ГЛАВА 15. ГАЗОРАЗРЯДНЫЕ ПРИБОРЫ. Газоразрядные приборы реферат


ЭЛЕКТРОВАКУУМНЫЕ И ГАЗОРАЗРЯДНЫЕ ПРИБОРЫ | Энциклопедия Кругосвет

Содержание статьи

ЭЛЕКТРОВАКУУМНЫЕ И ГАЗОРАЗРЯДНЫЕ ПРИБОРЫ, электронные лампы, используемые для генерации, усиления или стабилизации электрических сигналов. Электронная лампа представляет собой, по существу, герметичную ампулу, в вакууме или газовой среде которой движутся электроны. Ампулу обычно изготавливают из стекла или металла. Управление электронным потоком осуществляется посредством электродов, имеющихся внутри лампы.

Хотя в большинстве приложений на смену электронным лампам пришли полупроводниковые приборы, лампы все еще находят применение в видеотерминалах, радиолокаторах, спутниковой связи и во многих других электронных приборах. См. также ТРАНЗИСТОР.

В лампе имеется несколько проводящих элементов, называемых электродами. Эмиссию электронов в лампе осуществляет катод. Эта эмиссия вызывается либо нагревом катода, в результате которого электроны «закипают» и испаряются с его поверхности, либо воздействием света на катод. Движением эмиттированных электронов управляют электрические поля, создаваемые другими электродами внутри лампы. В большинстве случаев электроды лампы изолированы друг от друга и посредством проволочных выводов соединены с внешними схемами. Электроды, которые служат для управления движением электронов, называются сетками; электроды, на которые электроны собираются, называются анодами.

В электронной лампе относительно просто управлять величиной, продолжительностью, частотой и другими характеристиками электронного потока. Эти простота и легкость управления делают ее ценным прибором в многочисленных приложениях.

Термоэлектронная эмиссия.

Электроны самопроизвольно не выходят за пределы поверхностного слоя металла из-за действия сил притяжения, источником которых является сам металл. Потенциальную энергию электрона в любой точке металла вблизи его поверхности можно представить в виде графика (рис. 1), из которого видно, что для выхода за пределы поверхности металла электрон должен увеличить свою энергию T0, которой он обладает при абсолютном нуле температуры, дополнительно на величину W. При комнатной температуре очень малое число электронов обладает необходимой для выхода энергией, но с повышением температуры энергия электрона возрастает и приближается к уровню, необходимому для эмиссии. В электронных лампах необходимая тепловая энергия обеспечивается электрическим током, пропускаемым по проволочной нити накала (подогревателю), находящейся в лампе.

Рис. 1. ПОТЕНЦИАЛЬНАЯ ЭНЕРГИЯ электрона в зависимости от его положения в металле.

Диод.

После того как электроны покинули катод, их движение определяется силами электрических полей, воздействующих на них в вакууме. В простейшей электронной лампе – диоде – электроны притягиваются положительным потенциалом второго электрода – анода, где они собираются и проходят в цепь соответствующей схемы (рис. 2). Диод представляет, таким образом, прибор, пропускающий ток только в одном направлении – от анода к катоду, – и, следовательно, является выпрямителем. Простой иллюстрацией применения диода может служить схема, приведенная на рис. 3, где диод используется для зарядки конденсатора напряжением от источника переменного тока. Когда потенциал катода ниже анодного потенциала, через диод течет ток, так что, в конце концов, конденсатор заряжается до пикового напряжения источника переменного тока. Варианты схемы рис. 3 используются для детектирования сигнала звуковой частоты из радиочастотной волны и для получения мощности постоянного тока от источников переменного тока.

Рис. 2. ДИОД – двухэлектродная лампа, которая проводит электрический ток только тогда, когда потенциал анода A положителен относительно катода K, как это показано на схеме.Рис. 3. ДИОД используется для выпрямления тока при зарядке конденсатора от источника переменного тока.

Триод.

Триод – это электронная лампа, в которой имеется третий (управляющий) электрод, установленный между катодом и анодом (рис. 4). Этот электрод обычно представляет собой сетку из тонких проволок, установленную очень близко к катоду, чтобы при небольшой разности потенциалов между сеткой и катодом в области между этими двумя электродами действовало сравнительно высокое электрическое поле. При этом потенциал сетки будет оказывать сильное воздействие на электроны.

Рис. 4. ТРИОД – трехэлектродная лампа.

Типичная схема усилителя, выполненного на триоде, приведена на рис. 5. К сетке подключена батарея отрицательного напряжения смещения, обозначенная Egg. Поскольку сетка имеет отрицательный потенциал по отношению к катоду, она не будет привлекать к себе электроны потока, движущегося от катода к аноду. На аноде поддерживается положительный потенциал относительно катода, что обеспечивается батареей Epp. Значения параметров Egg, Epp, сопротивлений резистора Rg в цепи сетки и нагрузочного резистора RL выбирают так, чтобы через лампу шел некоторый ток. Потенциал анода, следовательно, получается несколько меньшим, чем потенциал Epp его источника питания, вследствие протекания тока через RL.

Рис. 5. УСИЛИТЕЛЬ НА ТРИОДЕ (принципиальная схема).

Если на сетку подать через конденсатор положительный сигнал, она будет воздействовать на электроны, выходящие из катода. Поскольку такая сетка представляет собой слабое физическое препятствие для электронов, они будут проходить сквозь сетку на анод. Поэтому при изменении потенциала сетки в положительную сторону ток через триод возрастает, а напряжение на аноде уменьшается. (Это уменьшение происходит из-за увеличения падения напряжения на RL, связанного с увеличением тока.) Если же входной сигнал, приходящий на сетку, меняет ее потенциал в отрицательном направлении, то происходит прямо противоположный процесс; напряжение на аноде возрастает. Во многих электронных лампах изменение сеточного напряжения по существу определяет изменение тока анода; отсюда следует, что изменения напряжения на аноде определяются выбором RL. В результате малое изменение напряжения сетки может при достаточно большом RL вызывать гораздо большее изменение напряжения на аноде.

Многоэлектродные лампы.

Логично задать вопрос: каким может быть эффект увеличения числа сеток в электронной лампе? Обычно вторая сетка, которая называется экранной и поддерживается под положительным потенциалом, находится между управляющей сеткой и анодом. Ее роль состоит в том, чтобы экранировать управляющую сетку от анода, уменьшая, таким образом, емкость между ними, которая в ряде случаев может привести к нежелательным эффектам обратной связи. Лампа с двумя сетками (четырьмя электродами) называется тетродом. В некоторых случаях между экранной сеткой и анодом добавляют еще одну сетку – антидинатронную, в результате получается пятиэлектродная лампа, или пентод. В тетроде электроны, достигающие поверхности анода, при ударе о нее выбивают вторичные электроны. Некоторые из них могут двигаться в обратном направлении и собираться экранной сеткой, обычно имеющей потенциал, близкий к потенциалу анода. Такой процесс вызывает потери в общем потоке электронов, проходящих через анод (в анодном токе). Антидинатронная сетка, находящаяся между экранной сеткой и анодом, поддерживается под отрицательным потенциалом по отношению к обоим соседним электродам, так что возвращающиеся электроны отталкиваются ею обратно к аноду. На рис. 6 показана типичная схема включения пентода.

Рис. 6. СХЕМА ВКЛЮЧЕНИЯ ПЕНТОДА

В некоторых случаях ради экономии места и средств две отдельные структуры электронных ламп объединяют в едином герметичном корпусе.

Электронно-лучевые трубки.

В электронно-лучевой трубке (ЭЛТ) для воспроизведения изображения на люминесцентном экране используется пучок электронов, получаемых с нагретого катода. Этот пучок тщательно фокусируется в луч, создающий на экране маленькое пятно и возбуждающий электроны люминофора экрана, что и приводит к излучению света. Этот луч отклоняется под действием электрического или магнитного поля, описывая при этом траектории на экране, а интенсивность луча можно изменять посредством управляющего электрода, меняя тем самым яркость пятна. Часть ЭЛТ, в которой создается сфокусированный электронный луч, называется электронным прожектором. Хотя электронный прожектор – основная часть ЭЛТ, она из-за своей сложности будет рассмотрена после других. См. также ЭЛЕКТРОННАЯ ПУШКА.

Системы отклонения луча.

На выходе электронного прожектора получается узкий электронный луч, который на своем пути к экрану может отклоняться электрическим или магнитным полем. Электрические поля обычно используются в ЭЛТ с экраном малого размера, в частности, такого типа, как в осциллографах. Магнитные поля требуются для отклонения луча в телевизионных ЭЛТ с большими экранами.

В системах отклонения электрическим полем вектор поля ориентирован перпендикулярно начальной траектории луча (которую обычно обозначают направлением z). Отклонение осуществляется приложением разности потенциалов к паре отклоняющих пластин, как показано на рис. 7. Обычно отклоняющие пластины делают отклонение в горизонтальном направлении (направление x) пропорциональным времени. Это достигается приложением к отклоняющим пластинам напряжения, которое равномерно возрастает, пока луч перемещается поперек экрана. Затем это напряжение быстро падает до своего исходного уровня и снова начинает равномерно возрастать. Сигнал, который требует исследования (обычно периодическое колебание), подают на пластины, отклоняющие в вертикальном направлении (y). В результате, если продолжительность однократной горизонтальной развертки равна периоду или соответствует частоте повторения сигнала y, на экране будет непрерывно воспроизводиться один период волнового процесса. В тех случаях, когда требуется большое отклонение, использование электрического поля для отклонения луча становится неэффективным.

Рис. 7. ЭЛЕКТРОННЫЙ ЛУЧ ОТКЛОНЯЕТСЯ при создании разности потенциалов на двух отклоняющих пластинах. Вектор электрического поля направлен перпендикулярно первоначальной траектории электронного луча.

Чтобы луч создавал на экране достаточно яркое пятно, а отклоняющий потенциал не достигал величины напряжения пробоя между отклоняющими пластинами, электроны должны получать большое ускорение. Более того, ЭЛТ не должна быть слишком длинной, чтобы прибор, в котором ее предполагается использовать, не стал неприемлемо громоздким. Наконец, ограничивается и длина отклоняющих пластин. При использовании магнитных полей для отклонения луча на большие углы ЭЛТ получается короткой (рис. 8).

Рис. 8. МАГНИТНОЕ ОТКЛОНЕНИЕ электронного луча.

Люминесцентный экран.

Люминесцентный экран формируется путем нанесения тонкого слоя люминофора на внутреннюю поверхность торцевой стенки конической части ЭЛТ. Кинетическая энергия электронов, бомбардирующих экран, превращается в видимый свет.

Электронный прожектор.

Электронный прожектор размещается в узкой горловине колбы ЭЛТ. Одна из многих возможных конструкций электронного прожектора схематически изображена на рис. 9,а. Катод и ряд близко расположенных друг к другу цилиндрических электродов выровнены вдоль их общей оси. На рис. 9,б с увеличением показана область фокусировки луча (т.е. «линза» электронного прожектора), в которой действует неоднородное, но осесимметричное электрическое поле. Векторы электрического поля везде перпендикулярны эквипотенциальным поверхностям и направлены на рисунке влево, так как второй анод находится под более высоким потенциалом, чем первый. При этом электроны формируются в сходящийся пучок, который благодаря надлежащей подстройке формы электродов и их относительных потенциалов точно фокусируется при достижении поверхности экрана. В некоторых случаях фокусировка осуществляется посредством магнитного поля, направленного параллельно оси ЭЛТ. На рис. 9,в поясняется принцип такой фокусировки.

Рис. 9. ЭЛЕКТРОННЫЙ ПРОЖЕКТОР электронно-лучевой трубки (а), область фокусировки, в которой формируется электронный луч (б), схема фокусировки с помощью магнитного поля (в). 1 – управляющий электрод; 2 – первый анод; 3 – второй анод; 4 – отклоняющие электроды; 5 – люминесцентный экран; 6 – катод; 7 – область фокусировки; 8 – маскирующая диафрагма; 9 – диафрагма, экранирующая вторичную эмиссию.

Электрический потенциал, который определяет максимальную скорость электронов на выходе из электронного прожектора, лежит в пределах от нескольких сотен до 10 000 В. В эксплуатации последний ускоряющий электрод (второй анод) обычно заземляется. В электродах имеются диафрагмы с круглыми отверстиями, которые отсекают периферийные электроны от пучка, предотвращая тем самым размывание пятна. Кроме того, они улавливают электроны вторичной эмиссии, возвращающиеся от различных поверхностей внутренних компонентов ЭЛТ.

Фотоэлектронные приборы.

Фотоэлектронный электровакуумный прибор (фотоэлемент) – это электронная лампа, имеющая катод, который эмиттирует электроны, когда на него попадает видимый свет или инфракрасное либо ультрафиолетовое излучение. Изменения интенсивности излучения вызывают соответствующие изменения электронного потока в лампе, а следовательно, и тока во внешней цепи.

В научных исследованиях и технике фотоэлектронные приборы используют для измерений освещенности. Они находят применение также в устройствах управления уличным освещением, для уравнивания цветов в телевидении и согласования красок в полиграфии, для подсчета объектов на производстве. Фотоэлектронные приборы используются для считывания звука при демонстрации кинофильмов. Звук записывается на пленке в виде непрерывной дорожки переменной плотности, которая модулирует световой луч, направляемый на фотоэлектронный прибор. Выходной сигнал этого прибора получается пропорциональным плотности звуковой дорожки, записанной на пленке.

На рис. 10,а показаны вольт-амперные характеристики типичного электровакуумного фотоэлемента, а на рис. 10,б – относительные спектральные характеристики типичного фотоэлектронного прибора и глаза человека при постоянной световой интенсивности и изменяющейся длине волны излучения. Абсолютные значения амплитуд спектральных характеристик зависят от выбора материала чувствительной поверхности фотокатода.

Рис. 10. ХАРАКТЕРИСТИКИ ЭЛЕКТРОВАКУУМНОГО ФОТОЭЛЕМЕНТА. а – зависимость анодного тока от анодного напряжения и интенсивности света; б – спектральные характеристики прибора и глаза.

В некоторых случаях внутрь прибора вводят газ, чтобы повысить его токовую чувствительность. Однако такая чувствительность становится сильно зависящей от потенциала анода, тогда как в вакуумном фотоэлементе выходной сигнал остается неизменным в широком диапазоне значений анодных потенциалов (рис. 11).

