Вопрос: реферат на тему роль тепловых явлений в жизни живых организмов. Роль тепловых явлений в жизни живых организмов реферат


реферат на тему роль тепловых явлений в жизни живых организмов

Температурный диапазон – это наиболее важный параметр среды обитания живых существ. Температура на поверхности планеты зависит от близости светила, излучаемой им энергии, наклона орбиты планеты, ее эксцентриситета, наличия атмосферы и ее химического состава, наличия океанов и т.д. Земля обладала всеми необходимыми  с астрономической точки зрения свойствами, чтобы стать «колыбелью жизни». Несмотря на общие благоприятные условия, поверхность Земли характеризуется большим разнообразием климатических зон, разброс экстремальных температур которых составляет почти 150ºС. Верхний предел диапазона температур, относящихся к области активной жизни,  составляет около 50ºС. Встречаются, однако, низшие организмы, которые приспособились к жизни в горячих источниках с температурой 70 - 90ºС. Нагревание до температуры кипения воды выдерживают лишь споры и другие покоящиеся формы, почти не содержащие воды. Границы жизни при низких температурах менее определены. Область активной жизни, связанной с процессами в водной среде, должна лежать выше 0ºС. Итак, температурный интервал, при котором наблюдаются размножение, развитие, эволюция организмов, очень узок. Только наиболее высокоорганизованные животные приобрели в процессе эволюции на Земле высокую температуру тела и совершенную терморегуляцию, вследствие чего стали независимыми от температурного режима среды обитания.Целью моей работы было проследить, как разные виды живых организмов приспосабливаются к температурным условиям среды обитания. А для этого мне было необходимо проанализировать  способы  теплообмена живых организмов с окружающей средой и процесс  терморегуляции их организма.Природа знает несколько способов отдачи энергии: конвекция, излучение, теплопередача и испарение. Все они нашли применение в организации процесса теплообмена организмов с окружающей средой. Потеря энергии телом пропорциональна площади его поверхности. Наблюдения показывают, что размеры тела теплокровных животных могут быть обусловлены климатом. Это один из способов приспособления к климату. Благодаря теплообмену   происходит регулирование температуры тела. Первый аспект этого процесса состоит в необходимости отвода энергии из внутренних частей к поверхности тела и затем в окружающую среду. Эту проблему, в первую очередь решает конвекция, происходящая за счет циркуляции крови по капиллярам. Кроме того, борьба с перегревом осуществляется путем увеличения испарения. Потоотделение – важный фактор терморегуляции организма, поскольку благодаря испарению пота кожа охлаждается.Второй аспект проблемы состоит в необходимости уменьшения потерь энергии организмом. Сделать это можно путем создания специальной теплоизолирующей прослойки между организмом и окружающей его более холодной средой. У животных с этой целью используются покровы из шерсти, пуха, жировой ткани – материалов, характеризующихся низкой теплопроводностью. У человека эту функцию выполняет одежда, теплоизолирующие свойства которой обусловлены действием воздушной прослойки. На Земле также существует немало животных, которые при наступлении неблагоприятных условий, связанных с сезонными изменениями климата, впадают в спячку, то есть переходят в состояние покоя и анабиоза. При этом происходит перерыв в их активной деятельности, обмен веществ снижается до минимума и организм приобретает способность переносить очень низкие температуры.И наконец еще одним способом борьбы за выживание и животных и человека является создание жилища как средства защиты от дождя, снега и холода. Воздух в помещении служит теплоизолирующей прослойкой, стены, крыша и пол жилища – для предохранения этого слоя воздуха от участия в конвективном переносе энергии из помещения на улицу.Итак, в ходе своей работы я могу сделать вывод, что  разные виды живых организмов  во главе с человеком в результате эволюции сумели найти разные способы терморегуляции своего организма, что позволило сделать такой многообразной природу всех уголков нашей прекрасной планеты.Тепловое явление,

gramotey.com

Персональный сайт - Роль тепловых явлений в жизни живых организмов

Температурный диапазон – это наиболее важный параметр среды обитания живых существ. Температура на поверхности планеты зависит от близости светила, излучаемой им энергии, наклона орбиты планеты, ее эксцентриситета, наличия атмосферы и ее химического состава, наличия океанов и т.д. Земля обладала всеми необходимыми  с астрономической точки зрения свойствами, чтобы стать «колыбелью жизни». Несмотря на общие благоприятные условия, поверхность Земли характеризуется большим разнообразием климатических зон, разброс экстремальных температур которых составляет почти 150ºС. Верхний предел диапазона температур, относящихся к области активной жизни,  составляет около 50ºС. Встречаются, однако, низшие организмы, которые приспособились к жизни в горячих источниках с температурой 70 - 90ºС. Нагревание до температуры кипения воды выдерживают лишь споры и другие покоящиеся формы, почти не содержащие воды. Границы жизни при низких температурах менее определены. Область активной жизни, связанной с процессами в водной среде, должна лежать выше 0ºС. Итак, температурный интервал, при котором наблюдаются размножение, развитие, эволюция организмов, очень узок. Только наиболее высокоорганизованные животные приобрели в процессе эволюции на Земле высокую температуру тела и совершенную терморегуляцию, вследствие чего стали независимыми от температурного режима среды обитания.

