Реферат: Ненасыщенные альдегиды и кетоны. Альдегиды реферат по химии


Доклад - Ненасыщенные альдегиды и кетоны

Ненасыщенные альдегиды и кетоны

Ненасыщенные альдегиды и кетоны, в зависимости от взаимного расположения двойной и карбонильной групп в молекуле, могут быть поделены на три группы: с сопряженными (CH=Ch3 -COCh4 — метилвинилкетон, бутен-1-3-он; Ch3 =CHCHO — акролеин, пропеналь), кумулированными (кетены Ch3 =C=O) и изолированными (Ch3 =CHCh3 Ch3 Ch3 COCh4 ) связями. Из них наибольший интерес представляют соединения с сопряженными связями, особенно — акролеин и кротоновый альдегид

Для некоторых ненасыщенных альдегидов и кетонов сохранились эмпирические (акролеин) или рациональные (метилвинилкетон) названия. По номенклатуре IUPAC положение двойной связи и карбонильной группы указывают цифрами.

Важнейшими представителями ненасыщенных альдегидов являются акролеин Ch3 =CH-CHO и кротоновый альдегид Ch4 -CH=CH-CHO.

Существует несколько способов получения акролеина:

1. Альдольная конденсация формальдегида с ацетальдегидом

Ch3 =O + Ch4 -CHO ® Ch3 OH-Ch3 -CHO

оксипропионовый альдегид

Оксипропионовый альдегид далее подвергается дегидратации:

Ch3 OH-Ch3 -CHO ® Ch3 =CH-CHO + h3 O

2. Прямое каталитическое окисление пропилена

Ch3 =CH-Ch4 + O2 ® Ch3 =CH-CHO + h3 O

3. Дегидратация глицерина

Ch3 OH-CHOH-Ch3 OH ® Ch3 OH-CH=CHOH « Ch3 OH-Ch3 -CH=O ® Ch3 =CH-CHO

Акролеин используется для получения пластмасс, отличающихся большой твердостью. При конденсации акролеина с пентаэритритом получают полимеры, по внешнему виду напоминающие стекло. Акролеин используют в качестве исходного вещества для синтеза глицерина.

Кротоновый альдегид получают кротоновой конденсацией ацетальдегида (см. Лекция №24). Применяется для получения масляного альдегида, бутанола, масляной кислоты, а также малеинового ангидрида.

Химические свойства

Акролеину, кротоновому альдегиду и другим непредельным соединениям с сопряженной двойной и карбонильными связями присущи реакции, свойственные алкенам и альдегидам. Взаимное влияние двойной связи и карбонильной группы находит отражение в некоторых особенностях, например:

1. Порядок присоединения HBr не соответствует правилу Марковникова

2. Синильная кислота присоединяется к акролеину по карбонильной группе:

3. Гидросульфит натрия присоединяется не только по карбонильной группе, но и по двойной связи:

Метилвинилкетон — простейший представитель ненасыщенных кетонов. Существует в виде двух изомеров:

Метилвинилкетон получают преимущественно двумя способами:

1. Гидратация винилацетилена.

HCºC-CH=Ch3 + h3 O ® Ch4 COCH=Ch3

2. Конденсация формальдегида с ацетоном:

h3 C=O + Ch4 COCh4 ® HOCh3 Ch3 COCh4 ® Ch3 =CHCOCh4

Метилвинилкетон проявляет свойства как кетона, так и алкенов. Легко полимеризуется в прозрачную бесцветную стекловидную массу, используемую в производстве пластмасс.

Кетенами называются соединения, содержащие группу >C=C=O. По строению они напоминают непредельные кетоны. Простейший кетен Ch3 =C=O может быть получен из бромангидрида бромуксусной кислоты под действием цинковой пыли:

Ch3 BrCOBr + Zn ® Ch3 =C=O + ZnBr2

В промышленности кетен получают пиролизом ацетона

Ch4 COCh4 ® Ch3 =C=O + Ch5

и дегидратацией уксусной кислоты в присутствии катализаторов кислотного типа:

Ch4 COOH ® Ch3 =C=O + h3 O

Ch4 COOH + H+ ® Ch4COO+ h3 ® Ch4 C+ =O ® Ch3 =C=O + H+

Кетены чрезвычайно легко реагируют с водой:

Ch3 =C=O + h3 O ® Ch4 COOH

карбоновыми кислотами:

Ch3 =C=O + Ch4 COOH ® (Ch4 CO)2 O.

Спиртами:

Ch3 =C=O + Ch4 Ch3 OH ® Ch4 COOCh3 Ch4 .

Аминами:

Ch3 =C=O + Ch4 Nh3 ® Ch4 CONHCh4 + h3 O.

В промышленности из кетена получают уксусную кислоту, уксусный ангидрид, этилацетат, дикетен и другие вещества, являющиеся полупродуктами в производстве красителей и лекарственных веществ.

Кетен легко полимеризуется с образованием дикетена:

.

Дикетен реагирует с водой, спиртами, аминами:

Ch3 =COCh3 CO + h3 O ® Ch4 COCh3 COOH.

Ароматические альдегиды и кетоны

Ароматические альдегиды и кетоны характеризуются наличием карбонильной группы, связанной с углеродом бензольного ядра или боковой цепи. Альдегиды с карбонильной группой первого типа называются по соответствующим ароматическим кислотам, а с карбонильной группой в боковой цепи – как арилзамещенные альдегиды жирного ряда.

