Инженерная психология – научная дисциплина, изучающая объективные закономерности процессов информационного взаимодействия человека и техники для использования их в практике проектирования.
Основные задачи инженерной психологии:
Эргономика — это наука, изучающая проблемы, возникающие в систем «человек-техника-среда», с целью оптимизации трудовой деятельности оператора, создания для него комфортных и безопасных условий, повышения за счет этого его производительности, сохранения здоровья и работоспособности.
Для рационального проектирования эргатических (человекомашинных) систем необходимо знать:
1. психофизиологические характеристики оператора
2. средства и способы, обеспечивающие оптимизацию взаимодействия человека и техники.
В настоящее время все большее влияние при проектировании приобретает микроэргономика, занимающаяся исследованием и проектированием систем "человек-машина". Сюда же включаются интерфейсы "человек-компьютер" (компьютер рассматривается как часть машины — например, в кабине истребителя есть дисплеи), — как аппаратные интерфейсы, так и программные (пользовательские интерфейсы).
Под пользовательским интерфейсом (ПИ) программы будем понимать совокупность элементов, позволяющих пользователю программы управлять ее работой и получать требуемые результаты.
Пользовательский интерфейс часто понимают только как внешний вид программы. Однако на деле пользователь воспринимает через ПИ всю систему в целом, а значит, такое понимание ПИ является слишком узким. В действительности ПИ включает в себя все аспекты дизайна, которые оказывают влияние на взаимодействие пользователя и системы. Это не только экран, который видит пользователь. Пользовательский интерфейс состоит из множества составляющих, таких как:
· набор задач пользователя, которые он решает при помощи системы
· используемая системой метафора (например, рабочий стол в MS Windows и т.п.)
· элементы управления системой
· навигация между блоками системы
· визуальный (и не только) дизайн экранов программы.
Слово информация вошло в постоянное употребление не так давно, в середине двадцатого века, с подачи Клода Шеннона. Он ввел этот термин в узком техническом смысле, применительно к теории связи или передачи кодов (которая получила название "Теория информации").
Попробуем теперь сформулировать определение информации и информационного взаимодействия. Слово информация происходит от латинского informatio — разъяснение, изложение. В широком смысле информация – это общенаучное понятие, включающее в себя обмен сведениями между людьми, обмен сигналами между живой неживой природой, людьми и устройствами.Информация – сведения об объектах и явлениях окружающей среды, их параметрах, свойствах и состоянии, которые уменьшают имеющуюся о них степень неопределенности, неполноты знаний.
Данные, это информация, выраженная при помощи материальных носителей, т.е. это форма, в которую заключен смысл, содержание. В общем случае процесс сопоставления информации с материальными носителями называется кодированием (не путать с шифрацией и криптографией), а сами материальные носители (некоторые формы вещества и энергии) – информационными кодами.
Информация между объектами переносится с помощью обмена веществом или энергией, являющихся в данном случае информационными кодами. Информация, выраженная в виде информационных кодов – данные. Прием информационных кодов вызывает изменение состояния объекта. Одним из важнейших свойств информационного взаимодействия, отличающих его от симметричных физических взаимодействий, является то, что информация не теряется при передаче. Для примера: пусть у одного человека было яблоко, он передает его другому человеку, при этом его утрачивая. Пусть у одного человека была идея, он поделится ей с другим человеком, в результате у каждого будет по одной идее.
Информационное взаимодействие может происходить только при определенном взаимном соответствии свойств объектов. От свойств принимающего объекта зависит в конечном итоге то, какую информацию он принимает, получая конкретный набор кодов.
Человеко-машинное информационное взаимодействие
Теперь рассмотрим один из видов информационного взаимодействия – взаимодействие человека и машины. Не вдаваясь в детали, схематически его можно представить следующим образом
Рис.2 – структурная схема человеко-машинного взаимодействия
Однако, в силу своих специфических особенностей, человек не может напрямую общаться с машиной, в самом деле, не может же он воспринимать, предположим, электрические сигналы, с помощью которых передают информацию машины. Иными словами требуется согласовать их аппараты интерпретации. Необходимо использовать такие устройства, которые бы представляли машинные сигналы в виде, удобном для восприятия человеком, устройства индикации. В настоящее время чаще всего используются визуальные (зрительные – световое отображение на экране), звуковые и тактильные (осязательные) устройства индикации. На устройствах индикации формируется так называемая динамическая информационная модель (ИМ) – объективный образ реального мира, полученный в соответствии с определенными правилами, множество сигналов от машины, несущих информацию оператору. Динамическая информационная модель постоянно изменяется в соответствии с изменениями, происходящими в объекте наблюдения (машине). Оператор принимает информацию, содержащуюся в динамической модели, при помощи рецепторов.
Полученная информация затем обрабатывается некоторым образом в центральной нервной системе. На основе восприятия динамической информационной модели в сознании человека создается представление (концепция) о состоянии реального объекта, машины. Такая модель называется концептуальной (образно-концептуальной) или психической.