Целью моей работы было проследить, как разные виды живых организмов приспосабливаются к температурным условиям среды обитания. А для этого мне было необходимо проанализировать  способы  теплообмена живых организмов с окружающей средой и процесс  терморегуляции их организма.

Природа знает несколько способов отдачи энергии: конвекция, излучение, теплопередача и испарение. Все они нашли применение в организации процесса теплообмена организмов с окружающей средой. Потеря энергии телом пропорциональна площади его поверхности. Наблюдения показывают, что размеры тела теплокровных животных могут быть обусловлены климатом. Это один из способов приспособления к климату. Благодаря теплообмену   происходит регулирование температуры тела. Первый аспект этого процесса состоит в необходимости отвода энергии из внутренних частей к поверхности тела и затем в окружающую среду. Эту проблему, в первую очередь решает конвекция, происходящая за счет циркуляции крови по капиллярам. Кроме того, борьба с перегревом осуществляется путем увеличения испарения. Потоотделение – важный фактор терморегуляции организма, поскольку благодаря испарению пота кожа охлаждается.

Второй аспект проблемы состоит в необходимости уменьшения потерь энергии организмом. Сделать это можно путем создания специальной теплоизолирующей прослойки между организмом и окружающей его более холодной средой. У животных с этой целью используются покровы из шерсти, пуха, жировой ткани – материалов, характеризующихся низкой теплопроводностью. У человека эту функцию выполняет одежда, теплоизолирующие свойства которой обусловлены действием воздушной прослойки. На Земле также существует немало животных, которые при наступлении неблагоприятных условий, связанных с сезонными изменениями климата, впадают в спячку, то есть переходят в состояние покоя и анабиоза. При этом происходит перерыв в их активной деятельности, обмен веществ снижается до минимума и организм приобретает способность переносить очень низкие температуры.

И наконец еще одним способом борьбы за выживание и животных и человека является создание жилища как средства защиты от дождя, снега и холода. Воздух в помещении служит теплоизолирующей прослойкой, стены, крыша и пол жилища – для предохранения этого слоя воздуха от участия в конвективном переносе энергии из помещения на улицу.

Итак, в ходе своей работы я могу сделать вывод, что  разные виды живых организмов  во главе с человеком в результате эволюции сумели найти разные способы терморегуляции своего организма, что позволило сделать такой многообразной природу всех уголков нашей прекрасной планеты.

abpbrf363.narod2.ru

реферат на тему роль тепловых явлений в жизни живых организмов

реферат на тему роль тепловых явлений в жизни живых организмов

Ответы:

Температурный диапазон – это наиболее важный параметр среды обитания живых существ. Температура на поверхности планеты зависит от близости светила, излучаемой им энергии, наклона орбиты планеты, ее эксцентриситета, наличия атмосферы и ее химического состава, наличия океанов и т.д. Земля обладала всеми необходимыми  с астрономической точки зрения свойствами, чтобы стать «колыбелью жизни». Несмотря на общие благоприятные условия, поверхность Земли характеризуется большим разнообразием климатических зон, разброс экстремальных температур которых составляет почти 150ºС. Верхний предел диапазона температур, относящихся к области активной жизни,  составляет около 50ºС. Встречаются, однако, низшие организмы, которые приспособились к жизни в горячих источниках с температурой 70 - 90ºС. Нагревание до температуры кипения воды выдерживают лишь споры и другие покоящиеся формы, почти не содержащие воды. Границы жизни при низких температурах менее определены. Область активной жизни, связанной с процессами в водной среде, должна лежать выше 0ºС. Итак, температурный интервал, при котором наблюдаются размножение, развитие, эволюция организмов, очень узок. Только наиболее высокоорганизованные животные приобрели в процессе эволюции на Земле высокую температуру тела и совершенную терморегуляцию, вследствие чего стали независимыми от температурного режима среды обитания.Целью моей работы было проследить, как разные виды живых организмов приспосабливаются к температурным условиям среды обитания. А для этого мне было необходимо проанализировать  способы  теплообмена живых организмов с окружающей средой и процесс  терморегуляции их организма.Природа знает несколько способов отдачи энергии: конвекция, излучение, теплопередача и испарение. Все они нашли применение в организации процесса теплообмена организмов с окружающей средой. Потеря энергии телом пропорциональна площади его поверхности. Наблюдения показывают, что размеры тела теплокровных животных могут быть обусловлены климатом. Это один из способов приспособления к климату. Благодаря теплообмену   происходит регулирование температуры тела. Первый аспект этого процесса состоит в необходимости отвода энергии из внутренних частей к поверхности тела и затем в окружающую среду. Эту проблему, в первую очередь решает конвекция, происходящая за счет циркуляции крови по капиллярам. Кроме того, борьба с перегревом осуществляется путем увеличения испарения. Потоотделение – важный фактор терморегуляции организма, поскольку благодаря испарению пота кожа охлаждается.Второй аспект проблемы состоит в необходимости уменьшения потерь энергии организмом. Сделать это можно путем создания специальной теплоизолирующей прослойки между организмом и окружающей его более холодной средой. У животных с этой целью используются покровы из шерсти, пуха, жировой ткани – материалов, характеризующихся низкой теплопроводностью. У человека эту функцию выполняет одежда, теплоизолирующие свойства которой обусловлены действием воздушной прослойки. На Земле также существует немало животных, которые при наступлении неблагоприятных условий, связанных с сезонными изменениями климата, впадают в спячку, то есть переходят в состояние покоя и анабиоза. При этом происходит перерыв в их активной деятельности, обмен веществ снижается до минимума и организм приобретает способность переносить очень низкие температуры.И наконец еще одним способом борьбы за выживание и животных и человека является создание жилища как средства защиты от дождя, снега и холода. Воздух в помещении служит теплоизолирующей прослойкой, стены, крыша и пол жилища – для предохранения этого слоя воздуха от участия в конвективном переносе энергии из помещения на улицу.Итак, в ходе своей работы я могу сделать вывод, что  разные виды живых организмов  во главе с человеком в результате эволюции сумели найти разные способы терморегуляции своего организма, что позволило сделать такой многообразной природу всех уголков нашей прекрасной планеты.Тепловое явление,

