Реактивное движение. Межконтинентальная баллистическая ракета.
Доклад по физике ученика 9 «б» класса гимназии №587
Никитина Дмитрия. Содержание.
Реактивное движение------------------------------------------------------------- стр.3
Межконтинентальная баллистическая ракета------------------------------- стр.4
Заключение------------------------------------------------------------------------- стр.6
Список использованной литературы------------------------------------------- стр.6
Реактивное движение.
В течение многих веков человечество мечтало о космических полётах. Писатели-фантасты предлагали самые разные средства для достижения этой цели. В XVII веке появился рассказ французского писателя Сирано де Бержерака о полёте на Луну. Герой этого рассказа добрался до Луны в железной повозке, над которой он всё время подбрасывал сильный магнит. Притягиваясь к нему, повозка всё выше поднималась над Землёй, пока не достигла Луны. А барон Мюнхгаузен рассказывал, что забрался на Луну по стеблю боба.
Но ни один учёный, ни один писатель-фантаст за многие века не смог назвать единственного находящегося в распоряжении человека средства, с помощью которого можно преодолеть силу земного притяжения и улететь в космос. Это смог осуществить русский учёный Константин Эдуардович Циолковский(1857-1935). Он показал, что единственный аппарат, способный преодолеть силу тяжести — это ракета, т.е. аппарат с реактивным двигателем, использующим горючее и окислитель, находящиеся на самом аппарате.
Реактивный двигатель -это двигатель, преобразующий химическую энергию топлива в кинетическую энергию газовой струи, при этом двигатель приобретает скорость в обратном направлении. На каких же принципах и физических законах основывается его действие?
Каждый знает, что выстрел из ружья сопровождается отдачей. Если бы вес пули равнялся бы весу ружья, они бы разлетелись с одинаковой скоростью. Отдача происходит потому, что отбрасываемая масса газов создаёт реактивную силу, благодаря которой может быть обеспечено движение как в воздухе, так и в безвоздушном пространстве. И чем больше масса и скорость истекающих газов, тем большую силу отдачи ощущает наше плечо, чем сильнее реакция ружья, тем больше реактивная сила. Это легко объяснить из закона сохранения импульса, который гласит, что геометрическая (т.е. векторная) сумма импульсов тел, составляющих замкнутую систему, остаётся постоянной при любых движениях и взаимодействиях тел системы, т.е.К. Э. Циолковский вывел формулу, позволяющую рассчитать максимальную скорость, которую может развить ракета. Вот эта формула:
Здесь vmax – максимальная скорость ракеты, v0– начальная скорость, vr – скорость истечения газов из сопла, m – начальная масса топлива, а M – масса пустой ракеты. Как видно из формулы, эта максимально достижимая скорость зависит в первую очередь от скорости истечения газов из сопла, которая в свою очередь зависит прежде всего от вида топлива и температуры газовой струи. Чем выше температура, тем больше скорость. Значит, для ракеты нужно подбирать самое калорийное топливо, дающее наибольшее количество теплоты. Из формулы следует также, что эта скорость зависит и от начальной и конечной массой ракеты, т.е. от того, какая часть её веса приходится на горючее, и какая — на бесполезные (с точки зрения скорости полёта) конструкции: корпус, механизмы, и т.д.
Эта формула Циолковского является фундаментом, на котором зиждется весь расчёт современных ракет. Отношение массы топлива к массе ракеты в конце работы двигателя(т.е. по существу к весу пустой ракеты) называется числом Циолковского.
Основной вывод из этой формулы состоит в том, что в безвоздушном пространстве ракета разовьёт тем большую скорость, чем больше скорость истечения газов и чем больше число Циолковского.
Баллистическая ракета[1] .
Как выглядит в общих чертах современная ракета сверхдальнего действия? Прежде всего, это многоступенчатая ракета. В головной части её размещается боевой заряд, позади него ‑ приборы управления, баки и, наконец, двигатель. В зависимости от топлива стартовый вес ракеты превышает вес полезного груза в 100-200 раз! Поэтому весит она много десятков тонн, а в длину достигает высоты десятиэтажного дома.
Рис.1 Схема внутреннего устройства ракеты.
Конструкция ракеты должна отвечать ряду требований. Например, очень важно, чтобы сила тяги проходила через центр тяжести ракеты. Если не выполнить этого и ещё ряда других условий, то ракета может отклониться от заданного курса или даже начать вращательное движение. «Подправить» курс можно с помощью рулей. Пока ракета летит в плотном воздухе, могут работать аэродинамические рули, а в разреженном воздухе — предложенные ещё Циолковским газовые рули, отклоняющие направление газовой струи. Впрочем, сейчас конструкторы начинают отказываться от применения газовых рулей, заменяя их несколькими дополнительными соплами или поворачивая само главное сопло. Например, на американской ракете, построенной по проекту «Авангард», двигатель подвешен на шарнирах, и его можно отклонять на 5-7О . Действительно, в начале полёта, когда плотность воздуха ещё велика, мала скорость ракеты, поэтому рули плохо управляют. А там, где ракета приобретает большую скорость, мала плотность воздуха. Газовые рули хрупки и ломки, потому что их приходиться делать из графита или керамики.
Каждая ступень ракеты работает в совершенно различных условиях, которые и определяют её устройство. Мощность каждой следующей ступени и время её действия меньше, поэтому и конструкция может быть проще.
В настоящее время двигатели баллистических ракет преимущественно работают на жидком топливе. В качестве горючего обычно используют керосин, спирт, гидразин, анилин, а в качестве окислителей — азотную и хлорную кислоты, жидкий кислород и перекись водорода. Очень активными окислителями являются фтор и жидкий озон, но из-за крайней взрывоопасности они пока находят ограниченное применение.
Наиболее ответственной частью ракеты является двигатель, а в нём — камера сгорания и сопло. Здесь должны использоваться особо жаропрочные материалы и сложные методы охлаждения, так как температура сгорания топлива доходит до 2500-3500О С. Обычные материалы таких температур не выдерживают. Достаточно сложны и остальные агрегаты. Например, насосы, которые подавали горючее и окислитель к форсункам камеры сгорания, уже в ракете ФАУ-2 были способны перекачивать 125 кг топлива в секунду. В ряде случаев вместо баллонов применяют баллоны со сжатым воздухом или каким-нибудь другим газом, который вытесняет горючее из баков и гонит его в камеру сгорания.
Запускается баллистическая ракета со специального стартового устройства. Часто это ажурная металлическая мачта или даже башня, около которой ракету собирают по частям подъёмными кранами. Площадки на башне размещаются против смотровых люков, через которые проверяют и налаживают оборудование. Потом ракету заправляют топливом, и башня отъезжает.
Стартуя вертикально, ракета затем наклоняется и описывает почти строго эллиптическую траекторию. Значительная часть траектории полёта таких ракет проходит на высоте больше 1000 км над Землёй, где сопротивление воздуха практически отсутствует, однако с приближением к цели атмосфера начинает резко тормозить движение ракеты, при этом оболочка сильно нагревается, и, если не принять меры, ракета может разрушиться, а её заряд — преждевременно взорваться.
