Реферат на тему: Трансгенные растения и природный мир. Реферат трансгенные растения


Трансгенные растения. Современные биотехнологии - реферат

Похожие главы из других работ:

Водная и прибрежная растительность

2. Водные растения

Водные растения -- многолетние (реже однолетние) растения, необходимое условие жизни которых -- пребывание в пресной (большей частью), солёной или солоноватой воде. Одни из них самая многочисленная группа...

Генетически модифицированные организмы

ГМ - РАСТЕНИЯ В РОССИИ

На российском рынке ГМ-продукция появилась в 90-е годы. В настоящее время в России разрешенными являются 17 линий ГМ-культур (7 линий кукурузы, 3 линии сои, 3 линии картофеля, 2 линии риса, 2 линии свеклы) и 5 видов микроорганизмов...

Генетически модифицированные организмы. Принципы получения, применение

2.2.1 Трансгенные микроорганизмы в медицине

В настоящее время в мире, по данным ВОЗ, насчитывается около 150 млн людей, страдающих диабетом. Приблизительно 20 млн пациентов нуждаются в инсулиновой терапии. Животный инсулин, получаемый от свиней и телят, весьма дорогостоящий, кроме того...

Генетически модифицированные организмы. Принципы получения, применение

2.4 Трансгенные животные в сельском хозяйстве

Основным направлением исследований в области генетической инженерии животных является выведение пород с повышенной продуктивностью, устойчивостью к болезням и т.д. Например...

Клумбы и цветочные растения

2 КЛУМБОВЫЕ РАСТЕНИЯ

...

Лекарственные растения – сорняки полей и огородов

2.5 Растения, содержащие алкалоиды

БЕЛЕНА ЧЕРНАЯ Hyoscyamus niger Сем. Пасленовые - Solanaceae Строение Белена черная - двулетнее травянистое растение с одиночным ветвистым бороздчатым стеблем и стержневым корнем. На первом году образуется только розeтка прикорневых листьев...

Лекарственные растения – сорняки полей и огородов

2.7 Растения, содержащие сапонины

ХВОЩ ПОЛЕВОЙ Equisetum arvense Cем. Хвощевые - Equisetaceae Строение Многолетнее споровое растение высотой до 50 см. Стебли членистые с зубчатыми влагалищами в узлах. Спороносные стебли появляются рано весной...

Наперстянка пурпурная

2. Описание растения

Наперстянка красная--травянистое двулетнее растение семейства норичниковых. В культуре в первый год вегетации образует густую розетку прикорневых листьев, а на второй год--генеративные побеги; растение цветет и плодоносит. Корень мочковатый...

Наперстянка пурпурная

3. Из истории растения

Уже в 1650 году наперстянка пурпуровая была включена в английскую фармакопею. Врачи тех времен считали наперстянку слабительным и рвотным средством на том основании, что она будто "очищает тело сверху донизу"...

Основные проблемы генетики и роль воспроизводства в развитии живогов развитии живого

4.1 Трансгенные организмы

Развитие генной инженерии создало принципиально новую основу для конструирования последовательностей ДНК, нужную исследователям...

Растения-хищники

Насекомоядные растения

Поскольку таких растений довольно много и все они ловят добычу по-разному, ботаники разделили их на три группы. Первая -- активные хищники. Хватают жертву без лишних промедлений, чуть только окажется в пределах досягаемости...

Современные биотехнологии

Трансгенные животные

Наибольший интерес на сегодняшний день вызывает бурное развитие таких наук как биотехнология и генная инженерия, воплотившие в жизнь самые немыслимые проекты ученых...

Транспорт и распределение тяжелых металлов и поливалентных катионов в высших растениях

2. Строение высшего растения

Для лучшего понимания процессов транспорта и распределения ионов металлов по растению, необходимо знать общую схему его строения. У высших растений выделяют подземную часть--корень и надземную--побег, состоящий из стебля и листьев...

Хищные растения

2.1 Растения с ловушками-западнями

Саррацениевые из-за своих относительно крупных размеров и широкого распространения относятся к самым известным насекомоядным растениям. В США произрастают 10 их видов из двух родов. У гелиамфор цветки мелкие в соцветиях...

