zdorovv.ucoz.com

Реферат - Иммунитет - Рефераты на репетирем.ру

Иммунитет 8

Эволюция формировала систему иммунитета около 500 млн. лет. Этот шедевр природы восхищает нас красотой гармонии и целесообразностью. Настойчивое любопытство ученых разных специальностей раскрыло перед нами закономерности ее функционирования и создало в последние 110 лет науку «Медицинская иммунология».

Каждый год приносит открытия в этой бурно развивающейся области медицины.

Логика подсказывает, что система иммунитета защищает нас от инфекционных агентов: бактерий, вирусов и простейших, т. е. защищает организм от всего чужеродного. Но, в то же время стало понятным, что иммунная система необходима, в первую очередь, для защиты от своего, ставшего чужим. Дело в том, что ежедневно в нашем организме возникают миллионы мутантных клеток, которые могут стать источником смертельных опухолей.

Различают специфическую защиту, или иммунитет, и неспецифическую резистентность организма. Последняя в отличие от иммунитета направлена на уничтожение любого чужеродного агента. К неспецифической резистентности относятся фагоцитоз и пиноцитоз, система комплемента, естественная цитотоксичность, действие интерферонов, лизоцима, b-лизинов и других гуморальных факторов защиты.

Иммунитет – это комплекс реакций, направленных на поддержание гомеостаза при встрече организма с агентами, которые расцениваются как чужеродные, независимо от того, образуются ли они в самом организме или поступают в него извне.

Чужеродные для данного организма соединения, способные вызывать иммунный ответ, получили название «антигены» (АГ). Теоретически любая молекула может быть АГ. В результате действия АГ в организме образуются антитела (АТ), сенсибилизируются лимфоциты, благодаря чему они приобретают способность принимать участие в иммунном ответе. Специфичность АГ заключается в том, что он избирательно реагирует с определенными АТ или лимфоцитами, появляющимися после попадания АГ в организм.

Способность АГ вызывать специфический иммунный ответ обусловлена наличием на его молекуле многочисленных детерминант (эпитонов), к которым специфически, как ключ к замку, подходят активные центры (антидетерминанты) образующихся АТ. АГ, взаимодействуя со своими АТ, образуют иммунные комплексы. Как правило, АГ – это молекулы с высокой молекулярной массой; существуют потенциально активные в иммунологическом отношении вещества, величина молекулы которых соответствует одной отдельной антигенной детерминанте. Такие молекулы носят наименование гаптенов. Последние способны вызывать иммунный ответ, только соединяясь с полным АГ, т. е. белком.

Органы, принимающие участие в иммунитете, делят на 4 группы:

  1. Центральные – тимус, или вилочковая железа, и, по-видимому, костный мозг.

  2. Периферические, или вторичные, - лимфатические узлы, селезенка, система лимфоэпителиальных образований, расположенных в слизистых оболочках различных органов.

  3. Забарьерные ЦНС, семенники, глаза, паренхима тимуса и при беременности – плод.

  4. Внутрибарьерные – кожа.

Различают клеточный и гуморальный иммунитет. Клеточный иммунитет направлен на уничтожение чужеродных клеток и тканей и обусловлен действием Т-киллеров. Типичным примером клеточного иммунитета является реакция отторжения чужеродных органов и тканей, в частности кожи, пересаженной от человека человеку.

Гуморальный иммунитет обеспечивается образованием АТ и обусловлен в основном функцией В-лимфоцитов.

ИММУННЫЙ ОТВЕТ

В иммунном ответе принимают участие иммунокомпетентные клетки, которые могут быть разделены на антигенпрезентирующие (представляющие АГ), регуляторные (регулирующие течение иммунных реакций) и эффекторы иммунного ответа (осуществляющие заключительный этап в борьбе с АГ).

К антигенпрезентирующим клеткам относятся моноциты и макрофаги, эндотелиальные клетки, пигментные клетки кожи (клетки Лангерганса) и др. К регуляторным клеткам относятся Т- и В-хелперы, супрессоры, контрсупрессоры, Т-лимфоциты памяти. Наконец, к эффекторам иммунного ответа принадлежат Т- и В-киллеры и В-лимфоциты, являющиеся в основном антителопродуцентами.

Важная роль в иммунном ответе отводится особым цитокинам, получившим наименование интерлейкинов. Из названия видно, что ИЛ обеспечивают взаимосвязь отдельных видов лейкоцитов в иммунном ответе. Они представляют собой малые белковые молекулы с молекулярной массой 15000-30000.

ИЛ-1 – соединение, выделяемое при антигенной стимуляции моноцитами, макрофагами и другими антигенпрезентирующими клетками. Его действие в основном направлено на Т-хелперы (амплифайеры) и макрофаги-эффекторы. ИЛ-1 стимулирует гепатоциты, благодаря чему в крови возрастает концентрация белков, получивших наименование ректантов острой фазы, так как их содержание всегда увеличивается в острую фазу воспаления. К таким белкам относятся фибриноген, С-реактивный белок, a1-антитрипсин и др. Белки острой фазы воспаления играют важную роль в репарации тканей, связывают протеолитические ферменты, регулируют клеточный и гуморальный иммунитет. Увеличение концентрации ректантов острой фазы является приспособительной реакцией, направленной на ликвидацию патологического процесса. Кроме того, ИЛ-1 усиливает фагоцитоз, а также ускоряет рост кровеносных сосудов в зонах повреждения.

ИЛ-2 выделяется Т-амплифайерами под воздействием ИЛ-1 и АГ; является стимулятором роста для всех видов Т-лимфоцитов и активатором К-клеток.

ИЛ-3 выделяется стимулированными Т-хелперами, моноцитами и макрофагами. Его действие направлено преимущественно на рост и развитие тучных клеток и базофилов, а также предшественников Т- и В-лимфоцитов.

ИЛ-4 продуцируется в основном стимулированными Т-хелперами и обладает чрезвычайно широким спектром действия, так как способствует росту и дифференцировке В-лимфоцитов, активирует макрофаги, Т-лимфоциты и тучные клетки, индуцирует продукцию иммуноглобинов отдельных классов.

ИЛ-5 выделяется стимулированными Т-хелперами и является фактором пролиферации и дифференцировки эозинофилов, а также В-лимфоцитов.

ИЛ-6 продуцируется стимулированными моноцитами, макрофагами, эндотелием, Т-хелперами и фибробластами; вместе с ИЛ-4 обеспечивает рост и дифференцировку В-лимфоцитов, способствуя их переходу в антителопродуценты, т. е. плазматические клетки.

ИЛ-7 первоначально выделен из стромальных клеток костного мозга; усиливает рост и пролиферацию Т- и В-лимфоцитов, а также влияет на развитие тимоцитов в тимусе.

ИЛ-8 образуется стимулированными моноцитами и макрофагами. Его назначение сводится к усилению хемотаксиса и фагоцитарной активности нейтрофилов.

ИЛ-9 продуцируется Т-лимфоцитами и тучными клетками. Действие его направлено на усиление роста Т-лимфоцитов. Кроме того, он способствует развитию эритроидных колоний в костном мозге.

ИЛ-10 образуется макрофагами и усиливает пролиферацию зрелых и незрелых тимоцитов, а также способствует дифференцировке Т-киллеров.

ИЛ-11 продуцируется стромальными клетками костного мозга. Играет важную роль в гемопоэзе, особенно тромбоцитопоэзе.

ИЛ-12 усиливает цитотоксичность Т-киллеров и К-лимфоцитов.

Иммунный ответ начинается с взаимодействия антигенпрезентирующих клеток с АГ, после чего происходит его фагоцитоз и переработка до продуктов деградации, которые выделяются наружу и оказываются за пределами антигенпрезентирующей клетки.

Специфичность иммунного ответа обеспечивается наличием особых антигенов, получивших у мышей название Ia-белка. У человека его роль выполняют человеческие лейкоцитарные антигены 2-го класса, тип DR (Human Leukocytes Antigens, HLA).

Ia-белок находится практически на всех кроветворных клетках, но отсутствует на зрелых Т-лимфоцитах; под влиянием интерлейкинов происходит экспрессия белка на этих клетках.

Роль Ia-белка в иммунном ответе сводится к следующему. АГ могут быть распознаны иммунокомпетентными клетками лишь при контакте со специфическими рецепторами, однако количество АГ слишком велико и природа не заготовила для них соответствующего числа рецепторов, вот почему АГ (чужое) может быть узнан лишь в комплексе со «своим», функцию которого и несет Ia- белок или антигены HLA-DR.

Продукты деградации АГ, покинув макрофаг, частично вступают во взаимодействие с Ia-белком, образуя с ним комплекс, стимулирующий деятельность антигенпрезентирующей клетки. При этом макрофаг начинает секретировать ряд интерлейкинов. ИЛ-1 действует на Т-амплифайер, в результате чего у последнего появляется рецептор к комплексу Ia-белок+АГ. Именно эта реакция, как и все последующие, обеспечивает специфичность иммунного ответа.

Активированный Т-амплифайер выделяет ИЛ-2, действующий на различные клоны Т-хелперов и цитотоксические лимфоциты, принимающие участие в клеточном иммунитете. Стимулированные клоны Т-хелперов секретируют ИЛ-3, ИЛ-4, ИЛ-5 и ИЛ-6, оказывающие преимущественное влияние на эффекторное звено иммунного ответа и тем самым способствующие переходу В-лимфоцитов в антителопродуценты. Благодаря этому образуются АТ, или иммуноглобины. Другие интерлейкины (ИЛ-7, ИЛ-9, ИЛ-10, ИЛ-12) влияют нарост и дифференцировку Т- и В-лимфоцитов и являются факторами надежности, обеспечивающими иммунный ответ.

Клеточный иммунитет зависит от действия гуморальных факторов, выделяемых цитотоксическими лимфоцитами (Т-киллерами). Эти соединения получили наименование «перфорины» и «цитолизины».

Установлено, что каждый Т-эффектор способен лизировать несколько чужеродных клеток-мишеней. Этот процесс осуществляется в три стадии: 1) распознавание и контакт с клетками-мишенями; 2) летальный удар; 3) лизис клетки-мишени. Последняя стадия не требует присутствия Т-эффектора, так как осуществляется под влиянием перфоринов и цитолизинов. В стадию летального удара перфорины и цитолизины действуют на мембрану клетки-мишени и образуют в ней поры, через которые проникает вода, разрывающая клетки.

Среди гуморальных факторов, выделяемых в процессе иммунного ответа, следует указать на фактор некроза опухолей и интерфероны.

Действие интерферонов неспецифично, так как они обладают различными функциями – стимулируют деятельность К-клеток и макрофагов, влияют непосредственно на ДНК - и РНК-содержащие вирусы, подавляя их рост и активность, задерживают рост и разрушают злокачественные клетки.

Гуморальный иммунный ответ обеспечивается антителами, или иммуноглобинами. У человека различают 5 основных классов иммуноглобинов: IgA, IgG, IgM, IgE, IgD. Все они имеют как общие, так и специфические детерминанты.

Иммуноглобины класса G. У человека являются наиболее важными. Концентрация их достигает 9-18 г/л. Иммуноглобины этого класса обеспечивают противоинфекционную защиту, связывают токсины, усиливают фагоцитарную активность, активируют систему комплемента, вызывают аглютинацию бактерий и вирусов, они способны переходить через плаценту, обеспечивая новорожденному так называемый пассивный иммунитет.

Иммуноглобины класса А. Делят на 2 разновидности: сывороточные и секреторные. Первые из них находятся в крови, вторые – в различных секретах. Соответственно этому сывороточный иммуноглобин А принимает участие в общем, иммунитете, а секреторный обеспечивает местный иммунитете, создавая барьер на пути проникновения инфекций и токсинов в организм.

Секреторный находится в наружных секретах – в слюне, слизи трахеобронхиального дерева, мочеполовых путей, молоке. Молекулы иммуноглобина А, присутствующие во внутренних секретах и жидкостях, существенно отличаются от молекул наружных секретов. Секреторный компонент, по всей видимости, образуется в эпителиальных клетках и в дальнейшем присоединяется к молекуле IgA.

IgA нейтрализует токсины и вызывает аглютинацию микроорганизмов и вирусов. Концентрация сывороточных IgA колеблется от 1,5 до 4 г/л.

Содержание IgA резко возрастает при заболеваниях верхних дыхательных путей, пневмониях, инфекционных заболеваниях желудочно-кишечного тракта и др.

Иммуноглобины класса Е. Принимают участие в нейтрализации токсинов, опсонизации, аглютинации и бактериолизисе, осуществляемом комплементом. К этому классу также относятся некоторые природные антитела, например к чужеродным эритроцитам. Содержание IgE повышается при инфекционных заболеваниях у взрослых и детей.

Иммуноглобины класса D. Представляют собой антитела, локализующиеся в мембране плазматических клеток, в сыворотке их концентрация невелика. Значение IgD пока не выяснено, предполагают, что они участвуют в аутоиммунных процессах.

РЕГУЛЯЦИЯ ИММУНИТЕТА

Интенсивность иммунного ответа во многом определяется состоянием нервной и эндокринной систем. Установлено, что раздражение различных подкорковых структур (таламус, гипоталамус, серый бугор) может сопровождаться как усилением, так и торможением иммунной рекции на введение антигенов. Показано, что возбуждение симпатического отдела автономной (вегетативной) нервной системы, как и введение адреналина, усиливает фагоцитоз и интенсивность иммунного ответа. Повышение тонуса парасимпатического отдела вегетативной нервной системы приводит к противоположным реакциям.

Стресс, а также депрессии угнетают иммунитет, что сопровождается не только повышенной восприимчивостью к различным заболеваниям, но и создает благоприятные условия для развития злокачественных новообразований.

За последние годы установлено, что гипофиз и эпифиз с помощью особых пептидных биорегуляторов, получивших наименование «цитомедины», контролируют деятельность тимуса. Передняя доля гипофиза является регулятором преимущественно клеточного, а задняя – гуморального иммунитета.

ИММУННАЯ РЕГУЛЯТОРНАЯ СИСТЕМА

В последнее время высказано предположение, что существует не две системы регуляции (нервная и гуморальная), а три (нервная, гуморальная и иммунная). Иммунокомпетентные клетки способны вмешиваться в морфогенез, а также регулировать течение физиологических функций. Не подлежит сомнению, что Т-лимфоциты играют чрезвычайно важную роль в регенерации тканей. Многочисленные исследования показывают, что Т-лимфоциты и макрофаги осуществляют «хелперную» и «супрессорную» функции в отношении эритропоэза и лейкопоэза. Лимфокины и монокины, выделяемые лимфоцитами, моноцитами и макрофагами, способны изменять деятельность центральной нервной системы, сердечно-сосудистой системы, органов дыхания и пищеварения, регулировать сократительные функции гладкой и поперечно-полосатой мускулатуры.

Особенно важная роль в регуляции физиологических функций принадлежит интерлейкинам, которые являются «семьей молекул на все случаи жизни», так как вмешиваются во все физиологические процессы, протекающие в организме.

Иммунная система является регулятором гомеостаза. Эта функция осуществляется за счет выработки аутоантител, связывающих активные ферменты, факторы свертывания крови и избыток гормонов.

Иммунологическая реакция, с одной стороны, является неотъемлемой частью гуморальной, так как большинство физиологических и биохимических процессов осуществляется при непосредственном участии гуморальных посредников. Однако нередко иммунологическая реакция носит прицельный характер и тем самым напоминает нервную. Лимфоциты и моноциты, а также другие клетки, принимающие участие в иммунном ответе, отдают гуморальный посредник непосредственно органу-мишени. Отсюда предложение назвать иммунологическую регуляцию клеточно-гуморальной. Основную роль в ней следует отвести различным популяциям Т-лимфоцитов, осуществляющих «хелперные» и «супрессорные» функции по отношению к различным физиологическим процессам.

Учет регуляторных функций иммунной системы позволяет врачам различных специальностей по-новому подойти к решению многих проблем клинической медицины.

БИБЛИОГРАФИЯ:

  1. «Физиология человека» под редакцией В. М. Покровского, Г. Ф. Коротько, М., «Медицина», 1997, т.1, стр. 298 – 307.

  1. Использованы материалы с серверов:

http://www.uni.udm.ru

http://www.rmj.net

http://www.doktor.ru

http://www.medline.com

© Сунцов Д. 12.04.10

referat.store

Гуморальный противовирусный иммунитет

Количество просмотров публикации Гуморальный противовирусный иммунитет - 82

Лекция 10

Противовирусный иммунитет. Химиотерапия и иммунопрофилактика вирусных инфекций

Модуль 4

Комплексная цель модуля

Комплексная цель модуля состоит в крайне важно сти объединить лекционный материал, касающийся механизмов защитных реакций организма-хозяина, связать в единую систему факторы гуморального и клеточного иммунитета͵ белкового и нуклеинового гомеостаза при вирусных инфекциях. При чтении лекций, входящих в данный модуль, крайне важно подчеркнуть единство иммунных реакций организма-хозяина и разрабатываемых химиотерапевтических антивирусных препаратов, продемонстрировать, как механизм действия этих препаратов основан на природных механизмах защитных реакций.

Модуль состоит из 4 лекций, материал которых позволяет решить поставленную цель.

Иммунная система представляет совокупность лимфоидных органов и тканей, основной функцией которой яв­ляется распознавание и элиминация чужеродных веществ, преимущественно белковой природы (т. е. веществ, синтез которых не кодирует ДНК хозяина), и обеспечение гомеостаза организма.

Антигены. Основной мишенью действия иммунной сис­темы являются антигены, подавляющее большинство ко­торых имеет белковую природу.

Определœенная конфигурация аминокислот на поверх­ности антигена, обладающая иммуногенными свойствами, принято называть эпитоп, а участки перекрывающихся эпитопов образуют антигенные детерминанты. Антигенные детерми­нанты располагаются в области молекулы с доступной для антител поверхностью. Антигенные детерминанты бывают и скрытыми, выходя на поверхность при из­менении конформации или частичном расщеплении мак­ромолекулы.