Заключение.
От себя добавлю, что данное мной описание работы межконтинентальной баллистической ракеты устарело и соответствует уровню развития науки и техники 60-х годов, но, ввиду ограниченности доступа к современным научным материалам, я не имею возможности дать точное описание работы современной межконтинентальной баллистической ракеты сверхдальнего радиуса действия. Однако мною были освещены общие свойства, присущие всем ракетам, поэтому я считаю свою задачу выполненной.
Список использованной литературы:
Дерябин В. М. Законы сохранения в физике. – М.: Просвещение, 1982.
Гельфер Я. М. Законы сохранения. – М.: Наука, 1967.
Кузов К. Мир без форм. – М.: Мир, 1976.
Детская энциклопедия. – М.: Издательство АН СССР, 1959.
[1] Соответствует уровню развития науки и техники 60-х годов (см. заключение).
www.ronl.ru
Реактивное движение. Межконтинентальная баллистическая ракета.
Доклад по физике ученика 9 «б» класса гимназии №587
Никитина Дмитрия. Содержание.
Реактивное движение------------------------------------------------------------- стр.3
Межконтинентальная баллистическая ракета------------------------------- стр.4
Заключение------------------------------------------------------------------------- стр.6
Список использованной литературы------------------------------------------- стр.6
Реактивное движение.
В течение многих веков человечество мечтало о космических полётах. Писатели-фантасты предлагали самые разные средства для достижения этой цели. В XVII веке появился рассказ французского писателя Сирано де Бержерака о полёте на Луну. Герой этого рассказа добрался до Луны в железной повозке, над которой он всё время подбрасывал сильный магнит. Притягиваясь к нему, повозка всё выше поднималась над Землёй, пока не достигла Луны. А барон Мюнхгаузен рассказывал, что забрался на Луну по стеблю боба.
Но ни один учёный, ни один писатель-фантаст за многие века не смог назвать единственного находящегося в распоряжении человека средства, с помощью которого можно преодолеть силу земного притяжения и улететь в космос. Это смог осуществить русский учёный Константин Эдуардович Циолковский(1857-1935). Он показал, что единственный аппарат, способный преодолеть силу тяжести — это ракета, т.е. аппарат с реактивным двигателем, использующим горючее и окислитель, находящиеся на самом аппарате.
Реактивный двигатель -это двигатель, преобразующий химическую энергию топлива в кинетическую энергию газовой струи, при этом двигатель приобретает скорость в обратном направлении. На каких же принципах и физических законах основывается его действие?
Каждый знает, что выстрел из ружья сопровождается отдачей. Если бы вес пули равнялся бы весу ружья, они бы разлетелись с одинаковой скоростью. Отдача происходит потому, что отбрасываемая масса газов создаёт реактивную силу, благодаря которой может быть обеспечено движение как в воздухе, так и в безвоздушном пространстве. И чем больше масса и скорость истекающих газов, тем большую силу отдачи ощущает наше плечо, чем сильнее реакция ружья, тем больше реактивная сила. Это легко объяснить из закона сохранения импульса, который гласит, что геометрическая (т.е. векторная) сумма импульсов тел, составляющих замкнутую систему, остаётся постоянной при любых движениях и взаимодействиях тел системы, т.е.К. Э. Циолковский вывел формулу, позволяющую рассчитать максимальную скорость, которую может развить ракета. Вот эта формула:
Здесь vmax – максимальная скорость ракеты, v0– начальная скорость, vr – скорость истечения газов из сопла, m – начальная масса топлива, а M – масса пустой ракеты. Как видно из формулы, эта максимально достижимая скорость зависит в первую очередь от скорости истечения газов из сопла, которая в свою очередь зависит прежде всего от вида топлива и температуры газовой струи. Чем выше температура, тем больше скорость. Значит, для ракеты нужно подбирать самое калорийное топливо, дающее наибольшее количество теплоты. Из формулы следует также, что эта скорость зависит и от начальной и конечной массой ракеты, т.е. от того, какая часть её веса приходится на горючее, и какая — на бесполезные (с точки зрения скорости полёта) конструкции: корпус, механизмы, и т.д.
Эта формула Циолковского является фундаментом, на котором зиждется весь расчёт современных ракет. Отношение массы топлива к массе ракеты в конце работы двигателя(т.е. по существу к весу пустой ракеты) называется числом Циолковского.
Основной вывод из этой формулы состоит в том, что в безвоздушном пространстве ракета разовьёт тем большую скорость, чем больше скорость истечения газов и чем больше число Циолковского.
Баллистическая ракета[1] .
Как выглядит в общих чертах современная ракета сверхдальнего действия? Прежде всего, это многоступенчатая ракета. В головной части её размещается боевой заряд, позади него ‑ приборы управления, баки и, наконец, двигатель. В зависимости от топлива стартовый вес ракеты превышает вес полезного груза в 100-200 раз! Поэтому весит она много десятков тонн, а в длину достигает высоты десятиэтажного дома.
Рис.1 Схема внутреннего устройства ракеты.
Конструкция ракеты должна отвечать ряду требований. Например, очень важно, чтобы сила тяги проходила через центр тяжести ракеты. Если не выполнить этого и ещё ряда других условий, то ракета может отклониться от заданного курса или даже начать вращательное движение. «Подправить» курс можно с помощью рулей. Пока ракета летит в плотном воздухе, могут работать аэродинамические рули, а в разреженном воздухе — предложенные ещё Циолковским газовые рули, отклоняющие направление газовой струи. Впрочем, сейчас конструкторы начинают отказываться от применения газовых рулей, заменяя их несколькими дополнительными соплами или поворачивая само главное сопло. Например, на американской ракете, построенной по проекту «Авангард», двигатель подвешен на шарнирах, и его можно отклонять на 5-7О . Действительно, в начале полёта, когда плотность воздуха ещё велика, мала скорость ракеты, поэтому рули плохо управляют. А там, где ракета приобретает большую скорость, мала плотность воздуха. Газовые рули хрупки и ломки, потому что их приходиться делать из графита или керамики.
Каждая ступень ракеты работает в совершенно различных условиях, которые и определяют её устройство. Мощность каждой следующей ступени и время её действия меньше, поэтому и конструкция может быть проще.
В настоящее время двигатели баллистических ракет преимущественно работают на жидком топливе. В качестве горючего обычно используют керосин, спирт, гидразин, анилин, а в качестве окислителей — азотную и хлорную кислоты, жидкий кислород и перекись водорода. Очень активными окислителями являются фтор и жидкий озон, но из-за крайней взрывоопасности они пока находят ограниченное применение.
Наиболее ответственной частью ракеты является двигатель, а в нём — камера сгорания и сопло. Здесь должны использоваться особо жаропрочные материалы и сложные методы охлаждения, так как температура сгорания топлива доходит до 2500-3500О С. Обычные материалы таких температур не выдерживают. Достаточно сложны и остальные агрегаты. Например, насосы, которые подавали горючее и окислитель к форсункам камеры сгорания, уже в ракете ФАУ-2 были способны перекачивать 125 кг топлива в секунду. В ряде случаев вместо баллонов применяют баллоны со сжатым воздухом или каким-нибудь другим газом, который вытесняет горючее из баков и гонит его в камеру сгорания.
