Начальная

Windows Commander

Far
WinNavigator
Frigate
Norton Commander
WinNC
Dos Navigator
Servant Salamander
Turbo Browser

Winamp, Skins, Plugins
Необходимые Утилиты
Текстовые редакторы
Юмор

File managers and best utilites

Реферат: «солнечная система». Солнечная система реферат


Реферат - Солнечная система - Авиация и космонавтика

Содержание

Солнечная система

Происхождение Солнечной системы

Земля — планета солнечной системы

Планеты и их спутники

Открытие других планетных систем

Вывод

Список используемой литературы

Солнечная система

Солнечная система представляет собой систему «звезд — планеты». В нашей Галактике приблизительно 200 млрд. звезд, среди которых,как полагают специалисты, некоторые звезды имеют планеты. В Солнечную системувходят центральное тело, Солнце и девять планет с их спутниками (известно более60 спутников). Диаметр Солнечной системы — более 11,7 млрд. км.

В начале ХХI в. В Солнечной системеобнаружен объект, которые астрономы назвали Седной (имя эскимосской богиниокеана). Седна имеет диаметр в 2000 км. Один ее оборот вокруг Солнца составляет10500 земных лет. Некоторые астрономы называют этот объект планетой Солнечнойсистемы. Другие астрономы называют планетами только космические объекты,имеющие центральное ядро с относительно высокой температурой. Поскольку внастоящее время Седна находится на расстоянии около 13 млрд. км от центраСолнечной системы, то информация об этом объекте достаточно скудная.

 

Происхождение Солнечной системы

Происхождение Солнечной системы из газопылевого облакамежзвездной среды является наиболее признанной концепцией. Высказываетсямнение, что масса исходного для образования Солнечной системы облака была равна10 массам Солнца. В этом облаке решающим был химический его состав. Приблизительно5млрд. лет назад из этого облака образовалось плотное сгущение, названоепротосолнечным диском. Как полагают, взрыв сверхновой звезды в нашей Галактикепридал этому облаку динамический импульс вращения и фрагментации: образовалисьпротозвезда и протопланетный диск. Согласно этой концепции прогресс образованияпротосолнца и протопланетного диска происходил быстро, за 1 млрд. лет, чтопривело к сосредоточению всей энергии массы будущей звездной системы в еецентральном теле, а момент количества движения — в протопланетном диске, вбудущих планетах. Считается, что эволюция протопланетного диска происходила за1 млн. лет. Шло слипание частичек в центральной плоскости этого диска, котороев дальнейшем привело к образованию сгущений частиц, вначале небольших, затем — более крупных тел, которые геологи называют плантезималями. Из них, какполагают, образовались будущие планеты. Эта концепция основывается нарезультатах компьютерных моделей. Есть и другие концепции. Например, в одной изних говорится, что на рождение Солнца — звезды потребовалось 100 млн. лет,когда в протосолнце возникла реакция термоядерного синтеза. Согласно этойконцепции планеты Солнечной системы, в частности земной группы, возникли за теже 100 млн. лет, из массы, оставшейся после образования Солнца. Часть этоймассы была удержана Солнцем, другая — растворилась в межзвездном пространстве.

 

Земля — планета солнечной системы

Особое место в Солнечной системе занимает Земля — единственная планета, на которой в течение миллиардов лет развивается различныеформы жизни. Известно несколько гипотез о происхождении Земли. Почти все онисводятся к тому, что исходным веществом для формирования планет Солнечнойсистемы, в том числе и Земли, были межзвездная пыль и газы. Однако до сих порнет однозначного ответа на вопросы: каким образом в составе планет оказалсяполный набор химических элементов таблицы Менделеева и что послужило толчкомдля начала конденсации газа и пыли в протосолнечную туманность. Некоторыеученые предполагают, что появления разнообразия химических элементов связано свнешним фактором — взрывом Сверхновой звезды в окрестностях будущей Солнечнойсистемы. По-видимому, в недрах и газовой оболочке Сверхновой звезды врезультате ядерных реакций происходит синтез химических элементов. Мощный взрывсвоей ударной волной мог стимулировать начало конденсации межзвездной материи,из которой образовалось Солнце и протопланетный диск, впоследствии распавшийсяна отдельные планеты внутренней и внешней групп с поясом астероидов между ними.Такая начальная стадия формирования Солнечной системы называется катастрофической,так как взрыв Сверхновой звезды — природная катастрофа. В масштабахастрономического времени подобные взрывы — не столь уж редкое явление — онипроисходят в среднем через несколько миллиардов лет.

Предполагается, что образованию планет из протоплазменногодиска предшествовала промежуточная фаза формирования твердых и довольнокрупных, до нескольких сотен километров в диаметре, тел, называемыхплантезималями; последующее их скопление и соудаление вызвало аккрецию (наращивание)планеты, которая сопровождалась изменением гравитационных сил.

Радиоактивным методом установлено, что возраст самых древнихпород, найденных в земной коре, составляет около 4 млрд. лет. Понадобилось миллиардылет, чтобы образовалась наша планета — Земля. Земной шар, сплюснутый у полюсов,вращаясь вокруг собственной оси, движется со средней скоростью около 30 км/с вкосмическом пространстве по эллиптической траектории вокруг Солнца.

Наша Земля удивительна и прекрасна. Такой ее представляли ипредставляют многие люди. Особенно прекрасной она выглядит из космоса, гдевпервые побывал наш соотечественник, космонавт Ю.А. Гагарин.

Планеты и их спутники

Земля — спутник Солнца в мировом пространстве, вечнокружащийся вокруг этого источника тепла и света. Самыми яркими из постояннонаблюдаемых нами небесных объектов, кроме Солнца и Луны, являются соседние снами планеты. Они принадлежат к числу тех девяти миров, которые обращаютсявокруг Солнца на расстояниях, достигающих несколько миллиардов километров. Группапланет вместе с Солнцем составляет Солнечную систему. Планеты хотя и кажутсяпохожими на звезды, в действительности гораздо меньше звезд и темнее. Они виднытолько потому, что отражают солнечный свет, который кажется очень яркими,поскольку планеты гораздо ближе к земле, чем звезды.

Кроме планет, в солнечную систему входят спутники планет,астероиды, кометы, метеоритные тела. Планеты расположены в следующем порядке: Меркурий,Венера, Земля, Марс, Юпитер, Сатурн, Уран, Нептун и Плутон. Возможно, что заПлутоном есть еще одна или несколько планет, но поиски их среди множества звездслабее 15-й величины.

Важную роль в Солнечной системе играет межпланетная среда,те формы вещества и поля, которые заполняют пространство Солнечной системы. Основныекомпоненты этой среды — солнечный ветер; заряженные частицы высокой энергии,приходящие из глубины космоса; межпланетное магнитное поле; межпланетная пыль,основным источником которого являются кометы; нейтральный газ.

С 1962 г. планеты и их спутники успешно исследуютсякосмическими аппаратами. Изучены атмосферы и поверхность Венеры и Марса,сфотографированы поверхность Меркурия, облачный покров Венеры, Юпитера,Сатурна, колец Сатурна и Юпитера. Спускаемые космические аппараты исследовалифизические и химические свойства пород, слагающих поверхность Марса, Венеры, Луны.С конца 1970-х гг. космическими станциями исследовались планеты-гиганты и ихспутники. Полученная информация значительно обогатила наши представления остроении и происхождении Солнечной системы.

По физическим характеристикам планеты делятся на две группы:планеты земного типа (Меркурий, Венера, Земля, Марс) и планеты-гиганты (Юпитер,Сатурн, Уран, Нептун). О Плутоне известно мало, но, по-видимому, он ближе посвоему строению к планетам земной группы.

Открытие других планетных систем

Вступление астрономии в ХХI в. ознаменовалосьвыдающимся достижением — открытием планет за пределами Солнечной системы,планетных систем у других звезд. С помощью нового поколения средств и методовастрономического наблюдения начиная с 1995 г. удалось открыть уже свыше сотнипланет за пределами Солнечной системы, у звезд, расположенных в радиусепримерно ста световых лет от нас.

Кроме того, согласно последним наблюдательным данным, покрайней мере, каждая третья звезда имеет свою планетную систему. Эти данныеподтверждены наблюдениями в инфракрасном диапазоне молодых звезд. Это значит,что планетогенез (образование планетных систем) — не исключительное явление, аповсеместный момент эволюции материи. А наша планетная система — закономерноезвено организации галактической и звездной материи, одна из которых подобныхсистем нашей Галактики. Но у нее есть и свои важные отличительные черты.

Как оказалось, подавляющее большинство открытых планетотносятся к планетам типа Юпитера, т.е. состоят преимущественно из водорода игелия. Их называют горячими Юпитерами. Похоже, что планет земного типа в другихсистемах намного меньше, чем планет типа Юпитера. По-видимому, наша Солнечнаясистема не относится к планетным системам со среднестатистическим распределениемхимических элементов во Вселенной и сложилась в особых условиях. Ее образованиеимело свои особенности, связанные с обогащением водородно-гелиевого пылевогодиска тяжелыми элементами. Таким образом, открытие других планетных системвновь привлекло внимание к проблемам происхождения и распространения химическихэлементов во Вселенной, особенностями химического состава Солнечной системы.

Вывод

Развитие современной астрономии постоянно расширяет знания остроении и объектах доступной для исследования Вселенной. Этим объясняетсяразличные данные о количестве звезд, галактик и других объектах, которыеприводятся в литературе. Открытие Седны в качестве 10-й планеты Солнечнойсистемы существенно изменяет наши представления о размерах Солнечной системы иее взаимодействии с другими объектами нашей Галактики.

В целом следует сказать, что астрономия лишь со второйполовины прошлого века стала изучать самые далекие объекты Вселенной на основеболее современных средств наблюдения и исследования.