Образно-концептуальная модель – совокупность представлений оператора о реальном и прогнозируемом состоянии объекта деятельности, о целях и способах реализации своей деятельности. Различают постоянные и переменные (оперативные) компоненты образно-концептуальной модели. Первые включают: общее представление оператора о времени и пространстве, о стратегических целях деятельности, систему ценностей и оценок, представление о стандартных способах реагирования на изменения ситуации. Переменные компоненты являются результатом анализа потока информации о машине, передаваемого информационной моделью. Выявленные изменения приводят к модификации концептуальной модели, оцениваются и актуализируют соответствующие способы реагирования. Образно-концептуальная модель имеет сложный полимодальный характер, может содержать зрительные, слуховые, тактильные, а в некоторых видах деятельности – обонятельные, вестибулярные и другие составляющие. Значительное влияние на образно-концептуальную модель оказывает индивидуальный сенсорно-перцептивный опыт оператора, а также усвоенная им семиотическая система, характерная для данной культуры. Несмотря на структурную сложность, образно-концептуальная модель представляет собой целостное отражение действительности, обладающее тенденцией к совершенствованию.
В результате анализа концептуальной модели, человек принимает решение, которое реализует с помощью эффекторов. Для преобразования команд человека в машинные сигналы служат специальные устройства ввода (в настоящее время в качестве устройств ввода наибольшее распространение получили различные виды клавиатур). Воздействуя на устройства ввода, оператор осуществляет целенаправленную деятельность в соответствии с задачами всей системы.
Далее рассмотрим подробнее процесс переработки информации человеком с физиологической и психологической точек зрения.
Таким образом, упрощенно функции оператора в эргатической системе можно свести к следующему набору:
· прием информации
· хранение информации
· переработка информации
· принятие решения
· осуществление управляющих воздействий
С психологической точки зрения прием и обработка информации основываются на следующих процессах:
· ощущение
· восприятие
· представление
· мышление
Ощущение — построение образов отдельных свойств предметов окружающего мира при непосредственном взаимодействии с ними. Существуют различные виды ощущений. По модальности выделяют зрительные, вкусовые, слуховые, осязательные и другие ощущения.
Восприятие — процесс формирования при помощи активных действий образа предмета в целом. В отличие от ощущений, отражающих лишь отдельные свойства предметов, в образе восприятия представлен весь предмет, в совокупности его различных свойств. Принимая информацию, оператор анализирует и преобразует ее. Экспериментально установлено, что различение признаков визуальных сигналов осуществляется в определенной последовательности: первоначально различается положение отметки, затем ее яркость и лишь после этого размер и форма.
Образ восприятия выступает как результат объединения ощущений. В воспринимаемом предмете главным может оказаться либо одно, либо другое качество, от чего зависит, информация от какого анализатора будет признана приоритетной.
Также как и ощущения, различают зрительное, слуховое, осязательное, вкусовое и обонятельное восприятие. При этом особенно важную роль во всех видах восприятия, играют двигательные, или кинестезические ощущения, которые регулируют по принципу обратной связи реальные взаимоотношения субъекта с предметом. В частности, в зрительном восприятии вместе с собственно зрительными ощущениями (цвета, света) интегрируются также и кинестезические ощущения, сопровождающие движения глаза (аккомодация, конвергенция и дивергенция, слежение).
Основными свойствами восприятия являются
ü влияние на восприятие предметов окружающего мира предшествующего опыта и установок индивида
ü способность к выделению в воспринимаемом пространстве определенных областей, имеющих более или менее очерченные и устойчивые границы,т.е. отнесение объекта к определенной категории. При этом четкость данных границ тесно связана с перцептивными задачами, решаемыми индивидом.
ü относительная устойчивость воспринимаемых признаков предметов при изменении условий восприятия
ü преимущественное выделение одних объектов по сравнению с другими
Представление — наглядный образ предмета, воспроизведенный по памяти в воображении. Образы представлений, как правило, менее ярки и менее детальны, чем образы восприятия, но в них находит отражение самое характерное для данного предмета. Представление и есть рассмотренная выше концептуальная модель.
Что обеспечивает устойчивость концептуальной модели в условиях, когда на органы чувств человека воздействуют одновременно множество постоянно меняющихся раздражителей? Если бы организм, центральная нервная система постоянно реагировали на все эти сигналы, поведение человека было бы хаотичным и ни о какой целенаправленной деятельности не могло бы быть и речи. Однако этого не происходит, так как в коре головного мозга образуется устойчивый очаг повышенной возбудимости нервных центров, обеспечивающих систему условных рефлексов, составляющих данную деятельность, а остальные, лишние для этой деятельности рефлексы, тормозятся, подавляются. Такой господствующий очаг нервного возбуждения, обеспечивающий реализацию рабочего динамического стереотипа, называют рабочей доминантой. Благодаря ей уточняются, концентрируются рабочие действия, а внимание исполнителя сосредотачивается на трудовой деятельности.
Таким образом, на уровне восприятия происходит: Обнаружение объекта, т.е. выделение его из фона; различие, выделение деталей объектов и раздельное восприятие 2-х рядом расположенных; Опознавание. Выделение существенных признаков объектов и отнесение его к определенному классу.
На основе ощущения и восприятия строится более сложная форма чувственного отражения представления – вторичный, чувственный образ предмета, не действующего в данный момент на наши органы чувств.