Кетоны бывают чисто ароматические (дифенилкетон или бензофенон) и жирноароматическими (метилфенилкетон или ацетофенон).

Способы получения ароматических альдегидов

Многие ароматические альдегиды могут быть получены способам, описанными для альдегидов жирного ряда (Лекция№23): окисление первичных спиртов, сухая перегонка кальциевых солей ароматической и муравьиной кислот, синтезы с участием реактивов Гриньяра и др.

1. Окисление ароматических углеводородов.

Важный способ синтеза ароматических альдегидов (в частности, бензальдегида) – окисление углеводородов кислородом воздуха на катализаторе (V2 O5, MnO2 ):

C6 H5 -Ch4 ® C6 H5 -CHO

Способ имеет как лабораторное, так и промышленное значение.

2. Формилирование ароматических углеводородов.

Для ароматического ряда известны реакции прямого введения альдегидной группы, не имеющие аналогий в жирном ряду (реакция Гаттермана-Коха):

C6 H5 Ch4 + HCl+CO ® Ch4 -C6 h5 -CHO

Реакция катализируется хлоридами меди и алюминия. Предполагается, что в качестве промежуточного продукта образуется хлористый формил HCOCl, не существующий в свободном виде. Бензол в эту реакцию вступает очень плохо, его гомологи дают хорошие выходы (50-60%).

3. Гидролиз гем-дигалогенпроизводных.

Существует способ получения бензальдегида через хлористый бензилиден C6 H5 CHCl2 :

C6 H5 Ch4 + Cl2 ® C6 H5 CHCl2 + h3 O ® C6 H5 CHO + 2 HCl

толуол хлористый бензилиден бензальдегид

Гидролиз проводится в присутствии катализатора (Fe).

Способы получения ароматических кетонов

Для получения ароматических кетонов применимы многие методы получения кетонов жирного ряда (окисление вторичных спиртов, перегонка кальциевых солей ароматической и какой-либо другой кислоты, кроме муравьиной — см. Лекцию №23).

Реакция Фриделя-Крафтса. В качестве исходных веществ могут использоваться ароматические углеводороды, эфиры фенолов:

C6 H6 + Cl-CO-C6 H5 ® C6 H5 -CO-C6 H5 + HCl

хлористый бензоил бензофенон

Реакция катализируется хлористым алюминием.

Химические свойства ароматических альдегидов

Ароматические альдегиды вступают в большинство реакций, свойственных альдегидам жирного ряда. Специфическими реакциями ароматических альдегидов являются следующие:

1. Реакция Канниццаро.

В присутствии водного или спиртового раствора щелочи (50%) ароматические альдегиды могут диспропорционировать, образуя соответствующий спирт и соль кислоты (реакция Канниццаро):

2 C6 H5 CHO + KOH ® C6 H5 COOK + C6 H5 Ch3 OH

бензальдегид бензоат калия бензиловый спирт

Большинство альдегидов жирного ряда в условиях реакции Канниццаро подвергаются осмолению, однако, если в альдегиде отсутствует атом водорода в a-положении, то реакция протекает вполне гладко. Механизм реакции следующий:

2. Бензоиновая конденсация. Под действием цианид-иона две молекулы ароматического альдегида могут конденсироваться с образованием a-оксикетона. Поскольку простейшее соединение, образующееся при конденсации бензальдегида, называется бензоином, эта последовательность реакций получила название бензоиновой конденсации:

Реакционная способность ароматических альдегидов и кетонов зависит от заместителей в ароматическом ядре. Так, наличие электроноакцепторных групп (NO2 -) повышает реакционную способность по карбонильной группе. Большое значение имеет также пространственный фактор: заместитель (трет-С4 H9 -, SO3 H-) в орто-положении ароматического ядра снижает реакционную способность.

Большинство ароматических кетонов реагируют с гидроксиламином и производными гидразина по обычной схеме:

(Ar)2 C=O + Nh3 OH ® (Ar)2 C=NOH + h3 O

кетоксим

(Ar)2 C=O + Nh3 -NH-C6 H5 ® (Ar)2 C=N-NH-C6 H5 + h3 O

фенилгидразон

Из всех азотистых производных кетонов наибольший интерес представляют оксимы. Оксимы чисто ароматических несимметричных кетонов существуют в виде двух геометрических изомерных форм, син- и анти-:

Из всех азотистых производных кетонов наибольший интерес представляют оксимы. Оксимы чисто ароматических несимметричных кетонов существуют в виде двух геометрических изомерных форм, син- и анти-. Син-формой принято считать изомер, содержащий меньший радикал в цис-положении с гидроксильной группой оксима. Более стойкой является анти-форма. Она получается из син-формы под действием кислот. Аналогичное явление известно и для оксимов ароматических альдегидов:

Оксимы жирноароматических кетонов обычно существуют в виде одной более стойкой формы. Важным свойством оксимов является их способность подвергаться перегруппировке Бекмана: под действием ангидридов и хлорангидридов кислот два изомерных оксима дают два изомерных амида:

перегруппировка Бекмана используется для получения w- и e-аминокислот.