Список используемой литературы

1. Карпенков С.Х. Концепции современного естествознания. — Москва, 2005

2. Лихин А.Ф. Концепции современного естествознания. — Москва, 2004

3. Найдыш В.М. Концепции современного естествознания. — Москва 2004

www.ronl.ru

Реферат - «солнечная система» - Остальные рефераты

Московский городской университет управления Правительства Москвы

Кафедра философии

РЕФЕРАТ ПО ТЕМЕ:

«СОЛНЕЧНАЯ СИСТЕМА »

ВЫПОЛНИЛА: студентка I курса экономического ф-та специальность «финансы и кредит»

Митяева Яна Андреевна

ПРОВЕРИЛ: кандидат теоретических наук,

доцент

Лобачев Анатолий Иванович

2008

СОДЕРЖАНИЕ

ВВЕДЕНИЕ… 2

1. Солнечная система. 3

1.1. Солнце. 4

1.2. Объекты, входящие в Солнечную систему. 5

1.3. Меркурий. 6

1.4. Венера. 7

1.5. Земля. 8

1.6. Марс. 9

1.7. Юпитер. 11

1.8. Сатурн. 12

1.9. Уран. 13

1.10. Нептун. 14

1.11. Плутон. 15

2. Малые тела солнечной системы. 16

2.1. Астероиды. 16

2.2. Метеориты. 17

2.3. Кометы. 18

2.4. Формирование звезд. 18

3. Теории формирования Солнечной системы… 19

4. Жизнь в солнечной системе. 21

ЗАКЛЮЧЕНИЕ… 23

ЛИТЕРАТУРА… 24

ВВЕДЕНИЕ

Все мы живём на прекрасной планете Земля, редко задумываясь о существовании других планет, мы живём и не думаем о каких-то глобальных проблемах космоса, так как они нас не трогают. А на самом деле изучение Солнечной системы очень интересная тема, в которую стоит просвещать даже маленьких детей.

Как я уже сказала, парадокс современной астрономии состоит в удивительно низком уровне знаний о нашем собственном доме — Солнечной системе. Астрономия в рамках известных физических законов способна построить близкие к реальности модели рождения, жизни и смерти небесных объектов, размеры, массы, энергетическая отдача и удаленность которых громадны по сравнению с реалиями нашего повседневного опыта. И в то же время, нет надежной модели происхождения и формирования планет и спутников Солнечной системы, неизвестно, как образуются и откуда появляются кометы, и неясно, содержат ли астероиды первичное вещество или являются осколками однажды уже сформировавшихся планетных тел.

Согласно одной из последних оценок, возраст Солнца составляет 4,49 миллиарда лет.

В течение периода, равного 4/5 предположительного времени существования Солнечной системы, на Земле существуют одноклеточные живые организмы. История многоклеточных занимает примерно 1/7 часть истории Земли. Существование человека — Homo sapiens — укладывается в 1/10000 часть времени, прошедшего с момента образования планет. И всего лишь около 1/1000000 этого времени занимает вся история астрономических наблюдений и осмысливания их результатов.

Ниже я расскажу подробнее о каждой из планет, дам общую характеристику, расскажу и происхождении солнечной системы.

1. Солнечная система

1.1. Солнце

За миллионы километров от нас в пространстве пылает гигантский шар раскалённого сияющего газа. Мы называем его Солнцем. Солнце –звезда, самая близкая к нам.

Солнце, являясь центральным телом нашей планеты,- сосредоточило в себе 99,866% всей массы Солнечной системы. Оставшиеся 0,134% вещества представлены девятью большими планетами и несколькими десятками их спутников (в настоящее время их открыто более 60), малыми планетами — астероидами (примерно 100 тысяч), кометами, огромным количеством мелких фрагментов — метеороидов и космической пылью. Механически эти объекты объединены в общую систему силой притяжения превосходящей массы Солнца. Ряд зависимостей показывают принадлежность различных по величине и физико-химическим свойствам тел к единому семейству.

Размером Солнце также значительно превосходит любую планету ее системы: даже Юпитер, который в 11 раз больше Земли, имеет радиус в 10 раз меньше солнечного. Солнце – обычная звезда, которая светит самостоятельно за счет высокой температуры поверхности. Планеты же светят отраженным солнечным светом (альбедо), поскольку сами довольно холодны. Солнце находится от нас очень далеко – почти 150 миллионов километров от Земли. Свет от него мчится с поразительной скоростью: почти 300 000 километров в секунду. И все равно луч солнца добегает до нас только за 8 минут и 20 секунд.

В составе Солнца преобладает водород. На втором месте – гелий. По массе Солнце примерно на 71% состоит из водорода и на 28% из гелия; на долю остальных элементов приходится чуть более 1%. С точки зрения планетологии примечательно, что некоторые объекты Солнечной системы имеют практически такой же состав, как Солнце.

Пятна на солнце означают присутствие там мощных бурь. Они намного холоднее остальной поверхности, отчего и кажутся тёмными. Нередко солнечные пятна возникают парами и медленно расходятся, пока между ними не пролягут тысячи километров. Некоторые из пятен больше Земли.

1.2. Объекты, входящие в Солнечную систему

Объекты, входящие в Солнечную систему это: Солнце, Меркурий, Венера, Земля, Марс, Юпитер, Сатурн, Уран, Нептун и Плутон.

Планеты обращаются вокруг Солнца по почти круговым орбитам, лежащим приблизительно в одной плоскости, в направлении против часовой стрелки, если смотреть со стороны северного полюса Земли. Все планеты Солнечной системы движутся в прямом направлении; наибольший наклон орбиты у Плутона (17°). Многие кометы движутся в обратном направлении, например, наклон орбиты кометы Галлея 162°.

С точки зрения земного наблюдателя планеты Солнечной системы делят на две группы. Меркурий и Венеру, которые ближе к Солнцу, чем Земля, называют нижними (внутренними) планетами, а более далекие (от Марса до Плутона) – верхними (внешними).

Пояс астероидов, проходящий между орбитами Марса и Юпитера, делит планетную систему Солнца на две группы. Внутри него располагаются планеты земной группы (Меркурий, Венера, Земля и Марс), схожие тем, что это небольшие, каменистые и довольно плотные тела. Они сравнительно медленно вращаются вокруг осей, лишены колец и имеют мало естественных спутников: земную Луну и марсианские Фобос и Деймос. Вне пояса астероидов находятся планеты-гиганты: Юпитер, Сатурн, Уран и Нептун. Для них характерны большие радиусы, низкая плотность и глубокие атмосферы, богатые водородом и гелием. Юпитер, Сатурн и, возможно, другие гиганты лишены твердой поверхности. Все они быстро вращаются, имеют много спутников и окружены кольцами. Далекий маленький Плутон и крупные спутники планет-гигантов во многом схожи с планетами земной группы.

1.3. Меркурий

Меркурий – первая от Солнца, самая внутренняя и наименьшая планета Солнечной Системы, обращающаяся вокруг Солнца за 88 дней. Видимая звёздная величина Меркурия колеблется от −2,0 до 5,5, его нелегко заметить по причине очень маленького углового расстояния от Солнца (максимум 28,3°). Его изучали при помощи радиолокации с Земли, а межпланетный зонд «Маринер-10» сфотографировал половину его поверхности.

Вокруг оси он вращается с периодом 58,6 сутки, в точности равным 2/3 орбитального периода, поэтому каждая точка его поверхности поворачивается к Солнцу лишь один раз за 2 меркурианских года, т.е. солнечные сутки там длятся 2 года!

Вероятно, у Меркурия большое металлическое ядро, составляющие 75% радиуса планеты (у Земли оно занимает 50% радиуса)

У Меркурия практически нет атмосферы – лишь крайне разреженная гелиевая оболочка с плотностью земной атмосферы на высоте 200 км. Вероятно, гелий образуется при распаде радиоактивных элементов в недрах планеты. У Меркурия есть слабое магнитное поле, и нет спутников.

1.4. Венера

Венера — вторая внутренняя планета Солнечной системы с периодом обращения в 224,7 Земных дня. Венера — самый яркий объект на ночном небе за исключением Луны. Венера во многом похожа на Землю: ее размер и плотность лишь на 5% меньше, чем у Земли; вероятно, и недра Венеры похожи на земные. Поверхность Венеры всегда закрыта толстым слоем желтовато-белых облаков, но с помощью радаров она исследована довольно подробно. Вокруг оси Венера вращается в обратном направлении с периодом 243 земных суток.

Атмосфера Венеры состоит в основном из углекислого газа (CO2 ), а также небольшого количества азота (N2 ) и паров воды (h3 O). Облака Венеры состоят из микроскопических капелек концентрированной серной кислоты (h3 SO4 ). Днем поверхность планеты освещена рассеянным солнечным светом примерно с такой интенсивностью, как в пасмурный день на Земле. Ночью на Венере замечено много молний.

1.5. Земля

Земля — третья от Солнца планета Солнечной системы, крупнейшая по диаметру, массе и плотности среди землеподобных планет.

Наша планета – единственная, у которой большая часть поверхности (75%) покрыта жидкой водой. Земля – активная планета и, возможно, единственная, у которой обновление поверхности обязано процессам тектоники плит, проявляющим себя срединно-океаническими хребтами, островными дугами и складчатыми горными поясами. Распределение высот твердой поверхности Земли различное: средний уровень океанического дна на 3900 м ниже уровня моря, а континенты в среднем возвышаются над ним на 860 м.

Сейсмические данные указывают на следующее строение земных недр: кора (30 км), мантия (до глубины 2900 км), металлическое ядро. Атмосфера Земли состоит на 78% из азота и на 21% из кислорода.

