Начальная

Windows Commander

Far
WinNavigator
Frigate
Norton Commander
WinNC
Dos Navigator
Servant Salamander
Turbo Browser

Winamp, Skins, Plugins
Необходимые Утилиты
Текстовые редакторы
Юмор

File managers and best utilites

Реферат на тему «Углеводы и их роль в живой природе». Реферат углеводы


Реферат - Углеводы - Органическая химия

I. Углеводы.

Углеводы - вещества состава Сn(Н2О)m, имеющие первостепенное биохимическое ёзначение, широко распространены в живой природе и играют большую роль в жизни человека. Название углеводы возникло на основании данных анализа первых известных представителей этой группы соединения. Вещества этой группы состоят из углерода, водорода и кислорода, причем соотношение чисел атомов водорода и кислорода в них такое же, как и в воде, т.е. на каждые 2 атома водорода приходится один атом кислорода. В прошлом столетии их рассматривали как гидраты углерода. Отсюда и возникло русское название углеводы, предложенное в 1844г. К.Шмидтом. Общая формула углеводов, согласно сказанному, СмН2пОп. При вынесении «n» за скобки получается формула См(Н2О)n, которая очень наглядно отражает название «угле - воды». Изучение углеводов показало, что существуют соединения, которые по всем свойствам нужно отнести в группу углеводов, хотя они имеют состав не точно соответствующий формуле Смh3пОп. Тем не менее старинное название «углеводы», сохранилось до наших дней, хотя наряду с этим названием для обозначения рассматриваемой группы веществ иногда применяют и более новое название - глициды. Большой класс углеводов разделяют на две группы: простые и сложные. Простыми углеводами (моносахаридами и мономинозами) называют углеводы, которые не способны гидролизоваться с образованием более простых углеводов, у них число атомов углерода равно числу атомов кислорода СпН2nОп. Сложными углеводами (полисахаридами или полиозами) называют такие углеводы, которые способны гидролизоваться с образованием простых углеводов и у них число атомов углерода не равно числу атомов кислорода СмН2пОп.

II. Классификация всех видов углеводов.

Углеводы

Простые Сложные

МОНОСАХАРИДЫ ДИСАХАРИДЫ

Тетрозы С4Н8О4 сахароза C12h32O11 элитроза лактоза треоза мальтоза Пентозы С5Н10О5 целобиоза арабиноза ПОЛИСАХАРИДЫ ксилоза (С5Н8О4)n рибоза пентозаны ГЕКСОЗЫ С6Н12О6 (С6Н10О5)n глюкоза целлюлоза манноза крахмал галактоза гликоген фруктоза

Моно- ( 1 молекула) Олиго- (10 молекул) РибозаФруктозаГлюкоза C6h22O6 Сахароза = глюкоза +фруктозаМальтоза = глюкоза + глюкоза Крахмал (C6h20O5)nцеллюлозаглюкоген – животный сахар III. Важнейшие представители углеводов

1. Моносахариды

Моносахариды - это твердые вещества, способные кристаллизоваться. Они гидроскопичны, очень легко растворимы в воде, легко образуют сиропы, из которых выделить их в кристаллическом виде бывает очень трудно Растворы моносахаридов имеют нейтральную на лакмус реакцию и обладают сладковатым вкусом. Сладость моносахаридов различна: фруктоза в 3 раза слаще глюкозы. Все моносахориды представляют собой бифункциональные соединения, в состав которых входят неразветвленный угольный скелет, несколько гидроксильных групп и одна карбональная группа. Моносахориды с адельгидной группой называют альдозами, а с некогруппой – кетозами. Ниже приведены структурные формулы важнейших моносахоридов:

Моносахариды, важнейшие представители простых углеводов, в природе находятся как в свободном состоянии, так и в виде своих ангидридов - сложных углеводов. Все сложные углеводы можно рассматривать как ангидриды простых сахаров, получающиеся путем отнятия одной или нескольких молекул воды от двух или более молекул моносахарида. К сложным углеводам относятся разнообразные по своим свойствам вещества и их делят по этой причине на две подгруппы.

а) Глюкоза

Общая формула, строение. Глюкоза С6Н12О6 представляет собой белые кристаллы, сладкие на вкус, хорошо растворимые в воде. В линейной формуле молекулы глюкозы содержат одну альдегидную группу и пять гидроксидных групп. В кристаллах молекулы глюкозы находятся в одной из двух циклических форм (?- или ?-глюкоза), которые образуются из линейной формы за счет взаимодействия гидроксильной группы при 5-м атоме углерода с карбональной группой.

Глюкозу называют также виноградным сахаром, так как она содержится в большом количестве в виноградном соке. Кроме винограда глюкоза находится и в других сладких плодах и даже в разных частях растений. Распространена глюкоза и в животном мире: 0,1% ее находится в крови. Глюкоза разносится по всему телу и служит источником энергии для организма. Она также входит в состав сахарозы, лактозы, целлюлозы, крахмала. В растительном мире широко распространена фруктоза или фруктовый (плодовый) сахар. Фруктоза содержится в сладких плодах, меде. Извлекая из цветов сладких плодов соки, пчелы приготавливают мед, который по химическому составу представляет собой в основном смесь глюкозы и фруктозы. Также фруктоза входит в состав сложных сахаров, например тростникового и свекловичного. В организме человека глюкоза содержится а мышцах, крови, и в небольших количествах во всех клетках. В природе глюкоза на ряду с другими углеводами образуется в результате реакции фотосинтеза: 6СО2+6Н2О хролофил С6Н12О6+6О2-Q В процессе этой реакции аккумулируется энергия Солнца. На производстве глюкозу чаще всего получают гидролизом крахмала в присутствии серной кислоты: (С6Н10О5)n + nН2О Н2SO4, t nС6Н12О6 Физические свойства. Глюкоза — бесцветное кристаллическое вещество со сладким вкусом, хорошо растворимое в воде. Из водного раствора она выделяется в виде кристаллогидрата С6Н12Об*Н2О. По сравнению со свекловичным сахаром она менее сладкая. Химические свойства. Глюкоза обладает химическими свойствами, характерными для спиртов и альдегидов. Кроме того, она обладает и некоторыми специфическими свойствами. Получение. Первый синтез простейших углеводов из формальдегида в присутствии гидроксида кальция был произведен А. М. Бутлеровым в 1861 г.: О 6Н – С Са(ОН)2 С6Р12О6 Н Применение. Глюкоза является ценным питательным продуктом. В организме она подвергается сложным биохимическим превращениям, в результате которых освобождается энергия, которая накопилась в процессе фотосинтеза. Упрощенно процесс окисления глюкозы в организме можно выразить следующим уравнением: С6Н12О6 + 6О2 = 6СО2 + 6Н2О + Q Этот процесс протекает ступенчато, и поэтому энергия выделяется медленно. Так как глюкоза легко усваивается организмом, ее используют в медицине в качестве укрепляющего лечебного средства. Широко применяют глюкозу в кондитерском деле (изготовление мармелада, карамели, пряников и т. д.). Большое значение имеют процессы брожения глюкозы. Так, например, при квашении капусты, огурцов, молока происходит молочнокислое брожение глюкозы, так же как и при силосовании кормов. Если подвергаемая силосованию масса недостаточно уплотнена, то под влиянием проникшего воздуха происходит маслянокислое брожение и корм становится непригоден к применению. На практике используется также спиртовое брожение глюкозы, например при производстве пива.

б) Фруктоза

Фруктоза СеН12Об — изомер глюкозы. Как и глюкоза, она может существовать в линейной и циклических формах. В линейной форме фруктоза представляет собой кетоноспирт с пятью гидроксильными группами, а в циклической — кетофуранозу (т.е. пятичленный цикл с атомом кислорода).

Фруктоза вступает во все реакции многоатомных спиртов, но, в отличие от глюкозы, не реагирует с аммиачным раствором оксида серебра.

в) Рибоза

Рибоза и дезоксирибоза. Из пентоз большой интерес представляют рибоза и дезоксирибоза, ибо они входят в состав нуклеиновых кислот. Структурные формулы рибозы и дезоксирибозы с открытой цепью следующие:

Название дезоксирибоза показывает, что по сравнению с рибозой в ее молекуле на одну группу ОН меньше. Как и глюкоза, молекулы рибозы и дезоксирибозы могут иметь и циклическое строение:

2. Дисахариды

Важнейшие дисахариды — сахароза, мальтоза и лактоза. Все они являются изомерами и имеют формулу С12Н22О11, однако их строение различно.

а) Сахароза

Молекула сахарозы состоит из двух циклов: шестичленного (остатка ?-глюкозы в пиранозной форме) и пятичленного (остатка ?-фруктозы в фура-нозной форме), соединенных за счет гликозидного гидроксила глюкозы:

Индусы еще за 300 лет до нашей эры умели получать тростниковый сахар из тростника. В наше время получают сахарозу из тростника, произрастающего в тропиках (на о.Куба и в других странах Центральной Америки). В середине 18 века дисахарид был обнаружен и в сахарной свекле, а в середине 19 века был получен в производственных условиях. В сахарной свекле содержится 12-15% сахарозы, по другим источникам 16-20% (сахарный тростник содержит 14-26% сахарозы). Сахарную свеклу измельчают и извлекают из нее сахарозу горячей водой в специальных аппаратах-диффузорах. Полученный раствор обрабатывают известью для осаждения примесей, а перешедший частично в раствор избыточный гидролиз кальция осаждают пропусканием диоксида углерода. Далее после отделения осадка раствор упаривают в вакуум-аппаратах, получая мелкокристаллический песок-сырец. После его дополнительной очистки получают рафинированный (очищенный) сахар. В зависимости от условий кристаллизации он выделяется в виде мелких кристаллов или в виде компактных «сахарных голов», которые раскалывают или распиливают на куски. Быстрорастворимый сахар готовят прессованием мелкоизмельченного сахарного песка. Тростниковый сахар применяется в медицине для изготовления порошков, сиропов, микстур и т.д. Свекловичный сахар широко применяется в пищевой промышленности, кулинарии, приготовлении вин, пива и т.д. Из молока получают молочный сахар - лактозу. В молоке лактоза содержится в довольно значительном количестве: в коровьем молоке 4-5,5% лактозы, женское молоко содержит 5,5-8,4% лактозы. Лактоза отличается от других сахаров отсутствием гидроскопичности - она не отсыревает. Это свойство имеет большое значение: если нужно приготовить с сахаром какой-либо порошок, содержащий легко гидролизующее лекарство, то берут молочный сахар. Если взять тростниковый или свекловичный сахар, то порошок быстро отсыреет и легко гидролизующее лекарственное вещество быстро разложится. Значение лактозы очень велико, т.к. она является важным питательным веществом, особенно для растущих организмов человека и млекопитающихся животных. Солодовый сахар - это промежуточный продукт при гидролизе крахмала. По другому его называют еще мальтоза, т.к. солодовый сахар получается из крахмала при действии солода (по лат. солод - maltum). Солодовый сахар широко распространен как в растительных, так и в животных организмах. Например, он образуется под влиянием ферментов пищеварительного канала, а также при многих технологических процессах бродильной промышленности: винокурения, пивоварении и т.д. б) Мальтозы и лактоза Молекула мальтозы состоит из двух остатков ? -глюкозы в пиранозной форме, соединенных через 1-й и 4-й атомы углерода:

Лактоза состоит из остатков (3-галактозы и а-глюкозы в пиранозной форме, соединенных через 1-й и 4-й атомы углерода:

Все эти вещества представляют собой бесцветные кристаллы сладкого вкуса, хорошо растворимые в воде. Химические свойства дисахаридов определяются их строением. При гидролизе дисахаридов в кислой среде или под действием ферментов связь между двумя циклами разрывается и образуются соответствующие моносахариды, например: С12Н22О11 + Н2О Н+, t С6Н12О6 + С6Н12О6 глюкоза фруктоза

По отношению к окислителям дисахариды делят на два типа: восстанавливающие и невосстанавливающие. К первым относятся мальтоза и лактоза, которые реагируют с аммиачным раствором оксида серебра по упрощенному уравнению: Nh4 C12h32O11 + Ag2O ——— > С12Н22О12 + 2Ag. Эти дисахариды могут также восстанавливать гидроксид меди (II) до оксида меди (I): C12h32O11 + 2Сu(ОН)2 —— > С12Н22О12 + Cu2O? + 2Н2О. Восстановительные свойства мальтозы и лактозы обусловлены тем, что их циклические формы содержат гликозидный гидроксил (обозначен звездочкой), и, следовательно, эти дисахариды могут переходить из циклической формы в альдегидную, которая и реагирует с Ag2O и Сu(ОН)2. В молекуле сахарозы нет гликозидного гидроксила, поэтому ее циклическая форма не может раскрываться и переходить в альдегидную форму. Сахароза — невосстанавливающий дисахарид; она не реагирует с гидро-ксидом меди (II) и аммиачным раствором оксида серебра. Распространение в природе. Наиболее распространенный дисахарид — сахароза. Это химическое название обычного сахара, который получают экстракцией из сахарной свеклы или сахарного тростника. Сахароза — главный источник углеводов в пище человека. Лактоза содержится в молоке (от 2 до 8%) и получается из молочной сыворотки. Мальтоза содержится в проросших семенах хлебных злаков. Мальтоза также образуется при неполном гидролизе крахмала.