Рис. 11. ВАКУУМНЫЙ (а) И ГАЗОНАПОЛНЕННЫЙ (б) ФОТОЭЛЕКТРОННЫЕ ПРИБОРЫ (сравнение характеристик). Ток на выходе вакуумного прибора постоянен в широком диапазоне изменений потенциала анода, тогда как чувствительность газонаполненного прибора при повышении потенциала анода увеличивается. 1 – потенциал ионизации газа; 2 – потенциал тлеющего разряда; 3 – опорное напряжение.

Фотоумножитель.

Действие фотоэлектронного умножителя основано на использовании вторичных электронов, которые освобождаются, когда электрон, обладающий высокой скоростью, ударяется о поверхность металла. Прибор работает следующим образом. Электроны, эмиттируемые обычным фотокатодом, притягиваются электрическим полем динода – электрода, потенциал которого несколько выше потенциала катода. Когда электрон ударяется о динод, из него вылетает несколько вторичных электронов. Они ускоряются в направлении второго динода, который находится под более высоким потенциалом, чем первый, и в результате соударения образуется еще большее число вторичных электронов. После нескольких таких ступеней каскадного «размножения» электронов процесс достигает, наконец, анода, собирающего электроны. Сильно увеличенное число электронов, собранных анодом, создает намного больший ток по сравнению с током фотокатода. Если каждый электрон, ударяющийся о динод, выбивает n вторичных электронов, то при числе динодов, равном k, коэффициент усиления тока будет nk. Положение динодов тщательно рассчитывается, с тем чтобы большинство электронов, вылетев с одного динода, попадало на другой и т.д. На рис. 12,а показано, как этот процесс реализуется в сравнительно ограниченном объеме электронной лампы. На рис. 12,б представлена схема подключения типичного фотоэлектронного умножителя. Резисторы всех динодов обычно имеют одинаковое сопротивление. На рис. 12,в приведена токовая характеристика фотоумножителя. В данном случае разность потенциалов между соседними динодами равна 100 В, а полученный коэффициент усиления тока составляет 106.

Рис. 12. ФОТОЭЛЕКТРОННЫЙ УМНОЖИТЕЛЬ имеет несколько промежуточных электродов, называемых динодами. Они ускоряют электроны, эмиттируемые катодом, и благодаря вторичной эмиссии усиливают ток на выходе прибора. а – расположение динодов; б – схема включения динодов; в – характеристики ФЭУ в зависимости от интенсивности освещения и разности потенциалов между анодом и девятым динодом.

Газоразрядные лампы.

Газоразрядная лампа – это электронная лампа, содержащая достаточно газа, чтобы существенным образом влиять на ее характеристики. Давление этого газа ниже атмосферного. Обычно для наполнения газоразрядных ламп используют инертные газы (неон, аргон и др.) или пары ртути. Характеристики лампы определяются как свойствами используемого газа, так и его давлением внутри лампы.

Соударения и ионизация.

Присутствие молекул газа в электронной лампе может быть причиной двух эффектов. Соударения с молекулами могут вызвать торможение потока электронов в лампе (такие соударения способны приводить к нарастанию пространственного заряда с образованием облака электронов вокруг катода, что вызывает уменьшение тока), а если электроны ускоряются достаточно большой разностью потенциалов, они могут выбивать электроны из молекул газа, оставляя после себя положительно заряженные ионы. Этот процесс называется ионизацией. Если ускоряющий потенциал в лампе еще более высокий, то первичный электрон и электрон, высвобожденный из молекулы в процессе ионизации, могут ускориться до такой большой скорости, что вызовут дальнейшую ионизацию. Такой процесс приводит к разряду – распространению ионизации в пространстве между анодом и катодом лампы. Образование большого числа положительных ионов и освободившихся при ионизации электронов увеличивает ток, текущий через лампу, и сопротивление лампы во время разряда становится очень малым.

Газоразрядные диоды и газонаполненные лампы.

Газоразрядный диод (газотрон) – это диод, в котором присутствие газа создает высокую проводимость в прямом направлении. Электроны, эмиттируемые катодом, ускоряются к аноду, и в результате возникает разряд. Разряд продолжается до тех пор, пока потенциал анода не станет ниже некоторого потенциала отсечки. Но как только анод становится отрицательным, нехватка электронов уже не в состоянии снова инициировать разряд. Если, однако, потенциал анода понижается до большой отрицательной величины (например, более -100 В), то разряд запускается электронами, эмиттируемыми анодом. Другими словами, анод легче эмиттирует электроны, когда его потенциал не нулевой, а отрицательный. Электроны могут высвобождаться в результате термоэмиссии даже при комнатной температуре из-за их теплового движения. Они могут также появляться вследствие фотоэлектрических процессов, вызываемых бомбардировкой фотонами. В любом случае эмиттируемые электроны будут вызывать в лампе ионизацию с последующим разрядом. Поэтому большие отрицательные напряжения на аноды газоразрядных диодов обычно не подают. Тем не менее такие диоды находят применение в низковольтных схемах выпрямления, в частности, в устройствах для зарядки батарей, где требуется большой ток в прямом направлении.

Неоновая лампа представляет собой газоразрядный диод с двумя одинаковыми электродами без подогревателей. На рис. 13 показана вольт-амперная характеристика такой лампы. Легко видеть, что падение напряжения на лампе остается почти без изменения после того, как лампа «зажглась» подачей на нее напряжения, немного превышающего стартовое. Такая характеристика газоразрядных ламп, работающих в области самоподдерживающегося тлеющего разряда, делает их полезными приборами для поддержания неизменного напряжения в схеме с меняющимся током нагрузки. Обычно для подобных стабилизаторов напряжения (стабилитронов) используют специально разработанные лампы, но годится и простая неоновая лампа. Подсоединять лампы к источнику напряжения нужно через последовательный резистор, чтобы предотвратить слишком большое возрастание тока, которое способно повредить лампу или источник напряжения.

Рис. 13. ВОЛЬТ-АМПЕРНАЯ ХАРАКТЕРИСТИКА неоновой лампы. После зажигания газового разряда падение напряжения на лампе не зависит от тока разряда.

Тиратрон.

Тиратрон – газоразрядный триод, обычно с подогревным катодом. Анод тиратрона, как правило, поддерживается под достаточно высоким потенциалом, чтобы инициировать разряд, когда сетка имеет потенциал катода. (На сетке же поддерживается отрицательный потенциал, чтобы не допустить выхода электронов из прикатодной области и возбуждения разряда.) В нужный момент по сигналу потенциал сетки повышается настолько, чтобы запустить разряд. После возникновения разряда сетка не управляет им до тех пор, пока анодное напряжение не понизится до уровня, при котором разряд погаснет.

Малый положительный импульс, поданный на сетку, позволяет инициировать прохождение большого тока через лампу. Эта управляющая функция и определяет полезность тиратрона. «Стартовый потенциал» сетки – напряжение, при котором инициируется разряд, – зависит от потенциала анода и температуры газа в лампе.

В ионных (газонаполненных) фотоэлементах газ используется, чтобы получить усиление тока вследствие ионизации молекул газа фотоэлектронами. Потенциал анода никогда не доводят до уровня, при котором разряд становится самоподдерживающимся и не нуждающимся в эмиссии фотоэлектронов с катода.

www.krugosvet.ru

ГЛАВА 15. ГАЗОРАЗРЯДНЫЕ ПРИБОРЫ

§15.1. Основные разновидности электрических разрядов в газе

Принцип действия газоразрядных или ионных приборов основан на физических процессах, протекающих при прохождении электрического тока через газ. Прохождение тока через газовую среду называют газовым разрядом. При этом ток создается не только направленным перемещением электронов, но и встречным движением ионов.

Различают несамостоятельный и самостоятельный газовые разряды. Если заряженные частицы в разрядном промежутке образуются за счет внешних факторов(нагрев катода, радиоактивное облучение и т. д.), то газовый разряд называют несамостоятельным. Если газовый разряд поддерживается только за счет энергии электрического поля, возникающего при подаче напряжения на электроды, то разряд называют самостоятельным.

Возникновение и особенности основных видов газового разряда удобно проследить,

анализируя зависимость между напряжением на электродах и током в цепи газоразрядной трубки (вольт-ампернуюхарактеристику). Схема для получения такой зависимости приведена на рис. 15.1, авольт-ампернаяхарактеристика газового разряда— на рис. 15.2.

Рис. 15.1. Принципиальная схема установки для получениявольт-амперной

Рис. 15.2. Вольт-амперная

характеристики газового разряда

характеристика газового разряда

С увеличением напряжения, подводимого к электродам газоразрядной трубки, ток протекающий через нее, увеличивается, так как все большее количество свободных электронов и ионов, образующихся, например, при космическом облучении, достигает поверхности электродов. При напряжении в несколько вольт(точкаа) уже все носители зарядов участвуют в образовании тока и дальнейшее повышение напряжения до сотни вольт(участокаб) не приводит к увеличениюI. Этот ток, называемый током насыщения, зависит от интенсивности ионизирующих факторов и конструктивных особенностей газоразрядной трубки. Его значение порядка10-14А. При

дальнейшем увеличении напряжения скорость дрейфа электронов навстречу электрическому полю (к аноду) возрастает и они приобретают энергию, достаточную для ионизации молекул газа при столкновениях. Количество заряженных частиц в газовой среде растет, что приводит к новому увеличению тока(участокбв). При этом скорость дрейфа положительных ионов к катоду возрастает настолько, что ионы, попадая на катод, могут, в свою очередь, выбить из него электроны. Точкав соответствует такому состоянию процесса, когда излученные катодом электроны порождают столько ионов, что они, падая на катод, вновь выбивают не меньшее количество электронов. При этом разряд из несамостоятельного переходит в самостоятельный и способен поддерживаться в отсутствие внешней ионизации.

Напряжение, при котором возникает самостоятельный разряд, зависит от многих факторов. Чтобы снизить это напряжение, в некоторых ионных приборах катод покрывают веществами, уменьшающими работу выхода электронов(оксидами бария, цезия и др.).

На участке вг ток возрастает при постоянном напряжении только за счет размножения носителей заряда. На участкегд лавинообразный рост количества заряженных частиц приводит к тому, что увеличение тока сопровождается снижением напряжения на электродах.

Участок абвг соответствует темному разряду, который можно наблюдать только по показаниям амперметра.

На участке гд осуществляется переход к тлеющему разряду. Насыщение разрядного

промежутка большим количеством положительных ионов вызывает большой перепад потенциалов в небольшой области, непосредственно примыкающей к катоду. Это создает большую напряженность электрического поля вблизи поверхности катода. Именно в этой области электроны приобретают значительную энергию и интенсивно ионизируют газ. Одновременно с ионизацией идет процесс рекомбинации: часть ионов захватывает электроны и превращается в нейтральные молекулы. Процесс рекомбинации сопровождается излучением квантов света, и газ начинает светиться.

Поверхность катода всегда имеет небольшие структурные неоднородности, вблизи которых интенсивность ионизации газа несколько различна. Локальное увеличение ионизации вызывает некоторое повышение температуры малого участка катода, что приводит к дальнейшему возрастанию количества ионов над этим участком. В результате разряд«стягивается» в трубку, основание которой размещается на ограниченном(рабочем) участке катода. Тонкий слой светящегося газа над этим участком образует катодное пятно.

Интервал де вольт-ампернойхарактеристики соответствует нормальному тлеющему разряду. Особенность этого разряда заключается в том, что рост тока происходит только за счет увеличения площади катодного пятна(при постоянной плотности тока).

Вточке е катодное пятно захватывает всю площадь катода и для дальнейшего роста тока необходимо снова увеличивать напряжение(участокеж). Разряд, соответствующий этому интервалувольт-ампернойхарактеристики, называется аномальным тлеющим разрядом.

Вточке ж напряженность электрического поля вблизи катода достигает значений порядка108 В/м, при этом становится возможной автоэлектронная эмиссия, т. е. вырывание электрическим полем электронов из анода. Возникает дуговой разряд, сопровождаемый резким увеличением тока при снижении напряжения на электродах до нескольких вольт(точказ). Образуется яркое катодное пятно дугового разряда, и последующий рост тока происходит за счет увеличения площади этого пятна.

Если токи тлеющего разряда измеряются единицами миллиампер, то токи дугового разряда

—десятками и сотнями ампер. Поэтому при работе в режиме дугового разряда в цепь газоразрядной трубки должно быть включено ограничительное сопротивление(см. рис. 15.1). Без

этого сопротивления небольшие колебания питающего напряжения могут привести к такому росту тока, что катод расплавится.

Кроме напряжения на ток газоразрядной трубки существенно влияют состав и плотность газа-наполнителя, размеры и конфигурация электродов, расстояние между электродами и материал, из которого они изготовлены.

Следует отметить, что в технике высоких напряжений в линиях электропередачи существенную роль играют другие виды разрядов, в частности коронный и искровой.

Карточка № 15.1 (209)/

Основные разновидности электрических разрядов в газе

Чем

принципиально

 

отличается

Причинами,

вызывающими

появление

1

самостоятельный

разряд

от

заряженных

частиц

в

 

разрядном

 

несамостоятельного?

 

 

промежутке

 

 

 

 

 

 

 

 

 

 

Значением напряжения на электродах

21

 

 

 

 

 

 

 

 

 

 

 

 

Вольт-ампернойхарактеристикой

41

 

 

 

Почему ток на участке аб (см. рис. 15.2)

Энергия заряженных частиц недостаточна

61

практически не увеличивается?

 

для ионизации молекул газа

 

 

 

 

 

 

 

 

 

Потому, что ток равен току насыщения

81

Почему в точке д (см. рис. 15.2) ток начинает

Вследствие эмиссии электронов из катода

2

расти при постоянном и даже снижающемся

 

 

 

 

 

Вследствие

размножения

 

заряженных

22

напряжении?

 

 

 

частиц при столкновении с молекулами газа

 

 

 

 

 

 

Вследствие двух указанных выше факторов

42

 

 

 

 

 

 

 

Почему в точке д (см. риа. 15.2) газ начинает

Так

как

существенно

 

увеличивается

62

светиться?

 

 

 

интенсивность ионизации молекул газа

 

 

 

 

 

 

Так

как

существенно

 

увеличивается

82

 

 

 

 

 

интенсивность рекомбинации молекул газа

 

 

 

 

 

 

Почему

после

образования катодного пятна

Увеличивается скорость ионизации молекул

3

(при тлеющем или дуговом разряде) ток

 

 

Увеличивается площадь катодного пятна

23

увеличивается

почти

при

неизменном

 

 

 

Увеличивается плотность тока

 

43

напряжении?