Реакция замещения галогена на ОН-группу протекает по механизму нуклеофильного замещения SN. В зависимости от строения субстрата замещение протекает по SN1 (мономолекулярное замещение):

или SN2 (бимолекулярное):

Атакующий агент – анионы (SH -, OН -, I -, Br -, С l -, F -, RO -, Ch4 COO -, ONO2- ) или молекула (ROH, HOH, Nh4, RNh3 ). По увеличению реакционной способности анионы располагаются в следующий ряд:

HS -, RS - > I - > Br — > RO — > Cl — > Ch4 COO — > ONO2-

Анионы более сильные нуклеофилы, чем сопряженные кислоты:

OH — > HOH, RS — > RSH, RO — > ROH, Cl — >HCl

Нуклеофил – атом (или частица), который может отдать пару электронов любому элементу, кроме водорода. Механизм бимолекулярного нуклеофильного замещения (SN2 ) включает образование промежуточного комплекса.

Представленная реакция является реакцией замещения, так как нуклеофил (ОН - ) вытесняет уходящую группу (I- ).

Механизм мономолекулярного нуклеофильного замещения (SN1 ) состоит из двух стадий:

Реакции замещения по механизму SN1 в тех случаях, когда образуется стабильный катион. Первичные галогеналканы реагируют по механизму SN2, а третичные — по механизму SN1.

www.ronl.ru

Реферат - Насыщенные альдегиды и кетоны

Альдегиды и кетоны относятся к карбонильным соединениям (содержат группу >С=О) Они имеют общую формулу:

для альдегидов R1 =H.

Изомерия кетонов связана со строением радикалов и с положением карбонильной группы в углеродной цепи. Кетоны называют по номенклатуре IUPAC называют аналогично альдегидам, но прибавляют окончание -он.

способы получения альдегидов и кетонов

1. Окисление спиртов

R-Ch3 -OH + h3 CrO4 ® R-CHO + h3 CrO3 (неустойчива)+ h3 0

2. Дегидрирование спиртов.

(катализатор Cu ):

Ch4 OH ® HCOH + h3 O

3. . Гидроформилирование алкенов

Ch3 =Ch3 + CO +h3 ® Ch4 Ch3 CHO

Реакция открыта Реленом в 1938г. (100-200о С, 100-250 ат, СО, катализатор – ThO2 +mgoна кизельгуре). Процесс (оксосинтез) катализируется карбонилами кобальта.

Восстановление карбоновых кислот и их производных.

(реакция Роземунда, катализатор – Pd на BaSO4 ).

Если взять смесь солей двух кислот или смешанную соль, то также протекает реакция между молекулами разных солей. Если же одна из солей — формиат, то получается альдегид:

Ch4 COOH + HCOOH®Ch4 COH

(катализаторы – ThO2, MnO, CaO, ZnO, 400-450о С).

5. Синтез альдегидов и кетонов через реактивы Гриньяра

Кетоны получают взаимодействием реактивов Гриньяра с нитрилами:

R-CºN + RMgX® (R)2 C=N- Mg+ X + h3 O® (R)2 C=O

химические свойства альдегидов и кетонов

Повышенная реакционная способность связи С=О вызвана различием электроотрицательностей углерода и кислорода. Реакции альдегидов и кетонов могут катализироваться основаниями, кислотами, или и кислотами, и основаниями. Альдегиды и кетоны вступают в реакции присоединения (вода, спирты, HCN, гидросульфит), присоединения — отщепления (аммиак, амины, гидроксиламин, гидразин и его производные) и реакции по a-углеродному атому.

1. Присоединение воды и спиртов

Вода присоединяется к альдегидам и кетонам, образуя неустойчивые гем-диолы:

>C=O + h3 O® >C(OH)2

Устойчивый продукт присоединение воды образуется с хлоралем:

Cl3 CCHO + h3 O®Cl3 CCH(OH)2

хлоральгидрат

Устойчивость образующегося соединения связана с наличием трихлорметильной группы.

Формальдегид также реагирует с водой, образуя гидрат, но в виде гидрата находится лишь 40% альдегида. Такой раствор формальдегида в воде называется формалином.

Спирты, как и вода, реагируют с альдегидами и кетонами:

RCHO + R’OH « RCH(OR’)OH + R’OH « RCH(OR’)2

Возможно образование соединений, содержащих один алкоксильный остаток -OR’ (полуацетали, полукетали) или два — ацетали, кетали. Образование полуацеталей катализируется и кислотами, и основаниями:

Кислотный катализ

Основной катализ

Реакция образования ацеталей (кеталей) катализируется только кислотами. В качестве исходного может быть использован альдегид или полуацеталь. Реакции присоединения спиртов с образованием ацеталей и кеталей являются обратимыми. Они относятся к кислотно-катализируемым реакциям. Ацетали устойчивы к действию оснований.

Активация карбонильной группы в реакциях присоединения воды и спиртов возможна двумя путями: через образование ассоциативных комплексов типа >C=O...HB (водородная связь) или перенос протона, составляющий первую стадию кислотного катализа. Активация посредством образования ассоциативного комплекса называется специфическим катализом, второй путь — общим катализом. В первом случае скорость реакции зависит от рН среды:

Специфический катализ: >C=O + h4 O+ « >C+ ¼OH + h3 O

Общий катализ: >C=O + H-A« >C=O...H...A

2. Присоединение синильной кислоты

Синильная кислота присоединяется к карбонильным соединениям с образованием гем-цианоксидов (циангидринов). Реакция катализируется только основаниями, которые позволяют получить активный нуклеофил CN- из слабой кислоты HCN. Циангидрины встречаются в природе, например, содержатся в косточках сливы, вишни, персика и в миндале. Циангидрины приводят к тяжелому отравлению в результате освобождения синильной кислоты внутри организма.