Антитела. Ответной реакцией иммунной системы на введение антигенов является появление антител — специ­фических иммуноглобулинов (Ig). Существует пять клас­сов иммуноглобулинов, которые обозначаются символами IgM, IgG, IgA, IgD и IgE. Особое внимание привлечено к иммуноглобулину IgG, так как его молекулы составляют большинство всœех сывороточных иммуноглобулинов и в зна­чительной степени определяют уровень гуморального им­мунитета. Молекулы IgG имеют коэффициент седимента­ции 7S и построены из идентичных двух тяжелых (Н, haevy) и идентичных двух легких (L, light) цепей, соединœенных дисульфидными связями. У тяжелых и лег­ких цепей имеются постоянная и вариабельная области. В вариабельной области имеются аминокислотные после­довательности, способные к специфическому связыванию с разными антигенами. Постоянная область цепей имеет одни и те же аминокислотные последовательности во всœех антителах данной подгруппы и в связывании с антиге­ном не участвует. Антигенсвязывающий центр находится во фрагменте Fab. На другом конце молекулы находится фрагмент Fc, который не связывает антиген, но в нем локализованы центры связывания комплемента͵ фиксации на клеточных мембранах и ряд других функций. В электронном микроскопе молекулы иммуноглобулинов выглядят в виде структуры V-образной формы, оба конца которой составлены из вариабельных участков пар тяже­лых и легких цепей. Антитела являются двухвалентными, так как оба конца их могут взаимодейст­вовать с двумя антигенными детерминантами. Антитела класса IgM имеют коэффициент седиментации 19 S и яв­ляются пентамерами (рис. 30, б), под влиянием восста­навливающих веществ диссоциируют на пять субъединиц, каждая из которых состоит из двух легких и двух тя­желых цепей с коэффициентом седиментации 7 S, связан­ных между собой дисульфидными связями. Молекула IgA является димером, состоящим из двух мономеров. Функцию связывания димеров осуществляет J-цепь. Иммуноглобулины IgD и IgE являются минорными сывороточными компонентами, т. е. находятся в сыворотке в наименьших концентрациях. При соединœении антигена с антителом происходит взаимодействие между поверхностью антигенной детерминанты и активным цент­ром иммуноглобулина, находящимся в вариабельной его части, таким путем, что комплементарные друг другу поверхности соединяются физико-химическими связями.

При введении в организм человека или животных антигенов выработка антител развивается в определœенном порядке. При первичном введении антигена вначале по­являются антитела класса IgM (3-6-й день), затем клас­са IgG (5—14-й день) и, наконец, класса IgA (15-21-й день). При повторном введении антигена антитела IgM-класса образуются в малом количестве и быстро образу­ются антитела классов IgG и IgA. Иммуноглобулины класса IgM являются антителами первичного ответа͵ им­муноглобулины класса IgG - основные антитела со строго выраженной специфичностью, в то время как иммуногло­булины класса IgAиграют роль в формировании местно­го иммунитета слизистых оболочек (секреторные имму­ноглобулины). Иммуноглобулины класса IgE фиксируются на клетках и имеют большое значение в развитии аллер­гических реакций (гиперчувствительности). Иммуноглобу­лины IgD обусловливают развитие аутоиммунных процес­сов и, возможно, препятствуют возникновению толерант­ности.

Т- и В-лимфоциты. Виммунной системе существуют две независимые, но функционирующие совместно кле­точные популяции: Т-лимфоциты (тимусзависимые) и В-лимфоциты (не зависимые от тимуса). В-лимфоциты обеспечивают выработку антител и ответственны, таким образом, за большинство явлений гуморального иммуни­тета. Клеточный иммунитет обеспечивают Т-лимфоциты, одновременно осуществляющие функцию регуляции как В-, так и Т-системы. Эта функция Т-лимфоцитов опо­средуется существованием ряда морфологических и функ­циональных субпопуляций, основными из которых являют­ся Т-помощники (хелперы), Т-супрессоры, Т-киллеры и Т-индукторы. Отдельную ветвь представляют макрофа­ги. Иммуногенез обеспечивают восœемь типов клеток — че­тыре типа Т-лимфоцитов, три типа В-лимфоцитов и макро­фаги. Среди лимфоцитов периферической крови человека 55 -60% составляют Т-лимфоциты и 25-30% - В-лимфоциты; 10-20% лимфоцитов (нулевые клетки), по-види­мому, являются предшественниками Т- или В-лимфоцитов.

Антителогенез. Предшественники В-клеток в костном мозге превращаются в В-лимфоциты, которые поступают в периферические лимфоидные органы и являются пред­шественниками трех типов плазматических клеток, продуцирующих антитела классов IgM, IgG и IgA. Подача Т-лимфоцитом включающего сигнала контролируется Ш-генами (генами иммунного ответа). Моле­кула антигена распознается также и Т-супрессорами, ог­раничивающими пролиферацию В-клеток на различных стадиях иммунного процесса. Т-супрессоры являются также клетками, обеспечивающими ʼʼзапретʼʼ на образование аутоантител к собственным антигенам организма, т. е. иммунологическую толерантность. Огромное разнообразие антител обеспечивается существованием в организме млекопитающих не менее 1 млн. лимфоидных клеток, способных дать пролиферацию независимому иммуноком-петентному клону, и обусловлено комбинацией вариабель­ных фрагментов легких и тяжелых цепей иммуноглобу­линов.

Моноклональные антитела. Моноклональные антитела получают путем гибридизации лимфоцитов се­лезенки мышей, иммунизированных определœенным анти­геном, с клетками злокачественной опухоли иммунной системы мышей — миеломы. Этот метод, предложенный в 1975 ᴦ. основан на способности таких гибридных клеток (гибридомы) к быстрому раз­множению с образованием клона специфичесих антител. Гибридные клетки можно поддерживать в перевиваемой культуре, а клонируя отдельные гибридные клетки, можно получить клоны, продуцирующие большое количество идентичных антител к одной антигенной детерминанте. Размноженный в культуре клон вводят мышам интра-перитонеально и затем пассируют развившиеся опухоли. Асцитическая жидкость таких опухолей содержит мо­ноклональные антитела в высоких титрах. Моно­клональные антитела позволяют изучать отдельные детерминанты, а применение нескольких клонов позволяет дать исчерпывающую характеристику изучаемой группе вирусов.

Иммуногенез Т-лимфоцитов. Исходным событием иммуногенеза Т-лимфоцитов также является взаимодействие антигена с макрофагом. Антиген взаимодействует со структурами главного антигена гистосовместимости (HLA) макрофага и в таком виде распознается Т-лимфоцитами; В-лимфоцит также распознает антиген и полу­чает дополнительный сигнал включения от стимулирован­ного Т-лимфоцита. Взаимная активация лимфоцитов происходит благодаря специфическим и неспецифическим гуморальным факторам — лимфокинам и интерлейкинам. В результате происходит пролиферация и дифференцировка Т-клеток с образованием клонов эффекторных Т-лимфоцитов, которые распознают измененную клетку и унич­тожают ее. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, основой иммунного процесса служит кооперативное функционирование клеточной ʼʼтроицыʼʼ: Т- и В-лимфоцитов и макрофага.

Иммунологическая память.Иммунологической па­мятью называют способность организма давать ускоренные иммунологические реакции на повторное введение ан­тигена. Иммунологическая память в ряде случаев сохра­няется многие годы и свойственна как гуморальному, так и клеточному иммунитету. Клетками памяти является часть дочерних В- и Т-лимфоцитов, стимулированных данным антигеном, однако более длительную иммунологи­ческую память имеют Т-лимфоциты.

Факторы неспецифической резистентности.Помимо иммунной системы, в организме существуют факторы неспецифической резистентности. К ним относятся кожные и слизистые покровы, являющиеся механическим препятст­вием для проникновения возбудителœей инфекционных болезней и антигенов; лизоцимы, выделяемые слизистыми оболочками и циркулирующие в крови; пропердиновая система; мукопротеины клеток слизистых оболочек. К факторам неспецифической резистентности относится также система комплемента͵ состоящая из 12 белков нормальной сыворотки, которая непосредственно взаимо­действует с иммунной системой.

ВИРУСНЫЕ АНТИГЕНЫ

Вирусные антигены бывают вирионными (входя­щими в состав вирионов) и вирусиндуцированными (на­ходящимися в зараженной клетке). Вирионными антиге­нами бывают либо простые белки, состоящие из одной полипептидной цепи, либо надмолекулярные обра­зования, состоящие из нескольких полипептидных белков.

Вирусные антигены находятся и на поверхности зараженных клеток. Эти антигены обусловлены, во-пер­вых, вновь образованными вирусными частицами, еще сох­ранившими связь с клеточной поверхностью, и в первую очередь вирусными частицами, выходящими из клетки пу­тем почкования; во-вторых, встроенными в плазматичес­кую мембрану клеток вновь образованными вирусными гликопротеидами при репродукции оболочечных вирусов. В процессе репродукции вируса в клетке происходит син­тез вирусспецифических неструктурных белков, которые также обладают антигенными свойствами.

Антигенные детерминанты вирусных антигенов.Ан­титела, вырабатываемые в ходе вирусной инфекции или при введении вирусных антигенов, взаимодействуют не со всœей молекулой антигена, а с ее антигенными детерми­нантами, которые могут иметь разную природу.

На примере гемагглютинина вируса гриппа можно ви­деть четыре типа антигенных детерминант, которые встречаются у вирусных антигенов. Первые две детерми­нанты обусловлены первичной последовательностью ами­нокислотных остатков и конформацией вторичной струк­туры этого участка белка — петлей в случае детерминан­ты А и а-спиралью в случае детерминанты В. Третья детерминанта (С) образуется в результате взаимодействия сближающихся разных участков мономера гемагглюти­нина. Наконец, четвертая детерминанта (D) возникает в результате образования тримера гемагглютинина, опре­деляющего его четвертичную структуру.

ГУМОРАЛЬНЫЙ ИММУНИТЕТ

Нейтрализация инфекционной активности вируса анти­телами осуществляется двумя путями: 1) в результате необратимых конформационных изменений структуры бел­ков вирусной частицы у сложно устроенных вирусов, в основном структуры молекул гликопротеидов; такой меха­низм нейтрализации требует участия комплемента; 2) врезультате пространственной блокады молекулами антител вирусных прикрепительных белков и предотвращения свя­зывания вириона с клеточными рецепторами. Поскольку на поверхности вирусной частицы прикрепительные белки представлены во множественных копиях, нейтрализация по этому типу требует связывания с вирусной частицей более одной молекулы антител. Связанные с недостаточ­ным числом молекул антител вирусы могут прикрепиться к клетке и вызвать инфекционный процесс.

Гуморальный иммунитет играет важную роль в про­тивовирусном иммунитете, и уровень антител в крови обычно является надежным показателœем резистентности к таким вирусным инфекциям, как корь, клещевой энце­фалит, полиомиелит и др. Размещено на реф.рфПовышение титра антител в парных сыворотках, т. е. взятых в раннем периоде болезни и в период выздоровления, используется для серологиче­ской диагностики вирусного заболевания, а исследования парных сывороток, взятых в начале и конце эпидемии у здоровых людей, позволяют оценить частоту бессимп­томных форм изучаемой вирусной инфекции.

Гуморальный иммунитет определяют по наличию в кро­ви антител преимущественно класса IgG. При этом при мно­гих инфекциях, в частности при гриппе, ОРЗ, полиомие­лите, и других энтеровирусных, ротавирусных инфекциях, важное значение имеет создание местного иммунитета слизистых оболочек дыхательных путей и пищеваритель­ного тракта͵ связанное с образованием и секрецией анти­тел класса IgA. Содержание их, не всœегда коррелирующее с содержанием антител класса IgG, более объективно ха­рактеризует степень иммунитета к изучаемой вирусной ин­фекции.

Поскольку антитела класса IgG появляются не ранее чем через одну неделю после заболевания и длительно циркулируют в крови, они имеют ограниченное значение для диагностики и не свидетельствуют о свежеперенесен-ной инфекции. Основная роль антител класса IgG сводится к защите организма от повторного заражения. Для уста­новления свежеперенесенной инфекции определяют анти­тела класса IgM, которые появляются раньше, чем IgG, и раньше исчезают.

referatwork.ru

 

Начальная

Windows Commander

Far
WinNavigator
Frigate
Norton Commander
WinNC
Dos Navigator
Servant Salamander
Turbo Browser

Winamp, Skins, Plugins
Необходимые Утилиты
Текстовые редакторы
Юмор

File managers and best utilites

Иммунитет                                                                           . Гуморальный иммунитет реферат


Иммунитет и иммунная система человека

Иммунитет и иммунная система человека

Эволюция формировала систему иммунитета около 500 млн. лет. Этот шедевр природы восхищает нас красотой гармонии и своей целесообразностью. Настойчивое любопытство ученых разных специальностей раскрыло перед нами закономерности ее функционирования и создало в последние 110 лет науку "Медицинская иммунология".

Каждый год приносит открытия в этой бурно развивающейся области медицины.

Логика подсказывает, что система иммунитета защищает нас от инфекционных агентов: бактерий, вирусов и простейших, т. е. защищает организм от всего чужеродного. Но, в то же время, стало понятным, что иммунная система необходима, в первую очередь, для защиты от своего, ставшего чужим. Дело в том, что ежедневно в нашем организме возникают миллионы мутантных клеток, которые могут стать источником смертельных опухолей.

Различают специфическую защиту, или иммунитет, и неспецифическую резистентность организма. Последняя, в отличие от иммунитета, направлена на уничтожение любого чужеродного агента. К неспецифической резистентности относятся фагоцитоз и пиноцитоз, система комплемента, естественная цитотоксичность, действие интерферонов, лизоцима, b-лизинов и других гуморальных факторов защиты.

Иммунитет — это комплекс реакций, направленных на поддержание гомеостаза при встрече организма с агентами, которые расцениваются как чужеродные, независимо от того, образуются ли они в самом организме или поступают в него извне.

Чужеродные для данного организма соединения, способные вызывать иммунный ответ, получили название "антигены" (АГ).Теоретически, любая молекула может быть АГ. В результате действия АГ в организме образуются антитела (АТ), сенсибилизируются лимфоциты, благодаря чему они приобретают способность принимать участие в иммунном ответе. Специфичность АГ заключается в том, что он избирательно реагирует с определенными АТ или лимфоцитами, появляющимися после попадания АГ в организм.

Способность АГ вызывать специфический иммунный ответ обусловлена наличием на его молекуле многочисленных детерминант (эпитонов), к которым специфически, как ключ к замку, подходят активные центры (антидетерминанты) образующихся АТ. АГ, взаимодействуя со своими АТ, образуют иммунные комплексы. Как правило, АГ — это молекулы с высокой молекулярной массой; существуют потенциально активные в иммунологическом отношении вещества, величина молекулы которых соответствует одной отдельной антигенной детерминанте. Такие молекулы носят наименование гаптенов. Последние способны вызывать иммунный ответ, только соединяясь с полным АГ, т. е. белком.

Органы, принимающие участие в иммунитете, делят на 4 группы:

    1. Центральные — тимус, или вилочковая железа, и, по-видимому, костный мозг.

    2. Периферические, или вторичные, — лимфатические узлы, селезенка, система лимфоэпителиальных образований, расположенных в слизистых оболочках различных органов.

    3. Забарьерные — ЦНС, семенники, глаза, паренхима тимуса, и при беременности — плод.

    4. Внутрибарьерные — кожа.

Различают клеточный и гуморальный иммунитет. Клеточный иммунитет направлен на уничтожение чужеродных клеток и тканей и обусловлен действием Т-киллеров. Типичным примером клеточного иммунитета является реакция отторжения чужеродных органов и тканей, в частности, кожи, пересаженной от человека человеку.

Гуморальный иммунитет обеспечивается образованием АТ и обусловлен, в основном, функцией В-лимфоцитов.

Иммунный ответ

В иммунном ответе принимают участие иммунокомпетентные клетки, которые могут быть разделены на антигенпрезентирующие (представляющие АГ), регуляторные (регулирующие течение иммунных реакций) и эффекторы иммунного ответа (осуществляющие заключительный этап в борьбе с АГ).

К антигенпрезентирующим клеткам относятся моноциты и макрофаги, эндотелиальные клетки, пигментные клетки кожи (клетки Лангерганса) и др. К регуляторным клеткам относятся Т- и В-хелперы, супрессоры, контрсупрессоры, Т-лимфоциты памяти. Наконец, к эффекторам иммунного ответа принадлежат Т-, В-киллеры и В-лимфоциты, являющиеся, в основном, антителопродуцентами.

Важная роль в иммунном ответе отводится особым цитокинам, получившим наименование интерлейкинов (ИЛ). Из названия видно, что ИЛ обеспечивают взаимосвязь отдельных видов лейкоцитов в иммунном ответе. Они представляют собой малые белковые молекулы с молекулярной массой 15.000 – 30.000.

ИЛ-1 — соединение, выделяемое при антигенной стимуляции моноцитами, макрофагами и другими антигенпрезентирующими клетками. Его действие, в основном, направлено на Т-хелперы (амплифайеры) и макрофаги-эффекторы. ИЛ-1 стимулирует гепатоциты, благодаря чему в крови возрастает концентрация белков, получивших наименование ректантов острой фазы, так как их содержание всегда увеличивается в острую фазу воспаления. К таким белкам относятся фибриноген, С-реактивный белок, 1-антитрипсин и др. Белки острой фазы воспаления играют важную роль в репарации тканей, связывают протеолитические ферменты, регулируют клеточный и гуморальный иммунитет. Увеличение концентрации ректантов острой фазы является приспособительной реакцией, направленной на ликвидацию патологического процесса. Кроме того, ИЛ-1 усиливает фагоцитоз, а также ускоряет рост кровеносных сосудов в зонах повреждения.

ИЛ-2 выделяется Т-амплифайерами под воздействием ИЛ-1 и АГ; является стимулятором роста для всех видов Т-лимфоцитов и активатором К-клеток.

ИЛ-3 выделяется стимулированными Т-хелперами, моноцитами и макрофагами. Его действие направлено преимущественно на рост и развитие тучных клеток и базофилов, а также предшественников Т- и В-лимфоцитов.

ИЛ-4 продуцируется, в основном, стимулированными Т-хелперами и обладает чрезвычайно широким спектром действия, так как способствует росту и дифференцировке В-лимфоцитов, активирует макрофаги, Т-лимфоциты и тучные клетки, индуцирует продукцию иммуноглобинов отдельных классов.

ИЛ-5 выделяется стимулированными Т-хелперами и является фактором пролиферации и дифференцировки эозинофилов, а также В-лимфоцитов.

ИЛ-6 продуцируется стимулированными моноцитами, макрофагами, эндотелием, Т-хелперами и фибробластами; вместе с ИЛ-4 обеспечивает рост и дифференцировку В-лимфоцитов, способствуя их переходу в антителопродуценты, т. е. плазматические клетки.

ИЛ-7 первоначально выделен из стромальных клеток костного мозга; усиливает рост и пролиферацию Т- и В-лимфоцитов, а также влияет на развитие тимоцитов в тимусе.

