем рассказывают разнообразные археологические находки. В условиях последнего валдайского ледникового периода человек широко расселился по планете, воспользовавшись в том числе коротким интервалом отступления Лаврентийского ледникового покрова, чтобы 25 тыс. лет назад по коридору между ним и Кордильерским ледниковым щитом проникнуть через Северную Америку в Центральную и Южную.

Весь наш современный исторический мир полностью укладывается в рамки последнего геологического интервала – голоцена. За короткий, с геологической точки зрения – почти мгновенный, промежуток времени человек стал ведущим звеном природы. Численность людей неимоверно возросла, мощь их орудий труда уже начинают сравнивать с мощностью потока солнечной энергии к Земле, но зависимость человека от колебаний климата во многих отношениях осталась почти такой же, как в библейские времена. <...> (С. 97–101)

Современное изменение климата

<...> Инструментальные наблюдения за климатом, развернувшиеся в XIX в., зарегистрировали начало потепления, которое продолжалось до первой половины XX в. Но это потепление было обнаружено не сразу. Советский океанолог Н.М. Книпович в 1921 г. выявил, что воды Баренцева моря стали заметно теплее. В 20-х годах появилось много сообщений о признаках потепления в Арктике. Сначала даже считалось, что это потепление касается только Арктической области. Такой термин, как “потепление Арктики в 30-х годах”, и сейчас нередок в художественной и даже научной литературе. Однако более поздний анализ привел к выводу, что это было глобальное потепление. Значительно раньше, чем климатологи, потепление заметили гляциологи, которые уже к концу XIX в. установили заметное отступление ледников в Альпах, на Кавказе, в Скалистых горах Северной Америки.

Изменение температуры воздуха в период потепления лучше всего изучено в северном полушарии, где в этот период было сравнительно много метеорологических станций. Тем не менее и в южном полушарии оно было выявлено достаточно уверенно. Особенностью потепления было то, что в высоких полярных широтах северного полушария оно было выражено более четко и ярко. Для отдельных районов Арктики повышение температуры было весьма внушительным. Так, в Западной Гренландии она повысилась на 5 °С, а на Шпицбергене даже на 8–9 °С за период от 1912–1926 гг. до конца 30-х годов.

Наибольшее глобальное повышение средней температуры у поверхности Земли во время кульминации потепления составляло всего 0,6 °С, но даже с таким небольшим изменением – на порядок меньшим, чем в период от ледниковой к межледниковой обстановке, и в несколько раз меньшим, чем в ближайшем климатическом оптимуме и во время малого ледникового периода, – было связано заметное изменение климатической системы.

На потепление бурно реагировали горные ледники, которые повсеместно отступали, причем величина отступания исчислялась сотнями метров. На Кавказе, например, общая площадь оледенения сократилась за это время на 10%, а толщина льда в ледниках уменьшилась на 50–100 м. Существовавшие в Арктике сложенные льдом острова растаяли, и на их месте остались лишь подводные отмели. Ледяной покров Северного Ледовитого океана сильно сократился, что позволило обычным судам заплывать в высокие широты: в 1925 г. парусная шхуна смогла обогнуть Шпицберген, а в 1932 г. известный советский океанолог Н.Н. Зубов на небольшом боте обошел вокруг Земли Франца-Иосифа. Такая обстановка в Арктике способствовала освоению Северного морского пути, позволяя обычным неледокольным судам совершать сквозное плавание по нему в течение одной навигации. В целом общая площадь морских льдов в период навигации в это время сократилось более чем на 10% по сравнению с XIX в., т.е. почти на 1 млн км2. К 1940 г. по сравнению с началом ХХ в. в Гренландском море ледовитость сократилась вдвое, а в Баренцевом почти на 30%.

Повсюду происходило отступание границы многолетней мерзлоты на север. В европейской части СССР она местами отступала на сотни километров, увеличилась глубина протаивания мерзлых грунтов, а температура мерзлой толщи повысилась на 1,5–2 °С.