Обычно преставление об объекте формируется на основе многократного восприятия, вследствие чего отбираются и фиксируются лишь наиболее устойчивые признаки объекта, а случайно зависящие от конкретной ситуации отсекаются
В представлении отражаются не только свойства отдельного предмета, но и особенные, типичные, основанные на взгляде для группы предметов, т.е. за счет представления достигается наиболее экономичный способ хранения информации об Объекте и наиболее быстрый способ извлечения информации из предмета.
Мышление – наиболее сложный из психологических процессов приема и обработки информации, в рамках данного курса подробно рассматриваться не будет. Можно отметить, что в процессе мышления присутствуют такие операции, как анализ, синтез, абстрагирование, обобщение и т.д.
В сложных ситуациях оператор последовательно должен выполнить :
1. осмыслить ситуацию, т.е. выяснить проблему
2. выяснить конкретную задачу, т.е. к чему сводится задание
3. найти пути решения задачи в условиях дефицита времени
Во всей описанной процедуре очень важна оперативность мышления, в результате которой в процессе решения практической задачи управления формируется модель предполагаемых действий. Выполнив действия, оператор решает поставленную задачу.
Оперативное мышление включает:
1. выявление проблемной ситуации
2. систематизация мысленных и практических преобразований ситуаций, т.е. алгоритм действий.
Основные составляющие оперативного мышления:
1. структурирование — структурирование проявляется в связывании элементов ситуации между собой.
2. динамическое узнавание – основывается на определении частей конечной ситуации в исходной проблемной ситуации
3. формирование алгоритма
Для процессов мышления важную роль играет память человека.
Основные формы памяти:
Кратковременная память в свою очередь подразделяется на:
1. непосредственная
2. оперативная
В непосредственной памяти хранится почти вся поступающая информация, но время ее хранения не превышает нескольких секунд.
В оперативной памяти сохраняется необходимая текущая информация в течение времени, требуемого для выполнения определенного действия (максимум несколько минут). Перевод информации из непосредственной в оперативную сопровождается ее селекцией по критериям, определяемых решением задачи.
Затем важная для информация переводится из кратковременной памяти в долговременную память. При этом происходит селекция и реорганизация информации (временное хранение в долговременное – дни, месяцы, годы)
В зависимости от задач, решаемых в системе, ведущая роль может принадлежать той или иной памяти. Например, на надежность и эффективность действий оператора решающую роль оказывает оперативная память.
Лекция № 2. Работа нервной системы. Характеристики
и особенности анализаторов
Прием и обработка информации человеком-оператором осуществляется с помощью нервной системы. Нервная система имеет сложную структуру. Различают центральную нервную систему (головной и спинной мозг), формирующую и регулирующую мышление и поведение человека, периферическую нервную систему — нервы, по которым сигналы-импульсы распространяются от периферических органов к нервным центрам и от нервных центров к периферическим органам, вегетативную нервную систему, регулирующую деятельность внутренних органов человека, функции жизнеобеспечения — т. е. растительную, «вегетативную» жизнь организма.
Решающую роль в осуществлении всех процессов жизнедеятельности человека, в том числе трудовой деятельности, играет центральная нервная система.
Прежде всего, благодаря ей организм функционирует как единое целое, взаимодействуют его органы и системы, осуществляется основной обмен, без которого невозможна сама жизнь.
Основные элементы нервной системы — рецептор, нейрон (нервная клетка) и синапс.
Рецептор — это устройство, преобразующее энергию внешнего или внутреннего раздражителя (светового, звукового, теплового, химического и т. п.) в специфический нервный процесс — возбуждение. Возбуждение, подобно сигналу, передается с одной нервной клетки на другую.
Нейрон (нервная клетка) — структурная единица мозга. Кора больших полушарий головного мозга, определяющая индивидуальное поведение человека, состоит из более чем 10 млрд нейронов.
Синапс — тончайшее межклеточное образование, с помощью которого осуществляется переход возбуждения с одного нейрона на другой, с нейрона на мышцу или другие периферические исполнительные органы.
Помимо нервных клеток серое вещество мозга на 60—90% состоит из так называемых глиальных клеток (или «глии»), выполняющих функцию опорного каркаса для нейронов, а также функцию питания нервных клеток — в глии находятся «энергетические депо» накопления энергетических веществ, периодически поступающих в нервные клетки.
Мозг можно представить как совокупность взаимосвязанных групп нервных клеток, или анализаторов — зрительного, слухового, обонятельного, осязательного, двигательного, речедвигательного и т. п. Корковые центры соответствующей области коры головного мозга называют корковым концом (представительством) анализатора, а органы чувств или другие рецепторные зоны, где расположены соответствующие рецепторы, — периферическим концом анализатора.
Основными процессами нервной деятельности являются возбуждение и торможение.
Информация из внешней среды и внутренней среды организма поступает в виде самых разнообразных раздражителей, однако на нейрофизиологическом уровне она проявляется в виде одного и того же физиологического процесса — возбуждения. Это сложный биоэлектрический процесс, состоящий из множества сигналов-импульсов, приводящий в действие клетки и органы. Процесс возбуждения обладает свойством распространяться, переходить из одного участка ткани на другой, находящийся в покое, и за счет этого связывает между собой и приводит в действие различные элементы организма.
