wreferat.baza-referat.ru

Реферат Термометр сопротивления

www.wreferat.baza-referat.ru

Термометры сопротивления

Содержание

Общие сведения. 3

Свойства термометров сопротивления трех наиболее распространенных типов. 4

Особенности конструкции платиновых чувствительных элементов (ЧЭ). 4

Классы точности (допуска). 4

Стабильность. 4

Схемы подключения и измерительный ток. 4

Сопротивление изоляции. 4

Тепловая инерционность датчика. 4

Тепловой контакт с объектом.. 4

Сборка термометра сопротивления. 4

Длина термометра сопротивления. 4

Источники неопределенности измерения температуры на объекте. 4

Вывод. 4

Общие сведения

Термометр сопротивления ТС это термометр, как правило, в металлическом или керамическом корпусе, чувствительный элемент которого представляет собой резистор, выполненный из металлической проволоки или пленки и имеющий известную зависимость электрического сопротивления от температуры. Самый популярный тип термометра – платиновый термометр сопротивления, это объясняется высоким температурным коэффициентом платины, ее устойчивостью к окислению и хорошей технологичностью. В качестве рабочих средств измерений применяются также медные и никелевые термометры. Новый стандарт на технические требования к рабочим термометрам сопротивления: ГОСТ Р 8.625-2006 (Термометры сопротивления из платины, меди и никеля. Общие технические требования и методы испытаний). Ознакомиться со стандартом можно в разделе Российские стандарты. В стандарте приведены диапазоны, классы допуска ТС, таблицы НСХ и стандартные зависимости сопротивление-температура. Эти данные приведены также на нашем сайте в разделе справочник. Главное преимущество термометров сопротивления – широкий диапазон температур, высокая стабильность, близость характеристики к линейной зависимости, высокая взаимозаменяемость. Пленочные платиновые термометры сопротивления отличаются повышенной вибропрочностью, но меньшим диапазоном температур. Изготавливаются также герметичные чувствительные элементы термометров сопротивления различных размеров, что позволяет их использовать в местах, где важно устанавливать миниатюрный датчик температуры. Недостаток термометров и чувствительных элементов сопротивления – необходимость использования для точных измерений трех- или четырех- проводной схемы включения, т.к. при подключении датчика с помощью двух проводов, их сопротивление включается измеренное сопротивление термометра. Важнейшей технологической проблемой для ТС проволочного типа является герметизация корпуса ЧЭ специальной глазурью, состав глазури должен быть подобран так, чтобы при колебаниях температуры в пределах рабочего диапазона не происходило разрушение герметизирующего слоя.

Промышленные платиновые термометры сопротивления в большинстве случаев используются со стандартной зависимостью сопротивление-температура (НСХ), что обуславливает допуск не лучше 0,1 °С (класс АА при 0 °С). Однако высокая стабильность некоторых термометров позволяет делать их индивидуальную градуировку и определять характерную именно для них зависимость сопротивление-температура. Такая градуировка может повысить точность до нескольких сотых градуса. Следует отметить, что использование функции МТШ-90 (что возможно сейчас для многих цифровых термометров) может точнее описать индивидуальную зависимость ТС, использование квадратичного уравнения Каллендара Ван Дьюзена ограничивает точность аппроксимации до 0,01-0,03 °С в зависимости от диапазона температур.

Эталонные платиновые термометры (ПТС, ТСПН) первого разряда и термометры-рабочие эталоны по точности превосходят промышленные термометры сопротивления (расширенная неопределенность ПТС 1 разряда при 0 °С равна 0,002 °С), но они требуют очень осторожного обращения, не выносят тряски и резких тепловых. Кроме того, их стоимость в десятки раз выше стоимости рабочих термометров сопротивления. Стандарт на образцовые ПТС первого и второго разряда: ГОСТ Р 51233-98 «Термометры сопротивления платиновые эталонные 1 и 2 разрядов. Общие технические требования» (см. раздел Российские стандарты). Подробная информация о свойствах эталонных платиновых термометров сопротивления и методах работы с ними приводится в разделе "Платиновый термометр сопротивления - основной интерполяционный прибор МТШ-90"