cwetochki.ru

Развитие представлений о природе . тепловых явлений

Содержание

Введение 3

1. Развитие представлений о природе тепловых явлений 4

2. Тепловые законы 6

3. Проблемы тепловой смерти Вселенной 14

ЗАКЛЮЧЕНИЕ 21

СПИСОК ЛИТЕРАТУРЫ 22

Введение

Вокруг нас происходят явления, внешне весьма косвенно связанные с механическим движением. Это явления, наблюдаемые при изменении температуры тел, представляющих собой макросистемы, или при переходе их из одного состояния (например, жидкого) в другое (твердое либо газообразное). Такие явления называются тепловыми. Тепловые явления играют огромную роль в жизни людей, животных и растений. Изменение температуры на 20—30° С при смене времени года меняет все вокруг нас. От температуры окружающей среды зависит возможность жизни на Земле. Люди добились относительной независимости от окружающей среды после того как научились добывать и поддерживать огонь. Это было одним из величавших открытий, сделанных на заре развития человечества.

История развития представлений о природе тепловых явлений — пример того, каким сложным и противоречивым путем постигают научную истину.

1. Развитие представлений о природе тепловых явлений

Многие философы древности рассматривали огонь и связанную с ним теплоту как одну из стихий, которая наряду с землей, водой и воздухом образует все тела. Одновременно предпринимались попытки связать теплоту с движением, так как было замечено, что при соударении тел или трении друг о друга они нагреваются.

Первые успехи на пути построения научной теории теплоты относятся к началу XVII в., когда был изобретен термометр, и появилась возможность количественного исследования тепловых процессов и свойств макросистем.

Вновь был поставлен вопрос о том, что же такое теплота. Наметились две противоположные точки зрения. Согласно одной из них — вещественной теории тепла, теплота рассматривалась как особого рода невесомая "жидкость", способная перетекать из одного тела к другому. Эта жидкость была названа теплородом. Чем больше теплорода в теле, тем выше температура тела.

Согласно другой точке зрения, теплота — это вид внутреннего движения частиц тела. Чем быстрее движутся частицы тела, тем выше его температура.

Таким образом, представление о тепловых явлениях и свойствах связывалось с атомистическим учением древних философов о строении вещества. В рамках таких представлений теорию тепла первоначально называли корпускулярной, от слова "корпускула" (частица). Ее придерживались ученые: Ньютон, Гук, Бойль, Бернулли.

Большой вклад в развитие корпускулярной теории тепла сделал великий русский ученый М. В. Ломоносов. Он рассматривал теплоту как вращательное движение частиц вещества. С помощью своей теории он объяснил в общем процессы плавления, испарения и теплопроводности, а также пришел к выводу о существовании "наибольшей или последней степени холода", когда движение частичек вещества прекращается. Благодаря работам Ломоносова среди русских ученых было очень мало сторонников вещественной теории теплоты.

Но все же, несмотря на многие преимущества корпускулярной теории теплоты, к середине XVIII в. временную победу одержала теория теплорода. Это произошло после того как экспериментально было доказано сохранение теплоты при теплообмене. Отсюда был сделан вывод о сохранении (неуничтожении) тепловой жидкости — теплорода. В вещественной теории было введено понятие теплоемкости тел и построена количественная теория теплопроводности. Многие термины, введенные в то время, сохранились и сейчас.