ИЛ-8 образуется стимулированными моноцитами и макрофагами. Его назначение сводится к усилению хемотаксиса и фагоцитарной активности нейтрофилов.

ИЛ-9 продуцируется Т-лимфоцитами и тучными клетками. Действие его направлено на усиление роста Т-лимфоцитов. Кроме того, он способствует развитию эритроидных колоний в костном мозге.

ИЛ-10 образуется макрофагами и усиливает пролиферацию зрелых и незрелых тимоцитов, а также способствует дифференцировке Т-киллеров.

ИЛ-11 продуцируется стромальными клетками костного мозга. Играет важную роль в гемопоэзе, особенно в тромбоцитопоэзе.

ИЛ-12 усиливает цитотоксичность Т-киллеров и К-лимфоцитов.

Иммунный ответ начинается с взаимодействия антигенпрезентирующих клеток с АГ, после чего происходит его фагоцитоз и переработка до продуктов деградации, которые выделяются наружу и оказываются за пределами антигенпрезентирующей клетки.

Специфичность иммунного ответа обеспечивается наличием особых антигенов, получивших у мышей название Ia-белка. У человека его роль выполняют человеческие лейкоцитарные антигены 2-го класса, тип DR (Human Leukocytes Antigens, HLA).

La-белок находится практически на всех кроветворных клетках, но отсутствует на зрелых Т-лимфоцитах; под влиянием интерлейкинов происходит экспрессия белка на этих клетках.

Роль Ia-белка в иммунном ответе сводится к следующему: АГ могут быть распознаны иммунокомпетентными клетками лишь при контакте со специфическими рецепторами, однако количество АГ слишком велико, и природа не заготовила для них соответствующего числа рецепторов, поэтому АГ (чужое) может быть узнан лишь в комплексе со "своим", функцию которого и несет Ia- белок или антигены HLA-DR.

Продукты деградации АГ, покинув макрофаг, частично вступают во взаимодействие с Ia-белком, образуя с ним комплекс, стимулирующий деятельность антигенпрезентирующей клетки. При этом макрофаг начинает секретировать ряд интерлейкинов. ИЛ-1 действует на Т-амплифайер, в результате чего у последнего появляется рецептор к комплексу Ia-белок + АГ. Именно эта реакция, как и все последующие, обеспечивает специфичность иммунного ответа.

Активированный Т-амплифайер выделяет ИЛ-2, действующий на различные клоны Т-хелперов и цитотоксические лимфоциты, принимающие участие в клеточном иммунитете. Стимулированные клоны Т-хелперов секретируют ИЛ-3, ИЛ-4, ИЛ-5 и ИЛ-6, оказывающие преимущественное влияние на эффекторное звено иммунного ответа и тем самым способствующие переходу В-лимфоцитов в антителопродуценты. Благодаря этому образуются АТ, или иммуноглобины. Другие интерлейкины (ИЛ-7, ИЛ-9, ИЛ-10, ИЛ-12) влияют на рост и дифференцировку Т- и В-лимфоцитов и являются факторами надежности, обеспечивающими иммунный ответ.

Клеточный иммунитет

Зависит от действия гуморальных факторов, выделяемых цитотоксическими лимфоцитами (Т-киллерами). Эти соединения получили наименование "перфорины" и "цитолизины".

Установлено, что каждый Т-эффектор способен лизировать несколько чужеродных клеток-мишеней. Этот процесс осуществляется в три стадии:

  1. Распознавание и контакт с клетками-мишенями.

  2. Летальный удар.

  3. Лизис клетки-мишени.

Последняя стадия не требует присутствия Т-эффектора, так как осуществляется под влиянием перфоринов и цитолизинов. В стадию летального удара перфорины и цитолизины действуют на мембрану клетки-мишени и образуют в ней поры, через которые проникает вода, разрывающая клетки.

Среди гуморальных факторов, выделяемых в процессе иммунного ответа, следует указать на фактор некроза опухолей и интерфероны.

Действие интерферонов неспецифично, так как они обладают различными функциями — стимулируют деятельность К-клеток и макрофагов, влияют непосредственно на ДНК- и РНК-содержащие вирусы, подавляя их рост и активность, задерживают рост и разрушают злокачественные клетки.

Гуморальный иммунный ответ

Обеспечивается антителами, или иммуноглобинами. У человека различают 5 основных классов иммуноглобинов: IgA, IgG, IgM, IgE, IgD. Все они имеют как общие, так и специфические детерминанты.

Иммуноглобины класса G

У человека являются наиболее важными. Концентрация их достигает 9 – 18 г/л. Иммуноглобины этого класса обеспечивают противоинфекционную защиту, связывают токсины, усиливают фагоцитарную активность, активируют систему комплемента, вызывают агглютинацию бактерий и вирусов, они способны переходить через плаценту, обеспечивая новорожденному так называемый пассивный иммунитет.

Иммуноглобины класса А

Делят на 2 разновидности: сывороточные и секреторные. Первые из них находятся в крови, вторые — в различных секретах. Соответственно этому, сывороточный иммуноглобин А принимает участие в общем иммунитете, а секреторный обеспечивает местный иммунитет, создавая барьер на пути проникновения инфекций и токсинов в организм.

Секреторный находится в наружных секретах — в слюне, слизи трахеобронхиального дерева, мочеполовых путей, молоке. Молекулы иммуноглобина А, присутствующие во внутренних секретах и жидкостях, существенно отличаются от молекул наружных секретов. Секреторный компонент, по всей видимости, образуется в эпителиальных клетках и в дальнейшем присоединяется к молекуле IgA.

IgA нейтрализует токсины и вызывает агглютинацию микроорганизмов и вирусов. Концентрация сывороточных IgA колеблется от 1,5 до 4 г/л.

Содержание IgA резко возрастает при заболеваниях верхних дыхательных путей, пневмониях, инфекционных заболеваниях желудочно-кишечного тракта и др.

Иммуноглобины класса Е

Принимают участие в нейтрализации токсинов, опсонизации, агглютинации и бактериолизисе, осуществляемом комплементом. К этому классу также относятся некоторые природные антитела, например, к чужеродным эритроцитам. Содержание IgE повышается при инфекционных заболеваниях у взрослых и детей.

Иммуноглобины класса D

Представляют собой антитела, локализующиеся в мембране плазматических клеток, в сыворотке их концентрация невелика. Значение IgD пока не выяснено, предполагают, что они участвуют в аутоиммунных процессах.

Регуляция иммунитета

Интенсивность иммунного ответа во многом определяется состоянием нервной и эндокринной систем. Установлено, что раздражение различных подкорковых структур (таламус, гипоталамус, серый бугор) может сопровождаться как усилением, так и торможением иммунной реакции на введение антигенов. Показано, что возбуждение симпатического отдела автономной (вегетативной) нервной системы, как и введение адреналина, усиливает фагоцитоз и интенсивность иммунного ответа. Повышение тонуса парасимпатического отдела вегетативной нервной системы приводит к противоположным реакциям.

Стресс, а также депрессии, угнетают иммунитет, что сопровождается не только повышенной восприимчивостью к различным заболеваниям, но и создает благоприятные условия для развития злокачественных новообразований.

За последние годы установлено, что гипофиз и эпифиз с помощью особых пептидных биорегуляторов, получивших наименование "цитомедины", контролируют деятельность тимуса. Передняя доля гипофиза является регулятором преимущественно клеточного, а задняя — гуморального иммунитета.

Иммунная регуляторная система

В последнее время высказано предположение, что существует не две системы регуляции (нервная и гуморальная), а три (нервная, гуморальная и иммунная). Иммунокомпетентные клетки способны вмешиваться в морфогенез, а также регулировать течение физиологических функций. Не подлежит сомнению, что Т-лимфоциты играют чрезвычайно важную роль в регенерации тканей. Многочисленные исследования показывают, что Т-лимфоциты и макрофаги осуществляют "хелперную" и "супрессорную" функции в отношении эритропоэза и лейкопоэза. Лимфокины и монокины, выделяемые лимфоцитами, моноцитами и макрофагами, способны изменять деятельность центральной нервной системы, сердечно-сосудистой системы, органов дыхания и пищеварения, регулировать сократительные функции гладкой и поперечно-полосатой мускулатуры.

Особенно важная роль в регуляции физиологических функций принадлежит интерлейкинам, которые являются "семьей молекул на все случаи жизни", так как вмешиваются во все физиологические процессы, протекающие в организме.

Иммунная система является регулятором гомеостаза. Эта функция осуществляется за счет выработки аутоантител, связывающих активные ферменты, факторы свертывания крови и избыток гормонов.

Иммунологическая реакция, с одной стороны, является неотъемлемой частью гуморальной, так как большинство физиологических и биохимических процессов осуществляется при непосредственном участии гуморальных посредников. Однако нередко иммунологическая реакция носит прицельный характер и тем самым напоминает нервную. Лимфоциты и моноциты, а также другие клетки, принимающие участие в иммунном ответе, отдают гуморальный посредник непосредственно органу-мишени. Отсюда предложение назвать иммунологическую регуляцию клеточно-гуморальной. Основную роль в ней следует отвести различным популяциям Т-лимфоцитов, осуществляющих "хелперные" и "супрессорные" функции по отношению к различным физиологическим процессам.

Учет регуляторных функций иммунной системы позволяет врачам различных специальностей по-новому подойти к решению многих проблем клинической медицины.

Библиографический список

  1. Физиология человека. Под ред. В. М. Покровского, Г. Ф. Коротько. Т.1. М.: Медицина, 1997.

    1. Использованы материалы с серверов:

  • http://www.uni.udm.ru

  • http://www.rmj.net

  • http://www.doktor.ru

  • http://www.medline.com

studfiles.net

Реферат на тему: «Иммунитет. иммунная система организма».

Введение.

1.Иммунитет.

2.Антигены.

3.Органы иммунной системы.

4.Клеточные и гуморальные показатели иммунитета.

5.Иммунный ответ.

6.Регуляция иммунитета.

7.Функциональная система поддержания постоянства клеток организма.

Введение.

 

Внешние и внутренние факторы меняют клеточные циклы здорового человека. В результате образуются аномальные (чужеродные, или синтезированные не так, как свои собственные) молекулы и клетки. Специальные клетки крови и других тканей продуцируют и поддерживают достаточную концентрацию фиксированных на клетках и свободных молекул, которые распознают, связывают (преобразуют) и выводят из организма аномальные молекулы и клетки.

Перераспределение частиц и клеток, «иммунного надзора» во все ткани организма происходит через крово- и лимфоток, а также транспорт через гистогематические барьеры.

Иммунитет (от лат. immunis) дословно означает свободный от чего- либо. Организм здорового человека непрерывно освобождается от веществ и структур, в том числе болезнетворных, как попадающих в него извне, так и образующихся внутри организма.

Источниками внешних (экзогенных) веществ и структур являются компоненты пищи, химические примеси воздуха и капельки жидкости, микроорганизмы, попадающие на кожу, в легкие, желудочно-кишечный тракт. Эндогенными (возникающими в самом организме) веществами, нарушающими постоянство внутренней среды и выводимыми с помощью иммунных механизмов, являются аномальные (мутантные) клетки и их компоненты, появившиеся при делении клеток, внутриклеточном синтезе веществ, метаболиты (шлаки) и др.

Тело человека состоит примерно из 1012-1013генотипически похожих клеток. Если принять, что при делении клеток каждая миллионная клетка подвергается мутации, то в любой момент в организме человека есть примерно 10 млн. аномальных клеток, которые могут стать источником смертельных опухолей.

Различают специфическую защиту, или иммунитет, и неспецифическую резистентность организма. Последняя в отличие от иммунитета направлена на уничтожение любого чужеродного агента. К неспецифической резистентности относятся фагоцитоз и пиноцитоз, система комплемента, естественная цитотоксичность, действие интерферонов, лизоцима, -лизинов и других гуморальных факторов защиты.

 

1.Иммунитет.

Благодаря иммунитету организм опознает, связывает, разрушает и выводит вещества и структуры. Вещества, отличающиеся по происхождению от собственных структур, называют чужеродными.

Иммунитет — способность специальных клеток жидкостей организма опознавать, связывать и удалять (выводить) вещества и структуры, происходящие из клеток других организмов или потерявших сходство с клетками собственного тела.

Иммунитет поддерживает жизнедеятельность организма путем выведения изношенных клеток, белков (гемоглобин, др.), шлаков, возобновления специфических для организма белков, клеток, в том числе клеток крови определенной группы, сохранения чужеродного плода во время беременности, и др. Поэтому понятие иммунитет шире способности защищаться от инфекции. Хотя значение инфекции очевидно: около 50% здоровых людей является носителями болезнетворных микроорганизмов (Лебедев К.К., др., 1989).

Таким образом, иммунитет поддерживает определенные (молекулярные) показатели гомеостаза и, значит, здоровья человека: динамическое равновесие количества удаляемых и восстанавливаемых клеток, тканей и жидкостей тела.

 

Одним из механизмов гомеостаза является поддержание иммунитета — определенного уровня активности клеток (лимфоцитов, лейкоцитов, эпителиоцитов, др.), синтезирующих и выделяющих естественные антитела (глобулины и др.) в кровь и другие жидкости тела. Сохранение постоянства клеток и их производных есть результат деятельности иммунной системы.

Воздействие формирует систему ответа на него. Непрерывность антигенных воздействий на организм поддерживает иммунитет здорового человека. Помещенный в стерильные условия (стерильная пища, вода, окружающая среда) организм (гнотобионт, греч. gnotos- известный, biontos — живой организм) теряет иммунитет.

Раздражителями для органов иммунной системы являются антигены — сложные химические вещества, микроорганизмы, появляющиеся в результате деления аномальные клетки или их компоненты.

Эти антигенные воздействия вызывают ответы «органов» иммунной системы — костного мозга, тимуса, селезенки, пейеровых бляшек стенки кишечника, лимфоузлов, лимфатических сосудов и др. Степень активности органов иммунной системы, вызванная воздействием внутренних и внешних антигенов, описывается как состояние — иммунный статус человека, или иммунитет.

Человек остается здоровым до тех пор, пока не нарушается динамическое равновесие между антигенным воздействием и активностью иммунной системы. Поэтому иммунная система — понятие не столько морфологическое, сколько функциональное..

 

2. Антигены — это макромолекулярные соединения с жесткой структурой, вызывающие иммунный ответ организма

Макромолекулы, отличающиеся по происхождению и строению от основной массы меток организма и вызывающие иммунный ответ, называют антигенами (АГ). АГ поступают извне (пищевые, микробные, бытовые) или образуются внутри (эндогенные) организма. Антигенность вещества относительна: она зависит от способности клеток и находящихся в жидкостях тела веществ распознавать АГ..

Иммунная система реагирует на химические вещества различно: легче связывает такие, к которым имеет специальные молекулы- рецепторы. Такие вещества называют антигенами. Другие вещества реагируют с иммунными соединениями и могут разрушать их.

Значит, антигены (греч, ага -против, gennao- создавать) — это воспринимаемые иммунной системой химические раздражители (адекватные), вызывающие иммунные реакции.

По химическому строению антигены разнообразны. Большинство из них представляет собой макромолекулярные (масса молекулы 10 тыс. и более) соединения достаточной жесткости. Антигенами могут быть белки, пептиды, полисахариды, нуклеиновые кислоты, комплексные соединения и др.

 

Антигенность, т.е. способность вызывать иммунный ответ, приобретается в ходе внутриутробного или внеутробного развития, имеет свойство иммунной избирательности. Фиксированный на плазматической мембране клеток набор антигенов образует главный комплекс гистосовместимости (ГКО).

Аномальные клетки имеют на своих мембранах образованные с участием вируса антигены Т (англ.tumor — опухоль). Узнавание Т- антигенов таких клеток рецепторами (антителами) цитотоксических Т-лимфоцитов (Тц- тимус-зависимые цитотоксические лимфоциты) и связывание тех и других клеток приводит к разрушению и выведению из организма аномальных клеток.

 

3.Органы иммунной системы — анатомические образования, участвующие в формировании иммунной готовности организма нейтрализовать чужеродные структуры и вещества.

Костный мозг, тимус, селезенка, лимфоузлы, пейеровы бляшки кишечника, миндалины и червеобразный отросток являются образованиями, в которых непрерывно образуются и созревают клетки, способные осуществлять «иммунный надзор» в человеческом теле. Эти иммунные органы и ткани непрерывно обмениваются между собой метками и молекулами, создавая достаточный уровень антител в каждой ткани. Активность органов иммунной системы регулируется автономной нервной системой и гуморальными веществами.

Постоянное воздействие антигенов поддерживает активность органов иммунной системы — костного мозга, тимуса, пейеровых бляшек кишечника, миндалин, селезенки, лимфоузлов. . Клетки этих органов синтезируют антитела к соответствующим антигенам и населяют ими жидкости тела — кровь, слизь, пот, секреты.

Костный мозг — центральный (первичный) орган кроветворной ткани, называемой миелоидной (греч. mielos — мозг, оidеоs — похожий).

 

Подобно другим клеткам организма, клетки крови — эритроциты, лейкоциты и тромбоциты — становятся зрелыми после приобретения иммунологических рецепторовмбранах, характеризующих сходство (происхождение) клетки с другими аналогичными клетками. Иммунологическую компетентность клетки крови приобретают либо в костном мозге (эритроциты), либо в других иммунных органах (в лимфатической ткани миндалин глотки и пейеровых бляшек кишечника «созревают» В-лимфоциты с большим, в 100-200 раз превосходящим таковое у Т -лимфоцитов, количеством микроворсин на поверхности, в тимусе — Т-лимфоциты).

Кровоток в костном мозге уменьшается почти в 2 раза при стрессе и возрастает до 8-ми кратных объемов при успокоении.

Вилочковая железа (thymus, зобная железа) — центральный орган другой разновидности кроветворной ткани — лимфоидной. Железа располагается за грудиной в верхнем средостении и покрыта соединительнотканной капсулой.

После наступления половой зрелости соответствует периодам активного участия тимуса в формировании иммунитета.

Лимфоидная ткань тимуса представлена эпителиальными, фиксированными на мембранах кровеносных соcудов, контактирующими между собой клетками и большим количеством лимфоцитов различной формы.

Тимус выполняет роль эндокринной железы (его эпителиальные клетки выделяют в кровь тимозин) и иммунопродуцирующего органа, осуществляющего образование Т-лимфоцитов (тимус-зависимых).

Созревание Т-лимфоцитов в тимусе осуществляется за счет деления лимфоцитов, имеющих рецепторы к тем чужеродным антигенам с которыми организм встречался в детстве. Образование Т-лимфоцитов происходит независимо от содержания антигенов и количества Т- лимфоцитов в крови (вследствие непроницаемости гистогематического барьера тимуса) и определяется генетическими механизмами и возрастом.