Для точного изменения криогенных температур с успехом применяются железо-родиевые термометры сопротивления. Их действие основано, на эффекте аномальной температурной зависимости сплава 0,5 ат.% железа к родию при низких температурах с положительным коэффициентом сопротивления. Опыт работы с термометрами показал, что их стабильность может достигать 0,15 мК/год при 20 К. Зависимость сопротивление - температура в диапазоне 0,5-27 К хорошо аппроксимируется полиномами не высоких степеней (8 -11 степень). Однако, сложности возникают при попытке аппроксимировать диапазоны, включающие 28 К, т.к. в этой точке «низкотемпературное» сопротивление, обусловленное примесями, уступает место «высокотемпературному» сопротивлению, обусловленному рассеянием на фононах.

Свойства термометров сопротивления трех наиболее распространенных типов.

 

Начальная

Windows Commander

Far
WinNavigator
Frigate
Norton Commander
WinNC
Dos Navigator
Servant Salamander
Turbo Browser

Winamp, Skins, Plugins
Необходимые Утилиты
Текстовые редакторы
Юмор

File managers and best utilites

Термометры сопротивления. Реферат термометр сопротивления


Реферат Термометр сопротивления

Опубликовать скачать

Реферат на тему:

План:

    Введение
  • 1 Металлический термометр сопротивления
  • 2 Термисторы
  • 3 Зависимость сопротивления от температуры
  • 4 Преимущества термометров сопротивления
  • 5 Недостатки термометров сопротивления
  • 6 Таблица сопротивлений некоторых термометров сопротивления
  • 7 Функция получения значения температуры (C++)
  • Примечания

Введение

УГО

Термо́метр сопротивле́ния — датчик для измерения температуры, сопротивление чувствительного элемента которого зависит от температуры. Может быть выполнен из металлического или полупроводникового материала. В последнем случае называется термистором.

1. Металлический термометр сопротивления

Представляет собой резистор, выполненный из металлической проволоки или плёнки и имеющий известную зависимость электрического сопротивления от температуры. Наиболее распространённый тип термометров сопротивления — платиновые термометры. Это объясняется тем, что платина имеет высокий температурный коэффициент сопротивления и высокую стойкость к окислению. Эталонные термометры изготавливаются из платины высокой чистоты с температурным коэффициентом не менее 0,003925. В качестве рабочих средств измерений применяются также медные и никелевые термометры. Действующий стандарт на технические требования к рабочим термометрам сопротивления: ГОСТ Р 8.625-2006 (Термометры сопротивления из платины, меди и никеля. Общие технические требования и методы испытаний). В стандарте приведены диапазоны, классы допуска, таблицы НСХ и стандартные зависимости сопротивление-температура. Стандарт соответствует международному стандарту МЭК 60751 (2008). В стандарте впервые отказались от нормирования конкретных номинальных сопротивлений. Сопротивление изготовленного термометра может быть любым. Промышленные платиновые термометры сопротивления в большинстве случаев используются со стандартной зависимостью сопротивление-температура (НСХ), что обуславливает погрешность не лучше 0,1 °C (класс АА при 0 °C). Термометры сопротивления на основе напыленной на подложку плёнки отличаются повышенной вибропрочностью, но меньшим диапазоном температур. Максимальный диапазон, в котором установлены классы допуска платиновых термометров для проволочных чувствительных элементов составляет 660 °C (класс С), для плёночных 600 °C (класс С).

2. Термисторы

Термистор — полупроводниковый резистор, электрическое сопротивление которого зависит от температуры. Для термистора характерны большой температурный коэффициент сопротивления , простота устройства, способность работать в различных климатических условиях при значительных механических нагрузках, стабильность характеристик во времени.

3. Зависимость сопротивления от температуры

Для промышленных платиновых термометров сопротивления используется уравнение Каллендара-Ван Дьюзена (en), с известными коэффициентами, которые установлены экспериментально и нормированы в международном стандарте МЭК 60751:

R_T = R_0 \left[ 1 + AT + BT^2 + CT^3 (T-100) \right] \; (-200\;{}^{\circ}\mathrm{C} < T < 0\;{}^{\circ}\mathrm{C}), R_T = R_0 \left[ 1 + AT + BT^2 \right] \; (0\;{}^{\circ}\mathrm{C} \leq T < 850\;{}^{\circ}\mathrm{C}).