3. Полисахариды

Молекулы полисахаридов можно рассматривать как продукт поликонденсации моносахаридов. Общая формула полисахаридов (СбН10О5)п. Мы рассмотрим важнейшие природные полисахариды — крахмал и целлюлозу.

а) Крахмал

Крахмал образуется в растениях при фотосинтезе и откладывается в корнях и семенах. Он представляет собой белый порошок, нерастворимый в холодной воде и образующий коллоидный раствор в горячей воде. Крахмал — это природный полимер, образованный остатками а-глю-козы. Он существует в двух формах: амилоза и амшопектин. Амилоза растворима в воде и представляет собой линейный полимер, в котором остатки ос-глюкозы связаны друг с другом через первый и четвертый атомы углерода. Крахмал - это первый видимый продукт фотосинтеза. При фотосинтезе крахмал образуется в растениях и откладывается в корнях, клубнях, семенах. Зерна риса, пшеницы, ржи и других злаков содержат 60-80% крахмала, клубни картофеля - 15-20%. Крахмальные зерна растений различаются по внешнему виду, что хорошо видно, когда их рассматриваешь под микроскопом.

Внешний вид крахмала хорошо всем известен: это белое вещество, состоящее из мельчайших зерен, напоминающих муку, поэтому его второе название «картофельная мука». Крахмал не растворим в холодной воде, в горячей набухает и постепенно растворяется, образуя вязкий раствор (клейстер). При быстром нагревании крахмала происходит расщепление гигантской молекулы крахмала на мелкие молекулы полисахаридов, называемых декстринами. Декстрины имеют общую молекулярную формулу с крахмалом (С6Н12О5)х, разница лишь в том, «х» в декстринах меньше «n» в крахмале. Пищеварительные соки содержат несколько разных ферментов, которые при низкой температуре доводят гидролиз крахмала до глюкозы: (С6Н10О5) ------- (С6Н10О5)х --------- С12Н22О11 --------- С6Н12О6 крахмал ряд декстрин мальтоза глюкоза

Еще быстрее декстринизация идет в присутствии кислоты: Н2SО4 t (С6Н10О5)n ------------ n Н2О --------------- n С6Н12О6

Ферментативный гидролиз (разложение путем брожения) крахмала имеет промышленное значение в производстве этилового спирта из зерна и картофеля. Процесс начинается с превращением крахмала в глюкозу, которую затем сбраживают. Используя специальные культуры дрожжей и изменяя условия, можно направить брожение и в сторону получения бутилового спирта, ацетона, молочной, лимонной и глюконовой кислот. Подвергая крахмал гидролизу кислотами, можно получить глюкозу в виде чистого кристаллического препарата или в виде патоки - окрашенного нескристаллизирующего сиропа. Наибольшее значение крахмал имеет в качестве пищевого продукта: в виде хлеба, картофеля, круп, являясь главным источником в нашем рационе питания. Кроме того, чистый крахмал применяется в пищевой промышленности в производстве кондитерских и кулинарных изделий, колбас. Значительное количество крахмала употребляется для проклеивания тканей, бумаги, картона, производства канцелярского клея. В аналитической химии крахмал служит индикатором в йодометрическом методе титрования. Для этих случаев лучше применять очищенную амилозу, т.к. ее растворы не загустевают, а образуемая с йодом окраска более интенсивна. В медицине и фармации крахмал применяется для приготовления присыпок, паст (густых мазей), а также при производстве таблеток. В животном мире роль «запасного крахмала» играет родственный крахмалу полисахарид - гликоген. Гликоген содержится во всех животных тканях. Особенно много его в печени (до 20%) и в мышцах (4%).

Фрагмент амилозы выглядит следующим образом:

Линейная полимерная цепь в молекуле амилозы свернута в спираль. Внутри спирали находится канал размером 0,5 нм, который может захватывать некоторые молекулы, например молекулу йода. Образующийся комплекс амилозы и йода имеет характерное синее окрашивание. Эта реакция служит для обнаружения йода. В отличие от амилозы, амилопектин не растворим в воде и имеет разветвленное строение. В его молекуле остатки ?-глюкозы связаны не только 1,4-связями, но и 1,6-связями:

Химические свойства. При нагревании в кислой среде крахмал гидро-лизуется с разрывом связей между остатками a-глюкозы. При этом образуется ряд промежуточных продуктов, в частности мальтоза. Конечным продуктом гидролиза является глюкоза: Н+, t (С6Н10О5)n + nН2О ———> nС6Н12О6. Эта реакция имеет важное промышленное значение, поскольку из глюкозы получают этанол, молочную кислоту и другие ценные продукты. Крахмал — это ценный питательный продукт. Он входит в состав хлеба, картофеля, круп и наряду с сахарозой является важнейшим источником углеводов в человеческом организме.

б) Целлюлоза

Строение молекул. Молекулярная формула целлюлозы (C6h20O5)n, как и у крахмала. Целлюлоза тоже является природным полимером. Ее макромолекула состоит из многих остатков молекул глюкозы. Может возникнуть вопрос: почему крахмал и целлюлоза — вещества с одинаковой молекулярной формулой — обладают различными свойствами? При рассмотрении синтетических полимеров мы уже выяснили, что их свойства зависят от числа элементарных звеньев и их структуры. Это же положение относится и к природным полимерам. Оказывается, степень полимеризации у целлюлозы намного больше, чем у крахмала. Кроме того, сравнивая структуры этих природных полимеров, установили, что макромолекулы целлюлозы, в отличие от крахмала, состоят из остатков молекул р-глюкозы и имеют только линейное строение. Макромолекулы целлюлозы располагаются в одном направлении и образуют волокна (лен, хлопок, конопля). В каждом остатке молекулы глюкозы содержатся три гидроксильные группы. Нахождение в природе. Целлюлоза, так же как и крахмал, образуется в растениях при реакции фотосинтеза. Она является основной составной частью оболочки растительных клеток; отсюда происходит ее название — целлюлоза («целлула» — клетка). Волокна хлопка — это почти чистая целлюлоза (до 98%). Волокна льна и конопли тоже состоят главным образом из целлюлозы. В древесине ее содержится примерно 50%. Получение. Образцом почти чистой целлюлозы является вата, полученная из очищенного хлопка. Основную массу целлюлозы выделяют из древесины, в которой она содержится вместе с другими веществами. Наиболее распространенным методом получения целлюлозы в нашей стране является так называемый сульфитный. По этому методу измельченную древесину в присутствии раствора гидросульфита кальция Ca(HSO3)2 или «гидросульфита натрия NaHSO3 нагревают в автоклавах при давлении 0,5— 0,6 МПа и температуре 150 "С. При этом все другие вещества разрушаются, а целлюлоза выделяется в сравнительно чистом виде. Ее промывают водой, сушат и направляют на дальнейшую переработку, большей частью на производство бумаги. Физические свойства. Целлюлоза — волокнистое вещество, нерастворимое ни в воде, ни в обычных органических растворителях. Растворителем ее является реактив Швейцера — раствор гидроксида меди (II) с аммиаком, с которым она одновременно и взаимодействует. Химические свойства. Одно из наиболее характерных свойств целлюлозы — способность в присутствии кислот подвергаться гидролизу с образованием глюкозы. Аналогично крахмалу гидролиз целлюлозы протекает ступенчато. Суммарно этот процесс можно изобразить так: (С6Н10О5)n + nН2О Н2SO4 nСбН12О6 Так как в молекулах целлюлозы имеются гидроксиль-ные группы, то для нее характерны реакции этерификации. Из них практическое значение имеют реакции целлюлозы с азотной кислотой и ангидридом уксусной кислоты. При взаимодействии целлюлозы с азотной кислотой в присутствии концентрированной серной кислоты в зависимости от условий образуются динитроцеллюлоза и три-нитроцеллюлоза, являющиеся сложными эфирами:

При взаимодействии целлюлозы с уксусным ангидридом (в присутствии уксусной и серной кислот) получается триацетилцеллюлоза или диацетилцеллюлоза:

Целлюлоза горит. При этом образуются оксид углерода (IV) и вода. При нагревании древесины без доступа воздуха происходит разложение целлюлозы и других веществ. При этом получаются древесный уголь, метан, метиловый спирт, уксусная кислота, ацетон и другие продукты. Применение. Целлюлоза используется человеком с очень древних времен. Ее применение весьма разнообразно. Основные продукты, получаемые из древесины. Большое значение имеют продукты этерификации целлюлозы. Так, например, из ацетилцеллюлозы получают ацетатный шелк. Для этого триацетилцеллюлозу растворяют в смеси дихлорметана и этанола. Образовавшийся вязкий раствор продавливают через фильеры — металлические колпачки с многочисленными отверстиями (рис. 36). Тонкие струи раствора опускаются в шахту, через которую противотоком проходит нагретый воздух. В результате растворитель испаряется и триацетил целлюлоза выделяется в виде длинных нитей, из которых прядением изготовляют ацетатный шелк Ацетил целлюлоза идет также на производство негорючей пленки и органического стекла, пропускающего ультрафиолетовые лучи. Тринитроцеллюлоза (пироксилин) используется как взрывчатое вещество и для производства бездымного пороха. Для этого тринитроцеллюлозу растворяют в этил-ацетате или в ацетоне. После испарения растворителей компактную массу размельчают и получают бездымный порох. Динитроцеллюлоза (коллоксилин) применяется также для получения коллодия. В этих целях ее растворяют в смеси спирта и эфира. После испарения растворителей образуется плотная пленка — коллодий, применяемый в медицине. Динитроцеллюлоза идет также на производство пластмассы целлулоида. Его получают путем сплавления ди-нитроцеллюлозы с камфорой. Целлюлоза (клетчатка) — основное вещество растительных клеток. Древесина на 50% состоит из целлюлозы, а хлопок и лен — это практически чистая целлюлоза. Целлюлоза представляет собой твердое волокнистое вещество, нерастворимое в воде, но растворимое в аммиачном растворе гидроксида меди (II) (реактиве Швейцера). Целлюлоза — природный полимер. В отличие от крахмала, ее молекулы состоят только из линейных цепей, содержащих остатки р-глюкозы, которые связаны через первый и четвертый углеродные атомы. Фрагмент линейной структуры целлюлозы выглядит следующим образом:

Химические свойства. Гидролиз целлюлозы происходит при нагревании в кислой среде. Конечным продуктом гидролиза является глюкоза. Для целлюлозы характерны реакции образования сложных эфиров. Каждое структурное звено молекулы целлюлозы содержит по три группы ОН, которые могут реагировать с азотной и уксусной кислотой: (С6Н7О2(ОН)3)n + 3nHNO3 ——> (C6H7О2(ONO2)3)n + ЗnН2О. (С6Н7О2(ОН)3)n + ЗnСН3СООН ——> (C6H7О2 (ОСОСН3)3)n + ЗnН2О Тринитрат целлюлозы (пироксилин) — взрывчатое вещество, на его основе готовят бездымный порох. Из триацетата целлюлозы изготавливают лаки, кинопленку и ацетатное волокно.

IV. Применение химических веществ группы углеводов в росписи тканей.

Свободная роспись

Родиной этой техники считается Древний Китай. Предания относят возникновение ручной росписи шелковой ткани с помощью кисти еще к Х-ХП векам. Если в других странах ткани украшенные ручной росписью применялись исключительно для национальной и ритуальной одежды, то в Китае батик применялся и в интерьере. Это были различные настенные панно и ширмы, на которых изображались пейзажи или растительные мотивы Нередко на них присутствовали фигуры людей и животных. Свободная роспись внешне очень близка к восточным техникам живописи Мягкие живописные переходы, легкое, воздушное исполнение, по характеру похожи на нежный легкий набросок. Эта техника требовала oт мастеров твердости руки и точности мазка, четкости и размытости пятна одновременно. В древних работах не было буйства красок, и внимание уделялось не столько цвету, сколько оттенкам. Даже очень светлые элементы имели большой диапазон тоновых градаций, оттенков и нюансов. Подобная роспись была также распространена и в Японии, где применялась как для украшения национальной одежды, так и в качестве декора интерьера. Возникла и развивалась она под очень сильным влиянием Дзен-буддизма и традиционной живописи «суибоку». В свободной росписи существует несколько различных приемов: - свободная роспись по сухой ткани - свободная роспись по увлажненной ткани

Прием свободной росписи по загустке.