Существуют указания, что климат Земли изменяется по короткой (10 000 лет) и длинной (100 млн. лет) шкале. Причиной этого могут быть изменения орбитального движения Земли, наклона оси вращения, частоты вулканических извержений. Не исключены и колебания интенсивности солнечного излучения. В нашу эпоху на климат влияет и деятельность человека: выбросы газов и пыли в атмосферу

У Земли есть спутник – Луна, происхождение которой до сих пор не разгадано.

Луна. Один из крупнейших спутников. Ее радиус в 3,7, а масса в 81 раз меньше, чем у Земли. Средняя плотность Луны 3,34 г/см3, что указывает на отсутствие у нее значительного металлического ядра. Сила тяжести на лунной поверхности в 6 раз меньше земной.

Суточное вращение и орбитальное обращение Луны синхронизованы, поэтому мы всегда видим только одно ее полушарие. Правда, небольшие покачивания Луны позволяют в течение месяца увидеть около 60% ее поверхности. Основная причина покачивания в том, что суточное вращение Луны происходит с постоянной скоростью, а орбитальное обращение – с переменной.

1.6. Марс

Марс — четвёртая по удалённости от Солнца и седьмая по размерам планета Солнечной системы. Марс планета земной группы с разряжённой атмосферой, особенностями поверхностного рельефа Марса можно считать ударные кратеры наподобие Лунных и вулканы, долины, пустыни и полярные ледниковые шапки наподобие Земных.

Марс похож на Землю, но почти вдвое меньше ее и имеют несколько меньшую среднюю плотность. Период суточного вращения (24 ч 37 мин) и наклон оси (24°) почти не отличаются от земных.

1 Земля2 орбита спутника3 спутник Земли4 линия земного экватора5 ось вращения Земли6 перигей7 апогей8 линия апсид

Красноватый цвет планеты связан с большим количеством окислов железа (ржавчины) в ее грунте. Состав темных областей, вероятно, напоминает земные базальты, а светлые сложены мелкодисперсным материалом.

Геология Марса весьма разнообразна. Большие пространства южного полушария покрыты старыми кратерами, оставшимися от эпохи древней метеоритной бомбардировки (4 млрд. лет назад). Значительная часть северного полушария покрыта относительно молодыми лавовыми потоками. Хотя древние вулканы указывают на некогда мощную активность марсианских недр, признаков тектоники плит нет: отсутствуют складчатые горные пояса и другие указатели сжатия коры. Внутреннее строение Марса изучено слабо.

Марс имеет два маленьких спутника – Фобос и Деймос. Оба они неправильной формы, покрыты метеоритными кратерами и, вероятно, являются астероидами, захваченными планетой в далеком прошлом.

1.7. Юпитер

Юпитер — Это пятая планета от Солнца, и крупнейшая в Солнечной системе.

Юпитер классифицируется как газовый гигант.

Крупнейшая планета Солнечной системы, Юпитер, в 11 раз больше Земли и в 318 раз массивнее ее. Его низкая средняя плотность (1,3 г/см3 ) указывает на состав, близкий к солнечному. Быстрое вращение Юпитера вокруг оси вызывает его полярное сжатие на 6,4%.

У Юпитера нет твердой поверхности. Верхний слой планеты протяженностью 25% радиуса состоит из жидкого водорода и гелия. Возможно, вблизи центра планеты есть жидкое ядро. В центре давление около 100 млн. бар и температура 20–30 тыс. К.

Жидкие металлические недра и быстрое вращение планеты стали причиной ее мощного магнитного поля, которое в 15 раз сильнее земного. Огромная магнитосфера Юпитера с мощными радиационными поясами простирается за орбиты его четырех крупных спутников.

Температура в центре Юпитера всегда была ниже, чем необходимо для протекания термоядерных реакций. Но внутренние запасы тепла у Юпитера, оставшиеся с эпохи формирования, велики.

У Юпитера четыре спутника: Ио, Европа, Ганимед и Калисто.

1.8. Сатурн

Сатурн — шестая планета от Солнца и вторая по размерам планета в Солнечной системе, после Юпитера. Это водородно-гелиевая планета, однако, относительное содержание гелия у Сатурна меньше, чем у Юпитера; ниже и его средняя плотность. Быстрое вращение Сатурна приводит к его большой сплюснутости (11%). В телескоп диск Сатурна выглядит не так эффектно, как Юпитер: он имеет коричневато-оранжевую окраску и слабо выраженные пояса и зоны.

По внутреннему строению Сатурн также напоминает Юпитер, хотя из-за меньшей массы имеет меньшее давление и температуру в центре (75 млн. бар и 10 500 К). Магнитное поле Сатурна сравнимо с земным.

Схема внутреннего строения Сатурна

Сатурн опоясан уникально мощной системой колец до расстояния 2,3 радиуса планеты. Они легко различимы при наблюдении в телескоп, а при изучении с близкого расстояния демонстрируют исключительное разнообразие. Частицы, заполняющие кольца Сатурна, значительно лучше отражают свет, чем вещество темных колец Урана и Нептуна; их исследование в разных спектральных диапазонах показывает, что это «грязные снежки» с размерами порядка метра.

Также у Сатурна не менее 18 спутников: Янус, Эпиметея, Диона, Елена, Тефию, Телесто, Калипсо, Мимас, Рея, Титан, Япет, Энцелад и др. Большинство спутников Сатурна ледяные.

1.9. Уран

Уран — седьмая по удалённости от Солнца, третья по диаметру и четвёртая по массе планета Солнечной системы.

Уран имеет цвет морской волны и выглядит невыразительно, поскольку верхние слои его атмосферы заполнены туманом. Ось планеты наклонена к орбитальной оси на 98,5°, т.е. лежит почти в плоскости орбиты. Поэтому каждый из полюсов некоторое время обращен прямо на Солнце, а затем на полгода (42 земных года) уходит в тень. Атмосфера Урана содержит в основном водород, 12–15% гелия и немного других газов. Температура атмосферы около 50 К.

В 1976 были открыты уникальные кольца Урана, состоящие из отдельных тонких колечек, самая широкая из которых имеет толщину 100 км. Кольца расположены в диапазоне расстояний от 1,5 до 2,0 радиусов планеты от ее центра. В отличие от колец Сатурна кольца Урана состоят из крупных темных камней.

Открыто 20 спутников Урана. Крупнейшие – Титания и Оберон – диаметром по 1500 км.

1.10. Нептун

Нептун — восьмая по удалённости от Солнца планета Солнечной системы.

Внешне Нептун похож на Уран; в его спектре также доминируют полосы метана и водорода. Поток тепла от Нептуна заметно превышает мощность падающего на него солнечного тепла, что указывает на существование внутреннего источника энергии. Возможно, значительная часть внутреннего тепла выделяется в результате приливов, вызванных массивным спутником Тритоном (кроме Тритона Нептун имеет 12 спутников).

Очень компактная газовая планета (плотность 1,64 г/см³) доминирует благодаря своей большой массе (17 × Земли) над всей внешней солнечной системой и влияет на орбиты многих тел меньшего размера, таких как Плутон. У Нептуна нет твёрдой поверхности. Атмосфера на 98-99 % состоит из водорода и гелия. В ней также содержится 1-2% метана. Перистые облака в атмосфере Нептуна, скорее всего, состоят из кристаллов замёрзшего метана.

Полагают, что Нептун имеет ядро из расплавленных скальных пород, окружённое внешним ядром из частично расплавленной смеси аммиака, воды и метана, не разделённой на слои.

1.11. Плутон

Плутон – вторая по размерам после Эриды карликовая планета Солнечной системы и десятое по величине напрямую наблюдаемое небесное тело, обращающееся вокруг Солнца. Первоначально Плутон классифицировался как планета, однако сейчас он считается крупнейшим объектом в поясе Койпера.

Изображение Плутона, построенное по результатам наблюдения с Земли изменений блеска Плутона во время затмения Хароном, приблизительно в истинном цвете и с максимально доступным разрешением.

У Плутона сильно вытянутая и наклоненная орбита. Средняя температура поверхности Плутона 50 К. Плутон не может долго удерживать атмосферу – ведь он меньше Луны. Спутник Плутона Харон обращается за 6,4 сутки близко от планеты. Яркость Плутона регулярно меняется с периодом 6,4 суток. Следовательно, Плутон вращается синхронно с Хароном и на поверхности у него есть крупные пятна. По отношению к размеру планеты Харон очень велик. Часто пару Плутон – Харон называют «двойной планетой». Одно время Плутон считали «сбежавшим» спутником Нептуна, но после открытия Харона это выглядит маловероятным. Плутон состоит в основном из горных пород и льда.

2. Малые тела солнечной системы.

2.1. Астероиды.

Астероид — небольшое планетоподобное тело Солнечной системы, движущееся по орбите вокруг Солнца. Астероиды, известные также как малые планеты, значительно уступают по размерам планетам.

Главный пояс астероидов (белый цвет) и троянские астероиды (зеленый цвет)

Множество малых планет – астероидов – обращается вокруг Солнца в основном между орбитами Марса и Юпитера. Название «астероид» астрономы приняли потому, что в телескоп они выглядят как слабые звездочки (aster по-гречески «звезда»). Сначала думали, что это осколки некогда существовавшей большой планеты, но затем стало ясно, что астероиды никогда не составляли единого тела; скорее всего, это вещество не смогло объединиться в планету из-за влияния Юпитера. Существует не менее двухсот астероидов радиусом более 50 км и около тысячи – более 15 км. По оценкам, около миллиона астероидов имеют радиус более 0,5 км. Крупнейший из них – Церера, довольно темный и сложный для наблюдения объект.

Яркость многих астероидов периодически меняется, что естественно для вращающихся неправильных тел. Своей неправильной формой астероиды обязаны многочисленным взаимным столкновениям.

2.2. Метеориты.

Метеороид – это небольшое тело, обращающееся вокруг Солнца. Метеор – это метеороид, влетевший в атмосферу планеты и раскалившийся до блеска. А если его остаток упал на поверхность планеты, его называют метеоритом. Метеорит считают «упавшим», если есть очевидцы, наблюдавшие его полет в атмосфере; в противном случае его называют «найденным».