Здесь, RT сопротивление при T °C, R0 сопротивление при 0 °C, и константы (для платинового сопротивления) -

A = 3.9083 \times 10^{-3} \; {}^{\circ}\mathrm{C}^{-1} B = -5.775 \times 10^{-7} \; {}^{\circ}\mathrm{C}^{-2} C = -4.183 \times 10^{-12} \; {}^{\circ}\mathrm{C}^{-4}.

Поскольку коэффициенты B и C относительно малы, сопротивление растёт почти линейно по мере роста температуры.

Для термометров повышенной точности выполняется градуировка в ряде температурных точек и определяются индивидуальные коэффициенты вышеприведенной зависимости.[1]

Существуют полупроводниковые термометры сопротивления — при увеличении температуры, сопротивление этих датчиков уменьшается. Применяются обычно на транспорте. Для подключения используют обычно 2-х проводную схему подключения.

Существует 3 схемы включения датчика в измерительную цепь:

Two Wire Resistance Thermometer

В схеме подключения простейшего термометра сопротивления используется два провода. Такая схема используется там, где не требуется высокой точности, так как сопротивление выводов включается в измеренное сопротивление и приводит к появлению дополнительной погрешности. Такая схема не применяется для термометров класса А и АА.

  • 3-х проводная обеспечивает значительно более точные измерения, за счёт того, что появляется возможность измерить отдельно сопротивление подводящих проводов и вычесть его из суммарного измеренного сопротивления.
  • 4-х проводная — наиболее точная схема, обеспечивает полное исключение влияния подводящих проводов. Недостаток — увеличение объёма используемого материала, стоимости и габаритов сборки.

В промышленности наиболее распространенной является трёхпроводная схема. Для точных, эталонных измерений используется только четырёхпроводная схема.

4. Преимущества термометров сопротивления

  • Высокая точность измерений (обычно лучше ±1 °C), может доходить до 0,01 °C.
  • Возможноcть исключения влияния изменения сопротивления линий связи на результат измерения при использовании 3-х или 4-х проводной схемы измерений
  • Практически линейная характеристика

5. Недостатки термометров сопротивления

  • Малый диапазон измерений (по сравнению с термопарами)
  • Более дорогой (по сравнению с термопарами)), если это платиновый термометр сопротивления типа ТСП
  • Требуется дополнительный источник питания для определения температуры

6. Таблица сопротивлений некоторых термометров сопротивления

Сопротивление в Омах (Ω)
Температурав °C Pt100 Pt1000 нем. PTC нем. NTC NTC NTC NTC NTC
Typ: 404 Typ: 501 Typ: 201 Typ: 101 Typ: 102 Typ: 103 Typ: 104 Typ: 105
−50 80,31 803,1 1032
−45 82,29 822,9 1084
−40 84,27 842,7 1135 50475
−35 86,25 862,5 1191 36405
−30 88,22 882,2 1246 26550
−25 90,19 901,9 1306 26083 19560
−20 92,16 921,6 1366 19414 14560
−15 94,12 941,2 1430 14596 10943
−10 96,09 960,9 1493 11066 8299
−5 98,04 980,4 1561 31389 8466
0 100,00 1000,0 1628 23868 6536
5 101,95 1019,5 1700 18299 5078
10 103,90 1039,0 1771 14130 3986
15 105,85 1058,5 1847 10998
20 107,79 1077,9 1922 8618
25 109,73 1097,3 2000 6800 15000
30 111,67 1116,7 2080 5401 11933
35 113,61 1136,1 2162 4317 9522
40 115,54 1155,4 2244 3471 7657
45 117,47 1174,7 2330 6194
50 119,40 1194,0 2415 5039
55 121,32 1213,2 2505 4299 27475
60 123,24 1232,4 2595 3756 22590
65 125,16 1251,6 2689 18668
70 127,07 1270,7 2782 15052
75 128,98 1289,8 2880 12932
80 130,89 1308,9 2977 10837
85 132,80 1328,0 3079 9121
90 134,70 1347,0 3180 7708
95 136,60 1366,0 3285 6539
100 138,50 1385,0 3390
105 140,39 1403,9
110 142,29 1422,9
150 157,31 1573,1
200 175,84 1758,4