С помощью корпускулярной теории теплоты не удалось получить столь важные для физики количественные связи между величинами. В частности, не удалось объяснить, почему теплота сохраняется при теплообмене. В те времена не была ясна связь между механической характеристикой движения частиц — их кинетической энергией и температурой тела. Понятие энергии еще не было введено в физику. Поэтому, вероятно, на основе корпускулярной теории не могли быть достигнуты в XVIII в. те немалые успехи в развитии теории тепловых явлений, какие дала простая и наглядная теория теплорода.

К концу XVIII в. вещественная теория теплоты начала сталкиваться со все большими трудностями и к середине XIX в. потерпела полное и окончательное поражение. Большим числом разнообразных опытов было показано, что "тепловой жидкости" не существует. При трении можно получить любое количество теплоты: тем больше, чем более длительное время совершается операция трения. С другой стороны, при совершении работы паровыми машинами пар охлаждается и теплота исчезает.

В середине XIX в. была доказана связь между механической работой и количеством теплоты. Подобно работе количество теплоты оказалось мерой изменения энергии. Нагревание тела связано не с увеличением в нем количества особой невесомой "жидкости", а с увеличением его энергии. Принцип теплорода был заменен гораздо более глубоким законом сохранения энергии. Было установлено, что теплота представляет собой форму энергии.

Значительный вклад в развитие теорий тепловых явлений и свойств макросистем внесли немецкий физик Р. Клаузиус (1822—1888), английский физик-теоретик Дж. Максвелл, австрийский физик Л. Больцман (1844—1906) и другие ученые.

2. Тепловые законы

referatbox.com

План интегрированного урока физики и самопознания "Роль тепловых явлений в жизни живых организмов. Человек в условиях холода."

План интегрированного урока физики и самопознания

Школа:КГУ «Вагулинская СШ»

Дата:__________ № 5

Педагог: Шарипов Т.Т., Ковылина В.В.

Класс:8

Кол-во уч-ся:10

Тема: Роль тепловых явлений в жизни живых организмов. Человек в условиях холода.

Цель: углубить представления учащихся о роли тепловых явлений в жизни живых организмов и существовании человека в условиях холода.

Задачи:

  1. Объяснить роль тепловых явлений в жизни живых организмов и существовании человека в условиях холода;

  2. Развить умения учащихся применять полученные знания;

  3. Воспитывать в учащихся чувства душевной теплоты, любви и добра.

Ресурсы: учебник физики 8 класса, рабочие тетради, лепестки ромашки для закрепления урока, фломастеры, магниты, музыкальное сопровождение

Ход урока

  1. Вводно-мотивационная часть.

  1. Позитивный настрой «Концентрация на свете».

Пожалуйста, сядьте удобно, спинку держите прямо. Руки и ноги не скрещивайте. Руки можно положить на колени или на стол. Расслабьтесь. Закройте, пожалуйста, глаза.

Представьте, что солнечный свет проникает в вашу голову и опускается в середину груди. В середине груди находится бутон цветка. И под лучами солнца бутон медленно раскрывается, лепесток за лепестком. В вашем сердце расцветает прекрасный цветок, свежий и чистый, омывая каждую мысль, каждое чувство, эмоцию и желание.

Представьте, что свет начинает все более и более распространяться по вашему телу. Он становится сильнее и ярче. Медленно опускается вниз по рукам. Ваши руки наполняются светом и освещаются. Руки будут совершать только добрые, хорошие действия и будут помогать всем. Свет опускается вниз по ногам. Ноги наполняются светом и освещаются. Ноги будут вести вас только к хорошим местам для совершения добрых дел. Они станут инструментами света и любви.

Далее свет поднимается к вашему рту, языку. Язык будет говорить только правду и только хорошие, добрые слова. Направьте свет к ушам. Уши будут слышать хорошие слова, прекрасные звуки. Свет достигает глаз. Глаза будут смотреть только на хорошее и видеть только хорошее. Вся ваша голова наполнилась светом, и в вашей голове только добрые, светлые мысли.

Свет становится все интенсивнее и ярче и выходит за пределы вашего тела, распространяясь расширяющимися кругами. Направьте свет всем вашим родным, учителям, друзьям, знакомым. Пошлите свет и тем, с кем у вас временное непонимание, конфликты. Пусть свет наполнит их сердца. Пусть этот свет распространится на весь мир: на всех людей, животных, растения, на все живое, повсюду… Посылайте свет во все уголки Вселенной. Мысленно скажите: «Я в свете…Свет внутри меня… Я есть Свет». Побудьте еще немного в этом состоянии Света, Любви и Покоя…

Теперь поместите этот Свет снова в ваше сердце. Вся Вселенная, наполненная Светом, находится в вашем сердце. Сохраните ее такой прекрасной. Потихонечку можно открывать глаза. Спасибо.