«Найденных» метеоритов значительно больше, чем «упавших». Часто их находят туристы или крестьяне, работающие в поле. Поскольку метеориты имеют темный цвет и легко различимы на снегу, прекрасным местом для их поиска служат ледяные поля Антарктики, где уже найдены тысячи метеоритов. Впервые метеорит в Антарктике обнаружила в 1969 группа японских геологов, изучавших ледники.

2.3. Кометы.

Кометы (от др.-греч. «волосатый, косматый») — это небольшие небесные тела, имеющие туманный вид, обращающиеся вокруг Солнца обычно по вытянутым орбитам. При приближении к Солнцу кометы образуют кому и иногда хвост из газа и пыли.

Обычно кометы прилетают с далекой периферии Солнечной системы и на короткое время становятся чрезвычайно эффектными светилами; в это время они привлекают всеобщее внимание, но многое в их природе до сих пор остается неясным. Новая комета обычно появляется неожиданно, и поэтому практически невозможно подготовить для встречи с ней космический зонд. Лишь одна периодическая комета еще сохранила активность – это комета Галлея. Ее 30 появлений регулярно фиксировали с 240 до н.э. и назвали комету в честь астронома Э.Галлея, который предсказал ее появление в 1758.

2.4. Формирование звезд.

Звезды рождаются в процессе коллапса (сжатия) межзвездных газо-пылевых облаков. Детально этот процесс пока не исследован.

Имеются наблюдательные факты в пользу того, что ударные волны от взрывов сверхновых звезд могут сжимать межзвездное вещество и стимулировать коллапс облаков в звезды.

Перед тем как молодая звезда достигнет стабильного состояния, она проходит стадию гравитационного сжатия из протозвездной туманности. Основные сведения об этом этапе эволюции звезд получают, изучая молодые звезды типа. По-видимому, эти звезды еще находятся в состоянии сжатия, и их возраст не превышает 1 млн. лет. Обычно их массы от 0,2 до 2 масс Солнца. У них видны признаки сильной магнитной активности. В спектрах некоторых звезд присутствуют запрещенные линии, которые возникают только в газе низкой плотности; вероятно, это остатки протозвездной туманности, окружающие звезду. Для некоторых звёзд характерны быстрые флуктуации ультрафиолетового и рентгеновского излучения. У многих из них наблюдаются мощное инфракрасное излучение и спектральные линии кремния – это указывает, что звезды окружены пылевыми облаками. Наконец, звезды обладают мощным звездным ветром.

3. Теории формирования Солнечной системы

Научные теории формирования Солнечной системы можно разделить на три категории: приливные, аккреционные и небулярные. Последние привлекают сейчас наибольший интерес.

Приливная теория, по-видимому, впервые предложенная Бюффоном (1707–1788), непосредственно не связывает между собой формирование звезды и планет. Предполагается, что пролетевшая мимо Солнца другая звезда путем приливного взаимодействия вытянула из него (или из себя) струю вещества, из которого сформировались планеты. Эта идея сталкивается с множеством физических проблем; например, выброшенное звездой горячее вещество должно распыляться, а не конденсироваться. Сейчас приливная теория непопулярна, поскольку не может объяснить механические особенности Солнечной системы и представляет ее рождение как случайное и крайне редкое событие.

Аккреционная теория предполагает, что молодое Солнце захватило вещество будущей планетной системы, пролетая сквозь плотное межзвездное облако. Действительно, молодые звезды обычно встречаются вблизи крупных межзвездных облаков. Однако в рамках аккреционной теории трудно объяснить градиент химического состава в планетной системе.

Наиболее разработана и общепринята сейчас небулярная гипотеза, предложенная Кантом в конце 18 в. Ее основная идея состоит в том, что Солнце и планеты формировались одновременно из единого вращающегося облака. Сжимаясь, оно превратилось в диск, в центре которого образовалось Солнце, а на периферии – планеты. Отметим, что эта идея отличается от гипотезы Лапласа, согласно которой сначала из облака сформировалось Солнце, а затем по мере его сжатия центробежная сила отрывала с экватора газовые кольца, сконденсировавшиеся позже в планеты. Гипотеза Лапласа сталкивается с трудностями физического характера, которые не удается преодолеть уже 200 лет.

Наиболее удачный современный вариант небулярной теории создал А.Камерон с коллегами. В их модели протопланетная туманность была примерно вдвое массивнее нынешней планетной системы. В течение первых 100 млн. лет формировавшееся Солнце активно выбрасывало из нее вещество. Такое поведение характерно для молодых звезд, которые по имени прототипа называют звездами типа Т Тельца. Распределение давления и температуры вещества туманности в модели Камерона хорошо согласуется с градиентом химического состава Солнечной системы.

Таким образом, наиболее вероятно, что Солнце и планеты сформировались из единого сжимающегося облака. В центральной его части, где плотность и температура были выше, сохранились только тугоплавкие вещества, а на периферии сохранились и летучие; этим объясняется градиент химического состава. В соответствии с этой моделью формирование планетной системы должно сопровождать раннюю эволюцию всех звезд типа Солнца.

4. Жизнь в солнечной системе

Высказывались предположения, что жизнь в Солнечной системе когда-то существовала за пределом Земли, а может быть, существует и сейчас. Появление космической техники позволило приступить к прямой проверке этой гипотезы. Меркурий оказался слишком горяч и лишенным атмосферы и воды. На Венере тоже очень жарко – на ее поверхности плавится свинец. Возможность жизни в верхнем слое облаков Венеры, где условия гораздо мягче, пока не более чем фантазия. Луна и астероиды выглядят совершенно стерильными.

Большие надежды возлагались на Марс. Замеченные в телескоп 100 лет назад системы тонких прямых линий – «каналов» – дали тогда повод говорить об искусственных ирригационных сооружениях на поверхности Марса. Но теперь мы знаем, что условия на Марсе неблагоприятны для жизни: холодно, сухо, очень разреженный воздух и, как следствие, сильное ультрафиолетовое излучение Солнца, стерилизующее поверхность планеты. Приборы посадочных блоков «Викингов» не обнаружили органического вещества в грунте Марса.

Правда, есть признаки того, что климат Марса существенно менялся и, возможно, когда-то был более благоприятным для жизни. Известно, что в далеком прошлом на поверхности Марса была вода, поскольку на детальных изображениях планеты видны следы водной эрозии, напоминающие овраги и сухие русла рек. Долговременные вариации марсианского климата могут быть связаны с изменением наклона полярной оси. При небольшом повышении температуры планеты атмосфера может стать в 100 раз плотнее (за счет испарения льдов). Таким образом, возможно, жизнь на Марсе когда-то существовала. Ответить на этот вопрос мы сможем только после детального изучения образцов марсианского грунта. Но их доставка на Землю – сложная задача.

К счастью, имеются веские доказательства, что из тысяч найденных на Земле метеоритов, по крайней мере, 12 прилетело с Марса. Хотя в атмосферах планет-гигантов много органических молекул, трудно поверить, что при отсутствии твердой поверхности там может существовать жизнь.

Некоторые кометы почти наверняка содержат сложные органические молекулы, образовавшиеся еще в эпоху формирования Солнечной системы. Но трудно вообразить себе жизнь на комете. Итак, пока у нас нет доказательств, что жизнь в Солнечной системе существует где-либо за пределом Земли. Наши межпланетные зонды способны обнаружить признаки активной жизни на поверхности планет. Но если жизнь скрыта, то пролетающий мимо аппарат вряд ли ее обнаружит.

ЗАКЛЮЧЕНИЕ

Также множество теории о происхождении жизни в Солнечной системе, тоже мало кого оставят равнодушными.

Вот и закончился рассказ о современном состоянии нашей планетной системы и до известного предела – ее историю. Мы видим, что тема Солнечной системы интересна и актуальна в наше время. Ее будущее, если не произойдет ничего непредвиденного, представляется светлым. Вероятность того, что какая-то блуждающая звезда может нарушить установившийся порядок движения планет, мала даже в пределах миллиардов лет. Не раньше мы можем ожидать каких-то больших изменений и в солнечном излучении. Случайные метеориты могут кое-где продырявить поверхность Земли.

Однако порядок, с которым связано само существование солнечной системы, будет преобладать над всеми этими изменениями.

ЛИТЕРАТУРА

1. Допаев М.М… Наблюдения звездного неба. – М.: Наука, 1978 г. — С. 90-91.

2. Мааров М.Я. Планеты Солнечной системы. – М.: Наука, 1986.

3. Силкин Б. И. В мире множества лун. – М.: Наука, 1982 г. – С. 194-197

www.ronl.ru

Реферат - Тема: «Солнечная система»

Реферат

Дисциплина: Концепции современного естествознания

Тема: «Солнечная система».

Москва, 2011 год

Содержание

Введение

3

1. Строение Солнечной системы

4

2. Солнце

6

3. Краткая характеристика планет Солнечной системы

12

3.1 Меркурий

12

3.2 Венера

12

3.3 Земля

13

3.4 Марс

14

3.5 Юпитер

16

3.6 Сатурн

17

3.7 Уран

19

3.8 Нептун

19

Заключение

21

Список использованной литературы

22

Введение

Парадокс современной астрономии состоит в удивительно низком уровне знаний о Солнечной системе. Астрономия в рамках известных физических законов способна построить близкие к реальности модели рождения, жизни и смерти небесных объектов, размеры, массы, энергетическая отдача и удаленность которых громадны по сравнению с реалиями повседневного опыта. И в то же время нет надежной модели происхождения и формирования планет и спутников Солнечной системы, неизвестно, как образуются и откуда появляются кометы, неясно, содержат ли астероиды первичное вещество или являются осколками однажды уже сформировавшихся планетных тел.