Цветочное растение – ландыш

2. Характеристика растения

...

bio.bobrodobro.ru

Трансгенные растения и природный мир

Недавно была открыта возможность изменять растения непосредственным переносом генов в их хромосомы. 1953 Уотсон и Крик первыми открыли структуру двойной спирали генетического материала - ДНК. Понадобилось еще десять лет для раскрытия генетического кода и правильного понимания различий между генетикой бактерий, растений и животных. В 1973 Когда впервые овладели возможность создания трансгенных организмов, ученые, обеспокоенные возможными негативными последствиями своих открытий, начали ряд конференций и экспериментов для выяснения, создают разработаны методы какую уникальную угрозу человеку или другим видам. Следствием более чем тридцатилетних дискуссий, экспериментов и наблюдений стало осознание научным обществом, методы сами не создают таких угроз. Если какие-то проблемы будут возникать, то только вследствие свойств самих организмов, а не методов, которыми они были созданы. Многие научные учреждения, включая американскую Национальную академию наук и академии наук многих других стран: Китая, Индии, Бразилии, Мексики, Великобритании, Академии наук развивающихся стран (TWAS), и Папская академия наук - все пришли к выводу, что применение этих методов не несет угрозы здоровью людей или жизненным процессам на Земле и что нет никаких особых черт трансгенных растений или животных, которые создают особую угрозу. Хотя некоторые продукты питания не являются безопасными для потребления, в трансгенных продуктах питания нет ничего особенного, что вызвало бы обеспокоенность. Несмотря на то, что сотни миллионов людей потребляли их более десяти, не было зарегистрировано ни одного случая проблем со здоровьем. В общем трансгенные растения испытывают гораздо тщательнее, чем те, что получили в результате традиционной селекции, и вероятность создания рискованных продуктов одинакова. Поскольку методы создания трансгенных растений не представляют особой угрозы, целесообразно проанализировать, какие преимущества имеют ГМР и какие экологические риски могут быть связаны с ними в случае использования в сельском хозяйстве. Большим преимуществом является существенное уменьшение использования пестицидов. Уже в 2000г., Благодаря тому, что сеяли ГМ-сою, масляный рапс (канола), хлопчатник и кукурузу, использование пестицидов уменьшилось на 22300000 кг, и в последующие годы сокращение продолжалось. Во всем мире зарегистрировано почти 500 тыс. Случаев отравления пестицидами, из которых 5 тыс. Смертельных. Только в США ежегодно регистрируют около 110 тыс. Случаев отравления пестицидами и 10 тыс. Случаев рака, вызванного пестицидами. Поэтому понятно, что уже достигнуты сокращения их использования является важным положительным вкладом в здоровье экосистем, где эти культуры выращивают. По иронии, учитывая широкий сопротивление выращиванию трансгенных растений в Европе, выгоды для окружающей среды и здоровья людей от такой технологии здесь были бы даже больше, чем в США. В этой связи подсчитано, что, если бы половина кукурузы, масличного рапса, сахарной свеклы и хлопчатника, выращиваемых в Европе, были генетически модифицированными для сопротивления вредителям, потребность в пестицидах немедленно сократилось бы на 14500000 кг (4500000 кг в действующих веществах). Сокращение на 7500000 га культур, обработанных пестицидами, в результате использования ГМ-культур сэкономило бы около 20500000 л дизельного топлива и предотвратило бы выброса в атмосферу 73 тыс. Т двуокиси углерода. Вместе с другими методами уменьшения внесения удобрений и пестицидов (например, интегрированная защита растений) использование трансгенных культур может гарантировать большие выгоды для нашего стабильного продуктивного сельского хозяйства. Выдвигался аргумент, что использование трансгенных организмов уменьшило бы общую генетическую изменчивость соответствующих растений. На самом деле, именно массовое индустриальное сельское хозяйство приводит к такому сокращению. Трансгенная технология является нейтральной до масштабов производства, и отдельные линии конкретных культур (в США выращивают более 800 линий сои) можно модифицировать теми же генами для достижения желаемых характеристик. Остальные экологических последствий выращивания трансгенных культур, которые мы рассмотрим, будет касаться результатов их гибридизации с дикими родственниками и возможностей самих трансгенных культур или таких гибридов становиться сорняками на полях или распространяться в природные среды. Во-первых, важно помнить, что родственные виды растений постоянно гибридизуються между собой, и наличие трансгенов у одного из родителей не оказывает положительного или отрицательного влияния на такую ​​гибридизацию. Во-вторых, понятно, что распространение трансгенов не произойдет без тесно родственных видов. В этой связи запрет на выращивание трансгенных кукурузы и сои в Европе не