Потепление сопровождалось изменением увлажненности отдельных районов. Советский климатолог О.А. Дроздов выявил, что в эпоху потепления 30-х годов в районах недостаточного увлажнения возросло количество засух, охватывающих большие территории. Такие засухи отмечались в СССР, а также в Соединенных Штатах, где они известны как знаменитые засухи 30-х годов под наименованием “даст боул”, что в переводе с английского означает “пыльный котел”. Сравнение холодного периода с 1815 по 1919 г. и теплого с 1920 по 1976 г., показало, что каждые десять лет в первый период наблюдалась одна крупная засуха, тогда как во второй – две. В период потепления из-за уменьшения количества осадков произошло значительное падение уровня Каспийского моря и ряда других внутренних водоемов.

Потепление повлекло за собой изменение границ распространения многих животных. В Гренландии стал гнездоваться сизоголовый дрозд, в Испании появились ласточки и скворцы. Перелетные птицы весной стали появляться в среднем на 10 дней раньше. Потепление океанических вод, особенно заметное на севере, привело к изменению мест нереста и откорма промысловых рыб.

Н.М. Книпович в связи с такими явлениями отметил, что “в какие-нибудь полтора десятка лет и даже более короткий промежуток времени произошли такие изменения в распределении представителей морской фауны, какие связываются обыкновенно с представлением о долгих геологических промежутках”.

После 40-х годов стала проявляться тенденция к похолоданию. Льды в северном полушарии стали снова наступать. В первую очередь это выразилось в росте площади ледяного покрова Северного Ледовитого океана. С начала 40-х и до конца 60-х годов площадь льда в арктическом бассейне возросла на 10%. Горные ледники в Альпах и на Кавказе, а также в горах Северной Америки, ранее быстро отступавшие, или замедляли отступление, или даже начали снова наступать.

В 60-е и 70-е годы возрастает число климатических аномалий. Это были суровая зима 1967/68 г. в СССР и три суровые зимы с 1972 по 1977 г. в Соединенных Штатах. В этот же период в Европе отмечается серия очень мягких зим. В Восточной Европе в 1972 г. – очень сильная засуха, а в 1976 г. – на редкость дождливое лето. Из других аномалий можно вспомнить необычайно большое количество айсбергов у берегов Ньюфаундленда в летние периоды 1971–1973 гг., частые и сильные штормы в Северном море между 1972 и 1976 г. Но аномалии охватили не только умеренную зону северного полушария. С 1968 по 1973 г. длилась сильнейшая засуха в Сахеле и Африке. Дважды, в 1976 и 1979 г., сильные заморозки губят кофейные плантации в Бразилии. В Японии по данным метеорологических наблюдений установлено, что за десятилетие 1961–1972 гг. число месяцев с необычно низкими значениями температуры было вдвое больше, чем с высокими значениями, а число месяцев с недостаточными осадками также почти вдвое превышало число месяцев с избытком осадков. На карте климатических аномалий для 1972 г. видно, что аномалии охватывали больше половины территории суши и проявлялись как в северном, так и в южном полушариях.

Начало 80-х годов также ознаменовалось серьезными и обширными аномалиями. Зима 1981/82 г. в Соединенных Штатах и Канаде была одной из самых холодных. Термометры показывали температуру воздуха более низкую, чем в последние несколько десятилетий, а в 75 городах, в том числе в Чикаго, морозы побили все предыдущие рекорды. 230 американцев погибли от холода. Зимой 1983/84 г. снова отмечались очень низкие температуры на обширных территориях в Соединенных Штатах, в том числе во Флориде. На редкость холодной была зима в Великобритании.

В Австралии летом 1982/83 г. была одна из самых драматических засух за всю историю континента, получившая название “великая сушь”. Она охватила всю восточную и южную часть континента и сопровождалась сильными лесными пожарами. В то же время Китай заливали дожди, продолжавшиеся три месяца. В Индии задержался сезон муссонных дождей. В Индонезии и на Филиппинах свирепствовали засухи. Над Тихим океаном пронеслись сильнейшие тайфуны. Побережье Южной Америки и засушливый Средний Запад США оказались залитыми дождями, которые затем сменились засухой. <...> (С. 101–105)

Печатается по тексту:

Лосев К.С. Климат: вчера, сегодня… и завтра? Л.: Гидрометеоиздат, 1985.

Периодическая печать о проблемах климата

Природа , 1992. № 6. Новости науки. С. 117.

<...> Все вулканы Земли ежегодно поставляют в окружающую среду от 130 до 175 млн т диоксида углерода, а индустриальная деятельность – 22 млрд т диоксида углерода в год.