1. Строение Солнечной системы

В строение Солнечной системы входят: Солнце (желтый карлик) – оно сосредоточило в себе 99,8 % всей массы Солнечной системы, 8 больших планет — Меркурий, Венера, Земля, Марс, Юпитер, Сатурн, Уран, Нептун (до 2006 г. в состав Солнечной системы входила 9 планета – Плутон), несколько десятками спутников планет (в настоящее время их открыто более 60), малые планеты – астероиды (~100 тысяч), кометы ( ~1011 объектов), огромное количество мелких фрагментов – метеороидов, а также космическая пыль. Механически эти объекты объединены в общую систему силой притяжения Солнца. Средняя плотность тел Солнечной системы изменяется в пределах от 0,5 г/см3 для ядер комет до 7,7 г/см3 для металлических астероидов и метеоритов.

Самая крупная из планет – Юпитер. Также к группе планет-гигантов относятся – Сатурн, Уран и Нептун. Отличительной особенностью всех 4 планет является не только значительные размеры и масса, но также и низкая средняя плотность, характерная для газового состава.

Другая группа – планеты земного типа – состоит из четырех планет, в нее входят Земля и Венера, которые почти не отличаются друг от друга по размерам, массе и средней плотности (5,52 и 5,24 г/см3 соответственно), а также меньшие по размерам и массе Марс и Меркурий.

Планеты земной группы составляют внутреннюю часть Солнечной системы. Планеты-гиганты образуют ее внешнюю часть. Промежуточное положение занимает пояс астероидов, в котором сосредоточена большая часть малых планет. На окраинах Солнечной системы, по-видимому, сосредоточены облака гигантских по размерам и массам комет, которые могли посещать окрестности Солнца задолго до появления жизни на Земле. Об этом свидетельствуют следы на поверхности таких безатмосферных тел, как Луна или Меркурий, способных сохранять отпечатки самых древних событий в истории планет.

Соотношение расстояний и периодов обращения планет вокруг Солнца определяется известным законом Кеплера, согласно которому квадраты периодов пропорциональны кубам больших полуосей относительных орбит. Все планеты обращаются вокруг Солнца в одном направлении, совпадающем с направлением осевого вращения Солнца, и в том же направлении они обращаются вокруг своей оси. Исключение составляют Венера, Уран, осевое вращение которых противоположно солнечному.

После завершения стадии формирования больших планет и спутников из первичного газопылевого облака, окружавшего Солнце, состояние их поверхности в основном определялось двумя процессами: выпадением большого числа мелких фрагментов, находившихся в межпланетном пространстве, и внутренней активностью собственных недр. Современный вид поверхности больших планет и спутников показывает, что для каждого тела воздействия этих процессов сочетались в различных пропорциях. На поздних стадиях развития планет существенную роль играло также наличие или отсутствие у тела газовой оболочки – атмосферы.

2. Солнце

Возраст Солнца примерно равен 4.5 миллиарда лет. С момента своего рождения оно израсходовало половину водорода содержащегося в ядре. Оно будет продолжать «мирно» излучать следующие 5 миллиардов лет или около того (хотя его светимость возрастет примерно вдвое за это время). Но, в конце концов, оно исчерпает водородное топливо, что приведет к радикальным переменам, что является обычным для звезд, но, увы, приведет к полному уничтожению Земли (и созданию планетарной туманности).

Солнце – центральное тело Солнечной системы, раскаленный плазменный шар, типичная звезда-карлик спектрального класса G2.

1. Расстояние от Солнца до центра галактики – 104пк~3/3*104 световых лет;

2. скорость движения Солнца вокруг центра Галактики – 250 км/с;

3. период обращения Солнца вокруг центра Галактики — 2*108 лет;

4. земной наблюдатель видит солнечный диск под углом 0,5°;

5. масса MS ~ 2*1023 кг;

6. RS~629 тыс. км;

7. Объем — 1,41*1027 м3, что почти в 1300 раз превосходит объем Земли;

8. средняя плотность 1,41*103 кг/м;

9. светимость LS=3,86*1023 кВт;

10. эффективная температура поверхности (фотосфера) — 5780 К;

11. период вращения (синодический) изменяется от 27 сут. на экваторе до 32 сут. у полюсов;

12. ускорение свободного падения 274 м/с2. (при таком огромном ускорении силы тяжести человек массой 60 кг весил бы более 1,5 т.).

Химический состав Солнца был определен из анализа солнечного спектра. Оказалось, что на Солнце больше всего водорода, а затем гелия. Открыто там много и других химических элементов (кислород, кальций, железо, магний, натрий и др.), но все вместе они составляют очень малую долю по сравнению с водородом. На Солнце не обнаружено никаких химических элементов, помимо тех, которые имеются на Земле. Это указывает на то, что небесные тела состоят из тех же веществ, что и Земля. Но на разных небесных телах вещество может находиться в самых различных состояньях.

Корона Солнца во внутренней части представляет собой чрезвычайно разреженное облако легких частичек, главным образом частичек электричества – электронов, выделяющихся из нижележащих слоев. Все они быстро движутся в разных направлениях, но преимущественно в сторону от Солнца. Скорость их так же велика, как у газа при температуре до миллиона градусов. Во внешней части короны к ним примешаны и частички пыли, которая носится в межпланетном пространстве.

В центральной части Солнца находится источник его энергии, или, говоря образным языком, та «печка», которая нагревает его и не дает ему остыть. Эта область называется ядром. Под тяжестью внешних слоев вещество внутри Солнца сжато, причем, чем глубже, тем сильнее. Плотность его увеличивается к центру вместе с ростом давления и температуры. В ядре, где температура достигает 15 млн. кельвинов, происходит выделение энергии.

Ядро имеет радиус не более четверти общего радиуса Солнца. Однако в его объеме сосредоточена половина солнечной массы и выделяется практически вся энергия, которая поддерживает свечение Солнца.

Сразу вокруг ядра начинается зона лучистой передачи энергии, где она распространяется через поглощение и излучение веществом порций света – квантов.

Плотность, температура и давление Солнца уменьшаются по мере удаления от ядра, и в этом же направлении идет поток энергии. В целом процесс этот крайне медленный. Чтобы квантам добраться от центра Солнца до фотосферы, необходимы многие тысячи лет: ведь, переизлучаясь, кванты все время меняют направление, почти столь же часто двигаясь назад, как и вперед.

Атмосфера Солнца начинается на 200-300 км глубже видимого края солнечного диска. Атмосферу принято разделять на фотосферу, хромосферу и корону.

Фотосфера — это видимая поверхность Солнца, которая знакома нам лучше всего. Она достигает толщины всего чуть более 100 км, что чрезвычайно мало по сравнению с радиусом Солнца. Фотосфера полностью поглощает и переиспускает излучение, идущее из солнечного ядра, из фотосферы исходит основная часть видимого излучения Солнца. Тем самым этот слой солнечной структуры не позволяет нам заглянуть внутрь Солнца. Температура фотосферы в среднем около 5800 К, а плотность газа составляет менее 1/1000 плотности земного воздуха. По мере приближения к внешнему краю фотосферы температура уменьшается до 4800 К. Фотосфера образует видимую поверхность Солнца (именно по ней пределяются размеры Солнца, расстояние от поверхности Солнца)

Даже в самый обычный телескоп на видимой поверхности Солнца, фотосфере, можно увидеть множество интересных деталей таких как Солнечные пятна, яркие фотосферные факелы и гранулы. Дополнительную информацию о физических процессах в фотосфере получают измеряя скорости движения плазмы с использованием эффекта Доплера, например, именно так были обнаружены гигантские турбулентные движения плазмы, названные супергрануляцией.

Хромосфера Солнца становится видимой, например, когда при полном солнечном затмении Луна закрывает яркую фотосферу. Хромосфера неоднородна по структуре, расположена над фотосферой и простирается на 8 000 километров. Температура слоя увеличивается с высотой с 4000 до 100 000 градусов, это уже довольно много, однако хромосфера настолько разрежённая, что яркость её все же незначительна. При такой температуре в хромосфере Солнца формируется интенсивное излучение в линиях атома водорода, в частности в линии H-альфа. Излучение хромосферы Солнца в линии H-альфа лежит в видимой области спектра и имеет яркий красный цвет.

Хромосферный слой не имеет гладкой поверхности: на его верхней границе постоянно происходят горячие выбросы, называемые спикулами. Если наблюдать хромосферу в телескоп, то можно подумать, что смотришь на горящие прерии. В настоящее время разработаны специальные фильтры, которые прекрасно пропускают свет, излучаемый хромосферой. Использование таких фильтров дало ощутимые результаты — на хромосфере, как и на фотосфере, видны факелы, пятна и вспышки. Так же можно увидеть множество друих интересных деталей: яркие флокулы вокруг солнечных пятен, темные волокна, лежащие на диске, и протуберанцы над солнечным лимбом.

Горячая корона Солнца отделена от существенно более холодной хромосферы очень тонким слоем солнечной атмосферы. Температура на нижней границе переходного слоя составляет всего около 100 000 градусов, чрезвычайно быстро растет с высотой и достигает на верхней границе уже 1 000 000 градусов. Переходный слой был объектом исследования множества космических обсерваторий так как излучение вещества этого слоя лежит в ультрафиолетовой области, недоступной для наблюдений с земной поверхности.