Процесс торможения — сложный биоэлектрический процесс, ослабляющий или прекращающий деятельность клетки, органа. В отличие от возбуждения торможение носит местный характер, не распространяется.
Физиологическая основа формирования концептуальной модели – это работа анализаторов, т.е. первых органов, с помощью которых человек осуществляет анализ раздражителей.
Анализатор — термин, введенный И.П. Павловым для обозначения функциональной единицы, ответственной за прием и анализ сенсорной информации какой–либо одной модальности. Различают зрительный, слуховой, тактильный, вкусовой, обонятельный, кинестетический (внутримышечный), температурный и вестибулярный анализаторы.
Важнейшими для оператора является следующие анализаторы:
ü зрительные (90%)
ü слуховые (7%)
ü тактильные (3-2,5%)
В анализаторе выделяют три отдела:
1. Воспринимающий орган или рецептор, предназначенный для преобразования энергии раздражения в процесс нервного возбуждения. Вход рецептора приспособлен к приему сигналов определенного вида (световых, звуковых, тепловых и так далее), что и является основой квалификации анализаторов;
2. Проводник, состоящий из афферентных нервов и проводящих путей, по которому импульсы передаются к вышележащим отделам центральной нервной системы;
3. Центральный отдел, состоящий из релейных подкорковых ядер и проекционных отделов коры больших полушарий. (центр в коре больших полушарий головного мозга (мозговой конец))
Кроме восходящих (афферентных) путей существуют нисходящие волокна (эфферентные), по которым осуществляется регуляция деятельности нижних уровней анализатора со стороны его высших, в особенности корковых, отделов.
Анализаторы человека являются единой, взаимосвязанной системой. Действия раздражителя на один из анализаторов вызывает не только его прямую реакцию, но и изменяет функционирование других.
Мозговой конец (МК) состоит из ядра и рассеянных по коре головного мозга отдельных элементов. Между МК и рецептором существует обратная связь – осуществляется через волокна. За счет ОС в рецепторах производится декодирование, т.е. воспроизведение того исходного состояния, которое возникает при взаимодействии рецептора с раздражителем.
В частности, возможностями и особенностями анализаторов человека определяются психофизиологические требования к орудиям труда. Рассмотрим подробнее некоторые важнейшие характеристики анализаторов, а также свойства зрительного, слухового и тактильного анализаторов. (Ведь именно от особенностей работы анализаторов зависит быстродействие и точность работы человека-оператора).
Как уже отмечалось выше, восприятие информации в основном осуществляется зрительным, слуховым и тактильным анализаторами. Остальные анализаторы в технических системах используются крайне редко, в особых условиях деятельности (например вестибулярный — в системе «летчик-самолет»). Основными характеристиками анализаторов является чувствительность, избирательность и адаптивность.
Диапазон чувствительности анализатора определяется интервалом от минимальной до максимальной адекватно ощущаемой величины сигнала. Величина раздражителя, вызывающая едва заметное ощущение, называется нижним абсолютным порогом чувствительности, а максимальная величина раздражителя — верхним абсолютным порогом. Нижний абсолютный порог определяет чувствительность анализатора, поскольку сигналы, интенсивность которых меньше нижнего абсолютного порога, человеком не ощущаются, а увеличение интенсивности сигналов выше верхнего абсолютного порога вызывает у человека болевое ощущение.
Избирательность анализатора заключается в его способности из множества раздражителей, одновременно действующих на человека, в зависимости от условий воспринимать и анализировать только существенные раздражители, чем обеспечивается высокая помехоустойчивость, и быстродействие по анализу информации. Благодаря избирательности анализаторов анализ большого количества информации человеком проводится в несколько раз быстрее, чем автоматическим устройством, поскольку компьютерная система предусматривает последовательный анализ всей информации без учета ее значимости.
В зависимости от условий окружающей среды анализатор может изменять диапазон чувствительности, например, перемещением хрусталика глаза. Это свойство называется адаптацией. Адаптация характеризуется величиной изменения чувствительности и временем, в течение которого она происходит.
В реальных условиях должны соблюдаться следующие требования к сигналам-раздражителям:
ü интенсивность сигналов должна соответствовать средним значениям диапазона чувствительности анализаторов;
ü различие между сигналами должно быть больше оперативного порога различения, но не должно значительно превышать оперативный порог, т. е. составлять оптимальную величину, обеспечивающую хорошую работоспособность и не вызывать утомления;
ü наиболее значительные и ответственные раздражители следует располагать в тех зонах сенсорного поля, которые соответствуют участкам рецепторной поверхности с наибольшей чувствительностью.
Характеристики зрительного анализатора. Зрительным анализатором воспринимается форма, цвет, яркость и движение предметов. Возможность различения предмета на фоне других предметов определяется его контрастностью.