3. Присоединение бисульфита натрия

Альдегиды и кетоны взаимодействуют с бисульфитом натрия, образуя соли, хорошо растворимые в воде:

RCHO + NaHSO3 ® RCH(OH)SO3- Na+

Этот метод используют для очистки альдегидов и кетонов. Для выделения их из соли используют разбавленные кислоты и основания.

4. Реакции присоединения — отщепления

Большинство реакций присоединения – отщепления сводится к конденсации карбонильной группы с реагентом типа h3 Z, где Z — остаток молекулы. В результате реакции образуется вода и органическое соединение с группой C=Z вместо С=О. Сначала происходит присоединение по карбонильной связи, а затем – 1,2-отщепление:

>C=O + h3 Z ® >C(OH)ZH ® >C=Z + h3 O

Наиболее обширным классом соединений, которые вступают в реакции присоединения — отщепления, являются аммиак и его производные. Продукты этих реакций содержат связь C=N:

Продукт этой реакции называется иминов или основанием Шиффа. Имины типа >C=NН называются незамещенными иминами, типа >C=NR – замещенными иминами.

Многие другие производные аммиака также дают с альдегидами и кетонами аналогичные продукты конденсации. К таким производным относятся гидроксиламин (Nh3 OH), гидразин (Nh3 -Nh3 ), фенилгидразин (Nh3 -NHC6 H5 ) и семикарбазид (Nh3 -NHC(O)Nh3 ). Продукты их конденсации с карбонильными соединениями называются соответственно оксимами, гидразонами, фенилгидразонами и семикарбазонами:

Конденсацию карбонильных соединений с этими реагентами проводят в присутствии электрофильного катализатора, чаще всего – протона.

Альдольная конденсация.

Под действием каталитических количеств водной кислоты или основания альдегиды превращаются в b-оксиальдегиды. Этот процесс носит название альдольной конденсации:

2 Ch4 CHO®Ch4 CH(OH)Ch3 CHO

ацетальдегид альдоль

Альдольная конденсация, катализируемая основаниями.

Катализируемая основаниями альдольная конденсация начинается с образования енолят-иона альдегида. Поскольку енолят-ион является нуклеофилом, следующей стадией является атака енолят-ионом карбонильной группы другой молекулы альдегида. В результате образуется алкоксид-ион. Далее происходит протонирование алкоксид-иона водой, при этом образуется конечный продукт — альдоль (3) и регенерируется катализатор (ОН - ). Это происходит потому, что алкоксид-ион является более сильным основанием, чем гидроксид-ион.

При нагревании в присутствии основания альдоли легко отщепляют воду, образуя a,b-ненасыщенные альдегиды. Дегидратация протекает легко благодаря кислому характеру атома водорода у a-углеродного атома углерода и вследствие того, что продукт содержит сопряженную систему двойных связей:

Ch4 CH(OH)CHCHO®Ch4 CH=CHCHO

3-оксибутаналь (альдоль) 2-бутеналь (кротоновый альдегид)

Этот тип конденсации получил название кротоновой.

Альдольная конденсация, катализируемая кислотами

Механизм альдольной конденсации, катализируемой кислотами, включает две основных стадии: превращение кето-формы альдегида в енольную форму и атака образовавшимся енолом карбонильной группы альдегида:

Альдоль под действием разбавленной кислоты отщепляет воду даже при комнатной температуре, поэтому конденсацию, катализируемую кислотой, практически невозможно остановить на стадии b-оксиальдегида:

Кетоны вступают в альдольную конденсацию значительно труднее, чем альдегиды. Однако, при катализе кислотами образующийся в небольших количествах 4-окси-4-метил-пентан-2-он (продукт альдольной конденсации) будет быстро дегидратироваться в 4-метил-3-пентен-2-он (мезитилоксид):

www.ronl.ru

Реферат - Ненасыщенные альдегиды и кетоны

Ненасыщенные альдегиды и кетоны

Ненасыщенные альдегиды и кетоны, в зависимости от взаимного расположения двойной и карбонильной групп в молекуле, могут быть поделены на три группы: с сопряженными (CH=Ch3 -COCh4 — метилвинилкетон, бутен-1-3-он; Ch3 =CHCHO — акролеин, пропеналь), кумулированными (кетены Ch3 =C=O) и изолированными (Ch3 =CHCh3 Ch3 Ch3 COCh4 ) связями. Из них наибольший интерес представляют соединения с сопряженными связями, особенно — акролеин и кротоновый альдегид

Для некоторых ненасыщенных альдегидов и кетонов сохранились эмпирические (акролеин) или рациональные (метилвинилкетон) названия. По номенклатуре IUPAC положение двойной связи и карбонильной группы указывают цифрами.

Важнейшими представителями ненасыщенных альдегидов являются акролеин Ch3 =CH-CHO и кротоновый альдегид Ch4 -CH=CH-CHO.

Существует несколько способов получения акролеина:

1. Альдольная конденсация формальдегида с ацетальдегидом

Ch3 =O + Ch4 -CHO ® Ch3 OH-Ch3 -CHO

оксипропионовый альдегид

Оксипропионовый альдегид далее подвергается дегидратации:

Ch3 OH-Ch3 -CHO ® Ch3 =CH-CHO + h3 O

2. Прямое каталитическое окисление пропилена

Ch3 =CH-Ch4 + O2 ® Ch3 =CH-CHO + h3 O

3. Дегидратация глицерина

Ch3 OH-CHOH-Ch3 OH ® Ch3 OH-CH=CHOH « Ch3 OH-Ch3 -CH=O ® Ch3 =CH-CHO

Акролеин используется для получения пластмасс, отличающихся большой твердостью. При конденсации акролеина с пентаэритритом получают полимеры, по внешнему виду напоминающие стекло. Акролеин используют в качестве исходного вещества для синтеза глицерина.