  1. Проверка домашнего задания. Ответить на вопросы:

- Какие виды теплопередачи вы знаете?

- В чем заключается явление теплопроводности?

- Чем различается различная теплопроводность веществ?

- Какие вещества имеют наибольшую теплопроводность?

- Какие вещества имеют наименьшую теплопроводность? Где они используется?

- приведите примеры применения хороших и плохих проводников тепла в домашних условиях.

  1. Цитата урока.

«В каждом из нас есть божья искра, даны равные шансы развития, и каждый выполняет то, для чего он был предназначен…» С. А. Назарбаева.

- Как вы понимаете смысл данного выражения?

  1. Изучение нового материала.

1.Зависимость климата и погоды от Солнца. От температуры окружающей среды зависит возможность жизни на Земле. Явления, происходящие в природе при изменении температуры тел, называются тепловыми. В жизни людей, животных и растений тепловые явления имеют огромное значение.

Известно, что основным источником тепла на Земле является солнце, точнее солнечная энергия. Солнце воздействует на газообразную оболочку, которая окружает весь земной шар. В результате этого нагревается почва, вода в морях и океанах.

Нагревая почву, солнечное тепло дает жизненную силу находящимся в почве семенам растений, микроорганизмами населяющим ее живым существам. Попадая на растения, солнечный свет вызывает процесс фотосинтеза, рост и развитие растений.

Без солнца не могут обойтись люди и животные. Если не прямо, то косвенно они зависят от него, поскольку не могут жить без воды и пищи.Кто еще не может прожить без тепла,солнца? А каком тепле говорится?

Суточные и годичные изменения притока солнечного света и тепла на Землю периодически меняют нагрев разных участков суши, океана и атмосферы. Солнце создает гигантский круговорот воды в природе, образует облака и туманы.

нагревая поверхность Земли, солнце приводит в движение массы воздуха, заставляя их перемещаться из одних районов в другие. Эти перемещения сглаживают перепады температуры и влияют на погоду в каждой точке Земли, формируя климат на планете. Это означает, что климат и погода тесно связаны с Солнцем.

Можно предположить, что климат и погода – это жизнь человека, а Солнце– это душевная доброта и любовь. Как жизнедеятельность на Земле, климат и погода зависят от солнечного света, так и течение жизни человека зависит от проявленного к нему добра и любви, и взамен человек (как растения и животные) отдает свое душевное тепло и благодарность.

2.Зависимость жизнедеятельности домашних и диких животных от климата и погоды. У многих животных выработана определенная реакция для поддержания температуры тела. В практике сельского хозяйства для выживаемости живых организмов и растений в зимний период используются теплозащитные свойства снега.Чем больше толщина (высота, глубина) снежного покрова, тем медленнее передается тепло от земли воздуху, тем медленнее изменяется температура почвы под снегом. Значительное понижение температуры в этом слое может вызвать гибель растений и живых организмов, обитающих на этой глубине

3.Сохранение тепературы внутренней среды организма.Для сохранения теплового баланса в условиях холода человеку потребуется дополнительная энергия. Под влиянием холода человек, «спазмируя» капилляры кожи, способен сохранить свою энергию. Или наоборот, попав в тепло и «расширив» сосуды, выводит ее излишки изорганизма. Перестаивается работа механизмов кожи, через нее тепло либо поступает к внутренним органам, либо выходит наружу. Знания о тепловых явлениях помогают людям конструировать обогреватели для домов, предсказывать погоду, создавать теплоизоляционные и термостойкие материалы, которые используются повсюду – от постройки домой до космических кораблей.

6. Закрепление изученного материала основано на обсуждении вопросов:

- Почему густая шерсть верблюда защищает его от холода жары?

- Что спасает белого медведя от замерзания в условиях Арктики?

- Как изменяется внутренняя энергия организма человека при переохлаждении?

- Как организм человека реагирует на холод?

- Какпонимаетевысказывание "ХОЛОДВДУШЕ"?

7.Домашнее задание

Прочитать параграф № 6, ответить на вопросы после параграфа.

8. Заключительная минута урока.

- Закройте глаза. Расслабьтесь. Подумайте о том, что вы сегодня узнали на уроке. Я желаю вам оставаться всегда добрыми и счастливыми. Откройте глаза. Спасибо за урок.

kopilkaurokov.ru

Тепловые явления в природе и в жизни человека

Доклад

на тему:

«Тепловые явления в природе

и в жизни человека»

Выполнила

ученица 8 «А» класса

Карибова А.В.

Армавир, 2010

Вокруг нас происходят явления, внешне весьма косвенно связанные с механическим движением. Это явления, наблюдаемые при изменении температуры тел или при переходе их из одного состояния (например, жидкого) в другое (твердое либо газообразное). Такие явления называются тепловыми. Тепловые явления играют огромную роль в жизни людей, животных и растений. Изменение температуры на 20—30° С при смене времени года меняет все вокруг нас. От температуры окружающей среды зависит возможность жизни на Земле. Люди добились относительной независимости от окружающей среды после того как научились добывать и поддерживать огонь. Это было одним из величайших открытий, сделанных на заре развития человечества.