Контрастность — это соотношение яркости предмета и фона. Различают прямой (яркость фона больше яркости предметов) и обратный (яркость предмета больше яркости фона) контрасты. Оптимальным считается контраст, находящийся в пределах 0.6…0.9. Необходимо, чтобы различие в яркости предмета и фона было в 10…15 раз больше порогового значения. Форма предмета воспринимается с учетом контраста и угловых или линейных размеров.
Эргономические требования к средствам отображения визуальной информации устанавливают размеры и конфигурацию знаков, сигналов, углы их обзора и расстояния наблюдения, вид контраста изображения и окружающего фона, цвет свечений световых изображений, уровень яркости, частоту мельканий, скорость перемещений, условия внешней освещенности изображения. Рациональное соответствие орудий труда зрительному, анализатору соблюдаются при следующих условиях:
ü освещенность на рабочем месте оператора — 410 лк;
ü яркость свечения индикатора на черно-белой электронно-лучевой трубке (ЭЛТ) — не менее 0,5 кд/м2;
ü яркость свечения индикатора на цветной ЭЛТ не менее 10 кд/м2;
ü оптимальная яркость индикатора на цветной ЭЛТ —170 кд/м2;
ü контраст прямой оптимальный — 0,8…0,9;
ü контраст прямой допустимый — 0,6…0,9;
ü контраст обратный для самосветящихся индикаторов — не менее 0,2;
ü время представления (индикации) сигнала — не менее 2 с;
ü скорость движения сигнала при наличии опорного ориентира — 1…2 угловых минуты в секунду;
ü скорость движения сигнала без опорного ориентира — 15…30 угловых минут в секунду;
ü размеры знаков на экране 15…40 угловых минут;
ü частота мельканий — не менее 50 Гц;
ü ширина линии на экране — 1,15… 1,5 мм при расстоянии наблюдения соответственно 0,25… 1,5м.
Традиционно освещение рабочего места при работе с бумажными носителями информации имеет высокий уровень обшей освещенности (700 лк и более). При считывании информации с ЭЛТ имеются следующие особенности:
1. Поверхность ЭЛТ расположена вертикально, что приводит к расположению линий зрения оператора на 20° выше, чем при работе с бумажными носителями. Поэтому увеличивается вероятность появления прямой блесткости от светильников и окон.
2. Любой уровень освещенности экрана ЭЛТ уменьшает контраст между изображением и фоном, так как яркость темных участков (фона) увеличивается сильнее, или яркость светлых участков.
3. Экран ЭЛТ искривлен и часто имеет высокий коэффициент отражения. Он играет роль зеркала, вызывая блесткость, так как свет ярких объектов, расположенных за оператором, и над ним отражается от экрана и попадает в глаза оператору. Эти отражения уменьшают контраст и могут частично или полностью искажать часть информации.
Исходя из этого, освещенность рабочего места с ЭЛТ и информацией, записанной на бумажном носителе, должна составлять 400…500 лк, что существенно снижает контраст экрана, по сравнению с неосвещенным рабочим местом и затрудняет выполнения задания, но позволяет читать информацию с бумаги и переносить ее на магнитный носитель. При использовании информации только с экрана ЭЛТ освещенность рабочего места может находиться в пределах 150…400 лк.
Характеристики слухового анализатора. Слуховой анализатор состоит из уха, слухового нерва и сложной системы нервных связей и центров мозга. Ухо воспринимает определенные частоты звука благодаря резонансу волокон мембраны и усилению сигналов средним и наружным ухом. Слуховой анализатор воспринимает колебания частотой 16…20 000 Гц. Колебания частотой ниже 16 Гц называют инфразвуком, а выше 20 000 Гц — ультразвуком. Ультра- и инфразвук оказывают влияние на организм человека, но оно не сопровождается слуховым ощущением. Звук характеризуется интенсивностью, частотой и формой звуковых колебаний, которые отражаются в слуховых ощущениях как громкость, высота и тембр.
Интенсивность звука оценивается по звуковому давлению, которое измеряется в Паскалях (давление, вызываемое силой 1 Н.Равномерно распределенной по площади 1 м2 и нормальной к ней) или в динах на квадратный сантиметр (1 Па=10 дин/см ).
Громкость — это характеристика звукового ощущения, которая наиболее тесно связана с интенсивностью звука. Уровень громкости выражается в фонах, фон численно равен уровню звукового давления в децибелах для чистого тона частотой 1000Гц. Основными количественными характеристиками слухового анализатора являются абсолютный и дифференциальный пороги. Нижний абсолютный порог соответствует интенсивности звука (в децибелах), обнаруживаемого человеком с вероятностью 0,5; верхний порог — интенсивность, при которой возникают болевые ощущения. Между ними расположена область восприятия речи. Абсолютные пороги зависят от частоты и интенсивности звукового сигнала. Верхний абсолютный порог составляет 120…130 дБ, область восприятия речи — 60… 120 дБ.
Слуховой анализатор часто используется при проектировании средств сигнализации об аварийной ситуации. Слуховая информация воспринимается человеком на 20…30 мс быстрее визуальной.