В качестве загусток используются: сальвитоза, трагант, декстрин, крахмал и различные клеевые растворы. Загусткой можно покрывать всю поверхность ткани, а после ее высыхания работать красителями. Такой прием напоминает рисование по бумаге. Можно делать как жесткие очертания, так и размывать их. Также работа с применением загусток дает возможность покрывать ткань не целиком, а частично и сочетать ее с другими видами росписи. Загустку можно добавлять в краситель, который становиться похожим на гуашь по консистенции. И работать им можно как гуашью мазками или перекрывая небольшие плоскости. Таким красителем можно осуществлять печать по трафарету при помощи губки. Такое разнообразие приемов обобщает возможности художника занимающегося искусством батика. Загустки и их приготовление

1. Сальвитоза. Растворяется в воде при температуре 25 градусов по Цельсию, образуя загустку большой устойчивости. Смесь, 100-120 г сальвитозы с 900-880мл воды оставляют на один-два часа, затем размешивают и процеживают. 2. Трагант — застывший сок кустарника типа каучуконосных Имеет вид роговидных пластинок белого, желтого и коричневого цветов Для получения загустки берут траганта 60-80 гр., воды 940-920 мл. Трагант заливают холодной водой и оставляют на сутки. затем разваривают на кипящей водяной бане в 1ечение трех-четырех часов. Готовую загустку протирают через сито. 3. Декстрин клеящее вещество, хорошо растворяется в воде. Загустку из декстрина готовят так, берут 125-150 г декстрина и 875-850 мл воды, затем размешивают декстрин с небольшим количеством воды, потом разваривают в течение часа при помешивании на кипящей водяной бане до получения прозрачной массы. Готовую загустку процеживают через сито. 4. Крахмал - картофельный пли рисовый, такая загустка готовится как трагант. В работе можно совмещать вышеперечисленные способы и добиваться, таким образом, разнообразных эффектов.

www.ronl.ru

Реферат на тему «Углеводы и их роль в живой природе»

Муниципальное общеобразовательное учреждениеГАПОУ ПО Пензенский колледж транспортных технологий

Рефератна тему «Углеводы и их роль в живой природе»

Выполнила: студентка 1 курсагруппы 16оп23Лукьянова АнастасияПроверила: Филиппова Л.В

Пенза 2017

СОДЕРЖАНИЕ

ВВЕДЕНИЕ 31. ЗНАЧЕНИЕ, ИСТОЧНИКИ, РОЛЬ УГЛЕВОДОВ 41.1. Понятие и сущность углеводов 41.2. Роль углеводов 52. ПРИМЕНЕНИЕ УГЛЕВОДОВ В МЕДИЦИНЕ 72.1. Применение углеводов в парентеральном питании 72.2. Использование углеводов при диетическом питании 8ЗАКЛЮЧЕНИЕ 9СПИСОК ЛИТЕРАТУРЫ 11

ВВЕДЕНИЕ

Целью данной работы является систематизация, накопление и закрепление знаний о применении углеводов в медицине.Источниками углеводов в питании служат главным образом продукты растительного происхождения - хлеб, крупы, картофель, овощи, фрукты, ягоды. Из продуктов животного происхождения углеводы содержаться в молоке (молочный сахар). Пищевые продукты содержат различные углеводы. Крупы, картофель содержат крахмал - сложное вещество (сложный углевод), нерастворимое в воде, но расщепляющееся под действием пищеварительных соков на более простые сахара. Во фруктах, ягодах и некоторых овощах углеводы содержаться в виде различных более простых сахаров - фруктовый сахар, свекловичный сахар, тростниковый сахар, виноградный сахар (глюкоза) и др. Эти вещества растворимы в воде и хорошо усваиваются в организме. Растворимые в воде сахара быстро всасываются в кровь. Целесообразно вводить не все углеводы в виде сахаров, а основную их массу вводить в виде крахмала, которым богат, например, картофель. Это способствует постепенной доставке сахара тканям. Непосредственно в виде сахара рекомендуется вводить лишь 20-25% от общего количества углеродов, содержащихся в суточном рационе питания. В это число входит и сахар, содержащийся в сладостях, кондитерских изделиях, фруктах и ягодах.Если углеводы поступают с пищей в достаточном количестве, они откладываются главным образом в печени и мышцах в виде особого животного крахмала - гликогена. В дальнейшем запас гликогена расщепляется в организме до глюкозы и, поступая в кровь и другие ткани, используются для нужд организма. При избыточном же питании углеводы переходят в организме в жир. К углеводам обычно относят и клетчатку (оболочку растительных клеток), которая мало используется организмом человека, но необходима для правильных процессов пищеварения.

1.ЗНАЧЕНИЕ, ИСТОЧНИКИ, РОЛЬ УГЛЕВОДОВ

1.1. Понятие и сущность углеводов.

Углеводы как эссенциальные компоненты пищевого рациона не только определяют основной энергетический гомеостат организма, но существенно необходимы также для биосинтеза многих углеродсодержащих полимеров. На протяжении жизни человек в среднем потребляет около 14 тонн углеводов, и том числе более 2,5 тонн простых углеводов. Углеводы являются основной составной частью пищевого рациона человека, так как их потребляют примерно в 4 раза больше, чем белков и жиров. При обычном смешанном питании за счет углеводов обеспечивается около 60 % суточной энергоценности, тогда как за счет белков и жиров вместе взятых - только 40 %. Углеводы в организме используются преимущественно как источник энергии для мышечной работы. Чем интенсивнее физическая нагрузка, тем больше требуется углеводов. При малоподвижном образе жизни, напротив, потребность в углеводах уменьшается. Около 52-66 % углеводов потребляется с зерновыми продуктами, 14-26 % - с сахаром и сахаропродуктами, около 8-10- с клубне- и корнеплодами, 5—7 % с овощами, фруктами. Углеводы - довольно сильный раздражитель внешней секреции поджелудочной железы, в том числе наиболее активный стимулятор синтеза инсулина, которому принадлежит важная роль в регуляции углеводного обмена, в поддержании оптимального для организма гомеостаза глюкозы. Алиментарная многолетняя перегрузка легкоусвояемыми углеводами первоначально вызывает гиперплазию в-клеток, затем может привести к ослаблению инсулярного аппарата вследствие перенапряжения и созданию предпосылок для развития сахарного диабета.

1.2. Роль углеводов.

Углеводы служат основным источником энергии. Свыше 56% энергии организм получает за счет углеводов, остальную часть - за счет белков и жиров. В зависимости от сложности строения, растворимости, быстроты усвоения углеводы пищевых продуктов подразделяются на простые углеводы: моносахариды (глюкоза, фруктоза, галактоза), дисахариды (сахароза, лактоза) и сложные углеводы, или полисахариды (крахмал, гликоген, клетчатка). Простые углеводы легко растворяются в воде и быстро усваиваются. Они обладают выраженным сладким вкусом и относятся к сахарам. Наиболее распространенный моносахарид - глюкоза - содержится во многих плодах и ягодах, а также образуется в организме в результате расщепления дисахаридов и крахмала пищи. Глюкоза наиболее быстро и легко используется в организме для образования гликогена, для питания тканей мозга, работающих мышц (в том числе и сердечной мышцы), для поддержания необходимого уровня сахара в крови и создания запасов гликогена печени. Во всех случаях при большом физическом напряжении глюкоза может использоваться как источник энергии. Фруктоза обладает теми же свойствами, что и глюкоза, и может рассматриваться как ценный, легкоусвояемый сахар. Однако она медленнее усваивается в кишечнике и, поступая в кровь, быстро покидает кровяное русло. Фруктоза в значительном количестве (до 70 - 80%) задерживается в печени и не вызывает перенасыщение крови сахаром. В печени фруктоза более легко превращается в гликоген по сравнению с глюкозой. Фруктоза усваивается лучше сахарозы и отличается большей сладостью. Высокая сладость фруктозы позволяет использовать меньшие ее количества для достижения необходимого уровня сладости продуктов и таким образом снизить общее потребление сахаров, что имеет значение при построении пищевых рационов ограниченной калорийности. Избыток сахарозы оказывает влияние на жировой обмен, усиливая жирообразование. Установлено, что при избыточном поступлении сахара усиливается превращение в жир всех пищевых веществ (крахмала, жира, пищи, частично и белка). Таким образом, количество поступающего сахара может служить в известной степени фактором, регулирующим жировой обмен. Обильное потребление сахара приводит к нарушению обмена холестерина и повышению его уровня в сыворотке крови. Избыток сахара отрицательно сказывается на функции кишечной микрофлоры. При этом повышается удельный вес гнилостных микроорганизмов, усиливается интенсивность гнилостных процессов в кишечнике, развивается метеоризм. Установлено, что в наименьшей степени эти недостатки проявляются при потреблении фруктозы. Основными источниками фруктозы являются фрукты и ягоды. Глюкоза и фруктоза широко представлены в меде: содержание глюкозы достигает 36.2%, фруктозы - 37.1%. В арбузах весь сахар представлен фруктозой, количество которой составляет 8%. Третий моносахарид - галактоза - в свободном виде в пищевых продуктах не встречается. Галактоза является продуктом расщепления основного углевода молока - лактозы. Из дисахаридов в питании человека основное значение имеет сахароза, которая при гидролизе распадается на глюкозу и фруктозу. Источниками сахарозы в питании человека являются, главным образом, тростниковый и свекловичный сахар. Содержание сахарозы в сахаре-песке составляет 99.75%. Натуральными источниками сахарозы являются бахчевые, некоторые овощи и фрукты. Содержание углеводов на 100 г. ПродуктовОвощи и фрукты капуста белокочанная картофель свекла яблоки виноград Глюкоза 2.6 0.6 0.3 2.0 7.8 Фруктоза 1.6 0.1 0.1 5.5 7.7 Сахароза 0.4 0.6 8.6 1.5 0.5 Гемицеллюлоза 0.1 0.3 0.7 0.4 0.6 Клетчатка 1.0 1.0 0.9 0.6 - Крахмал 0.1 16.0 0.1 0.8 0.6 Пектин 0.6 0.4 1.1 1.0 0.6   Сложные углеводы, или полисахариды, характеризуются усложненным строением молекулы и плохой растворимостью в воде. К сложным углеводам относятся крахмал, гликоген, пектиновые вещества и клетчатка. Крахмал имеет основное пищевое значение. Высоким его содержанием в значительной степени обуславливается пищевая ценность зерновых продуктов. В пищевых рационах человека на долю крахмала приходится около 80% общего количества потребляемых углеводов. Превращение крахмала в организме в основном направлено на удовлетворение потребности в сахаре. Гликоген в организме используется в качестве энергетического материала для питания работающих мышц, органов и систем. Восстановление гликогена происходит путем его его ресинтеза за счет глюкозы. 

Пектины относятся к растворимым веществам, усваивающимися в организме. Современными исследованиями показано несомненное значение пектиновых веществ в питании здорового человека, а также возможность использовать их с терапевтической целью при некоторых заболеваниях преимущественно желудочно-кишечного тракта. 

Клетчатка по химической структуре весьма близка к полисахаридам. Высоким содержанием клетчатки характеризуются зерновые продукты. Однако помимо общего количества клетчатки, важное значение имеет ее качество. Менее грубая, нежная клетчатка хорошо расщепляется в кишечнике и лучше усваивается. Такими свойствами обладает клетчатка картофеля и овощей. Клетчатка способствует выведению из организма холестерина. Потребность в углеводах определяется величиной энергетических затрат. Средняя потребность в углеводах для тех, кто не занят тяжелым физическим трудом, 400 - 500 г. в сутки. 

2.ПРИМЕНЕНИЕ УГЛЕВОДОВ В МЕДИЦИНЕ.

2.1. Применение углеводов в парентеральном питании.

Углеводы используются для парентерального питания в силу того, что они являются наиболее доступными источниками энергии для организма больного. Их энергетическая ценность составляет 4 ккал/г. Учитывая то, что суточная потребность в энергии составляет около 1 500–2 000 ккал, то становится понятной проблема изолированного применения углеводов для ее покрытия. Если перевести расчет на изотонический раствор глюкозы, то для этого потребуется перелить не менее 7–10 л жидкости, что может привести к таким осложнениям, как гипергидратация, отек легких, сердечно-сосудистые нарушения.Применение же более концентрированных растворов глюкозы чревато опасностью возникновения гиперосмолярности плазмы, а также раздражением интимы вен с развитием флебитов и тромбофлебитов.Для того чтобы исключить осмотический диурез, нельзя допускать превышения скорости вливания глюкозы более 0,4–0,5 г/кг/ч. В переводе на изотонический раствор глюкозы это составляет чуть более 500 мл для больного массой 70 кг. Чтобы предупредить возможные осложнения, обусловленные нарушением толерантности к углеводам, надо добавлять к раствору глюкозы инсулин в соотношении 1 ЕД инсулина на 3–4 г сухого вещества глюкозы. Кроме положительного влияния на утилизацию глюкозы инсулин играет важную роль в абсорбции аминокислот.Среди многочисленных углеводов, существующих в природе, в практике парентерального питания применяют глюкозу, фруктозу, сорбитол, глицерол, декстран, этиловый алкоголь.

2.2. Использование углеводов при диетическом питании.