История развития представлений о природе тепловых явлений — пример того, каким сложным и противоречивым путем постигают научную истину.

Многие философы древности рассматривали огонь и связанную с ним теплоту как одну из стихий, которая наряду с землей, водой и воздухом образует все тела. Одновременно предпринимались попытки связать теплоту с движением, так как было замечено, что при соударении тел или трении друг о друга они нагреваются.

Первые успехи на пути построения научной теории теплоты относятся к началу XVII в., когда был изобретен термометр, и появилась возможность количественного исследования тепловых процессов и свойств макросистем.

Вновь был поставлен вопрос о том, что же такое теплота. Наметились две противоположные точки зрения. Согласно одной из них — вещественной теории тепла, теплота рассматривалась как особого рода невесомая "жидкость", способная перетекать из одного тела к другому. Эта жидкость была названа теплородом. Чем больше теплорода в теле, тем выше температура тела.

Согласно другой точке зрения, теплота — это вид внутреннего движения частиц тела. Чем быстрее движутся частицы тела, тем выше его температура.

Таким образом, представление о тепловых явлениях и свойствах связывалось с атомистическим учением древних философов о строении вещества. В рамках таких представлений теорию тепла первоначально называли корпускулярной, от слова "корпускула" (частица). Ее придерживались ученые: Ньютон, Гук, Бойль, Бернулли.

Большой вклад в развитие корпускулярной теории тепла сделал великий русский ученый М.В. Ломоносов. Он рассматривал теплоту как вращательное движение частиц вещества. С помощью своей теории он объяснил в общем процессы плавления, испарения и теплопроводности, а также пришел к выводу о существовании "наибольшей или последней степени холода", когда движение частичек вещества прекращается. Благодаря работам Ломоносова среди русских ученых было очень мало сторонников вещественной теории теплоты.

Но все же, несмотря на многие преимущества корпускулярной теории теплоты, к середине XVIII в. временную победу одержала теория теплорода. Это произошло после того как экспериментально было доказано сохранение теплоты при теплообмене. Отсюда был сделан вывод о сохранении (неуничтожении) тепловой жидкости — теплорода. В вещественной теории было введено понятие теплоемкости тел и построена количественная теория теплопроводности. Многие термины, введенные в то время, сохранились и сейчас.

В середине XIX в. была доказана связь между механической работой и количеством теплоты. Подобно работе количество теплоты оказалось мерой изменения энергии. Нагревание тела связано не с увеличением в нем количества особой невесомой "жидкости", а с увеличением его энергии. Принцип теплорода был заменен гораздо более глубоким законом сохранения энергии. Было установлено, что теплота представляет собой форму энергии.

Значительный вклад в развитие теорий тепловых явлений и свойств макросистем внесли немецкий физик Р. Клаузиус (1822—1888), английский физик-теоретик Дж. Максвелл, австрийский физик Л. Больцман (1844—1906) и другие ученые.

Сложилось так, что природа тепловых явлений объясняется в физике двумя способами: термодинамический подход и молекулярно-кинетическая теория вещества.

Термодинамический подход рассматривает теплоту с позиции макроскопических свойств вещества(давление, температура, объём, плотность и т.д.).

Молекулярно-кинетическая теория связывает протекание тепловых яввлений и процессов с особенностями внутреннего строения вещества и изучает причины, которые обуславливают тепловое движение.

Итак, рассмотрим тепловые явления в жизни человека.

Нагревание и охлаждение, испарение и кипение, плавление и отвердевание, конденсация — все это примеры тепловых явлений.

Основной источник тепла на Земле — Солнце. Но, кроме того, люди используют много искусственных источников тепла: костер, печку, водяное отопление, газовые и электрические нагреватели и т.д.

Вы знаете, что если в горячий чай опустить холодную ложку, через некоторое время она нагреется. При этом чай отдаст часть своего тепла не только ложке, но и окружающему воздуху. Из примера ясно, что тепло может передаваться от тела, более нагретого к телу менее нагретому. Существует три способа передачи теплоты —теплопроводность, конвекция, излучение.

Нагревание ложки в горячем чае — примертеплопроводности. Все металлы обладают хорошей теплопроводностью.

Конвекциейпередается тепло в жидкостях и газах. Когда мы нагреваем воду в кастрюле или чайнике, сначала прогреваются нижние слои воды, они становятся легче и устремляются вверх, уступая место холодной воде. Конвекция происходит в комнате, когда включено отопление. Горячий воздух от батареи поднимается, а холодный опускается.