Стрессорные воздействия (психоэмоциональное напряжение, тепло, холод, голодание, кровопотеря, сильная физическая нагрузка) подавляют образование Т-лимфоцитов. .

Селезенка (lien) — паренхиматозный вторичный лимфоидный орган массой 140-200 г, расположенный в левом подреберье и покрытый соединительнотканной оболочкой и брюшиной. Иннервируется селезенка блуждающим и чревным (смешанным симпатическим) нервами. Вторичным лимфоидным органом селезенка названа потому, что основная часть делящихся в ее строме клеток поступает из костного мозга.

 

Лимфоузлы (nodi lymphatici) — мелкие (диаметром 0,5-1 см), сильно меняющиеся по величине периферические органы иммунной системы. У взрослого человека имеется около 460 лимфоузлов, общая масса которых составляет примерно 1% веса тела. Лимфоузлы важнейших областей тела имеют иннервацию.

Лимфоузел построен так, чтобы создать большую поверхность обмена лимфы и протекающей через капилляры лимфоузла крови. Лимфоузел является местом иммунизации лимфоцитов и образования антител, фильтром мелких частиц и чужеродных клеток.

Лимфоузлы каждой области человеческого тела имеют собственный набор антител, поскольку поступающие с лимфой антитела каждой области специфичны.

Пейеровы бляшки — лимфоидная ткань стенки тонкого кишечника, где образуются В- лимфоциты.

Миндалины (tonsilae) скопления лимфоидной ткани в слизистой оболочке рта, носа и глотки. Миндалины построены так, что их складчатая поверхность слизистого эпителия задерживает попадающие в начальные отделы дыхательных и пищеварительных путей мелкие частицы и микроорганизмы, связывает их и лизирует с помощью внутриклеточных ферментов. Лимфоидная ткань миндалин аналогична таковой лимфоузла. Лимфатических сосудов в миндалинах нет.

Червеобразный отросток (арреndiх) также относят к периферическим иммунным органам («кишечная миндалина»). Объем лимфоидной ткани отростка сильно меняется под влиянием изменений деятельности начального отдела толстого кишечника (образование твердого кала, изменение перистальтики, др.). Изменения лимфоидной ткани червеобразного отростка чаще наблюдаются у лиц мужского пола.

4.Клеточные и гуморальные показатели

Клеточными компонентами иммунитета являются прежде всего лимфоциты, циркулирующие с током крови по всем органам и выполняющие главную роль «иммунного надзора» (патрулирования).

Лимфоциты, т.е. такие лейкоциты, у которых в цитоплазме нет гранул пероксидаз (ферментов, катализирующих окислительно- восстановительные реакции с участием перекисей), обладают способностью отличать в организме «чужие», т.е. необычного происхождения, крупные молекулы благодаря имеющимся на их мембранах рецепторам-антителам. Лимфоциты синтезируют антитела, лизируют чужеродные клетки, в том числе обеспечивают отторжение трансплантанта, иммунную память (способность отвечать усиленной реакцией на повторную встречу с антигеном) и др.

По месту созревания, составу органелл, размерам, рецепторам и функциям различают 3 основные группы лимфоцитов: 0-, В- и Т- лимфоциты.

0-лимфоциты — это некоммитированные клетки, образовавшиеся в костном мозге из стволовых клеток. Попадающие с током крови в тимус предшественники лимфоцитов за счет изменения антигенных свойств мембран становятся линейно-ограниченнными, т.е. способными при делении образовывать только Т-лимфоциты. Вероятно, что В-лимфоциты приобретают иные свойства в том числе антигенные при попадании в пейеровы бляшки кишечника.

Т- лимфоциты выполняют разные функции. Образуют плазматические клетки, блокируют чрезмерные реакции, поддерживая постоянство разных форм лейкоцитов, выделяя лимфокины, активируя лизосомальные ферменты и ферменты макрофагов, разрушают антигены.

В-лимфоциты обеспечивают гуморальный иммунитет путем выработки антител. При встрече с антигеном они мигрируют в костный мозг, селезенку, лимфатические узлы, где делятся и трансформируются в плазматические клетки. Последние и являются продуцентами антител — иммуноглобулинов.

Другой группой лимфоидных клеток иммунной системы являются макрофаги. Они различны по строению, находятся в жидкостях и тканях, фагоцитируют антитела, активируют лимфоциты и участвуют в образовании антител.

 

5.Иммунный ответ — последовательно развертывающаяся многоуровневая реакция антител и иммунных органов на антиген, сопровождающаяся гемодинамическими сдвигами.

Опознание и связывание чужеродных молекул и клеток происходит при контакте их с другой группой молекул. Это взаимодействие в отличие от химической реакции называют иммунным ответом.

 

Удаление или переход в неактивное состояние иммунокомпетентных клеток (Т-, В-лимфоцитов, макрофагов, плазматических клеток) является сигналом стимуляции центральных органов иммунитета — костного мозга и тимуса.

В целом иммунный ответ — это поэтапная каскадная реакция готовых АТ и последующее вовлечение периферических и центральных иммунных органов в активность. Иммунный ответ включает также гемодинамические изменения кровотока в области попадания «чужих» АГ. В упрощенном виде иммунный ответ можно представить в виде определенной последовательности развертывающихся процессов.

Узнавание антигена антителом происходит при контакте рецепторов двух структур. Если АГ и АТ совместимы, то они объединяются. Контакт АГ с АТ чаще происходит в жидкостях, поскольку при этом те и другие молекулы получают более высокую вероятность встречи.. Основным условием узнавания является сходство (совместимость) рецепторных поверхностей АГ и АТ.

Для узнавания («обшаривания» окружающего пространства вместо «оглядывания») нужно много времени и большое количество молекул АТ и АГ. Кроме того, есть возможность группового узнавания и изменения узнавания под влиянием различных веществ. Поэтому скорее всего в естественных условиях существуют и другие механизмы этих процессов. Узнавание инородных частиц фагоцитом облегчается в присутствии компонентов сыворотки крови (опсонины, альбумины, С-реактивный белок).

Первым этапом иммунного ответа является реакция связывания АГ антителом. Организм имеет готовый набор сформированных в предшествующих поколениях нормальных антител — естественный гуморальный иммунитет. «Привычные » АГ, попадая в те или иные жидкости организма, непрерывно связываются естественными АТ.

Связывание осуществляется за счет гидрофобного соединения активных центров АТ и АГ, соответствующих друг другу: специфичность АГ-АТ реакции).

 

Эти процессы осуществляются с затратой энергии, метаболизм макрофага резко повышается (наблюдается «метаболический или дыхательный взрыв»). Основным источником энергии служит АТФ.

Фагоцитоз приводит к усилению и видоизменению иммуного ответа. Выделение фагоцитирующими клетками различных веществ, осуществляющих передачу иммунологической сигнализации (медиаторов иммунного ответа).

 

Иммунологическая память выражается в конечном итоге в увеличении содержания Т- и В-лимфоцитов, несущих рецепторы к АГ и переходящих в покоящееся состояние после 2-3 делений, вызванных АГ.

Первичный иммунный ответ - наработка АТ и последующее связывание АГ с АТ- как реакция на первую встречу с новым АГ. Во внеутробной жизни человека непрерывно происходят реакции готовых антител с АГ — вторичный иммунный ответ.

 

ЗАКЛЮЧЕНИЕ

    Мы рассмотрели сложную и индивидуально целесообразно устроенную систему защитных реакций организма. Одной из важнейших проблем современной биологии является вопрос о том, как и из чего она могла возникнуть в процессе эволюции. Подходы к этой проблеме лишь только намечаются.

Ясно, что защиту организма от внешней и внутренней биологической агрессии иммунная система обеспечивает путем двух основных механизмов — распознавания и разрушения чужеродных молекул и клеток. Это достигается благодаря слаженной работе иммуноцитов различного функционального предназначения. Основным молекулярным инструментом для реализации иммунного ответа служат антитела и поверхностные рецепторы. Причем те и другие могут выполнять как функцию распознавания, так и функцию разрушения чужеродных тел. Межклеточная связь между иммуноцитами выполняют интерлейкины, интерфероны и другие медиаторы. Нарушение этих механизмов приводит к различным формам иммунопатологии, опасной для здоровья и жизни

 

Список литературы

 

Ю.В. Урываев. Физиологические основы гомеостаза. Москва, 1995.

Г.В. Гущин, Е.Э. Яковлева. Нейрогуморальная регуляция иммунного гомеостаза. Ленинград: Наука, 1986.

Е.А. Зотиков. Антигенная система человека и гомеостаз. Москва: Медицина, 1982.

Также рекомендуем к прочтению:

medicalru.ru

Реферат - Иммунитет - 1.doc

Реферат - Иммунитетскачать (141 kb.)

Доступные файлы (1):

содержание

1.doc

Реклама MarketGid: Оглавление:Введение........................................................................................................................................21.Иммунитет..................................................................................................................................22.Антигены.....................................................................................................................................33.Органы иммунной системы.......................................................................................................54.Клеточные и гуморальные показатели иммунитета................................................................85.Иммунный ответ.........................................................................................................................96.Регуляция иммунитета.............................................................................................................117.Функциональная система поддержания постоянства клеток организма............................13Заключение...................................................................................................................................15

Введение.Внешние и внутренние факторы меняют клеточные циклы здорового человека. В результате образуются аномальные (чужеродные, или синтезированные не так, как свои собственные) молекулы и клетки. Специальные клетки крови и других тканей продуцируют и поддерживают достаточную концентрацию фиксированных на клетках и свободных молекул, которые распознают, связывают (преобразуют) и выводят из организма аномальные молекулы и клетки.

Перераспределение частиц и клеток, "иммунного надзора" во все ткани организма происходит через крово- и лимфоток, а также транспорт через гистогематические барьеры.

Иммунитет (от лат. immunis) дословно означает свободный от чего- либо. Организм здорового человека непрерывно освобождается от веществ и структур, в том числе болезнетворных, как попадающих в него извне, так и образующихся внутри организма.

Источниками внешних (экзогенных) веществ и структур являются компоненты пищи, химические примеси воздуха и капельки жидкости, микроорганизмы, попадающие на кожу, в легкие, желудочно-кишечный тракт. Эндогенными (возникающими в самом организме) веществами, нарушающими постоянство внутренней среды и выводимыми с помощью иммунных механизмов, являются аномальные (мутантные) клетки и их компоненты, появившиеся при делении клеток, внутриклеточном синтезе веществ, метаболиты (шлаки) и др.

Тело человека состоит примерно из 1012-1013генотипически похожих клеток. Если принять, что при делении клеток каждая миллионная клетка подвергается мутации, то в любой момент в организме человека есть примерно 10 млн. аномальных клеток, которые могут стать источником смертельных опухолей.

Различают специфическую защиту, или иммунитет, и неспецифическую резистентность организма. Последняя в отличие от иммунитета направлена на уничтожение любого чужеродного агента. К неспецифической резистентности относятся фагоцитоз и пиноцитоз, система комплемента, естественная цитотоксичность, действие интерферонов, лизоцима, -лизинов и других гуморальных факторов защиты.1.Иммунитет.

Благодаря иммунитету организм опознает, связывает, разрушает и выводит вещества и структуры. Вещества, отличающиеся по происхождению от собственных структур, называют чужеродными.

Иммунитет - способность специальных клеток жидкостей организма опознавать, связывать и удалять (выводить) вещества и структуры, происходящие из клеток других организмов или потерявших сходство с клетками собственного тела.

Иммунитет поддерживает жизнедеятельность организма путем выведения изношенных клеток, белков (гемоглобин, др.), шлаков, возобновления специфических для организма белков, клеток, в том числе клеток крови определенной группы, сохранения чужеродного плода во время беременности, и др. Поэтому понятие иммунитет шире способности защищаться от инфекции. Хотя значение инфекции очевидно: около 50% здоровых людей является носителями болезнетворных микроорганизмов (Лебедев К.К., др., 1989).

Таким образом, иммунитет поддерживает определенные (молекулярные) показатели гомеостаза и, значит, здоровья человека: динамическое равновесие количества удаляемых и восстанавливаемых клеток, тканей и жидкостей тела.

Эти показатели гомеостаза включают не только постоянство жидких сред организма, но и нормальную жизнедеятельность клеток- интенсивность митоза и мейоза, дифференцировку клеток, скорость образования клеточных клонов, продолжительность жизни клеток и др. Показатели гомеостаза, в том числе количество клеток каждого типа, как и размеры органов зависят от характера жизнедеятельности.

Восстановление и умножение структур невозможны без участия иммунных механизмов, создающих "нормальный", идентичный собственному, клеточный состав увеличенной мышцы или другой структуры.

Одним из механизмов гомеостаза является поддержание иммунитета - определенного уровня активности клеток (лимфоцитов, лейкоцитов, эпителиоцитов, др.), синтезирующих и выделяющих естественные антитела (глобулины и др.) в кровь и другие жидкости тела. Сохранение постоянства клеток и их производных есть результат деятельности иммунной системы.

Воздействие формирует систему ответа на него. Непрерывность антигенных воздействий на организм поддерживает иммунитет здорового человека. Помещенный в стерильные условия (стерильная пища, вода, окружающая среда) организм (гнотобионт, греч. gnotos- известный, biontos - живой организм) теряет иммунитет.

Раздражителями для органов иммунной системы являются антигены - сложные химические вещества, микроорганизмы, появляющиеся в результате деления аномальные клетки или их компоненты.

Эти антигенные воздействия вызывают ответы "органов" иммунной системы - костного мозга, тимуса, селезенки, пейеровых бляшек стенки кишечника, лимфоузлов, лимфатических сосудов и др. Степень активности органов иммунной системы, вызванная воздействием внутренних и внешних антигенов, описывается как состояние - иммунный статус человека, или иммунитет. Условно выделяют клеточные и гуморальные показатели степени активности иммунных органов.

Человек остается здоровым до тех пор, пока не нарушается динамическое равновесие между антигенным воздействием и активностью иммунной системы. Поэтому иммунная система - понятие не столько морфологическое, сколько функциональное.. 2. Антигены - это макромолекулярные соединения с жесткой структурой, вызывающие иммунный ответ организма

Макромолекулы, отличающиеся по происхождению и строению от основной массы меток организма и вызывающие иммунный ответ, называют антигенами (АГ). АГ поступают извне (пищевые, микробные, бытовые) или образуются внутри (эндогенные) организма. Антигенность вещества относительна: она зависит от способности клеток и находящихся в жидкостях тела веществ распознавать АГ. Антигенность молекул может усиливаться или ослабевать в случае соединения их с другими. Антигенны клетки мода по отношению к матери, сперма относительно слизистой влагалища, кровь одного человека относительно другого.

Иммунная система реагирует на химические вещества различно: легче связывает такие, к которым имеет специальные молекулы- рецепторы. Такие вещества называют антигенами. Другие вещества реагируют с иммунными соединениями и могут разрушать их.

Значит, антигены (греч, ага -против, gennao- создавать) - это воспринимаемые иммунной системой химические раздражители (адекватные), вызывающие иммунные реакции.

По химическому строению антигены разнообразны. Большинство из них представляет собой макромолекулярные (масса молекулы 10 тыс. и более) соединения достаточной жесткости. Антигенами могут быть белки, пептиды, полисахариды, нуклеиновые кислоты, комплексные соединения и др.

Обычно увеличение молекулярного веса антигена сопровождается повышением его иммунореактивности. Однако белки одинаковой молекулярной массы (гемоглобин и альбумин) могут иметь разную иммунореактивность. Агрегированные антигены (объединенные с другими на поверхности клеток крови, бактерий, др.) более иммунореактивны, чем отдельные антигены.

Антигенность, т.е. способность вызывать иммунный ответ, приобретается в ходе внутриутробного или внеутробного развития человека.

Главным свойством антигена является его чужеродность, т.е. особенности молекулы, образованные иным, непохожим на собственный, набором синтезирующих ферментов. Антигенная чужеродность проявляется в перестройке внутриклеточного синтеза. Для предотвращения этого антиген разрушается с помощью иммунной системы.

"Происхождение" антигена определяет расположение радикалов в его молекуле. Наиболее важная часть расположения радикалов молекулы антигена, которая характеризует его происхождение, называется детерминантой (эпитопом) антигена.

В отличие от химической реакции, взаимодействие антигена с антителом происходит не со всеми однотипными молекулами, а только с той их частью, которая имеет соответствующие детерминанте активные центры - антидетерминанты антитела. Поэтому Антигенность имеет свойство иммунной избирательности. Фиксированный на плазматической мембране клеток набор антигенов образует главный комплекс гистосовместимости (ГКО). Поскольку ГКС человека обнаружен на лейкоцитах, они были названы НLА(human leukocyte antigen). Структура антигенов ГКС похожа на молекулу иммуноглобулина G. Антигены ГКС человека представлены гликопротеидами 5 классов (групп): НLА-А, НLА-В, НLА-С, НLА- 0, НLА-ОК.. Каждый класс антигенов ГКС состоит из десятков разных антигенов. Специфичность ГКС определяется наличием соответствующих антигенов.

^ имеют на своих мембранах образованные с участием вируса антигены Т (англ.tumor - опухоль). Узнавание Т- антигенов таких клеток рецепторами (антителами) цитотоксических Т-лимфоцитов (Тц- тимус-зависимые цитотоксические лимфоциты) и связывание тех и других клеток приводит к разрушению и выведению из организма аномальных клеток.

Антигенность одних тканей организма относительно других неодинакова Метаболиты крови и некоторых жидкостей внутренней среды человека (индивидуальноспецифические антигены) не антигенны для других тканей того же организма. Достаточно крупные метаболиты органов и тканей, отделенные от внутренней среды гистогематическими барьерами - гематоэнцефалическим, гематоофтальмическим, гематотестикулярным, др.- являются антигенами для других тканей организма (органо - или гистоспецифические антигены). В случае повышения проницаемости гистогематического барьера, например при стрессе, усиленной физической нагрузке и др., в кровь поступают гистоспецифические антигены мозга, семенников, хрусталика, желез внутренней секреции, вызывая иммунный ответ.

^ представляют собой олигосахариды, связанные с белками поверхности мембран клеток крови. В настоящее время известно более 160 различных антигенов, образующих свыше 20 групп крови. Наиболее распространена АВНО (О) система групповой принадлежности крови. Антигены данной системы объединены в 3 вида: 1) гликофосфолипиды и гликопротеины. на поверхности эритроцитов и других клеток, 2) олигосахариды молока и мочи и 3) олигосахариды, связанные с муцинами, секретируемыми желудочно-кишечным, мочевыделительным и дыхательным трактами.