Корона — это последняя внешняя оболочка Солнца, самая протяженная часть солнечной атмосферы. Этому слою свойственна очень высокая температура (от 600 000 до 5 000 000 градусов). Необычайно интенсивный нагрев этого слоя вызван, по-видимому, магнитным эффектом и воздействием ударных волн, однако этот вопрос еще недостаточно изучен и носит название «Проблемы нагрева солнечной короны». В связи с тем, что температура короны очень велика, она интенсивно излучает в ультрафиолетовом и рентгеновском диапазонах. Эти излучения не проходит сквозь земную атмосферу и в последнее время активно изучаются с помощью космических аппаратов. Такой способ изучения короны продуктивен еще и потому, что другие слои атмосферы Солнца, фотосфера и хромосфера, почти не производят рентгеновского излучения. В видимом свете корона Солнца видна с Земли во время полных затмений как лучистый ореол, окружающий закрытый солнечный диск, однако в этом диапазоне яркость короны невелика. Это связано с невысокой плотностью вещества в этой области солнечной атмосферы.

Излучение в разных областях короны происходит неравномерно. Существуют горячие активные и спокойные области, а также корональные дыры с относительно невысокой температурой в 600 000 градусов, из которых в пространство выходят магнитные силовые линии. Такая («открытая») магнитная конфигурация позволяет частицам беспрепятственно покидать Солнце, поэтому солнечный ветер испускается в основном из корональных дыр. Солнечная корона и в общем сильно неоднородна и содержит множество особенностей, таких как стримеры, петли и протуберанцы. Структура и размер этих особенностей, как и форма самой короны, меняются с течением солнечного цикла (в периоды максимума солнечной активности корона имеет округлую форму, а в минимуме — вытянута вдоль солнечного экватора).

Солнечная активность это совокупность нестационарных явлений на Солнце. К этим явлениям относятся солнечные пятна, солнечные вспышки, факелы, флоккулы, протуберанцы, корональные лучи, конденсации, транзиенты, спорадическое радиоизлучение, увеличение ультрафиолетового, рентгеновского и корпускулярного излучения и др. Большинство этих явлений тесно связаны между собой и возникают в активных областях. В их протекании отчётливо видна цикличность со средним периодом 11.2 года, а также с периодами 22, 80-90 лет и др.

В процессе развития активной области в атмосфере Солнца иногда возникают ситуации, при которых возможна быстрая перестройка магнитных полей. Эта перестройка вызывает вспышки, сопровождаемые сложными движениями ионизованного газа, его свечением, ускорением частиц и т.д. Вспышки на Солнце представляют собой самые мощные из всех проявлений Солнечной активности. Такие вспышки, как правило, наблюдаются вблизи пятен. Обычно бывает несколько слабых вспышек за день.

Поток выброшенных при вспышке частиц примерно через сутки достигает орбиты Земли и вызывает на Земле магнитную бури и полярные сияния. Имеются свидетельства сильного влияния вспышечной активности на погоду и состояние биосферы Земли.

Как показали исследования Теодора Ландшайдта, уровень Солнечной активности зависит от взаиморасположения планет и от ряда других астрологических факторов. Более того, Ландшайдт разработал методику, позволяющую сугубо астрологическими методами прогнозировать изменения в Солнечной активности. Долговременные предсказания вспышек Солнечной активности и геомагнитных бурь, которые делает Ландшайдт, сбываются (по данным проверки астрономов) на 90% (!).

Таким образом, если Солнечная активность зависит от астрологических факторов, то и все явления на Земле, связанные с изменением Солнечной активности, также зависят от астрологических показателей.

3. Краткая характеристика планет Солнечной системы

3.1. Меркурий

С Земли наблюдать Меркурий в телескоп сложно: он не удаляется от Солнца на угол более 28°. Его изучали при помощи радиолокации с Земли, а межпланетный зонд «Маринер-10» сфотографировал половину его поверхности. Вокруг оси он вращается с периодом 58,6 сут., в точности равным 2/3 орбитального периода, поэтому каждая точка его поверхности поворачивается к Солнцу лишь один раз за 2 меркурианских года, т.е. солнечные сутки там длятся 2 года!

По средней плотности Меркурий находится на втором месте после Земли. Вероятно, у него большое металлическое ядро, составляющее 75% радиуса планеты (у Земли оно занимает 50% радиуса). Поверхность Меркурия подобна лунной: темная, абсолютно сухая и покрытая кратерами. Средний коэффициент отражения света поверхности Меркурия около 10%, примерно как у Луны. Температура поверхности планеты днем около 700 C, а ночью около 100 C. По данным радиолокации, на дне полярных кратеров в условиях вечной темноты и холода, возможно, лежит лед.

У Меркурия практически нет атмосферы – лишь крайне разреженная гелиевая оболочка с плотностью земной атмосферы на высоте 200 км. Вероятно, гелий образуется при распаде радиоактивных элементов в недрах планеты. У Меркурия есть слабое магнитное поле и нет спутников.

3.2. Венера

Это вторая от Солнца и ближайшая к Земле планета – самая яркая «звезда» на нашем небе; порой она видна даже днем. Венера во многом похожа на Землю: ее размер и плотность лишь на 5% меньше, чем у Земли; вероятно, и недра Венеры похожи на земные. Поверхность Венеры всегда закрыта толстым слоем желтовато-белых облаков, но с помощью радаров она исследована довольно подробно. Вокруг оси Венера вращается в обратном направлении (по часовой стрелке, если смотреть с северного полюса) с периодом 243 земных суток. Ее орбитальный период 225 суток; поэтому венерианские сутки (от восхода до следующего восхода Солнца) длятся 116 земных суток.

Атмосфера Венеры состоит в основном из углекислого газа, а также небольшого количества азота и паров воды. В виде малых примесей обнаружены соляная кислота и плавиковая кислота. Температура на Венере около 750C по всей поверхности и днем, и ночью.

Облака Венеры состоят из микроскопических капелек концентрированной серной кислоты. Верхний слой облаков удален от поверхности на 90 км, температура там около 200C; нижний слой – на 30 км, температура около 430C. Еще ниже так жарко, что облаков нет. Разумеется, на поверхности Венеры нет жидкой воды. Атмосфера Венеры на уровне верхнего облачного слоя вращается в том же направлении, что и поверхность планеты, но значительно быстрее, совершая оборот за 4 сут; это явление называют суперротацией, и объяснения ему пока не найдено.

В отличие от Земли на Венере нет четко выраженных континентальных плит, но отмечается несколько глобальных возвышенностей, например земля Иштар размером с Австралию. На поверхности Венеры множество метеоритных кратеров и вулканических куполов. Очевидно, кора Венеры тонка, так что расплавленная лава подходит близко к поверхности и легко изливается на нее после падения метеоритов. Поскольку дождей и сильных ветров у поверхности Венеры не бывает, эрозия поверхности происходит очень медленно, и геологические структуры остаются доступными для наблюдения из космоса сотни миллионов лет. О внутреннем строении Венеры известно мало. Вероятно, у нее есть металлическое ядро, занимающее 50% радиуса. Но магнитного поля у планеты нет вследствие ее очень медленного вращения. Нет у Венеры и спутников.

3.3. Земля

Наша планета – единственная, у которой большая часть поверхности (75%) покрыта жидкой водой. Земля – активная планета и, возможно, единственная, у которой обновление поверхности обязано процессам тектоники плит, проявляющим себя срединно-океаническими хребтами, островными дугами и складчатыми горными поясами. Распределение высот твердой поверхности Земли бимодальное: средний уровень океанического дна на 3900 м ниже уровня моря, а континенты в среднем возвышаются над ним на 860 м.

Сейсмические данные указывают на следующее строение земных недр: кора (30 км), мантия (до глубины 2900 км), металлическое ядро. Часть ядра расплавлена; там генерируется земное магнитное поле, которое улавливает заряженные частицы солнечного ветра (протоны и электроны) и формирует вокруг Земли две заполненные ими тороидальные области – радиационные пояса (пояса Ван-Аллена), локализованные на высотах 4000 и 17 000 км от поверхности Земли .

Атмосфера Земли состоит на 78% из азота и на 21% из кислорода; это результат длительной эволюции под влиянием геологических, химических и биологических процессов. Возможно, первичная атмосфера Земли была богата водородом, который затем улетучился. Дегазация недр наполнила атмосферу углекислым газом и водяным паром. Но пар сконденсировался в океанах, а двуокись углерода оказалась связанной в карбонатных породах. Таким образом, в атмосфере остался азот, а кислород появился постепенно в результате жизнедеятельности биосферы. Еще 600 млн. лет назад содержание кислорода в воздухе было раз в 100 ниже нынешнего.

Существуют указания, что климат Земли изменяется в короткой (10 000 лет) и длинной (100 млн. лет) шкалах. Причиной этого могут быть изменения орбитального движения Земли, наклона оси вращения, частоты вулканических извержений. Не исключены и колебания интенсивности солнечного излучения. В нашу эпоху на климат влияет и деятельность человека: выбросы газов и пыли в атмосферу. У Земли есть спутник – Луна, происхождение которой до сих пор не разгадано.

3.4. Марс

Марс похож на Землю, но почти вдвое меньше ее и имеют несколько меньшую среднюю плотность. Период суточного вращения (24 ч 37 мин) и наклон оси (24°) почти не отличаются от земных.

Земному наблюдателю Марс кажется красноватой звездочкой, блеск которой заметно меняется; он максимален в периоды противостояний, повторяющиеся через два с небольшим года (например, в апреле 1999 и в июне 2001). Особенно близок и ярок Марс в периоды великих противостояний, происходящих, если он в момент противостояния проходит вблизи перигелия; это случается через каждые 15–17 лет.

В телескоп на Марсе видны яркие оранжевые области и более темные районы, тон которых меняется в зависимости от сезона. На полюсах лежат ярко-белые снежные шапки.

Красноватый цвет планеты связан с большим количеством окислов железа (ржавчины) в ее грунте.

Разреженная атмосфера Марса состоит на 95% из углекислого газа и на 3% из азота. В малом количестве присутствуют водяной пар, кислород и аргон. При таком низком давлении не может быть жидкой воды. Средняя дневная температура 240 C, а максимальная летом на экваторе достигает 290 C. Суточные колебания температуры около 100 C. Таким образом, климат Марса – это климат холодной, обезвоженной высокогорной пустыни.