Кротоновый альдегид получают кротоновой конденсацией ацетальдегида (см. Лекция №24). Применяется для получения масляного альдегида, бутанола, масляной кислоты, а также малеинового ангидрида.

Химические свойства

Акролеину, кротоновому альдегиду и другим непредельным соединениям с сопряженной двойной и карбонильными связями присущи реакции, свойственные алкенам и альдегидам. Взаимное влияние двойной связи и карбонильной группы находит отражение в некоторых особенностях, например:

1. Порядок присоединения HBr не соответствует правилу Марковникова

2. Синильная кислота присоединяется к акролеину по карбонильной группе:

3. Гидросульфит натрия присоединяется не только по карбонильной группе, но и по двойной связи:

Метилвинилкетон — простейший представитель ненасыщенных кетонов. Существует в виде двух изомеров:

Метилвинилкетон получают преимущественно двумя способами:

1. Гидратация винилацетилена.

HCºC-CH=Ch3 + h3 O ® Ch4 COCH=Ch3

2. Конденсация формальдегида с ацетоном:

h3 C=O + Ch4 COCh4 ® HOCh3 Ch3 COCh4 ® Ch3 =CHCOCh4

Метилвинилкетон проявляет свойства как кетона, так и алкенов. Легко полимеризуется в прозрачную бесцветную стекловидную массу, используемую в производстве пластмасс.

Кетенами называются соединения, содержащие группу >C=C=O. По строению они напоминают непредельные кетоны. Простейший кетен Ch3 =C=O может быть получен из бромангидрида бромуксусной кислоты под действием цинковой пыли:

Ch3 BrCOBr + Zn ® Ch3 =C=O + ZnBr2

В промышленности кетен получают пиролизом ацетона

Ch4 COCh4 ® Ch3 =C=O + Ch5

и дегидратацией уксусной кислоты в присутствии катализаторов кислотного типа:

Ch4 COOH ® Ch3 =C=O + h3 O

Ch4 COOH + H+ ® Ch4COO+ h3 ® Ch4 C+ =O ® Ch3 =C=O + H+

Кетены чрезвычайно легко реагируют с водой:

Ch3 =C=O + h3 O ® Ch4 COOH

карбоновыми кислотами:

Ch3 =C=O + Ch4 COOH ® (Ch4 CO)2 O.

Спиртами:

Ch3 =C=O + Ch4 Ch3 OH ® Ch4 COOCh3 Ch4 .

Аминами:

Ch3 =C=O + Ch4 Nh3 ® Ch4 CONHCh4 + h3 O.

В промышленности из кетена получают уксусную кислоту, уксусный ангидрид, этилацетат, дикетен и другие вещества, являющиеся полупродуктами в производстве красителей и лекарственных веществ.

Кетен легко полимеризуется с образованием дикетена:

.

Дикетен реагирует с водой, спиртами, аминами:

Ch3 =COCh3 CO + h3 O ® Ch4 COCh3 COOH.

Ароматические альдегиды и кетоны

Ароматические альдегиды и кетоны характеризуются наличием карбонильной группы, связанной с углеродом бензольного ядра или боковой цепи. Альдегиды с карбонильной группой первого типа называются по соответствующим ароматическим кислотам, а с карбонильной группой в боковой цепи – как арилзамещенные альдегиды жирного ряда.

Кетоны бывают чисто ароматические (дифенилкетон или бензофенон) и жирноароматическими (метилфенилкетон или ацетофенон).

Способы получения ароматических альдегидов

Многие ароматические альдегиды могут быть получены способам, описанными для альдегидов жирного ряда (Лекция№23): окисление первичных спиртов, сухая перегонка кальциевых солей ароматической и муравьиной кислот, синтезы с участием реактивов Гриньяра и др.

1. Окисление ароматических углеводородов.

Важный способ синтеза ароматических альдегидов (в частности, бензальдегида) – окисление углеводородов кислородом воздуха на катализаторе (V2 O5, MnO2 ):

C6 H5 -Ch4 ® C6 H5 -CHO

Способ имеет как лабораторное, так и промышленное значение.

2. Формилирование ароматических углеводородов.

Для ароматического ряда известны реакции прямого введения альдегидной группы, не имеющие аналогий в жирном ряду (реакция Гаттермана-Коха):

C6 H5 Ch4 + HCl+CO ® Ch4 -C6 h5 -CHO

Реакция катализируется хлоридами меди и алюминия. Предполагается, что в качестве промежуточного продукта образуется хлористый формил HCOCl, не существующий в свободном виде. Бензол в эту реакцию вступает очень плохо, его гомологи дают хорошие выходы (50-60%).

3. Гидролиз гем-дигалогенпроизводных.

Существует способ получения бензальдегида через хлористый бензилиден C6 H5 CHCl2 :

C6 H5 Ch4 + Cl2 ® C6 H5 CHCl2 + h3 O ® C6 H5 CHO + 2 HCl

толуол хлористый бензилиден бензальдегид

Гидролиз проводится в присутствии катализатора (Fe).

