Начальная

Windows Commander

Far
WinNavigator
Frigate
Norton Commander
WinNC
Dos Navigator
Servant Salamander
Turbo Browser

Winamp, Skins, Plugins
Необходимые Утилиты
Текстовые редакторы
Юмор

File managers and best utilites

Реферат: Альтернативные источники энергетики. Энергия водных источников реферат по физике


Реферат - Альтернативные источники энергетики

Ташполотов Ы., Садыков Э.

(Ошский государственный университет)

Альтернативные источники энергии

Введение

Одной из фундаментальных проблем, состоящих перед человечеством, является энергетическая проблема. В настоящее время основными источниками энергии являются уголь, нефть и газ. Их прогнозные запасы оцениваются, соответственно, в 15 трлн.т, 500 млрд. т и 400 трлн. м3. При современном уровне добычи разведанных запасов угля хватит на 400 лет, нефти на 42 года и газа на 61 год. Мировая энергетическая система стоит перед лицом гигантских проблем. Поэтому, стремительное истощение природных энергоносителей выводит задачу поиска принципиально новых способов получения энергии на первый план и в ближайшей перспективе должна снижаться роли нефти, природного газа и угля.

Сейчас известно, что древесина – это аккумулированная с помощью фотосинтеза солнечная энергия. При сгорании каждого килограмма сухой древесины выделяется около 20000 кДж тепла, теплота сгорания бурого угля равна примерно 13000кДж/кг, антрацита 25000кДж/кг, нефти и нефтепродуктов 42000кДж/кг, а природного газа 45000кДж/кг. Самой высокой теплотой сгорания обладает водород 120000кДж/кг. Известно, что сжигание энергоносителей для получения энергии происходит при довольно высокой температуре и, следовательно, при низких температурах этот процесс протекает чрезвычайно медленно, а скорость химических реакций с понижением температуры на каждые 100С уменьшается в два раза [1]. Сравнительные оценки процессов горения приведены в работе [1] и где показано, что при 200С 1 грамм дерева сгорит в 258 секунд, или около десять миллиардов лет. Это означает, что изобретение огня ускорило этот медленный процесс «горения» в миллиарды раз.

С точки зрения современной физики топливо является поставщиком свободных электронов – генераторов энергии. Тогда можно предположить, что свободные электроны, получаемые от топлива, можно заменить электронами связи любых других элементов, при этом, исключая в процессе горения вышеназванных основных энергоносителей. Так как продукты горения связываются в окислы, но окисление является следствием, а не причиной горения.

Если процессу горения подойти с таких позиций, то на наш взгляд, необходим разработки и создания новой концепции источников энергии и энергетической технологии на основе переосмысления современной физики и химии, процесса горения и роли электрических и других полей в природных, технологических и других энергетических процессах, так как возможность повышения эффективности традиционной энергетики во многом ограничена законами физики и термодинамики. С другой стороны существующие способы получения энергии, как тепловой, электрической так и атомной являются губительными для окружающей среды. Технологии аккумулирования солнечной и другие виды альтернативных видов энергий пока еще не получали широкого применения. Однако, стремительное истощение природных энергоносителей ставят задачу активного поиска принципиально новых источников и способов получения энергии. Здесь прорывным считаются такие научно-технические решения, которые позволяют определить неисчерпаемый источник энергии, способный заменить нефть, уголь и газ, но в отличие от последних, не загрязняющий окружающую среду.

Известно, что современные способы получения энергии основаны на химических или ядерных реакциях. Для сравнения значения удельного энергетического выхода в различных способах получения энергии в таблице 1 приведены принципиальные их значения.

Таблица 1

Удельный энергетический выход в различных способах получения энергии

№, п/п

Способы получения энергии

Химические реакции

1.

Сжигание углеродосодержащих энергоносителей

/>С+О20,0046 МэВ+ СО2

2.

Распад атомных ядер

/>U2350,85 MэВ+ ядерные отходы

3.

Термоядерный синтез

/>Д +Т 4Не2+ 17,6 МэВ

Из таблицы 1 видно, что наименее эффективны способы получения энергии, основанные на сжигании топлива. Атомная энергетика имеет несколько порядков лучшие показатели. Во всех приведенных способах процесс получения энергии сопровождается появлением веществ, небезопасных для биосферы. Исходные химические элементы никуда не деваются, а образуют новые химические или ядерные соединения, которые остаются в виде отходов или попадают в атмосферу. Поэтому задача состоит в том, чтобы найти новые способы получения энергии, свободные от недостатков традиционных технологий.

Наиболее эффективным сейчас считается управляемый термоядерный синтез. К концу ХХ века затраты на исследование в этом направлении составляли 23 млрд. долларов, а результат пока не получен, и предполагают достичь положительному результату не ранее 2050 года.

Согласно работы [2] на Земле есть два основных источника энергии: первый – это вещество, в которой природой аккумулирована энергия связи элементарных частиц, которая высвобождается при расщеплении-распаде вещества на элементарные частицы, второй источник энергии – это электринный газ, эфир, энергия которого пополняется, потоками нейтрино.

Природа в энергетических процессах обходится без использования органического и ядерного топлива. Подпитка энергией процессов образования нового вещества и развития происходит путем энергообмена с окружающей средой. Поэтому ученые разных стран интенсивно исследуют возможные виды альтернативных источников энергии.

Рассмотрим некоторые известные виды разработанных новых энерготехнологий.

1. Вода — новый источник энергии

В настоящее время многие ученые считают водород наиболее перспективным энергоносителем будущей энергетики [3-6]. Основным и очень доступным его источником является вода. При его сжигании водорода образуется опять вода – совершенно безопасное вещество. Поэтому считается, что по экологической безопасности у водорода нет конкурентов. Однако реализация этой задачи сдерживается большими энергозатратами на получение водорода из воды. Если нефть, газ и уголь — это готовые энергоносители, а водород в чистом виде на Земле отсутствует. Для того, чтобы водородная энергетика состоялась, нужно, чтобы полученная энергия при сжигании водорода намного превышала затраченную энергию на его получение.

При помощи электроэнергии воду можно разложить на водород и кислород. Когда вода подвергается действию с частотой, совпадающей с ее своей молекулярной частотой методом применения системы, созданной Стэном Майерсом (США) и вторично созданной не так давно компанией Xogen Power, она (вода) разлагается на кислород и водород при минимальных издержек электроэнергии. Внедрение разных электролитов (добавок, увеличивающих электрическую проводимость воды) резко увеличивает эффективность пpoцecса. Наряду с этим, различные геометрические формы и текстуры поверхности благоприятно влияют на увеличение эффективности процесса разложения воды. Например, в 1957 году исследователем Фридманом (США) был патентован особый железный сплав, внедрение которого приводит к самопроизвольному разложению воды на водород и кислород. Это означает, что с помощью этого железного сплава может быть непрерывное получение водорода из воды. Рассмотрим работы разных авторов, посвященные к получению водорода из воды.

1.1 Холодный ядерный синтез

Теоретические и экспериментальные результаты исследований показывают, что наиболее вероятным источником дешевого водорода, получаемого из воды, может стать её плазменный электролиз. При обычном электролизе, американские ученые Понс и Флешман в 1989 году показали возможность получения дополнительной энергии. По их мнению, источником этой энергии является холодный ядерный синтез[7], зафиксированные ими при плазменном электролизе воды.

В [8] обнаружено излучение до 1000 нейтронов в 1 секунду при массовом захлопывании кавитационных пузырьков и выделении тепловой энергии в 20 раз больше чем затраченной на образование потока воды в трубе. Кавитация как резонанс частоты колебаний молекул жидкости с частотой колебаний пузырьков пара, их образованием и схлопыванием сопровождается разгоном звуковых и ударных волн, высокими параметрами на фронте волны и низкими за фронтом волны. Это приводит к распаду вещества (ФПВР) на элементарные частицы с выделением большого количества тепла. Автор работы [8] предполагает, что во время захлопывании пузырьков существует вероятность захвата протонами электронов и образует атом водорода(при температуре 10000 К). Как известно, атомы водорода существуют в интервале температур 5000-100000С, что вытекает возможность формирования плазмы с такой температурой при определенной плотности атомов водорода в единице объема. В таких условиях молекула воды должна разрушаться, и ядро атома водорода превратиться в нейтрон. Последний, далее присоединяется к другому атому водорода или кислорода другой молекулы воды образуя, дейтерий или тритий или более тяжелый изотоп кислорода. При этом выделяется внутриядерная энергия и осуществиться холодный ядерный синтез.

1.2 Плазменный электролиз воды

В [9] Ф.М.Канаревым установлено, что источником дополнительной энергии при обычном и плазменном электролизе воды является не синтез ядер, а синтез атомов и молекул водорода. В последующих работах он получил результаты, показывающие уменьшение затрат энергии на получение водорода при плазменном электролизе воды. Таким образом, для того чтобы водородная энергетика состоялось, нужно, чтобы полученная энергия при сжигании водорода намного превышала затраченную энергию на его получение. Известно, что в природе существует экономный процесс разложения молекул воды на водород и кислород. Например, при фотосинтезе атомы водорода отделяются от молекул воды, и используется в качестве соединительных звеньев при формировании органических молекул, а кислород уходит в атмосферу. По данным [9], в низкотемпературном электролизере процесс электролиза воды аналогичен тому, который идет при фотосинтезе.

1.3 Процесс индуцированного распада протона на основе плазмо-электрического процесса

Исследование и изучение распада протона, возможно, станет основой получения экологически чистой и дешевой энергии. Вышеприведенные экспериментально установленные данные указывает на то, что возможен процесс индуцированного распада протона. Согласно[10], если протону сообщить дополнительную энергию (107,74 МэВ), то он становится нестабильным и распадается на легкие частицы, имеющие очень малое время жизни, в результате чего происходит полное превращение в энергию. Расчеты показывают, что энергии одного протона достаточно для того, чтобы при распаде инициировать распад еще 8 протонов. При этих условиях возможна цепная реакция индуцированного распада протонов, которая поддерживается и развивается за счет деструктизации вещества. Такую реакцию можно реализовать в водной среде. Индуцированный распад протона, возможно, осуществить в водной среде на основе плазмоэлектрического процесса[4,9]. Согласно [4,9] при повышении напряжения между электродами до 60В в растворе работает ионная проводимость и происходит обычный процесс электролиза воды. При дальнейшем повышении напряжения увеличивается количество протонов, отделившихся от молекулы воды, и у катода формируется плазма. Сформировавшаяся плазма ограничивает контакт раствора с поверхностью катода. На границе «плазма-реактор» атомы водорода соединяются в молекулы. Таким образом, при плазмоэлектрическом процессе источником плазмы является атомарный водород. Синтез атома водорода – процесс соединения свободного протона со свободным электроном. Атомарный водород существует, как известно, при температуре 5000-100000С, то в зоне катода образуется плазма с такой температурой.