В высоких широтах Марса зимой температура опускается ниже 150 C и атмосферный углекислый газ замерзает и выпадает на поверхность белым снегом, образуя полярную шапку. Периодическая конденсация и сублимация полярных шапок вызывает сезонные колебания давления атмосферы на 30%. К концу зимы граница полярной шапки опускается до 45°–50° широты, а летом от нее остается небольшая область (300 км диаметром у южного полюса и 1000 км у северного), вероятно, состоящая из водяного льда, толщина которого может достигать 1–2 км.

Иногда на Марсе дуют сильные ветры, поднимающие в воздух тучи мелкого песка. Особенно мощные пылевые бури бывают в конце весны в южном полушарии, когда Марс проходит через перигелий орбиты и солнечное тепло особенно велико. На недели и даже месяцы атмосфера становится непрозрачной от желтой пыли. Отложения пыли так сильно меняют вид марсианской поверхности от сезона к сезону, что это заметно даже с Земли при наблюдении в телескоп. В прошлом эти сезонные изменения цвета поверхности некоторые астрономы считали признаком растительности на Марсе.

Геология Марса весьма разнообразна. Большие пространства южного полушария покрыты старыми кратерами, оставшимися от эпохи древней метеоритной бомбардировки (4 млрд. лет назад). Значительная часть северного полушария покрыта более молодыми лавовыми потоками. Особенно интересна возвышенность Фарсида, на которой расположены несколько гигантских вулканических гор. Высочайшая среди них – гора Олимп – имеет поперечник у основания 600 км и высоту 25 км. Хотя признаков вулканической активности сейчас нет, возраст лавовых потоков не превышает 100 млн. лет, что немного по сравнению с возрастом планеты 4,6 млрд. лет.

Одним из интереснейших геологических открытий, сделанных по снимкам с космических аппаратов, стали разветвленные извилистые долины длиной в сотни километров, напоминающие высохшие русла земных рек. Это наводит на мысль о более благоприятном климате в прошлом, когда температура и давление могли быть выше и по поверхности Марса текли реки. Правда, расположение долин в южных, сильно кратерированных районах Марса указывает на то, что реки на Марсе были очень давно, вероятно, в первые 0,5 млрд. лет его эволюции. Теперь вода лежит на поверхности в виде льда полярных шапок и, возможно, под поверхностью в виде слоя вечной мерзлоты.

Внутреннее строение Марса изучено слабо. Его низкая средняя плотность свидетельствует об отсутствии значительного металлического ядра; во всяком случае оно не расплавлено, что следует из отсутствия у Марса магнитного поля.

3.5. Юпитер

Крупнейшая планета Солнечной системы, Юпитер, в 11 раз больше Земли и в 318 раз массивнее ее. Его низкая средняя плотность указывает на состав, близкий к солнечному: в основном это водород и гелий. Быстрое вращение Юпитера вокруг оси вызывает его полярное сжатие на 6,4%.

В телескоп на Юпитере видны облачные полосы, параллельные экватору; светлые зоны в них перемежаются красноватыми поясами. Вероятно, светлые зоны – это области восходящих потоков, где видны верхушки аммиачных облаков; красноватые пояса связаны с нисходящими потоками, яркий цвет которых определяют гидросульфат аммония, а также соединения красного фосфора, серы и органические полимеры. Температура на уровне верхушек аммиачных облаков 125C, но с глубиной она увеличивается на 2,5 C/км. На глубине 60 км должен быть слой водяных облаков.

У Юпитера нет твердой поверхности. Верхний слой планеты протяженностью 25% радиуса состоит из жидкого водорода и гелия. Ниже, где давление превышает 3 млн. бар, а температура 10 000 C, водород переходит в металлическое состояние. Возможно, вблизи центра планеты есть жидкое ядро из более тяжелых элементов с общей массой порядка 10 масс Земли. В центре давление около 100 млн. бар и температура 20–30 тыс. C.

Жидкие металлические недра и быстрое вращение планеты стали причиной ее мощного магнитного поля, которое в 15 раз сильнее земного. Огромная магнитосфера.

Температура в центре Юпитера всегда была ниже, чем необходимо для протекания термоядерных реакций. Но внутренние запасы тепла у Юпитера, оставшиеся с эпохи формирования, велики. Даже сейчас, спустя 4,6 млрд. лет, он выделяет примерно столько же тепла, сколько получает от Солнца; в первый миллион лет эволюции мощность излучения Юпитера была в 104 раз выше.

У Юпитера насчитывают 16 спутников.

3.6. Сатурн

Вторая по размеру планета-гигант. Это водородно-гелиевая планета, однако относительное содержание гелия у Сатурна меньше, чем у Юпитера; ниже и его средняя плотность. Быстрое вращение Сатурна приводит к его большой сплюснутости (11%).

Верхние области его атмосферы заполнены рассеивающим свет аммиачным туманом. Сатурн дальше от Солнца, поэтому температура его верхней атмосферы на 35 C ниже, чем у Юпитера, и аммиак находится в сконденсированном состоянии. С глубиной температура атмосферы возрастает на 1,2 C/км, поэтому облачная структура напоминает юпитерианскую: под слоем облаков из гидросульфата аммония находится слой водяных облаков.

По внутреннему строению Сатурн также напоминает Юпитер, хотя из-за меньшей массы имеет меньшее давление и температуру в центре Магнитное поле Сатурна сравнимо с земным.

Как и Юпитер, Сатурн выделяет внутреннее тепло, причем вдвое больше, чем получает от Солнца. Правда, это отношение больше, чем у Юпитера, потому, что расположенный вдвое дальше Сатурн получает от Солнца вчетверо меньше тепла.

Кольца Сатурна. Сатурн опоясан уникально мощной системой колец до расстояния 2,3 радиуса планеты. Они легко различимы при наблюдении в телескоп, а при изучении с близкого расстояния демонстрируют исключительное разнообразие: от массивного кольца B до узкого кольца F, от спиральных волн плотности до совершенно неожиданных радиально вытянутых «спиц», открытых «Вояджерами».

Частицы, заполняющие кольца Сатурна, значительно лучше отражают свет, чем вещество темных колец Урана и Нептуна; их исследование в разных спектральных диапазонах показывает, что это «грязные снежки» с размерами порядка метра. Три классических кольца Сатурна по порядку от внешнего к внутреннему обозначают буквами A, B и C. Кольцо B довольно плотное: радиосигналы от «Вояджера» проходили через него с трудом. Промежуток в 4000 км между кольцами A и B, называемый делением (или щелью) Кассини, в действительности не пуст, а по плотности сравним с бледным кольцом C, которое раньше называли креповым кольцом. Вблизи внешнего края кольца A есть менее заметная щель Энке.

У Сатурна не менее 18 спутников. Большинство их них, вероятно, ледяные.

3.7. Уран

Уран имеет цвет морской волны и выглядит невыразительно, поскольку верхние слои его атмосферы заполнены туманом, сквозь который пролетавшему вблизи него в 1986 зонду «Вояджер-2» с трудом удалось увидеть несколько облаков. Ось планеты наклонена к орбитальной оси на 98,5°, т.е. лежит почти в плоскости орбиты. Поэтому каждый из полюсов некоторое время обращен прямо на Солнце, а затем на полгода (42 земных года) уходит в тень.

Атмосфера Урана содержит в основном водород, 12–15% гелия и немного других газов. Температура атмосферы около 50 К, хотя в верхних разреженных слоях она поднимается до 750 К днем и 100 К ночью. Магнитное поле Урана по напряженности у поверхности немного слабее земного, а его ось наклонена к оси вращения планеты на 55°. О внутренней структуре планеты известно мало. Вероятно, облачный слой простирается до глубины 11 000 км, затем следует горячий водяной океан глубиной 8000 км, а под ним расплавленное каменное ядро радиусом 7000 км.

Кольца. В 1976 были открыты уникальные кольца Урана, состоящие из отдельных тонких колечек, самая широкая из которых имеет толщину 100 км. Кольца расположены в диапазоне расстояний от 1,5 до 2,0 радиусов планеты от ее центра. В отличие от колец Сатурна кольца Урана состоят из крупных темных камней. Полагают, что в каждом кольце движется маленький спутник или даже два спутника, как в кольце F Сатурна.

Открыто 20 спутников Урана.

3.8. Нептун

Внешне Нептун похож на Уран; в его спектре также доминируют полосы метана и водорода. Поток тепла от Нептуна заметно превышает мощность падающего на него солнечного тепла, что указывает на существование внутреннего источника энергии. Возможно, значительная часть внутреннего тепла выделяется в результате приливов, вызванных массивным спутником Тритоном, который обращается в обратном направлении на расстоянии 14,5 радиуса планеты. «Вояджер-2», пролетев в 1989 на расстоянии 5000 км от облачного слоя, обнаружил у Нептуна еще 6 спутников и 5 колец. В атмосфере были открыты Большое Темное Пятно и сложная система вихревых потоков. На розоватой поверхности Тритона обнаружились удивительные геологические детали, включая мощные гейзеры.

Заключение

Еще недавно Солнечная система состояла из Солнца, 9 планет вращающихся вокруг него. Планеты Солнечной системы в свою очередь делятся на планеты-гиганты, большие планеты, спутники планет и малые тела. Также Солнечную систему посещают кометы с разной периодичностью.

Одной из новостей стало то, что в Солнечной системе осталось 8 планет. Такое решение принято 24 августа 2006 г. в Праге на 26-й Ассамблее Международного астрономического союза.

После передела Солнечная система стала выглядеть удивительно гармонично: планеты земной группы – пояс астероидов – планеты-гиганты – пояс Койпера. Среди планет воцарил порядок, какой и должен быть в системе, населенной разумными представителями Вселенной.