Способы получения ароматических кетонов

Для получения ароматических кетонов применимы многие методы получения кетонов жирного ряда (окисление вторичных спиртов, перегонка кальциевых солей ароматической и какой-либо другой кислоты, кроме муравьиной — см. Лекцию №23).

Реакция Фриделя-Крафтса. В качестве исходных веществ могут использоваться ароматические углеводороды, эфиры фенолов:

C6 H6 + Cl-CO-C6 H5 ® C6 H5 -CO-C6 H5 + HCl

хлористый бензоил бензофенон

Реакция катализируется хлористым алюминием.

Химические свойства ароматических альдегидов

Ароматические альдегиды вступают в большинство реакций, свойственных альдегидам жирного ряда. Специфическими реакциями ароматических альдегидов являются следующие:

1. Реакция Канниццаро.

В присутствии водного или спиртового раствора щелочи (50%) ароматические альдегиды могут диспропорционировать, образуя соответствующий спирт и соль кислоты (реакция Канниццаро):

2 C6 H5 CHO + KOH ® C6 H5 COOK + C6 H5 Ch3 OH

бензальдегид бензоат калия бензиловый спирт

Большинство альдегидов жирного ряда в условиях реакции Канниццаро подвергаются осмолению, однако, если в альдегиде отсутствует атом водорода в a-положении, то реакция протекает вполне гладко. Механизм реакции следующий:

2. Бензоиновая конденсация. Под действием цианид-иона две молекулы ароматического альдегида могут конденсироваться с образованием a-оксикетона. Поскольку простейшее соединение, образующееся при конденсации бензальдегида, называется бензоином, эта последовательность реакций получила название бензоиновой конденсации:

Реакционная способность ароматических альдегидов и кетонов зависит от заместителей в ароматическом ядре. Так, наличие электроноакцепторных групп (NO2 -) повышает реакционную способность по карбонильной группе. Большое значение имеет также пространственный фактор: заместитель (трет-С4 H9 -, SO3 H-) в орто-положении ароматического ядра снижает реакционную способность.

Большинство ароматических кетонов реагируют с гидроксиламином и производными гидразина по обычной схеме:

(Ar)2 C=O + Nh3 OH ® (Ar)2 C=NOH + h3 O

кетоксим

(Ar)2 C=O + Nh3 -NH-C6 H5 ® (Ar)2 C=N-NH-C6 H5 + h3 O

фенилгидразон

Из всех азотистых производных кетонов наибольший интерес представляют оксимы. Оксимы чисто ароматических несимметричных кетонов существуют в виде двух геометрических изомерных форм, син- и анти-:

Из всех азотистых производных кетонов наибольший интерес представляют оксимы. Оксимы чисто ароматических несимметричных кетонов существуют в виде двух геометрических изомерных форм, син- и анти-. Син-формой принято считать изомер, содержащий меньший радикал в цис-положении с гидроксильной группой оксима. Более стойкой является анти-форма. Она получается из син-формы под действием кислот. Аналогичное явление известно и для оксимов ароматических альдегидов:

Оксимы жирноароматических кетонов обычно существуют в виде одной более стойкой формы. Важным свойством оксимов является их способность подвергаться перегруппировке Бекмана: под действием ангидридов и хлорангидридов кислот два изомерных оксима дают два изомерных амида:

перегруппировка Бекмана используется для получения w- и e-аминокислот.

Реакция замещения галогена на ОН-группу протекает по механизму нуклеофильного замещения SN. В зависимости от строения субстрата замещение протекает по SN1 (мономолекулярное замещение):

или SN2 (бимолекулярное):

Атакующий агент – анионы (SH -, OН -, I -, Br -, С l -, F -, RO -, Ch4 COO -, ONO2- ) или молекула (ROH, HOH, Nh4, RNh3 ). По увеличению реакционной способности анионы располагаются в следующий ряд:

HS -, RS - > I - > Br — > RO — > Cl — > Ch4 COO — > ONO2-

Анионы более сильные нуклеофилы, чем сопряженные кислоты:

OH — > HOH, RS — > RSH, RO — > ROH, Cl — >HCl

Нуклеофил – атом (или частица), который может отдать пару электронов любому элементу, кроме водорода. Механизм бимолекулярного нуклеофильного замещения (SN2 ) включает образование промежуточного комплекса.

Представленная реакция является реакцией замещения, так как нуклеофил (ОН - ) вытесняет уходящую группу (I- ).

Механизм мономолекулярного нуклеофильного замещения (SN1 ) состоит из двух стадий:

Реакции замещения по механизму SN1 в тех случаях, когда образуется стабильный катион. Первичные галогеналканы реагируют по механизму SN2, а третичные — по механизму SN1.

www.ronl.ru

Курсовая работа - Ненасыщенные альдегиды и кетоны

Ненасыщенные альдегиды и кетоны

Ненасыщенные альдегиды и кетоны, в зависимости от взаимного расположения двойной и карбонильной групп в молекуле, могут быть поделены на три группы: с сопряженными (CH=Ch3 -COCh4 — метилвинилкетон, бутен-1-3-он; Ch3 =CHCHO — акролеин, пропеналь), кумулированными (кетены Ch3 =C=O) и изолированными (Ch3 =CHCh3 Ch3 Ch3 COCh4 ) связями. Из них наибольший интерес представляют соединения с сопряженными связями, особенно — акролеин и кротоновый альдегид

Для некоторых ненасыщенных альдегидов и кетонов сохранились эмпирические (акролеин) или рациональные (метилвинилкетон) названия. По номенклатуре IUPAC положение двойной связи и карбонильной группы указывают цифрами.