--PAGE_BREAK--

1.4Энергия вращения.

1.4.1 Квантовые теплоэлектростанции

Теория движения показывает, что при раскручивании тел может выделиться за счет релятивистских эффектов не более двух джоулей энергии излучений на каждый вложенный во вращение тела джоуль механической энергии[11]. При этом в таких установках коэффициент преобразования электрической энергии в тепловую достигает до 300%, а если же использовать специальные жидкости, то разогнанная установка, даже после выключения электродвигателя будет выделять тепловую энергию без потребления электрической. Таким образом, расчеты дает эффективность, близкую к бесконечности и получать даровую энергию. На основании этого появляются описании конструкции квантовой теплоэлектростанции, которая в качестве топлива использует воду и энергию вращения, вырабатывающие одновременно и электроэнергию, и горячую воду для теплоснабжения городов. Здесь процессы превращения внутренней энергии вещества в энергию излучений при ускорении вращения тел, а затем в тепло носят исключительно квантовый характер. Энергия новых связей, возникающих в веществе при его вращении, выделяется порциями — квантами. Величина этих квантов минимальна (<1эВ) при возникновении водородных связей и максимальна (до десятков МэВ) при связывании отдельных нуклонов в ядра атомов. Но во всех случаях это квантовые процессы. Поэтому энергетические установки, использующие такие процессы, авторы назвали квантовыми.

1.4.2 Внутренная энергия воды

Гипотеза о структуре воды подсказывает, что цепочки из тетрамеров, всегда имеющиеся в жидкой воде, при ее быстром и неравномерном в пространстве течении должны выстраиваться и вытягиваться вдоль линий тока воды, то есть их хаотичное расположение сменяется на упорядоченное. При вихревом движении воды вероятность соединения концы цепочек тетрамеров свободными водородными связями, возрастает по сравнению с неупорядоченным расположением. А каждая вновь образованная водородная связь — это 0,26-0,5 эВ энергии, выделяющейся из воды. Итак, теория движения показывает, что вода, приводимая во вращение в вихре, может выделить в виде излучений часть своей внутренней энергии, в процессе образования в вихревом потоке межмолекулярных связей.

1.5Электрофизическая активация

При осуществлении процесса электрофизической активации, нами(ТашполотовЫ., СадыковЭ., Акматов Б.) экспериментально установлены, что при значении внешнего напряжения между электродами 5В и 13,7В в растворе воды с различными концентрациями Na2CO3 возникают осциллограммы – уменьшения и увеличения напряжения в сети питания плазмоэлектролитического реактора. При начальной установке внешнего напряжения на 10В в растворе с концентрацией 2% Na2CO3 в течение 1-15 мин установлены увеличения напряжения с 10 В до 13,7 В и при этом замечены также сильные осциллограммы напряжения также в сети. Такое увеличение амплитуды напряжения можно объяснить только при наличии в цепи емкости или индуктивности, где может накапливаться энергии и затем высвобождаться, повышая напряжения в питающей сети. По-видимому, накапливаясь у катода парогазовая смесь, не успевая выходить за пределы прикатодного пространства, частично изолирует катод от раствора, увеличивая сопротивление в цепи питания. В результате, величина тока уменьшается до минимального значения, и прикатодное пространство освобождается от парогазовой смеси и раствор начинает контактировать с катодом и сила тока возрастает. Таим образом, реактор работает в пульсирующем режиме, при котором возможны резонансные явления, а значит, и резкое повышение эффективности процесса.

2.Бестопливные энергосистемы-источник альтернативной энергии

2.1 Электрическое поле земли — источник альтернативной энергии

Известно, что планета Земля и ее ионосфера образуют «сферический конденсатор», напряженность создаваемого им электростатического поля составляет в среднем 100 В/м. Это «позволяет смотреть на Землю, как на огромный резервуар электричества...» и дает человечеству надежду, «подключить свои машины к самому источнику энергии окружающего пространства». Одна из возможных конструкций — антенна в виде металлизированного аэростата, поднятого над землей и служащего накопителем электрического заряда. Будучи соединенным с преобразователем энергии с помощью кабеля, этот накопитель способен использовать «дармовую» энергию атмосферного электричества[12]. Внутренняя сфера — поверхность Земли — заряжена отрицательно, внешняя сфера — ионосфера — положительно. Изолятором служит атмосфера Земли. Подключив обычный металлический проводник к отрицательному полюсу – Земле, а положительный полюс — ионосфере — с помощью специфического проводника — конвективного тока, мы получим глобальный генератор электрической энергии. Конвективные токи — это электрические токи, обусловленные упорядоченным переносом заряженных частиц. В природе они встречаются часто. Самые мощные из них — это ураганы и восходящие потоки воздуха во внутритропической зоне конвергенции, которые уносят огромное количество отрицательных зарядов в верхние слои тропосферы. На практике для того чтобы удалять избыточные заряды с верхней точки проводника необходимо устройство, которое позволяет электронам проводимости покинуть проводник — излучатель электронов или эмиттер. Эмиттер может быть построен на базе высоковольтного генератора небольшой мощности, который способен создать коронный разряд вокруг излучающего электрода на верхушке проводника. Такие высоковольтные генераторы используются в промышленности в дымоулавливателях, ионизаторах воздуха, установках для электростатической окраски металлов и различных бытовых приборах. Генератор создает вокруг излучателя электронов проводимости искровой, коронный или кистевой разряд. Такой разряд является проводящим плазменным каналом, по которому электроны проводимости свободно стекают в атмосферу уже под действием электрического поля Земли. Нами(Ташполотов Ы., Садыков Э., Исаков Д.) также разрабатываются эмиттеры –излучатели электронов для получения тока на основе электрического поля Земли.

Электростатический генератор Ефименко является реализацией этого способа извлечения энергии из окружающего пространства. В его машине цилиндрический ротор вращается в потенциальном электрическом поле, создавая с помощью обычного динамо мощность около 70 Вт. Источником поля (≈ 6000 В) служит электрическое поле Земли, для чего установка имеет антенну и заземление.

2.2 Потенциальное поле Земли – источник энергии

Наличие потенциального (гравитационного, электрического, магнитного) поля Земли говорит о возможности совершить работу за счет изменения формы энергии. Заметим, что на поддержание потенциального поля не требуется источник мощности. Пример одноразовой работы потенциального поля – падение тела в гравитационном поле и при ударе об опору часть его потенциальной энергии переходит в тепло, то есть совершается работа, как преобразование формы энергии. Но пока мы рассмотрели только половину цикла, и во второй половине цикла придется совершать работу против поля, например, поднимая тело в исходную точку. Для этого необходимо получить мощность, то есть совершать работу за счет потенциального поля периодически. В общем случае возможны изменения системы, например, поле не постоянное, а переменное или пульсирующее, либо рабочее тело меняет свои параметры. В таком случае, в каждом из полуциклов поле может совершать положительную работу, ускоряя рабочее тело. Таким образом, основные технологические решения понятны — необходимо создать градиент поля в пространстве(полная или частичная экранировка части траектории движения тела в поле) или градиент поля во времени.

Примером использования градиента поля является работа Брауна в области электрогравитации. Известно, что в конденсаторе используют обычно пластины равной площади, но если одна из них значительно меньше другой, то поле между ними уже не является равномерным, то естьвозникает градиент напряженности поля.В таком поле объект из диэлектрика, например, отдельная частица материала, поляризуется неравномерно, поэтому возникнет сила, двигающая ее в сторону большей напряженности поля. А напряженность уже есть градиент потенциала, то есть речь идет о градиенте градиента — о второй производной потенциала поля, что подтверждает известное правило: изменение дает новое качество.

В общем случае, если конструкция позволяет преобразовывать энергию асимметрично, то на выходе системы создается не только избыточная мощность, но и безопорная движущая сила. Очевидно, что существующие топливные теплосети, ТЭЦ и классическая электроэнергетика пока обеспечивают потребности общества, и внедрение новых энерготехнологий сталкиваются с жесткой конкуренцией. Поэтому, возможно, создание электрогравитационных движителей для космоса является наиболее вероятным направлением развития новых технологий на основе бестопливной энергосистемы и такая система, создающая нереактивную безопорную движущую силу, позволит осваивать космос — новый безграничный рынок. Примером использования электрогравитационных технологий в земных условиях также является электроводородный генератор Студенникова В.В. и Кудымова Г.И. Обнаружено существование природного физико-химического явления – гравитационного электролиза, с помощью которого открывается принципиальная возможность прямого преобразования теплоты любого происхождения в потенциальную химическую энергию путем разложения воды на водород и кислород в растворе электролита(международная заявка RU98/00190 от 07.10.1997 г.) Генератор приводится в действие механическим приводом и работает в режиме теплового насоса. Принципиальная энергетическая схема генератора во многом схожа со схемой традиционного электролизера, но в ней не применяется внешний электрический ток, а используется теплота окружающей среды или иных источников.

Геомагнитное поле в настоящее время не используется жителями Земли для получения энергии. Предыдущие цивилизации использовали геомагнитное поле в качестве источника энергии. Свидетельствами этому являются древние лабиринты, пирамиды, сооружения Стоунхенджа. В них как в структурах с неравномерным электрическим потенциалом под действием геомагнитного поля планеты с его собственной частотой 7,5 Гц создаются потоки ионизированного воздуха и эфира, в том числе и высокочастотные.