 

 

 

 

 

 

 

 

 

 

§ 15.2. Газотрон

Газотрон (или газотронный вентиль) представляет собой двухэлектродный газоразрядный прибор, работающий в режиме несамостоятельного дугового разряда.

Если электровакуумные диоды рассчитаны на работу при сравнительно небольших токах, измеряемых единицами или десятками миллиампер, а применение полупроводниковых диодов, способных работать при больших токах, ограничено пробивным напряжением в несколько киловольт, то газотрон может работать при токах в сотни ампер и обратных напряжениях в десятки киловольт.

Катод газотрона подогревается от постороннего источника и обеспечивает термоэмиссию электронов.

Материалом для катода служит тугоплавкий металл (обычно вольфрам), который активируют барием или цезием. Анод изготовляют из металла или графита;

Термоэлектронная эмиссия катода обеспечивает газотрону одностороннюю проводимость: при прямом включении прибора, когда плюс источника напряжения подводят к аноду, а минус—

ккатоду, эмитти-рованныеэлектроны устремляются к аноду и в цепи возникает ток; при обратной полярности ток отсутствует, так как анод не подогревается и электронов не излучает.

Электроды размещают в баллоне, заполненном инертным газом или парами ртути. Под действием напряжения, приложенного в проводящем направлении, эмиттированные электроны разгоняются и приобретают энергию, необходимую для ионизации молекул газа. Образовавшиеся при ионизации электроны вместе с эмиттированными движутся к аноду, а положительные ионы—

ккатоду. Попадая на катод, ионы выбивают вторичные электроны.

Следует отметить, что резкое возрастание ионного тока может привести к разрушению оксидного слоя катода. Чтобы не допустить роста тока выше определенного расчетного значения и предохранить катод от разрушения, последовательно с газотроном включают ограничительное сопротивление(иногда его роль может выполнять внутреннее сопротивление источника питания).

Падение напряжения в проводящем газотроне мало зависит от тока и составляет около 10В. Основная область применения газотронов— выпрямление переменных токов в высоковольтных цепях. Срок службы газотронных вентилей с ртутным наполнением достигает5000ч. Относительно малое падение напряжения в проводящем направлении(сотые доли процента от выпрямляемого напряжения) и очень малые обратные токи делают эти приборы весьма

экономичными.

В схемах двухполупериодного выпрямления удобно применять сдвоенные газотроны, у которых в одном баллоне размещается два анода и два катода.

Существенным недостатком мощных газотронов является большая тепловая инерция, выражающаяся в том, что для разогревания катода до рабочей температуры требуется около

30мин.

Карточка № 15.2 (184).

Газотрон

Укажите основное преимущество газотрона перед:

а), б) Большое пробивное напряжение

63

а) ламповым диодом; б) полупроводниковым

 

 

а) Большой рабочий ток, б) большое

83

диодом

 

 

 

пробивное напряжение

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

а) Большое пробивное напряжение, б)

4

 

 

 

 

 

большой рабочий ток

 

 

 

 

 

 

За

счет чего

обеспечивается односторонняя

За счет подогрева катода

24

проводимость газотрона?

 

 

За счет активирования катода

44

 

 

 

 

 

За счет двух названных факторов

64

 

 

 

 

 

 

 

Что

произойдет,

если из

газотрона

удалить

Газотрон потеряет выпрямительные

84

инертный газ или пары ртути?

 

 

свойства

 

 

 

 

 

 

Резко уменьшится выпрямленный ток

5

 

 

 

 

 

 

 

 

 

 

 

 

Разрушится оксидный слой катода

25

 

 

 

На каком участке вольт-ампернойхарактеристики

вг

45

газового разряда (см. рис. 15.2) работает газотрон?

 

 

де

65

 

 

 

 

 

еж

85

 

 

 

 

 

Выше точки з

6

 

 

 

Как изменяется КПД газотрона с повышением

Увеличивается

26

выпрямляемого напряжения?

 

 

 

 

 

 

Уменьшается

46

 

 

 

 

 

 

 

 

 

 

 

 

Не меняется

66

§ 15.3. Тиратрон

 

 

 

 

 

Тиратрон является ионным прибором с тремя или четырьмя электродами, моментом

зажигания которого можно управлять.

 

 

 

 

Различают

тиратроны

с горячим

нагреваемым катодом (несамостоятельным дуговым

разрядом) и с холодным катодом(работающие в режиме самостоятельного тлеющего разряда).

Рис. 15.3. Устройство

 

тиратрона с накаленным

Рис. 15.4. Устройство тиратрона

катодом: 1 — анод; 2 —

с холодным катодом: 1 —

сетка; 3 — тепловой

катод; 2 — управ ляющий элек

экран; 4 — катод; 5 —

трод; 3 — анод

стеклянное основание; 6

 

— баллон

 

Устройство тиратрона с накаленным (горячим) катодом показано на рис. 15.3. В баллоне6, заполненном разреженным инертным газом, размещают анод1, катод4 и управляющий электрод2. Нагревание вольфрамового катода, активированного барием, цезием или их оксидами производится постоянным или переменным током. В последнем случае применяют катод косвенного накала, обладающий достаточной тепловой инерцией, чтобы исключить колебания

studfiles.net

Реферат Газоразрядный индикатор

скачать

Реферат на тему:

План:

Введение

Nuvola apps important recycle.svg Эта статья или раздел нуждается в переработке.

Пожалуйста, улучшите статью в соответствии с правилами написания статей.

Газоразрядный индикатор GN-4 на десять цифр

Газоразрядный индикатор — ионный прибор для отображения сложной информации, использующий тлеющий разряд. По сравнению с единичным индикатором — неоновой лампой — обладает более широкими возможностями. Для изготовления отображающего устройства заданной сложности газоразрядных индикаторов потребуется меньше, чем потребовалось бы для сопоставимого по сложности устройства единичных неоновых ламп.

Наиболее известными среди газоразрядных являются знаковые индикаторы типа «(англ. Nixie tube)», каждый из которых состоит из десяти тонких металлических электродов (катодов), каждый из которых соответствует одной цифре или знаку, при этом они включаются индивидуально. Электроды сложены так, что различные цифры появляются на разных глубинах, в отличие от плоского отображения, в котором все цифры находятся на одной плоскости по отношению к зрителю. Трубка наполнена инертным газом неоном (или другими смесями газов) с небольшим количеством ртути. Когда между анодом и катодом прикладывается электрический потенциал от 120 до 180 Вольт постоянного тока, вблизи катода возникает свечение.

Вольт-амперная характеристика газоразрядного индикатора схожа с вольт-амперной характеристикой неоновой лампы и обладает нелинейностью. Недопустимо подключение газоразрядного индикатора непосредственно к источнику напряжения. В большинстве случаев в качестве ограничителя тока используется балластный резистор.

Один из технических недостатков газоразрядного индикатора состоит в том, что цифры укладываются стопкой одна за другой, перекрывая друг друга. Кроме того, в случае редкого включения отдельных индикаторных катодов и активности других, частицы металла, распыляемого работающими катодами, оседают на редко используемых, что способствует их «отравлению». Существует метод восстановления отравленных катодов повышенным током.

Многоразрядный индикатор типа «Nixie tube» называется «пандикон». Помимо индикаторов типа «Nixie tube», существуют и газоразрядные индикаторы иных типов: линейные, сегментные («панаплекс») и другие.

1. История

Первые газоразрядные индикаторы Nixie были разработаны в 1952 году братьями Haydu и позднее проданы фирме Burroughs Business Machines. Название Nixie получилось от сокращения NIX 1 англ. «Numerical Indicator eXperimental 1» («Знаковые индикаторы экспериментальные, разработка 1»). Название закрепилось за всей линейкой подобных индикаторов и стало нарицательным. В частности, отечественные индикаторы ИН-14 в зарубежных каталогах записывают как IN-14 Nixie.

С начала 1950-х до 1970-х годов индикаторы, построенные на газоразрядном принципе были доминирующим в технике. Позже они были заменены светодиодными, вакуумно-люминесцентными и жидкокристаллическими дисплеями и довольно редки сегодня. В настоящее время большинство наименований газоразрядных индикаторов более не производится.

Газоразрядные индикаторы использовались в калькуляторах, в измерительном оборудовании, в первых компьютерах, в аэрокосмической технике и подводных лодках, в лифтовых указателях и для отображения информации на фондовой бирже Нью-Йорка.

Некоторые исследователи полагают, что примерно за 10 лет до изобретения индикатора типа «Nixie tube» был разработан аналогичный по конструкции прибор под названием «индитрон». Авторы данного изобретения совершили ошибку, не использовав отдельный анод вообще. Для того, чтобы «засветить» в таком индикаторе ту или иную цифру-катод, на неё требовалось, как и в обычном газоразрядном индикаторе, подавать отрицательный потенциал. А вот положительный потенциал подавали на соседнюю цифру — она и становилась на время анодом. Понятно, что управлять таким индикатором довольно трудно, а отсутствие сетчатого анода, не пропускающего распыляемые с катодов частицы металла к передней стенке баллона, приводило к быстрому её помутнению. «Индитрон» был забыт, и газоразрядный индикатор вскоре пришлось изобретать заново. Выжило необычных приборов совсем немного.http://www.decadecounter.com/vta/tubepage.php?item=16&user=0http://www.decadecounter.com/vta/articleview?item=424

Специально для управления газоразрядными индикаторами была разработана отечественная микросхема - высоковольтный дешифратор К155ИД1 и её зарубежный аналог 74141.

2. Отечественные газоразрядные индикаторы

Отечественный газоразрядный индикатор ИН-18

Отечественные газоразрядные индикаторы представлены большим ассортиментом линейных, знаковых, сегментных и матричных индикаторов [1,2].

2.1. Линейные индикаторы

Линейные газоразрядые индикаторы делятся на непрерывные с аналоговым управлением и дискретные с цифровым управлением.

2.1.1. Непрерывные

Непрерывные линейные газоразрядные индикаторы представлены моделями ИН-9 и ИН-13. Их история очень интересна. В начале двадцатого века в Великобритании существовала наценка на радиоприёмники, размер которой определялся количеством ламп в них. Это сдерживало применение в массовых аппаратах индикаторов настройки типа «магический глаз», поскольку они также считались радиолампами. Для решения этой проблемы был разработан газоразрядный прибор под названием «тюнеон» (модели 3184), который, в отличие от «магического глаза», лампой не считался и наценкой не облагался. Позднее были выпущены и другие приборы с аналогичным принципом действия.

Когда наценку отменили, «тюнеон» был почти забыт даже в Великобритании, однако, затем пережил второе рождение. После начала массового распространения в СССР в конце 1960-х годов полностью полупроводниковой звукотехнической аппаратуры возникла задача выпуска экономичного по питанию немеханического непрерывного аналогового индикатора для неё. «Магический глаз», имеющий косвенный накал, мало подошёл для использования в такой аппаратуре, поскольку часто его потребляемая мощность оказывалась больше, чем у всех остальных узлов аппарата вместе взятых. Объём выпуска сверхминиатюрного «магического глаза» прямого накала типа 1Е4А был недостаточен. И вот тогда советские инженеры вспомнили о «тюнеоне». Так появились приборы ИН-9 и ИН-13, разработанные специально для применения в качестве индикаторов исключительно в полностью полупроводниковой аппаратуре, отвечающие требованиям технической эстетики и хорошо согласующиеся с её дизайном. Они оказались настолько удачными, что выпускались до середины 1990-х годов, и нашли применение в самой различной технике, от вольтметров ЛАТРов до шкал стереофонических УКВ ЧМ тюнеров «Ласпи», индикаторов уровня в микшерных пультах и терменвоксах, и др. До наших дней дожило значительное количество индикаторов ИН-9 и ИН-13 и аппаратуры с их применением. Существует и ещё одно, нестандартное применение индикаторов этих типов: из приборов, включённых «на полную мощность» (чтобы светящийся столб занимал всю длину баллона), составляется самодельный семисегментный индикатор. Табло для спортзалов, работающее на этом принципе, описано в одном из номеров журнала «Радио». Существует также современная конструкция индикатора уровня на основе индикатора ИН-13: http://www.ledsales.com.au/pdf/in13_driver.pdf

2.1.2. Дискретные

Дискретные линейные газоразрядные индикаторы представлены моделями ИН-20 и ИН-26 (с перемещающейся точкой), ИН-31, ИН-33, ИН-34-1, ИН-34-2, ИН-36, ИГТ1-256, ИГТ1-103Р, ИГТ2-103Р (со столбом изменяющейся длины, составленным из точек). Многие дискретные линейные индикаторы, с целью сокращения количества выводов по отношению к количеству делений, снабжены функцией подсчёта импульсов по принципу, мало отличающемуся от принципа действия декатрона.

В наши дни радиолюбители используют индикаторы данного типа, в частности, ИН-33 и ИН-34-1, в самодельных конструкциях:http://www.dj9kw.de/dj9kw/projekte/audio/plasmabargraph/plasmabargraph.htmhttp://forum.radiokot.ru/viewtopic.php?t=3210&postdays=0&postorder=asc&start=1040

2.2. Знаковые индикаторы

Индикатор ИН-19В показывает различные знаки.

Этот тип газоразрядных индикаторов является, пожалуй, самым известным и узнаваемым. В большинстве случаев, словосочетание "газоразрядный индикатор" применяется именно в их отношении. Также известно, что до начала 1970-х годов в советской технической литературе применительно к таким индикаторам применялся ныне почти забытый термин "цифровая лампа" (по всей видимости, калька с немецкого "Ziffernröhre").

Знаковые индикаторы представлены моделями со знаками в виде цифр: ИН-1, ИН-2, ИН-4, ИН-8, ИН-8-2, ИН-12А, ИН-12Б, ИН-14, ИН-16, ИН-17, ИН-18, со знаками в виде букв, обозначений физических величин и других специальных символов: ИН-5А, ИН-5Б, ИН-7, ИН7А, ИН-7Б, ИН-15А, ИН-15Б, ИН-19А, ИН-19Б, ИН-19В.

Индикаторы ИН-12 знамениты тем, что устанавливались в электронные весы 1261ВН-3ЦТ «Дина», сведения о выживших экземплярах которых отсутствуют. Применяются они и в других, сохранившихся до наших дней устройствах, в частности, в игровом автомате «Кегельбан», пульте управления рентгеновского аппарата РУМ-20М. Сами индикаторы этого типа дефицита не представляют. Индикаторам ИН-14 повезло больше: сохранилось значительное количество микрокалькуляторов «Электроника-155», «Искра» различных моделей, всякого рода лабораторной измерительной аппаратуры, где применены эти индикаторы. Индикаторы похожие на ИН-1 или ИН-4, применены в автоматах для размена монет, малогабаритные ИН-2 — в автоматах по продаже билетов на пригородные поезда, сведения о выживших экземплярах которых также отсутствуют.