Самый крупный поставщик диоксида углерода из вулканов – Этна: 25 млн т/год, что эквивалентно 4 ТЭЦ мощностью по 1 ГВт.

Обычно один действующий вулкан дает 1,3 млн т диоксида углерода.<...>

Наука и жизнь . 1990. № 4. С. 39. “Океан поднимается” (О чем пишут научно-популярные журналы мира).

<...>… Последние 100 лет вода поднимается в среднем на 1,2 миллиметра в год. <...>

<...>… В диапазоне 10–20 градусов Цельсия при нагревании на один градус литр воды увеличивается в объеме на 0,15 кубического сантиметра. Немного, но при пересчете на объем Мирового океана (1307,5 кубического километра) цифры становятся вполне чувствительными.<...>

Нью-Йорк Таймс, недельное обозрение “Наука”. 1993. 14–27 сентября.

Первая расцветшая в мире империя засохла на корню

<...> Аккадцы под предводительством Саргона установили контроль над городами по берегам реки Евфрат и над плодородными долинами к северу – теперь это Сирия, Ирак и, частично, юг Турции. Но всего лишь столетие продолжалось процветание, после чего Аккадская империя рухнула, а причины столь неожиданного крушения исторической наукой были утеряны.

Аккадская империя, полагают, была поражена 300-летней засухой, которая буквально иссушила и обезводила это могучее государство. Микроскопические исследования увлажненности почв показали, что засуха пришла внезапно, а последствия оказались крайне тяжелыми: Великая сушь началась примерно в 2200 г. до н.э.

Аккадские города на плодородной северной равнине были покинуты их жителями. Тексты, выбитые на глиняных табличках, рассказывают о массовых единовременных переселениях на юг. Такие миграции, приведшие к удвоению населенности южных городов, довели до нехватки пищи и воды, а недостаточность пищевых и водных ресурсов обернулась внутренней борьбой и, в конечном счете, падением династии, основанной Саргоном. <...>

<...>… Связь между резкими изменениями климата и упадком владычества Аккада представляется завершающим штрихом к картине всеобъемлющего и вездесущего экологического кризиса, погубившего в те века многие общества по всему Среднему Востоку.

Исполинские извержения вулканов, случившиеся на территории нынешней Турции в самом начале Великой суши, говорят ученые, вряд ли способны были запустить столь затянувшееся изменение климата.<...>

Природа. 1993. № 8.

Подборка информационных материалов, отражающих последние достижения климатологии, под общим заголовком: “Климат: проблемы изучения и прогнозирования”. (С. 94–105)

Оценка состояния климата Земли

<...> За последнее столетие средние температуры земной поверхности повысились на 0,3–0,6 °С; уровень Мирового океана поднялся в среднем на 10–20 см; начиная с 1973 г. среднегодовая площадь снегового покрова в северном полушарии сократилась на 8%. <...>

<...>… Если человечество <...> не примет мер по ограничению выброса парниковых газов, средние температуры на поверхности планеты будут расти примерно на 0,3 °С в десятилетие (возможная ошибка в пределах 0,2–0,5 °С), а уровень моря только за счет теплового расширения вод – подниматься на 2–4 см в десятилетие.<...>

Что за потеплением – подъем или падение уровня океана?

<...>… Во время глобального потепления Антарктическое оледенение не сокращалось, а, напротив, разрасталось. <...>

<...>… И в наше время, несмотря на глобальное потепление (за столетие – примерно на 0,6 °С), снеговая линия в Канадской Арктике, на о. Баффина и на Аляске продвигается к югу, а увеличение мощности Гренландского оледенения должно приводить к падению (а не повышению!) уровня Мирового океана примерно на 0,45 мм/год <...>

<...>… Горные ледники начали отступать около 100 лет назад; то же можно сказать и о некоторых районах Антарктического полуострова <...>

<...>… В прошлом масштабы оледенения возрастали как раз в периоды потепления, а не похолодания. <...>

Солнечная активность и климат

<...>… За столетний период с 1880 по 1990 г. – общее потепление составило 0,8 °С.<...>

<...>… Количество выделяемой Солнцем энергии в большей степени зависит от длительности цикла, чем от числа пятен.