Запускается баллистическая ракета со специального стартового устройства. Часто это ажурная металлическая мачта или даже башня, около которой ракету собирают по частям подъёмными кранами. Площадки на башне размещаются против смотровых люков, через которые проверяют и налаживают оборудование. Потом ракету заправляют топливом, и башня отъезжает.
Стартуя вертикально, ракета затем наклоняется и описывает почти строго эллиптическую траекторию. Значительная часть траектории полёта таких ракет проходит на высоте больше 1000 км над Землёй, где сопротивление воздуха практически отсутствует, однако с приближением к цели атмосфера начинает резко тормозить движение ракеты, при этом оболочка сильно нагревается, и, если не принять меры, ракета может разрушиться, а её заряд — преждевременно взорваться.
Заключение.
От себя добавлю, что данное мной описание работы межконтинентальной баллистической ракеты устарело и соответствует уровню развития науки и техники 60-х годов, но, ввиду ограниченности доступа к современным научным материалам, я не имею возможности дать точное описание работы современной межконтинентальной баллистической ракеты сверхдальнего радиуса действия. Однако мною были освещены общие свойства, присущие всем ракетам, поэтому я считаю свою задачу выполненной.
Список использованной литературы:
Дерябин В. М. Законы сохранения в физике. – М.: Просвещение, 1982.
Гельфер Я. М. Законы сохранения. – М.: Наука, 1967.
Кузов К. Мир без форм. – М.: Мир, 1976.
Детская энциклопедия. – М.: Издательство АН СССР, 1959.
[1] Соответствует уровню развития науки и техники 60-х годов (см. заключение).
www.ronl.ru
Реактивное движение.Межконтинентальная баллистическая ракета.
Доклад по физикеученика 9 «б» классагимназии №587
Никитина Дмитрия.Содержание.
Реактивное движение------------------------------------------------------------- стр.3
Межконтинентальная баллистическая ракета------------------------------- стр.4
Заключение------------------------------------------------------------------------- стр.6
Список использованной литературы------------------------------------------- стр.6
Реактивное движение.
В течение многих веков человечество мечтало о космических полётах. Писатели-фантасты предлагали самые разные средства для достижения этой цели. В XVII веке появился рассказ французского писателя Сирано де Бержерака о полёте на Луну. Герой этого рассказа добрался до Луны в железной повозке, над которой он всё время подбрасывал сильный магнит. Притягиваясь к нему, повозка всё выше поднималась над Землёй, пока не достигла Луны. А барон Мюнхгаузен рассказывал, что забрался на Луну по стеблю боба.
Но ни один учёный, ни один писатель-фантаст за многие века не смог назвать единственного находящегося в распоряжении человека средства, с помощью которого можно преодолеть силу земного притяжения и улететь в космос. Это смог осуществить русский учёныйКонстантин Эдуардович Циолковский(1857-1935). Он показал, что единственный аппарат, способный преодолеть силу тяжести - это ракета, т.е. аппарат с реактивным двигателем, использующим горючее и окислитель, находящиеся на самом аппарате.
Реактивный двигатель-этодвигатель, преобразующий химическую энергию топлива в кинетическую энергию газовой струи, при этом двигатель приобретает скорость в обратном направлении. На каких же принципах и физических законах основывается его действие?
К. Э. Циолковский вывел формулу, позволяющую рассчитать максимальную скорость, которую может развить ракета. Вот эта формула:
Здесь vmax– максимальная скорость ракеты, v0– начальная скорость, vr– скорость истечения газов из сопла, m – начальная масса топлива, а M – масса пустой ракеты. Как видно из формулы, эта максимально достижимая скорость зависит в первую очередь от скорости истечения газов из сопла, которая в свою очередь зависит прежде всего от вида топлива и температуры газовой струи. Чем выше температура, тем больше скорость. Значит, для ракеты нужно подбирать самое калорийное топливо, дающее наибольшее количество теплоты. Из формулы следует также, что эта скорость зависит и от начальной и конечной массой ракеты, т.е. от того, какая часть её веса приходится на горючее, и какая - на бесполезные (с точки зрения скорости полёта) конструкции: корпус, механизмы, и т.д.
Эта формула Циолковского является фундаментом, на котором зиждется весь расчёт современных ракет. Отношение массы топлива к массе ракеты в конце работы двигателя(т.е. по существу к весу пустой ракеты) называется числом Циолковского.
Основной вывод из этой формулы состоит в том, чтов безвоздушном пространстве ракета разовьёт тем большую скорость, чем больше скорость истечения газов и чем больше число Циолковского.
Баллистическая ракета[1].
Как выглядит в общих чертах современная ракета сверхдальнего действия? Прежде всего, это многоступенчатая ракета. В головной части её размещается боевой заряд, позади него ‑ приборы управления, баки и, наконец, двигатель. В зависимости от топлива стартовый вес ракеты превышает вес полезного груза в 100-200 раз! Поэтому весит она много десятков тонн, а в длину достигает высоты десятиэтажного дома.
Рис.1 Схема внутреннего устройства ракеты.
Конструкция ракеты должна отвечать ряду требований. Например, очень важно, чтобы сила тяги проходила через центр тяжести ракеты. Если не выполнить этого и ещё ряда других условий, то ракета может отклониться от заданного курса или даже начать вращательное движение. «Подправить» курс можно с помощью рулей. Пока ракета летит в плотном воздухе, могут работать аэродинамические рули, а в разреженном воздухе - предложенные ещё Циолковским газовые рули, отклоняющие направление газовой струи. Впрочем, сейчас конструкторы начинают отказываться от применения газовых рулей, заменяя их несколькими дополнительными соплами или поворачивая само главное сопло. Например, на американской ракете, построенной по проекту «Авангард», двигатель подвешен на шарнирах, и его можно отклонять на 5-7О.Действительно, в начале полёта, когда плотность воздуха ещё велика, мала скорость ракеты, поэтому рули плохо управляют. А там, где ракета приобретает большую скорость, мала плотность воздуха. Газовые рули хрупки и ломки, потому что их приходиться делать из графита или керамики.
Каждая ступень ракеты работает в совершенно различных условиях, которые и определяют её устройство. Мощность каждой следующей ступени и время её действия меньше, поэтому и конструкция может быть проще.
В настоящее время двигатели баллистических ракет преимущественно работают на жидком топливе. В качестве горючего обычно используют керосин, спирт, гидразин, анилин, а в качестве окислителей - азотную и хлорную кислоты, жидкий кислород и перекись водорода. Очень активными окислителями являются фтор и жидкий озон, но из-за крайней взрывоопасности они пока находят ограниченное применение.