Многоразрядные знаковые газоразрядные индикаторы типа «пандикон» в отечественной практике распространения не получили.

2.3. Сегментные индикаторы

Сегментные индикаторы представлены одноразрядным 13-сегментным полноалфавитным ИН-23, многоразрядными 7-сегментными ИГП-17 (16 разрядов), ГИП-11 (11 разрядов). В отечественной аппаратуре распространения они не получили по причине внедрения многоразрядных ВЛИ, в то время как за рубежом индикаторы этого класса (под товарными знаками «Родан Эльфин» для одноразрядных моделей, «Панаплекс» для плоских многоразрядных, и другими) устанавливались во многие зарубежные микрокалькуляторы. Особенно интересен одноразрядный сегментный индикатор ИТС1, способный одновременно с отображением информации производить её запоминание по принципу тиратрона, что позволяет без применения дополнительных регистров разгрузить вычислительную систему для выполнения задач, отличных от динамической индикации. Индикатор ИТС1 - пожалуй, единственный из сегментных газоразрядных, являющийся зелёным люминофорным: http://radiokot.ru/forum/viewtopic.php?p=149914

Известно, что индикаторы ИГП-17 применены в пульте управления рентгеновского аппарата (но не РУМ-20М (см. выше), а другой модели): http://radiokot.ru/forum/viewtopic.php?t=3210&postdays=0&postorder=asc&start=980 а также в микро-ЭВМ "Электроника Д3-28": http://www.leningrad.su/museum/show_calc.php?n=357В наши дни любители используют такие индикаторы в самодельных часах: http://radiokot.ru/forum/viewtopic.php?t=3210&postdays=0&postorder=asc&start=740

2.4. Матричные индикаторы

Матричные индикаторы представлены моделями без самосканирования: ГИП-10000, ИГПП-100/100, ИГГ1-64/64, постоянного тока с самосканированием: ИГПС1-222/7, ГИПС-16, ГИПС-32, переменного тока ГИПП-16384, ИГПВ2-384/162, ИППВ-256/256, ИГПВ1-256/256, ИГГ1-512/256, ИГГ2-512/256, ИГГ3-512/256, ИГПВ-512/256, ИГПВ1-512/512, специальными люминофорными различных систем: ИТМ1-А (зелёный), ИТМ2-Л (зелёные), ИТМ-2К (красный), ИТМ-2Ж (жёлтый), ИТМ-2С (синий), ИТМ-2М (многоцветный), ИГВ1-8х5Л (зелёный), ИГПП-16/32 (зелёный), ИГПС1-117/7, ИГПП-32/32 (зелёный), ИГПП2-32/32 (зелёный), ИГГ1-32х32 (зелёный), ИГГ1-256/256Л (зелёный). Из индикаторов, не упомянутых ни в [1], ни в [2], отметим полноцветный ИГГ5-64х64М2: http://155la3.ru/igg5_64_64m2.htm

Все индикаторы серий ИТМ-1, ИТМ-2, а также индикатор ИГВ1-8х5Л по принципу действия аналогичны управляемой неоновой лампе ИН-6: разряд в них зажжён постоянно, но, в зависимости от управляющего напряжения, перескакивает то на индикаторный, то на вспомогательный катод. Управляется каждый пиксель такого индикатора отрицательным напряжением величиной в несколько В, подаваемым на индикаторный катод. Электроды расположены таким образом, что когда разряд горит на индикаторном катоде, он хорошо заметен оператору, когда на вспомогательном — нет: http://radiokot.ru/forum/viewtopic.php?t=3210&postdays=0&postorder=asc&start=1100

На основе индикатора ГИП-10000 (ИГПП-100/100) выполнены индикаторные модули ИМГ-1 и МС6205: http://radiokot.ru/forum/viewtopic.php?t=9857Эти устройства, согласно http://www.intech.by/mimc6205.htm применяются в «системах ЧПУ типа МАЯК-221, МАЯК-223, 2М43, КМ43, 2С85, КМ85, программируемых логических контроллерах ЛОМИКОНТ Л-110, Л-112, Л-120, Л-122, счетчиках купюр БАНКНОТА-1». Также они применены в чрезвычайно редкой ПЭВМ «Курсор»: http://sfrolov.livejournal.com/72186.html

На основе индикатора, близкого по параметрам к ГИПС-16, выполнен индикаторный модуль ИГВ70-16/5х7: http://155la3.ru/igv70_16_5_7.htm

На основе индикатора ИГПВ2-384/162 выполнен индикаторный модуль ИГПВ70-1024/5х7: http://155la3.ru/igpv2_384_162.htm

Индикатор ИГПВ1-256/256 применяется в осциллографе С9-9: http://www.priborelektro.ru/price/C9-9.php4?deviceid=127&print=1

Так выглядят некоторые матричные газоразрядные индикаторы во включённом виде:http://forum.radiokot.ru/viewtopic.php?t=3210&postdays=0&postorder=asc&start=1020http://155la3.ru/gipp10000.htm

За рубежом индикаторы с аналогичным принципом действия до сих пор традиционно применяют в игровых автоматах типа «пинбол»[1][2]. Существует тенденция по замене изношенных индикаторов этого типа на светодиодные[3].Однако, газоразрядные матричные индикаторы продолжают устанавливаться в новые автоматы и в наши дни. Почти все они — постоянного тока, без самосканирования и запоминания информации. Применяются в этих автоматах и сегментные газоразрядные индикаторы, подобные «панаплексам», но значительно реже. 11

3. Возрождение

За последние годы популярность газоразрядных индикаторов возросла из-за их необычного антикварного вида. В отличие от ЖК, они излучают мягкий неоновый оранжевый или фиолетовый свет. Несколько компаний предлагают часы и иные конструкции (см. внешние ссылки), в которых используются газоразрядные индикаторы. Для корпусов таких часов применяется дерево, сталь, акриловый пластик. Как правило, такие часы обладают небольшим функционалом и несут чисто эстетическую функцию.

При желании на газоразрядных индикаторах можно выполнить не только часы, но и календарь.

Но не стоит думать, что такие часы обязательно дороги. Радиолюбитель средней квалификации, знакомый с правилами техники безопасности при работе с электроустановками до 1000 В, по представленным на многочисленных сайтах описаниям без особого труда изготовит похожие часы самостоятельно при значительно меньших затратах.

Источники

1. В. С. Згурский, Б. Л. Лисицын. Элементы индикации. М.: Энергия, 1980. — 304 с., ил.

2. Б. Л. Лисицын. Отечественные приборы индикации и их зарубежные аналоги. Справочник. М.:Радио и связь, 1993. — 432 с.: — (Массовая радиобиблиотека. Выпуск 1165).

Примечания

  1. http://www.joystixamusements.com/photos/BATMANSTERN.JPG - www.joystixamusements.com/photos/BATMANSTERN.JPG
  2. LCD/PLASMA/TOUCH/LED DISPLAY - PLASMA DISPLAYS - www.vishay.com/displays/plasma/ vishay.com
  3. PinLED -Der Shop für Pinball und Flipper Displays - pinled.de

6. Внешние ссылки

Электронные компоненты

 

wreferat.baza-referat.ru

Газоразрядные и индикаторные приборы

Электрический разряд в газах

Газоразрядными (ионными) называют электровакуумные приборы с электрическим разрядом в газе или парах. Как правило, газ в таких приборах находится под пониженным давлением. Электрический разряд в газе — это совокупность явлений, сопровождающих прохождение электрического тока через газ (или пар). При таком разряде протекает несколько основных процессов.

Возбуждение атомов. При возбуждении атома под ударом электрона один из электронов атома переходит на более удаленную от ядра орбиту, т. е. на более

высокий энергетический уровень. Такое возбужденное состояние атома длится обычно 10-7 —10-9 с, после чего электрон возвращается на нормальную орбиту и при этом отдает в виде излучения энергию, которую атом получил при возбуждении от ударившего электрона. Излучение сопровождается свечением газа, если испускаемые лучи относятся к видимой части электромагнитного спектра.

Для того чтобы произошло возбуждение атома, ударяющий электрон должен иметь определенную энергию, так называемую энергию возбуждения.

Ионизация. Ионизация атомов (или молекул) газа происходит при энергии ударяющего электрона большей, чем энергия возбуждения. В результате ионизации из атома выбивается электрон. Следовательно, в пространстве будут два свободных электрона, а сам атом превратится в положительный ион. Если эти два свободных электрона при движении в ускоряющем поле наберут достаточную энергию, то каждый из них может ионизировать новый атом. Тогда свободных электронов будет уже четыре, а ионов — три. Эти электроны снова могут произвести ионизацию. Таким образом, происходит лавинообразное нарастание числа электронов и ионов.

Возможна также ступенчатая ионизация. От удара одного электрона атом переходит в возбужденное состояние и, не успев вернуться в нормальное состояние, ионизируется от удара второго электрона. Увеличение в газе числа заряженных частиц за счет ионизации называют электризацией газа.

Ниже приведены значения энергии возбуждения и ионизации (в электрон-вольтах) для некоторых газов:

 Wвоз   Wион 
 Водород   11,1   13,5 
 Гелий   20,8   24,5 
 Неон   16,6   21,5 
 Аргон   11,6   15,5 
 Ксенон   8,4   12,1 
 Криптон   10,4   14,0 

Рекомбинация. Наряду с ионизацией в газе происходит и обратный процесс нейтрализации противоположных по знаку зарядов. Положительные ионы и электроны совершают в газе беспорядочное (тепловое) движение и, приближаясь друг к другу, могут соединиться, образуя нейтральный атом. Этому способствует взаимное притяжение разноименно заряженных частиц. Восстановление нейтральных атомов называют рекомбинацией. Полученный в результате рекомбинации нейтральный атом может снова ионизироваться, а затем его составные части — положительный ион и электрон опять могут рекомбинировать и т.д.

Рекомбинация приводит к уменьшению числа заряженных частиц, т.е. к деионизации газа. В зависимости от перевеса ионизации или рекомбинации соответственно увеличивается или уменьшается число заряженных частиц. В установившемся режиме число электронов (или ионов), врзникающих за 1 с вследствие ионизации, равно числу нейтральных атомов, получающихся за то же время в результате рекомбинации. При возникновении электрического разряда в газе ионизация имеет перевес над рекомбинацией. Наоборот, при уменьшении интенсивности электрического разряда рекомбинация имеет перевес над ионизацией. А с прекращением разряда ионизация исчезает, и вследствие рекомбинации восстанавливается нейтральное состояние газа.

Поскольку на ионизацию затрачивается энергия, то положительный ион и электрон, получившиеся после ионизации, имеют в сумме энергию большую, чем нейтральный атом. Поэтому рекомбинация сопровождается выделением лучистой энергии. Обычно при этом наблюдается свечение газа.

Для рекомбинации требуется некоторый промежуток времени, и поэтому деионизация в зависимости от рода газа и его давления совершается за 10-5 — 10-3 с, Таким образом, по сравнению с электронными газоразрядные приборы значительно более инерционны и, как правило, не могут работать на высоких частотах. Основная причина инерционности — именно малая Скорость деионизации (время возникновения разряда составляет 10-7 — 10-6 с, т.е. электризация происходит гораздо быстрее).

Виды электрических разрядов в газах. Различают самостоятельный и несамостоятельный разряд в газе. Самостоятельный разряд поддерживается под действием только электрического напряжения. Несамостоятельный разряд может существовать при условии, что помимо электрического напряжения действуют еще какие-либо внешние ионизирующие факторы. Ими могут быть лучи света, радиоактивное излучение, термоэлектронная эмиссия накаленного электрода и др. Рассмотрим основные виды электрических разрядов.

Темный, или тихий, разряд является несамостоятельным. Он характеризуется плотностью тока в единицы микроампер на квадратный сантиметр и весьма малой плотностью объемного заряда. Поле, созданное приложенным напряжением, при темном разряде практически не зависит от плотности объемного заряда, влиянием которого можно пренебречь. Свечение газа обычно незаметно. В газоразрядных приборах для радиоэлектроники темный разряд не используется, но он предшествует другим видам разряда.

Тлеющий разряд относится к самостоятельным. Для него характерно свечение газа, напоминающее свечение тлеющего угля. Плотность тока при этом достигает единиц и десятков миллиампер на квадратный сантиметр, и образуется объемный заряд, существенно влияющий на электрическое поле между электродами. Напряжение для тлеющего разряда составляет десятки или сотни вольт. Разряд поддерживается за счет электронной эмиссии катода под ударами ионов.

Основные приборы тлеющего разряда — стабилитроны (газоразрядные стабилизаторы напряжения), газосветные лампы, тиратроны тлеющего разряда, знаковые индикаторные лампы и декатроны (газоразрядные счетные приборы).

Дуговой разряд получается при плотности тока, значительно большей, чем в тлеющем разряде. К приборам несамостоятельного дугового разряда относятся газотроны и тиратроны с накаленным катодом. В ртутных вентилях (экситронах) и игнитронах, имеющих жидкий ртутный катод, а также в газовых разрядниках происходит самостоятельный дуговой разряд.

При дуговом разряде плотность тока может доходить до сотен ампер на квадратный сантиметр и объемный заряд сильно влияет на процессы в газе. Ток дугового разряда поддерживается за счет термоэлектронной эмиссии накаленного твердого катода или электростатической эмиссии жидкого ртутного катода. При дуговом разряде почти все напряжение (10 — 20 В) сосредоточено около катода. Малое падение напряжения при большом токе — особенность дугового разряда. Этот разряд сопровождается интенсивным свечением газа. Дуговой разряд может быть не только при пониженном, но и при нормальном или повышенном давлении, например в киноаппаратах и прожекторах.

Искровой разряд имеет сходство с дуговым. Он представляет собой кратковременный (импульсный) электриче-кий разряд при сравнительно высоком давлении газа, например при нормальном атмосферном. Обычно в искре наблюдается ряд импульсных разрядов, следующих друг за другом. Искровой разряд используется в разрядниках, служащих для кратковременного замыкания тех или иных цепей.

Высокочастотные разряды могут возникать в газе под действием переменного электромагнитного поля даже при отсутствии токоподводящих электродов (безэлектродный разряд).