7. Функция получения значения температуры (C++)

Приведённый ниже код позволяет получить значение температуры датчика Pt100 или Pt1000 из его текущего сопротивления.

float GetPt100Temperature(float r) { float const Pt100[] = { 80.31, 82.29, 84.27, 86.25, 88.22, 90.19, 92.16, 94.12, 96.09, 98.04, 100, 101.95, 103.9, 105.85, 107.79, 109.73, 111.67, 113.61, 115.54, 117.47, 119.4, 121.32, 123.24, 125.16, 127.07, 128.98, 130.89, 132.8, 134.7, 136.6, 138.5, 140.39, 142.29, 157.31, 175.84, 195.84}; int t = -50, i, dt = 0; if (r > Pt100[i = 0]) while (250 > t) { dt = (t < 110) ? 5 : (t > 110) ? 50 : 40; if (r < Pt100[++i]) return t + (r - Pt100[i-1]) * dt / (Pt100[i] - Pt100[i-1]); t += dt; }; return t; } float GetPt1000Temperature(float r) { return GetPt100Temperature(r / 10); }

Примечания

  1. Temperatures.ru - www.temperatures.ru/
скачатьДанный реферат составлен на основе статьи из русской Википедии. Синхронизация выполнена 12.07.11 18:54:11Похожие рефераты: Термометр, Манометрический термометр, Аквариумный термометр, Термометр Галилея, Газовый термометр, Термометр (короткометражный фильм), Сила сопротивления, Песни сопротивления, Движение Сопротивления.

Категории: Измерительные приборы, Датчики.

Текст доступен по лицензии Creative Commons Attribution-ShareAlike.
Опубликовать скачать

Реферат на тему:

План:

    Введение
  • 1 Металлический термометр сопротивления
  • 2 Термисторы
  • 3 Зависимость сопротивления от температуры
  • 4 Преимущества термометров сопротивления
  • 5 Недостатки термометров сопротивления
  • 6 Таблица сопротивлений некоторых термометров сопротивления
  • 7 Функция получения значения температуры (C++)
  • Примечания

Введение

УГО

Термо́метр сопротивле́ния — датчик для измерения температуры, сопротивление чувствительного элемента которого зависит от температуры. Может быть выполнен из металлического или полупроводникового материала. В последнем случае называется термистором.

1. Металлический термометр сопротивления

Представляет собой резистор, выполненный из металлической проволоки или плёнки и имеющий известную зависимость электрического сопротивления от температуры. Наиболее распространённый тип термометров сопротивления — платиновые термометры. Это объясняется тем, что платина имеет высокий температурный коэффициент сопротивления и высокую стойкость к окислению. Эталонные термометры изготавливаются из платины высокой чистоты с температурным коэффициентом не менее 0,003925. В качестве рабочих средств измерений применяются также медные и никелевые термометры. Действующий стандарт на технические требования к рабочим термометрам сопротивления: ГОСТ Р 8.625-2006 (Термометры сопротивления из платины, меди и никеля. Общие технические требования и методы испытаний). В стандарте приведены диапазоны, классы допуска, таблицы НСХ и стандартные зависимости сопротивление-температура. Стандарт соответствует международному стандарту МЭК 60751 (2008). В стандарте впервые отказались от нормирования конкретных номинальных сопротивлений. Сопротивление изготовленного термометра может быть любым. Промышленные платиновые термометры сопротивления в большинстве случаев используются со стандартной зависимостью сопротивление-температура (НСХ), что обуславливает погрешность не лучше 0,1 °C (класс АА при 0 °C). Термометры сопротивления на основе напыленной на подложку плёнки отличаются повышенной вибропрочностью, но меньшим диапазоном температур. Максимальный диапазон, в котором установлены классы допуска платиновых термометров для проволочных чувствительных элементов составляет 660 °C (класс С), для плёночных 600 °C (класс С).