Надежная согласованность между вариациями солнечной активности и климатическими изменениями, происшедшими после 1750 г., достигается лишь при учете парникового эффекта. Хотя в период с 1750 по 1850 г. из двух этих процессов доминировала солнечная активность, затем положение стало меняться в пользу химического состава атмосферы, т.е. парникового эффекта. <...>

Состоится ли потепление?

<...> С решительным опровержением утверждений большинства математических моделей, что к середине ХХI в. удвоение количества диоксида углерода в атмосфере приведет к повышению средней температуры на Земле в пределах от 1,5 до 4,5 °С, выступил климатолог Д. Линдзен (Массачусетский технологический институт, Кембридж, США). <...>

<...>… Глобальные температуры весьма слабо зависят как от изменения общей солнечной радиации, так и от количества парниковых газов в атмосфере; главным образом климат зависит от распределения поступающей солнечной энергии, а не от ее количества, перемены же в атмосферной концентрации диоксида углерода на это не влияют. Примером такого отчетливого воздействия служат “биения” земной орбиты (описанные югославским геофизиком Миланковичем) <...>

<...> Линдзен утверждает, что через полвека реальные климатические сдвиги либо окажутся близки к нулю, либо едва достигнут 1,5 °С. <...>

<...>… Недавние работы в области физики облаков свидетельствуют об их охлаждающей роли в тепловом балансе Земли.

Т. Палмер (Ридинг, Великобритания) призывает различать термины “парниковый эффект” и “глобальное потепление”: по его мнению, потепление, которое отмечается в последнее десятилетие и включает четыре из пяти самых теплых года за всю историю наблюдений, не связано с изменениями в концентрации диоксида углерода. <...>

Извержение: к потеплению или похолоданию?

<...>… Извержение вулкана Пинатубо на Филиппинах в 1991 г. привело к охлаждению поверхности Земли в среднем на 0,5 °С. <...>

<...>… Ход температур земной поверхности в ближайшие месяцы после 12 крупнейших извержений, начиная с Кракатау в 1883 г. до Пинатубо в 1991 г., точно соответствует разработанной математической модели (А. Робок и Мао Цзяньпин; Университет штата Мэриленд, США), учитывающей региональные потепления стратосферы. Этим, по мнению авторов модели, и объясняется тот факт, что в 1991–1992 гг. зима в Евразии и Северной Америке была весьма теплой, а на Ближнем Востоке стояли сильные холода. <...>

Последствия грядущего потепления для Юго-Восточной Азии

<...> На основе накопившихся за последние годы данных принято, что к 2090 г. потепление приведет к несколько большему повышению уровня моря – на 1 м против 60 см, учитывавшихся в предыдущих моделях. По новому прогнозу, средняя температура к концу изучаемого периода поднимется в Индонезии на 3 °С, в Малайзии – на 3–4 °С, в Таиланде – на 3–6 °С.

На северо-западе Явы наступление соленых морских вод может сократить урожай риса на 270 тыс. т/год (90% нынешней урожайности).

Потепление увеличит потребность в воде для ирригации и снизит возможности выращивания двух урожаев в год на одной площади.

<...>… Выход тропических ураганов в странах этого региона станет более частым явлением. <...>

Как изменится климат Африки

<...> Площадь Африки, классифицируемая с 1931 г. как засушливая и сверхзасушливая, увеличилась почти на 54 млн га, что составляет 1,8% площади всего континента. Влажная зона потеряла при этом 26 млн га. <...>

<...>… Основной климатический сдвиг состоит в переходе от полупустынь к пустыням и от засушливых районов к сверхзасушливым условиям <...>