Коронный разряд является самостоятельным и используется в газоразрядных приборах для стабилизации напряжения. Он наблюдается при сравнительно больших давлениях газа в тех случаях, когда хотя бы один из электродов имеет очень малый радиус (острие, заостренный край, тонкая проволочка и др.). Тогда поле между электродами получается неоднородным и около заостренного электрода, называемого коронирующим, напряженность поля резко увеличивается. Коронный разряд возникает при напряжении в сотни или тысячи вольт и характеризуется малыми токами.

Разрядный промежуток при коронном разряде имеет две области: коронирующий слой около коронирующего электрода и остальную часть, называемую внешней областью. В коронирующем слое происходит возбуждение и ионизация атомов, а также свечение газа. Обычно коронирующим электродом является анод. На границе коронирующего слоя и внешней области возникают свободные электроны за счет ионизации газа световыми квантами (фотонами), источником которых служит коронирующий слой. Поток электронов движется к аноду и на своем пути возбуждает и ионизирует атомы.

Во внешней области, которая остается темной, ионизация и возбуждение атомов отсутствуют вследствие малой напряженности поля, а происходит лишь движение частиц, имеющих заряд того же знака, что и у коронирующего электрода. При коронирующем аноде во внешней области движутся положительные ионы.

Поскольку при коронном разряде возбуждение и ионизация охватывают только часть разрядного промежутка, этот разряд считают неполным пробоем газа (полным пробоем является искровой или дуговой разряд). При увеличении напряжения ток растет, коронирующий слой расширяется и разряд переходит в искровой, если давление газа значительно, или тлеющий, если давление низкое.

Тлеющий разряд

Рассмотрим тлеющий разряд между плоскими электродами (рис. 21.1). При отсутствии разряда, когда объемного заряда нет, поле однородно и потенциал между электродами распределен по линейному закону (кривая 1). В электронном (вакуумном) приборе при наличии эмиссии существует отрицательный объемный заряд, создающий вблизи катода потенциальный барьер (кривая 2). Этот барьер препятствует получению большого анодного тока. В газоразрядном приборе, с тлеющим разрядом за счет большого числа положительных ионов создается положительный объемный заряд. Он вызывает изменение потенциала в пространстве анод — катод в положительную в сторону. Потенциальная диаграмма «выгибается» вниз (кривая 3).

Распределение потенциала между электродами при отсутствии разряда (1), в электронном приборе (2) и в газоразрядном приборе с тлеющим разрядом (3)

Рис. 21.1. Распределение потенциала между электродами при отсутствии разряда (1), в электронном приборе (2) и в газоразрядном приборе с тлеющим разрядом (3)

Как видно, в газоразрядном приборе распределение потенциала таково, что почти все анодное напряжение приложено к тонкому слою газа около катода. Эта область ,(I) называется областью катодного падения потенциала. Около катода создается сильное ускоряющее поле. Анод как бы приближается к катоду. Роль анода выполняет «нависшее» над катодом ионное облако с положительным зарядом. В результате этого действие отрицательного объемного заряда компенсируется, поэтому потенциального барьера около катода нет.

Другая часть разрядного промежутка (II) характеризуется небольшим изменением напряжения. Напряженность поля в ней мала. Ее называют областью электронно-ионной плазмы. Плазма — это сильно ионизированный газ, в котором число электронов и ионов практически одинаково. В плазме беспорядочное (тепловое) движение частиц преобладает над их направленным движением. Но все же электроны движутся к аноду, а ионы — к катоду.

Силы поля, действующие на электроны и ионы, одинаковы и лишь противоположны по направлению, так как заряды этих частиц равны, но обратны по знаку (напомним, что сила, действующая на заряд, F= еЕ, где Е — напряженность поля, е — заряд). Но масса иона в тысячи раз больше массы электрона. Даже у самого легкого газа — водорода масса положительного иона в 1840 раз превышает массу электрона. Соответственно этому ионы получают меньшие ускорения и приобретают относительно малые скорости. Следовательно, ток в ионных приборах практически создается перемещением электронов. Доля ионного тока весьма мала, и ее можно не принимать во внимание. Ионы выполняют свою задачу: они создают положительный объемный заряд, который значительно превышает отрицательный объемный заряд и уничтожает потенциальный барьер около катода.

Область катодного падения напряжения играет важную роль. Проникшие из плазмы в эту область ионы получают здесь ускорение. Ударяя в катод с большой скоростью, ионы выбивают из него электроны. Этот процесс необходим для поддержания разряда. Если скорость ионов недостаточна, то электронной эмиссии не получится и разряд прекратится. Вылетевшие из катода электроны в области катодного падения также ускоряются и могут ионизировать атомы газа. Электроны сталкиваются с атомами газа в различных частях плазмы. Поэтому ионизация происходит во всем ее объеме. В плазме совершается также и рекомбинация.

Следует иметь в виду, что только малая часть ионов, возникших в плазме, вызывает электронную эмиссию катода. Большинство ионов рекомбинирует с электронами и не доходит до катода. Если тлеющий разряд возник, то число ионов, ударяющих в катод в течение одной секунды, таково, что они выбивают столько электронов, сколько их было выбито за предыдущую секунду. Эти вновь выбитые электроны создают в плазме столько же ионов, сколько получалось там в течение предшествующей секунды, и тогда снова определенная часть этих ионов дойдет до катода и выбьет за 1 с прежнее число электронов. Подобный процесс повторяется каждую секунду и обеспечивает существование тлеющего разряда при определенном значении тока.

При возникновении тлеющего разряда появляется свечение газа около катода. С увеличением тока оно усиливается, расширяется и распространяется на всю плазму.

Тлеющий разряд существует при напряжении между электродами не ниже определенного значения. Если напряжение недостаточно, то ионы, ударяя в катод, не выбивают из него электронов. Несамостоятельный темный разряд переходит в самостоятельный тлеющий при напряжении возникновения тлеющего разряда UB, или напряжении зажигания. Последнее название наиболее распространено, хотя и не рекомендуется.

Напряжение возникновения разряда UBзависит от рода газа, его давления, материала электродов и расстояния между ними. При активированном катоде значение UBуменьшается. На рис. 21.2 изображена зависимость напряжения UBот произведения давления газа р на расстояние между электродами d, называемая характеристикой возникновения разряда. Минимальное значение UBminсоответствует произведению pd, которое условно можно назвать оптимальным (наивыгоднейшим). Однако во многих приборах более выгоден иной режим.

Кривую на рис. 21.2 можно объяснить следующим образом. Пусть расстояние dнеизменно. Тогда при очень низком давлении возникновение разряда затруднено тем, что происходит мало столкновений электронов с атомами. Возникает мало ионов, и они не выбивают из катода достаточного числа электронов. Приходится увеличивать напряжение, чтобы ионы набирали значительную скорость и выбивали из катода больше электронов. При более высоком давлении электроны слишком часто сталкиваются с атомами и не набирают энергии, необходимой для ионизации. Образуется мало ионов. Повышение напряжения увеличивает энергию электронов, усиливает ионизацию и приводит к возникновению тлеющего разряда. Как видно, и при малом и при большом давлении напряжение UBнужно повышать, а при некотором среднем давлении достаточно минимального значения UB.

Характеристика возникновения разряда

Рис. 21.2. Характеристика возникновения разряда

Схема для снятия вольт-амперной характеристики газоразрядного прибора

Рис. 21.3. Схема для снятия вольт-амперной характеристики газоразрядного прибора

Если давление газа постоянно, то при очень малом расстоянии между электродами большинство электронов долетает до анода, не сталкиваясь с атомами. Ионов образуется мало, и, чтобы они выбивали достаточно электронов из катода, нужно приложить более высокое напряжение. А при большом расстоянии dснижается напряженность поля. Электроны сталкиваются с атомами на своем пути не один раз, но не набирают энергии, нужной для ионизации. Приходится повысить напряжение, чтобы электроны от одного столкновения до другого проходили разность потенциалов не меньшую, чем напряжение ионизации. Таким образом, при слишком малом и слишком большом расстоянии между электродами напряжение UBнужно увеличивать. При некотором среднем значении dдостаточно наименьшего напряжения UB. Каждый газ имеет свою характеристику возникновения разряда, подобную кривой на рис. 21.2.

Вольт-амперную характеристику тлеющего разряда снимают с помощью схемы на рис. 21.3. В условном графическом обозначении газоразрядных приборов жирная точка показывает наличие газа. Раньше вместо точки делали штриховку. Ионные приборы надо включать последовательно с ограничительным резистором (Rогр). Если его сопротивление очень большое (десятки или сотни мегаом), то при напряжении источника в сотни вольт разряд будет темным, поскольку ток не превысит нескольких микроампер. При значительно меньшем сопротивлении Rогр возникает тлеющий разряд, если напряжение источника не меньше UB.

Дальнейшее уменьшение сопротивления Rогр может перевести разряд в дуговой. Это недопустимо для приборов тлеющего разряда, рассчитанных обычно на ток не выше десятков миллиампер. При возникновении дугового разряда ток возрастает во много раз и прибор выходит из строя. Подключение газоразрядного прибора без резистора Rогр к источнику, обладающему достаточным напряжением и малым внутренним сопротивлением, также приведет к возникновению дугового разряда. Ток будет ограничиваться главным образом только внутренним сопротивлением источника, так как сопротивление газоразрядного прибора при дуговом разряде весьма невелико. Произойдет короткое замыкание источника, ток возрастет очень быстро до недопустимо большого значения, и может произойти разрушение газоразрядного прибора.

В схеме на рис. 21.3 роль ограничительного резистора в известной степени выполняет верхний участок переменного резистора R. Но, чтобы в крайнем положении движка прибор не оказался подключенным непосредственно к источнику, необходимо включить еще резистор Rогр.

Поскольку газоразрядный прибор и резистор Rorp соединяются последовательно, то напряжение Еаравно сумме напряжений на приборе и резисторе:

Еа = Ua + UR.(21.1)

Вольт-амперная характеристика прибора с тлеющим разрядом показана на рис. 21.4. По горизонтальной оси отложен ток, а по вертикальной — напряжение, что дает более наглядное представление об изменении напряжения. Конечно, можно поменять оси, расположив их так, как принято для характеристик электронных ламп.

При увеличении напряжения от нуля возникает очень слабый ток. Это область темного разряда I. Ток темного разряда очень мал, и масштаб для него иной, нежели для остального графика.

Точка А — это точка возникновения тлеющего разряда (точка зажигания). Ей соответствует напряжение UB. Тлеющий разряд возникает, скачком. Минимальный ток, при котором возможен тлеющий разряд, гораздо больше тока темного разряда. Напряжение на приборе также скачком понижается на несколько вольт или даже больше, что объясняется перераспределением напряжения Eа между внутренним сопротивлением прибора постоянному току R0и сопротивлением Rогр.

Вольт-амперная характеристика темного (область I) и тлеющего (области II, III) разряда

Рис. 21.4. Вольт-амперная характеристика темного (область I) и тлеющего (области II, III) разряда

При темном разряде сопротивление R0гораздо больше сопротивления Rогр, которое выбрано таким, чтобы мог возникнуть тлеющий разряд. Практически все напряжение Uа при темном разряде приложено к прибору. На резисторе Rогрнапряжение близко к нулю. С возникновением тлеющего разряда ток резко возрастает и создает на резисторе Rогрзаметное падение напряжения. За счет этого напряжение Uа на приборе понижается. Иначе говоря, после возникновения тлеющего разряда сопротивление R0резко уменьшается и становится соизмеримым с Rогр. Напряжение Uа перераспределяется, и заметная его часть будет падать на Rогр, а Uа соответственно уменьшится. До возникновения разряда Ua≈ Eа, а после возникновения разряда Ua=Eа – ia Rогр. При этом напряжение Eа непосредственно до и после возникновения разряда практически одинаково, так как если Eа почти равно UB, то достаточно самого незначительного увеличения Eа, чтобы возник разряд.

Таким образом, возникновение тлеющего разряда обнаруживается по измерительным приборам характерными скачками тока вверх и напряжения вниз. Возникает также свечение газа около катода. На графике возникновению разряда соответствует участок АБ, который нельзя снять по точкам, а можно только наблюдать с помощью осциллографа.

Иногда при снятии вольт-амперной характеристики за напряжение UBошибочно принимают напряжение в точке Б, которое является рабочим напряжением тлеющего разряда. Величина UBесть наибольшее напряжение, которое удается наблюдать при увеличении напряжения, перед тем как оно скачком уменьшится. А положение точки Б зависит от сопротивления ограничительного резистора. Чем оно меньше, тем больше ток и тем правее расположена точка Б.

После возникновения тлеющего разряда повышение подводимого напряжения Eа сопровождается интересным явлением. Ток растет, а напряжение на приборе увеличивается незначительно, пока ток не превысит значения Imax(точка В). Этот режим называется режимом нормального катодного падения (область II). Для него характерно прохождение тока через часть поверхности катода и свечение газа лишь у этой части. При малом токе только небольшая часть поверхности катода является рабочей. С возрастанием тока площадь рабочей поверхности катода увеличивается пропорционально току, а плотность тока катода остается неизменной. При токе Imax вся поверхность катода становится рабочей и охватывается свечением.

Режим нормального катодного падения используется в стабилитронах. Особенности этого режима следующие. Пусть площадь поверхности катода значительно больше площади поверхности анода и в цепь включен соответствующий ограничительный резистор (рис. 21.5). В этом случае после возникновения разряда устанавливается сравнительно небольшой ток. Тлеющий разряд может быть при условии, что плотность тока на катоде не слишком мала. Только тогда из катода выбивается достаточное число электронов. Разряд сразу не распространяется на всю поверхность катода. Ток проходит только через часть поверхности (заштрихована). При этом плотность тока достаточна и тлеющий разряд существует.

Изменение рабочей площади катода в режиме нормального катодного падения

Рис. 21.5. Изменение рабочей площади катода в режиме нормального катодного падения

Вольт-амперная характеристика стабилитрона

Рис. 21.6. Вольт-амперная характеристика стабилитрона

Падение напряжения на приборе Ua= iaR0. Здесь R0— сопротивление ионизированного газа между анодом и рабочей частью поверхности катода. В данном случае этот своеобразный «проводник» имеет форму конуса. Если увеличить подводимое напряжение, ток возрастет и пропорционально увеличится рабочая площадь катода. Площадь поперечного сечения газового «проводника» станет больше, и сопротивление R0соответственно уменьшится. Таким образом, сопротивление R0уменьшается во столько раз, во сколько увеличивается ток ia, а произведение iaR0остается постоянным (в действительности оно все же немного увеличивается).