Многие диеты основаны на исключении из рациона углеводов и увеличении потребления белков и жиров. Опрос, проведенный министерством сельского хозяйства США показал, что еда с повышенным употреблением углеводов менее калорийна и более питательна. Также было обнаружено, что взрослые люди, употребляющие в пищу много углеводов, как правило, обладают нормальным весом. В США около 55% населения страдает от избыточного веса, и за последние 20 лет этот уровень увеличивается. В ходе Длительного опроса населения о потреблении пищевых продуктов (Continuing Survey of Food Intakes by Individuals) 1994-1996 года министерство сельского хозяйства собрало данные о режиме питания 10 014 американцев. Информацию разделили на четыре части по уровню потребления углеводов: менее 30%, 30-45%, 45-55% и более 55%. Люди, употреблявшие в пищу в основном углеводы, получали на 300 калорий меньше при одинаковом общем объеме потребления еды. Из всех опрошенных у них был самый низкий индекс массы тела. Это происходит главным образом из-за того, что на 1000 калорий продуктов с высоким содержанием углеводов приходится большее количество воды и клетчатки. Эта группа также получала больше питательных веществ, таких как витамин А, каротин, витамин С, кальций, магний и железо. В меньших количествах в их питании содержались жиры, холестерин, натрий, цинк и витамин В12. Доктор Шанти Боуман (Shanthy Bowman), главный автор исследования и научный сотрудник министерства сельского хозяйства, сообщил, что у «взрослых, которые получали более 55% энергии из углеводов, была энергетически ограниченная, но питательная диета вне зависимости от выбора продуктов». Люди из этой группы употребляли мало молока, мяса, рыбы, и выбирали эти продукты с пониженным содержанием жиров. 

ЗАКЛЮЧЕНИЕ

Способность углеводов быть высокоэффективным источником энергии лежит в основе их сберегающего белок действия. При поступлении с пищей достаточного количества углеводов аминокислоты лишь в незначительной степени используются в организме как энергетический материал. Хотя углеводы не принадлежат к числу незаменимых факторов питания и могут образовываться в организме из аминокислот и глицерина, минимальное количество углеводов суточного рациона не должно быть ниже 50 - 60 г. Дальнейшее снижение количества углеводов ведет к резким нарушениям метаболических процессов. 

Избыточное потребление углеводов ведет к ожирению. При построении пищевых рационов чрезвычайно важно не только удовлетворить потребности человека в необходимом количестве углеводов, но и подобрать оптимальные соотношения качественно различных типов углеводов. Наиболее важно учитывать соотношение в рационе легкоусвояемых углеводов (сахаров) и медленно всасывающихся (крахмал, гликоген).При поступлении с пищей значительных количеств сахаров они не могут полностью откладываться в виде гликогена, и их избыток превращается в триглицериды, способствуя усиленному развитию жировой ткани. Повышенное содержание в крови инсулина способствует ускорению этого процесса, поскольку инсулин оказывает мощное стимулирующее действие на жироотложение. В отличие от сахаров крахмал и гликоген медленно расщепляются в кишечнике. Содержание сахара в крови при этом нарастает постепенно. В связи с этим целесообразно удовлетворять потребности в углеводах в основном за счет медленно всасывающихся углеводов. На их долю должно приходиться 80 - 90% от общего количества потребляемых углеводов. Ограничение легкоусвояемых углеводов приобретает особое значение для тех, кто страдает атеросклерозом, сердечно-сосудистыми заболеваниями, сахарным диабетом, ожирением.

СПИСОК ЛИТЕРАТУРЫ

1. Алабин В. Г., Скрежко А. Д. Питание и здоровье. – Минск, 19942. Бальсевич В.К. Питание человека. – М., Интел, 20003. Березин И. П., Дергачев Ю.В. Школа здоровья. - СПб, 20014. Воробьев В.И. Слагаемые здоровья. - М., Интел, 20025. Егорушкин А. С. Про витамины. – М.: Высшая школа, 19986. Куценко Г.И., Новиков Ю.В. Книга о здоровом образе жизни. - М., Приор, 20007. Петров В. К. Жить, чтобы есть, или есть, чтобы жить? – М., Инфра-М, 20028. Сотник Ж.Г., Заричанская Л.А. Белки, жиры и углеводы. – М., Приор, 2000

intolimp.org

Доклад - Углеводы как главный источник энергии в организме человека

Углеводы – главный источник энергии в организме человека.

Общая формула углеводов Сn(h3O)m

Углеводы — вещества состава См Н2п Оп, имеющие первостепенное биохимическое значение, широко распространены в живой природе и играют большую роль в жизни человека. Углеводы входят в состав клеток и тканей всех растительных и животных организмов и по массе составляют основную часть органического вещества на Земле. На долю углеводов приходится около 80 % сухого вещества растений и около 20 % животных. Растения синтезируют углеводы из неорганических соединений — углекислого газа и воды (СО2 и Н2 О).

Запасы углеводов в виде гликогена в организме человека составляют примерно 500 г. Основная масса его (2/3) находится в мышцах, 1/3 – в печени. В промежутках между приемами пищи гликоген распадается на молекулы глюкозы, что смягчает колебания уровня сахара в крови. Запасы гликогена без поступления углеводов истощаются примерно за 12-18 часов. В этом случае включается механизм образования углеводов из промежуточных продуктов обмена белков. Это обусловлено тем, что углеводы жизненно необходимы для образования энергии в тканях, особенно мозга. Клетки мозга получают энергию преимущественно за счет окисления глюкозы.

Виды углеводов

Углеводы по своей химической структуре можно разделить на простые углеводы (моносахариды и дисахариды) и сложные углеводы (полисахариды).

Простые углеводы (сахара)

Глюкоза – наиболее важный из всех моносахаридов, так как она является структурной единицей большинства пищевых ди- и полисахаридов. В процессе обмена веществ они расщепляются на отдельные молекулы моносахаридов, которые в ходе многостадийных химических реакций превращаются в другие вещества и в конечном итоге окисляются до углекислого газа и воды – используются как «топливо» для клеток. Глюкоза – необходимый компонент обмена углеводов. При снижении ее уровня в крови или высокой концентрации и невозможности использования, как это происходит при диабете, наступает сонливость, может наступить потеря сознания ( гипогликемическая кома ).

Глюкоза «в чистом виде», как моносахарид, содержится в овощах и фруктах. Особенно богаты глюкозой виноград – 7,8%, черешня, вишня – 5,5%, малина – 3,9%, земляника – 2,7%, слива – 2,5%, арбуз – 2,4%. Из овощей больше всего глюкозы содержится в тыкве – 2,6%, в белокочанной капусте – 2,6%, в моркови – 2,5%.

Глюкоза обладает меньшей сладостью, чем самый известный дисахарид – сахароза. Если принять сладость сахарозы за 100 единиц, то сладость глюкозы составит 74 единицы.

Фруктоза является одним из самых распространенных углеводов фруктов. В отличие от глюкозы она может без участия инсулина проникать из крови в клетки тканей. По этой причине фруктоза рекомендуется в качестве наиболее безопасного источника углеводов для больных диабетом. Часть фруктозы попадает в клетки печени, которые превращают ее в более универсальное «топливо» — глюкозу, поэтому фруктоза тоже способна повышать сахара в крови, хотя и в значительно меньшей степени, чем другие простые сахара. Фруктоза легче, чем глюкоза, способна превращаться в жиры. Основным преимуществом фруктозы является то, что она в 2,5 раза слаще глюкозы и в 1,7 – сахарозы. Ее применение вместо сахара позволяет снизить общее потребление углеводов.

Основными источниками фруктозы в пище являются виноград – 7,7%, яблоки – 5,5%, груши – 5,2%, вишня, черешня – 4,5%, арбузы – 4,3%, черная смородина – 4,2%, малина – 3,9%, земляника – 2,4%, дыни – 2,0%. В овощах содержание фруктозы невелико – от 0,1% в свекле до 1,6% в белокочанной капусте. Фруктоза содержится в меде – около 3,7%. Достоверно доказано, что фруктоза, обладающая значительно более высокой сладостью, чем сахароза, не вызывает кариеса, которому способствует потребление сахара.

Галактоза в продуктах в свободном виде не встречается. Она образует дисахарид с глюкозой – лактозу (молочный сахар) – основной углевод молока и молочных продуктов.

Лактоза расщепляется в желудочно-кишечном тракте до глюкозы и галактозы под действием фермента лактазы. Дефицит этого фермента у некоторых людей приводит к непереносимости молока. Нерасщепленная лактоза служит хорошим питательным веществом для кишечной микрофлоры. При этом возможно обильное газообразование, живот «пучит». В кисломолочных продуктах большая часть лактозы сброжена до молочной кислоты, поэтому люди с лактазной недостаточностью могут переносить кисломолочные продукты без неприятных последствий. Кроме того, молочнокислые бактерии в кисломолочных продуктах подавляют деятельность кишечной микрофлоры и снижают неблагоприятные действия лактозы.

Галактоза, образующаяся при расщеплении лактозы, превращается в печени в глюкозу. При врожденном наследственном недостатке или отсутствии фермента, превращающего галактозу в глюкозу, развивается тяжелое заболевание — галактоземия, которая ведет к умственной отсталости.

Содержание лактозы в коровьем молоке составляет 4,7%, в твороге – от 1,8% до 2,8%, в сметане – от 2,6 до 3,1%, в кефире – от 3,8 до 5,1%, в йогуртах – около 3%.

Сахароза — это дисахарид, образованный молекулами глюкозы и фруктозы. Содержание сахарозы в сахаре 99,5%. То, что сахар – это «белая смерть», любители сладкого знают так же хорошо, как курильщики то, что капля никотина убивает лошадь. К сожалению, обе эти прописные истины чаще служат поводом для шуток, чем для серьезных размышлений и практических выводов.

Сахар быстро расщепляется в желудочно-кишечном тракте, глюкоза и фруктоза всасываются в кровь и служат источником энергии и наиболее важным предшественником гликогена и жиров. Его часто называют «носителем пустых калорий», так как сахар – это чистый углевод и не содержит других питательных веществ, таких, как, например, витамины, минеральные соли. Из растительных продуктов больше всего сахарозы содержится в свекле – 8,6%, персиках – 6,0%, дынях – 5,9%, сливах – 4,8%, мандаринах – 4,5%. В овощах, кроме свеклы, значительное содержание сахарозы отмечается в моркови – 3,5%. В остальных овощах содержание сахарозы колеблется от 0,4 до 0,7%. Кроме собственно сахара, основными источниками сахарозы в пище являются варенье, мед, кондитерские изделия, сладкие напитки, мороженое.

При соединении двух молекул глюкозы образуется мальтоза — солодовый сахар. Ее содержат мед, солод, пиво, патока и хлебобулочные и кондитерские изделия, изготовленные с добавлением патоки.

Сложные углеводы

Все полисахариды, представленные в пище человека, за редкими исключениями, являются полимерами глюкозы.

Крахмал – основной из перевариваемых полисахаридов. На его долю приходится до 80% потребляемых с пищей углеводов.

Источником крахмала служат растительные продукты, в основном злаковые: крупы, мука, хлеб, а также картофель. Больше всего крахмала содержат крупы: от 60% в гречневой крупе ( ядрице ) до 70% — в рисовой. Из злаков меньше всего крахмала содержится в овсяной крупе и продуктах ее переработки: толокне, овсяных хлопьях «Геркулес» — 49%. Макаронные изделия содержат от 62 до 68% крахмала, хлеб из ржаной муки в зависимости от сорта – от 33% до 49%, пшеничный хлеб и другие изделия из пшеничной муки – от 35 до 51% крахмала, мука – от 56 ( ржаная ) до 68% ( пшеничная высшего сорта ). Крахмала много и в бобовых продуктах – от 40% в чечевице до 44% в горохе. По этой причине сухие горох, фасоль, чечевицу, нут относят к зернобобовым. Особняком стоят соя, которая содержит только 3,5% крахмала, и соевая мука ( 10-15,5% ). По причине высокого содержания крахмала в картофеле ( 15-18% ) в диетологии его относят не к овощам, где основные углеводы представлены моносахариды и дисахаридами, а к крахмалистым продуктам наравне со злаковыми и зернобобовыми.

В топинамбуре и некоторых других растениях углеводы запасаются в виде полимера фруктозы — инулина. Пищевые продукты с добавкой инулина рекомендуют при диабете и особенно – для его профилактики (напомним, что фруктоза дает меньшую нагрузку на поджелудочную железу, чем другие сахара).

Гликоген — «животный крахмал» — состоит из сильно разветвленных цепочек молекул глюкозы. Он в небольших количествах содержится в животных продуктах (в печени 2-10%, в мышечной ткани – 0,3-1%).

Продукты с высоким содержанием углеводов

Наиболее распространенными углеводами являются глюкоза, фруктоза и сахароза, входящие в состав овощей, фруктов и меда. Лактоза входит в состав молока. Сахар-рафинад представляет собой соединение фруктозы и глюкозы.

Глюкоза играет центральную роль в процессе обмена веществ. Она является поставщиком энергии для таких органов, как головной мозг, почки, и способствует выработке красных кровяных телец.

Человеческий организм не в состоянии делать слишком большие запасы глюкозы и потому нуждается в ее регулярном пополнении. Но это не значит, что нужно есть глюкозу в чистом виде. Гораздо полезнее употреблять ее в составе более сложных углеводных соединений, например, крахмала, который содержится в овощах, фруктах, зерновых. Все эти продукты, кроме того, являются настоящим кладезем витаминов, клетчатки, микроэлементов и других полезных веществ, помогающих организму бороться со многими болезнями. Полисахариды должны составлять большую часть всех поступающих в наш организм углеводов.

Важнейшие источники углеводов

Главными источниками углеводов из пищи являются: хлеб, картофель, макароны, крупы, сладости. Чистым углеводом является сахар. Мёд, в зависимости от своего происхождения, содержит 70—80 % глюкозы и фруктозы.