3. Виброрезонансные технологии

3.1 Колебания атомов, молекул и их агрегатов в веществах – это неиссякаемый источник энергии

Использование этого источника, непрерывно восстанавливаемый за счет энергии окружающей среды, например, в гидравлическом таране, вечной лампочке Кушелева является достижением, позволяющим заставить «работать» атом без вредной радиации. При этом, как видно, может вырабатываться не только гидравлическая и световая энергия, но также непосредственно электрическая, как это сделано Р.М.Соломянным с помощью пьезокристалла. Резонанс собственных и вынужденных колебаний различных объектов-осцилляторов, в том числе атомов и молекул, позволяет увеличить амплитуду энергообмена с окружающей средой. При этом возрастает возможность получения наибольшего количества энергии при минимальных энергозатратах на задающий генератор частоты колебаний. Так в виброрезонансном генераторе Богомолова соотношение затраченной и полученной энергий составило 1:100. Избыточная энергия на основе резонанса получена в электрогенераторах и трансформаторах Тесла, электродвигателях Мельниченко и других энергоустановках. Используются и другие виброрезонансные технологии[13].

4. Кремниевая(силикатная) энергетика

В настоящее время почти вся энергетика Земли является углеродной. Наряду с атомной используется и возобновляемые источники энергии – солнечная, ветровая, биомассы и др. Однако они не могут иметь большой мощности и их размещают там, где есть сами энергоисточники. Поэтому, как показывают исследования, широкая гамма высокомодульных силикатов, кремнезем может использоваться в энергетических целях, т.е. для получения электроэнергии за счет протекания высокотемпературных физико-химических реакций в гетерогенных силикатных расплавов и путем их сжигания. Теплота их сгорания составляет 40 МДж/кг, при стоимости меньшей, чем стоимость традиционных углеводородов. Кроме того, кремниевая энергетика имеет и свои особенности. Во-первых, кремний имеет высокую теплотворную способность, чем углеродные энергоносители, во-вторых, отходом силикатной энергии является кремнезем – чистый кварцевый песок (газообразных отходов нет), и в третьих сама «зола» ценнейший технический, конструкционный и строительный материал, т.е. кремниевая энергетика – безотходное производство[14].

    продолжение --PAGE_BREAK--

4.1 Селективный электрохимический процесс

На основе открытия «процесс обеднения- особого селективного электрохимического процесса» В.Соболевым и другими разработана технология получения легких сверхпрочных материалов для авто, авиа, ракето- и машиностроения при воздействии электрического поля с помощью высокотемпературной технологии. По составу они соответствуют оксидам кремния, алюминия, титана и других технических материалов, но сильно отличаются по физико-химическим свойствам от базовых этих веществ. При напряжении 2000В в электропечи с расплавленного вещества из кремнезема происходит «срыв электронов» и, подобно обычному электролизу, на катоде происходит образование нового вещества путем обеднения расплава химическими элементами металлов. Полученное вещество многоэлементного химического соединения находится в особом состоянии, которое характеризуется нестехиометрией состава. Это вещество содержать в себе фиксированный электрический заряд довольно большой величины – положительный или отрицательный по нашему усмотрению. Новое состояние вещества формирует устойчивые структуры в сплошной среде, которые излучают переменный магнитный поток, то есть они открыли новый источник энергии. Устройство такого источника работает устойчиво и сколь угодно долго при обычных температурах, преобразуя электромагнитное поле Земли в электрический ток.

4.2 Кремний безкислородные соединения инициирует цепную реакцию.

По данным А.Н.Куликова при физико-химическом взаимодействии силиката с без кислородным соединением кремния (нитрид или карбид кремния) с нарастанием количества реагирующего вещества происходит расщепление массы силиката по цепной реакции путем освобождения энергии. Рабочим веществом в таком физико-химическом реакторе является высокомодульные силикаты, а кремний безкислородные соединения инициирует цепную реакцию. Для распада силиката в реакторе вначале необходимо энергия для расплавления части исходного вещества. После этого расход тепла не нужен, так как в контакте с кремнийбескислородным веществом начнется химическая реакция с выделением тепла, что приведет к расплавлению все большего количества силиката. Процесс будет продолжаться до тех пор, пока масса реагента в жидкой фазе не станет равной критической. С этого момента начинается цепная реакция, сопровождаемая лавинообразным выделением энергии. Управление интенсивности цепной реакции осуществляется путем введения стержня из кремнийбескислородного соединения(например карбид кремния) в расплав силиката до необходимой глубины. При вдвигании стержней в реактор реакция увеличивается, растет и тепловыделение, а при выдвигании – уменьшается. То есть эти стержены будут поддерживать баланс выделяющегося и потребляемого тепла, что обеспечит необходимую мощность энергоустановки и предотвращения возможного взрыва. Над разработкой силикатной технологией наша научная группа(Ташполотов Ы., Садыков Э., Айдаралиев Ж.К., Матисаков Ж. и др.) занимается с 1998 года.

Таким образом, будущее земной энергетики в главном, будет основано на водородной, термоядерной, кремниевой и геомагнитной источников энергии. В связи с этим необходимо основательно с фундаментальных позиций начать научно-исследовательские и опытно-конструкторские работы в области технологии получения водорода из воды, разработки и строительства гравитационно-термодинамических ядерных станций, разложения кремнезема и сжигания кремния в энергетических целях и использования геомагнитного поля в качестве источника новой энергии.

Литература

Перельман Я.И. Занимательная алгебра. М.: Наука, 1976. – 200с.

Андреев Е.И. Основы естественной энергетики. СПб: Нев. Жемчужина, 2004. -582с.

Шейндлин А.Е. Проблемы новой энергетики. М.: Наука, 2006. – 405с.

Канарев Ф.М. Введение в водородную энергетику. Краснодар, 1999. – 22с.

Месяц Г.А., Прохоров М.Д. Водородная энергетика и топливные элементы // Вестник РАН, 2004, т.74, №7, с. 579 – 597.

Дашков И.И. Водород – топлива будущего. // Механизация и электрификация сельского хозяйства, 2001, №6, с.7-9.

Херольд Л. Фокс. Холодный ядерный синтез: сущность, проблемы, влияние на мир. Взгляд из США. М., 1993. — 180с.

Цивинский С.В. Кавитационная термоядерная электростанция // Естественные и технические науки, 2006, №2, с.178-183.

Канарев Ф.М. Вода–новый источник энергии. Краснодар, 1999. – 152с.

Косинов Н.В. Происхождение протона.// Физический вакуум и природа, 2000, №3.

Потапов Ю.С., Фоминский Л.П., Потапов С.Ю. Энергия вращения.М., 2002.

Курилов Ю.М. Альтернативный источник энергии. Электрическое поле земли – источник энергии.// www.ntpo.com

Хайтун С.Д.Энергетика, построенная на круговороте тепла и вечных двигателях 2-го рода. Книга «Тепловая смерть» на Земле и сценарий ее предотвращения. Часть 1. 2009. -192 с.

Голицын М.В., Голицын А.М. Альтернативные энергоносители. М.: Наука, 2004. -159с

Ссылки (links): www.ntpo.com/

www.ronl.ru

Курсовая работа - Традиционные источники электрической энергии

Оглавление.

1.Введение………………………………………………………..…….стр.2

2. Основная часть.

2.1.Тепловые электростанции…………………………………… стр.3

2.2.  Гидроэлектрическиеэлектростанции……………………….стр.6

2.3.  Атомные электростанции………………………………… стр.10

3.Заключение………………………………………………………….стр.15

Введение.

Электроэнергия– не только одно из чаще всего обсуждаемыхсегодня понятий; помимо своего основного физического (а в более широком смысле– естественнонаучного) содержания, оно имеетмногочисленные экономические, технические, политические и иные аспекты.

Почему же электрификация так важна дляраз­вития экономики?

Научно-технический прогресс невозможен без развития энергетики,электрификации. Для повы­шения производительности труда первостепенное значениеимеет механизация и автоматизация про­изводственных процессов, заменачеловеческого тру­да (особенно тяжелого или монотонного) машин­ным. Ноподавляющее большинство технических средств механизации и автоматизации(оборудова­ние, приборы, ЭВМ) имеет электрическую основу. Особенно широкоеприменение электрическая энергия получила для привода в действие электри­ческихмоторов. Мощность электрических машин (в зависимости от их назначения)различна: от до­лей ватта (микродвигатели, применяемые во многих отрасляхтехники и в бытовых изделиях) до огром­ных величин, превышающих миллионкиловатт (генераторы электростанций).

Человечествуэлектроэнергия нужна, причем потребности в ней увеличиваются с каждым годом.Вместе с тем запасы тради­ционных природных топлив (нефти, угля, газа и др.)конечны. Конечны также и запасы ядерного топлива- урана и тория, из которого можно получать в реакторах-размножителяхплутоний. Поэтому важно на сегодняшний день найти выгодные  источники электроэнергии, причем выгодные не только с точки зрения  дешевизны топлива, но и с точки зренияпростоты конструкций, эксплуатации, дешевизны материалов, необходимых дляпостройки станции, долговечности станций.

Данный реферат являетсякратким, обзором современного состояния энергоресурсов человечества. В работерассмотрены традиционные источники электрической энергии. Цель работы – преждевсего ознакомиться с современным положением дел в этой необычайно широкойпроблематике, проанализовать наиболее выгодные в нынешнее время способыполучения электроэнергии.

К традиционным источникам,рассмотренным в моем реферате в пер­вую очередь относятся: тепловая, атомная иэнергия пока воды.

Российская энергетикасегодня — это 600 тепловых, 100 гидравлических, 9 атомных электростанций, общаямощность которых по состоянию на октябрь 1999го года составляет 210млн квт. В 1998 году они выработали около 1 триллиона кВт/ч электроэнергии и790 млн. Гкал тепла. Есть, конечно, несколько электростанций использующих вкачестве первичного источника солнечную, ветровую, гидротермальную, приливнуюэнергию, но доля производимой ими энергии очень мала по сравнению с тепловыми,атомными  и гидравлическими станциями.

Тепловые электростанции.