Антигенными свойствами обладают клетки и жидкости плода по отношению к матери. Иммунный ответ здоровой беременной женщины не развивается вследствие специфического его подавления (развития иммунологической толерантности).

Антигенность - чрезвычайно относительный признак: специфическая иммунологическая реакция на антиген определяется не столько свойствами антигена, сколько наличием антител к нему. Антигенность изменяется под влиянием химических веществ. Так, адъювантами (лат .adjuvare - помогать) названы вещества, усиливающие иммуногенность различных антигенов (неспецифический эффект). Депонируя антигены, адъюванты усиливают взаимодействие антигенов с антителами.

Адъювантами являются минеральные масла, гидроокиси и фосфаты аллюминия, Д-воска и др. В присутствии адъювантов антигенные свойства приобретают низкомолекулярные соединения. Например, глюкагон - полипептид с ММ 3.500 - в присутствии адъюванта становится антигеном. Кроме того, антигенность химических соединений зависит от чувствительности (реактивности) иммунной системы.

Резкое повышение чувствительности иммунной системы проявляется, в частности, в виде аллергической реакции. Антигены, чувствительность к которым значительно усилена и которые вызывают аллергическую реакцию, названы аллергенами (греч. allos - иной. ergen - действие).

Пищевые аллергены вызывают усиленный иммунный ответ не столько благодаря своей природе (наиболее часто аллергическую реакцию вызывают лактоглобулин коровьего молока, казеин, овальбумин яиц, белки крабов, раков и др.), сколько снижением иммунных свойств кишечной стенки, в частности способности секретировать IgА, недостаток которых способствует ускоренному всасыванию нерасщепленных белков и пептидов.

По источнику антигены делят на эндогенные и экзогенные. Эндогенными антигенами являются аномальные клетки и их компоненты, а также эмбрион для матери. Экзогенными антигенами являются попадающие на поверхность и слизистые оболочки, а также в желудочно-кишечный тракт белковые и полисахаридные вещества пищи, пыли, жидкости, воздуха, а также микроорганизмов.

Стафиллококки, грибки, микобактерии обнаруживаются в глубоких слоях кожи, протоках сальных и потовых желез здорового человека. Носовые ходы и носоглотка задерживают в 1 час до 14.000 микроорганизмов (стафиллококки, стрептококки, дифтерийные палочки, микобактерии и др.). Борту, кишечнике, особенно в толстом присутствует разнообразная микрофлора.

Пищевые и другие экзогенные антигены изменяют иммунный статус человека. Так, круглые черви - аскариды, трихинеллы, др., попадающие в пищеварительный канал, подавляют иммунитет. Амебы, токсоплазма, giardia, др., попадая в пищеварительный канал, могут как подавлять, так и усиливать иммунный ответ.

Имеют свою флору и наружные половые органы. Несовместимость антигенных свойств, обусловленных различием микрофлоры половых органов супругов, может быть причиной бесплодного брака (10-25% бесплодия). Сперма, содержащая антигены, агглютинирует в результате встречи с антителами слизи влагалища. Повторные половые сношения приводят либо к усилению, либо к снижению образования антиспермальных антител. Снижение антиспермальных антител выявлено у женщин при пользовании презервативами.

Бытовые аллергены входят в состав пыли (нитраты, смолы, лаки, биологические частицы, др.), косметических средств, покрытий мебели, стен, красок для одежды, обуви и т.д. Мужской Н-У-антиген клеточной поверхности обеспечивает дифференцировку первичной гонады в семенник.

^ - анатомические образования, участвующие в формировании иммунной готовности организма нейтрализовать чужеродные структуры и вещества.

Костный мозг, тимус, селезенка, лимфоузлы, пейеровы бляшки кишечника, миндалины и червеобразный отросток являются образованиями, в которых непрерывно образуются и созревают клетки, способные осуществлять "иммунный надзор" в человеческом теле. Эти иммунные органы и ткани непрерывно обмениваются между собой метками и молекулами, создавая достаточный уровень антител в каждой ткани. Активность органов иммунной системы регулируется автономной нервной системой и гуморальными веществами.

Постоянное воздействие антигенов поддерживает активность органов иммунной системы - костного мозга, тимуса, пейеровых бляшек кишечника, миндалин, селезенки, лимфоузлов. Эти анатомические образования условно делятся на центральные (первичные) и иммунной системы, из которых клетки крови расселяются в остальные ее органы. Эти клетки синтезируют антитела к соответствующим антигенам и населяют ими жидкости тела - кровь, слизь, пот, секреты.

^ - центральный (первичный) орган кроветворной ткани, называемой миелоидной (греч. mielos - мозг, оidеоs - похожий). Это сеть контактирующих между собой (с помощью десмосом) ретикулярных клеток и волокон (стремы) вокруг артериол, синусоидов (тонкостенных капилляров большого диаметра, лат. sinus -полый, оidеоs - подобный) и венул, пространства которой заполнены предшественниками клеток крови, макрофагами и жировыми клетками, не связанными между собой контактами.

Отсутствие контактов между основной массой клеток - предшественниц форменных элементов крови обеспечивает относительную самостоятельность их функционирования, подвижность и сменяемость всей ткани. Миелоидная ткань располагается внутри жесткого костного каркаса.

Костный мозг - производное клеток крови. У эмбриона человека колониеобразующие единицы (КОЕ) появляются в печени. Это мелкие, подвижные, самообновляющиеся благодаря митозу клетки, группирующиеся в колонии (скопления). При делении КОЕ образуются клетки-предшественники эритроцитов, а также лейкоцитов и тромбоцитов. Как только у плода развивается костная ткань, в ее полости попадают КОЕ и начинается образование клеток крови. После рождения в костной ткани накапливаются соли кальция, они уплотняются. Давление крови выталкивает через синусоиды в костные полости мелкие КОЕ, а затем и более крупные клетки крови. Увеличение количества костей сопровождается расселением КОЕ в них.

Миелоидная ткань костей черепа, грудины, позвоночника, ребер, конечностей приобретает способность к кроветворению по мере уплотнения и развития в ней кровеносных сосудов. У пожилых и старых людей происходят обратные процессы.

Подобно другим клеткам организма, клетки крови - эритроциты, лейкоциты и тромбоциты - становятся зрелыми после приобретения иммунологической компетентности, т.е. рецепторов на своих мембранах, характеризующих сходство (происхождение) клетки с другими аналогичными клетками. Иммунологическую компетентность клетки крови приобретают либо в костном мозге (эритроциты), либо в других иммунных органах (в лимфатической ткани миндалин глотки и пейеровых бляшек кишечника "созревают" В-лимфоциты с большим, в 100-200 раз превосходящим таковое у Т -лимфоцитов, количеством микроворсин на поверхности, в тимусе - Т-лимфоциты).

Кровоток в костном мозге составляет 15-20 мл/мин./100 г ткани. Он осуществляется по кровеносным сосудам, включающие синусоиды, через которые в костный мозг попадают не только белки, гормоны и др. вещества, но и клетки крови (микроциркуляция в костном мозге). Кровоток в костном мозге уменьшается почти в 2 раза при стрессе и возрастает до 8-ми кратных объемов при успокоении.

^ (thymus, зобная железа) - центральный орган другой разновидности кроветворной ткани - лимфоидной. Железа располагается за грудиной в верхнем средостении и покрыта соединительнотканной капсулой.

Масса вилочковой железы у взрослого человека 7-32 г. Большая абсолютная ( 10-15 г) и относительная (1/ЗОО часть массы тела) величина тимуса у детей и ее инволюция (лат. involutio - загибание, обратное развитие) после наступления половой зрелости соответствует периодам активного участия тимуса в формировании иммунитета.

Лимфоидная ткань тимуса представлена эпителиальными, фиксированными на мембранах кровеносных соcудов, контактирующими между собой клетками и большим количеством лимфоцитов различной формы. Последние очень подвижны: около 15% лимфоцитов ежесуточно выходит в селезенку и лимфоузлы.

Тимус выполняет роль эндокринной железы (его эпителиальные клетки выделяют в кровь тимозин) и иммунопродуцирующего органа, осуществляющего образование Т-лимфоцитов (тимус-зависимых).

Созревание Т-лимфоцитов в тимусе осуществляется за счет деления лимфоцитов, имеющих рецепторы к тем чужеродным антигенам с которыми организм встречался в детстве. Образование Т-лимфоцитов происходит независимо от содержания антигенов и количества Т- лимфоцитов в крови (вследствие непроницаемости гистогематического барьера тимуса) и определяется генетическими механизмами и возрастом.

Стрессорные воздействия (психоэмоциональное напряжение, тепло, холод, голодание, кровопотеря, сильная физическая нагрузка) подавляют образование Т-лимфоцитов. Возможными путями реализации стрессорных воздействий на тимус могут быть сосудистый (уменьшение кровотока в железе) и гуморальный (подавляющее митоз клеток влияние кортикоидов и др.).При длительном стрессе иммунитет снижается. Селезенка (lien) - паренхиматозный вторичный лимфоидный орган массой 140-200 г, расположенный в левом подреберье и покрытый соединительнотканной оболочкой и брюшиной. Иннервируется селезенка блуждающим и чревным (смешанным симпатическим) нервами. Вторичным лимфоидным органом селезенка названа потому, что основная часть делящихся в ее строме клеток поступает из костного мозга. Лимфоидная ткань селезенки представляет собой образованную ретикулярными клетками сеть вокруг кровеносных капилляров (синусоидов). Основной объем органа в ячейках сети заполнен форменными элементами крови - эритроцитами (красная пульпа, от лат. рu1ра - мякоть) или лейкоцитами (белая пульпа). Эта масса не контактирующих между собой контактов клеток изменяется по количеству и составу, т. е. обменивается, сравнительно быстро.

Микроциркуляция в селезенке осуществляется через синусоиды, пропускающие как компоненты плазмы крови, так и форменные элементы.

Уменьшение объема селезенки (на 20-40 мл) вследствие выталкивания части подвижных клеток крови в кровяное русло происходит за счет сокращения гладкомышечных тяжей капсулы органа и пучков гладкомышечных клеток, проникающих вглубь органа. Это возникает под влиянием адреналина и норадреналина, выделяемых симпатическими постганглионарными волокнами (до 90% таких волокон входит в состав блуждающего нерва) или мозговой частью надпочечников.

Регуляция тонуса артериол и венул селезенки обеспечивает изменение состава клеток крови в органе.

Лимфоузлы (nodi lymphatici) - мелкие (диаметром 0,5-1 см), сильно меняющиеся по величине периферические органы иммунной системы. У взрослого человека имеется около 460 лимфоузлов, общая масса которых составляет примерно 1% веса тела. Лимфоузлы важнейших областей тела имеют иннервацию.

Лимфоузел построен так, чтобы создать большую поверхность обмена лимфы и протекающей через капилляры лимфоузла крови. Лимфоидная ткань лимфоузла покрыта соединительнотканной оболочкой. Под оболочку лимфоузла из нескольких лимфатических сосудов притекает лимфа, просачивающаяся через щели лимфоидной ткани лимфоузла и вытекающая из одного лимфососуда. Кровь поступает в лимфоузел через артериолу и выходит через венулу. Из крови в лимфоузел заселяются КОЕ. Лимфоузел является местом иммунизации лимфоцитов и образования антител, фильтром мелких частиц и чужеродных клеток.

Физиологическая активность лимфоузла - лимфе- и кроваток, пополнение Т- и В-лимфоцитов, интенсивность деления клеток, образование антител (до 75% всех иммуноглобулинов) на мембранах плазматических (ретикулярных) клеток лимфоузла, проницаемость мембран и обмен между лимфой и кровью, связывание мелких частиц лимфы и т.д. - зависят от активности АНС, гормонов в крови и иммунномедиаторов .

Лимфоузлы каждой области человеческого тела имеют собственный набор антител, поскольку поступающие с лимфой антитела каждой области специфичны.

^ - лимфоидная ткань стенки тонкого кишечника, где образуются В- лимфоциты.

Миндалины (tonsilae) скопления лимфоидной ткани в слизистой оболочке рта, носа и глотки. Миндалины построены так, что их складчатая поверхность слизистого эпителия задерживает попадающие в начальные отделы дыхательных и пищеварительных путей мелкие частицы и микроорганизмы, связывает их и лизирует с помощью внутриклеточных ферментов. Лимфоидная ткань миндалин аналогична таковой лимфоузла. Лимфатических сосудов в миндалинах нет.

^ (арреndiх) также относят к периферическим иммунным органам ("кишечная миндалина"). Объем лимфоидной ткани отростка сильно меняется под влиянием изменений деятельности начального отдела толстого кишечника (образование твердого кала, изменение перистальтики, др.). Изменения лимфоидной ткани червеобразного отростка чаще наблюдаются у лиц мужского пола.

Кроме центральных и периферических иммунных органов, существуют забарьерные (ЦНС, семенники, глаза, паренхима тимуса и при беременности – плод) и внутрибарьерные (кожа). ^ - характеристики клеток и веществ внутренней среды, отражающие иммунную активность.

Показателями готовности клеток, и тканей организма обнаруживать и связывать чужеродные молекулы являются количество антител и других молекул, участвующих в иммунных реакциях, а также степень активности меток тканей и жидкостей организма.

Иммунитет оценивается по иммунологической активности клеток различных тканей и органов, а также концентрации нефиксированных антител и способности их участвовать в иммунных реакциях, находящихся в жидкостях тела - крови, лимфе и межклеточной жидкости.

Клеточными компонентами иммунитета являются прежде всего лимфоциты, циркулирующие с током крови по всем органам и выполняющие главную роль "иммунного надзора" (патрулирования).

Лимфоциты, т.е. такие лейкоциты, у которых в цитоплазме нет гранул пероксидаз (ферментов, катализирующих окислительно- восстановительные реакции с участием перекисей), обладают способностью отличать в организме "чужие", т.е. необычного происхождения, крупные молекулы благодаря имеющимся на их мембранах рецепторам-антителам. Лимфоциты синтезируют антитела, лизируют чужеродные клетки, в том числе обеспечивают отторжение трансплантанта, иммунную память (способность отвечать усиленной реакцией на повторную встречу с антигеном) и др.

По месту созревания, составу органелл, размерам, рецепторам и функциям различают 3 основные группы лимфоцитов: 0-, В- и Т- лимфоциты.

0-лимфоциты - это некоммитированные клетки, образовавшиеся в костном мозге из стволовых клеток. Попадающие с током крови в тимус предшественники лимфоцитов за счет изменения антигенных свойств мембран становятся линейно-ограниченнными, т.е. способными при делении образовывать только Т-лимфоциты. Вероятно, что В-лимфоциты приобретают иные свойства в том числе антигенные при попадании в пейеровы бляшки кишечника.

^ выполняют разные функции. Образуют плазматические клетки, блокируют чрезмерные реакции, поддерживая постоянство разных форм лейкоцитов, выделяя лимфокины, активируя лизосомальные ферменты и ферменты макрофагов, разрушают антигены.

В-лимфоциты обеспечивают гуморальный иммунитет путем выработки антител. При встрече с антигеном они мигрируют в костный мозг, селезенку, лимфатические узлы, где делятся и трансформируются в плазматические клетки. Последние и являются продуцентами антител - иммуноглобулинов.

Другой группой лимфоидных клеток иммунной системы являются макрофаги. Они различны по строению, находятся в жидкостях и тканях, фагоцитируют антитела, активируют лимфоциты и участвуют в образовании антител.

Гуморальные компоненты иммунной системы - глобулины плазмы и других жидкостей тела, синтезированные макрофагами лимфоузлов, селезенки, печени, костного мозга и др., дезактивирующие чужеродные антигены. Они содержатся в крови, в меньшем количестве - в органах и тканях, отделенных от крови гистогематическими барьерами - коже, слизистых оболочках, мозге, почках, легких, др. Иммуноглобулины осуществляют местные реакции и являются первым эшелоном защиты организма от антигенов. Специфичность иммунных реакций человека сформировалась в предшествующих поколениях благодаря встречам с определенными антигенами.

Электрофоретически выделенные гамма - глобулины сыворотки крови делят на несколько видов При иммунизации первоначально возрастает содержание Ig, затем IgG, а потом и др. Нормальные, или естественные, антитела человека - это антитела жидкостей и тканей здорового человека .^ - последовательно развертывающаяся многоуровневая реакция антител и иммунных органов на антиген, сопровождающаяся гемодинамическими сдвигами.

Опознание и связывание чужеродных молекул и клеток происходит при контакте их с другой группой молекул. Это взаимодействие в отличие от химической реакции называют иммунным ответом. Иммунная реакция развертывается как микропроцесс образование комплекса молекул (в простейшем случае АГ-АТ), изменение свойств клеточных мембран, приближение особых клеток (макро-и микрофагов)к зоне взаимодействия и т.д. После взаимодействия АГ и АТ может быть 2 варианта: прекращение иммунного ответа в случае полного связывания АГ или усиление ответа в случае сохранения АГ. В последнем варианте усиление иммунной реакции выражается в увеличении кровотока и лимфотока в месте нахождения АГ, усилении продукции АТ и т.д. Это происходит за счет появления химических веществ, опосредующих это усиление иммунной реакции (медиаторов) - факторов хемотаксиса, фагоцитоза, антителогенеза и др. При попадании АГ в жидкости тела в иммунный ответ быстро вовлекаются гуморальные и нервные аппараты регуляции.

Связывание и удаление АГ постоянно восполняется продукцией новых копий АТ взамен выведенных, доставкой их в зоны активности, перераспределением между тканями и органами и т.д. Периферические органы иммунной системы - селезенка и лимфоузлы - являются источниками некоторого количества готовых АТ, а также местами перераспределения АТ вследствие изменения кровотока и лимфотока в отдельных тканях данного региона.

Удаление или переход в неактивное состояние иммунокомпетентных клеток (Т-, В-лимфоцитов, макрофагов, плазматических клеток) является сигналом стимуляции центральных органов иммунитета - костного мозга и тимуса. Эти постоянно протекающие ответы иммунной системы на "привычные" АГ или их количество составляют иммунный фон активности, колеблющийся в зависимости от состояния и биоритмов человека. Встреча с "новым" АГ, поступление повышенного количества "привычных" АГ, изменение состояния организма, в частности, ослабление при утомлении, стрессе, гиповитаминозе, т.д., изменяет иммунный ответ. Иммунный ответ осуществляется по статистическим закономерностям, требует для реализации АГ-АТ реакции определенного соотношения концентраций АГ и АТ (Г.И.Марчук).