Для обозначения количества углеводов в пище используется специальная хлебная единица.

К углеводной группе, кроме того, примыкают и плохо перевариваемые человеческим организмом клетчатка и пектины.

Углеводы применяют в качестве:

— лекарственных средств,

— для производства бездымного пороха (пироксилина),

— взрывчатых веществ,

— искусственных волокон (вискоза).

— огромное значение имеет целлюлоза как источник для получения этилового спирта

Функции

1.Энергетическая

Основная функция углеводов заключается в том, что они являются непременным компонентом рациона человека, при расщеплении 1г углеводов освобождается 17,8 кДж энергии.

2. Структурная.

Клеточная стенка растений состоит из полисахарида целлюлозы.

3. Запасающая.

Крахмал и гликоген являются запасными продуктами у растений и животных

Группы углеводов Особенностистроения молекулы Свойства углеводов
Моносахариды

Число атомов С

С3-триозы

С4-тетрозы

С5-пентозы

С6-гексозы

Бесцветны, хорошо растворимы в воде, имеют сладкий вкус.
Олигосахариды Сложные углеводы. Содержат от 2 до 10 моносахаридных остатков Хорошо растворяются в воде, имеют сладкий вкус.
Полисахариды Сложные углеводы, состоящие из большого числа мономеров-простых сахаров и их производных С увеличением числа мономерных звеньев растворимость уменьшается, исчезает сладкий вкус. Появляется способность ослизняться и набухать

Историческая справка

· Углеводы используются с глубокой древности — самым первым углеводом (точнее смесью углеводов), с которой познакомился человек, был мёд.

· Родиной сахарного тростника является северо-западная Индия-Бенгалия. Европейцы познакомились с тростниковым сахаром благодаря походам Александра Македонского в 327 г. до н.э.

· Крахмал был известен ещё древним грекам.

· Свекловичный сахар в чистом виде был открыт лишь в 1747 г. немецким химиком А. Маргграфом

· В 1811 г. русский химик Кирхгоф впервые получил глюкозу гидролизом крахмала

· Впервые правильную эмпирическую формулу глюкозы предложил шведский химик Я. Берцеллиус в 1837 г. С6Н12О6

· Синтез углеводов из формальдегида в присутствии Са(ОН)2 был произведён А.М. Бутлеровым в 1861 г.

Значение углеводов трудно переоценить. Глюкоза является основным энергетическим источником в организме человека, идет на построение многих важных веществ в организме – гликогена (энергетический резерв), входит в состав клеточных мембран, ферментов, гликопротеидов, гликолипидов, участвует в большинстве реакций, происходящих в организме человека. В то же время именно сахароза является основным источником глюкозы, который поступает во внутреннюю среду. Содержащая практически во всех растительных продуктах питания, сахароза обеспечивает необходимый приток энергетического и незаменимого вещества – глюкозы.

Организму обязательно нужны углеводы (свыше 56% энергии мы получаем за счет углеводов)

Углеводы бывают простые и сложные( из-за строения молекул их так назвали)

Минимальное количество углеводов должно быть не меньше 50-60 г

Проверь свои знания:

— 1А

— 2В

— 3Б

— 4Б

— 5Б

— 6Б

www.ronl.ru

РЕФЕРАТ на тему Углеводы БДТ 13(9)1

Введение.

Ежедневно сталкиваясь с множеством бытовых предметов, продуктов питания, природных объектов, продуктов промышленного производства, мы не задумываемся о том, что все вокруг есть и индивидуальные химические вещества или совокупность этих веществ. Любое вещество обладает собственной структурой и свойствами. Человек с момента своего появления на Земле употреблял растительную пищу, содержащую крахмал, фрукты и овощи, содержащие глюкозу, сахарозу и другие углеводы, использовал для своих нужд древесину и другие растительные объекты, состоящие главным образом из другого природного полисахарида — целлюлозы. И только в начале XIX в. стало возможным изучение химического состава природных высокомолекулярных веществ, строения их молекул. В этой области были сделаны важнейшие открытия.

В бескрайнем мире органических веществ есть соединения, о которых можно сказать, что они состоят из углерода и воды. Они так и называются – углеводы. Впервые термин “углеводы” предложил русский химик из Дерпта (ныне Тарту) К. Шмидт в 1844 году. В 1811 году русский химик Константин Готлиб Сигизмунд (1764-1833) впервые получил глюкозу гидролизом крахмала. Углеводы широко распространены в природе и играют большую роль в биологических процессах живых организмов и человека.

Углеводы в зависимости от строения можно подразделить на моносахариды, дисахариды и полисахариды: ( см. приложение 1)

1. Моносахариды:

- глюкоза С6Н12О6

- фруктоза С6Н12О6

- рибоза С5Н10О5

Из шестиуглеродных моносахаридов – гексоз – наиболее важное значение имеют глюкоза, фруктоза и галактоза.

Если в одной молекуле объединяются два моносахарида, такое соединение называется дисахаридом.

2. Дисахариды:

- сахароза С12Н22О11

Сложные углеводы, образованные многими моносахаридами, называются полисахаридами.

3. Полисахариды:

- крахмал (С6Н10О5)n

- целлюлоза (С6Н10О5)n

В молекулах моносахоридов может содержаться от 4-х до 10-ти атомов углерода. Названия всех групп моносахаридов, а также названия отдельных представителей оканчиваются на –оза. Поэтому в зависимости о числа атомов углерода в молекуле моносахариды подразделяют на тетрозы, пентозы, гексозы и т.д. наибольшее значение имеют гексозы и пентозы.

Классификация углеводов.

Пентозы

Гексозы

Дисахариды

Полисахариды

Глюкоза

Рибоза

Дезоксирибоза

Арабиноза

Ксилоза

Ликсоза

Рибулоза

Ксилулоза

Глюкоза

Галактоза

Манноза

Гулоза

Идоза

Талоза

Аллоза

Альтроза

Фруктоза

Сорбоза

Такатоза

Псикоза

Фукоза

Рамноза

Сахароза

Лактоза

Трегалоза

Мальтоза

Целлобиоза

Аллолактоза

Гентиобиоза

Ксилобиоза

Мелибиоза

Гликоген

Крахмал

Целлюлоза

Хитин

Амилоза

Амилопектин

Стахилоза

Инулин

Декстрин

Пектины

Животные и человек не способны синтезировать сахара и получают их с различными пищевыми продуктами растительного происхождения.

В растениях углеводы образуются из двуокиси углерода и воды в процессе сложной реакции фотосинтеза, осуществляемой за счет солнечной энергии с участием зелёного пигмента растений - хлорофилла.

I.Моносахариды.

Из шестиуглеродных моносахаридов – гексоз – важное значение имеют глюкоза, фруктоза и галактоза.

Глюкоза.

Основные понятия. Строение молекулы.

Для установления структурной формулы молекулы глюкозы необходимо знать её химические свойства. Экспериментально доказали, что один моль глюкозы реагирует с пятью молями уксусной кислоты с образованием сложного эфира. Это означает, что в молекуле глюкозы имеется пять гидроксильных групп. Так как глюкоза в аммиачном растворе оксида серебра (II) дает реакцию «серебрянного зеркала», то в её молекуле должна быть альдегидная группа.

Опытным путем так же одказали, что глюкоза имеет неразветвленную углеродную цепь. На основании этих данных строение молекулы глюкозы можно выразить следующей формулой:

Как видно из формулы, глюкоза является одновременно многоатомным спиртом а альдегидом, т.е альдегидоспиртом.

Дальнейшие исследование показали, что кроме молекул с открытой цепью, для глюкозы характерны молекулы циклического строения. Это объясняется тем, что молекулы глюкозы, вследствие вращения атомов углерода вокруг связей могут принимать изогнутую форму и гидроксильная группа 5 углерода может приблизиться к гидроксильной группе. В последней под действием гидроксильной группы разрывается π-связь. К свободной связи присоединяется атом водорода, и образуется шестичленное кольцо, в котором альдегидная группа отсутствует. Доказано, что в водном растворе существуют обе формы молекул глюкозы – альдегидная и циклическая, между которыми устанавливается химическое равновесие:

В молекулах глюкозы с открытой цепью альдегидная группа может свободно вращаться вокруг σ-связи, которая находится между первым и вторым атомами углерода. В молекулах циклической формы такое вращение не возможно. По этой причине циклическая форма молекулы может иметь различное пространственное строение:

α-форма глюкозы - гидроксильные группы (-ОН) при первом и втором атомах углерода расположены по одну сторону кольца.

б - форма глюкозы - гидроксильные группы находятся по разные стороны кольца молекулы.

Физические свойства.

Глюкоза - бесцветное кристаллическое вещество со сладким вкусом, хорошо растворимое в воде. Из водного раствора кристаллизуется. По сравнению со свекловичным сахаром менее сладкая.

Химические свойства.

Глюкоза обладает химическими свойствами, характерными для спиртов (гидроксильная (-ОН) группа) и альдегидов ( группа альдегида (-СНО). Кроме того, она обладает и некоторыми специфическими свойствами.

1. Свойства, характерные для спиртов:

а) взаимодействие с оксидом меди (II):

C6h22O6 + Cu(OH)2 → C6h20O6Cu + h3O

алкоголят меди (II)

б) взаимодействие с карбоновыми кислотами с образованием сложных эфиров (реакция этерификации).

C6h22O6+5Ch4COOH→C6H7O6(Ch4CO)5

2. Свойства, характерные для альдегидов

а) взаимодействие с оксидом серебра ( I ) в аммиачном растворе (реакция "серебряного зеркала"):

C6h22O6 + Аg2O → C6h22O7 +2Ag↓

глюкоза глюконовая кислота

б)восстановление (гидрирование) - до шестиатомного спирта (сорбита):

C6h22O6 + h3 → C6h24O6

глюкоза сорбит

3. Специфические реакции - брожение:

а) спиртовое брожение (под действием дрожжей):

С6Н12О6 → 2С2Н5ОН + 2СО2

глюкоза этиловый спирт

б) молочнокислые брожение (под действие молочнокислых бактерий):

С6Н12О6 → С3Н6О3

глюкоза молочная кислота

в) маслянокислое брожение:

С6Н12О6 → С3Н7СООН +2Н2 +2СО2

глюкоза масляная кислота

Получение глюкозы.

Первый синтез простейших углеводов из формальдегида в присутствии гидроксида кальция был произведен А.М.Бутлеровым в 1861 году:

са(он)2

6НСОН → С6Н12О6

формальдегид люкоза

На производстве глюкозу чаще всего получают гидролизом крахмала в присутствии серной кислоты:

Н2SО4

(С6Н10О5)n + nН2О → nC6h22O6

крахмал глюкоза

Применение глюкозы.

Глюкоза является ценным питательным продуктом. В организме она подвергается сложным биохимическим превращениям, в результате которых освобождается энергия, которая накопилась в процессе фотосинтеза. Упрощено процесс окисления глюкозы в организме можно выразить следующим уравнением:

С6Н12О6 + 6О2→6СО2+6h3O+Q

Так как глюкоза легко усваивается организмом, ее используют в медицине в качестве укрепляющего лечебного средства. Широко применяют глюкозу в кондитерском деле (изготовление мармелада, карамели, пряников).

Большое значение имеют процессы брожения глюкозы. Так, например, при квашении капусты, огурцов, молока происходит молочнокислое брожение глюкозы, так же, как при силосований кормов. Если подвергаемая силосованию масса недостаточно уплотнена, то под влиянием проникшего воздуха происходит маслянокислое брожение и корм становится непригоден к применению.

На практике используется также спиртовое брожение глюкозы, например при производстве пива.

Нахождение в природе и организме человека.

В организме человека глюкоза содержится в мышцах, в крови и в небольших количествах во всех клетках. Много глюкозы находится во фруктах, ягодах, нектаре цветов, особенно много в винограде.

В природе глюкоза образуется в растениях в результате фотосинтеза в присутствии зелёного вещества - хлорофилла, содержащего атом магния. В свободном виде глюкоза содержится почти во всех органах зеленых растений. Особенно ее много в соке винограда, поэтому глюкозу иногда называют виноградным сахаром. Мед в основном состоит из смеси глюкозы с фруктозой.

II Дисахариды.

Дисахариды - кристаллические углеводы, молекулы которых построены из соединённых между собой остатков двух молекул моносахаридов.

Простейшими представителями дисахаридов являются обычный свекловичный или тростниковый сахар - сахароза, солодовый сахар - мальтоза, молочный сахар - лактоза и целлобиоза. Все эти дисахариды имеют одну и туже формулу С12Н22О11.

Сахароза.

Основные понятия. Строение молекулы

Опытным путем доказано, что молекулярная формула сахарозы C12h32O11. При исследовании химических свойств сахарозы можно убедиться, что для нее характерна реакция многоатомных спиртов: при взаимодействии с гидроксидом меди (II) образуется ярко-синий раствор. Реакцию «серебряного зеркала» с сахарозой осуществить не удается. Следовательно, в ее молекуле имеются гидроксильные группы, но нет альдегидной.