Но ни теплопроводностью, ни конвекцией невозможно объяснить, как, например, далекое от нас Солнце нагревает Землю. В этом случае тепло передается через безвоздушное пространствоизлучением(тепловыми лучами).

Для измерения температуры используется термометр. В обычной жизни пользуются комнатными или медицинскими термометрами.

Когда говорят о температуре по Цельсию, то имеют в виду шкалу температур, в которой 0°С соответствует температуре замерзания воды, а 100°С — точка ее кипения.

В некоторых странах (США, Великобритания) используют шкалу Фаренгейта. В ней 212°F соответствуют 100°С. Перевод температуры из одной шкалы в другую не очень простой, но в случае необходимости каждый из вас сможет его выполнить самостоятельно. Чтобы перевести температуру по шкале Цельсия в температуру по шкале Фаренгейта, необходимо умножить температуру по Цельсию на 9, разделить на 5 и прибавить 32. Чтобы сделать обратный переход, из температуры по Фаренгейту необходимо вычесть 32, умножить остаток на 5 и разделить на 9.

В физике и астрофизике часто используют еще одну шкалу — шкалу Кельвина. В ней за 0 принята самая низкая температура в природе (абсолютный нуль). Она соответствует −273°С. Единица измерения в этой шкале — Кельвин (К). Чтобы перевести температуру по Цельсию в температуру по Кельвину, к градусам по Цельсию надо прибавить 273. Например, по Цельсию 100°, а по Кельвину 373 К. Для обратного перевода надо вычесть 273. Например, 0 К это −273°С.

Полезно знать, что температура на поверхности Солнца — 6000 К, а внутри — 15 000 000 К. Температура в космическом пространстве вдали от звезд близка к абсолютному нулю.

В природе мы являемся свидетелями тепловых явлений, но порой, не обращаем внимания на их сущность. Например, летом идёт дождь а зимой снег. Образуется роса на листьях. Появляется туман.

Знания о тепловых явлениях помогают людям конструировать обогреватели для домов, тепловые двигатели (двигатели внутреннего сгорания, паровые турбины, реактивные двигатели и т. д.), предсказывать погоду, плавить металл, создавать теплоизоляционные и термостойкие материалы, которые используются всюду — от постройки домов до космических кораблей.

superbotanik.net

Научная работа - Тепловые явления в природе и в жизни человека

Доклад

на тему:

«Тепловые явления в природе

и в жизни человека»

Выполнила

ученица 8 «А» класса

Карибова А.В.

Армавир, 2010

Вокруг нас происходят явления, внешне весьма косвенно связанные с механическим движением. Это явления, наблюдаемые при изменении температуры тел или при переходе их из одного состояния (например, жидкого) в другое (твердое либо газообразное). Такие явления называются тепловыми. Тепловые явления играют огромную роль в жизни людей, животных и растений. Изменение температуры на 20—30° С при смене времени года меняет все вокруг нас. От температуры окружающей среды зависит возможность жизни на Земле. Люди добились относительной независимости от окружающей среды после того как научились добывать и поддерживать огонь. Это было одним из величайших открытий, сделанных на заре развития человечества.

История развития представлений о природе тепловых явлений — пример того, каким сложным и противоречивым путем постигают научную истину.

Многие философы древности рассматривали огонь и связанную с ним теплоту как одну из стихий, которая наряду с землей, водой и воздухом образует все тела. Одновременно предпринимались попытки связать теплоту с движением, так как было замечено, что при соударении тел или трении друг о друга они нагреваются.

Первые успехи на пути построения научной теории теплоты относятся к началу XVII в., когда был изобретен термометр, и появилась возможность количественного исследования тепловых процессов и свойств макросистем.

Вновь был поставлен вопрос о том, что же такое теплота. Наметились две противоположные точки зрения. Согласно одной из них — вещественной теории тепла, теплота рассматривалась как особого рода невесомая «жидкость», способная перетекать из одного тела к другому. Эта жидкость была названа теплородом. Чем больше теплорода в теле, тем выше температура тела.

Согласно другой точке зрения, теплота — это вид внутреннего движения частиц тела. Чем быстрее движутся частицы тела, тем выше его температура.

Таким образом, представление о тепловых явлениях и свойствах связывалось с атомистическим учением древних философов о строении вещества. В рамках таких представлений теорию тепла первоначально называли корпускулярной, от слова «корпускула» (частица). Ее придерживались ученые: Ньютон, Гук, Бойль, Бернулли.

Большой вклад в развитие корпускулярной теории тепла сделал великий русский ученый М.В. Ломоносов. Он рассматривал теплоту как вращательное движение частиц вещества. С помощью своей теории он объяснил в общем процессы плавления, испарения и теплопроводности, а также пришел к выводу о существовании «наибольшей или последней степени холода», когда движение частичек вещества прекращается. Благодаря работам Ломоносова среди русских ученых было очень мало сторонников вещественной теории теплоты.