Наиболее ответственной частью ракеты является двигатель, а в нём - камера сгорания и сопло. Здесь должны использоваться особо жаропрочные материалы и сложные методы охлаждения, так как температура сгорания топлива доходит до 2500-3500ОС. Обычные материалы таких температур не выдерживают. Достаточно сложны и остальные агрегаты. Например, насосы, которые подавали горючее и окислитель к форсункам камеры сгорания, уже в ракете ФАУ-2 были способны перекачивать 125 кг топлива в секунду. В ряде случаев вместо баллонов применяют баллоны со сжатым воздухом или каким-нибудь другим газом, который вытесняет горючее из баков и гонит его в камеру сгорания.
Запускается баллистическая ракета со специального стартового устройства. Часто это ажурная металлическая мачта или даже башня, около которой ракету собирают по частям подъёмными кранами. Площадки на башне размещаются против смотровых люков, через которые проверяют и налаживают оборудование. Потом ракету заправляют топливом, и башня отъезжает.
Стартуя вертикально, ракета затем наклоняется и описывает почти строго эллиптическую траекторию. Значительная часть траектории полёта таких ракет проходит на высоте больше 1000 км над Землёй, где сопротивление воздуха практически отсутствует, однако с приближением к цели атмосфера начинает резко тормозить движение ракеты, при этом оболочка сильно нагревается, и, если не принять меры, ракета может разрушиться, а её заряд - преждевременно взорваться.
Заключение.
От себя добавлю, что данное мной описание работы межконтинентальной баллистической ракеты устарело и соответствует уровню развития науки и техники 60-х годов, но, ввиду ограниченности доступа к современным научным материалам, я не имею возможности дать точное описание работы современной межконтинентальной баллистической ракеты сверхдальнего радиуса действия. Однако мною были освещены общие свойства, присущие всем ракетам, поэтому я считаю свою задачу выполненной.
Список использованной литературы:
Дерябин В. М. Законы сохранения в физике. – М.: Просвещение, 1982.
Гельфер Я. М. Законы сохранения. – М.: Наука, 1967.
Кузов К. Мир без форм. – М.:Мир, 1976.
Детская энциклопедия. – М.: Издательство АН СССР, 1959.
[1]Соответствует уровню развития науки и техники 60-х годов (см. заключение).
superbotanik.net
Устройство межконтинентальной баллистической ракеты.
Содержание.
Введение. *
К. Э. Циолковский – основоположник теории космических полётов. *
Реактивный двигатель. *
Двигатель баллистической ракеты. *
Насосы. *
Альтернатива газовым рулям. *
Стартовая площадка. *
Траектория полёта. *
Заключение. *
Список использованной литературы: *
Введение.
Человечество всегда мечтало о путешествии в космос. Самые разные средства для достижения этой цели предлагали писатели - фантасты, учёные, мечтатели. Но единственного находящегося в распоряжении человека средства, с помощью которого можно преодолеть силу земного притяжения и улететь в космос за многие века не смог изобрести ни один учёный, ни один писатель-фантаст. Например, герой рассказа французского писателя Сирано де Бержерака, написанного в XVII веке, добрался до Луны, подбрасывая сильный магнит над железной повозкой, в которой находился сам. Повозка всё выше поднималась над Землёй, притягиваясь к магниту, пока не достигла Луны, барон Мюнхгаузен рассказывал, что забрался на Луну по стеблю боба.
К. Э. Циолковский – основоположник теории космических полётов.
Впервые мечту и стремления многих людей впервые смог приблизить к реальности русский учёный Константин Эдуардович Циолковский(1857-1935), который показал, что единственный аппарат, способный преодолеть силу тяжести - это ракета, он впервые представил научное доказательство возможности использования ракеты для полётов в космическое пространство, за пределы земной атмосферы и к другим планетам Солнечной системы. Ракетой Цоилковский назвал аппарат с реактивным двигателем, использующим находящиеся на нём горючее и окислитель.
Реактивный двигатель.
Реактивным двигателем называют двигатель, способный преобразовать химическую энергию топлива в кинетическую энергию газовой струи, и приобрести при этом скорость в обратном направлении.
На каких же принципах и физических законах основывается действие реактивного двигателя?
Как известно из курса физики, выстрел из ружья сопровождается отдачей. По законам Ньютона, пуля и ружьё разлетелись бы в разные стороны с одинаковой скоростью, если бы имели одинаковую массу. Отбрасываемая масса газов создаёт реактивную силу, благодаря которой может быть обеспечено движение, как в воздухе, так и в безвоздушном пространстве, так возникает отдача. Тем большую силу отдачи ощущает наше плечо, чем больше масса и скорость истекающих газов, и, следовательно, чем сильнее реакция ружья, тем больше реактивная сила. Эти явления объясняются законом сохранения импульса:
Максимальную скорость, которую может развить ракета, рассчитывают по формуле Циолковского:
, где
v max – максимальная скорость ракеты,
v 0 – начальная скорость,
v r – скорость истечения газов из сопла,
m – начальная масса топлива,
M – масса пустой ракеты.
Представленная формула Циолковского является фундаментом, на котором зиждется весь расчёт современных ракет. Числом Циолковского называют отношение массы топлива к массе ракеты в конце работы двигателя - к весу пустой ракеты.
Таким образом, получили, что максимально достижимая скорость ракеты зависит в первую очередь от скорости истечения газов из сопла. А скорость истечения газов сопла в свою очередь зависит от вида топлива и температуры газовой струи. Значит, чем выше температура, тем больше скорость. Тогда для настоящей ракеты нужно подобрать самое калорийное топливо, дающее наибольшее количество теплоты. По формуле видно, что кроме всего прочего скорость ракеты зависит от начальной и конечной массы ракеты, от того, какая часть её веса приходится на горючее, и какая - на бесполезные (с точки зрения скорости полёта) конструкции: корпус, механизмы, и т.д.
Основной вывод из этой формулы Циолковского для определения скорости космической ракеты состоит в том, что в безвоздушном пространстве ракета разовьёт тем большую скорость, чем больше скорость истечения газов и чем больше число Циолковского.
Устройство баллистической ракеты.
Представим в общих чертах современную ракету сверхдальнего действия.
Такая ракета необходимо должна быть многоуровневой. В её головной части размещается боевой заряд, позади - приборы управления, баки и двигатель. Стартовый вес ракеты превышает вес полезного груза в 100-200 раз в зависимости от топлива! Таким образом, настоящая ракета должна весить несколько сотен тонн, а в длину должна, как минимум, достигать высоты десятиэтажного дома. К конструкции ракеты предъявляется ряд требований. Так, необходимо, например, чтобы сила тяги проходила через центр тяжести ракеты. Ракета может отклониться от заданного курса или даже начать вращательное движение, если не выполнить обозначенные условия.
Рис.1 Внутреннее устройство ракеты.
Восстановить правильный курс можно с помощью рулей. В разреженном воздухе работают газовые рули, отклоняющие направление газовой струи, предложенные Циолковским. Аэродинамические рули работают при полёте ракеты в плотном воздухе.
Двигатель баллистической ракеты.