Но если раствор сахарозы нагреть в присутствии соляной или серной кислоты, то образуются два вещества, одно из которых, подобно альдегидам, реагирует как с аммиачным раствором оксида серебра (I), так и с гидроксидом меди (II). Эта реакция доказывает, что в присутствии минеральных кислот сахароза подвергается гидролизу и в результате образуются глюкоза и фруктоза. Так подтверждается, что молекулы сахарозы состоят из взаимно связанных остатков молекул глюкозы и фруктозы.

 

Физические свойства.

Чистая сахароза — бесцветное кристаллическое вещество сладкого вкуса, хорошо растворимое в воде.

Химические свойства.

Главным свойством дисахаридов, отличающим их от моносахаридов, является способность к гидролизу в кислой среде (или под действием ферментов в организме):

С12Н22О11+Н2О→ С6Н12О6+ С6Н12О6

сахароза глюкоза фруктоза

Образовавшуюся в процессе гидролиза глюкозу можно обнаружить реакцией «серебряного зеркала» или при взаимодействии ее с гидроксидом меди (II).

Получение сахарозы.

Сахарозу C12h32O11 (сахар) получают в основном из сахарной свеклы и сахарного тростника. При производстве сахарозы не происходят химические превращения, ибо она уже имеется в природных продуктах. Ее лишь выделяют из этих продуктов по возможности в более чистом виде.

Процесс выделения сахарозы из сахарной свеклы:

Очищенную сахарную свеклу в механических свеклорезках превращают в тонкую стружку и помещают ее вспециальные сосуды — диффузоры, через которые пропускают горячую воду. В результате из свеклы вымывается почти вся сахароза, но вместе с ней в раствор переходят различные кислоты, белки и красящие вещества, которые требуется отделить от сахарозы.

Образовавшийся в диффузорах раствор обрабатывают известковым молоком.

С12Н22О11+Ca(OH)2→ С12Н22О11∙2CaO∙h3O

Гидроксид кальция реагирует с содержащимися в растворе кислотами. Так как кальциевые соли большинства органических кислот малорастворимы, то они выпадают в осадок. Сахароза же с гидроксидом кальция образует растворимый сахарат типа алкоголятов - С12Н22О11∙2CaO∙h3O

3. Чтобы разложить образовавшийся сахарат кальция и нейтрализовать избыток гидроксида кальция, через их раствор пропускают оксид углерода (IV). В результате кальций осаждается в виде карбоната:

С12Н22О11∙2CaO∙h3O + 2СО2 → С12Н22О11 + 2CaСO3↓ 2Н2О

4. Полученный после осаждения карбоната кальция раствор фильтруют, затем упаривают в вакуумных аппаратах и кристаллики сахара отделяют центрифугированием.

Однако выделить весь сахар из раствора не удается. Остается бурый раствор (меласса), который содержит еще до 50% сахарозы. Мелассу используют для получения лимонной кислоты и некоторых других продуктов.

5. Выделенный сахарный песок обычно имеет желтоватый цвет, так как содержит красящие вещества. Чтобы их отделить, сахарозу вновь растворяют в воде и полученный раствор пропускают через активированный уголь. Затем раствор снова упаривают и подвергают кристаллизации. ( см. приложение 2)

Применение сахарозы.

Сахароза в основном используется в качестве продукта питания и в кондитерской промышленности. Путем гидролиза из нее получают искусственный мед.

Нахождение в природе и организме человека.

Сахароза входит в состав сока сахарной свеклы (16 — 20%) и сахарного тростника (14 — 26%). В небольших количествах она содержится вместе с глюкозой в плодах и листьях многих зеленых растений.

III Полисахариды.

Некоторые углеводы представляют собой природные полимеры, состоящие из многих сотен и даже тысяч моносахаридных звеньев, входящих в состав одной макромолекулы. Поэтому такие вещества получили название полисахариды. Наиболее важными среди полисахаридов являются крахмал и целлюлоза. Оба они образуются в растительных клетках из глюкозы, основного продукта процесса фотосинтеза.

Крахмал

Основные понятия. Строение молекулы.

Экспериментально доказано, что химическая формула крахмала (C6h20O5)n, где п достигает нескольких тысяч. Крахмал является природным полимером, молекулы которого состоят из отдельных звеньев C6h20O5. Так как при гидролизе крахмала образуется только глюкоза, то можно сделать вывод, что эти звенья являются остатками молекул α-глюкозы.

Ученым удалось доказать, что макромолекулы крахмала состоят из остатков молекул циклической глюкозы. Процесс образования крахмала можно представить так:

Кроме того, установлено, что крахмал состоит не только из линейных молекул, но и из молекул разветвленной структуры. Этим объясняется зернистое строение крахмала.

Физические свойства.

Крахмал — белый порошок, нерастворимый в холодной воде. В горячей воде он набухает и образует клейстер. В отличие от моно- и олигосахаридов полисахариды не обладают сладким вкусом.

Химические свойства.

Качественная реакция на крахмал.

Характерной реакцией крахмала является его взаимодействие с йодом. Если к охлажденному крахмальному клейстеру добавить раствор йода, то появляется синее окрашивание. При нагревании клейстера оно исчезает, а при охлаждении появляется вновь. Этим свойством пользуются при определении крахмала в пищевых продуктах. Так, например, если каплю йода поместить на срез картофеля или ломтик белого хлеба, то появляется синее окрашивание.

Реакция гидролиза:

(С6Н6О5)n + nh3O → nC6h22O6

Получение крахмала.

В промышленности крахмал получают в основном из картофеля, риса или кукурузы.

Применение крахмала.

Крахмал является ценным питательным продуктом. Чтобы облегчить его усвоение, содержащие крахмал продукты подвергают действию высокой температуры, т. е. картофель варят, хлеб пекут. В этих условиях происходит частичный гидролиз крахмала и образуются декстрины, растворимые в воде. Декстрины в пищеварительном тракте подвергаются дальнейшему гидролизу до глюкозы, которая усваивается организмом. Избыток глюкозы превращается в гликоген (животный крахмал). Состав гликогена такой же, как у крахмала, но его молекулы более разветвленные. Особенно много гликогена содержится в печени (до 10%). В организме гликоген является резервным веществом, которое превращается в глюкозу по мере ее расходования в клетках.

В промышленности крахмал путем гидролиза превращают в патоку и глюкозу. Для этого его нагревают с разбавленной серной кислотой, избыток которой затем нейтрализуют мелом. Образовавшийся осадок сульфата кальция отфильтровывают, раствор упаривают и выделяют глюкозу. Если гидролиз крахмала не доводить до конца, то образуется смесь декстринов с глюкозой — патока, которую применяют в кондитерской промышленности. Получаемые из крахмала декстрины используются в качестве клея, для загустения красок при нанесении рисунков на ткань.

Крахмал применяется для накрахмаливания белья. Под горячим утюгом происходит частичный гидролиз крахмала и превращение его в декстрины. Последние образуют на ткани плотную пленку, которая придает блеск ткани и предохраняет ее от загрязнения.

Нахождение в природе и организме человека.

Крахмал, являясь одним из продуктов фотосинтеза, широко распространен в природе. Для различных растений он является запасным питательным материалом и содержится главным образом в плодах, семенах и клубнях. Наиболее богато крахмалом зерно злаковых растений: риса (до 86%), пшеницы (до 75%), кукурузы (до 72%), а также клубни картофеля (до 24%). В клубнях крахмальные зерна плавают в клеточном соке, поэтому картофель является основным сырьем для получения крахмала. В злаках частицы крахмала плотно склеены белковым веществом клейковиной.

Для организма человека крахмал наряду с сахарозой служит основным поставщиком углеводов — одного из важнейших компонентов пищи. Под действием ферментов крахмал гидролизуется до глюкозы, которая окисляется в клетках до углекислого газа и воды с выделением энергии, необходимой для функционирования живого организма. Из продуктов питания наибольшее количество крахмала содержится в хлебе, макаронных и других мучных изделиях, крупах, картофеле.

Целлюлоза.

Вторым наиболее распространенным в природе полисахаридом является целлюлоза или клетчатка (см. приложение 4).

Основные понятия. Строение молекулы.

.Формула целлюлозы, как и крахмала - (С6Н10О5)n, элементарным звеном этого природного полимера также служат остатки глюкозы. Степень полимеризации у целлюлозы намного больше, чем у крахмала.

Макромолекулы целлюлозы, в отличие от крахмала, состоят из остатков молекул б-глюкозы и имеют только линейное строение. Макромолекулы целлюлозы располагаются в одном направлении и образуют волокна (лен, хлопок, конопля).

Физические свойства.

Чистая целлюлоза — твердое белое вещество, имеющее волокнистую структуру. Она нерастворима в воде и органических растворителях, но хорошо растворяется в аммиачном растворе гидроксида меди (II). Как известно, сладкого вкуса целлюлоза не имеет.

Химические свойства.

Горение. Целлюлоза легко горит с образованием углекислого газа и воды.

(С6Н10О5)n + 6nО2 → nСО2 + nН2О + Q

Гидролиз. В отличие от крахмала клетчатка гидролизуется с трудом. Только очень длительное кипячение в водных растворах сильных кислот приводит к заметному расщеплению макромолекулы до глюкозы:

(С6Н10О5)n + nh3O → nC6h22O6

Образования сложных эфиров. Каждое элементарное звено молекулы целлюлозы имеет три гидроксильные группы, которые могут участвовать в образовании сложных эфиров как с органическими, и с неорганическими кислотами.

Нитраты целлюлозы. При обработке целлюлозы смесью концентрированных азотной и серной кислот (нитрующая смесь) образуются нитраты целлюлозы. В зависимости от условий проведении реакции и соотношения реагирующих веществ можно получить продукт по двум (динитрат) или трем (тринитрат) гидроксильным группам

Получение целлюлозы.

Образцом почти чистой целлюлозы является вата, полученная из очищенного хлопка. Основную массу целлюлозы выделяют из древесины, в которой она содержится вместе с другими веществами. Наиболее распространенным методом получения целлюлозы в нашей стране является так называемый сульфитным. По этому методу, измельченную древесину в присутствии раствора гидросульфита кальция или гидросульфита натрия нагревают в автоклавах при давлении 0,5-0,6 МПа и температуре 150 °С. При этом все другие вещества разрушаются, а целлюлоза выделяется в сравнительно чистом виде. Ее промывают водой, сушат и направляют на дальнейшую переработку, большей частью на производство бумаги.

Применение целлюлозы.

Целлюлоза используется человеком с очень древних времен. Ее применение весьма разнообразно. Из целлюлозы изготавливают многочисленные искусственные волокна, полимерные пленки, пластмассы, бездымный порох, лаки. Большое количество целлюлозы идет на производство бумаги. Большое значение имеют продукты этерификации целлюлозы. Так, например, из ацетилцеллюлозы получают ацетатный шелк. Для этого триацетилцеллюлозу растворяют в смеси дихлорметана и этанола. Образовавшийся вязкий раствор продавливают через фильеры — металлические колпачки с многочисленными отверстиями. Тонкие струи раствора опускаются в шахту, через которую противотоком проходит нагретый воздух. В результате растворитель испаряется и триацетилцеллюлоза выделяется в виде длинных нитей, из которых прядением изготовляют ацетатный шелк .Ацетилцеллюлоза идет также на производство негорючей пленки и органического стекла, пропускающего ультрафиолетовые лучи.

Тринитроцеллюлоза (пироксилин) используется как взрывчатое вещество и для производства бездымного пороха. Для этого тринитроцеллюлозу растворяют в этил-ацетате или в ацетоне. После испарения растворителей компактную массу размельчают и получают бездымный порох. Исторически это был первый полимер, из которого была изготовлена промышленная пластмасса — целлулоид. Ранее пироксилин использовался для изготовления кино- и фотопленки и лаков. Его главный недостаток — легкая горючесть с образованием токсичных оксидов азота.

Динитроцеллюлоза (коллоксилин) применяется также для получения коллодия. В этих целях ее растворяют в смеси спирта и эфира. После испарения растворителей образуется плотная пленка — коллодий, применяемый в медицине. Динитроцеллюлоза идет также на производство пластмассы целлулоида. Его получают путем сплавления ди-нитроцеллюлозы с камфорой.

Нахождение в природе и организме человека.

Целлюлоза является основной частью стенок растений. Относительно чистой целлюлозой являются волокна хлопчатника, джута и конопли. Древесина содержит от 40 до 50% целлюлозы, солома — 30%. Целлюлоза растений служит питательным веществом для травоядных животных, в организме которых имеются расщепляющие клетчатку ферменты. Целлюлоза, так же как и крахмал, образуется в растениях при реакции фотосинтеза. Она является основной составной частью оболочки растительных клеток; отсюда происходит ее название —- целлюлоза («целлула» — клетка). Волокна хлопка — это почти чистая целлюлоза (до 98%). Волокна льна и конопли тоже состоят главным образом из целлюлозы. В древесине ее содержится примерно 50%.

Заключение:

Биологическое значение углеводов очень велико:

Углеводы выполняют пластическую функцию, то есть участвуют в построении костей, клеток, ферментов. Они составляют 2-3 % от веса.

Углеводы выполняют две основные функции: строительную и энергетическую. Целлюлоза образует стенки растительных клеток. Сложный полисахарид хитин служит главным структурным компонентом наружного скелета членистоногих. Строительную функцию хитин выполняет и у грибов.