В целом иммунный ответ - это поэтапная каскадная реакция готовых АТ и последующее вовлечение периферических и центральных иммунных органов в активность. Иммунный ответ включает также гемодинамические изменения кровотока в области попадания "чужих" АГ. В упрощенном виде иммунный ответ можно представить в виде определенной последовательности развертывающихся процессов.

^ антителом происходит при контакте рецепторов двух структур. Если АГ и АТ совместимы, то они объединяются. Контакт АГ с АТ чаще происходит в жидкостях, поскольку при этом те и другие молекулы получают более высокую вероятность встречи. В особенности в жидкостях перемещающихся ("патрулирование" лейкоцитов, лимфоцитов, макрофагов крови, лимфы). Основным условием узнавания является сходство (совместимость) рецепторных поверхностей АГ и АТ. На поверхности АТ имеется от двух (IgО, IgА, IgЕ) до десяти (Igм) активных центров узнавания АГ. Узнавание возможно как при совпадении одной рецепторной поверхности АТ (одиночное узнавание), так и совпадении двух поверхностей (двойное узнавание).

Для узнавания ("обшаривания" окружающего пространства вместо "оглядывания") нужно много времени и большое количество молекул АТ и АГ. Кроме того, есть возможность группового узнавания и изменения узнавания под влиянием различных веществ. Поэтому скорее всего в естественных условиях существуют и другие механизмы этих процессов. Узнавание инородных частиц фагоцитом облегчается в присутствии компонентов сыворотки крови (опсонины, альбумины, С-реактивный белок).

Первым этапом иммунного ответа является реакция связывания АГ антителом. Организм имеет готовый набор (до 10000 антител у эмбриона по Ф .Барнету) сформированных в предшествующих поколениях нормальных антител - естественный гуморальный иммунитет. "Привычные " АГ, попадая в те или иные жидкости организма, непрерывно связываются естественными АТ.

Связывание осуществляется за счет гидрофобного соединения активных центров АТ и АГ, соответствующих друг другу: специфичность АГ-АТ реакции). После этого структура комплекса АГ-АТ изменяется (конформируется, от лат. соnformis - подобный). Комплекс приобретает способность связывать другие белки, например, комплемент. Поскольку АГ и АТ часто фиксированы на мембранах клеток (микробных, тканевых), то образовавшийся АГ-АТ комплекс "утяжеляет" клетки, меняет их свойства. В результате клетки склеиваются (агглютинируют, от лат. agglutiare - приклеивать), оседают (седиментируют, отлат. sedimentare - оседать, преципитируют, от лат. ргесipitare -сбрасывать). Если же комплекс АГ-АТ образуется из свободных, не фиксированных на мембранах белков, то формируются хлопья (происходит флокулляция, от лат. floculli - клочки, хлопья).

Итак, в результате связывания АГ антителом комплекс АГ-АТ теряет подвижность и либо лишается активности (цитотоксический эффект), либо растворяется (лизируется, от лат. lisis - растворение) с участием других белков.

"Привычные" (для них есть нормальные АТ), а также "новые" АГ подвергаются фагоцитозу (греч. phagos - пожирающий) макрофагами. Первоначально макрофаги образуют псевдоподию - выпячивание протоплазмы в направлении АГ- за счет, активации Са-зависимого фермента гельсолина, подавляющего образование геля из сократительных белков (актин, миозин) цитоплазмы. При сокращении цитоплазматических белков макрофаг постепенно приближается и контактирует с АГ. Имеющиеся на поверхности макрофага специфические (для "привычных" ) и неспецифические (гликопротеидные, полисахароидные для "новых" АГ) рецепторы соединяются с активными центрами АГ, который постепенно погружается в цитоплазму макрофага.

Эти процессы осуществляются с затратой энергии, метаболизм макрофага резко повышается (наблюдается "метаболический или дыхательный взрыв"). Основным источником энергии служит АТФ.

Фагоцитоз приводит к усилению и видоизменению иммуного ответа. Выделение фагоцитирующими клетками различных веществ, осуществляющих передачу иммунологической сигнализации (медиаторов иммунного ответа).

С помощью медиаторов клеточного иммунитета местная реакция генерализуется. За счет хемоатрактантов (лат. attractare - притягивать) к месту попадания АГ начинают приближаться другие макрофаги, в том числе естественные клетки-киллеры аномальных клеток. Усиление кровотока в месте попадания АГ, происходящее а счет выделения гистамина и др. сосудорасширяющих веществ, ведет к поступлению дополнительных количеств АТ и макрофагов. Другие факторы (антителогенеза, стимуляции роста колоний, интерлейкин-3, др.) увеличивают синтез клеток-продуцентов антител.

Особую роль выполняют медиаторы иммунного ответа, стимулирующие образование АТ к "непривычным" АГ. В этом случае иммунный ответ обеспечивает синтез таких АТ, которые соответствуют АГ, а также запоминают иммунный сигнал, поддерживая в течение некоторого времени установившийся тип синтеза АТ.

^ выражается в конечном итоге в увеличении содержания Т- и В-лимфоцитов, несущих рецепторы к АГ и переходящих в покоящееся состояние после 2-3 делений, вызванных АГ.

^ - наработка АТ и последующее связывание АГ с АТ- как реакция на первую встречу с новым АГ. Во внеутробной жизни человека непрерывно происходят реакции готовых антител с АГ - вторичный иммунный ответ.

Характер иммунного ответа зависит от многих факторов: ис­ходной активности иммунной системы, вида АГ, способа поступления в организм, количества и динамики поступления и т.д., состояния организма (возраста, образа жизни, питания, т.д.) и др.

Лучше изучены иммунные ответы на моделях, где контролируются условия введения АГ, его характеристики и т.д., а также состояние объекта воздействия. Так, установлен ряд закономерностей динамики накопления антител после первого и второго введния АГ. Первый пик концентрации АТ появляется через несколько дней (латентный период иммунного ответа) и обусловлен усиленным синтезом главным образом IgМ, После второго введения того же АГ амплитуда ответа больше, он продолжается дольше и обусловлен возрастанием преимущественно синтеза IgG. Для понимания природы происходящей при иммунном ответе динамики АТ следует учитывать различие продолжительности существования их в плазме крови .

Повторные введения АГ помогли установить явленне сенсибилизации (повышения чувствительности к данному АГ, лат.sensibilis-чувствительный) иммунной системы. Сенсибилизация сопровождается активацией образования специфических АТ, которые разносятся с током крови во все ткани и фиксируются на клетках. Поэтому повторное введение данного АГ вызывает усиленную АГ-АТ реакцию, в результате которой высвобождается много биологически активных веществ, (гистамин, серотонин, кинины,т.д.), вызывающих быстрые и сильнее изменения физиологических функций - анафилактический шок.

Найдены способы понижения усиленной чувствительности иммунной системы (десенсибилизация по А.М.Безредка, др.). Многократные воздействия АГ могут извращать иммунный ответ (аллергии, др.). Эти и подобные им "необычные" иммунные ответы относят к патологическим и не рассматриваются здесь, хотя граница между нормой и патологией в большинстве случаев неопределенна. ^ - воздействия на активность иммунных органов, изменяющие иммунные ответы

Изменение иммунных ответов под влиянием психо-эмоционального состояние, питания, степени физической активности, биологических ритмов, привычек, климата и т.д. называют регуляцией иммунитета. Исполнительными механизмами регуляции иммунитета у человека являются автономная нервная система и эндокринные органы. Выявлен относительный антагонизм влияний симпатической и парасимпатической нервной систем, а также катехоламиновых и инсулиноподобных гормонов на иммунитет.

Способность организма сохранять постоянство клеток и тканей меняется в зависимости от психического, эмоционального, биологического состояния, возраста, наследственности, биологических ритмов, питания, климата, поведения. Иначе говоря, иммунитет регулируется в соответствии с индивидуальными особенностями человека.

Общие положения регуляции функций, такие как ведущая роль психики, высшей нервной деятельности, нервных регуляций (нервизм) по отношению к другим (субординационные отношения), общих по сравнению с локальными и др., полностью приложимы к регуляции иммунитета.

У здорового человека активность иммунной системы изменяется так, чтобы обеспечить выживание. Такие изменения иммунитета опосредуются ЦНС, АНС, гуморальными и гормональными влияниями. Факторы, подтверждающие роль психики и ВНД, реализующиеся через активность ЦНС, АНС и периферических нервов, в регуляции состояния иммунитета человека широко известны. Так, установлена связь между типом ВНД человека и особенностями иммунного ответа, а также обратные зависимости - изменения условнорефлекторной деятельности вследствие иммунизации (в особенности при первичном ответе, Д.Ф.Плецитый, др.). В последнее время выявлена возможность образования условнорефлекторных сдвигов показателей иммунитета у человека после сочетания условного сигнала с подкреплением (введение адреналина).

Эмоциональный стресс сопровождается повышением пролиферации естественных клеток-киллеров (ЕКК), повышением активности тимус- зависимых лимфоцитов-хелперов, а невроз-снижением активности этой группы лимфоцитов.

Депрессия сопровождается общим снижением лейкоцитов, Т- хелперов и Т-супрессоров, а также ЕКК. В гипоталамусе выявлены волокна, содержащие интерлейкин -1-1b, опосредующий реакцию структуры мозга на неблагоприятные воздействия (охлаждение, перегревание, перенапряжение и т.д.).

Установлено, что у левшей чаще встречаются аллергические и аутоиммунные заболевания (вследствие наследственных или приобретенных свойств?).

Медиаторами иммунного ответа являются гормоны (глюкокортикоиды, нейропептиды, др.), а также полипептиды клеток иммунной системы. В частности, иммунные реакции модулируются АКТГ, бета- эндорфином, метэнкефалином и др. фрагментами проопиомеланокортина, синтезируемого клетками аденогипофиза). Эти гормоны воздействуют на рецепторы клеток иммунной системы. Например, метэнкефалин стимулирует формирование антителопродуцирующих клеток, рост клеточных колоний в тимусе и селезенке. Однако концентрация бета- эндорфинов в плазме является решающим фактором в появлении конечного эффекта: низкие концентрации ( 1/10.-14 моль) стимулируют, а более высокие подавляют продукцию специфических антигерпетических систем.

Важным фактором регуляции иммунитета является характер и тип питательных веществ. Полиненасыщенные жирные кислоты пищи подавляют активность ЕКК, усиливают синтез простагландина ИГЕ. Наоборот, арахидоновая кислота пищи, подавляя синтез ПГЕ, стимулирует иммунитет. Ограничение белковой пищи вызывает снижение активности Т-хелперов, миграцию макрофагов и их способность образовывать антитела. Состав флоры кишечника в значительной степени определяет состояние иммунитета человека. Например, коринебактерии JК прямой кишки выявляются у людей с выраженным иммунодефицитом (лейкоз, СПИД, др.). Иммунорегуляция липопротеидами низкой плотности, появляющимися в плазме крови после приема пищи, опосредуется через рецепторы иммунокомпетентных клеток.

В значительной степени регуляция иммунитета определяется содержанием серотонина в клетках кишечника (до 90% от общего количества).

Описаны биоритмологические и возрастные изменения иммунитета здорового человека. Так, в утренние часы наблюдается максимум Т- лимфоцитов и минимум В-лимфоцитов (противофазно содержанию 11-оксикортикостеровдов), а фагоцитоз и уровень пропердина наиболее высоки и в дневное и вечернее время, снижаясь ночью и утром. Иммунореактивность имеет сезонные колебания - снижается весной и осенью. С возрастом нарастает число аномальных клеток. Например, спонтанные перестройки хромосом в клетках крови составляют почти 3% у лиц старшей возрастной группы (50-80 лет). С другой стороны, в этом возрасте наблюдается снижение иммунных реакций на инородные клетки-мутанты. Причиной этого является ухудшение иммунного опознания собственных АГ вследствие дефектов клеточных рецепторов, активности макрофагов, т.д. Кроме того, в указанном возрасте отмечается снижение содержания лимфоцитов (1.5.109/л в 50 лет сравнительно с 2.0.109/лв20лет). Наконец, у лиц старшей возрастной группы усиливается аутоиммунные. реакции вследствие накопления тканевых комплексов АГ-АТ(например,к гемоглобулину), нарушения соотношения иммуноглобулинов (преобладание продукции IgМ и снижение продукции IgО и IgА), др.

Беременность сопровождается повышением содержания комплемента Сз, особенно в 1ом и Зм триместрах, усилением фагоцитарной и бактерицидной активности лейкоцитов. На ранних сроках беременности иммунитет специфически подавляется, что предотвращает отторжение зародышевых клеток, несущих признаки чужеродности.

Таким образом, активность иммунных органов, связанных со всеми системами организма -кровообращением, кровью, дыханием, метаболизмом, т.д. - меняется не только под влиянием факторов, исходящих из иммунных органов, но и многих других. Последние могут нетолько способствовать, но и препятствовать осуществлению нормальных саморегуляторных влияний иммунной системы, как стабилизировать, так и ухудшать иммунные ответы.

^ - динамическое взаимодействие органов, тканей и неклеточных структур, поддерживающее постоянство клеток организма благодаря саморегуляции .

Возможным механизмом поддержания иммунологической "чистоты" индивидуальной внутренней среды человека является иерархически построенная особая функциональная система. Предположительными уровнями ее функционирования являются местный, органный(региональный) и уровень всего организма.

Описанные в предыдущем параграфе частные проявления влияний различных факторов на иммунные органы и их производные-антитела - можно представить в общем виде как функциональную систему, компоненты которой взаимодействуют так, что сохраняется определенное количество каждого вида клеток и их признаки (отсутствие аномальных клеток).

Это осуществляется за счет саморегуляции: увеличение числа тех или иных клеток вызывает возрастание специфических цитотоксических подавляющих влияний, и наоборот, снижение количества определенных клеток вызывает усиление цитогенетических. влияний.

Саморегуляция клеточного состава тела инерционна. Это обусловлено тем, что жизненный цикл большинства эукариотов тела человека длится десятки часов и суток. Переход из одного состояния иммунной активности в другую завершается благодаря гуморальным влияниям - столь же медленным и инерционным. Также медленно происходит приобретение иммунной компетенции клетками, перераспределение их между иммунными и остальными органами, выход клеток и компонентов плазмы в ткань через гистогематические барьеры и т.д. Можно предполагать, что в естественных условиях периоды колебаний тех или иных клеточных популяций происходят в течение часов и суток. В этих условиях важное регуляторное значение приобретает кумулятивный эффект (накопление воздействий) регуляции.

Полезным приспособительным результатом, или системообразующим фактором данной функциональной системы является поддержание характерного для конкретной окружающей среды, определенного возраста, пола, сезона и вида деятельности (поведения, питания и образа жизни) уровня активности клеточных клонов (греч.klonos-движение, т.е. образовавшихся из одной клетки группы клеток). Это означает сохранение состояния неустойчивого равновесия: должную степень активности АТ клеток, тканей и жидкостей организма, препятствующей с одной стороны образованию достаточного для развития опухолей количества аномальных клеток, а с другой - развитию микробной флоры.

Таким образом, полезный приспособительный результат функциональной системы поддержания постоянства клеточного состава тканей и жидкостей организма состоит из антисептических и антионкотических компонентов.

Афферентная часть функциональной системы, воспринимающая отклонения клеточного состава той или иной ткани от "нормального" состояния и передающая сигналы другим клеткам и органам, представлена в основном гуморальными сигналами. Это преимущественно специальные, не полностью до настоящего времени идентифицированные компоненты внутренней среды .

В большинстве случаев избирательность влияния этих гуморальных сигнализаций зависит от наличия специальных рецепторов клеточных мембран, с которыми связываются переносимые жидкостью-кровью, лимфой, межклеточной, спинномозговой, внутрисуставной, плевральной и др. жидкостями - вещества. Хотя установлены влияния медиаторов клеточного иммунитета и на ЦНС, однако нервная система играет роль аппарата регуляции более высокого порядка сравнительного с гуморальным периферическим. Поэтому афферентная сигнализация в ЦНС имеет качественно иной характер: вероятно эта импульсация сигнализирует о состоянии исполнительных органов- желез внутренней секреции и функционировании жизненно важных тканей.

Эффекторными (исполнительными) аппаратами функциональной системы поддержания постоянства клеток организма являются как специфические структуры и вещества - АТ, фиксированные на мембранах клеток и свободные, а также лимфоциты, макрофаги, специфические факторы активации связывания АГ и др., так и неспецифические - расширение капилляров, увеличение проницаемости их .стенок и т.д. под влиянием биологически активных веществ, поступающих из разрушенных клеток (базофилов, эозинофилов, др.). В конечном счете эффекторные аппараты иммунитета осуществляют постепенно развертывающуюся защитную иммунную реакцию. Она зависит от соотношения свойств и количества АГ с одной стороны и исходного состояния иммунитета с другой.

Основные принципы работы эффекторных аппаратов сводятся .к следующему:

1.Образование и поступление АТ в определенную область тела пропорционально количеству и виду АГ.

2.. Характер и тип иммунного ответа (локальный, региональный, генерализованный, быстрый, медленный) зависят от способа и темпа поступления АГ, его вида, а также состояния иммунной системы.

Аппаратами интеграции афферентных нейрогуморальных и эффекторных влияний являются морфологические структуры, в которых происходит объединение, взаимодействие большого числа факторов. Наиболее возможными аппаратами интеграции могут быть либо мозговые структуры с их громадным числом (1014) взаимодействующих элементов, либо образования с обильным кровотоком, позволяющим всем компонентам крови легко контактировать с их стенками или их содержимым.

Аппаратами интеграции иммунной системы являются главным образом центральные и периферические органы иммунной системы. Циркулирующие вместе с жидкостями иммуноактивные агенты воздействуют на органы иммунной системы, обеспечивая усиление синтеза АТ, активацию деления клеток, миграцию их из центральных иммунных органов в периферические или в определенные области организма и др. ЗАКЛЮЧЕНИЕ

Мы рассмотрели сложную и индивидуально целесообразно устроенную систему защитных реакций организма. Одной из важнейших проблем современной биологии является вопрос о том, как и из чего она могла возникнуть в процессе эволюции. Подходы к этой проблеме лишь только намечаются.