имеет объективного основания, как и нынешние судебные иски по выращиванию люцерны в США: в названных случаях нет диких видов, с которыми эти культуры могли бы гибридизуватися. А как рассматривать ситуацию, в которой дикие родственники растут вблизи сельхозкультур, связанных с ними или выращенных из них? В таком случае трансгены, безусловно, могут переноситься в диких популяций, если они способны скрещиваться с ними. Например, трансгенный масличный рапс или сахарная свекла, которые выращивают в Европе, трансгенная кукуруза в Мексике или трансгенный подсолнечник в США, безусловно, имеют возможность переносить гены в диких популяций. Какими в этом случае могут быть последствия? Результаты будут зависеть не от самых процесса или от того, что здесь имеются трансгены, а от свойств отдельных гибридов. Например, если теосинты - дикие родственники, из которых было выведено кукурузу в Мексике, - получат гены устойчивости к некоторым насекомым-вредителям, они смогут лучше выживать, чем другие. Если они получат гены устойчивости к гербицидам, эти гены могут сохраняться в популяциях, если гербицид и дальше использовать на популяциях теосинтив; Могут ли какие генетически измененные растения стать сорняками непосредственно или в результате гибридизации? Опять же, в самых характеристиках ГМ-процессов нет ничего, что создавало бы угрозу. В обоих случаях с канолы (масличный рапс) и сахарной свеклой в Европе была создана линии, устойчивые к широко используемым гербицидов, но такие линии регулярно создаются именно там, где используют эти гербициды. Другой фактор, который вызывает обеспокоенность по выращиванию генетически модифицированных растений в США, должно касаться стандартов МСХ США, установленных для органических культур. Эти стандарты запрещают использование продукции от трансгенных растений в продуктах, сертифицированных как органические, из-за чего фермеры, которые производят органическую продукцию, обеспокоены возможностью гибридизации их растений с трансгенными культурами, которые могут выращивать неподалеку. Сегодня для модификации выращиваемых культур широко используют две генетические черты. Одна - создание устойчивых к гербицидам культур, таких как соя и канола Раундап-реди. Такие культуры можно обрабатывать гербицидами, когда они уже высеяны: уничтожаются сорняки и экономятся значительные средства и усилия. Если гербициды имеют хорошие свойства и быстро разлагаются в окружающей среде, такие системы благотворно влиять на окружающую среду. На подходе много других линий, и уже осуществляется "упаковки" многих генов для получения многоцелевой устойчивости к различным экологических стрессов. Устойчивость к засухе, засолению, возможность решения различных проблем окружающей среды - все это черты, которые обеспечит генная технология будущего. Важная культура, в которой Bt-гены оказались эффективными, - хлопчатник, потому что на нем пестицидов используют всего. В Индии, Китае и США - крупнейших в мире производителях хлопка - быстро растет доля Bt-хлопчатника, урожайность которого намного превышает урожайность нетрансгенного. Во всем мире примерно треть всего выращиваемого хлопка имеет свойства Bt. Оценки роли трансгенного хлопчатника в повышении производительности культур везде одинаково положительными, и одновременно организации вроде "Гринпис", которые могут получать финансирование только благодаря такому сопротивления, все еще борются с быстрым распространением этих ценных культур, помогают преодолевать бедность во всем мире. Особенно спорным было использование трансгенных технологий на рисе. Выращиваемый рис практически является самозапилюваним, поэтому его гены не так свободно могут переноситься в окружающую среду. Вместе с тем, рис рассматривают как возможный источник использования фармацевтами его трансгенов, и, понятно, что люди обеспокоены, что такие растения свободно растут в окружающей среде. Эти растения нуждаются в тщательных исследований и регулирования, но они непременно получат большое распространение в будущем. Во всем мире стал популярным нулевой обработку благодаря его способности уменьшать эрозию почвы. Успех этой программы во многом благодаря генетически модифицированной сои, обрабатываемой в США Раундапом. На расстоянии 21 км от известных генетически модифицированных растений в полевицы (Agrostis stolonifera) было найдено гены, связанные с устойчивостью к гербициду Раундап. Это означает, что пыльца или семена ГМР перенеслось на такое расстояние. Безусловно стало невозможным бороться с этим сорняком гербицидом, к которому она устойчива. В этом случае можно использовать другие гербициды.

allr.genskov.ru

Курсовая работа - Генно-модифицированные организмы Классификация трансгенных растений по признакам

Генно-модифицированные организмы. Классификация трансгенных растений по признакам

Важнейшей составной частью современной биотехнологии является генетическая, или генная инженерия.