Тепловаяэлектростанция (ТЭС), электростанция, вырабатываю­щая электрическую энергию врезультате пре­образования тепловой энергии, выделяю­щейся при сжиганииорганического топлива. Первые ТЭС появились в кон. 19 в (в 1882 — в Нью-Йорке,1883 — в Петер­бурге, 1884 — в Берлине) и получили преимущественноераспространение.  В сер. 70-х гг. 20 в.ТЭС — основной вид элек­трической станций. Доля вырабатываемой имиэлектроэнергии составляла: в России и США св. 80% (1975), в мире около 76%(1973).

Около 75% всейэлектроэнергии России производится на тепловых электростанциях.  Большинство городов России снабжаются именноТЭС. Часто в городах используются ТЭЦ — теплоэлектроцентрали, производящие нетолько электроэнергию, но и тепло в виде горячей воды. Такая система являетсядовольно-таки непрактичной т.к. в отличие от электрокабеля надежность  теплотрасс чрезвычайно низка на большихрасстояниях, эффективность централизованного теплоснабжения сильно при передачетакже понижается. Подсчитано, что при протяженности теплотрасс более 20 км(типичная ситуация для большинства городов) установка электрического бойлера вдельно стоящем доме   становитсяэкономически выгодна.

На тепловых электростанцияхпреобразуется химическая энергия топлива сначала в механическую, а затем вэлектрическую.

Топливом для такойэлектростанции могут служить уголь, торф, газ, горючие сланцы, мазут. Тепловыеэлектрические стан­ции подразделяют на конденсационные (КЭС), предназначенныедля выработки только электрической энергии, и теплоэлектро­централи (ТЭЦ),производящие кроме электрической тепловую энергию в виде горячей воды и пара.Крупные КЭС районного значения получили название государственных районныхэлектро­станций (ГРЭС)..

<img src="/cache/referats/3575/image002.jpg" align=«left» hspace=«12» v:shapes="_x0000_s1026">Простейшая принципиальная схема КЭС, работающей наугле, представлена на рис. Уголь подается в топливный бункер 1, а из него — вдробильную установку 2, где превраща­ется в пыль. Угольная пыль поступает втопку парогенератора (парового котла) 3, имеющего систему трубок, в которых цир­кулируетхимически очищенная вода, называемая питательной. В котле вода нагревается,испаряется, а образовавшийся насы­щенный пар доводится до температуры 400—650°Си под дав­лением 3—24 МПа поступает по паропроводу в паровую турби­ну 4.Параметры пара зависят от мощности агрегатов.

Способ преобразования тепловой энергии в механическую в паровой турбине.

<img src="/cache/referats/3575/image004.jpg" align=«left» hspace=«12» v:shapes="_x0000_s1027">Тепловые конденсацион­ные электростанции име­ютневысокий кпд (30— 40%), так как большая часть энергии теряется сотходящими   топочными газами иохлаждающей водой конденсатора.

Сооружать КЭС выгодно внепосредственной близости от мест добычи топлива. При этом потребители    электроэнергии могут находиться на значи­тельномрасстоянии от стан­ции.

Теплоэлектроцентраль отли­чается  от конденсационной станции установленной на ней специальнойтеплофикационной турбиной с отбором пара. На ТЭЦ одна часть пара полностью  используется в турбине для выработкиэлектроэнергии в генераторе 5 и затем поступает в конденсатор 6, а другая,имеющая большую температуру и давление (на рис. штриховая ли­ния), отбираетсяот промежуточной ступени турбины и исполь­зуется для теплоснабжения. Конденсатнасосом 7 через деаэра­тор 8 и далее питательным насосом 9 подается впарогенератор. Количество отбираемого пара зависит от потребности предприя­тийв тепловой энергии.

Коэффициент полезногодействия ТЭЦ достигает 60—70%.

Такие станции строят обычновблизи потребителей — про­мышленных предприятий или жилых массивов. Чаще всегоони работают на привозном топливе.

<img src="/cache/referats/3575/image006.jpg" align=«left» hspace=«12» v:shapes="_x0000_s1028">Рассмотренные тепловые электростанции по видуосновного теплового агрегата — паровой турбины — относятся к паротур­биннымстанциям. Значительно меньшее распространение полу­чили тепловые станции сгазотурбинными (ГТУ), парогазовы-ми (ПГУ) и дизельными установками.

Наиболее экономичными яв­ляются крупные тепловые паро­турбинныеэлектростанции (сокра­щенно ТЭС). Большинство ТЭС нашей страны используют в ка­честветоплива угольную пыль. Для выработки 1 кВт-ч электроэнергии затрачиваетсянесколько сот грам­мов угля. В паровом котле свыше 90% выделяемой топливомэнергии передается пару. В турбине кине­тическая энергия струй пара пере­даетсяротору. Вал турбины жестко соединен с валом генератора.  

Современные паровые турбины для ТЭС — весьма совершенные, быстроходные,высокоэкономичные машины с большим ресурсом работы. Их мощность в одновальномисполнении достигает 1 млн. 200 тыс. кВт, и это не является пределом. Такиемашины всегда бывают многоступенчатыми, т. е. имеют обыч­но несколько десятковдисков с рабочими лопат­ками и такое же

Энергоблок мощностью 1 млн. 200 тыс.

        кВтКостромской ГРЭС.

количество,перед каждым диском, групп сопел, через которые протекает струя пара. Давлениеи температура пара постепенно снижаются.

Из курса физики  из­вестно, что КПД тепловых двига­телейувеличивается с ростом на­чальной температуры рабочего тела. Поэтомупоступающий в турбину пар доводят до высоких параметров: температуру — почти до550 °С и давление — до 25 МПа. Коэффи­циент полезного действия ТЭС дости­гает40%. Большая часть энергии теряется вместе с горячим отрабо­танным паром.

По мнению ученых в основеэнергетики ближайшего будущего по-прежнему останется теплоэнергетика на невозобновляемых ресурсах. Но струк­тура ее изменится. Должно сократитьсяиспользование нефти.  Су­щественновозрастет производство электроэнергии на атомных электростанциях. Начнетсяиспользование пока еще не тронутых гигантских запасов дешевых углей, например,в Кузнецком, Канс­ко-Ачинском, Экибаcтузском бассейнах. Широко будетприменяться природный газ, запасы которого в стране намного превосходят запасыв других странах.

Ксожалению, запасы нефти, газа, угля отнюдь не бесконечны. Природе, чтобысоздать эти запасы, потребовались миллионы лет, израсходованы они будут засотни лет. Сегодня в мире стали всерьез задумываться над тем, как не допуститьхищнического разграбления земных богатств. Ведь лишь при этом условии запа­совтоплива может хватить на века. К сожалению, многие нефте­добывающие страныживут сегодняшним днем. Они нещадно расходу­ют подаренные им природой нефтяныезапасы. Сейчас многие из этих стран, особенно в районе Персидского залива,буквально купаются в золоте, не задумываясь, что через несколько десятков летэти запасы иссякнут. Что же произойдет тогда –, а это рано или поздно случится,– когда месторождения нефти и газа будут исчерпаны? Происшедшее повышение ценна нефть, необходимую не только энергетике, но и транспорту, и химии, заставилозаду­маться о других видах топлива, пригодных для замены нефти и газа. Особеннопризадумались тогда те страны, где нет собс­твенных запасов нефти и газа икоторым приходится их покупать.

        

Гидроэлектрическая станция.

Гидроэлектрическаястанция, гидроэлектростанция (ГЭС), комплекс сооружений и оборудования,посредством которых энергия потока воды преобразуется в электрическую энергию.ГЭС состоит из последовательной цепи гид­ротехнических сооружений, обеспечи­вающихнеобходимую концентрацию по­тока воды и создание напора, и энергетического.оборудования,   преобразующего энергиюдвижущейся под напором воды в механическую энергию вращения  которая, в свою очередь, преобразуется вэлектрическую энергию.

НапорГЭС создается концентрацией падения реки на используемом участкеплотиной(рис1), либо дерива<img src="/cache/referats/3575/image008.gif" align=«left» hspace=«12» v:shapes="_x0000_s1029">цией, либо плотиной и дери­вациейсовместно (рис. 3). Основное энергетическое оборудование ГЭС размещается вздании ГЭС: в машинном зале электростанции — гидроагрегаты, вспомогательноеоборудование,   устройства  автоматического управления и контроля; вцентральном посту управления — пульт оператора-диспетчера или автооператоргидро­электростанции. Повышающая транс­форматорная подстанция размещается каквнутри здания ГЭС, так и в отдельных зда­ниях или на открытых площадках. Рас­пределительныеустройства зачастую располагаются на открытой площадке. Здание ГЭС может бытьразделено на секции с одним или несколькими агрегатами и вспомогательнымоборудованием, отделённые от смежных частей здания. При здании ГЭС или внутринего создаётся монтаж­ная площадка для сборки и ремонта раз­личногооборудования и для вспомогательных операций по обслуживанию ГЭС.

<img src="/cache/referats/3575/image010.gif" align=«left» hspace=«12» v:shapes="_x0000_s1030">По установленной мощности (в.Мвт) различают ГЭС мощные (св. 250), сред­ние (до 25) и малые (до 5). МощностьГЭС зависит от напора На (разности уровней верхнего и нижнего бьефа), расходаводы, используемого в гидротурбинах, и кпд гидроагрегата. По ряду причин(вследствие, например сезонных изменений уровня воды в во­доёмах, непостоянстванагрузки энерго­системы, ремонта гидроагрегатов или гидротехнических сооруженийи т. п.) напор и расход воды непрерывно меняются, а кроме того, меняется расходпри регули­ровании мощности ГЭС. Различают го­дичный, недельный и суточныйциклы режима работы ГЭС.

Помаксимально используемому напо­ру ГЭС делятся на высоконапорные (более 60 м),средненапорные (от 25 до 60 м) и низконапорные (от 3 до 25 м). На равнинныхреках напоры редко пре­вышают 100 м, в горных условиях посредством плотиныможно создавать напоры до 300 м и более, а с помощью дерива­ции — до 1500 м.Классификация по напору приблизительно соответствует ти­пам применяемогоэнергетического оборудова­ния: на высоконапорных ГЭС применяют ковшовые ирадиально-осевые  турби­ны сметаллическими спиральными камера­ми; на средненапорных — поворотнолопастные ирадиально-осевые турбины с железобетонными и металлическими спираль­нымикамерами, на низконапорных — поворотнолопастные турбины в железо­бетонныхспиральных камерах, иногда горизонтальные турбины в капсулах или в открытыхкамерах. Подразделение ГЭС по используемому напору имеет при­близительный,условный характер.