Этот режим возможен до тех пор, пока рабочая площадь катода меньше площади его полной поверхности. Когда разряд распространится на всю поверхность катода, то при дальнейшем увеличении напряжения Eа ток возрастает, но площадь катода остается неизменной. В этом режиме увеличение числа электронов, выбиваемых из катода, возможно только за счет увеличения энергии ионов, бомбардирующих катод. А для этого необходимо повышение напряжения. Плотность тока катода растет. Сопротивление R0уже не уменьшается пропорционально току, и произведение iaR0, т. е. падение напряжения на приборе, увеличивается. Наступает режим аномального катодного падения (см. область IIIна рис. 21.4).

Все же сопротивление R0несколько уменьшается при возрастании тока, так как растет число ионов и электронов в единице объема газа. Но это уменьшение не такое сильное, как в режиме нормального катодного падения, поэтому напряжение Uа увеличивается. Усиливается также яркость свечения газа, и оно распространяется все больше на обларть плазмы. В режиме аномального катодного падения работают газосветные лампы и различные ионные индикаторные приборы.

Если продолжать увеличивать подводимое напряжение, ток и напряжение будут расти и в конце концов скачком возникнет дуговой разряд, который недопустим для приборов тлеющего разряда.

Стабилитроны

Стабилитроны — приборы тлеющего и коронного разряда. Наиболее распространены стабилитроны тлеющего разряда, работающие, в режиме нормального катодного падения. В последнее время они все чаще заменяются полупроводниковыми стабилитронами.

Поскольку темный разряд, предшествующий тлеющему, не используется, его не показывают на вольтамперной характеристике стабилитрона (рис. 21.6). Точку возникновения разряда А отмечают на вертикальной оси. К тому же миллиамперметр для измерения тока тлеющего разряда не покажет ничтожно малого тока темного разряда.

Стабилитроны тлеющего (а) и коронного (б) разряда

Рис. 21.7. Стабилитроны тлеющего (а) и коронного (б) разряда

Область нормального катодного падения, пригодная для стабилизации, ограничена минимальным током Imin и максимальным Imax. При токе, меньшем Imin, разряд может прекратиться. Ток Imax либо соответствует началу режима аномального катодного падения, либо при нем достигается предельная мощность.

Скачок тока при возникновении разряда может быть различным в зависимости от сопротивления Rorp. Если оно большое, то появляется сравнительно небольшой ток, а если малое, то возникает большой ток и точка Б перемещается к точке В. Для режима стабилизации это невыгодно, так как участок стабилизации напряжения БВ сокращается. При малом сопротивлении Rorpможет даже произойти скачок тока в область аномального катодного падения и стабилизации вообще не получится. Таким образом, ограничительный резистор с достаточным сопротивлением необходим по двум причинам: чтобы не произошло чрезмерного возрастания тока и чтобы мог существовать режим стабилизации напряжения.

Чем больше площадь катода, тем больше участок стабилизации БВ, так как ток Imin остается неизменным, а ток Imax возрастает пропорционально площади катода. Поэтому у стабилитронов катод с большой площадью поверхности. Анод делают малых размеров, но он, конечно, не должен перегреваться от тока Imax.

Наиболее распространены двухэлектродные стабилитроны с цилиндрическим катодом из никеля или стали. Анодом служит проволочка диаметром

1,0—1,5 мм (рис. 21.7,а). Баллон наполнен смесью инертных газов (неон, аргон и гелий) под давлением в тысячи паскалей (десятки миллиметров ртутного столба).

Основные параметры стабилитрона: нормальное рабочее напряжение, или напряжение стабилизации Uст, соответствующее средней точке участка стабилизации (см. рис. 21.6), напряжение возникновения разряда UB, минимальный и максимальный ток Imin и Imax, изменение напряжения стабилизации ΔUсти внутреннее сопротивление переменному току Ri. Если требуется пониженное напряжение Uст, то поверхность катода с внутренней стороны активируется, чтобы облегчить эмиссию электронов под ударами ионов. Применяя разные смеси газов, подбирают нужное значение Uст. Напряжение UB обычно превышает напряжение Uст не более чем на 20 В. Для снижения напряжения UB на внутренней поверхности катода имеется проводник (он показан на рис. 21.7, а), уменьшающий расстояние между катодом и анодом. Без него стабилитрон работал бы на восходящей (правой) части характеристики возникновения разряда (см. рис. 21.2).

В пределах области стабилизации напряжение Uстизменяется на значение ΔUст, которое не превышает 2 В. Работа стабилитрона с током выше Imax не рекомендуется, так как ухудшается стабилизация и электроды перегреваются. Внутреннее сопротивление стабилитрона переменному току (дифференциальное сопротивление) Ri= Δua/Δia и значительно меньше сопротивления постоянному току R0. Если бы стабилизация была идеальной (Uст= const), то сопротивление Riбыло бы равно нулю.

У отечественных стабилитронов напряжение стабилизации бывает от 75 В до нескольких сотен вольт, ток Iminобычно 3 — 5 мА, а Imax — несколько десятков миллиампер.

Схема включения стабилитрона

Рис. 21.8. Схема включения стабилитрона

Для стабилитронов коронного разряда характерны высокие напряжения и малые токи. У таких стабилитронов (рис. 21.7,6) электроды цилиндрической формы из никеля. Баллон наполнен водородом, причем напряжение стабилизации зависит от давления газа, которое обычно составляет тысячи паскалей (десятки миллиметров ртутного столба). Напряжение Uстпри этом несколько сотен вольт. Рабочие токи в пределах 3 — 100 мкА. Внутреннее сопротивление переменному току сотни килоом. Процесс возникновения разряда длится 15 — 30 с. В последнее время выпущены стабилитроны коронного разряда, оформленные в керамических баллонах, на напряжение в десятки киловольт.

Стабилитрон соединяют параллельно с нагрузкой RH, а последовательно включают резистор Rогр(рис. 21.8). Нагрузкой является тот или иной потребитель (например, анодные цепи и цепи экранных сеток какого-либо усилителя и т. д.), который нужно питать стабильным напряжением. Напряжение источника Е должно быть выше напряжения стабилизации Uст и достаточным для возникновения разряда в стабилитроне. Чем выше напряжение Е, тем выше должно быть сопротивление Rогр, и тогда стабилизация сохраняется при изменении напряжения Е в более широких пределах. Но при большем ограничительном сопротивлении КПД схемы снижается, так как потери мощности в стабилитроне и резисторе Rогр могут оказаться выше полезной мощности потребителя. Поэтому стабилитроны применяют только для установок небольшой мощности, в которых снижение КПД не так важно, как в мощных установках.

Стабилитроны наиболее часто работают в режиме, когда сопротивление нагрузки неизменно (RH= const), а напряжение источника нестабильно (Е = var). В этом случае происходит следующее. Когда напряжение источника повышается, то увеличивается ток стабилитрона и почти все изменение напряжения приходится на долю резистора Rогр. Напряжение на стабилитроне и на нагрузке почти постоянно (лишь незначительно возрастает), если изменение тока стабилитрона не выходит за пределы режима нормального катодного падения. Расчет сопротивления Rогрделают по закону Ома. Если напряжение Е изменяется в обе стороны от среднего значения Еср, то

Rогр = (Еср - Uст )/(Iср + IН), (21.2)

где Iср — средний ток стабилитрона, равный 0,5 (Imin + Imax), a IН - ток нагрузки, IН = Uст/ RH.

Значение Еср определяется по максимальному и минимальному напряжению источника как

Еср = 0,5(Еmin + Еmax). (21.3)

После расчета Rогр следует проверить, сохранится ли стабилизация при изменении напряжения от Еmin до Еmax. Это делается следующим образом.

При изменении тока стабилитрона от Imin до Imax напряжение на Rогр изменяется на ΔE = Rогр(Imax - Imin). Стабилизация возможна при изменении Е не более чем на ΔE. Если ΔE < Еmax - Еmin, то стабилизация будет не во всем диапазоне изменения Е, а только в части его, причем эта часть тем меньше, чем меньше АЕ.

Поскольку Imax и Imin для данного стабилитрона постоянны, то значение АЕ пропорционально Rогр. Но значение Rогр тем больше, чем больше разница между Е и Uст и чем меньше IН. Таким образом, стабилизация в более широких пределах возможна при более высоком напряжении источника и более низком токе нагрузки. Однако при этом снижается КПД.

Если ток нагрузки большой, то сопротивление Rогрмало и стабилизация происходит в очень узких пределах изменения напряжения Е, что невыгодно. Поэтому имеет смысл применять стабилитроны при токах IН, не превышающих значительно ток Imax.

Схема понижения стабильного напряжения с помощью добавочного резистора

Рис. 21.9. Схема понижения стабильного напряжения с помощью добавочного резистора

Каскадное включение стабилитронов

Рис. 21.10. Каскадное включение стабилитронов

Для стабилизации более высоких напряжений стабилитроны соединяют последовательно, обычно не более двух-трех. Они могут быть на разные напряжения, но должны иметь одинаковые токи Imin и Imax. Соединенные последовательно стабилитроны используются в качестве делителя, дающего различные стабильные напряжения. Потребители подключаются к одному или нескольким стабилитронам. Например, от трех стабилитронов на 75 В можно получать напряжения 75, 150 и 225 В. Иногда напряжение на потребителе должно отличаться от стандартных напряжений стабилитронов 75, 105, 150 В и так далее или от комбинаций этих напряжений. Тогда включают стабилитрон (или несколько стабилитронов) на ближайшее большее напряжение и поглощают излишек напряжения в добавочном резисторе Rдоб, включенном последовательно с резистором RH(рис. 21.9). Например, если требуется получить стабильное напряжение 120 В при токе IH = 10 мА, то берут стабилитрон на 150 В, а излишек напряжения 30 В гасят в резисторе сопротивлением Rдоб = 30:10 = 3 кОм.

Параллельное соединение стабилитронов не применяется, так как различные экземпляры стабилитронов данного типа не имеют одинаковых напряжений UB и Uст. При подаче напряжения на параллельно соединенные стабилитроны разряд возникает, лишь в том, у которого напряжение UB наименьшее. Напряжение на нем скачком понижается, и в остальных стабилитронах разряда не будет. Если бы Он даже и возник, то вследствие различия напряжений стабилизации одни из стабилитронов работали бы с недогрузкой, другие — с перегрузкой. Возможно даже, что какой-то стабилитрон работал бы в режиме аномального катодного падения. Он не будет участвовать в стабилизации, а станет дополнительной бесполезной нагрузкой и уменьшит пределы стабилизации по напряжению. Конечно, можно подобрать близкие по параметрам стабилитроны, но это сложно и ненадежно, так как с течением времени их параметры меняются.

Эффективность стабилизации оценивают коэффициентом стабилизации kст. Он показывает, во сколько раз относительное изменение напряжения стабилитрона ΔUст/Uстменьше относительного изменения напряжения источника ΔЕ/Е, т. е.

kст = (ΔЕ/Е) / (ΔUст/Uст) (21.4)

Стабилитрон обеспечивает kст = 10 … 20. Например, если kст= 10, Е = 200 В и Uст = 75 В, то при изменении напряжения источника на ΔЕ = 40 В, т. е. на 20%, напряжение стабилитрона изменится только на 1,5 В, т. е. на 2%.

Коэффициент стабилизации увеличивается при каскадном соединении стабилитронов (рис. 21.10). В схеме напряжение первого стабилитрона Л1подается через ограничительный резистор Rогр2 на второй стабилитрон Л2, параллельно которому присоединен потребитель. Если коэффициенты стабилизации стабилитронов kст1 и kст2, то общий коэффициент стабилизации

kст= kст1 kст2 (21.5)

При двух стабилитронах получается коэффициент kст от 100 до 400. Недостаток схемы — снижение КПД, так как потери будут в двух стабилитронах и двух ограничительных резисторах. Более двух стабилитронов обычно не включают. Стабилитрон Л2 должен быть рассчитан на более низкое напряжение, нежели Л1. Напряжение Uст1можно считать постоянным и вести расчет сопротивления Rогр2на ток стабилитрона Л2, лишь немного превышающий минимальный.

Стабилитроны также применяют для стабилизации напряжения при изменяющемся сопротивлении нагрузки и постоянном напряжении источника Е. Расчет сопротивления Rогрв этом случае проводится описанным методом. Если ток IН меняется от минимального значения IНmin, соответствующего RНmax , до максимального значения IНmax, соответствующего RНmin, то

Rогр = (Е - Uст)/( Iср + IНср), (21.6)

где Iср — средний ток стабилитрона, а IНср — средний ток нагрузки,

IНср = 0,5 (IНmin + IНmax). (21.7)

В этом режиме общий ток перераспределяется между стабилитроном и нагрузкой. Например, если ток нагрузки возрастает, то ток стабилитрона почти на столько же уменьшается, а напряжение Uсти общий ток почти постоянны. Следовательно, и падение напряжения на ограничительном резисторе Rогризменяется незначительно. Так и должно быть, поскольку Uст + Ur= Е = const.

Конечно, стабилизация возможна при токе стабилитрона в пределах от Imin до Imax. Изменение тока нагрузки не должно превышать наибольшее изменение тока стабилитрона, т. е. условием стабилизации является неравенство

IНmax-IНmin ≤ Imax - Imin (21.8)

Стабилитрон имеет различное внутреннее сопротивление постоянному и переменному току. Кроме того, значение R0в зависимости от тока меняется от единиц до десятков килоом. Например, у стабилитрона, имеющего Uст = 150В, Imax =30 мА и Imin = 5 мА, сопротивление R0меняется от 5 до 30 кОм. А внутреннее сопротивление переменному току Riзначительно меньше. Пусть, например, для того же стабилитрона при изменении тока от 5 до 30 мА напряжение Uстменяется на 2,5 В. Тогда

Ri= ΔUст/ΔI = 2,5/25 =0,1 кОм.

Для переменного тока стабилитрон эквивалентен конденсатору большой емкости (при частоте 50 Гц сопротивление 0,1 кОм соответствует емкости 32 мкФ). Поэтому в выпрямителях стабилитроны обеспечивают дополнительное сглаживание пульсаций.

Тиратроны тлеющего разряда

Широкое применение получили тиратроны тлеющего разряда (тиратроны с холодным катодом) с тремя или более электродами. Они используются в автоматике, в релейных и счетных схемах, а также в импульсных генераторах и других устройствах. Название «тиратрон» происходит от слова «электрон» и греческого слова thyra (дверь), подчеркивающего возможность «открывания» (отпирания) тиратрона с помощью сетки.