Cуществует несколько определений, раскрывающих суть генной инженерии. По мнению академика А.А. Баева, это «конструирование invitroфункционально активных генетических структур (рекомбинантных гибридных ДНК)», или «создание искусственных генетических программ».

В Интернете дается другое определение: «Генная инженерия — это управление генетической основой организмов посредством внедрения или удаления специфических генов, с использованием техники современной молекулярной биологии».

Методы генетической инженерии позволяют конструировать фрагменты рекомбинантных молекул ДНК того или иного организма, которые при внедрении в генетический аппарат придавали бы им свойства, полезные для человека.

Современная биотехнология базируется на принципах традиционной селекции, заключающихся в приобретении организмами необходимых качественно новых признаков. Однако в отличие от обычной селекции, которая в течение длительного времени испытывает множество комбинаций генов, биотехнология позволяет ввести в генетический аппарат объекта один ген или группу генов, отвечающих за проявление желаемого признака, что намного ускоряет достижение требуемого результата (рис. 1).

/>Генно-инженерно-модифицированный(генно-модифицированный) организм — организм или несколько организмов, любое неклеточное, одноклеточное или многоклеточное образование, способные к воспроизводству или передаче наследственного генетического материала, отличные от природных организмов, полученные применением методов генной инженерии и содержащие генно-инженерный материал, в том числе гены, их фрагменты

/> или комбинации генов.

Рис. 1. Отличительные особенности генной инженерии растений

Для создания генно-модифицированных организмов разработаны методики, позволяющие вырезать из молекул ДНК необходимые фрагменты, модифицировать их соответствующим образом, реконструировать в одно целое и клонировать — размножать в большом количестве копий.

Организмы, подвергшиеся генетической трансформации, называют трансгенными.

Трансгенные организмы — животные, растения, микроорганизмы, вирусы, генетическая программа которых изменена с применением методов генной инженерии.

Основные задачи генной инженерии в создании трансгенных растений в современных условиях развития сельского хозяйства и общества довольно многообразны (табл. 1).

Таблица 1

/> Основные задачи генной инженерии растений

На практике ситуация выглядит следующим образом: среди промышленно выращиваемых трансгенных растений доля устойчивых к гербицидам составляет 71%, устойчивых к вредителям — 22%, устойчивых одновременно к гербицидам и вредителям — 7%, устойчивых к вирусным, 6актериальным и грибным болезням — менее 19 (рис. 2).

/>

Рис. 2. Структура промышленно выращиваемых трансгенных растений,

различающихся по устойчивости

Из рисунка видно, что среди главных признаков, контролируемых перенесенными генами, на первом месте стоит устойчивость к гербицидам.

Среди генов, определяющих устойчивость к гербицидам, уже клонированы гены устойчивости к таким гербицидам, как глифосат (Раундап), фосфинотрицин (Биалафос), глифосинатаммония (Баста), сульфонилмочевинным и имидозолиноновым препаратам. С использованием этих генов уже получены трансгенные соя, кукуруза, хлопчатник и т.д. В России также проходят испытания трансгенные культуры, устойчивые к гербицидам. В Центре «Биоинженерия» создается сорт картофеля, устойчивый к Басте, проходящий в настояшее время полевые испытания.

Другой распространенной группой являются трансгенные растения, устойчивые к насекомым-вредителям. Так, относительно давно известна бактерия Bacillus thuringiensis, продуцирующая белок дельта-эндотоксин, который очень токсичен для многих видов насекомых и безопасен для млекопитающих. Установлено, что встраивание гена этого белка в геном растений дает возможность получить трансгенные растения, не повреждаемые насекомыми.

Специалисты по генной инженерии в результате длительной работы подобрали необходимые штаммы Bacillus thuringiensis и создали генно-инженерные конструкции для конкретных групп насекомых.