Современные баллистические ракеты преимущественно работают на двигателях, использующих жидкое топливо. В качестве горючего обычно используют керосин, спирт, гидразин, анилин, а в качестве окислителей - азотную и хлорную кислоты, жидкий кислород и перекись водорода. Самыми активными окислителями являются фтор и жидкий озон, но они применяются редко из-за крайней взрывоопасности.
Двигатель -самая важный элемент ракеты. Самый важный элемент двигателя - камера сгорания и сопло. В камерах сгорания, из-за того, что температура сгорания топлива доходит до 2500-3500 О С, должны использоваться особо жаропрочные материалы и сложные методы охлаждения. Таких температур не выдерживают обычные материалы.
Насосы.
Очень сложны и остальные агрегаты. Например, насосы, которые должны подавать окислитель и горючее к форсункам камеры сгорания, уже в ракете ФАУ-2, одной из первых, были способны перекачивать 125 кг топлива в секунду.
В ряде случаев вместо обычных баллонов применяют баллоны со сжатым воздухом или каким-нибудь другим газом, способным вытеснить горючее из баков и загнать его в камеру сгорания.
Альтернатива газовым рулям.
Газовые приходиться делать из графита или керамики, поэтому они очень хрупкие и ломкие, поэтому современные конструкторы начинают отказываться от применения газовых рулей, заменяя их несколькими дополнительными соплами или поворачивая самое главное сопло. Действительно, в начале полёта, при высокой плотности воздуха, скорость ракеты мала, поэтому рули плохо управляют, а там, где ракета приобретает большую скорость, мала плотность воздуха.
На американской ракете, построенной по проекту “Авангард”, двигатель подвешен на шарнирах, и его можно отклонять на 5-7 О . Мощность каждой следующей ступени и время её действия меньше, потому что каждая ступень ракеты работает в совершенно различных условиях, которые и определяют её устройство, поэтому и конструкция самой ракеты может быть проще.
Стартовая площадка.
Запуск баллистическая ракета происходит со специального стартового устройства. Обычно это ажурная металлическая мачта или даже башня, около которой ракету собирают по частям подъёмными кранами. Участки такой башни размещаются против необходимых для проверки и отладки оборудования смотровых люков. Башня отъезжает, когда ракету заправляют топливом.
Траектория полёта.
Ракета стартует вертикально, а затем начинает медленно наклоняться и вскоре описывает почти строго эллиптическую траекторию. Большая часть траектории полёта таких ракет лежит на высоте больше 1000 км над Землёй, где сопротивление воздуха практически отсутствует. Приближаясь к цели, атмосфера начинает резко тормозить движение ракеты, при этом её оболочка сильно нагревается, а, если не принять меры, ракета может разрушиться, а её заряд - преждевременно взорваться.
Заключение.
Представленное описание межконтинентальной баллистической ракеты устарело и соответствует уровню развития науки и техники 60-х годов, но, ввиду ограниченности доступа к современным научным материалам, отсутствует возможность дать точное описание работы современной межконтинентальной баллистической ракеты сверхдальнего радиуса действия. Несмотря на это, в работе были освещены общие свойства, присущие всем ракетам. Работа также может быть интересна в целях ознакомления с историей развития и использования описанных ракет.
Список использованной литературы:
Дерябин В. М. Законы сохранения в физике. – М.: Просвещение, 1982.
Гельфер Я. М. Законы сохранения. – М.: Наука, 1967.
Кузов К. Мир без форм. – М.:Мир, 1976.
Детская энциклопедия. – М.: Издательство АН СССР, 1959.
referat.store
Реферат на тему:
Межконтинентальная баллистическая ракета 15А18М
Межконтинентальная баллистическая ракета (МБР) — управляемая баллистическая ракета класса «поверхность-поверхность», дальностью не менее 5500 км.[1] Ракеты этого класса, как правило, оснащаются ядерными боевыми частями и предназначены для поражения стратегически важных объектов, расположенных на больших расстояниях и на удалённых континентах.
Первая межконтинентальная баллистическая ракета (Р-7) была принята на вооружение в СССР в 1960 году. В настоящее время межконтинентальные баллистические ракеты имеются на вооружении России, США, Великобритании, Франции,Китая и Израиля[2]. Ведут разработку своих МБР Индия, КНДР, Пакистан, причём возможности небоевых индийских ракет-носителей спутников (также как и японских и украинских) уже давно превышают требуемые для МБР массо-энергетические характеристики, а также рядом обозревателей предполагается, что северокорейская МБР уже испытана в виде ракеты-носителя. Для противостояния равно странам и советского блока, и Запада ЮАР ранее разработала МБР, но отказалась от принятия её на вооружение после краха режима апартеида.
МБР А-9/А-10
Первой из стран, приступивших к работам по созданию межконтинентальных баллистических ракет, стала Нацистская Германия. Летом 1942 года под руководством Вернера фон Брауна стартовал проект «Америка» по созданию ракеты A9/A10. Это была двухступенчатая ракета на жидком топливе весом в 100 т с заявленной дальностью около 5 000 км. Хотя по современной классификации A9/A10 формально относится к ракетам средней дальности, она создавалась как межконтинентальное оружие, способное нанести удар по восточному побережью США.
Наведение ракеты в начале и середине полёта осуществлялось при помощи радиомаяков, заранее установленных на цель и активируемых в определённый момент, на завершающей части - пилотом, который назадолго до цели должен был покидать небольшую кабину на парашюте и приводняться в Атлантическом океане после того как совершал суборбитальный космический полёт[3] Предположительно, испытания в рамках создания A9/A10 проводились как минимум дважды - 8 и 24 января 1945 года, однако до боевого применения дело не дошло.[4]
После разгрома Германии США и СССР вывезли к себе большое количество специалистов, документации и материальной базы по ракетным разработкам.
В Советском Союзе научные изыскания по поводу возможности создания МБР начались в 1950 году. В 1953 году был готов эскизный проект такой ракеты. В 1954 году непосредственное создание ракеты с индексом Р-7 было поручено ЦКБ-1 под руководством Сергея Королёва. Двухступенчатая «Семёрка» была способна доставить один 3-мегатонный ядерный заряд на расстояние 8 800 км. Её первое успешное испытание (после трёх неудач) состоялось 21 августа 1957 года. В 1960 году Р-7 была принята на вооружение вновь созданного отдельного рода войск — РВСН.
В США аналогичная работа по проекту «Атлас» велась с 1951 года. Ракета с индексом SM-65D (англ. SM-65 Atlas) после продолжительной серии испытательных пусков трёх прототипов была запущена 14 апреля 1959 года. Обе эти ракеты, а также американский «Титан», принятый на вооружение в 1961 году, размещались на незащищённых пусковых комплексах, а подготовка к старту занимала часы. В 1962 году в СССР была принята на вооружение ракета Р-16, модификация которой стала первой ракетой, базирующейся в шахтной пусковой установке.