Но все же, несмотря на многие преимущества корпускулярной теории теплоты, к середине XVIII в. временную победу одержала теория теплорода. Это произошло после того как экспериментально было доказано сохранение теплоты при теплообмене. Отсюда был сделан вывод о сохранении (неуничтожении) тепловой жидкости — теплорода. В вещественной теории было введено понятие теплоемкости тел и построена количественная теория теплопроводности. Многие термины, введенные в то время, сохранились и сейчас.

В середине XIX в. была доказана связь между механической работой и количеством теплоты. Подобно работе количество теплоты оказалось мерой изменения энергии. Нагревание тела связано не с увеличением в нем количества особой невесомой «жидкости», а с увеличением его энергии. Принцип теплорода был заменен гораздо более глубоким законом сохранения энергии. Было установлено, что теплота представляет собой форму энергии.

Значительный вклад в развитие теорий тепловых явлений и свойств макросистем внесли немецкий физик Р. Клаузиус (1822—1888), английский физик-теоретик Дж. Максвелл, австрийский физик Л. Больцман (1844—1906) и другие ученые.

Сложилось так, что природа тепловых явлений объясняется в физике двумя способами: термодинамический подход и молекулярно-кинетическая теория вещества.

Термодинамический подход рассматривает теплоту с позиции макроскопических свойств вещества(давление, температура, объём, плотность и т.д.).

Молекулярно-кинетическая теория связывает протекание тепловых яввлений и процессов с особенностями внутреннего строения вещества и изучает причины, которые обуславливают тепловое движение.

Итак, рассмотрим тепловые явления в жизни человека.

Нагревание и охлаждение, испарение и кипение, плавление и отвердевание, конденсация — все это примеры тепловых явлений.

Основной источник тепла на Земле — Солнце. Но, кроме того, люди используют много искусственных источников тепла: костер, печку, водяное отопление, газовые и электрические нагреватели и т.д.

Вы знаете, что если в горячий чай опустить холодную ложку, через некоторое время она нагреется. При этом чай отдаст часть своего тепла не только ложке, но и окружающему воздуху. Из примера ясно, что тепло может передаваться от тела, более нагретого к телу менее нагретому. Существует три способа передачи теплоты — теплопроводность, конвекция, излучение.

Нагревание ложки в горячем чае — пример теплопроводности. Все металлы обладают хорошей теплопроводностью.

Конвекцией передается тепло в жидкостях и газах. Когда мы нагреваем воду в кастрюле или чайнике, сначала прогреваются нижние слои воды, они становятся легче и устремляются вверх, уступая место холодной воде. Конвекция происходит в комнате, когда включено отопление. Горячий воздух от батареи поднимается, а холодный опускается.

Но ни теплопроводностью, ни конвекцией невозможно объяснить, как, например, далекое от нас Солнце нагревает Землю. В этом случае тепло передается через безвоздушное пространство излучением (тепловыми лучами).

Для измерения температуры используется термометр. В обычной жизни пользуются комнатными или медицинскими термометрами.

Когда говорят о температуре по Цельсию, то имеют в виду шкалу температур, в которой 0°С соответствует температуре замерзания воды, а 100°С — точка ее кипения.

В некоторых странах (США, Великобритания) используют шкалу Фаренгейта. В ней 212°F соответствуют 100°С. Перевод температуры из одной шкалы в другую не очень простой, но в случае необходимости каждый из вас сможет его выполнить самостоятельно. Чтобы перевести температуру по шкале Цельсия в температуру по шкале Фаренгейта, необходимо умножить температуру по Цельсию на 9, разделить на 5 и прибавить 32. Чтобы сделать обратный переход, из температуры по Фаренгейту необходимо вычесть 32, умножить остаток на 5 и разделить на 9.

В физике и астрофизике часто используют еще одну шкалу — шкалу Кельвина. В ней за 0 принята самая низкая температура в природе (абсолютный нуль). Она соответствует −273°С. Единица измерения в этой шкале — Кельвин (К). Чтобы перевести температуру по Цельсию в температуру по Кельвину, к градусам по Цельсию надо прибавить 273. Например, по Цельсию 100°, а по Кельвину 373 К. Для обратного перевода надо вычесть 273. Например, 0 К это −273°С.

Полезно знать, что температура на поверхности Солнца — 6000 К, а внутри — 15 000 000 К. Температура в космическом пространстве вдали от звезд близка к абсолютному нулю.

В природе мы являемся свидетелями тепловых явлений, но порой, не обращаем внимания на их сущность. Например, летом идёт дождь а зимой снег. Образуется роса на листьях. Появляется туман.

Знания о тепловых явлениях помогают людям конструировать обогреватели для домов, тепловые двигатели (двигатели внутреннего сгорания, паровые турбины, реактивные двигатели и т. д.), предсказывать погоду, плавить металл, создавать теплоизоляционные и термостойкие материалы, которые используются всюду — от постройки домов до космических кораблей.

www.ronl.ru


Смотрите также