2. Термисторы

Термистор — полупроводниковый резистор, электрическое сопротивление которого зависит от температуры. Для термистора характерны большой температурный коэффициент сопротивления , простота устройства, способность работать в различных климатических условиях при значительных механических нагрузках, стабильность характеристик во времени.

3. Зависимость сопротивления от температуры

Для промышленных платиновых термометров сопротивления используется уравнение Каллендара-Ван Дьюзена (en), с известными коэффициентами, которые установлены экспериментально и нормированы в международном стандарте МЭК 60751:

R_T = R_0 \left[ 1 + AT + BT^2 + CT^3 (T-100) \right] \; (-200\;{}^{\circ}\mathrm{C} < T < 0\;{}^{\circ}\mathrm{C}), R_T = R_0 \left[ 1 + AT + BT^2 \right] \; (0\;{}^{\circ}\mathrm{C} \leq T < 850\;{}^{\circ}\mathrm{C}).

Здесь, RT сопротивление при T °C, R0 сопротивление при 0 °C, и константы (для платинового сопротивления) -

A = 3.9083 \times 10^{-3} \; {}^{\circ}\mathrm{C}^{-1} B = -5.775 \times 10^{-7} \; {}^{\circ}\mathrm{C}^{-2} C = -4.183 \times 10^{-12} \; {}^{\circ}\mathrm{C}^{-4}.

Поскольку коэффициенты B и C относительно малы, сопротивление растёт почти линейно по мере роста температуры.

Для термометров повышенной точности выполняется градуировка в ряде температурных точек и определяются индивидуальные коэффициенты вышеприведенной зависимости.[1]

Существуют полупроводниковые термометры сопротивления — при увеличении температуры, сопротивление этих датчиков уменьшается. Применяются обычно на транспорте. Для подключения используют обычно 2-х проводную схему подключения.

Существует 3 схемы включения датчика в измерительную цепь:

Two Wire Resistance Thermometer

В схеме подключения простейшего термометра сопротивления используется два провода. Такая схема используется там, где не требуется высокой точности, так как сопротивление выводов включается в измеренное сопротивление и приводит к появлению дополнительной погрешности. Такая схема не применяется для термометров класса А и АА.

  • 3-х проводная обеспечивает значительно более точные измерения, за счёт того, что появляется возможность измерить отдельно сопротивление подводящих проводов и вычесть его из суммарного измеренного сопротивления.
  • 4-х проводная — наиболее точная схема, обеспечивает полное исключение влияния подводящих проводов. Недостаток — увеличение объёма используемого материала, стоимости и габаритов сборки.

В промышленности наиболее распространенной является трёхпроводная схема. Для точных, эталонных измерений используется только четырёхпроводная схема.

4. Преимущества термометров сопротивления

  • Высокая точность измерений (обычно лучше ±1 °C), может доходить до 0,01 °C.
  • Возможноcть исключения влияния изменения сопротивления линий связи на результат измерения при использовании 3-х или 4-х проводной схемы измерений
  • Практически линейная характеристика

5. Недостатки термометров сопротивления

  • Малый диапазон измерений (по сравнению с термопарами)
  • Более дорогой (по сравнению с термопарами)), если это платиновый термометр сопротивления типа ТСП
  • Требуется дополнительный источник питания для определения температуры