В том же году в ВВС США поступила на вооружение первая МБР на твердом топливе: LGM-30A. В СССР для получения опыта в области твердотопливных ракет дальнего действия в 1959 году были начаты работы по трехступенчатой твердотопливной ракете РТ-1 (8К95) на баллистном порохе (из-за отсутствия технологий по смесевым топливам), однако из стадии испытаний данный проект не вышел (аварийность пусков была высокой), хотя и позволил отработать ряд технологий, в том числе, модификация РТ-1-63 использовалась для отработки верхних ступеней первой советской твердотопливной МБР РТ-2 (9К98), работы по которой были начаты одновременно с РТ-1, в рамках одного комплексного постановления. РТ-2 была принятая на вооружение только в 1968 году.
Важным этапом в развитии ракетной техники было создание систем с разделяющимися головными частями. Первые варианты реализации не имели индивидуального наведения боевых блоков, выгода от использования нескольких небольших зарядов вместо одного мощного заключается в большей эффективности при воздействии по площадным целям, так в 1970 году Советским Союзом были развёрнуты ракеты Р-36 с тремя боевыми блоками по 2,3 Мт. В том же году США поставили на боевое дежурство первые комплексы Minuteman III, которые обладали совершенно новым качеством — возможностью разведения боеголовок по индивидуальным траекториям для поражения нескольких целей.
В СССР были приняты на вооружение первые мобильные МБР: Темп-2С на колёсном шасси (1976 год) и РТ-23 УТТХ на железнодорожном шасси (1989 год). В США также велись работы по аналогичным комплексам, но ни один из них не был принят на вооружение.
Особым направлением в развитии межконтинентальных баллистических ракет являлись работы по «тяжёлым» ракетам. В СССР КБ «Южное» приступило к разработке Р-36М, в США с 1972 года велись работы по ракете MX; приняты на вооружение в 1975 и 1986 годах соответственно. Р-36М2, поступившая на вооружение в 1988 году, является самой мощной и самой тяжёлой в истории ракетного оружия: 211-тонная ракета при стрельбе на 16 000 км несет на борту 10 боевых блоков мощностью 750 кт.
По способу базирования межконтинентальные баллистические ракеты делят на:
Первый способ базирования вышел из употребления ещё в начале 1960-х гг., как не отвечающий требованиям защищённости и скрытности. Современные ШПУ обеспечивают высокую степень защиты от поражающих факторов ядерного взрыва и позволяют достаточно надёжно скрывать степень боеготовности стартового комплекса. Остальные три варианта являются мобильными, а значит более труднообнаружимыми, однако накладывают существенные ограничения на размеры и массу ракет.
МБР компоновки КБ им. В. П. Макеева
Неоднократно предлагались и другие способы базирования МБР, призванные обеспечить скрытность развёртывания и защищённость стартовых комплексов, например:
До сих пор ни один из подобных проектов не был доведён до практической реализации.
Ранние варианты МБР использовали жидкостные ракетные двигатели и требовали длительной заправки компонентами ракетного топлива непосредственно перед запуском. Подготовка к запуску могла длиться несколько часов, а время поддержания боевой готовности было весьма незначительным. В случае применения криогенных компонентов (Р-7) оборудование стартового комплекса было весьма громоздким. Всё это значительно ограничивало стратегическую ценность таких ракет. Современные МБР используют твёрдотопливные ракетные двигатели или жидкостные ракетные двигатели на высококипящих компонентах с ампулизированной заправкой. Такие ракеты поступают с завода в транспортно-пусковых контейнерах. Это позволяет им храниться в готовом к старту состоянии в течение всего срока службы. Жидкостные ракеты доставляют на стартовый комплекс в незаправленном состоянии. Заправка производится после установки ТПК с ракетой в ПУ, после чего ракета может находиться в боеготовом состоянии многие месяцы и годы. Подготовка к запуску занимает обычно не более нескольких минут и производятся дистанционно, с удалённого командного пункта, по кабельным или радиоканалам. Так же осуществляются периодические проверки систем ракеты и ПУ.
Современные МБР обычно имеют разнообразные средства преодоления ПРО противника. Они могут включать в себя маневрирующие боевые блоки, средства постановки радиолокационных помех, ложные цели и др.
Точность стрельбы МБР (круговое вероятное отклонение, КВО) является очень важной характеристикой, так как повышение точности в 2 раза позволяет использовать в 5 раз менее мощный боезаряд. Точность ограничивается точностью навигационной системы и имеющейся геофизической информацией. Многие правительственные программы, такие как GPS, ГЛОНАСС, спутники дистанционного зондирования Земли, используются в том числе для повышения точности навигационной информации. Самые точные баллистические ракеты имеют КВО менее 100 метров, даже при межконтинентальной дальности.
Максимальная дальность полёта МБР 16 тыс. км, обеспечивая практически глобальную досягаемость для ракетного удара вне зависимости от расположения пусковой установки. Стартовая масса — 16—200 т, полезная нагрузка — до 10 тонн, апогей траектория — до 1000 км.
Орбитальные ракеты (Р-36орб) имеют неограниченную дальность, но они сняты с вооружения по договору ОСВ-2.
Запуск ракеты «Днепр»
В России и США отслужившие свой срок МБР используются как ракеты-носители для вывода космических объектов на низкие круговые околоземные орбиты.
Например, при помощи американских МБР Атлас и Титан осуществлялись запуски космических кораблей Меркурий и Джемини. А советские МБР PC-20, PC-18 и морская Р-29РМ послужили основой для создания ракет-носителей Днепр, Стрела, Рокот и Штиль.
wreferat.baza-referat.ru
Реактивное движение. Межконтинентальная баллистическая ракета.
Доклад пофизике ученика 9 «б» класса гимназии №587Никитина Дмитрия. Содержание.Реактивноедвижение------------------------------------------------------------- стр.3Межконтинентальная баллистическаяракета------------------------------- стр.4
Заключение-------------------------------------------------------------------------стр.6
Список использованной литературы-------------------------------------------стр.6Реактивноедвижение.
В течение многих вековчеловечество мечтало о космических полётах. Писатели-фантасты предлагалисамые разные средства для достижения этой цели. В XVIIвеке появилсярассказ французского писателя Сирано де Бержерака о полёте на Луну. Герой этогорассказа добрался до Луны в железной повозке, над которой он всё времяподбрасывал сильный магнит. Притягиваясь к нему, повозка всё выше поднималасьнад Землёй, пока не достигла Луны. А барон Мюнхгаузен рассказывал, чтозабрался на Луну по стеблю боба.
Но ни один учёный, ни одинписатель-фантаст за многие века не смог назвать единственного находящегося враспоряжении человека средства, с помощью которого можно преодолеть силуземного притяжения и улететь в космос. Это смог осуществить русский учёный Константин ЭдуардовичЦиолковский(1857-1935). Он показал, что единственный аппарат, способныйпреодолеть силу тяжести — это ракета, т.е. аппарат с реактивным двигателем, использующимгорючее и окислитель, находящиеся на самом аппарате.
Реактивный двигатель-это двигатель, преобразующий химическую энергию топлива в кинетическуюэнергию газовой струи, при этом двигатель приобретает скорость вобратном направлении. На каких же принципах и физических законах основываетсяего действие?