В трех электродных тиратронах тлеющего разряда между анодом и катодом расположен третий электрод, называемый сеткой или пусковым электродом. Сетка в тиратроне обладает более ограниченным действием, нежели в электронных электровакуумных триодах. В последних, изменяя напряжение сетки, можно полностью управлять анодным током, т. е. регулировать его от нуля до максимального значения. А в тиратроне с помощью сетки можно только отпирать тиратрон, но нельзя изменять анодный ток. После возникновения разряда сетка теряет управляющее действие. Прекратить разряд в тиратроне можно только понижением анодного напряжения до значения, при котором разряд не сможет существовать, или разрывом анодной цепи.

На рис. 21.11 показано устройство одного из тиратронов тлеющего разряда. Расстояния между электродами и давление газа подбираются так, что между сеткой и катодом возникает самостоятельный темный разряд при более низком напряжении, чем напряжение между анодом и катодом. А затем может возникнуть тлеющий разряд между катодом и анодом, если напряжение анода будет достаточным. При этом ток сетки составляет единицы или десятки микроампер, а ток анода может быть в тысячи раз большим (единицы или десятки миллиампер). Напряжение возникновения разряда в анодной цепи UВ тем ниже, чем больше ток сетки ig. Это объясняется тем, что с ростом тока сетки в промежутке сетка — катод увеличивается количество ионов и электронов и облегчается возникновение разряда в анодной цепи.

Устройство и пусковая характеристика тиратрона тлеющего разряда 1 — вторая сетка; 2 — анод; 3 — катод; 4 — первая сетка

Рис. 21.11. Устройство и пусковая характеристика тиратрона тлеющего разряда 1 — вторая сетка; 2 — анод; 3 — катод; 4 — первая сетка

Зависимость напряжения UВ от тока igназывается пусковой характеристикой. При отсутствии тока сетки напряжение возникновения разряда максимально. Увеличение тока igвызывает снижение напряжения UВ, сначала резкое, а затем медленное. Однако значение UВ не может быть меньше рабочего напряжения Upaб, необходимого для поддержания тлеющего разряда между анодом и катодом. Пусковая характеристика зависит от рода газа, его давления, формы и состояния поверхности электродов.

Потеря сеткой управляющего действия после возникновения разряда в анодной цепи объясняется тем, что сетка окружена плазмой — с большим количеством электронов и ионов. Положительно заряженная сетка притягивает из плазмы электроны, которые образуют около поверхности сетки отрицательно заряженный слой (электронную оболочку), нейтрализующий действие положительного заряда сетки (рис. 21.12, а). Если увеличить, или уменьшить положительное напряжение сетки, то она притянет к себе из плазмы больше или меньше электронов и по-прежнему действие ее заряда будет нейтрализоваться соответственно изменившимся зарядом электронной оболочки. А если дать на сетку отрицательное напряжение, то она притянет из плазмы положительные ионы, которые создадут вокруг нее положительно заряженный слой (ионную оболочку),нейтрализующий действие отрицательного заряда сетки (рис. 21.12, б).

Электронная (или ионная) оболочка сетки находится в динамическом состоянии. Так, например, ионы, коснувшись отрицательно заряженной сетки, отнимают от нее электроны и превращаются в нейтральные атомы, но на смену им к сетке притягиваются из плазмы новые ионы. Если увеличить отрицательное напряжение сетки, то она притянет больше ионов. Заряд ионной оболочки увеличивается и снова полностью компенсирует действие отрицательного заряда сетки. Иначе можно сказать, что поле, создаваемое зарядом сетки, сосредоточено между сеткой и ее ионной (или электронной) оболочкой, как между обкладками конденсатора. Это поле не проникает через оболочку, поэтому не может влиять на ток анода.

Электронная и ионная оболочка сетки

Рис. 21.12. Электронная и ионная оболочка сетки

Включение тиратрона тлеющего разряда в качестве реле

Рис. 21.13. Включение тиратрона тлеющего разряда в качестве реле

Схема и график работы генератора пилообразного напряжения с тиратроном

Рис. 21.14. Схема и график работы генератора пилообразного напряжения с тиратроном

Схема включения тиратрона тлеющего разряда в качестве реле показана на рис. 21.13. Напряжение анодного источника Еaдолжно быть меньше UВmax а напряжение Еg— меньше того, которое необходимо для возникновения разряда в промежутке сетка — катод. Резистор Rgограничивает сеточный ток и поэтому увеличивает входное сопротивление схемы для источника импульсов, отпирающих тиратрон. Когда положительный импульс напряжения, достаточный для отпирания, поступает на сетку, то возникает разряд на участке сетка — катод. Если при этом получается необходимый ток сетки, то разряд переходит и на анод. Следовательно, импульс напряжения и тока от маломощного генератора в цепи сетки вызывает значительный ток в нагрузке RH, включенной в анодную цепь.

Ряд тиратронов тлеющего разряда выпускается с двумя сетками. В таких тиратронах управляющей является вторая сетка, более удаленная от катода. На первую сетку подается постоянное положительное напряжение, и в цепи этой сетки все время существует очень небольшой ток (единицы или десятки микроампер) так называемого подготовительного разряда. На второй сетке постоянное положительное напряжение ниже, чем на первой. Поэтому тормозящее поле между сетками не допускает электроны к аноду. При подаче импульса дополнительного напряжения на вторую сетку тиратрон отпирается, т. е. электроны проникают сквозь вторую сетку, и в цепи анода возникает тлеющий разряд.

Наши отечественные тиратроны тлеющего разряда, как правило, имеют сверхминиатюрное оформление и наполнены неоном, или аргоном, или неоно-аргоновой смесью. Они могут работать при температуре окружающей среды от — 60 до +100° С. Их долговечность составляет несколько тысяч часов. Рабочие напряжения сеток и анода десятки — сотни вольт. Время восстановления управляющего действия сетки после прекращения анодного тока зависит от длительности деионизации и обычно составляет десятки или сотни микросекунд.

В качестве примера применения тиратрона рассмотрим простейшую схему тиратронного генератора пилообразного напряжения (рис. 21.14, а). От источника анодного питания Eа через резистор Rзаряжается конденсатор С. Параллельно конденсатору включен тиратрон Л. Во время заряда конденсатора напряжение на нем растет, и когда оно достигает напряжения возникновения разряда UВ, то тиратрон отпирается и начинает проводить ток. Сопротивление его становится сравнительно малым, и конденсатор быстро разряжается через тиратрон. Напряжение понижается до напряжения прекращения разряда UП. Как только разряд в тиратроне прекратится, снова начнется сравнительно медленный заряд конденсатора через резистор, сопротивление которого значительно больше сопротивления открытого тиратрона, и весь процесс будет повторяться.

Вольт-амперная характеристика и условное графическое обозначение неоновой лампы

Рис. 21.15. Вольт-амперная характеристика и условное графическое обозначение неоновой лампы

График пилообразного напряжения, получающегося на аноде тиратрона и на конденсаторе, показан на рис. 21.14,6. Так как напряжение UПу тиратронов невелико, а напряжение UВ достигает сотен вольт, то подобный генератор может выдавать пилообразное напряжение с большой амплитудой. Чем больше сопротивление Rи емкость С, тем медленнее происходит заряд и тем ниже частота. Кроме того, если увеличить положительное напряжение сетки тиратрона, то понизится напряжение UВ и это вызовет уменьшение амплитуды и повышение частоты.

Индикаторные приборы

В современной РЭА широко применяются различные индикаторные приборы, в частности так называемые знаковые и цифровые индикаторы. Некоторые из них относятся к газоразрядным приборам тлеющего разряда, но существуют и электронные электровакуумные индикаторы. Разработаны и используются также полупроводниковые индикаторные приборы.

Неоновые лампы применяются в качестве индикаторов напряжения и для других целей. Они представляют собой приборы тлеющего разряда, работающие в режиме аномального катодного падения обязательно с ограничительным резистором Rогр.

Вольт-амперная характеристика приведена на рис. 21.15. При возникновении разряда (точка А)происходит скачок тока и напряжения и начинается свечение. Дальнейшее повышение напряжения вызывает повышение тока. При этом увеличивается плотность тока катода и яркость свечения. Характерно то, что при уменьшении напряжения кривая пойдет выше, чем при увеличении. Разряд прекращается при более низком напряжении, нежели возникает (UП<UВ). В момент прекращения разряда ток скачком уменьшается до нуля, а напряжение скачком повышается, поскольку падение напряжения на резисторе Rогрскачком уменьшается до нуля и подводимое к цепи напряжение перераспределяется. Экспериментально напряжение UПизмеряют как наиболее низкое напряжение при наличии тока и свечения в лампе (перед прекращением разряда).

Разница между напряжениями UПи UВхарактерна для всех газоразрядных приборов, в частности для стабилитронов. У неоновых ламп напряжение UПна несколько единиц или десятков вольт ниже, чем напряжение UB. Это объясняется тем, что перед возникновением разряда газ неионизирован. А перед прекращением разряда газ ионизирован, и разряд существует при более низком напряжении.

Неоновая лампа применяется в качестве индикатора постоянного и переменного напряжения. При переменном напряжении разряд возникает в момент, когда мгновенное значение напряжения становится равным напряжению UB.

Промышленность выпускает много различных неоновых ламп. Напряжение UBу них может быть 50 — 200 В, а иногда и выше. Рабочий ток при нормальном свечении — от десятых долей миллиампера до десятков миллиампер.

Включение управляемой индикаторной лампы

Рис. 21.16. Включение управляемой индикаторной лампы

Варианты устройства (а, б) и условное графическое обозначение(в) знакового индикатора тлеющего разряда

Рис. 21.17. Варианты устройства (а, б) и условное графическое обозначение(в) знакового индикатора тлеющего разряда

Знаковый накальный вакуумный индикатор

Рис. 21.18. Знаковый накальный вакуумный индикатор

Значительный интерес представляет управляемая трехэлектродная индикаторная лампа, имеющая анод и два катода: индикаторный и вспомогательный, расположенные внутри анода. Через купол баллона можно видеть свечение газа только около индикаторного катода. Индикаторный катод ИК подключен к минусу источника через резистор R, а вспомогательный катод ВК непосредственно (рис. 21.16). Когда на лампу подано только напряжение от анодного источника, работает вспомогательный катод. Так как он заслонен анодом, то свечения газа не видно. Пусть теперь на резистор в цепи индикаторного свечения катода подано дополнительное управляющее напряжение в несколько единиц вольт с такой полярностью, чтобы оно суммировалось с напряжением анодного источника. Тогда напряжение между анодом и индикаторным катодом возрастает, разряд перебрасывается на этот катод и лампа дает видимое свечение. Если же дополнительное напряжение, подаваемое на резистор, снять, то разряд снова будет только между анодом и вспомогательным катодом. Свечение газа у индикаторного катода прекращается.

Знаковые индикаторы тлеющего разряда широко распространены. Принцип устройства их показан на рис. 21.17. В баллоне с неоном находятся катоды, выгнутые из проволоки в виде цифр или других знаков и расположенные один за другим. На рис. 21.17, а приведены для упрощения лишь первые два катода в виде цифр 1 и 2. В цифровых индикаторах имеется 10 катодов в виде цифр от 0 до 9. Анод обычно сделан из проволочной сетки. При подаче напряжения между анодом и одним из катодов возникает свечение газа (около катода), т. е. виден светящийся знак. Толщина светящейся линии примерно 1 — 2 мм. Выпускаются подобные индикаторы с так называемыми сегментными катодами, синтезирующими изображение (рис. 21.17,6). Включение этих катодов в той или иной комбинации дает светящееся изображение цифры или какого-то другого знака. В настоящее время выпускается много типов подобных индикаторов на различные знаки.

Знаковые накалъные вакуумные индикаторы дают синтезированное изображение в виде цифр или букв, составленное из накаленных проволочек (рис. 21.18). В баллоне с вакуумом на теплостойкой изоляционной плате расположены вольфрамовые проволочки (нити накала). Один вывод у них делается общий. Подключение к источнику накала той или иной комбинации проволочек дает светящееся изображение цифры или буквы. Свечение желтого цвета соответствует рабочей температуре примерно 1200° С. Долговечность составляет десятки тысяч часов.

Вакуумные люминесцентные индикаторы представляют собой многоанодные триоды, имеющие оксидный катод прямого накала, сетку и аноды-сегменты, покрытые люминофором. Возможное расположение анодов для получения синтезированных знаков показано на рис. 21.19. Включение нескольких анодов в определенной комбинации дает светящийся знак большей частью зеленого цвета.

Вакуумный люминесцентный индикатор и его условное графическое обозначение

Рис. 21.19. Вакуумный люминесцентный индикатор и его условное графическое обозначение

Электролюминесцентные индикаторы (ЭЛИ) предназначены для отображения различной информации в системах управления и контроля. В них используется явление электролюминесценции, состоящее в том, что некоторые вещества способны излучать свет под действием электрического поля. По устройству ЭЛИ представляет собой плоский конденсатор (рис. 21.20). На металлический электрод 4 нанесен слой диэлектрика 3 — органической смолы с люминесцирующим порошкам, основу которого обычно составляет сульфид или селенид цинка. Добавление к люминофору активаторов позволяет получать различный цвет свечения: зеленый, голубой, желтый, красный, белый. Сверху люминесцирующий слой покрыт электропроводящей прозрачной пленкой 2. Для предохранения от внешних воздействий служит стеклянная пластинка 1. Если к электродам 4 и 2 приложить переменное напряжение, то под действием электрического поля в слое 3 возникает свечение.

Прозрачный электрод 2 обычно сделан из оксида олова и является сплошным, а электрод 4 имеет форму цифр, или букв, или сегментов для получения синтезированных знаков или геометрических фигур. Электрод 4 может быть растровым, состоящим из ряда полос, или матричным — с большим числом точечных элементов. Индикаторы эти бывают различных типов и размеров, дают светящееся изображение на темном фоне или темное изображение на светящемся фоне, могут быть одноцветными или многоцветными.