Лишь 2% территории стали более влажными. <...>

www.ronl.ru

Реферат на тему Изменение климата планеты Земля

ся потоки льда гигантских размеров, которые | |выбрасываются в океан, формируют шельфовый ледник и огромную массу | |айсбергов. Выброс может составлять несколько миллионов кубических | |километров льда. Увеличение площади ледникового покрова и масса тающих | |айсбергов приводят к глобальному понижению температуры и служат | |спусковым механизмом нового цикла оледенения. Зарождение такой пульсации| |Антарктического ледникового покрова происходит в межледниковья, так как | |быстрые гигантские потоки льда могут сформироваться только при условии | |его прогревания. Таким образом, потепление приводит к новому ледниковому| |периоду. <...> | |<...> Астрономическая гипотеза, разработанная в 20-х годах нашего века | |югославским геофизиком М. Миланковичем. В соответствии с гипотезой | |Миланковича полушария Земли в результате изменения элементов ее движения| |могут получать меньшее или большее количество солнечной радиации, что | |отражается на глобальной температуре. Миланкович выделил три элемента | |движения. Один – колебания земной оси. Если посмотреть на ось сверху, то| |оказывается, что она описывает в пространстве круг за время | |приблизительно 25 тыс. лет, т.е. как бы покачивается по отношению к | |Солнцу. | |Второй – изменение наклона земной оси по отношению к плоскости орбиты | |(эклиптики) Земли. Такие изменения происходят с периодичностью 41 тыс. | |лет и достигают 3 градусов. Третий элемент движения связан с изменением | |формы орбиты от почти круговой до несколько вытянутой – эллиптической. | |При этом различие в удалении от Солнца составляет около 5 млн км. | |Предполагается, что раньше оно было больше. | |Рассчитав совместное влияние всех трех факторов, Миланкович смог | |определить периоды, когда те или иные широтные зоны Земли получают | |наименьшее количество солнечного излучения. По всей видимости, эти | |периоды и должны соответствовать периодам формирования и развития | |покровных ледников в северном полушарии. Впоследствии другие | |исследователи, в том числе советские, внеся небольшие уточнения, | |подтвердили расчеты изменений движения Земли и притока солнечной | |радиации, выполненные Миланковичем. Эта гипотеза получила косвенное | |подтверждение благодаря анализу климатических ритмов при изучении | |колонок глубоководных морских осадков, относящихся к последним 500 тыс. | |лет, содержания тяжелого изотопа кислорода, а также видового состава | |двух видов морских организмов (радиосолярий) – все три индикатора | |характеризуют разные стороны климатической системы – температуру, | |распреснение и засоление океана в результате таяния и образования | |ледниковых покровов. Индикаторы подтвердили существование трех циклов | |изменения климатической системы с периодичностью, соответствующей | |периодичности факторов Миланковича. Наиболее резкие изменения | |происходили с периодичностью 100 тыс. лет, менее выраженные – с | |периодичностью 42 тыс. лет, а самые небольшие – 24 тыс. лет. <...> (С. | |95–96) | |<...> Последний интервал, во время которого мы живем, носит название | |голоцена. Это отрезок времени с начала нынешнего межледниковья, | |начавшегося 10 тыс. лет назад и по времени соответствующего | |благоприятному для потепления сочетанию факторов Миланковича. | |Межледниковье тоже не является застывшим миром, хотя оно и не столь | |богато событиями, как ледниковый период. В голоцене происходили заметные| |климатические колебания, которые хорошо прослеживаются как с помощью | |палеотемпературных, так и других методов реконструкции климата прошлого.| | | |Ранняя часть голоцена характеризовалась потеплением, которое перешло | |около 8 тыс. лет назад в интервал, известный как “климатический оптимум”| |и продолжавшийся около 2,5 тыс. лет. В период оптимума средняя | |температура воздуха была выше современной, отмечена также повышенная | |увлажненность, в частности в пустынях Сахаре и Раджастхане в Индии. О | |более высокой температуре говорят хорошо сохранившиеся индикаторы | |климата прошлого, в частности находки стволов деревьев, произраставших | |на берегах Северного Ледовитого океана в Сибири, в Гренландии и на | |острове Элсмир. Исландию в этот период наполовину покрывали березовые | |леса, которые сейчас занимают не более 1% территории. В горах повысилась| |граница леса, а ледяной покров Северного Ледовитого океана сократился по| |площади почти вдвое по сравнению с современным. В Сахаре найдены остатки| |многих животных, которые могли жить только при наличии водоемов со | |стоячими и текучими водами, обнаружены остатки богатой растительности. | |По существующим оценкам, в Европе было теплее на 