Изучение Солнечной системы будет продолжаться еще очень долго. Никто не знает сколько загадок скрывает Солнечная система, сколько будет новых открытий, экспедиций, экспериментов. Одной из тайн еще долго будет оставаться вопрос о том, как все же образовалась Солнечная система и как зародилась жизнь на Земле, была ли жизнь на других планетах. До сих пор существуют лишь теории. Путешествия по Солнечной системе всегда привлекало человечество и толкало его на исследование непознанного.

Список используемой литературы

1. Алексеева Л.А. Небесные сполохи и земные заботы. – М.: Мир, 1995 г.

2. Ващекин Н.П. Концепции современного естествознания. – М.: МГУК, 2000 г.

3. Гуреев Г.А. Земля и небо. – М.: Сашко, 1993 г.

4. Левитан Е.П. Учебник астрономии для 11-х классов. – М.: Просвещение, 1994 год.

5. Машкин Н. Ф. Квантовая физика М., 1986 г.

6. Мякишев Г. Я. Физика М., 1999 г.

7. Потеев М.И. Концепции современного естествознания, Санкт-Петербург, Питер, 1999 г.

8. Русин Н.П., Л.Л. Флит. Солнце на земле. – М.: Тригон, 1994 г.

9. Уилл Ф.Л. Семья Солнца – Сп-Б.: Художественная литература, 1995 г.

10. Черняк М. А. Кванты М., 1980 г.

11. Энциклопедия для детей. Астрономия. – М.: Аванта+, 1997 г.

12. Югай Г. А. Общая теория жизни, М., Мысль, 1985 г.

www.ronl.ru

Реферат - Солнечная система 6

РЕФЕРАТ по АСТРОНОМИИ УЧЕНИКА 11 КЛАССА ГАЛАНИЧЕВА ПАВЛА

В центре Солнечной системы находится наша дневная звезда — Солнце. Вокруг него вместе со своими спутниками обращаются 9 больших планет: Меркурий, Венера, Земля, Марс, Юпитер, Сатурн, Уран, Нептун и Плутон .

Возраст Солнечной системы был определён учёными на основании лабораторного изотопного анализа земных скальных пород, а также метеоров и доставленных на Землю космическими аппаратами образцов лунного грунта. Оказалось, что наиболее старые из них имеют возраст около 4,5 млрд. лет. Поэтому считается, что все планеты сформировались приблизительно в одно время — 4,5 — 5 млрд. лет тому назад.

Венера, вторая по близости к Солнцу планета, почти такого же размера, как Земля, а её масса более 80 % земной массы. Расположенная ближе к Солнцу, чем наша планета, Венера получает от него в два с лишним раза больше света и тепла, чем Земля. Тем не менее с теневой стороны на Венере господствует мороз более 20 градусов ниже нуля, так как сюда не попадают солнечные лучи в течении очень долгого времени. Она имеет очень плотную, глубокую и очень облачную атмосферу, не позволяющую нам увидеть поверхность планеты. Атмосферу — газовую оболочку, на Венере, открыл М. В. Ломоносов, в 1761 году, что так же показало сходство Венеры с Землёй.

Среднее расстояние от Венеры до Солнца 108,2 млн. км; оно практически постоянно, поскольку орбита Венеры ближе к окружности, чем у любой другой планеты. Временами Венера подходит к Земле на расстояние, меньшее 40 миллионов км.

Древние греки дали этой планете имя своей лучшей богини Афродиты, римляне же потом переиначили по — своему и назвали планету Венерой, что, в общем, одно и то же. Однако случилось это не сразу. Одно время считалось, что в небе находится сразу две планеты. Вернее, тогда ещё звезды, одна — ослепительно яркая, была видна утром, другая, такая же — вечером. Их даже называли по — разному, пока халдейские астрономы после долгих наблюдений и ещё более долгих размышлений не пришли к выводу, что звезда — то всё — таки одна, что делает им честь как большим специалистам.

Свет Венеры столь ярок, что если на небе нет ни Солнца, ни Луны, он заставляет предметы отбрасывать тени. Однако при взгляде в телескоп, Венера разочаровывает, и не удивительно, что до последних лет её считали “ планетой тайн “.

В 1930 году о Венере появилась некоторая информация. Было установленно, что её атмосфера состоит, в основном, из углекислого газа, который способен действовать как своего рода покрывало, задерживая солнечное тепло. Были популярны две картины планеты. Одна рисовала поверхность Венеры почти полностью покрытой водой, в которой могли развиваться примитивные формы жизни, — как это было на Земле миллиарды лет назад. Другая представляла Венеру как раскалённую, сухую и пыльную пустыню .

Эра автоматических космических зондов началась в 1962 году, когда американский аппарат “ Маринер — 2 “ прошёл вблизи Венеры и передал информацию, которая подтвердила, что её поверхность очень горяча. Было установлено также, что период вращения Венеры вокруг оси — длительный, около 243 земных суток, — больше, чем период обращения вокруг Солнца ( 224, 7 суток ), поэтому на Венере “ сутки “ длиннее года и календарь совершенно необычен.

Теперь известно, что Венера вращается в обратном направлении — с востока на запад, а не с запада на восток, как Земля и большинство других планет. Для наблюдателя на поверхности Венеры Солнце восходит на западе, а заходит на востоке, хотя в действительности облачная атмосфера полностью закрывает небо.

Следом за “ Маринером — 2 “ была осуществлена мягкая посадка на поверхность Венеры нескольких советских автоматических аппаратов, спускаемых на парашюте через плотную атмосферу. При этом была зарегистрирована максимальная температура около />C, и давление у поверхности почти в 100 раз большее, чем атмосферное давление на уровне моря на Земле.

“ Маринер — 10 “ приблизился к Венере в феврале 1974 года и передал первые снимки верхнего слоя облаков. Этот аппарат толко один раз прошёл около Венеры — его основной целью была самая внутренняя планета — Меркурий. Однако снимки были высокого качества и показали полосатую структуру облаков. Они также подтвердили, что период вращения верхнего слоя облаков всего лишь 4 суток, так что строение атмосферы Венеры не похоже на земное.

Тем временем американские радиолокационные исследования показали, что на поверхности Венеры имеются большие по размеру, но мелкие кратеры. Происхождение кратеров неизвестно, но, поскольку в такой плотной атмосфере должна быть сильная эрозия, по “ геологическим “ стандартам они вряд ли могут быть очень старыми. Причиной возникновения кратеров может быть вулканизм, поэтому гипотезу о том, что на Венере происходят вулканические процессы, пока нельзя исключить. Также на Венере найдено несколько горных областей. Самый большой горный район — Иштар — по площади вдвое превышает Тибет. В центре его на высоту 11 км поднимается гигантский вулканический конус. Было обнаружено, что в облаках содержится большое количество серной кислоты ( возможно, даже фтористо — серной кислоты ).

Следующий важный шаг был сделан в октябре 1975 года, когда два советских аппарата — “ Венера — 9 “ и “ Венера — 10 “ — совершили управляемую посадку на поверхность планеты и передали на Землю снимки. Снимки были ретранслированы орбитальными отсеками станций, остававшимися на околопланетной орбите на высоте порядка 1500 км. Это был триумф советских учёных, даже несмотря на то, что и “ Венера — 9 “ и “ Венера — 10“ вели передачи всего лишь не более часа, пока не перестали раз и навсегда действовать из — за слишком высоких температур и давления.

Оказалось что поверхность Венеры была усыпана гладкими скальными обломками, по составу похожими на земные базальты, многие из которых имели около 1 м в поперечнике. Поверхность была хорошо освещена: по описанию советских учёных, света было столько, сколько бывает в Москве в облачный летний полдень, так что даже не потребовались прожекторы аппаратов. Оказалось к тому же, что атмосфера не обладает чрезмерно высокими преломляющими свойствами, как ожидалось и все детали ландшафта были чёткими. Температура на поверхности Венеры равнялась/>/>С, а давление в 90 раз превышало давление у поверхности Земли. Было обнаружено, кроме того, что слой облаков кончается на высоте около 30 км. Ниже находится область горячего едкого тумана. На высотах 50 — 70 км располагаются мощные облачные слои и дуют ураганные ветры. У поверхности Венеры атмосфера очень плотная ( всего лишь в 10 раз меньше плотности воды).

Венера отнюдь не гостеприимный мир, как это когда — то предполагалось. Со своей атмосферой из углекислого газа, облаков из серной кислоты и страшной жарой она совершенно не пригодна для человека. Под тяжестью этой информации рухнули некоторые надежды: ведь менее чем 20 лет назад многие учёные считали Венеру более обещающим объектом для космических исследований, чем Марс.

Венера всегда притягивала к себе взгляды писателей — фантастов, поэтов, учёных. О ней и про неё много писли и, наверное, ещё многое напишут и возможно даже, что когда — нибудь часть её тайн откроется человеку.

Список литературы

К. Л. Баев; Земля и Планеты; Москва; 1956 .

И. Ф. Полак; Строение Вселенной; Москва; 1947.

А. В. Засов, Э. В. Кононович; Астрономия; Москва; 1993 .

А. А. Воротников; География и Астрономия; Минск; 1995 .

Наука и Вселенная; Том 1; Перевод с английского; редакторы: А. Д. Суханова, Г. С. Хромова; Москва; 1983.

www.ronl.ru


Смотрите также

 

..:::Новинки:::..

Windows Commander 5.11 Свежая версия.

Новая версия
IrfanView 3.75 (рус)

Обновление текстового редактора TextEd, уже 1.75a

System mechanic 3.7f
Новая версия

Обновление плагинов для WC, смотрим :-)

Весь Winamp
Посетите новый сайт.

WinRaR 3.00
Релиз уже здесь

PowerDesk 4.0 free
Просто - напросто сильный upgrade проводника.

..:::Счетчики:::..

 

     

 

 

.