Углеводы являются основным энергетическим материалом (см. ). При окислении 1 грамма углеводов выделяются 4,1 ккал энергии и 0,4 воды. Крахмал у растений и гликоген у животных откладываются в клетках и служат энергетическим резервом.

В крови содержится (0,1-0,12%) глюкозы. От концентрации глюкозы зависит осмотическое давление крови.

Пентоза (рибоза и дезоксирибоза) участвуют в постоении АТФ.

В суточном рационе человека и животных преобладают углеводы. Животные получают крахмал, клетчатку, сахарозу. Хищники получают гликоген с мясом.

Ежедневная потребность человека в сахарах составляет около 500 граммов, но она пополняется в основном за счет крахмала, содержащегося в хлебе, картофеле, макаронных изделиях. При рациональном питании суточная доза сахарозы не должна превышать 75 граммов (12 – 14 стандартных кусочков сахара, включая тот, что расходуется на приготовление пищи).

Кроме того, углеводы играют значительную роль в современной промышленности – технологии и продукты, в которых используются углеводы, не загрязняют окружающей среды, не приносят ей ущерба.

Приложения.

Приложение 1:

 Приложение 2:

История открытия и производства сахара из свёклы.

Родиной сахарного тростника считается Индия (слово «сахар» тоже «родом» из Индии: «сакхара» на языке одного из древних народов полуострова означало сначала просто «песок», а затем – «сахарный песок»). Из Индии это растение было вывезено в Египет и Персию; оттуда через Венецию сахар поступал в европейские страны. Долгое время он стоил очень дорого и считался роскошью.

Культивировалась свекла с давних времен. В древних Ассирии и Вавилоне свекла выращивалась уже за 1,5 тыс. лет до н.э. Окультуренные формы свеклы известны на Ближнем Востоке с VIII-VI вв. до н.э. А в Египте свекла служила главной пищей рабов. Так, из диких форм свеклы, благодаря соответствующей селекции, постепенно были созданы сорта кормовой, столовой и белой свеклы. Из белых сортов столовой свеклы были выведены первые сорта сахарной свеклы.

Появление нового альтернативного тростнику, сахароноса историки науки связывают с эпохальным открытием немецкого ученого-химика, члена Прусской академии наук А. С. Маргграфа (1705-1782). В докладе на заседании Берлинской академии наук в 1747 г. он изложил результаты опытов по получению кристаллического сахара из свеклы.

Полученный сахар, как утверждал Маргграф, по своим вкусовым качествам не уступал тростниковому. Однако Маргграф не видел широких перспектив практического применения своего открытия.

Дальше в исследовании и изучении данного открытия пошел ученик Маргграфа - Ф. К. Ахард (1753-1821). Он с 1784 года активно взялся за усовершенствование, дальнейшую разработку и внедрение в практику открытия своего учителя.

Ахард прекрасно понимал, что одним из важнейших условий успеха нового, весьма перспективного дела, является улучшение сырья-свеклы, т.е. повышение ее сахаристости. Уже в 1799 году труды Ахарда увенчались успехом. Появилась новая ветвь культурной свеклы – сахарная. В 1801 году в своем имении в Кюцерне (Силезия) Ахард построил один из первых сахарных заводов в Европе, на котором освоил получение сахара из свеклы.

Комиссия, направленная Парижской академией наук, провела обследование ахардовского завода и пришла к выводу, что выработка сахара из свеклы нерентабельна.

Лишь единственные на то время английские промышленники, которые являлись монополистами по производству и продаже тростникового сахара, усмотрели в сахарной свекле серьезного конкурента и несколько раз предлагали Ахарду крупные суммы при условии, что он откажется от проведения своих работ и публично заявит бесперспективности производства сахара из свеклы.

studfiles.net

Реферат: Углеводы

- вещества состава СмН2пОп, имеющие первостепенное биохимическоеёзначение, широко распространены в живой природе и играют большую роль в жизни человека.

Название углеводы возникло на основании данных анализа первых известных представителей этой группы соединения. Вещества этой группы состоят из углерода, водорода и кислорода, причем соотношение чисел атомов водорода и кислорода в них такое же, как и в воде, т.е. на каждые 2 атома водорода приходится один атом кислорода. В прошлом столетии их рассматривали как гидраты углерода. Отсюда и возникло русское название углеводы, предложенное в 1844г. К.Шмидтом. Общая формула углеводов, согласно сказанному, СмН2пОп. При вынесении «n» за скобки получается формула См(Н2О)n, которая очень наглядно отражает название «угле - воды».

Изучение углеводов показало, что существуют соединения, которые по всем свойствам нужно отнести в группу углеводов, хотя они имеют состав не точно соответствующий формуле Смh3пОп.Тем не менее старинное название «углеводы», сохранилось до наших дней, хотя наряду с этим названием для обозначения рассматриваемой группы веществ иногда применяют и более новое название - глициды.

Большой класс углеводов разделяют на две группы: простые и сложные.

Простыми углеводами (моносахаридами и мономинозами) называют углеводы, которые не способны гидролизоваться с образованием более простых углеводов, у них число атомов углерода равно числу атомов кислорода СпН2nОп.

Сложными углеводами (полисахаридами или полиозами) называют такие углеводы, которые способны гидролизоваться с образованием простых углеводов и у них число атомов углерода не равно числу атомов кислорода СмН2пОп.

Классификацию углеводов можно изобразить следующей схемой:

МОНОСАХАРИДЫ ДИСАХАРИДЫ С12Н22О11

Тетрозы С4Н8О4сахароза

элитроза лактоза

треоза мальтоза

Пентозы С5Н10О5целобиоза

арабиноза ПОЛИСАХАРИДЫ

ксилоза (С5Н8О4)n

рибоза пентозаны

ГЕКСОЗЫ С6Н12О6(С6Н10О5)n

глюкоза целлюлоза

манноза крахмал

галактоза гликоген

фруктоза

Важнейшими представителями простых углеводов являются глюкоза и фруктоза, они имеют одну молекулярную формулу С6Н12О6.

Глюкозу называют также виноградным сахаром, так как она содержится в большом количестве в виноградном соке. Кроме винограда глюкоза находится и в других сладких плодах и даже в разных частях растений. Распространена глюкоза и в животном мире: 0,1% ее находится в крови. Глюкоза разносится по всему телу и служит источником энергии для организма. Она также входит в состав сахарозы, лактозы, целлюлозы, крахмала.

В растительном мире широко распространена фруктоза или фруктовый (плодовый) сахар. Фруктоза содержится в сладких плодах, меде. Извлекая из цветов сладких плодов соки, пчелы приготавливают мед, который по химическому составу представляет собой в основном смесь глюкозы и фруктозы. Также фруктоза входит в состав сложных сахаров, например тростникового и свекловичного.

Моносахариды - это твердые вещества, способные кристаллизоваться. Они гидроскопичны, очень легко растворимы в воде, легко образуют сиропы, из которых выделить их в кристаллическом виде бывает очень трудно.

Растворы моносахаридов имеют нейтральную на лакмус реакцию и обладают сладковатым вкусом. Сладость моносахаридов различна: фруктоза в 3 раза слаще глюкозы.

В спирте моносахариды растворяются плохо, а в эфире вообще не растворимы.

Моносахариды, важнейшие представители простых углеводов, в природе находятся как в свободном состоянии, так и в виде своих ангидридов - сложных углеводов.

Все сложные углеводы можно рассматривать как ангидриды простых сахаров, получающиеся путем отнятия одной или нескольких молекул воды от двух или более молекул моносахарида.

К сложным углеводам относятся разнообразные по своим свойствам вещества и их делят по этой причине на две подгруппы.

1.Сахароподобные сложные углеводы или олиосахариды. Эти вещества обладают рядом свойств, сближающими их с простыми углеводами. Сахароподобные углеводы легко растворимы в воде, сладки на вкус; эти сахара легко получаются в виде кристаллов.

При гидролизе сахароподобных полисахаридов из каждой молекулы полисахарида образуется небольшое количество молекул простого сахара - обычно 2, 3, или 4 молекулы. Отсюда произошло второе название сахароподобных полисахаридов - олигосахариды (от греческого олигос - немногий).

В зависимости от числа молекул моносахаридов, которые образуются при гидролизе каждой молекулы олигосахаридов, последние делятся на дисахариды, трисахариды и т.д.

Дисахариды - это сложные сахара, каждая молекула которых при гидролизе распадается на 2 молекулы моносахарида.

Способы синтеза дисахаридов известны, но практически их получают из природных источников.

Способы синтеза дисахаридов известны, но практически их получают из природных источников.

Важнейший из дисахаридов - сахароза - очень распространен в природе. Это химическое название обычного сахара, называемого тростниковым или свекловичным.

Индусы еще за 300 лет до нашей эры умели получать тростниковый сахар из тростника. В наше время получают сахарозу из тростника, произрастающего в тропиках (на о.Куба и в других странах Центральной Америки).

В середине 18 века дисахарид был обнаружен и в сахарной свекле, а в середине 19 века был получен в производственных условиях.

В сахарной свекле содержится 12-15% сахарозы, по другим источникам 16-20% (сахарный тростник содержит 14-26% сахарозы).

Сахарную свеклу измельчают и извлекают из нее сахарозу горячей водой в специальных аппаратах-диффузорах. Полученный раствор обрабатывают известью для осаждения примесей, а перешедший частично в раствор избыточный гидролиз кальция осаждают пропусканием диоксида углерода. Далее после отделения осадка раствор упаривают в вакуум-аппаратах, получая мелкокристаллический песок-сырец. После его дополнительной очистки получают рафинированный (очищенный) сахар. В зависимости от условий кристаллизации он выделяется в виде мелких кристаллов или в виде компактных «сахарных голов», которые раскалывают или распиливают на куски. Быстрорастворимый сахар готовят прессованием мелкоизмельченного сахарного песка.

Тростниковый сахар применяется в медицине для изготовления порошков, сиропов, микстур и т.д.

Свекловичный сахар широко применяется в пищевой промышленности, кулинарии, приготовлении вин, пива и т.д.

Из молока получают молочный сахар - лактозу. В молоке лактоза содержится в довольно значительном количестве: в коровьем молоке 4-5,5% лактозы, женское молоко содержит 5,5-8,4% лактозы.

Лактоза отличается от других сахаров отсутствием гидроскопичности - она не отсыревает. Это свойство имеет большое значение: если нужно приготовить с сахаром какой-либо порошок, содержащий легко гидролизующее лекарство, то берут молочный сахар. Если взять тростниковый или свекловичный сахар, то порошок быстро отсыреет и легко гидролизующее лекарственное вещество быстро разложится.

Значение лактозы очень велико, т.к. она является важным питательным веществом, особенно для растущих организмов человека и млекопитающихся животных.

Солодовый сахар - это промежуточный продукт при гидролизе крахмала. По другому его называют еще мальтоза, т.к. солодовый сахар получается из крахмала при действии солода (по лат. солод - maltum).

Солодовый сахар широко распространен как в растительных, так и в животных организмах. Например, он образуется под влиянием ферментов пищеварительного канала, а также при многих технологических процессах бродильной промышленности: винокурения, пивоварении и т.д.

Важнейшие из полисахаридов - это крахмал, гликоген (животный крахмал), целлюлоза (клетчатка). Все эти три высшие полиозы состоят из остатков молекул глюкозы, различным образом соединенных друг с другом. Состав их выражается общей формулой (С6Н12О6)п. Молекулярные массы природных полисахаридов составляют от нескольких тысяч до нескольких миллионов.

Крахмал - это первый видимый продукт фотосинтеза. При фотосинтезе крахмал образуется в растениях и откладывается в корнях, клубнях, семенах. Зерна риса, пшеницы, ржи и других злаков содержат 60-80% крахмала, клубни картофеля - 15-20%. Крахмальные зерна растений различаются по внешнему виду, что хорошо видно, когда их рассматриваешь под микроскопом (рис. 1).

Внешний вид крахмала хорошо всем известен: это белое вещество, состоящее из мельчайших зерен, напоминающих муку, поэтому его второе название «картофельная мука».

Крахмал не растворим в холодной воде, в горячей набухает и постепенно растворяется, образуя вязкий раствор (клейстер).

При быстром нагревании крахмала происходит расщепление гигантской молекулы крахмала на мелкие молекулы полисахаридов, называемых декстринами. Декстрины имеют общую молекулярную формулу с крахмалом (С6Н12О5)х, разница лишь в том, «х» в декстринах меньше «n» в крахмале.

Пищеварительные соки содержат несколько разных ферментов, которые при низкой температуре доводят гидролиз крахмала до глюкозы:

(С6Н10О5) ------- (С6Н10О5)х --------- С12Н22О11--------- С6Н12О6

крахмал ряд декстрин мальтоза глюкоза

Еще быстрее декстринизация идет в присутствии кислоты:

Н2SО4t

(С6Н10О5)n ------------ n Н2О --------------- n С6Н12О6

Ферментативный гидролиз (разложение путем брожения) крахмала имеет промышленное значение в производстве этилового спирта из зерна и картофеля. Процесс начинается с превращением крахмала в глюкозу, которую затем сбраживают. Используя специальные культуры дрожжей и изменяя условия, можно направить брожение и в сторону получения бутилового спирта, ацетона, молочной, лимонной и глюконовой кислот.