Так, для получения трансгенного картофеля, устойчивого к колорадскому жуку, компании «Моnsanto» понадобилось 16 лет экспериментальной работы и 100 млн. долл. инвестиций.

В настоящее время компаниями «Моnsanto», «АgrEvо», «Мусоgеn» созданы другие трансгенные формы, устойчивые к насекомым, так называемые Bt-растения — соя, хлопчатник, кукуруза.

Специалисты и ученые полагают, что применение Bt –растений будет иметь не только хорошее коммерческое будущее, но и экологический эффект. Известно, что только 5% внесенного инсектицида срабатывает по назначению, остальные 95% попадают в окружающую среду, уничтожая многие виды насекомых, в том числе и полезных. Сокращение же объемов применения инсектицидов приведет к восстановлению популяций многих полезных насекомых, что, несомненно, положительно скажется на многих видах растительного и животного мира.

К третьей группе по распространенности относятся трансгенные растения, одновременно устойчивые к гербицидам и насекомым.

Площади возделывания этих культур увеличились с 0,1% в 1997 г. до 1% в 1998 г. Примерами этой группы являются кукуруза и хлопчатник, устойчивые к Раундапу и одновременно устойчивые к кукурузному мотыльку и хлопковой совке соответственно.

Менее распространенной является пока группа трансгенных культур, устойчивых к бактериальным, вирусным и грибным болезням.

Одним из первых достижений в защите растений методами генной инженерии явилось создание трансгенных растений, устойчивых к вирусам, путем внесения генов белков вирусной оболочки.

Активный синтез такого белка, обладающего большим сродством с РНК вируса, не дает ей возможности активно размножаться в клетке хозяина, что и обусловливает устойчивость такого трансгенного растения к вирусам. В 1986 г. подобная устойчивость была получена для табака.

Введение гена оболочки вируса табачной мозаики позволило создать устойчивый к нему трансгенный табак. Создаются также трансгенные формы огурцов, арбуза, цукини, устойчивых к различным вирусам и проходящих в настоящее время полевые испытания. К достижениям отечественной науки следует отнести создание картофеля, устойчивого к вирусу Y, который в настоящий момент находится на стадии испытаний.

Активно ведутся исследования по клонированию генов для данных растений от грибных болезней. Так, создан трансгенный табак, несущий ген хитиназы фасоли. Такая культура практически не поражается грибными болезнями даже в почве, зараженной грибным патогеном Rhizoctoniasolani. Трансгенные растения табака с геном стилбенсинтазы из винограда обладают повышенной устойчивостью к Воtгynisсinегеа. Получен также трансгенный картофель, несущий ген стилбенсинтазы, устойчивый к фитофторозу и фузариозу.

Компанией «Моnsanto» разработан способ получения трансгенных растений, устойчивых как к бактериальной, так и грибной инфекции. В картофель вводится грибной ген, кодирующий синтез фермента, окисляющего глюкозу с образованием пероксида водорода. Полученные растения устойчивы и к мягкой гнили, вызываемой бактериями рода rwinia, и к фитофторе.

Относительно недавно открыты короткие пептиды, богатые остатками цистеина, обладающие антимикробными свойствами. Они названы дефензинами.

В настоящее время создаются трансгенные растения томатов, картофеля, рапса, моркови, яблони и груши с геном rsдефензинов редьки. Аналогичная работа проводится по созданию трансгенной капусты и малины

Довольно перспективными являются исследования по созданию трансгенных растений, устойчивых к абиотическим факторам. Так расширяются работы по получению трансгенных культур, устойчивых к холоду. Например, при включении в растительный геном регулирующего экспрессию других генов, включающихся при адаптации растения к холоду, получены трансгенные растения, которые выдерживали в течение 2 сут отрицательные температуры, губительные для обычных растений.

Большое внимание уделяется созданию трансгенных растений для пищевой и фармацевтической промышленности. Одним из лидеров этого направления является компания «Са1gеnе». В 1995 г. эта компания получила разрешение в США на выращивание и коммерческое использование трансгенных растений рапса с измененным жирнонокислотным составом.

Проводятся также исследования по созданию трансгенных растений с заданным аминокислотным составом. Так, в настоящее время клонированы гены запасных белков сои, гороха, фасоли, кукурузы, картофеля.