2 °С, чем сейчас, | |причем в основном в летний период, так как многие вечнозеленые растения | |– тис, падуб, и др. – контролируются зимней температурой и в это время | |на север не продвигались. Потепление, хотя и не столь сильное, как в | |северном полушарии, было отмечено и в южном. | |Климатический оптимум 5,5 тыс. лет назад сменился похолоданием, затем | |наступило новое потепление, кульминация которого пришлась на период | |около 4 тыс. лет назад. Следующее за ним новое похолодание совпало с | |периодом войн за Трою и путешествий Одиссея. | |Следует сказать, что климатологи различают геологические, исторические и| |современные изменения климата. Ранее речь шла о геологических | |изменениях, которые изучаются только геологическими и геофизическими | |методами. К историческим относятся изменения климата, происходившие в | |период развития цивилизации до начала инструментальных наблюдений. При | |изучении их в дополнение к геологическим и геофизическим методам | |используются археологические памятники и памятники письменности. | |Современные изменения климата относятся только к периоду | |инструментальных наблюдений. | |Вслед за первым историческим похолоданием с кульминацией около 3 тыс. | |лет назад началось новое потепление, продолжавшееся и в первом | |тысячелетии нашей эры, известное как “малый климатический оптимум”. Этот| |период можно назвать также периодом забытых географических открытий, в | |отличие от периода Великих географических открытий XV и XVI вв. | |Открывателями новых земель были ирландские монахи, которые в середине | |первого тысячелетия благодаря улучшившимся вследствие потепления | |условиям мореплавания в Северной Атлантике смогли открыть Фарерские | |острова, Исландию и , как теперь предполагают, Америку. Вслед за ними | |эти открытия повторили норманнские викинги, которые в конце этого | |тысячелетия заселили Фарерские острова и Исландию, открыли и заселили | |Гренландию, а в самом начале последнего тысячелетия нашей эры добрались | |до Америки. Такая широкая экспансия норманнов в северные страны и | |отсутствие в исландских сагах того времени упоминаний о морских льдах | |как препятствии для мореплавания указывают на очень теплые условия. | |Норманнские поселенцы в Гренландии занимались не только добычей рыбы и | |зверя, но и скотоводством. Они заплывали очень далеко на север. Так, | |каменные пирамиды норманнов, служившие им ориентирами, обнаружены на 79 | |градусе с.ш. на берегу пролива Смита, разделяющего остров Элсмир и | |Гренландию. | |Потепление раннего средневековья привело к уменьшению увлажненности в | |Европе, свидетельства чего найдены в отложениях торфяников в Средней | |Европе. На Руси до конца Х в. также были благоприятные климатические | |условия: редко случались неурожаи, не было очень суровых зим и сильных | |засух. Вспомним, что именно в это благоприятное время был открыт и | |интенсивно использовался путь “из варяг в греки”. | |В первой четверти нашего тысячелетия начинается постепенное похолодание.| |Священник Ивар Бордсон, живший в XVI в., отметил появившийся морской | |лед, который отрезал Гренландию от Исландии и привел к гибели поселения | |норманнов. Последние сведения о норманнских поселенцах в Гренландии | |относятся к 1500 г. Одновременно очень суровыми стали условия в | |Исландии, где XVI–XVII столетия были временами тяжелых испытаний. | |Достаточно сказать, что с начала похолодания до 1800 г. население страны| |из-за голода сократилось вдвое. В Скандинавских странах стали часто | |повторяться серии суровых зим, неурожаи, начали наступать ледники. На | |равнинах Европы похолодание также сопровождалось сериями суровых зим, | |замерзанием ранее не замерзавших водоемов, частыми неурожаями, падежом | |скота. В Альпах и на Кавказе ледники продвинулись вперед, кое-где | |вклинившись в леса, понизилась снеговая линия и участился сход снежных | |лавин. Местами ледники перекрыли дороги, построенные еще римлянами. | |Жители высокогорных селений были вынуждены покинуть их. Советский | |гляциолог Г.К. Тушинский высказал в связи с этим гипотезу о том, что | |похолодание привело к гибели государства аланов на Кавказе, а многие их | |поселения были уничтожены снежными лавинами и наступавшими ледниками. | |Сохранились и д
скачать работу
Изменение климата планеты Земля

Смотрите также

 

..:::Новинки:::..

Windows Commander 5.11 Свежая версия.

Новая версия
IrfanView 3.75 (рус)

Обновление текстового редактора TextEd, уже 1.75a

System mechanic 3.7f
Новая версия

Обновление плагинов для WC, смотрим :-)

Весь Winamp
Посетите новый сайт.

WinRaR 3.00
Релиз уже здесь

PowerDesk 4.0 free
Просто - напросто сильный upgrade проводника.

..:::Счетчики:::..

 

     

 

 

Карта Сайта