Важнейшими представителями ненасыщенных альдегидов являются акролеин Ch3 =CH-CHO и кротоновый альдегид Ch4 -CH=CH-CHO.

Существует несколько способов получения акролеина:

1. Альдольная конденсация формальдегида с ацетальдегидом

Ch3 =O + Ch4 -CHO ® Ch3 OH-Ch3 -CHO

оксипропионовый альдегид

Оксипропионовый альдегид далее подвергается дегидратации:

Ch3 OH-Ch3 -CHO ® Ch3 =CH-CHO + h3 O

2. Прямое каталитическое окисление пропилена

Ch3 =CH-Ch4 + O2 ® Ch3 =CH-CHO + h3 O

3. Дегидратация глицерина

Ch3 OH-CHOH-Ch3 OH ® Ch3 OH-CH=CHOH « Ch3 OH-Ch3 -CH=O ® Ch3 =CH-CHO

Акролеин используется для получения пластмасс, отличающихся большой твердостью. При конденсации акролеина с пентаэритритом получают полимеры, по внешнему виду напоминающие стекло. Акролеин используют в качестве исходного вещества для синтеза глицерина.

Кротоновый альдегид получают кротоновой конденсацией ацетальдегида (см. Лекция №24). Применяется для получения масляного альдегида, бутанола, масляной кислоты, а также малеинового ангидрида.

Химические свойства

Акролеину, кротоновому альдегиду и другим непредельным соединениям с сопряженной двойной и карбонильными связями присущи реакции, свойственные алкенам и альдегидам. Взаимное влияние двойной связи и карбонильной группы находит отражение в некоторых особенностях, например:

1. Порядок присоединения HBr не соответствует правилу Марковникова

2. Синильная кислота присоединяется к акролеину по карбонильной группе:

3. Гидросульфит натрия присоединяется не только по карбонильной группе, но и по двойной связи:

Метилвинилкетон — простейший представитель ненасыщенных кетонов. Существует в виде двух изомеров:

Метилвинилкетон получают преимущественно двумя способами:

1. Гидратация винилацетилена.

HCºC-CH=Ch3 + h3 O ® Ch4 COCH=Ch3

2. Конденсация формальдегида с ацетоном:

h3 C=O + Ch4 COCh4 ® HOCh3 Ch3 COCh4 ® Ch3 =CHCOCh4

Метилвинилкетон проявляет свойства как кетона, так и алкенов. Легко полимеризуется в прозрачную бесцветную стекловидную массу, используемую в производстве пластмасс.

Кетенами называются соединения, содержащие группу >C=C=O. По строению они напоминают непредельные кетоны. Простейший кетен Ch3 =C=O может быть получен из бромангидрида бромуксусной кислоты под действием цинковой пыли:

Ch3 BrCOBr + Zn ® Ch3 =C=O + ZnBr2

В промышленности кетен получают пиролизом ацетона

Ch4 COCh4 ® Ch3 =C=O + Ch5

и дегидратацией уксусной кислоты в присутствии катализаторов кислотного типа:

Ch4 COOH ® Ch3 =C=O + h3 O

Ch4 COOH + H+ ® Ch4COO+ h3 ® Ch4 C+ =O ® Ch3 =C=O + H+

Кетены чрезвычайно легко реагируют с водой:

Ch3 =C=O + h3 O ® Ch4 COOH

карбоновыми кислотами:

Ch3 =C=O + Ch4 COOH ® (Ch4 CO)2 O.

Спиртами:

Ch3 =C=O + Ch4 Ch3 OH ® Ch4 COOCh3 Ch4 .

Аминами:

Ch3 =C=O + Ch4 Nh3 ® Ch4 CONHCh4 + h3 O.

В промышленности из кетена получают уксусную кислоту, уксусный ангидрид, этилацетат, дикетен и другие вещества, являющиеся полупродуктами в производстве красителей и лекарственных веществ.

Кетен легко полимеризуется с образованием дикетена:

.

Дикетен реагирует с водой, спиртами, аминами:

Ch3 =COCh3 CO + h3 O ® Ch4 COCh3 COOH.

Ароматические альдегиды и кетоны

Ароматические альдегиды и кетоны характеризуются наличием карбонильной группы, связанной с углеродом бензольного ядра или боковой цепи. Альдегиды с карбонильной группой первого типа называются по соответствующим ароматическим кислотам, а с карбонильной группой в боковой цепи – как арилзамещенные альдегиды жирного ряда.

Кетоны бывают чисто ароматические (дифенилкетон или бензофенон) и жирноароматическими (метилфенилкетон или ацетофенон).

Способы получения ароматических альдегидов

Многие ароматические альдегиды могут быть получены способам, описанными для альдегидов жирного ряда (Лекция№23): окисление первичных спиртов, сухая перегонка кальциевых солей ароматической и муравьиной кислот, синтезы с участием реактивов Гриньяра и др.

1. Окисление ароматических углеводородов.

Важный способ синтеза ароматических альдегидов (в частности, бензальдегида) – окисление углеводородов кислородом воздуха на катализаторе (V2 O5, MnO2 ):

C6 H5 -Ch4 ® C6 H5 -CHO

Способ имеет как лабораторное, так и промышленное значение.

2. Формилирование ароматических углеводородов.