Принцип устройства ЭЛИ

Рис. 21.20. Принцип устройства ЭЛИ

Наиболее распространены буквенноцифровые сегментные индикаторы. Для изображения цифр они имеют от 7 до 9 сегментов, а индикаторы с 19 сегментами позволяют высвечивать все цифры и буквы русского и латинского алфавита. Обычно ЭЛИ оформляются в пластмассовых корпусах. Для питания их применяется переменное синусоидальное напряжение 220 В частотой от 400 до 1200 Гц. Линейные размеры высвечиваемых знаков могут быть от единиц до десятков миллиметров, и в зависимости от этого потребляется ток от десятых долей миллиампера до десятков миллиампер. Срок службы ЭЛИ составляет несколько тысяч часов. Рабочая температура окружающей среды допускается обычно от -40 до +50°С Несомненное достоинство ЭЛИ — малое потребление мощности при относительно высокой яркости изображения, плоская конструкция, высокая механическая прочность, большой срок службы. Недостаток, как и у многих других индикаторов, - необходимость применения довольно сложных систем управления.

Принцип устройства и работы ЖКИ

Рис. 21.21. Принцип устройства и работы ЖКИ

Жидко-кристаллические индикаторы (ЖКИ) основаны на использовании так называемых жидких кристаллов (ЖК), открытых еще в прошлом веке и представляющих собой некоторые органические жидкости с упорядоченным расположением молекул, характерным для кристаллов. В настоящее время известно большое число жидко-кристаллических веществ и они изучены достаточно хорошо. Жидкие кристаллы прозрачны для световых лучей, но под действием электрического поля напряженностью 2 — 5 кВ/см структура их нарушается, молекулы располагаются беспорядочно и жидкость становится непрозрачной. Эти индикаторы могут иметь различные конструкции и работать либо в проходящем свете, созданном каким-либо специальным источником, либо в свете любого источника (искусственного или естественного), отражающемся в индикаторе. Рассмотрим этот последний, наиболее распространенный тип ЖКИ (рис. 21.21). Индикаторы такого типа применяются в наручных электронных часах, микрокалькуляторах и других устройствах. Между двумя стеклянными пластинками 1 и 3, склеенными с помощью полимерной смолы 2, находится слой жидкого кристалла 4 толщиной 10 — 20 мкм. Пластинка 3 покрыта сплошным проводящим слоем (электрод 5) с зеркальной поверхностью. На пластинку 1 нанесены прозрачные слои — электроды А, Б, В,.... от которых сделаны выводы, не показанные на рисунке. Эти электроды имеют форму цифр, или букв, или сегментов для синтезирования различных знаков. Если на знаковые электроды напряжение не подано, то ЖК прозрачен, световые лучи внешнего естественного освещения проходят через него, отражаются от электрода 5, выходят обратно и никаких знаков не видно. Но если на какой-то электрод, например А, подано напряжение, то ЖК под этим электродом становится непрозрачным, лучи света не проходят через эту часть жидкости (6), и тогда на светлом фоне виден темный знак.

Жидко-кристаллические индикаторы весьма экономичны. Ток, потребляемый для воспроизведения одного знака, не превышает 1 мкА. Долговечность ЖКИ составляет десятки тысяч часов. Недостаток этих индикаторов — низкое быстродействие. Время появления или исчезновения знака, т. е. время перехода молекул ЖК из упорядоченного расположения в беспорядочное или обратно, доходит до 200 мс. Для управления ЖКИ применяются довольно сложные устройства, обычно на основе интегральных микросхем.

Помимо рассмотренных индикаторных приборов простейшего типа разработаны и выпускаются еще и другие, более сложные.

Дисплеи

Дисплеи — это оконечные устройства информационных систем, служащие для визуального изображения информации и связи человека с машиной. Широко применяются дисплеи малого размера, например в электронных часах или микрокалькуляторах, и дисплеи большого размера. Различные типы дисплеев основаны на использовании разнообразных физических и химических явлений.

Все дисплеи можно разделить на две большие группы: излучающие свет и модулирующие свет.

Светоизлучающий дисплей должен давать свечение достаточной яркости. Особенно большая яркость необходима, если дисплей применяется при солнечном освещении. Важен цвет свечения: человеческий глаз наиболее чувствителен к желтому и желто-зеленому цвету. Изображение должно быть контрастным. Чем больше отношение максимальной яркости к минимальной, тем выше контрастность. Желательна широкая диаграмма направленности дисплея, т. е. возможность хорошей видимости изображения под разным углом зрения.

Для управления работой дисплея применяются токи и напряжения различного вида и амплитуды. Всегда желательна возможно меньшая потребляемая мощность. Дисплеи, работающие с устройством на интегральных схемах, должны питаться напряжением не более 30 В. У дисплеев большого размера, потребляющих значительную мощность, важен более высокий КПД. Высокое быстродействие не требуется для дисплеев, так как человеческий глаз не может различать изменения, происходящие быстрее чем за 0,1 с. Разрешающая способность дисплея оценивается минимальным размером наблюдаемого элемента. Это может быть квадрат со стороной не менее 50 мкм. У многих дисплеев этот элемент больше, причем он зависит от яркости и расстояния от дисплея до наблюдателя.

Некоторые типы дисплеев обладают «памятью», т. е. могут сохранять изображение без потребления или с малым потреблением энергии.

Рассмотрим теперь основные типы светоизлучающих дисплеев.

В электронно-лучевых дисплеях используются электронно-лучевые трубки.

Дисплеи на светоизлучающих диодах, как правило, имеют небольшие (несколько сантиметров) линейные размеры и низкое (не более 5 В) напряжение питания.

Дисплеи на газоразрядных элементах, иначе плазменные, имеют две взаимно перпендикулярные системы электродов в виде проводящих полос. Между электродами инертный газ — неон, или ксенон, или смесь газов. Такие системы иногда называют еще газоразрядными индикаторными панелями (ГИП). Дисплеи с электродами в виде полос могут иметь различное число электродов, например 512 горизонтальных и столько же вертикальных. Разрешающая способность характеризуется числом линий (обычно две-три) на 1 мм. Возможно также применение точечных электродов.

Неон дает оранжевое свечение. Иногда на подложку, на которой расположены электроды, наносят люминофор, дающий свечение другого цвета. Питание этих дисплеев возможно постоянным или переменным током.

Электролюминесцентные дисплеи составлены из электролюминесцентных индикаторов (ЭЛИ).

Рассмотрим основные типы светомодулирующих дисплеев.

Жидкокристаллическиедисплеи

(ЖКД) потребляют малую мощность, дают хорошую видимость изображения даже при высоком уровне внешней освещенности, имеют низкую стоимость, бывают малого (например, в часах) и большого размера.

Электрохромные дисплеи (ЭХД) основаны на использовании электрохромного эффекта, который заключается в том, что некоторые вещества под действием электрического поля или при прохождении тока изменяют свой цвет. В качестве электрохромного вещества чаще всего применяют триоксид вольфрама WO3. Его пленка под напряжением приобретает синий цвет. Для этого требуется напряжение всего лишь 0,5 — 1,5 В. При перемене полярности напряжения пленка приобретает исходный цвет. Эти дисплеи потребляют небольшую мощность и обладают «памятью», т. е. сохраняют цветное изображение некоторое время (минуты и даже часы) без потребления мощности. Так как ЭХД на WO3 имеют ряд недостатков, в частности невысокое быстродействие и небольшой срок службы, то ведутся разработки таких дисплеев на других веществах.

Электрофорезные дисплеи (ЭФД) основаны на явлении электрофореза, который состоит в том, что под действием электрического поля в жидкости перемещаются взвешенные частицы (например, частицы пигмента в окрашенной жидкости), притягиваясь к какому-то электроду или отталкиваясь от электрода в зависимости от знака потенциала. Жидкость выбирается с хорошими диэлектрическими свойствами для уменьшения потребляемого тока. Пигмент выбирается по цвету резко отличным от жидкости. Напряжение для ЭФД составляет десятки вольт. Срок службы может достигать десятков тысяч часов. В течение этого срока могут происходить десятки миллионов переключений. Быстродействие ЭФД невысокое.

Краткие сведения о различных газоразрядных приборах

Помимо рассмотренных газоразрядных приборов в РЭА встречаются и некоторые другие. Так, например, для счета импульсов предназначены приборы тлеющего разряда декатроны с большим числом катодов, расположенных по окружности. Приходящие импульсы переводят разряд с одного катода на следующий. По свечению одного из десяти индикаторных катодов определяется число импульсов. Каскадное включение нескольких декатронов позволяет отсчитывать не только единицы импульсов, но также десятки, сотни, тысячи и т. д. Это достигается тем, что при разряде около десятого катода декатрона, считающего единицы импульсов, передается импульс на следующий декатрон, считающий десятки импульсов, и возникает свечение на первом катоде, и т. д. В настоящее время счетные устройства с цифровыми индикаторами вытеснили декатроны.

Среди приборов дугового разряда следует отметить газотроны, представляющие собой мощные диоды с термоэлектронным катодом, наполненные инертным газом или парами ртути. Они предназначены для выпрямления высоких напряжений и больших токов, причем падение напряжения на самих газотронах всего лишь 10—30 В. В качестве мощных выпрямителей служат также ртутные вентили и экситроны с одним или несколькими анодами, имеющие жидкий ртутный катод с электростатической эмиссией. Более совершенные ртутные вентили — игнитроны имеют также ртутный катод и дополнительный пусковой электрод, облегчающий возникновение дугового разряда.

Широко применялись для выпрямления, в схемах автоматики и во многих других устройствах тиратроны дугового разряда. Это газонаполненные триоды с термоэлектронным катодом. У них, так же как и у тиратронов тлеющего разряда, сетка теряет свое управляющее действие после возникновения дугового разряда, т. е. она может только удерживать тиратрон в запертом состоянии и отпирать его. В некоторых тиратронах имеется еще экранирующая сетка. Изменяя напряжение на ней, можно изменять напряжение возникновения разряда. На тиратронах дугового разряда работают управляемые выпрямители, в которых выпрямленное напряжение регулируется изменением напряжения управляющих сеток тиратронов. Расход мощности на процесс управления в цепях этих сеток очень небольшой, и за счет этого получается высокий КПД. Специальные импульсные тиратроны дугового разряда служат для получения кратковременных импульсов большой мощности.

Одна из разновидностей тиратронов дугового разряда — таситроны, в которых благодаря особой конструкции сетка управляет не только возникновением, но и прекращением разряда. Оригинальным прибором является аркатрон, представляющий собой тиратрон дугового разряда, в котором катод нагревается не током, а за счет ионной бомбардировки.

Все эти газоразрядные приборы весьма инерционны и поэтому непригодны для высоких частот, так как процесс рекомбинации после выключения (запирания) прибора требует значительного времени. Приборы с инертными газами могут работать на частотах в десятки килогерц, а приборы с ртутными парами — на гораздо более низких частотах.

next-sound.ru

Газоразрядные приборы

Газоразрядные приборы

Это приборы использующие свойства электрического разряда в газе или парах металлов при давлении от 10-1 Па и выше. К наиболее распространенным газоразрядным приборам относятся стабилитроны (стабилизаторы напряжения) и тиратроны, выполняющие, в основном, функции генераторов релаксационных колебаний и коммутаторов. В газоразрядных приборах этого типа используется разновидность электрического разряда в газах – тлеющий разряд.

Физические процессы в тлеющем разряде

Простейший газоразрядный прибор представляет собой колбу с двумя электродами (рис. 7.10), в которую обычно закачивается инертный газ (Ne, Ar) под давлением 0,1 Па (атмосферное давление составляет приблизительно 105 Па). При приложении к электродам напряжения 50…100 В вследствие появления электрического поля возникают неупругие столкновения между ионизированными частицами газа. Эти столкновения приводят к дополнительной ионизации газа. В разрядном промежутке положительные ионы инертного газа двигаются к катоду, а электроны – к аноду. Обратный переход возбужденных атомов, ионов и молекул обычно сопровождается излучением фотона и получившаяся газоразрядная плазма начинает светиться. Это явление носит название тлеющего  разряда.

Распределение свечения в газоразрядном промежутке характеризуется следующими областями, изображенными на рис. 7.11, а:

1 – катодная светящаяся пленка; 2 – область тлеющего свечения; 3 – темная область беспорядочного движения электронов; 4 – область положительного столба; 5 – анодная светящаяся пленка.

 В непосредственной близости от катода электроны еще не набрали энергии, требующейся для возбуждения газа. Это область прикатодного темного пространства. Разгон электронов в электрическом поле приводит к уменьшению яркости свечения из-за снижения эффективности сечения захвата электронов. Однако в области 1-2 происходит интенсивная ионизация атомов, в результате возникает обширная область положительного светящегося столба 4. Распределение напряженности электрического поля E внутри газоразрядного промежутка показано на рис. 7.11, б.

7.3.2. Стабилитрон

Это двухэлектродный газоразрядный прибор, предназначенный для стабилизации напряжения. Пример конструкции стабилитрона показан на рис.7.12. Анод прибора представляет собой стержень, расположенный в центре баллона, а холодный катод имеет цилиндрическую форму и окружает анод. Баллон лампы изготовлен из стекла и заполнен смесью инертных газов

(Ne-Ar, He-Ar) под давлением 10-1…104 Па.

 Если с помощью внешнего переменного резистора, включенного в анодную цепь (как на рис. 7.10), изменять величину разрядного тока от нуля, то сначала возникает несамостоятельный разряд, который происходит при наличии только внешнего ионизатора. После образования тлеющего разряда плотность разрядного тока достигает нормальной плотности тока тлеющего разряда Icт. min (рис.7.12, в), определяемой сочетанием материала катода и природы газа и мало зависящей от давления газа. При дальнейшем увеличении тока его плотность не изменяется вплоть до достижения величины Icт. mах. В интервале Icт. min… Icт. mах возрастание тока приводит лишь к расширению области катода, охваченной разрядом, при этом падение напряжения на разряде Uст практически не меняется. Описанные процессы характерны для нормального тлеющего разряда, вольтамперная характеристика которого представлена на рис. 7.12, в.

После перехода в аномальный тлеющий разряд ВАХ стабилитрона становится резко возрастающей, вплоть до перехода к дуговому разряду.

Параметры стабилитронов.

1. Uст =70…150 В – напряжение стабилизации, являющееся постоянным напряжением горения тлеющего разряда.

2. =0,02…0,06 – коэффициент стабилизации, представляющий отношение изменения стабилизированного напряжения ΔUcт к величине напряжения стабилизации Ucт.

3. Iст мах=30…40 мА – максимальный ток стабилизации.

Стабилитроны используются как для стабилизации напряжения, так и для работы в режиме опорного элемента. В настоящее время маломощные газоразрядные стабилитроны вытеснены полупроводниковыми стабилитронами.

 

foez.narod.ru


Смотрите также