<img src="/cache/referats/3575/image012.gif" align=«left» hspace=«12» v:shapes="_x0000_s1031">По схеме использования водных ре­сурсови концентрации напоров ГЭС обыч­но подразделяют на русловые, приплотинные,деривационные с напорной и без­напорной деривацией, смешанные,гидроаккумулирующие и приливные.  Врусловых и приплотинных ГЭС напор воды создаётся плотиной, пе­регораживающейреку и поднимающей уровень воды в верхнем бьефе. При этом неизбежно некотороезатопление долины реки. В случае сооружения двух плотин на том же участке рекиплощадь затопле­ния уменьшается. На равнинных реках наибольшая экономическидопустимая площадь затопления ограничивает высо­ту плотины. Русловые иприплотинныс ГЭС строят и на равнинных многоводных реках и на горных реках, вузких сжатых долинах.

Всостав сооружений русловой ГЭС, кроме плотины, входят здание ГЭС и во­досбросныесооружения (рис. 4). Состав гидротехнических сооружений зависит от вы­сотынапора и установленной мощности. У русловой ГЭС здание с размещенными в нёмгидроагрегатами служит продолже­нием плотины и вместе с ней создаёт напорныйфронт. При этом с одной сто­роны к зданию ГЭС примыкает верхний бьеф, а сдругой — нижний бьеф. Под­водящие спиральные камеры гидротурбин своими входнымисечениями заклады­ваются под уровнем верхнего бьефа, выходные же сеченияотсасывающих труб погружены под уровнем нижнего бьефа.

Всоответствии с назначением гидроузла в его состав могут входить судоходныешлюзы или судоподъёмник, рыбопро­пускные сооружения, водозаборные соо­ружениядля ирригации и водоснабже­ния. В русловых ГЭС иногда единственным сооружением,пропускающим воду, является здание ГЭС. В этих случаях по­лезно используемаявода последовательно проходит входное сечение с мусорозадер-живающимирешётками, спиральную ка-

меру, гидротурбину, отсасывающуютру­бу, а по спец. водоводам между сосед­ними турбинными камерами произво­дитсясброс паводковых расходов реки. Для русловых ГЭС характерны напоры до 30—40м  к простейшим русловым ГЭС относятсятакже ранее строившиеся сель­ские ГЭС небольшой мощности. На круп­ных равнинныхреках основное русло пере­крывается земляной плотиной, к которой примыкаетбетонная водосливная пло­тина и сооружается здание ГЭС. Такая компоновкатипична для многих отечественных ГЭС на больших равнинных реках. Волж­ская ГЭСим. 22-го съезда КПСС— наиболее крупная среди станций русло­вого типа.

Приболее высоких напорах оказывает­ся нецелесообразным передавать на зда­ние ГЭСгидростатичное давление воды. В этом случае применяется тип плотиной ГЭС, укоторой напорный фронт на всём протяжении перекрывается плотиной, а здание ГЭСрасполагается за пло­тиной, примыкает к нижнему бьефу (рис. 5). В составгидравлической трассы меж­ду верхним и нижним бьефом ГЭС тако­го типа входятглубинный водоприёмник с мусорозадерживающей решёткой, тур­бинный водовод,спиральная камера, гидротурбина, отсасывающая труба. В качестве дополнит,сооружений в состав узла могут входить судоходные сооруже­ния и рыбоходы, атакже дополнительные водо­сбросы Примером подобного типа станций на многоводнойреке служит Братская ГЭС на реке Ангара.

Кначалу Великой Отечеств, войны 1941—45 было введено в эксплуатацию 37 ГЭС общеймощностью более 1500 Мвт. Во время войны было приостановлено на­чатоестроительство ряда ГЭС общей мощ­ностью около 1000 Мвт (1 млн. квт). В 60-х гг.наметилась тенденция к сни­жению доли ГЭС в общем мировом производстве электроэнергиии всё большему использованию ГЭС для покрытия пико­вых нагрузок. К 1970 всемиГЭС мира производилось около 1000 млрд. квт-ч электроэнергии в год, причёмначиная с 1960 доля ГЭС в мировом производстве сни­жалась в среднем за годпримерно на 0,7%. Особенно быстро снижается доля ГЭС в общем производствеэлектроэнергии в ранее традиционно считавшихся «гидроэнер­гетическими» странах(Швейцария, Ав­стрия, Финляндия, Япония, Канада, от­части Франция), т. к. ихэкономический гидроэнергетический потенциал практи­чески исчерпан.

Несмотряна снижение доли ГЭС в общей выработке, абсолютные значения производстваэлектроэнергии и мощности ГЭС непрерывно растут вследствие строитель­ства новыхкрупных электростанций. В 1969 в мире насчитывалось свыше 50 дей­ствующих истроящихся ГЭС единичной мощностью 1000 Мвт и выше, причём 16 из них — натерритории бывшего Советского Союза.

Важнейшаяособенность гидроэнергетических ресурсов по сравнению стопливно-энергетическими ресурсами — их непрерывная возобновляемость. Отсутствиепотребности в топливе для ГЭС определяет низ­кую себестоимость вырабатываемойна ГЭС электроэнергии. Поэтому сооруже­нию ГЭС, несмотря на значительные,удельные капиталовложения на 1 квт установлен­ной мощности и продолжительныесроки строи­тельства, придавалось и придаётся боль­шое значение, особенно когдаэто связано с размещением электроёмких производств.

Атомные электростанции.

атомная электростанция (АЭС), электростанция, в которойатомная (ядер­ная) энергия преобразуется в элект­рическую. Генератором энергиина АЭС является атомный реактор. Тепло, которое выделя­ется в реакторе врезультате цепной реакции деления ядер некоторых тяжёлых элементов, затем также, как и на обыч­ных тепловых электростанциях (ТЭС), преобразуется вэлектроэнергию, В отли­чие от ТЭС, работающих на органическом топливе, АЭСработает на ядерном горю­чем (в основе 233U, 235U, 239Pu) Приделении 1 г изотопов урана или плутония высво­бождается 22 500 квт • ч, чтоэквивалентно энергии, содержащейся в 2800 кг услов­ного топлива. Установлено,что мировые энергетические ресурсы ядерного горючего (уран, плутоний идр.)  существенно превышают энергоресурсыприродных запасов органического, топлива (нефть, уголь, природный газ и др.).Это открывает широкие перспективы для удовлетворе­ния быстро растущихпотребностей в топ­ливе. Кроме того, необходимо учиты­вать всё увеличивающийсяобъём потреб­ления угля и нефти для технологических целей мировой химическойпромышленности, которая становится серьёзным конкурентом тепло­выхэлектростанций. Несмотря на откры­тие новых месторождений органического топ­ливаи совершенствование способов его добычи, в мире наблюдается тенденция котносительному, увеличению его стоимости. Это создаёт наиболее тяжёлые условиядля стран, имеющих ограниченные запасы топлива органического происхождения.Очевидна необходимость быстрейшего развития атомной энергетики, края ужезанимает заметное место в энергетическом балансе ряда промышленных стран мира.

Перваяв мире АЭС опытно-промышленного на­значения (рис. 1) мощностью 5 Мвт былапущена в СССР 27 июня 1954 г. в г. Обнинске. До этого энергия атомного ядраиспользовалась  в военных це­лях. Пускпервой АЭС ознаменовал от­крытие нового направления в энергети­ке, получившегопризнание на 1-й Международной научно-технической конференции по мирномуиспользованию атомной энер­гии (август 1955, Женева).

<img src="/cache/referats/3575/image014.gif" align=«left» hspace=«12» v:shapes="_x0000_s1032">В 1958 была введена вэксплуатацию 1-я очередь Сибирской АЭС мощностью 100 Мвт (полная проектнаямощность 600 Мвт). В том же году развернулось строительство Белоярской АЭС, а26 апреля 1964 генератор 1-й очереди (блок мощностью 100 Мвт) выдал ток вСвердловскую энергосистему, 2-й блок мощностью 200 Мвт сдан в эксплуата­цию воктябре 1967. Отличительная особенность Белоярской АЭС — перегрев пара (дополучения нужных параметров) непосредственно в ядерном реакторе, что позволилоприменить на ней обычные современные турбины почти без всяких переделок.

 Принципиальная схема АЭС с ядерным реактором,имеющим водяное охлаждение, приведена на рис. 2. Тепло, выделяется в активнойзоне реактора, теплоносителем  вбираетсяводой (теплоносителем) 1-г контура, которая прокачивается  через реактор циркуляционным насосом  г Нагретая вода из реактора поступав втеплообменник (парогенератор) 3, где передаёт тепло, полученное в реакторе воде2-го контура. Вода 2-го контура испаряется в парогенераторе, и образуется парпоступает в турбину 4.

Наиболеечасто на АЭС применяют 4 типа реакторов на тепловых нейтронах 1) водо-водяные собычной водой в качестве замедлителя и теплоносителя; 2) графито-водные сводяным теплоносителем и графитовым замедлителем; 3) тяжеловодные с водянымтеплоносителем и тяжёлой водой в качестве замедлителя 4) графито-газовые сгазовым теплоноси­телем и графитовым замедлителем.

Выборпреимущественно применяемого типа реактора определяется главным образом на­копленнымопытом    в             реактороносителе а также наличиемнеобходимого промышленного оборудования, сырьевых запасов и т. л. В Россиистроят главным образом графито-водные и водо-водяные реакторы. На АЭС СШАнаибольшее распространение получили водо-водяные реакторы. Графито-газо­выереакторы применяются в Англии. В атомной энергетике Канады преобла­дают АЭС стяжеловодными реакторами.