Для ароматического ряда известны реакции прямого введения альдегидной группы, не имеющие аналогий в жирном ряду (реакция Гаттермана-Коха):

C6 H5 Ch4 + HCl+CO ® Ch4 -C6 h5 -CHO

Реакция катализируется хлоридами меди и алюминия. Предполагается, что в качестве промежуточного продукта образуется хлористый формил HCOCl, не существующий в свободном виде. Бензол в эту реакцию вступает очень плохо, его гомологи дают хорошие выходы (50-60%).

3. Гидролиз гем-дигалогенпроизводных.

Существует способ получения бензальдегида через хлористый бензилиден C6 H5 CHCl2 :

C6 H5 Ch4 + Cl2 ® C6 H5 CHCl2 + h3 O ® C6 H5 CHO + 2 HCl

толуол хлористый бензилиден бензальдегид

Гидролиз проводится в присутствии катализатора (Fe).

Способы получения ароматических кетонов

Для получения ароматических кетонов применимы многие методы получения кетонов жирного ряда (окисление вторичных спиртов, перегонка кальциевых солей ароматической и какой-либо другой кислоты, кроме муравьиной — см. Лекцию №23).

Реакция Фриделя-Крафтса. В качестве исходных веществ могут использоваться ароматические углеводороды, эфиры фенолов:

C6 H6 + Cl-CO-C6 H5 ® C6 H5 -CO-C6 H5 + HCl

хлористый бензоил бензофенон

Реакция катализируется хлористым алюминием.

Химические свойства ароматических альдегидов

Ароматические альдегиды вступают в большинство реакций, свойственных альдегидам жирного ряда. Специфическими реакциями ароматических альдегидов являются следующие:

1. Реакция Канниццаро.

В присутствии водного или спиртового раствора щелочи (50%) ароматические альдегиды могут диспропорционировать, образуя соответствующий спирт и соль кислоты (реакция Канниццаро):

2 C6 H5 CHO + KOH ® C6 H5 COOK + C6 H5 Ch3 OH

бензальдегид бензоат калия бензиловый спирт

Большинство альдегидов жирного ряда в условиях реакции Канниццаро подвергаются осмолению, однако, если в альдегиде отсутствует атом водорода в a-положении, то реакция протекает вполне гладко. Механизм реакции следующий:

2. Бензоиновая конденсация. Под действием цианид-иона две молекулы ароматического альдегида могут конденсироваться с образованием a-оксикетона. Поскольку простейшее соединение, образующееся при конденсации бензальдегида, называется бензоином, эта последовательность реакций получила название бензоиновой конденсации:

Реакционная способность ароматических альдегидов и кетонов зависит от заместителей в ароматическом ядре. Так, наличие электроноакцепторных групп (NO2 -) повышает реакционную способность по карбонильной группе. Большое значение имеет также пространственный фактор: заместитель (трет-С4 H9 -, SO3 H-) в орто-положении ароматического ядра снижает реакционную способность.

Большинство ароматических кетонов реагируют с гидроксиламином и производными гидразина по обычной схеме:

(Ar)2 C=O + Nh3 OH ® (Ar)2 C=NOH + h3 O

кетоксим

(Ar)2 C=O + Nh3 -NH-C6 H5 ® (Ar)2 C=N-NH-C6 H5 + h3 O

фенилгидразон

Из всех азотистых производных кетонов наибольший интерес представляют оксимы. Оксимы чисто ароматических несимметричных кетонов существуют в виде двух геометрических изомерных форм, син- и анти-:

Из всех азотистых производных кетонов наибольший интерес представляют оксимы. Оксимы чисто ароматических несимметричных кетонов существуют в виде двух геометрических изомерных форм, син- и анти-. Син-формой принято считать изомер, содержащий меньший радикал в цис-положении с гидроксильной группой оксима. Более стойкой является анти-форма. Она получается из син-формы под действием кислот. Аналогичное явление известно и для оксимов ароматических альдегидов:

Оксимы жирноароматических кетонов обычно существуют в виде одной более стойкой формы. Важным свойством оксимов является их способность подвергаться перегруппировке Бекмана: под действием ангидридов и хлорангидридов кислот два изомерных оксима дают два изомерных амида:

перегруппировка Бекмана используется для получения w- и e-аминокислот.

Реакция замещения галогена на ОН-группу протекает по механизму нуклеофильного замещения SN. В зависимости от строения субстрата замещение протекает по SN1 (мономолекулярное замещение):

или SN2 (бимолекулярное):

Атакующий агент – анионы (SH -, OН -, I -, Br -, С l -, F -, RO -, Ch4 COO -, ONO2- ) или молекула (ROH, HOH, Nh4, RNh3 ). По увеличению реакционной способности анионы располагаются в следующий ряд:

HS -, RS - > I - > Br — > RO — > Cl — > Ch4 COO — > ONO2-

Анионы более сильные нуклеофилы, чем сопряженные кислоты:

OH — > HOH, RS — > RSH, RO — > ROH, Cl — >HCl

Нуклеофил – атом (или частица), который может отдать пару электронов любому элементу, кроме водорода. Механизм бимолекулярного нуклеофильного замещения (SN2 ) включает образование промежуточного комплекса.

Представленная реакция является реакцией замещения, так как нуклеофил (ОН - ) вытесняет уходящую группу (I- ).

Механизм мономолекулярного нуклеофильного замещения (SN1 ) состоит из двух стадий:

Реакции замещения по механизму SN1 в тех случаях, когда образуется стабильный катион. Первичные галогеналканы реагируют по механизму SN2, а третичные — по механизму SN1.

www.ronl.ru


Смотрите также