Перспективным направлением является создание трансгенных растений, несущих гены, кодирующие синтез вакцин против различных болезней. Так, при потреблении сырых плодов и овощей, несущих такие гены, происходит вакцинация организма. Это значительно расширяет области применения таких трансгенных растений. Например, при введении гена нетоксичной субъединицы энтеротоксина холеры в растения картофеля и скармливании сырых клубней подопытным мышам в их организме образовывались антитела холеры. Очевидно, что такие съедобные вакцины могут стать эффективным простым и недорогим методом защиты людей и обеспечения безопасности питания в целом.

Очень интересным направлением использования трансгенных растений является их применение для фиторемедиации — очистки почв, вод и т.п. от чужеродных загрязнителей внешней среды, в частности тяжелых металлов и радионуклидов. Модифицированную конструкцию бактериального гена, кодирующего белок, который переносит и детоксицирует ртуть, использовали для трансформации табака, рапса, тополя. .

Таким образом, направления исследований генной инженерии очень разнообразны и обширны, а некоторые из них фантастичны и в то же время весьма перспективны по достижимости результатов.

Технология производства кормовых витаминных препаратов (В12; В6)

Витамин В12 представлен группой биологически активных веществ, содержащих в своем составе трехвалентный кобальт, аминные и цианистые группировки, которые могут быть замещены другими радикалами — ОН, С1, Вг. Этот витамин стимулирует образование крови в костном мозге, улучшает усвоение белков, участвует в синтезе аминокислот и азотистых оснований. Витамин В12 не содержится в продуктах растительного происхождения и его единственным источником для сельскохозяйственных животных являются микроорганизмы.

--PAGE_BREAK--

Для промышленного получения кормовых препаратов витамина В12 выращивается специально подобранный биоценоз микроорганизмов, осуществляющих термофильное метановое брожение, в который входят целлюлозоразлагающие, аммонифицирующие, углеводображивающие, сульфитвосстанав-ливающие и метанообразующие бактерии. На первом этапе ферментации этих микроорганизмов (в течение 10—12 дней) наблюдается бурное развитие тсрмофильных аммонифицирующих и углеводсбраживающих бактерий, которое происходит в слабокислой среде (рН 5,0—7,0).

Другие группы бактерии данного биоценоза достигают интенсивного развития при переходе брожения в щелочную фазу (рН 7,0—8,5). Преобладающими в этот период являются метанообразующие бактерии, которые синтезируют в 4—5 раз больше витамина В12, чем другие микроорганизмы биоценоза. Главные субстраты для развития метанообразующих бактерий — жирные кислоты и низшие спирты, поэтому их добавление в питательную среду значительно увеличивает выход витамина.

Для приготовления питательной среды обычно используют барду ацетоно-бутилового производства, которая декантацией очищается от твердых примесей, в нее добавляется хлорид кобальта (4 г/м3 и 0,5 % метанола).

В процессе промышленного культивирования бактерий вначале выращивается посевной материал (15—20 дней) в аппаратах вместимостью 250 м3. Затем посевной материал подают в железобетонные ферментеры вместимостью 4200 м3, в которых происходит метановое брожение. Свежую барду подают в нижнюю часть ферментера в количестве 25—30% от его объема за сутки.

Отбор метановой бражки, содержащей витамин В12, производится в верхней части ферментера. В течение рабочего цикла в ферментере строго контролируют рН среды, концентрацию летучих жирных кислот, содержание аммонийного азота, поддерживают оптимальную температуру (55—57° С). В результате брожения образуется газовая смесь, состоящая главным образом из метана (65%) и диоксида углерода (30%), которая может быть использована как источник тепла.

Готовая культуральная жидкость, образующаяся как продукт ферментации, обычно содержит 2—2,5% сухих веществ, и 1,1 —1,7 мг/л витамина В12. Для предотвращения разрушения витамина в процессе сушки культуральную жидкость подкисляют соляной или фосфорной кислотой до рН 6,3—6,5 и в нее добавляют 0,2—0,25% сульфита натрия.