<img src="/cache/referats/3575/image016.gif" align=«left» hspace=«12» v:shapes="_x0000_s1033">В зависимости от вида иагрегатного со­стояния теплоносителя создается тот или иной термодинамическийцикл АЭС. Выбор верх­ней температурной границы термодинамического циклаопределяется максимально допусти­мой темп-рой оболочек тепловыделяющихэлементов (ТВЭЛ), содержащих ядерное го­рючее, допустимой темп-рой собственноядер­ного горючего, а также свойствами теплоноси­теля, принятого для данноготипа реактора. На АЭС. тепловой реактор которой охлаждает­ся водой, обычнопользуются низкотемпера­турными паровыми циклами. Реакторы с газовымтеплоносителем позволяют применять относительно более экономичные циклыводяного пара с повышенными начальными дав­лением и темп-рой. Тепловая схемаАЭС в этих двух случаях выполняется 2-контурной: в 1-м контуре циркулируеттеплоноситель, 2-й контур — пароводяной. При реакторах  с кипящим водяным или высокотемпературнымгазовым теплоносителем возможна одно­контурная тепловая  АЭС. В кипящих реак­торах вода кипит вактивной зоне, полученная пароводяная смесь сепарируется, и насыщенный парнаправляется или непосредственно в турбину, или предварительно возвращается вактивную зону для перегрева.

 (рис. 3). В высокотемпературныхграфито-газовых реакторах возможно применение обычного газотурбинного цикла.Реактор в этом случае выполняет  ролькамеры сго­рания.

Приработе реактора концентрация де­лящихся изотопов в ядерном топливе постепенноуменьшается, и топливо  выгорает. Поэтомусо временем их заме­няют свежими. Ядерное горючее пере­загружают с помощьюмеханизмов и при­способлений с дистанционным управлением. Отработавшее топливопереносят в бас­сейн выдержки, а затем направляют на переработку.

Креактору и обслуживающим его си­стемам относятся: собственно реактор сбиологической защитой, теплообменни­ки, насосы или газодувные установки,осуществляющие циркуляцию теплоноси­теля; трубопроводы и арматура циркуляцииконтура; устройства для перезагруз­ки ядерного горючего; системы спец.вентиляции, аварийного расхолаживания и др.

Взависимости от конструктивного ис­полнения реакторы имеют отличит, осо­бенности:в корпусных реакторах топливо и замедлитель расположены внутри корпу­са,несущего полное давление теплоно­сителя; в канальных реакторах топливо,охлаждаемые теплоносителем, устанавли­ваются в спец. трубах-каналах, пронизы­вающихзамедлитель,  заключённый в тонкостенныйкожух. Такие реакторы применяются в России (Сибирская, Белоярская АЭС и др.),

Дляпредохранения персонала АЭС от радиационного облучения реактор окружаютбиологической защитой, основным материалом для которой служат бетон, вода,серпантиновый песок. Оборудование реакторного контура должно быть полностьюгерме­тичным. Предусматривается система конт­роля мест возможной утечкитеплоноси­теля, принимают меры, чтобы появление не плотностей и разрывов контуране приводило к радиоактивным выбросам и загрязнению помещений АЭС и окружаю­щейместности. Оборудование реакторно­го контура обычно устанавливают  в герметичных боксах, которые отделены отостальных помещений АЭС биологической защитой и при работе реактора не обслу­живаются,Радиоактивный воздух и не­большое количество паров теплоносителя, обусловленноеналичием протечек из контура, удаляют из необслуживаемых помещений АЭС спец.системой вентиляции, в которой для исключения возможно­сти загрязнения атмосферыпредусмот­рены очистные фильтры и газгольдеры выдержки. За выполнением правилра­диационной безопасности персоналом АЭС сле­дит служба дозиметрическогоконтроля.

Приавариях в системе охлаждения реактора для исключения перегрева и нарушения   герметичности   оболочек ТВЭЛов предусматривают быстрое (втечение несколько секунд) глушение ядер­ной реакции; аварийная система расхо­лаживанияимеет автономные источники питания.

Наличие  биологической защиты, систем спец. вентиляциии аварийного расхо­лаживания и службы дозиметрического контро­ля позволяетполностью обезопасить обслуживающий персонал АЭС от вред­ных воздействийрадиоактивного облу­чения.

Оборудованиемашинного зала АЭС аналогично оборудованию машинного зала ТЭС. Отличит, особенность боль­шинства   АЭС — использование   пара сравнительно низких параметров, на­сыщенногоили слабо перегретого.

При этом для исключенияэрозионного повреждения лопаток последних ступеней турбины частицами влаги,содержащейся в пару, в турбине устанавливают сепари­рующие устройства. Иногданеобходимо применение выносных сепараторов  и промежуточных  перегревателейпара. В связи с тем что теплоноситель и со­держащиеся в нём примеси при прохож­дениичерез активную зону реактора активируются, конструктивное решение оборудованиямашинного зала и системы охлаждения конденсатора турбины од­ноконтурных АЭСдолжно полностью исключать возможность утечки теплоно­сителя. На двухконтурныхАЭС с высо­кими параметрами пара подобные требо­вания к оборудованию машинногозала не предъявляются.

Вчисло специфичных требований к компоновке оборудования  АЭС входят: минимально возможнаяпротяжённость коммуникаций, связанных с радиоак­тивными средами, повышеннаяжёст­кость фундаментов и несущих конст­рукций реактора, надёжная организа­ция вентиляциипомещений. показан раз­рез главного корпуса Белоярской АЭС с канальнымграфито-водным реакто­ром. В реакторном зале размещены: реактор с биологическойзащитой, запасные ТВЭЛы и аппаратура контроля. АЭС скомпонована по блочномупринципу реактор—турбина. В машинном зале рас­положены турбогенераторы иобслужи­вающие их системы. Между машинным II реакторным залами размещенывспомогательные оборудование и системы управле­ния станцией.

ЭкономичностьАЭС определяется её основным  техническимпоказателями: единичная мощность реактора, энергонапря­жённость активной зоны, глубина вы­горания ядерногогорючего, коэффецента ис­пользования установленной мощности АЭС за год. С ростом мощности АЭС удельныекапиталовложения в псе (стои­мость установленного кет) снижаются более резко,чем это имеет место для ТЭС. В этом главная причина стремле­ния к сооружениюкрупных АЭС с большой единичной мощностью блоков. Для экономики АЭС характерно,что доля топливной составляющей в себестоимости вырабатываемой электроэнергии30 — 40% (на ТЭС 60—70%). Поэтому круп­ные АЭС наиболее распространены в    промышленно развитых    районах с огра­ниченными  запасами   обычного топлива, а АЭС небольшой мощности —в трудно­доступных или отдалённых районах, напр.  АЭС в  пос. Билибино (Якутия)  с электрической  мощностью типового блока 12 Мет. Часть тепловой мощности реактора этой АЭС (29Мет) расходуется на теплоснабжение. Наряду с выработ­кой электроэнергии  АЭС используются также для опреснения морскойводы. Так,   Шевченковская АЭС(Казахстан) электрической мощностью 150 Мвт рассчи­тана на опреснение (методомдистилля­ции) за сутки до 150 000 т воды из Кас­пийского м.

Вбольшинстве промышленно развитых стран (Россия, США, Англия, Фран­ция, Канада,ФРГ, Япония, ГДР и др.)  мощность действующихи строящихся АЭС к 1980  доведена додесятков Гвт. По данным Международного атомного агентства ООН, опубликован­нымв 1967, установленная мощность всех АЭС в мире к 1980 достигла 300 Гвт.

  На 3-й Международной научно-техническойконференции по мирному использова­нию атомной энергии (1964, Женева) былоотмечено, что широкое освоение ядерной энергии стало ключевой пробле­мой длябольшинства стран. Состояв­шаяся в Москве в августе 1968 7-я Мироваяэнергетическим конференция (МИРЭК-УП) подтвердила актуальность проблем выбо­ранаправления развития ядерной энер­гетики на следующем этапе (условно1980—2000), когда АЭС станет одним из оси. производителей электроэнергии.

Из 1 кг урана можно получитьстолько же теплоты, сколь­ко при сжигании примерно 3000 т каменного угля.

За годы, прошедшие современи пуска в эксплуатацию пер­вой АЭС, было создано несколько конструкцийядерных реак­торов, на основе которых началось широкое развитие атомнойэнергетики в нашей стране.

Персонал 9 российских АЭСсоставляет 40.6 тыс. человек или 4% от общего числа населения занятого вэнергетике. 11.8% или 119.6 млрд. Квч. всей электроэнергии, произведенной вРоссии выработано на АЭС. Только на АЭС рост производства электроэнергиисохранился: в 2000 году планируется произвести 118% от объема 1999 года.

АЭС, являющиеся наиболеесовременным видом электростанций имеют ряд существенных преимуществ переддругими видами электростанций: при нормальных условиях функционирования ониобсолютно не загрязняют окружающую среду, не требуют привязки к источнику сырьяи соответственно могут быть размещены практически везде, новые энергоблокиимеют мощность практичеки равную мощности средней ГЭС, однако коэффициэнтиспользования установленной мощности на АЭС (80%) значительно превышает этот показательу ГЭС или ТЭС.  Об экономичности иэффективности атомных электростанций может говорить тот факт, что  из 1 кг урана можно получить столько жетеплоты, сколь­ко при сжигании примерно 3000 т каменного угля.

  Значительных недостатков АЭС при нормальныхусловиях функционирования практически не имеют. Однако нельзя не заметитьопасность АЭС при возможных форс-мажорных обстоятельствах: землетрясениях,ураганах, и т. п. — здесь старые модели энергоблоков представляют потенциальнуюопасность радиационного заражения территорий из-за неконтролируемого перегревареактора.

Заключение.

Учитывая  результаты существующих прогнозов поистощению к середине – концу следующего столе­тия запасов нефти, природногогаза и других традиционных энергоресурсов, а также сокращение потребления угля(которо­го, по расчетам, должно хватить на300лет) из-за вредных выбро­сов в атмосферу, а также употребления ядерноготоплива, которого при условии интенсивного развития реакторов-раз­множителейхватит не менее чем на1000 лет можносчитать, что на данном этапе развития науки и техники тепловые, атомные игидроэлектрические источники будут еще долгое время преобладать над остальнымиисточника

www.ronl.ru

Реферат - Физика и энергетика

Нетрадиционные источники энергии.