В соответствии со свойствами слухового анализатора в оборудовании для передачи уведомляющих сигналов необходимо использовать частоту 200…400 Гц с интенсивностью до 110 дБ, для аварийных сообщений — частоту 800…5000 Гц с интенсивностью 120 дБ. Длительность отдельных сигналов и интервалов между ними должна быть более 0,2 с, длительность интенсивных (предельно допустимых) сигналов не должна превышать 10 с.
Характеристики тактильного анализатора.Тактильный анализатор используется для получения информации о положении предмета в пространстве, о его форме, размерах, качестве поверхности и материалов. Функционирование тактильного анализатора основано на свойстве кожи воспринимать температурные, химические, механические и электрические воздействия предмета или орудия труда. Наиболее часто тактильный анализатор используется для получения информации о состоянии оборудования путем анализа его вибраций. Абсолютная чувствительность тактильных анализаторов на механическое воздействие определяется величиной минимального давления, вызывающего ощущение.
Наибольшая чувствительность при восприятии вибраций наблюдается при частоте 100… 300 Гц. Пространственная чувствительность определяется минимальным расстоянием между двумя точками кожи, при раздражении которых возникает ощущение двух прикосновений. На основе пространственной чувствительности пальцев, составляющей 1…2.5 мм, происходит опознание органов управления. При помощи тактильного анализатора можно передавать до десяти уровней (градаций) сигнала. Тактильный анализатор обладает быстрой адаптацией, приводящей к снижению абсолютного порога ощущения. В настоящее время тактильные анализаторы используются для контроля за работой оборудования (путем восприятия его вибраций), опознания органов управления и получения информации о вводе управляющих воздействий в систему управления (благодаря обратной связи в штурвалах, выключателях и переключателях).
refac.ru
1. ПРЕДМЕТ И ОСНОВНЫЕ ПОНЯТИЯ ИНФОРМАТИКИ 5
1.1. Понятие информации 5
1.2. Предмет информатики 6
Предметом информатики является: 7
2. ИНФОРМАЦИОННЫЙ ПРОЦЕСС 8
2.1. Сигналы, как переносчики информации 8
2.2. Информационное взаимодействие 11
ЗАКЛЮЧЕНИЕ 13
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ: 15
Содержание
Наибольшие успехи достигнуты при изучении информационного взаимодействия для сигнальной компоненты. Из этой компоненты информация преобразуется подобно закону сохранения энергии. Поэтому подробнее необходимо остановиться на сигнальной.
Рассмотрим разновидности взаимодействия объектов и информационного взаимодействия:
1. Прямой механический контакт: действие равно противодействию. Это взаимодействие сил. Если при этом возникает сигнал, который может быть принят и интерпретирован (кем-либо) о характере произошедшего события, то этот контакт является источником информации.
2.Взаимодействие неоднородных, но несистемных структур (куч).
3. Взаимодействие системных структур. Это — начало формирования сигналов (вышибание, поглощение), их перенос и прием, то есть начальная часть собственно информационного процесса.
4. Интерпретация принятых сигналов основывается на предшествовавшем уровне знания у принимающей системы.
Это главное условие истинного информационного процесса.
Например: Источник светового сигнала — горящая белая лампа, свет которой может проходить через красный светофильтр. Приемник информации, не зная о светофильтре, получив сигнал красного цвета, посчитает источником излучения красную лампу, а получив сигнал белого цвета — белую лампу. Приемник, знающий о возможном включении светофильтра, в обоих случаях может правильно оценить значение сигнала.
Отсюда, если материя — объективная реальность, данная в ощущении, то информация — это субъективная ирреальность, данная в измышлении.
Современная ситуация характеризуется как информационный «взрыв». Обработка информации представляется одним из основных и престижных видов деятельности в постиндустриальном обществе.
В 1945 году японский социолог Е. Масуда предлагает идею «информационного общества», а в 80-е годы этот термин прочно входит в жизнь.
«Информационное» общество - это общество, объединенное единой информационной сетью, благодаря которой у человечества появляется возможность вырабатывать единые цели, а у человека — проявлять свои творческие возможности. Возникает новая информационная культура.
«Информационное» общество охватывает все сферы жизнедеятельности: внедрение информационных технологий в производство, экономику, деловую жизнь, культуру, в образование, быт. Информация становится одним из главных факторов изменения качества жизни.
Появляется свободный доступ к разнообразной информации для обмена мнениями. Отличительная черта «информационного» общества — опосредованная связь индивидов. В качестве посредника выступает вычислительная и оргтехника.
Человек живет в материальном мире. Все, что его окружает и с чем он сталкивается ежедневно, относится либо к физическим телам, либо к физическим полям. Состояния абсолютного покоя не существует и физические объекты находятся в состоянии непрерывного движении и изменения, которое сопровождается обменом энергией и ее переходом из одной формы в другую.
Все виды энергообмена сопровождаются появлением сигналов, то есть, все сигналы имеют в своей основе материальную энергетическую природу. При взаимодействии сигналов с физическими телами в телах возникают определенные изменения свойств, то есть регистрация сигналов. Такие изменения можно наблюдать, измерять или фиксировать иными способами - при этом возникают и регистрируются новые сигналы, то есть, образуются данные. Значит данные — это зарегистрированные сигналы.