<img src="/cache/referats/4837/image002.gif" v:shapes="_x0000_s1070"> Каждый знает, чтовыстрел из ружья сопровождается отдачей. Если бы вес пули равнялся бы весуружья, они бы разлетелись с одинаковой скоростью. Отдача происходит потому, чтоотбрасываемая масса газов создаёт реактивную силу, благодаря которой можетбыть обеспечено движение как в воздухе, так и в безвоздушном пространстве. Ичем больше масса и скорость истекающих газов, тем большую силу отдачи ощущаетнаше плечо, чем сильнее реакция ружья, тем больше реактивная сила. Это легко объяснить из закона сохраненияимпульса, который гласит, что геометрическая(т.е. векторная) сумма импульсов тел,составляющих замкнутую систему, остаётся постоянной при любых движениях ивзаимодействиях тел системы, т.е.
К. Э. Циолковский вывелформулу, позволяющую рассчитать максимальную скорость, которую может развитьракета. Вот эта формула:
<img src="/cache/referats/4837/image004.gif" v:shapes="_x0000_s1072">
Здесь vmax– максимальная скорость ракеты, v0– начальнаяскорость, vr– скорость истечения газов из сопла, m–начальная масса топлива, а M– масса пустой ракеты. Каквидно из формулы, эта максимально достижимая скорость зависит в первую очередьот скорости истечения газов из сопла, которая в свою очередь зависит преждевсего от вида топлива и температуры газовой струи. Чем выше температура, тембольше скорость. Значит, для ракеты нужно подбирать самое калорийное топливо,дающее наибольшее количество теплоты. Из формулы следует также, что этаскорость зависит и от начальной и конечной массой ракеты, т.е. от того, какаячасть её веса приходится на горючее, и какая — на бесполезные (с точки зренияскорости полёта) конструкции: корпус, механизмы, и т.д.
Эта формула Циолковскогоявляется фундаментом, на котором зиждется весь расчёт современных ракет.Отношение массы топлива к массе ракеты в конце работы двигателя(т.е. посуществу к весу пустой ракеты) называется числомЦиолковского.
Основной вывод из этойформулы состоит в том, что в безвоздушномпространстве ракета разовьёт тем большую скорость, чем больше скоростьистечения газов и чем больше число Циолковского.
Баллистическая ракета<span Times New Roman",«serif»; mso-fareast-font-family:«Times New Roman»;mso-ansi-language:RU;mso-fareast-language: RU;mso-bidi-language:AR-SA">[1].
Как выглядит в общих чертахсовременная ракета сверхдальнего действия? Прежде всего, это многоступенчатаяракета. В головной части её размещается боевой заряд, позади него ‑приборы управления, баки и, наконец, двигатель. В зависимости от топливастартовый вес ракеты превышает вес полезного груза в 100-200 раз! Поэтомувесит она много десятков тонн, а в длину достигает высоты десятиэтажногодома.
аппаратура
окислитель
камера сгорания
горючее
сопло
Рис.1 Схема внутреннего устройства ракеты.
Конструкция ракеты должнаотвечать ряду требований. Например, очень важно, чтобы сила тяги проходилачерез центр тяжести ракеты. Если не выполнить этого и ещё ряда других условий,то ракета может отклониться от заданного курса или даже начать вращательноедвижение. «Подправить» курс можно с помощью рулей. Пока ракета летит в плотномвоздухе, могут работать аэродинамические рули, а в разреженном воздухе — предложенные ещё Циолковским газовые рули, отклоняющие направление газовойструи. Впрочем, сейчас конструкторы начинают отказываться от применения газовыхрулей, заменяя их несколькими дополнительными соплами или поворачивая самоглавное сопло. Например, на американской ракете, построенной по проекту«Авангард», двигатель подвешен на шарнирах, и его можно отклонять на 5-7О. Действительно, в началеполёта, когда плотность воздуха ещё велика, мала скорость ракеты, поэтомурули плохо управляют. А там, где ракета приобретает большую скорость, малаплотность воздуха. Газовые рули хрупки и ломки, потому что их приходитьсяделать из графита или керамики.
Каждая ступень ракетыработает в совершенно различных условиях, которые и определяют её устройство.Мощность каждой следующей ступени и время её действия меньше, поэтому иконструкция может быть проще.
В настоящее время двигателибаллистических ракет преимущественно работают на жидком топливе. В качествегорючего обычно используют керосин, спирт, гидразин, анилин, а в качествеокислителей — азотную и хлорную кислоты, жидкий кислород и перекись водорода.Очень активными окислителями являются фтор и жидкий озон, но из-за крайнейвзрывоопасности они пока находят ограниченное применение.
Наиболее ответственнойчастью ракеты является двигатель, а в нём — камера сгорания и сопло. Здесьдолжны использоваться особо жаропрочные материалы и сложные методы охлаждения,так как температура сгорания топлива доходит до 2500-3500ОС. Обычные материалы таких температур не выдерживают.Достаточно сложны и остальные агрегаты. Например, насосы, которые подавалигорючее и окислитель к форсункам камеры сгорания, уже в ракете ФАУ-2 былиспособны перекачивать 125 кг топлива в секунду. В ряде случаев вместо баллоновприменяют баллоны со сжатым воздухом или каким-нибудь другим газом, которыйвытесняет горючее из баков и гонит его в камеру сгорания.
Запускается баллистическаяракета со специального стартового устройства. Часто это ажурнаяметаллическая мачта или даже башня, около которой ракету собирают по частямподъёмными кранами. Площадки на башне размещаются против смотровых люков, черезкоторые проверяют и налаживают оборудование. Потом ракету заправляют топливом,и башня отъезжает.
Стартуя вертикально, ракета затем наклоняется иописывает почти строго эллиптическую траекторию. Значительная часть траекторииполёта таких ракет проходит на высоте больше 1000 км над Землёй, где сопротивлениевоздуха практически отсутствует, однако с приближением к цели атмосфераначинает резко тормозить движение ракеты, при этом оболочка сильно нагревается,и, если не принять меры, ракета может разрушиться, а её заряд — преждевременновзорваться.
Заключение.
От себя добавлю, что данное мной описание работы межконтинентальнойбаллистической ракеты устарело и соответствует уровню развития науки и техники60-х годов, но, ввиду ограниченности доступа к современным научным материалам,я не имею возможности дать точное описание работы современной межконтинентальной баллистической ракетысверхдальнего радиуса действия. Однако мною были освещены общие свойства,присущие всем ракетам, поэтому я считаю свою задачу выполненной.
Список использованной литературы:
Дерябин В. М. Законы сохранения в физике. – М.: Просвещение,1982.
Гельфер Я. М. Законы сохранения. – М.: Наука, 1967.
Кузов К. Мир без форм. – М.: Мир, 1976.
Детская энциклопедия. –М.: Издательство АН СССР, 1959.
<span Times New Roman",«serif»;mso-fareast-font-family: «Times New Roman»;mso-ansi-language:RU;mso-fareast-language:RU;mso-bidi-language: AR-SA">[1]
Соответствует уровню развитиянауки и техники 60-х годов (см. заключение).www.ronl.ru
Реактивное движение. Межконтинентальная баллистическая ракета.