Почему именно сейчас, как никогда остро, встал вопрос: что ждет человечество — энергетический голод или энергетическое изобилие? Не сходят со страниц газет и журналов статьи об энергетическом кризисе. Из — за нефти возникают войны, расцветают и беднеют государства, сменяются правительства. К разряду газетных сенсаций стали относить сообщения о запуске новых установок или о новых изобретениях в области энергетике. Разрабатываются гигантские энергетические программы, осуществление которых потребует огромных усилий и огромных материальных затрат.

Если в конце прошлого века самая распространенная энергия — энергетическая играла, в общем, вспомогательную и незначительную в мировом балансе роль, то уже в 1930году в мире было произведено около 300 миллиардов киловатт — часов электроэнергии. Вполне реален прогноз, по которому в 2000году будет произведено 30 тысяч миллиардов киловатт — часов! Гигантские числа, небывалые темпы роста! И все равно энергии будет мало — потребности в ней растут ещё быстрее.

Уровень материальной, а, в конечном счете, и духовной культуры людей, находится в прямой зависимости от количества энергии, имеющейся в их распоряжении. Чтобы добыть руду, выплавить из неё металл, построить дом, сделать любую вещь, нужно израсходовать энергию. А потребности человека всё время растут, да и людей становится всё больше.

Так в чём же проблема? Ученые и изобретатели уже давно разработали многочисленные способы производства энергии, в первую очередь электрической. Давайте тогда строить всё больше и больше электростанций, и энергии будет столько, сколько понадобится! Такое, казалось бы, очевидное решение сложной задачи, оказывается, таит в себе немало подводных камней. Неумолимые законы природы утверждают, что получить энергию, пригодную для использования, можно только за счёт её преобразований из других форм. Вечные двигатели, якобы производящие энергию и ниоткуда её не берущей, к сожалению, невозможны.

А структура мирового энергохозяйства к сегодняшнему дню сложилась таким образом, что четыре из пяти произведенных киловатт получаются в принципе тем же способом, которым пользовался первобытный человек для согревания, то есть при сжигании топлива, или при использовании запасенной в нём химической энергии, преобразовании её в электрическую на тепловых электростанциях.

Конечно, способы сжигания топлива стали намного сложнее и совершеннее.

Новые факторы — возросшие цены на нефть, быстрое развитие атомной энергетики, возрастание требований к защите окружающей среды — потребовали нового подхода к энергетике.

В разработке Энергетической программы приняли участие виднейшие ученые страны, специалисты различных министерств и ведомств. С помощью новейших математических моделей ЭВМ рассчитали несколько сотен вариантов структуры будущего энергетического баланса страны.

Были найдены принципиальные решения, определившие стратегию развития энергетики страны на грядущие десятилетия.

Хотя в основе энергетики ближайшего будущего по-прежнему останется теплоэнергетика на не возобновляемых ресурсах, структура её изменится. Должно сократиться использование нефти. Существенно возрастает производство электроэнергии на атомных электростанциях. Начинается использование пока ещё не тронутых гигантских запасов дешевых углей, например, в Кузнецком, Канско-Ачинском, Экибастузском бассейнах. Широко будет, применятся природный газ, запасы, которых в стране намного превосходят запасы в других странах.

Энергетическая программа страны — основы нашей экономики в канун 21 века.

Но ученые заглядывают и вперед, за пределы сроков, установленных Энергетической программой. На пороге 21 века они трезво отдают себе отчёт в реальностях третьего тысячелетия.

К сожалению, запасы нефти, газа, угля отнюдь не бесконечны.

Природе, чтобы создать эти запасы, потребовались миллионы лет, израсходованы они будут за сотни лет. Сегодня в мире стали всерьёз задумываться над этим, как не допустить хищнического разграбления земных богатств. Ведь лишь при этом условии запасов топлива может хватить на века. К сожалению, многие нефтедобывающие страны живут сегодняшним днём. Они нещадно расходуют подаренные им природой нефтяные запасы. Сейчас многие из этих стран, особенно в районе персидского залива, буквально купаются в золоте, не задумываясь, что через несколько десятков лет эти запасы иссякнут. Что же произойдёт тогда — а это рано или поздно случится, когда месторождения нефти и газа будут исчерпаны? Происшедшие повышение цен на нефть, необходимую не только энергетике, но и транспорту, и химии, заставило задуматься о других видах топлива, пригодных для замены нефти и газа. Особенно призадумались те страны, где нет собственных запасов нефти и газа и которым приходится их покупать.

А пока в мире всё больше учёных и инженеров занимаются поисками новых, нетрадиционных источников, которые могли бы взять на себя хотя бы часть забот по снабжению человечества энергией. Решение этой задачи исследователи ищут на разных направлениях.

Самым заманчивым, конечно, является использование вечных, возобновляемых источников энергии-энергии текущей воды и ветра, тепла земных недр, Солнца.

Много внимания уделяется развитию атомной энергетике, ученые ищут способы воспроизведения на Земле процессов, протекающих в звездах и снабжающих их колоссальными запасами энергии.

Что такое энергия?

В нашем индустриальном обществе от энергии зависит всё. С её помощью движутся автомобили, улетают в космос ракеты. С её помощью можно поджарить хлеб, обогреть жилище и привести в действие кондиционеры, осветить улицы, вывести в море корабли.

Могут сказать, что энергией являются нефть и природный газ. Однако это не так. Чтобы освободить заключенную в них энергию, их необходимо сжечь, так же как бензин, уголь или дрова.

Ученые могут сказать, что энергия-способность к совершению работы, а работа совершается, когда на объект действует физическая сила (такая как давление или гравитация). Согласно формуле, работа равна произведению силы на расстояние, на которое переместился объект. Попросту говоря, работа-энергия в действии.

Вы не раз видели, как подпрыгивает крышка закипающего кофейника, как несутся санки по склону горы, как набегающая волна приподнимает плот. Всё это примеры работы, энергии в действии, действующей на предметы.

Подпрыгивание крышки кофейника было вызвано давлением пара, возникшем при нагревании жидкости. Санки ехали потому, что существуют гравитационные силы. Энергия волн двигала плот.

В нашем работающем мире основой всего является энергия, без неё не будет совершаться работа. Когда энергия имеется в наличие и может быть использована, любой объект будет совершать работу иногда созидательную, иногда разрушительную. Даже музыкальный инструмент-рояль-спосбен совершать работу.

Представьте себе, что вдоль внешней стены многоквартирного дома поднимают рояль. Пока люди тянут за веревки, они прилагают силу, заставляющую двигаться рояль. В этом случае работу совершают люди, а не рояль. Он лишь накапливает потенциальную энергию по мере того, как всё выше и выше поднимается над землёй. Когда, наконец, рояль достигает пятого этажа, он сможет висеть на этом уровне до тех пор, пока люди внизу поддерживают его с помощью веревок и блоков. Однако представьте, что веревки обрываются. Немедленно проявится сила гравитации и потенциальная энергия, накопленная роялем, начнёт, высвобождаться. Рояль рухнет вниз. Он расплющит всё, что попадется ему на пути, ударится о тротуар и разобьется вдребезги.

Вся ситуация, разумеется, случайна, и, тем не менее, служит примером того, что и рояль может совершать работу. В данном случае-разрушительную, но всё же работу.

Мир наполнен энергией, которая может быть использована для совершения работы данного характера. Энергия может, находится в людях и животных, камнях и растениях, в ископаемом топливе, деревьях и воздухе, в реках и озерах.

Энергия солнца:

В последние время интерес к проблеме использования солнечной энергии резко возрос, и хотя этот источник также относится к возобновляемым, внимание, уделяемое ему во всё мире, заставляет нас рассмотреть его возможности отдельно.

Потенциальные возможности энергетики, основанной на использовании непосредственно солнечного излучения, чрезвычайно велики.

Заметим, что использование всего лишь 0.0125% этого количества энергии Солнца могло бы обеспечить все сегодняшние потребности мировой энергетики, а использование 0.5% — полностью покрыть потребности на перспективу.

К сожалению, вряд ли когда-нибудь эти огромные потенциальные ресурсы удастся реализовать в больших масштабах. Одним из наиболее серьезных препятствий такой реализации является низкая интенсивность солнечного излучения. Даже при наилучших атмосферных условиях (южные широты, чистое небо) плотность потока солнечного излучения составляет не более 250Вт/м. Поэтому, чтобы коллекторы солнечного света излучения «собирали» за год энергию, необходимую для удовлетворения всех потребностей человечества нужно разместить их на территории 130 000 км!

Необходимость использовать коллекторы огромных размеров, кроме того, влечет за собой значительные материальные затраты.

Простейший коллектор солнечного излучения представляет собой зачерненный металлический (как правило, алюминиевый) лист, внутри которого располагаются трубы с циркулирующей в ней жидкостью. Нагретая за счёт солнечной энергии, поглощенной коллектором, жидкость поступает для непосредственного использования. Согласно расчётам изготовление коллекторов солнечного излучения площадью 1км, требует примерно 10 тонн алюминия.

Доказанные же на сегодня мировые запасы этого металла оцениваются в 1,17 10тонн.

Из написанного ясно, что существуют разные факторы, ограничивающие мощность солнечной энергетики. Предположим, что в будущем для изготовления коллекторов станет возможным применять не только алюминий, но и другие материалы. Изменится ли ситуация в этом случае? Будем исходить из того, что на отдельной фазе развития энергетики (после 2100 года) все мировые потребности в энергии будут удовлетворяться за счёт солнечной энергии. В рамках этой модели можно оценить, что в этом случае потребуется «собирать» солнечную энергию на площади от 1 10 до 3 10км. В то же время общая площадь пахотных земель в мире составляет 13 10 км.

Солнечная энергетика относится к наиболее материалоёмким видам производства энергии. Крупномасштабное использование солнечной энергии влечёт за собой гигантское увеличение потребности в материалах, а, следовательно, и в трудовых ресурсах для добычи сырья, его обогащения, получения материалов, изготовление гелиостатов, коллекторов, другой аппаратуры, их перевозки. Подсчёты показывают, что для производства 1 Мвт год электрической энергии с помощью солнечной энергетики потребуется затратить от 10 000 до 40 000 человеко-часов. В традиционной энергетики на органическом топливе этот показатель составляет 200-500 человеко-часов.