Необходимо заметить, что данные несут в себе информацию о событиях, произошедших в материальном мире, так как они — регистрация сигналов, возникших в результате этих событий. Однако данные не тождественны информации. Наблюдая излучения далеких звезд, человек получает определенный поток данных, но станут ли эти данные информацией, зависит еще от очень многих обстоятельств. Таким образом, в информационном взаимодействии — главные фигуранты — сигналы, они переносят информацию.
Таким образом, цель данной работы достигнута: проанализированы сигналы и информационное взаимодействие с помощью следующих задач:
1. определен предмет и основные понятия информатики;
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ:
Южно-Рос. гос. ун-т экономики и сервиса. — Шахты: Изд-во ЮРГУЭС, 2008. — 110 с.
Информатика: Базовый курс / С. В. Симонович и др. СПб.: Питер, 2003. — 640 с.
Информатика для медиков: учебное пособие / Г. А. Хай. — 2009. — 223 с.
Фундаментальное значение информатики в современной научной картине мира. Н.А.Кузнецов, О.Е. Баксанский, Н.А. Гречишкина. Информационные процессы, Том 6, № 2, стр. 81- 109.
Информатика: Базовый курс / С. В. Симонович и др. СПб.: Питер, 2003. — 640 с
Там же
Там же
Информатика для медиков: учебное пособие / Г. А. Хай. — 2009. — 223 с
Там же
Информатика для медиков: учебное пособие / Г. А. Хай. — 2009. — 223 с
2
1. Генезис информации, информатика и информационное взаимодействие в эпоху научно-технической революции: монография / Е.Б. Ивушкина [и др.]
Южно-Рос. гос. ун-т экономики и сервиса. — Шахты: Изд-во ЮРГУЭС, 2008. — 110 с.
2. Информатика: Базовый курс / С. В. Симонович и др. СПб.: Питер, 2003. — 640 с.
3. Информатика для медиков: учебное пособие / Г. А. Хай. — 2009. — 223 с.
4. Фундаментальное значение информатики в современной научной картине мира. Н.А.Кузнецов, О.Е. Баксанский, Н.А. Гречишкина. Информационные процессы, Том 6, № 2, стр. 81- 109.
список литературы
referatbooks.ru
Сергей Муругов
В разделе 7.3 RFC 3281 указано: «В некоторых случаях может потребоваться, чтобы атрибутный сертификат (АС) не был привязан ни к личности владельца, ни к сертификату открытого ключа. В таком случае возможно использование варианта objectDigestInfo поля holder… Смысл данного варианта поля holder в том, чтобы обеспечить связь АС и некоторого объекта, которому он „принадлежит“ посредством указания значения хэшфункции от данного объекта. Такой подход, например, позволяет связывать АС с исполняемыми объектами, такими, как Java-класс».
Постановка задачи
Исходящая и соответственно входящая информация для информационных систем организаций представляет собой более сложную структуру, нежели просто электронный документ, пусть даже с ЭЦП. В соответствии с действующим ГОСТ Р ИСО 15489-1–2007, помимо содержания документ должен иметь соотнесенные с контентом метаданные, отражающие операции деловой деятельности, и быть постоянно связанным или объединенным с ними. Такого рода метаданные, сопровождающие документ, должны содержать указания, обеспечивающие пригодность документа для последующего его использования, отражающие возможность локализации и поиска документа, воспроизводимости электронного документа техническими средствами визуализации.
Еще одна очень важная отличительная особенность обращения электронных документов – это то, что в ряде случаев документ имеет период действительности, то есть информация, содержащаяся в документе, может потерять свою актуальность, к тому же часто возникает потребность, вызванная спецификой деловой активности, в преждевременном отзыве документа. Наиболее яркий пример таких документов – различного рода разрешения.
Все сказанное, безусловно, накладывает определенные требования на техническую реализацию информационного контейнера электронного документа, который был бы способен к аудиту и документированию и являлся бы защищенной транспортной оболочкой для исходящей/входящей документации юридического лица во взаимодействии разнородных информационных систем, автоматизирующих процессы деловой активности. Очевидно, что фактический состав, структура контейнера будет отражать специфику прикладной области, но можно выделить некоторые общие правила при выборе технической реализации контейнера:
— Контейнер должен иметь механизмы защиты целостности данных и идентификации источника данных.
— Язык описания и правил кодирования контейнера должен быть в достаточной степени универсальным, чтобы описывать сложные структуры и типы данных. В качестве примера такого языка может выступать XML (при выборе языка следует иметь в виду, что в РФ (насколько известно) отсутствует государственный стандарт на XML) или ASN.1 (существует целое семейство действующих стандартов).
— Контейнер должен иметь признак, по которому содержащуюся в нем информацию (включая и метаданные) можно было бы ассоциировать с событием или информацией (например, серийный номер события в системе, наименование события, свертка от конкретного исходного документа и т.п.).
— В целом ряде случаев характеристики деловой активности требуют возможность указания периода действительности информации в контейнере, а также возможность преждевременного вывода его из документального обращения.
Очевидно, что привычный всем формат ЭЦП в виде CMS или PKCS#7 или «подпись с расширенными данными для проверки» по ETSI TS 101 733 в явном виде не сможет обеспечить все вышеперечисленные требования.