Ясно, что защиту организма от внешней и внутренней биологической агрессии иммунная система обеспечивает путем двух основных механизмов - распознавания и разрушения чужеродных молекул и клеток. Это достигается благодаря слаженной работе иммуноцитов различного функционального предназначения. Основным молекулярным инструментом для реализации иммунного ответа служат антитела и поверхностные рецепторы. Причем те и другие могут выполнять как функцию распознавания, так и функцию разрушения чужеродных тел. Межклеточная связь между иммуноцитами выполняют интерлейкины, интерфероны и другие медиаторы. Нарушение этих механизмов приводит к различным формам иммунопатологии, опасной для здоровья и жизниСписок литературы1.Ю.В. Урываев. Физиологические основы гомеостаза.

Москва, 1995.

  1. Г.В. Гущин, Е.Э. Яковлева. Нейрогуморальная регуляция иммунного гомеостаза. Ленинград: Наука, 1986.
  2. Е.А. Зотиков. Антигенная система человека и гомеостаз
Москва: Медицина, 1982. Интернет сайты:

www.students.ru

Скачать файл (141 kb.)

gendocs.ru

Рефераты, доклады, презентации тема Иммунитет - 27 Января 2016

Рефераты, доклады, презентации тема Иммунитет

Под иммунитетом понимают  сопротивление  организма к инфекциям и чужеродным агентам. Иммунитет обеспечивают защитные свойства кожи и слизистых оболочек, а так же  клетки иммунной системы, гуморальные факторы, интерфероны и др. Выделяют врожденный и приобретенный иммунитет, неспособность к заражению  эпидемической или эндемической болезнью. Иммунитет различается как врожденный, т.е. с рождения ребенка при передаче иммунной невоприимччивости от матери генотипом или приобретенным из за  однократного перенесения болезни или введения предохранительной прививки.

Иммунитет -  надежная защита организма.

Ежедневно, ежеминутно в любом организме на страже здоровья человека стоит целая армия клеток и механизмов, которая способна отразить любую инфекционную агрессию. Есть и милиция, готовая в случае необходимости подавить внутреннюю агрессию. И все это делает иммунная система. Для того что бы обеспечить  внутреннюю безопасность, специальные клетки  "курсируют" по организму, и проверяют у каждого "молекулярный паспорт". Потому что, к нам в  организм ежеминутно с пищей и воздухом, через микротрещины на кож не  проникают разнообразные микроорганизмы. Но наша  иммунная система стоит на страже и ей быстро удается их узнать, локализовать и уничтожить инфекционного агента, при чем в большинстве случаев мы этого даже не замечаем. Но когда атака извне случается слишком массированной а враг оказался очень сильным, объявляется всеобщая мобилизация, и тогда в очаг воспаления несутся несметные полчища клеток-воинов. что б защитить ту среду котрая их взрастила, наш общий организм.

Иногда в нашем организме вместо внешних врагов появляются  внутренние "смутьяны". Потому как все органы и ткани все время обновляются происходят различные изменения в составе тканей и органов.  Для этого клеткам, составляющим специальный клеточный "резерв", приходится постоянно делиться. Именно в процессе таких делений  в их генетическом аппарате делящихся клеток происходит  перестройка структуры клетки, что и улавливают клетки - полицейские. Они как бы не узнают своих же.   Иммунитет. И вот при выполнении таких делений  возможны сбои. На 10 000  делений может приходится один сбой. Неблагоприятные условия окружающей среды могут повышать частоту ошибок. Из за этих ошибок клетка могут погибать, или перерождаться в клетку  злокачественную, что может послужить причиной рака . И вот тут то Иммунитет нормального  человека при очередной "проверке документов" отреагирует , и раковая клетка будет  уничтожена. Однако, если у "клеток -полицейских" нарушены функции защиты, то вероятность  развития злокачественного опухоли очень велика.

Случается и так, что "клетки полиции" не могут различить кто прав , а кто не прав и тогда репрессиям подвергаются все нормальные клетки. Этот процесс называется - "аутоиммунная патология". К этим аутоиммунным болезням относятся такие заболевания как  ревматоидный артрит - заболевания суставов , системную красную волчанку- тоже ревматологическое заболевания поражающее кожу, почки, суставы, сердце, а также некоторые нервные и гематологические заболевания. Иногда, сражаясь с несколькими видами инфекции или с одной в разных местах, наша иммунная система не успевает своевременно произвести "демобилизацию". Тогда очаг воспаления не рассасывается и в нем продолжают накапливаться "солдаты" и "вооружение". Незначительная “провокация"— и оружие начинает стрелять. Так, в частности, развиваются приступы бронхиальной астмы.

Восстановление иммунитета

Для того что бы привести иммунитет в норму, необходимо комплексное воздействий, которое мы называем иммунокоррекцией. Для этого мы должны определить, какое звено иммунной системы дало первоначальный сбой, выявить его на основании данных нашей современной лабораторной диагностики для квалифицированного специалиста ЛДЦ "Промедицина" бывает не так уж трудно. Ведь тонкие механизмы системы иммунитета можно отследить только на очень чувствительной аппаратуре, которой мы владеем.  Иммунитет. Хороший иммунолог  назначит анализы, для того что б поставить правильный диагноз которые помогут интерпретировать их результаты а так же помогут выбрать схему иммунокоррекции . Помните, что нормально функционирующая иммунная система готова мгновенно отразить любое посягательство на целостность вашего организма. Позаботьтесь о своем иммунитете, и вам будет обеспечена надежная защита.

Список литературы

Для подготовки данной работы были использованы материалы с сайта http://urolocus.ru/

 

Реферат на тему: «Иммунитет. иммунная система организма».

 

Введение.

1.Иммунитет.

2.Антигены.

3.Органы иммунной системы.

4.Клеточные и гуморальные показатели иммунитета.

5.Иммунный ответ.

6.Регуляция иммунитета.

7.Функциональная система поддержания постоянства клеток организма.

Введение.

Внешние и внутренние факторы меняют клеточные циклы здорового человека. В результате образуются аномальные (чужеродные, или синтезированные не так, как свои собственные) молекулы и клетки. Специальные клетки крови и других тканей продуцируют и поддерживают достаточную концентрацию фиксированных на клетках и свободных молекул, которые распознают, связывают (преобразуют) и выводят из организма аномальные молекулы и клетки.

Перераспределение частиц и клеток, «иммунного надзора» во все ткани организма происходит через крово- и лимфоток, а также транспорт через гистогематические барьеры.

Иммунитет (от лат. immunis) дословно означает свободный от чего- либо. Организм здорового человека непрерывно освобождается от веществ и структур, в том числе болезнетворных, как попадающих в него извне, так и образующихся внутри организма.

Источниками внешних (экзогенных) веществ и структур являются компоненты пищи, химические примеси воздуха и капельки жидкости, микроорганизмы, попадающие на кожу, в легкие, желудочно-кишечный тракт. Эндогенными (возникающими в самом организме) веществами, нарушающими постоянство внутренней среды и выводимыми с помощью иммунных механизмов, являются аномальные (мутантные) клетки и их компоненты, появившиеся при делении клеток, внутриклеточном синтезе веществ, метаболиты (шлаки) и др.

Тело человека состоит примерно из 1012-1013генотипически похожих клеток. Если принять, что при делении клеток каждая миллионная клетка подвергается мутации, то в любой момент в организме человека есть примерно 10 млн. аномальных клеток, которые могут стать источником смертельных опухолей.

Различают специфическую защиту, или иммунитет, и неспецифическую резистентность организма. Последняя в отличие от иммунитета направлена на уничтожение любого чужеродного агента. К неспецифической резистентности относятся фагоцитоз и пиноцитоз, система комплемента, естественная цитотоксичность, действие интерферонов, лизоцима, -лизинов и других гуморальных факторов защиты.

1.Иммунитет.

Благодаря иммунитету организм опознает, связывает, разрушает и выводит вещества и структуры. Вещества, отличающиеся по происхождению от собственных структур, называют чужеродными.

Иммунитет — способность специальных клеток жидкостей организма опознавать, связывать и удалять (выводить) вещества и структуры, происходящие из клеток других организмов или потерявших сходство с клетками собственного тела.

Иммунитет поддерживает жизнедеятельность организма путем выведения изношенных клеток, белков (гемоглобин, др.), шлаков, возобновления специфических для организма белков, клеток, в том числе клеток крови определенной группы, сохранения чужеродного плода во время беременности, и др. Поэтому понятие иммунитет шире способности защищаться от инфекции. Хотя значение инфекции очевидно: около 50% здоровых людей является носителями болезнетворных микроорганизмов (Лебедев К.К., др., 1989).

Таким образом, иммунитет поддерживает определенные (молекулярные) показатели гомеостаза и, значит, здоровья человека: динамическое равновесие количества удаляемых и восстанавливаемых клеток, тканей и жидкостей тела.

Одним из механизмов гомеостаза является поддержание иммунитета — определенного уровня активности клеток (лимфоцитов, лейкоцитов, эпителиоцитов, др.), синтезирующих и выделяющих естественные антитела (глобулины и др.) в кровь и другие жидкости тела. Сохранение постоянства клеток и их производных есть результат деятельности иммунной системы.

Воздействие формирует систему ответа на него. Непрерывность антигенных воздействий на организм поддерживает иммунитет здорового человека. Помещенный в стерильные условия (стерильная пища, вода, окружающая среда) организм (гнотобионт, греч. gnotos- известный, biontos — живой организм) теряет иммунитет.

Раздражителями для органов иммунной системы являются антигены — сложные химические вещества, микроорганизмы, появляющиеся в результате деления аномальные клетки или их компоненты.

Эти антигенные воздействия вызывают ответы «органов» иммунной системы — костного мозга, тимуса, селезенки, пейеровых бляшек стенки кишечника, лимфоузлов, лимфатических сосудов и др. Степень активности органов иммунной системы, вызванная воздействием внутренних и внешних антигенов, описывается как состояние — иммунный статус человека, или иммунитет.

Человек остается здоровым до тех пор, пока не нарушается динамическое равновесие между антигенным воздействием и активностью иммунной системы. Поэтому иммунная система — понятие не столько морфологическое, сколько функциональное..

2. Антигены — это макромолекулярные соединения с жесткой структурой, вызывающие иммунный ответ организма

Макромолекулы, отличающиеся по происхождению и строению от основной массы меток организма и вызывающие иммунный ответ, называют антигенами (АГ). АГ поступают извне (пищевые, микробные, бытовые) или образуются внутри (эндогенные) организма. Антигенность вещества относительна: она зависит от способности клеток и находящихся в жидкостях тела веществ распознавать АГ..

Иммунная система реагирует на химические вещества различно: легче связывает такие, к которым имеет специальные молекулы- рецепторы. Такие вещества называют антигенами. Другие вещества реагируют с иммунными соединениями и могут разрушать их.

Значит, антигены (греч, ага -против, gennao- создавать) — это воспринимаемые иммунной системой химические раздражители (адекватные), вызывающие иммунные реакции.

По химическому строению антигены разнообразны. Большинство из них представляет собой макромолекулярные (масса молекулы 10 тыс. и более) соединения достаточной жесткости. Антигенами могут быть белки, пептиды, полисахариды, нуклеиновые кислоты, комплексные соединения и др.

Антигенность, т.е. способность вызывать иммунный ответ, приобретается в ходе внутриутробного или внеутробного развития, имеет свойство иммунной избирательности. Фиксированный на плазматической мембране клеток набор антигенов образует главный комплекс гистосовместимости (ГКО).

Аномальные клетки имеют на своих мембранах образованные с участием вируса антигены Т (англ.tumor — опухоль). Узнавание Т- антигенов таких клеток рецепторами (антителами) цитотоксических Т-лимфоцитов (Тц- тимус-зависимые цитотоксические лимфоциты) и связывание тех и других клеток приводит к разрушению и выведению из организма аномальных клеток.

3.Органы иммунной системы — анатомические образования, участвующие в формировании иммунной готовности организма нейтрализовать чужеродные структуры и вещества.

Костный мозг, тимус, селезенка, лимфоузлы, пейеровы бляшки кишечника, миндалины и червеобразный отросток являются образованиями, в которых непрерывно образуются и созревают клетки, способные осуществлять «иммунный надзор» в человеческом теле. Эти иммунные органы и ткани непрерывно обмениваются между собой метками и молекулами, создавая достаточный уровень антител в каждой ткани. Активность органов иммунной системы регулируется автономной нервной системой и гуморальными веществами.

Постоянное воздействие антигенов поддерживает активность органов иммунной системы — костного мозга, тимуса, пейеровых бляшек кишечника, миндалин, селезенки, лимфоузлов. . Клетки этих органов синтезируют антитела к соответствующим антигенам и населяют ими жидкости тела — кровь, слизь, пот, секреты.

Костный мозг — центральный (первичный) орган кроветворной ткани, называемой миелоидной (греч. mielos — мозг, оidеоs — похожий).

Подобно другим клеткам организма, клетки крови — эритроциты, лейкоциты и тромбоциты — становятся зрелыми после приобретения иммунологических рецепторовмбранах, характеризующих сходство (происхождение) клетки с другими аналогичными клетками. Иммунологическую компетентность клетки крови приобретают либо в костном мозге (эритроциты), либо в других иммунных органах (в лимфатической ткани миндалин глотки и пейеровых бляшек кишечника «созревают» В-лимфоциты с большим, в 100-200 раз превосходящим таковое у Т -лимфоцитов, количеством микроворсин на поверхности, в тимусе — Т-лимфоциты).

Кровоток в костном мозге уменьшается почти в 2 раза при стрессе и возрастает до 8-ми кратных объемов при успокоении.

Вилочковая железа (thymus, зобная железа) — центральный орган другой разновидности кроветворной ткани — лимфоидной. Железа располагается за грудиной в верхнем средостении и покрыта соединительнотканной капсулой.

После наступления половой зрелости соответствует периодам активного участия тимуса в формировании иммунитета.

Лимфоидная ткань тимуса представлена эпителиальными, фиксированными на мембранах кровеносных соcудов, контактирующими между собой клетками и большим количеством лимфоцитов различной формы.

Тимус выполняет роль эндокринной железы (его эпителиальные клетки выделяют в кровь тимозин) и иммунопродуцирующего органа, осуществляющего образование Т-лимфоцитов (тимус-зависимых).

Созревание Т-лимфоцитов в тимусе осуществляется за счет деления лимфоцитов, имеющих рецепторы к тем чужеродным антигенам с которыми организм встречался в детстве. Образование Т-лимфоцитов происходит независимо от содержания антигенов и количества Т- лимфоцитов в крови (вследствие непроницаемости гистогематического барьера тимуса) и определяется генетическими механизмами и возрастом.

Стрессорные воздействия (психоэмоциональное напряжение, тепло, холод, голодание, кровопотеря, сильная физическая нагрузка) подавляют образование Т-лимфоцитов. .

Селезенка (lien) — паренхиматозный вторичный лимфоидный орган массой 140-200 г, расположенный в левом подреберье и покрытый соединительнотканной оболочкой и брюшиной. Иннервируется селезенка блуждающим и чревным (смешанным симпатическим) нервами. Вторичным лимфоидным органом селезенка названа потому, что основная часть делящихся в ее строме клеток поступает из костного мозга.

Лимфоузлы (nodi lymphatici) — мелкие (диаметром 0,5-1 см), сильно меняющиеся по величине периферические органы иммунной системы. У взрослого человека имеется около 460 лимфоузлов, общая масса которых составляет примерно 1% веса тела. Лимфоузлы важнейших областей тела имеют иннервацию.

Лимфоузел построен так, чтобы создать большую поверхность обмена лимфы и протекающей через капилляры лимфоузла крови. Лимфоузел является местом иммунизации лимфоцитов и образования антител, фильтром мелких частиц и чужеродных клеток.

Лимфоузлы каждой области человеческого тела имеют собственный набор антител, поскольку поступающие с лимфой антитела каждой области специфичны.

Пейеровы бляшки — лимфоидная ткань стенки тонкого кишечника, где образуются В- лимфоциты.

Миндалины (tonsilae) скопления лимфоидной ткани в слизистой оболочке рта, носа и глотки. Миндалины построены так, что их складчатая поверхность слизистого эпителия задерживает попадающие в начальные отделы дыхательных и пищеварительных путей мелкие частицы и микроорганизмы, связывает их и лизирует с помощью внутриклеточных ферментов. Лимфоидная ткань миндалин аналогична таковой лимфоузла. Лимфатических сосудов в миндалинах нет.

Червеобразный отросток (арреndiх) также относят к периферическим иммунным органам («кишечная миндалина»). Объем лимфоидной ткани отростка сильно меняется под влиянием изменений деятельности начального отдела толстого кишечника (образование твердого кала, изменение перистальтики, др.). Изменения лимфоидной ткани червеобразного отростка чаще наблюдаются у лиц мужского пола.

4.Клеточные и гуморальные показатели

Клеточными компонентами иммунитета являются прежде всего лимфоциты, циркулирующие с током крови по всем органам и выполняющие главную роль «иммунного надзора» (патрулирования).

Лимфоциты, т.е. такие лейкоциты, у которых в цитоплазме нет гранул пероксидаз (ферментов, катализирующих окислительно- восстановительные реакции с участием перекисей), обладают способностью отличать в организме «чужие», т.е. необычного происхождения, крупные молекулы благодаря имеющимся на их мембранах рецепторам-антителам. Лимфоциты синтезируют антитела, лизируют чужеродные клетки, в том числе обеспечивают отторжение трансплантанта, иммунную память (способность отвечать усиленной реакцией на повторную встречу с антигеном) и др.

По месту созревания, составу органелл, размерам, рецепторам и функциям различают 3 основные группы лимфоцитов: 0-, В- и Т- лимфоциты.

0-лимфоциты — это некоммитированные клетки, образовавшиеся в костном мозге из стволовых клеток. Попадающие с током крови в тимус предшественники лимфоцитов за счет изменения антигенных свойств мембран становятся линейно-ограниченнными, т.е. способными при делении образовывать только Т-лимфоциты. Вероятно, что В-лимфоциты приобретают иные свойства в том числе антигенные при попадании в пейеровы бляшки кишечника.

Т- лимфоциты выполняют разные функции. Образуют плазматические клетки, блокируют чрезмерные реакции, поддерживая постоянство разных форм лейкоцитов, выделяя лимфокины, активируя лизосомальные ферменты и ферменты макрофагов, разрушают антигены.

В-лимфоциты обеспечивают гуморальный иммунитет путем выработки антител. При встрече с антигеном они мигрируют в костный мозг, селезенку, лимфатические узлы, где делятся и трансформируются в плазматические клетки. Последние и являются продуцентами антител — иммуноглобулинов.

Другой группой лимфоидных клеток иммунной системы являются макрофаги. Они различны по строению, находятся в жидкостях и тканях, фагоцитируют антитела, активируют лимфоциты и участвуют в образовании антител.