Подготовленная таким образом культуральная жидкость дегазируется, упаривается на вакуум-выпарной установке, полученный концентрат высушивают в распылительной сушилке до влажности 5—10%. В целях улучшения физических свойств сухой продукт смешивают с отрубями или кукурузной мукой, расфасовывают по 25—30 кг в полиэтиленовые пакеты и упаковывают в крафт-мешки. Содержание витамина В12 в готовом кормовом препарате составляет 2,5 мг%, срок хранения сухого препарата — 1 год. Препарат имеет коммерческое название— КМБ-12 (концентратмикробный витамин). Кроме витамина В12 КМБ-12 содержит другие витамины группы В, незаменимые аминокислоты.

Витамин B6 – Пиридоксин (Pyridoxinum)

Содержание в продуктах

Надежными источниками витамина В6 являются зерно, отходы мукомольного производства, жмыховая мука и сухие дрожжи. Относительно небогаты витамином В6 продукты животного происхождения и маниоковая мука. Входящий в состав природных продуктов витамин В6 хорошо усваивается животными.

Физиологическое значение

Витамин В6 играет центральную роль в метаболизме белков в форме пиридоксаль-5-фосфата (коэнзима). Кроме того, витамин принимает участие в метаболизме жиров и углеводов, расщеплении триптофана и метаболизме различных минеральных веществ.

Таблица 2

Характеристика продукта Lutavit®B6

Действующее вещество

Витамин В6 (пиридоксин-гидрохлорид)

Химическая формула

С6h22NO3Cl

Молекулярная масса

205.64 г/моль

Номер продукта

FAS 8066606/1-40

Технические характеристики

Содержание

мин. 99% пиродиксин-гидрохлорида (по методике Европейской Фармакопеи II, расчёт по сухому веществу)

Потеря массы при высушивании

макс. 0, 5 % (4 часа, при 105º С )

Описание внешнего вида

Кристаллический порошок белого или беловатого цвета, без запаха

Размеры частиц

97% < 0, 2 мм

pH

2.4-3.0 (5% водный раствор)

Объёмная плотность

Приблизительно 0.5 г/см3

Растворимость

Растворимв воде без остатка (20г/100мл), слабо растворим в спирте,

растворим в эфире, хлороформе и ацетоне

Заболевания, связанные с дефицитом витамина В6

Недостаточное поступление с кормом витамина В6 вызывает задержку роста и карликовость животных, а также воспалительные заболевания кожных покровов, изменения в периферической и центральной нервной системе, снижение усвоения белка, поражение печени и сердца, снижение вылупляемости (в инкубаторе).

Антагонисты

Ингибитор содержится в льняном семени.

Потребность

Потребность в витамине В6 возрастает при увеличении содержания в корме белка и энергии. Молодой организм особенно нуждается в больших количествах витамина В6, вследствие повышенного усвоения белка в период роста. Потребность составляет 3-6 мг на килограмм массы комбикорма. Потребность в витамине В6 также возрастает в период беременности и во время получения животными сульфонамидов или некоторых антибиотиков.

Применяют при воспалительных процессах с образованием гистамина, при гепатитах, дерматозах и экземах, для улучшения регенерации эпителия глаза, слизистой оболочки желудка и кишечника, для стимуляции кроветворения

Стабильность витамина

Продукт Lutavit® B6 показывает хорошую сохранность витамина в составе витаминных смесей и кормов. В кислых, водных растворах наблюдаются лишь незначительные потери витамина. Однако в нейтральных и щелочных растворах происходит быстрый распад витамина под действием света. Величина рН растворов, которые предполагается подвергать автоклавированию, не должна превышать 5.

Примечание

При нормальных условиях Lutavit® В6 не является токсичным. Однако следует избегать тесного контакта продукта с кожей и дыхательными путями. При использовании продукта Lutavit® B6 необходимо принимать во внимание срок годности, указанный в сопроводительных документах.

Выпускают в порошке, таблетках по 0,002; 0,005 и 0,01 г и в растворе в ампулах в 1 и 5%-ной концентрации по 1 мл.

/> Таблица 3

Литература

1. Донченко Л. В., Надыкта В. Д. Безопасность пищевой продукции. — М.: Пищепромиздат, 2001. – 528 с.

2. Шевелуха В.С., Калашникова Е.А., Дегтярёв С.В. Сельско-хозяйственная биотехнология. — М.: Высшая школа, 1998. — 416 с.

www.ronl.ru


Смотрите также