Одним из вариантов решения данной задачи может выступать использование в качестве такого рода контейнера атрибутного сертификата в соответствии с международными рекомендациями RFC 3281, допускающими такой режим использования атрибутного сертификата.
Возможные области применения По предварительному анализу некоторых видов деловой активности можно явно выделить приложения использования такого рода контейнера («удостоверяющего свидетельства»):
1. Бизнес-процессы, в которых исходящие/входящие документы имеют свойство разрешения на что-либо. Например, в задачах фитосанитарного контроля импортное карантинное разрешение (ИКР) в полной мере может быть в электронном виде представлено средствами «удостоверяющего свидетельства». В этом случае решаются требования и сложной вложенной структуры самого документа, и метаданных ИКР с указанием периода его действия, а также возможности у Россельхознадзора отозвать конкретный ИКР с автоматическим выводом его из действительного оборота, например в случаях выявления заболевания в отдельном регионе поставки и т.п.
2. Различного рода выписки из реестров, кадастров и т.п. например, выписка из реестра Юридических лиц действует в течение 6 месяцев, но с переводом ее формы в электронный вид с учетом свойств «удостоверяющего свидетельства» выписка может приобрести новые качества – при изменении записи в реестре юридических лиц она может быть досрочно отозвана, что, безусловно, повысит степень доверия и актуальности выписки, уменьшит число обращений за ней, а также будет способствовать уменьшению различных мошеннических действий с данной информацией.
3. Электронная лицензия на программное обеспечение или иную информацию, причем в таком варианте использования автоматически решается задача контроля целостности и неизменности программного обеспечения или иной информации.
4. Для обмена сведениями о физических и юридических лицах с уполномоченными органами (кредитными организациями, государственными агентствами, ведомствами, министерствами), например, для приема различных заявлений от физических лиц (дистанционным способом), а также в банковской деятельности на территории РФ в соответствии с положениями 115–ФЗ п. 1, 1.3 и п. 31. ст. 7.
Архитектура компонентсистемы, использующей атрибутные сертификаты В общем виде можно выделить следующие принципы: 1. Издатель атрибутных сертификатов должен входить в структуру СЭД организации, поскольку ЭЦП на атрибутном сертификате («удостоверяющем свидетельстве») вырабатывается на ключе уполномоченного лица организации (атрибутный сертификат есть исходящий документ именно из организации и от имени организации), а делегирование данной функции внешней, пусть даже вышестоящей организации может встать в противоречие с регламентом функционирования организации или нормативной базой.
2. Доверие к информации в атрибутном сертификате определяется доверием к его издателю.
3. При взаимодействии различных организаций (и соответственно различных СЭД) они должны входить в связанную систему доверия, реализация которой может также включать и элементы трансграничного информационного обмена. 4. В приложении к ведомствам органов власти разумным видится следующее: издатели (уполномоченные лица) атрибутных сертификатов из состава СЭД ведомств должны быть выпущены из-под корневого УЦ ОГВ, чем обеспечивается единство пространства доверия (обращения ЭЦП). В этом случае обеспечивается:
— самостоятельность в плане функциональной независимости ведомства – атрибутный сертификат эквивалентен электронному документу (включая метаданные) с ЭЦП уполномоченного лица, правомочного заверять документы, исходящие из ведомства, для конкретного прикладного назначения. Уполномоченное лицо вправе определить период действительности исходящего документа и выполнить преждевременный «отзыв» документа;
— централизованное управление и поддержка единой зоны обращения ЭЦП.
Выводы 1. Использование атрибутного сертификата в качестве защищенного контейнера НЕ противоречит действующей нормативной базе, поскольку контейнер представляет собой структурированную связанную информацию, правила формирования которой общедоступны и опираются на национальные и международные стандарты и рекомендации, а также защищены ЭЦП в соответствии с действующим законодательством.
2. Правила управления периодом действительности информации в контейнере опираются на доступную технологию, апробированную годами в УЦ.
3. Контейнер идеально подходит для инкапсуляции документов, исходящих из СЭД во внешние системы, а с учетом того, что издатель контейнера принадлежит СЭД (сертификат издателя «содержит необходимые при осуществлении данных отношений сведения о правомочиях его владельца») и СЭД обслуживает документооборот организации, можно представлять защищенный ЭЦП-контейнер как техническую реализацию формы исходящего документа.
4. Техническая реализация структуры контейнера опирается на принцип предварительной регистрации типов объектных идентификаторов (OID), описывающих структуры данных, поскольку технология и организационная структура регистрации и ведения OID уже существует, то обмен документов, инкапсулированных в защищенный контейнер между различными СЭД ведомств, очень легко реализуем на практике.
Очень важная отличительная особенность обращения электронных документов – это то, что в ряде случаев документ имеет период действительности, то есть информация, содержащаяся в документе, может потерять свою актуальность, к тому же часто возникает потребность, вызванная спецификой деловой активности, в преждевременном отзыве документа. Наиболее яркий пример таких документов – различного рода разрешения.
Список литературы
Information Security №1, февраль-март 2009
www.ronl.ru