Межконтинентальная баллистическая ракета------------------------------- стр.4
Заключение------------------------------------------------------------------------- стр.6
Реактивное движение.
В течение многих веков человечество мечтало о космических полётах. Писатели-фантасты предлагали самые разные средства для достижения этой цели. В XVII веке появился рассказ французского писателя Сирано де Бержерака о полёте на Луну. Герой этого рассказа добрался до Луны в железной повозке, над которой он всё время подбрасывал сильный магнит. Притягиваясь к нему, повозка всё выше поднималась над Землёй, пока не достигла Луны. А барон Мюнхгаузен рассказывал, что забрался на Луну по стеблю боба.
Но ни один учёный, ни один писатель-фантаст за многие века не смог назвать единственного находящегося в распоряжении человека средства, с помощью которого можно преодолеть силу земного притяжения и улететь в космос. Это смог осуществить русский учёный Константин Эдуардович Циолковский(1857-1935). Он показал, что единственный аппарат, способный преодолеть силу тяжести - это ракета, т.е. аппарат с реактивным двигателем, использующим горючее и окислитель, находящиеся на самом аппарате.
Реактивный двигатель-это двигатель, преобразующий химическую энергию топлива в кинетическую энергию газовой струи, при этом двигатель приобретает скорость в обратном направлении. На каких же принципах и физических законах основывается его действие?
К. Э. Циолковский вывел формулу, позволяющую рассчитать максимальную скорость, которую может развить ракета. Вот эта формула:
Здесь vmax – максимальная скорость ракеты, v0– начальная скорость, vr – скорость истечения газов из сопла, m – начальная масса топлива, а M – масса пустой ракеты. Как видно из формулы, эта максимально достижимая скорость зависит в первую очередь от скорости истечения газов из сопла, которая в свою очередь зависит прежде всего от вида топлива и температуры газовой струи. Чем выше температура, тем больше скорость. Значит, для ракеты нужно подбирать самое калорийное топливо, дающее наибольшее количество теплоты. Из формулы следует также, что эта скорость зависит и от начальной и конечной массой ракеты, т.е. от того, какая часть её веса приходится на горючее, и какая - на бесполезные (с точки зрения скорости полёта) конструкции: корпус, механизмы, и т.д.
Эта формула Циолковского является фундаментом, на котором зиждется весь расчёт современных ракет. Отношение массы топлива к массе ракеты в конце работы двигателя(т.е. по существу к весу пустой ракеты) называется числом Циолковского.
Основной вывод из этой формулы состоит в том, что в безвоздушном пространстве ракета разовьёт тем большую скорость, чем больше скорость истечения газов и чем больше число Циолковского.
Баллистическая ракета[1].
Как выглядит в общих чертах современная ракета сверхдальнего действия? Прежде всего, это многоступенчатая ракета. В головной части её размещается боевой заряд, позади него ‑ приборы управления, баки и, наконец, двигатель. В зависимости от топлива стартовый вес ракеты превышает вес полезного груза в 100-200 раз! Поэтому весит она много десятков тонн, а в длину достигает высоты десятиэтажного дома.
Рис.1 Схема внутреннего устройства ракеты.
Конструкция ракеты должна отвечать ряду требований. Например, очень важно, чтобы сила тяги проходила через центр тяжести ракеты. Если не выполнить этого и ещё ряда других условий, то ракета может отклониться от заданного курса или даже начать вращательное движение. «Подправить» курс можно с помощью рулей. Пока ракета летит в плотном воздухе, могут работать аэродинамические рули, а в разреженном воздухе - предложенные ещё Циолковским газовые рули, отклоняющие направление газовой струи. Впрочем, сейчас конструкторы начинают отказываться от применения газовых рулей, заменяя их несколькими дополнительными соплами или поворачивая само главное сопло. Например, на американской ракете, построенной по проекту «Авангард», двигатель подвешен на шарнирах, и его можно отклонять на 5-7О. Действительно, в начале полёта, когда плотность воздуха ещё велика, мала скорость ракеты, поэтому рули плохо управляют. А там, где ракета приобретает большую скорость, мала плотность воздуха. Газовые рули хрупки и ломки, потому что их приходиться делать из графита или керамики.
Каждая ступень ракеты работает в совершенно различных условиях, которые и определяют её устройство. Мощность каждой следующей ступени и время её действия меньше, поэтому и конструкция может быть проще.
В настоящее время двигатели баллистических ракет преимущественно работают на жидком топливе. В качестве горючего обычно используют керосин, спирт, гидразин, анилин, а в качестве окислителей - азотную и хлорную кислоты, жидкий кислород и перекись водорода. Очень активными окислителями являются фтор и жидкий озон, но из-за крайней взрывоопасности они пока находят ограниченное применение.
Наиболее ответственной частью ракеты является двигатель, а в нём - камера сгорания и сопло. Здесь должны использоваться особо жаропрочные материалы и сложные методы охлаждения, так как температура сгорания топлива доходит до 2500-3500ОС. Обычные материалы таких температур не выдерживают. Достаточно сложны и остальные агрегаты. Например, насосы, которые подавали горючее и окислитель к форсункам камеры сгорания, уже в ракете ФАУ-2 были способны перекачивать 125 кг топлива в секунду. В ряде случаев вместо баллонов применяют баллоны со сжатым воздухом или каким-нибудь другим газом, который вытесняет горючее из баков и гонит его в камеру сгорания.
Запускается баллистическая ракета со специального стартового устройства. Часто это ажурная металлическая мачта или даже башня, около которой ракету собирают по частям подъёмными кранами. Площадки на башне размещаются против смотровых люков, через которые проверяют и налаживают оборудование. Потом ракету заправляют топливом, и башня отъезжает.
Стартуя вертикально, ракета затем наклоняется и описывает почти строго эллиптическую траекторию. Значительная часть траектории полёта таких ракет проходит на высоте больше 1000 км над Землёй, где сопротивление воздуха практически отсутствует, однако с приближением к цели атмосфера начинает резко тормозить движение ракеты, при этом оболочка сильно нагревается, и, если не принять меры, ракета может разрушиться, а её заряд - преждевременно взорваться.
Заключение.
От себя добавлю, что данное мной описание работы межконтинентальной баллистической ракеты устарело и соответствует уровню развития науки и техники 60-х годов, но, ввиду ограниченности доступа к современным научным материалам, я не имею возможности дать точное описание работы современной межконтинентальной баллистической ракеты сверхдальнего радиуса действия. Однако мною были освещены общие свойства, присущие всем ракетам, поэтому я считаю свою задачу выполненной.
Список использованной литературы:
Дерябин В. М. Законы сохранения в физике. – М.: Просвещение, 1982.
Гельфер Я. М. Законы сохранения. – М.: Наука, 1967.
Кузов К. Мир без форм. – М.:Мир, 1976.
Детская энциклопедия. – М.: Издательство АН СССР, 1959.
www.referatmix.ru