Подвергая крахмал гидролизу кислотами, можно получить глюкозу в виде чистого кристаллического препарата или в виде патоки - окрашенного нескристаллизирующего сиропа.

Наибольшее значение крахмал имеет в качестве пищевого продукта: в виде хлеба, картофеля, круп, являясь главным источником в нашем рационе питания. Кроме того, чистый крахмал применяется в пищевой промышленности в производстве кондитерских и кулинарных изделий, колбас. Значительное количество крахмала употребляется для проклеивания тканей, бумаги, картона, производства канцелярского клея.

В аналитической химии крахмал служит индикатором в йодометрическом методе титрования. Для этих случаев лучше применять очищенную амилозу, т.к. ее растворы не загустевают, а образуемая с йодом окраска более интенсивна.

В медицине и фармации крахмал применяется для приготовления присыпок, паст (густых мазей), а также при производстве таблеток.

В животном мире роль «запасного крахмала» играет родственный крахмалу полисахарид - гликоген. Гликоген содержится во всех животных тканях. Особенно много его в печени (до 20%) и в мышцах (4%).

Гликоген представляет собой белый аморфный порошок, хорошо растворимый даже в холодной воде. Молекула животного крахмала построена по типу молекул амилопектина, отличаясь лишь большей ветвистостью (рис. 2 в). Молекулярная масса гликогена исчисляется миллионами.

С йодом растворы гликогена дают окрашивание от винно-красного до красно-бурого в зависимости от происхождения гликогена (вида животного) и других условий.

Гликоген является резервным питательным веществом для организма.

superbotanik.net

Доклад - Углеводы - Химия

Углеводы (сахара) — одна из наиболее важных и распростра-ненныхгрупп природных органических соединений.                                

Они составляют 80% массы сухого вещества растений и около2% сухого вещества животных организмов.

Животные и человек не способны синтезировать сахара иполуча-ют их с различными пищевыми продуктами растительного происхожде-ния.

В растениях углеводы образуются из двуокиси углерода иводы в процессе сложной реакции фотосинтеза, осуществляемой за счет солнеч-нойэнергии с участием зелёного пигмента растений — хлорофилла.

В зависимости от строения углеводы (сахара) делятся на:

6СО2 + 6Н2О — С6Н12О6 + 6О2

 

 1. Моносахариды:

— глюкоза С6Н12О6

— фруктоза С6Н12О6

— рибоза С5Н10О5

 2. Дисахариды:

— сахароза С12Н22О11

 3. Полисахариды:

— крахмал (С6Н10О5)n

— целлюлоза (С6Н10О5)n

                         Моносахариды

                          Глюкоза С6Н12О6

В организме человека глюкоза содержится в мышцах, в кровии в небольших количествах во всех клетках.

Много глюкозы находится во фруктах, ягодах, нектарецветов, осо-бенно много в винограде.

В природе глюкоза образуется в растениях в результатефотосин-теза в присутствии зелёного вещества — хлорофилла, содержащего атоммагния.

6СО2 + 6Н2О — С6Н12О6 + 6О2

  Различают следующие структурные формулыглюкозы:

— с открытой цепью — глюкоза является одновременномногоатом-

  ным спиртом иальдегидом.

— циклическая, которая имеет различное пространственноестрое-                           

   ние:

   а — форма глюкозы — гидроксильные группы (-ОН) при первом и                                                           

   втором атомахуглерода расположены по одну сторону кольца.

   б — форма глюкозы — гидроксидные группы находятся по разные                                    

   стороны кольцамолекулы.

   Эти формынаходятся в растворе в химическом равновесии друг

   с другом(реакция мутаротации глюкозы).

                                            Н        О

        СН2ОН                             С                    СН2ОН

Н               О     Н              Н--С--ОН         Н                О    ОН

       Н                     ==== НО--С--Н   ====      Н

       ОН      Н                      Н--С--ОН                ОН      Н

ОН                    ОН           Н--С--ОН         ОН                    Н

       Н         ОН                         СН2ОН               Н         ОН

         а — глюкоза                                                  б — глюкоза

        Получение:

1. Гидролиз крахмала в присутствии серной кислоты(промышлен-

    ный способполучения):

     (С6Н10О5)n + nН2О — nC6h22O6

               крахмал                                      глюкоза

2. Синтез из формальдегида в присутствии гидроксидакальция

    (предложен А.М. Бутлеровым):

                    О    са(он)2      

        6Н--С      — С6Н12О6

 формальдегид   Н                  глюкоза

          Физическиесвойства:

Глюкоза — бесцветное кристаллическое вещество со сладкимвку-сом, хорошо растворимое в воде.Из водного раствора кристализуется.

        Химические свойства:

Химические свойства обусловлены наличием альдегидной(-СНО) и гидроксильной (-ОН) групп.

1. Свойства, характерные для спиртов:

   — взаимдействиес карбоновыми кислотами с образованием слож-

     ных эфиров(реакция этерификации).

2. Свойства, характерные для альдегидов:

   -взаимодействиес оксидом серебра ( I ) в аммиачном растворе

     (реакция«серебряного зеркала»):

                                         О                                                           О               

СН2ОН--[CH(OH)]4--С   +Аg2O----- Ch3OH--[CH(OH)]4--C    +2Ag

                глюкоза                 Н                      глюконовая кислота           ОН

  -восстановление (гидрирование) — до шестиатомного спирта (сор-

    бита):

                                         О [H]                                                                   

СН2ОН--[CH(OH)]4--С   — СН2ОН--[CH(OH)]4--СН2ОН

        глюкоза                       Н                        сорбит

3.Специфические реакции — брожение:

    — спиртовоеброжение:

    С6Н12О6 — 2С2Н5ОН + 2СО2

       глюкоза            этиловый спирт

    — молочнокислыеброжение:

                                                     О

     С6Н12О6 — 2СН3--СН--С  

                                        ОН        ОН

      глюкоза               молочная кислота 

     - маслянокислоеброжение:

                                            О

     С6Н12О6 — С3Н7--С     +2Н2 +2СО2

                                                 ОН    

      глюкоза              масляная кислота

       Применение:   

— в кондитерской промышленности,

— в медицине,

— в химическом производстве используются продуктыброжения (спирт).           

                                 Фруктоза

                                                                 Н

                                                           Н--С--ОН

      НОСН2      О         ОН                       С=О

                                                         НО--С--Н

                Н         НО            или       Н--С--ОН

            Н                       СН2ОН          Н--С--ОН

                                                           Н--С--ОН                                                                       

                ОН         Н                                Н

Фруктоза является кетоноспиртом, т.к. содержитфункциональные группы спиртов -ОН и кетонов С=О.

Фруктозу получают гидролизом сахарозы иполисахаридов.Хорошо усваивается организмом.

                                  Дисахариды .

Дисахариды — кристаллические углеводы, молекулы которыхпост-роены из соединённых между собой остатков двух молекул моносахари-дов.

Они хорошо кристаллизуются, ратворимые в воде, обладаютслад-ким вкусом.

При гидролизе молекула дисахарида расщепляется на двемолекулы моносахаридов.

       СН2ОН

Н                    О    Н     НОСН2     О       ОН                 Н2SО4, t

       Н                                                                 +Н2О   ----------

         ОН            Н                      Н         НО             

ОН                           ---О---                       СН2ОН

       Н               ОН                   ОН         Н         

                                 сахароза 

                СН2ОН

         Н                     О    Н    НОСН2     О             ОН

                Н

------         ОН            Н           +           Н         НО

         ОН                        ОН         Н                         СН2ОН

               Н               ОН                     ОН         Н

                   глюкоза                                            фруктоза

Простейшими представителями дисахаридов являются обычныйсвекловичный или тростниковый сахар — сахароза, солодовый сахар — мальтоза,молочный сахар — лактоза и целлобиоза.

Все эти дисахариды имеют одну и туже формулу С12Н22О11.

                             Сахароза.

Молекула сахарозы состоит из взаимосвязанных остатковмолекул глюкозы и фруктозы.

Сахароза входит в состав свекольного сока и сахарноготростняка, из которых её получают в промышленности.

Физическиесвойства:

Сахароза (чистая) — бесцветное кристаллическое вещество,слвдко-го вкуса, хорошо растворимое в воде.

Химическиесвойства:

Сахароза подвергается гидролизу — разложению вприсутствии ми-неральной кислоты и повышенной температуре на глюкозу ифруктозу.

С12Н22О11       +   Н2О  -------  С6Н12О6        +     С6Н12О6

  сахароза                                              фруктоза              глюкоза

             Применение:

— в качестве продукта питания,

— в кондитерской промышленности,

— для получения искусственного мёда (гидролиз сахарозы).

                                                                                                

www.ronl.ru

Реферат Углеводы

скачать

Реферат на тему:

План:

    Введение
  • 1 Простые и сложные углеводы
  • 2 Биологическая роль и биосинтез углеводов
  • 3 Важнейшие источники углеводов
  • 4 Список наиболее распространенных углеводов

Введение

Структурная формула лактозы — содержащегося в молоке дисахарида

Углево́ды (сахариды) — общее название обширного класса природных органических соединений. Название происходит от слов «уголь» и «вода». Причиной этого является то, что первые из известных науке углеводов описывались брутто-формулой Cx(h3O)y, формально являясь соединениями углерода и воды.

С точки зрения химии углеводы являются органическими веществами, содержащими неразветвленную цепь из нескольких атомов углерода, карбонильную группу, а также несколько гидроксильных групп.

1. Простые и сложные углеводы

По способности к гидролизу на мономеры углеводы делятся на две группы: простые (моносахариды) и сложные (олигосахариды и полисахариды). Сложные углеводы, в отличие от простых, способны гидролизоваться с образованием простых углеводов, мономеров. Простые углеводы легко растворяются в воде и синтезируются в зелёных растениях.

2. Биологическая роль и биосинтез углеводов

Биологическое значение углеводов:

  1. Углеводы выполняют структурную функцию, то есть участвуют в построении различных клеточных структур (например, клеточных стенок растений).
  2. Углеводы выполняют защитную роль у растений (клеточные стенки, состоящие из клеточных стенок мертвых клеток защитные образования — шипы, колючки и др.).
  3. Углеводы выполняют пластическую функцию — хранятся в виде запаса питательных веществ, а также входят в состав сложных молекул (например, пентозы (рибоза и дезоксирибоза) участвуют в построении АТФ, ДНК и РНК.
  4. Углеводы являются основным энергетическим материалом. При окислении 1 грамма углеводов выделяются 4,1 ккал энергии и 0,4 г воды.
  5. Углеводы участвуют в обеспечении осмотического давления и осморегуляции. Так, в крови содержится 100—110 мг/% глюкозы. От концентрации глюкозы зависит осмотическое давление крови.
  6. Углеводы выполняют рецепторную функцию — многие олигосахариды входят в состав воспринимающей части клеточных рецепторов или молекул-лигандов.

В суточном рационе человека и животных преобладают углеводы. Травоядные получают крахмал, клетчатку, сахарозу. Хищники получают гликоген с мясом.

Организмы животных не способны синтезировать углеводы из неорганических веществ. Они получают их от растений с пищей и используют в качестве главного источника энергии, получаемой в процессе окисления:

Cx(h3O)y + xO2 → xCO2 + yh3O + энергия.

В зеленых листьях растений углеводы образуются в процессе фотосинтеза — уникального биологического процесса превращения в сахара неорганических веществ — оксида углерода (IV) и воды, происходящего при участии хлорофилла за счёт солнечной энергии:

xCO2 + yh3O → Cx(h3O)y + xO2

3. Важнейшие источники углеводов

Главными источниками углеводов из пищи являются: хлеб, картофель, макароны, крупы, сладости. Чистым углеводом является сахар. Мёд, в зависимости от своего происхождения, содержит 70—80 % глюкозы и фруктозы.

Для обозначения количества углеводов в пище используется специальная хлебная единица.

К углеводной группе, кроме того, примыкают и плохо перевариваемые человеческим организмом клетчатка и пектины.

4. Список наиболее распространенных углеводов

Моносахариды

  • глюкоза
  • фруктоза
  • галактоза
  • манноза

Олигосахариды

  • Дисахариды
    • сахароза (обычный сахар, тростниковый или свекловичный)
    • мальтоза
    • изомальтоза
    • лактоза
    • лактулоза

Полисахариды

  • декстрин
  • гликоген
  • крахмал
  • целлюлоза
  • галактоманнаны
  • глюкоманнан

Мукополисахариды

    • гепарин
    • хондроитин-сульфат
    • гиалуроновая кислота
    • гепаран-сульфат
    • дерматан-сульфат
    • кератан-сульфат

wreferat.baza-referat.ru


Смотрите также

 

..:::Новинки:::..

Windows Commander 5.11 Свежая версия.

Новая версия
IrfanView 3.75 (рус)

Обновление текстового редактора TextEd, уже 1.75a

System mechanic 3.7f
Новая версия

Обновление плагинов для WC, смотрим :-)

Весь Winamp
Посетите новый сайт.

WinRaR 3.00
Релиз уже здесь

PowerDesk 4.0 free
Просто - напросто сильный upgrade проводника.

..:::Счетчики:::..

 

     

 

 

.