5.Иммунный ответ — последовательно развертывающаяся многоуровневая реакция антител и иммунных органов на антиген, сопровождающаяся гемодинамическими сдвигами.

Опознание и связывание чужеродных молекул и клеток происходит при контакте их с другой группой молекул. Это взаимодействие в отличие от химической реакции называют иммунным ответом.

Удаление или переход в неактивное состояние иммунокомпетентных клеток (Т-, В-лимфоцитов, макрофагов, плазматических клеток) является сигналом стимуляции центральных органов иммунитета — костного мозга и тимуса.

В целом иммунный ответ — это поэтапная каскадная реакция готовых АТ и последующее вовлечение периферических и центральных иммунных органов в активность. Иммунный ответ включает также гемодинамические изменения кровотока в области попадания «чужих» АГ. В упрощенном виде иммунный ответ можно представить в виде определенной последовательности развертывающихся процессов.

Узнавание антигена антителом происходит при контакте рецепторов двух структур. Если АГ и АТ совместимы, то они объединяются. Контакт АГ с АТ чаще происходит в жидкостях, поскольку при этом те и другие молекулы получают более высокую вероятность встречи.. Основным условием узнавания является сходство (совместимость) рецепторных поверхностей АГ и АТ.

Для узнавания («обшаривания» окружающего пространства вместо «оглядывания») нужно много времени и большое количество молекул АТ и АГ. Кроме того, есть возможность группового узнавания и изменения узнавания под влиянием различных веществ. Поэтому скорее всего в естественных условиях существуют и другие механизмы этих процессов. Узнавание инородных частиц фагоцитом облегчается в присутствии компонентов сыворотки крови (опсонины, альбумины, С-реактивный белок).

Первым этапом иммунного ответа является реакция связывания АГ антителом. Организм имеет готовый набор сформированных в предшествующих поколениях нормальных антител — естественный гуморальный иммунитет. «Привычные » АГ, попадая в те или иные жидкости организма, непрерывно связываются естественными АТ.

Связывание осуществляется за счет гидрофобного соединения активных центров АТ и АГ, соответствующих друг другу: специфичность АГ-АТ реакции).

Эти процессы осуществляются с затратой энергии, метаболизм макрофага резко повышается (наблюдается «метаболический или дыхательный взрыв»). Основным источником энергии служит АТФ.

Фагоцитоз приводит к усилению и видоизменению иммуного ответа. Выделение фагоцитирующими клетками различных веществ, осуществляющих передачу иммунологической сигнализации (медиаторов иммунного ответа).

Иммунологическая память выражается в конечном итоге в увеличении содержания Т- и В-лимфоцитов, несущих рецепторы к АГ и переходящих в покоящееся состояние после 2-3 делений, вызванных АГ.

Первичный иммунный ответ - наработка АТ и последующее связывание АГ с АТ- как реакция на первую встречу с новым АГ. Во внеутробной жизни человека непрерывно происходят реакции готовых антител с АГ — вторичный иммунный ответ.

ЗАКЛЮЧЕНИЕ

    Мы рассмотрели сложную и индивидуально целесообразно устроенную систему защитных реакций организма. Одной из важнейших проблем современной биологии является вопрос о том, как и из чего она могла возникнуть в процессе эволюции. Подходы к этой проблеме лишь только намечаются.

Ясно, что защиту организма от внешней и внутренней биологической агрессии иммунная система обеспечивает путем двух основных механизмов — распознавания и разрушения чужеродных молекул и клеток. Это достигается благодаря слаженной работе иммуноцитов различного функционального предназначения. Основным молекулярным инструментом для реализации иммунного ответа служат антитела и поверхностные рецепторы. Причем те и другие могут выполнять как функцию распознавания, так и функцию разрушения чужеродных тел. Межклеточная связь между иммуноцитами выполняют интерлейкины, интерфероны и другие медиаторы. Нарушение этих механизмов приводит к различным формам иммунопатологии, опасной для здоровья и жизни

Список литературы

 

Ю.В. Урываев. Физиологические основы гомеостаза. Москва, 1995.

Г.В. Гущин, Е.Э. Яковлева. Нейрогуморальная регуляция иммунного гомеостаза. Ленинград: Наука, 1986.

Е.А. Зотиков. Антигенная система человека и гомеостаз. Москва: Медицина, 1982.

 

 

Иммунитет

Реферат

по основам физиологии на тему:

Иммунитет

План

 

Понятие иммунитета

Защитные механизмы организма

Органы иммунитета

Т- и В-лимфоциты

Иммунологические заболевания (аллергия, СПИД)

Использованная литература

Понятие иммунитета

Основоположником учения об иммунитете является Э. Дженнер, который в конце XVIII века опытным путем нашел способ предупреждения заболеваний натуральной оспой. И.И. Мечников сформулировал клеточную теорию иммунитета и открыл защитную роль фагоцитоза. С середины 20-х годов началось самостоятельное развитие иммунологии- науки, изучающей защитные реакции организма.

Под иммунитетом понимается способность организма распознавать появление в организме чужеродных веществ или клеток и мобилизовывать клетки и образуемые ими вещества на эффективное их удаление с целью сохранения своей жизнеспособности.

Наш организм наделен врожденным и приобретенным иммунитетом. В основе врожденного иммунитета лежат неспецифические защитные механизмы. Это - барьерная функция крови и слизистых оболочек, бактерицидное действие молочной кислоты и жирных кислот в выделениях потовых и сальных желез, бактерицидные свойства желудочного и кишечного содержимого. Важную роль играет лизоцим, который разрушает оболочки бактериальных клеток и присутствует в слезной железе. К неспецифическим реакциям врожденного типа относится взаимодействие факторов сыворотки крови с поверхностью чужеродных частиц (микроорганизмов), что облегчает их захват фагоцитами. Фагоцитоз- главный механизм защиты против инфекций у беспозвоночных и центральный механизм неспецифического иммунитета у позвоночных.

К естественно приобретенному иммунитету относится невосприимчивость к болезням после перенесенного заболевания. Приобретенный активный иммунитет можно образовать путем введения вакцин – ослабленных или убитых возбудителей инфекционных заболеваний или введением ослабленных токсинов, вырабатываемых микроорганизмами. В ответ на введение вещества организм приобретает иммунитет. Это – искусственный активный иммунитет. Если же в организм человека вводится сыворотка, в которой находятся готовые антитела к возбудителю заболевания, то такой приобретенный иммунитет называется пассивным.

Защитные механизмы организма

В организме существуют три взаимодополняющие системы, которые обеспечивают защиту от болезнетворных агентов.

Неспецифические клеточные системы. К ним относятся лейкоциты и макрофаги, способные осуществлять фагоцитоз и благодаря этому уничтожающие болезнетворные агенты и комплексы антиген-антитело. Тканевые макрофаги играют существенную роль в распознавании инородных частиц специфической иммунной системой.

Неспецифические гуморальные системы. К ним относится система комплемента и другие белки плазмы, способные разрушать комплексы антиген-антитело, уничтожать инородные частицы и активировать клетки организма, участвующие в воспалительных реакциях.

Специфическая иммунная система. Она отвечает на внедрение чужеродных клеток, частиц или молекул (антигенов) образованием специфических защитных веществ, локализованных внутри клеток или на их поверхности (специфический клеточный иммунитет), либо растворенных в плазме (антитела) (специфический гуморальный иммунитет).

Неспецифические клеточные защитные механизмы. В их основе лежит способность лейкоцитов к фагоцитозу, наиболее выраженная у моноцитов и нейтрофилов. В этих клетках есть ферменты, с помощью которых они расщепляют микроорганизмы, остатки клеток, комплексы антиген-антитело. Нейтрофилы устремляются к очагу воспаления. Происходит фагоцитоз.

Моноциты крови и тканевые макрофаги играют важную роль в первичном распознавании антигенов. На клеточных мембранах макрофагов располагаются рецепторы, с которыми соединяются иммуноглобулины, делая макрофаги способными связывать антигены. Последние расщепляются на более мелкие фрагменты, доступные для действия лимфоцитов. Кроме того, макрофаги выделяют монокины – вещества, стимулирующие рост лимфоцитов.

Неспецифические гуморальные защитные механизмы. Реакции антиген-антитело происходят с участием особой группы нескольких белков, называемых комплементом. Некоторые из этих белков вырабатываются клетками печени – гепатоцитами, другие – клетками эпителия кишечника или макрофагами. Они присутствуют в крови в виде неактивных проферментов. Начальную активацию системы комплемента вызывают комплексы антиген-антитело и бактериальные агенты. В случае инфекции скорость их образования существенно возрастает в течение нескольких дней.

Лизоцим. Во многих тканях и жидких средах организма присутствует лизоцим – белок, подавляющий рост и размножение бактерий и вирусов. В больших концентрациях он найден в гранулах лейкоцитов и макрофагах легочной ткани. Он содержится также в слизистой оболочке желудочно-кишечного тракта, носоглотке и в слезной железе. Он сдерживает в этих средах рост обитающих здесь сапрофитных микроорганизмов, т.е. бактерий, питающихся органическими веществами.

С-реактивный белок. При бактериальных инфекциях его количество в плазме крови повышается. Он может активировать систему комплемента и способствовать фагоцитозу бактерий.

Интерферон. Это группа видоспецифических гликопротеидов, обладающих антивирусным действием. Они тормозят размножение вирусов, подавляя синтез вирусных белков, и повышают активность макрофагов.

Специфические иммунные системы. Специфический иммунитет формируется (приобретенный иммунитет) лишь после начального взаимодействия с чужеродными факторами. В специфическом клеточном иммунитете важнейшая роль принадлежит Т-лимфоцитам, а в специфическом гуморальном иммунитете - В-лимфоцитам.

Органы иммунитета

К органам иммунитета относится комплекс взаимосвязанных органов: вилочковая железа (тимус), костный мозг, лимфатические узлы, лимфоидная ткань селезенки, кишечника, соединительная ткань, а также система кровеносных и лимфатических сосудов. Функциональное значение этого лимфо-миелоидного комплекса - обеспечение кроветворения, т.е. размножение, развитие и созревание клеток крови в организме человека в результате последовательных изменений. Это многостадийный процесс специализации клеток.

В миелоидной ткани костного мозга образуются эритроциты, гранулоциты, тромбоциты. Формирование клеток иммунной системы происходит в лимфоидной ткани. Т-лимфоциты образуются в вилочковой железе, В-лимфоциты – в красном костном мозге. Лимфоциты также образуются в селезенке, лимфатических узлах, лимфоидных фолликулах, по ходу пищеварительного и дыхательного трактов.

Вилочковая железа (тимус) - центральный орган иммунной системы. Она расположена в верхней части грудной клетки за грудиной. Этот орган состоит из двух больших долей, каждая из которых включает в себя более мелкие дольки. Каждая долька состоит из коркового и мозгового вещества. В корковом веществе происходит образование Т-лимфоцитов, которые затем мигрируют в мозговое вещество, а потом переносятся в периферические лимфоидные органы – лимфатические узлы, селезенку.

Костный мозг заполняет полости костей у позвоночных. Различают красный костный мозг, в котором преобладает миелоидная ткань. Она является основным органом кроветворения и сохраняется в течение жизни в ребрах, грудине, в костях черепа, таза, позвонках. С возрастом красный костный мозг заменяется желтым. В состав красного мозга входят стволовые кроветворные клетки, а основу его составляет ретикулярная ткань.

Лимфатический узел представляет собой образование, расположенное обычно в месте слияния крупных лимфатических сосудов. Лимфоидная ткань делится на корковый и мозговой слои. В корковом слое находятся фолликулы, в части которых образуются зародышевые центры, образующиеся в ответ на проникновение в орган антигена.

Селезенка расположена в брюшной полости. Этот орган выполняет функцию кроветворения, участвуя в защитных реакциях организма. Селезенка является депо крови. Она относится к периферическим органам иммунной системы. Снаружи она покрыта соединительной тканью, а внутри делится перегородками. В теле селезенки различают белую (место локализации лимфоцитов) и красную (состоит из ретикуло - капиллярных петель, пространство между которыми заполнено кровью, где преобладают эритроциты) пульпу. Белая пульпа заполнена Т - и В-лимфоцитами, проникающими сюда из центральных органов иммунной системы. Лимфоидная ткань селезенки участвует в лимфоидных реакциях гуморального типа.

Т- и В-лимфоциты

В процессе эволюции у человека сформировались две системы иммунитета- клеточная и гуморальная. Они возникли как средство борьбы с веществами, которые воспринимаются как чужие. Эти вещества называются антигенами. В ответ на внедрение антигена в организм в зависимости от химического состава, дозы и формы введения иммунная реакция будет различна: гуморальная или клеточная. Разделение функций иммунитета на клеточный и гуморальный связано с существованием Т- и В-лимфоцитов. Обе линии лимфоцитов развиваются из лимфатической стволовой клетки костного мозга.

Т-лимфоциты. Клеточный иммунитет. Благодаря Т-лимфоцитам происходит клеточная иммунная система организма. Т-лимфоциты образуются из стволовых кроветворных клеток, которые мигрируют из костного мозга в вилочковую железу.

Формирование Т-лимфоцитов делится на два периода: антигеннезависимый и антигензависимый. Антигеннезависимый период заканчивается образованием антиген-реактивных Т-лимфоцитов. Во время антигензависимого периода клетка подготавливается для встречи с антигеном и под его воздействием размножается, в результате чего образуются различные типы Т-клеток. Распознавание антигена происходит в связи с тем, что на мембране этих клеток находятся рецепторы, распознающие антигены. В результате распознавания клетки размножаются. Эти клетки вступают в борьбу с несущими антиген микроорганизмами или вызывают отторжение чужеродной ткани. Т-клетки регулярно переходят из лимфоидных элементов в кровь, межтканевую среду, что увеличивает вероятность их встречи с антигенами. Существуют различные субпопуляции Т-лимфоцитов: Т-киллеры (т.е. истребители), разрушающие клетки с антигеном; Т-хелперы, помогающие Т- и В-лимфоцитам реагировать на антиген и др.

Т-лимфоциты при контакте с антигеном вырабатывают лимфокины, которые являются биологически активными веществами. С помощью лимфокинов Т-лимфоциты управляют функцией других лейкоцитов. Выделены различные группы лимфокинов. Они могут как стимулировать, так и тормозить миграцию макрофагоцитов т.д. Интерферон, вырабатываемый Т-лимфоцитами, тормозит синтез нуклеиновых кислот и защищает клетку от вирусных инфекций.

В-лимфоциты. Гуморальный иммунитет. В антигезависимый период В-лимфоциты стимулируются антигеном и оседают в селезенке и лимфоузлах, фолликулах и центрах размножения. Здесь они преобразуются в плазматические клетки. В плазмацитах происходит синтез антител – иммуноглобулинов. У человека образуется пять классов иммуноглобулинов. В-лимфоциты принимают активное участие в иммунных процессах распознавания антигена. Антитела взаимодействуют с антигенами, находящимися на поверхности клеток, или с бактериальными токсинами, и ускоряют захват антигенов фагоцитами. Реакция антиген-антитело лежит в основе гуморального иммунитета.

При иммунном ответе обычно действуют механизмы как гуморального, так и клеточного иммунитета, но в разной степени. Так, при кори преобладают гуморальные механизмы, а при контактной аллергии или реакциях отторжения - клеточный иммунитет.

 

5. Иммунологические заболевания (аллергия, СПИД)

 

Аллергия – это измененная (чаще всего усиленная) реакция организма в ответ на действия веществ антигенной природы. Аллергические реакции могут приводить к воспалениям, спазму бронхиальных мышц, изменению проницаемости сосудов, к зуду, болевым ощущениям и к некрозу тканей.

Причиной аллергии могут быть вещества (аллергены), которые вызывают в организме иммунный ответ гуморального или клеточного типа. Экзогенные аллергены могут поступать в организм воздушным путем, с пищевыми продуктами, при контакте бактерий и вирусов с кожей и слизистыми оболочками. Эндоаллергены могут образовываться в организме, например, при ожогах или иметь инфекционное происхождение.

Иммунологические реакции начинаются уже при первой встрече организма с аллергеном. Происходит сенсибилизация организма, т.е. повышение чувствительности и приобретение способности усиленного ответа на повторное введение антигена.

СПИД (синдром приобретенного иммунодефицита) вызывается внедрением вируса в иммунную систему организма.

Вирусы – это внутриклеточные паразиты, неспособные размножаться вне клеток. Если все клеточные организмы имеют обязательно две нуклеиновые кислоты – ДНК (дезоксирибонуклеиновая кислота) и РНК (рибонуклеиновая кислота), то вирусы содержат только одну из них. Нуклеиновая кислота (ДНК или РНК) выполняет наследственную функцию. Вирусы вносят в клетку только свою генетическую информацию. С матрицы – вирусной ДНК или РНК – образуются вирусные белки.

Взаимодействие вируса с чувствительной клеткой начинается с прикрепления его к клеточной поверхности с помощью белков оболочки. Затем вирус проникает в клетку. Особенностью ВИЧ является уникальная способность передавать информацию с РНК на ДНК хозяина, которая вписывается в систему генома хозяина.

Вирус СПИД поражает Т-лимфоциты, которые становятся носителем ВИЧ. В связи с делением клетки они передают вирус по наследству. Период скрытого носительства ВИЧ может быть коротким, всего лишь 4-5 недель, но чаще исчисляется годами. В дальнейшем, когда возникает массовое разрушение Т-лимфоцитов, у больного развивается клиническая картина иммунодефицита. Она будет проявляться в виде различных инфекционных заболеваний, которые возникают в связи с тем, что иммунная система теряет возможность сопротивляться любым инфекционным заболеваниям.

Передача ВИЧ в основном происходит половым путем. Возможна передача болезни при переливании донорской крови и ее препаратов, использовании нестерильных шприцов, инъекционных игл и т.д. Все остальные способы распространения инфекции – воздушно-капельным путем, через пищу, посуду, при рукопожатиях, поцелуях – не имеют значения.

Использованная литература

 

Семёнов Э.В. Физиология и анатомия. – М.: Редакция газеты "Московская правда", 1997 – 470 с.

 


Смотрите также

 

..:::Новинки:::..

Windows Commander 5.11 Свежая версия.

Новая версия
IrfanView 3.75 (рус)

Обновление текстового редактора TextEd, уже 1.75a

System mechanic 3.7f
Новая версия

Обновление плагинов для WC, смотрим :-)

Весь Winamp
Посетите новый сайт.

WinRaR 3.00
Релиз уже здесь

PowerDesk 4.0 free
Просто - напросто сильный upgrade проводника.

..:::Счетчики:::..

 

     

 

 

.