Пока ещё электрической энергии, рожденными солнечными лучами, обходится намного дороже, чем получаемая традиционными способами. Ученые открыли, что эксперименты, которые они проведут на опытных установках и станциях, помогут решить не только технические, но и экономические проблемы.

Ветровая энергия:

Огромная энергия движущихся воздушных масс. Запасы энергия ветра более чем в сто раз превышают запасы гидроэнергии всех рек планеты. Постоянно и повсюду на земле дуют ветра от легкого ветерка, несущего желанную прохладу в летний зной, до могучих ураганов, приносящих неисчислимый урон и разрушения. Всегда, дующие на просторах нашей страны, могли бы легко удовлетворить все её потребности и электроэнергии! Климатические условия позволяют развивать ветроэнерготехнику на огромной территории-от наших западных границ до берегов Енисея. Богаты энергией ветра северные районы страны вдоль побережья Северного Ледовитого океана, где она особенно необходима мужественным людям, обживающим эти богатейшие края. Почему же столь обильный, доступный, да и экологически чистый источник энергии так слабо используется? В наши дни двигатели, использующие ветер, покрывает всего одну тысячную мировых потребностей энергии.

Техника 20 века открыла совершенно новые возможности для ветроэнергетики, задача которой стала другой-получении электроэнергии. В начале века Н.Е. Жуковский разработал теорию ветродвигателя, на основе которой могли быть созданы высокопроизводительные установки, способные получать энергию от самого слабого ветерка. Появилось множество проектов ветроагрегатов, несравненно более совершенных, чем старые ветряные мельницы. В новых проектах используются достижения многих отраслей знания.

В наши дни к созданию конструкций ветроколеса-сердце любой ветроэнергетической установки-привлекаются специалисты самолетостроители, умеющие выбрать наиболее целесообразный профиль лопасти, исследовать его в аэродинамической трубе. Усилиями ученых инженеров созданы самые разнообразные конструкции современных ветровых установок.

Энергия рек:

Многие тысячелетия, верно, служит человеку энергия, заключенная в текущей воде. Запасы её на Земле колоссальны. Недаром некоторые ученные считают, что наши планеты правильнее было бы называть не Земля, а Вода-ведь около трёх четвертей поверхности планеты покрыты водой. Огромным аккумулятором энергии служит Мировой океан, поглощающий большую её часть, поступаю от Солнца. Здесь плещут волны, происходят приливы и отливы, возникают могучие океанские течения. Рождаются могучие реки, несущие огромные массы воды в моря и океаны. Понятно, что человечество в поисках энергии не могло пройти мимо столь гигантских её запасов. Раньше всего люди научились энергию рек.

Но когда наступил золотой век электричества, произошло возрождение водяного колеса, правда, уже в другом обличье – в виде водяной турбины. Электрические генераторы, производящие энергию, необходимо было вращать, а это вполне успешно могла делать вода, тем более что много вековой опыт у неё уже имелся.

Можно считать, что современная гидроэнергетика родилась в 1891 году.

Преимущества гидроэлектростанций очевидны — постоянно возобновляемый самой природой запас энергии, простота эксплуатации, отсутствие загрязнения окружающей среды. Да и опыт постройки и эксплуатации водяных колёс мог бы оказать не малую помощь гидроэнергетикам. Однако постройка плотины крупной гидроэлектростанции оказалась задачей куда более сложной, чем постройка маленькой запруды для вращения мельничного колеса. Чтобы привести во вращение мощные гидротурбины, нужно накопить за плотиной огромный запас воды. Для постройки турбины требуется уложить такое количество материалов, что объем гигантских египетских пирамид по сравнению с ним окажется ничтожным. Поэтому в начале 20 века было построено несколько гидроэлектростанций. Вблизи Пятигорска, на Северном Кавказе на горной реке Подкумок успешно действовала довольно крупная электростанция с многозначительным названием «Белый уголь». Это было лишь началом.

Уже в историческом плане ГОЭЛРО предусматривалось строительство крупных гидроэлектростанций. В 1926 году в строй вошла Волоховская ГЭС, в следующем — началось строительство знаменитой Днепровской. Дальновидная энергетическая политика, проводящаяся в нашей стране, привела к тому, что у нас, как ни в одной стране мира, развита система мощных гидроэнергетических станций. Ни одно государство не может похвастаться такими энергетическими гигантами, как Волжские, Красноярская и Братская, Саяно-Шушенская ГЭС. Эти станции, дающие буквально океаны энергии, стали центрами, вокруг которых развились большие промышленные комплексы.

Но пока людям служит лишь не большая часть гидроэнергетического потенциала земли. Ежегодно огромные потоки воды, образовавшиеся от дождей и таяния снегов, стекают в моря неиспользованными. Если бы удалось задержать их с помощью плотин, человечество получило бы колоссальное количество энергии.

Энергия земли:

Издавна люди знают о стихийных проявлениях гигантской энергии, таящейся в недрах земного шара. Память человечества хранит предания о катастрофических извержениях вулканов, унесших миллионы человеческих жизней, неузнаваемо изменивших облик многих мест на Земле. Мощность извержения даже сравнительно не большого вулкана колоссальна, она многократно превышает мощность самых крупных энергетических установок, созданных руками человека. Правда, о непосредственном использовании энергии вулканических извержений говорить не приходится — нет пока у людей возможности обуздать не покорную стихию, да и, к счастью, извержения эти достаточно редкие события. Но это проявление энергии, таящейся в земных недрах, когда лишь крохотная доля этой неисчерпаемой энергии находит выход через огнедышащие жерла вулканов.

Маленькая европейская страна Исландия — «страна льда» в дословном переводе — полностью обеспечивает себя помидорами, яблоками и даже бананами! Многочисленные исландские теплицы получают энергию от тепла земли — других местных источников энергии в Исландии практически нет. Зато очень богата эта страна горячими источниками и знаменитыми гейзерами – фонтанами горячей воды, с точностью хронометра вырывающейся из — под земли. И хотя не исландцам она принадлежит приоритет принадлежит в использовании тепла подземных источников, жители этой маленькой северной страны эксплуатируют подземную котельную очень интенсивно. Столица — Рейкьявик, в которой проживает половина населения страны, отапливается только за счёт подземных источников.

Но не только для отопления черпают люди энергию из глубин земли. Уже давно работают электростанции, использующие подземные источники. Первая такая электростанция, совсем ещё маломощная, была построена в 1904году в небольшом итальянском городке Лардерелли, который ещё в 1827году составил проект использования многочисленных в этом районе горячих источников. Постепенно мощность электростанции росла, в строй вступали всё новые агрегаты, использовались новые источники горячей воды, и в наши дни мощность станции достигала уже внушительные величины — 360тысяч киловатт. В Новой Зеландии существует такая электростанция в районе Вайракеи, её мощность 160 тысяч киловатт. В 120 километрах от Сан-Франциско в США производит электроэнергию геотермальная станция мощностью 500тысяч киловатт.

Атомная энергия:

Открытие излучения урана впоследствии стало ключом к энергетическим кладовым природы. Главным, сразу заинтересовавшим исследователей был вопрос: откуда берётся энергия лучей, испускаемых ураном, и почему уран всегда чуточку теплее окружающей среды? Под сомнение ставился либо закон сохранения энергии, либо утвержденный народом принцип неизменности атомов? Огромная научная смелость требовалась от ученых, которые перешагнули границы привычного, отказались от устоявшихся представлений. Такими смельчаками оказались молодые ученые Эрнест Резерфорд и Фредерик Содди. Два года упорного труда по излучению радиоактивности привёл их к революционному тогда выводу: атомы некоторых элементов подвержены распаду, сопровождающемуся излучению энергии в количествах, огромных по сравнению с энергией, освобождающейся при обычных молекулярных видоизменениях. Невиданными темпами развивается атомная энергетика. За тридцать лет общая мощность ядерных энергоблоков выросла с 5 тысяч до 23 миллионов киловатт! Некоторые ученые высказывают своё мнение, что к 21 веку около половины всей электроэнергии в мире будет вырабатываться на атомных электростанциях. В принципе энергетический ядерный реактор устроен довольно просто — в нём, так же как и в обычном котле, вода превращается в пар. Для этого используют энергию, выделяющуюся при цепной реакции распадов атома урана или другого ядерного топлива. На атомной электростанции нет большого парового котла, состоящего из тысячи километров стальных трубок, по которым при огромном давлении циркулирует вода, превращаясь в пар. Эту махину заменил небольшой ядерный реактор. Самый распространенный в настоящее время тип реактора водографитовый. Ещё одна распространённая конструкция реакторов — так называемые водо-водяные. В них вода не только отбирает тепло от твэлов, но и служит замедлителем нейтронов вместо графита. Конструкторы довели мощность таких реакторов до миллиона киловатт. Но всё-таки будущее нашей энергетики, по-видимому, останется за третьим типом реакторов, принцип работы и конструкции которых предложены учеными — реакторами на быстрых нейтронах. Их называют ещё реакторами- размножителями.

Нет сомнения в том, что атомная энергетика заняла прочное место в энергетическом балансе человечества. Она, безусловно, будет развиваться и впредь, безотказно поставляю столь необходимую людям энергию. Однако понадобятся дополнительные меры по обеспечению надежности атомных электростанций, их безаварийной работы, а учёные и инженеры сумеют найти необходимые решения.

Источники:

1. Володин В., Хазановский П. «Энергия, век двадцать первый».

2. Голдин А. «Океаны энергии».

3. Юдасин Л.С. «Энергетика: проблемы и надежды».

www.ronl.ru


Смотрите также

 

..:::Новинки:::..

Windows Commander 5.11 Свежая версия.

Новая версия
IrfanView 3.75 (рус)

Обновление текстового редактора TextEd, уже 1.75a

System mechanic 3.7f
Новая версия

Обновление плагинов для WC, смотрим :-)

Весь Winamp
Посетите новый сайт.

WinRaR 3.00
Релиз уже здесь

PowerDesk 4.0 free
Просто - напросто сильный upgrade проводника.

..:::Счетчики:::..

 

     

 

 

.