6. Таблица сопротивлений некоторых термометров сопротивления

Сопротивление в Омах (Ω)
Температурав °C Pt100 Pt1000 нем. PTC нем. NTC NTC NTC NTC NTC
Typ: 404 Typ: 501 Typ: 201 Typ: 101 Typ: 102 Typ: 103 Typ: 104 Typ: 105
−50 80,31 803,1 1032
−45 82,29 822,9 1084
−40 84,27 842,7 1135 50475
−35 86,25 862,5 1191 36405
−30 88,22 882,2 1246 26550
−25 90,19 901,9 1306 26083 19560
−20 92,16 921,6 1366 19414 14560
−15 94,12 941,2 1430 14596 10943
−10 96,09 960,9 1493 11066 8299
−5 98,04 980,4 1561 31389 8466
0 100,00 1000,0 1628 23868 6536
5 101,95 1019,5 1700 18299 5078
10 103,90 1039,0 1771 14130 3986
15 105,85 1058,5 1847 10998
20 107,79 1077,9 1922 8618
25 109,73 1097,3 2000 6800 15000
30 111,67 1116,7 2080 5401 11933
35 113,61 1136,1 2162 4317 9522
40 115,54 1155,4 2244 3471 7657
45 117,47 1174,7 2330 6194
50 119,40 1194,0 2415 5039
55 121,32 1213,2 2505 4299 27475
60 123,24 1232,4 2595 3756 22590
65 125,16 1251,6 2689 18668
70 127,07 1270,7 2782 15052
75 128,98 1289,8 2880 12932
80 130,89 1308,9 2977 10837
85 132,80 1328,0 3079 9121
90 134,70 1347,0 3180 7708
95 136,60 1366,0 3285 6539
100 138,50 1385,0 3390
105 140,39 1403,9
110 142,29 1422,9
150 157,31 1573,1
200 175,84 1758,4

7. Функция получения значения температуры (C++)

Приведённый ниже код позволяет получить значение температуры датчика Pt100 или Pt1000 из его текущего сопротивления.

float GetPt100Temperature(float r) { float const Pt100[] = { 80.31, 82.29, 84.27, 86.25, 88.22, 90.19, 92.16, 94.12, 96.09, 98.04, 100, 101.95, 103.9, 105.85, 107.79, 109.73, 111.67, 113.61, 115.54, 117.47, 119.4, 121.32, 123.24, 125.16, 127.07, 128.98, 130.89, 132.8, 134.7, 136.6, 138.5, 140.39, 142.29, 157.31, 175.84, 195.84}; int t = -50, i, dt = 0; if (r > Pt100[i = 0]) while (250 > t) { dt = (t < 110) ? 5 : (t > 110) ? 50 : 40; if (r < Pt100[++i]) return t + (r - Pt100[i-1]) * dt / (Pt100[i] - Pt100[i-1]); t += dt; }; return t; } float GetPt1000Temperature(float r) { return GetPt100Temperature(r / 10); }

Примечания

  1. Temperatures.ru - www.temperatures.ru/
скачатьДанный реферат составлен на основе статьи из русской Википедии. Синхронизация выполнена 12.07.11 18:54:11Похожие рефераты: Термометр, Манометрический термометр, Аквариумный термометр, Термометр Галилея, Газовый термометр, Термометр (короткометражный фильм), Сила сопротивления, Песни сопротивления, Движение Сопротивления.

Категории: Измерительные приборы, Датчики.

Текст доступен по лицензии Creative Commons Attribution-ShareAlike.
Металл Температурный коэффициент Рекомендуемый рабочий диапазон температур Описание Использование
Платина 0.00385, 0,00391 °C-1 – рабочие ТС

(ГОСТ Р 8.625-2006, МЭК 60751)0.003925 °C-1 – эталонные ТС

–196°C до 600°C Высокая точность и стабильность. Характеристика сопротивление-температура близка к линейной. Самый широкий диапазон температур. Высокое удельное сопротивление. Для изготовления ЧЭ требуется небольшое количество платины. Возможно изготовление ЧЭ методом напыления платины на подложку (пленочные ЧЭ). Очень широко используется в промышленности всех стран, существует стандарт МЭК 60751 на платиновые термометры сопротивления и ЧЭ. Последняя редакция включает требования к проволочным и пленочным ЧЭ.
Никель 0,00617 °C-1

(ГОСТ Р 8.625-2006)0.0067 °C –1 (DIN)

–60°C до 180°C Наиболее высокий температурный коэффициент; наибольший выходной сигнал сопротивления. Однако, если превышена точка Кюри (352°C), может возникать непредсказуемый гистерезис характеристики. Используются значительно реже, чем платиновые термометры сопротивления. Никелевые термометры сопротивления устанавливались раньше на корабельных системах контроля в комплекте с самописцами.
Медь 0.00428 °C-1

(ГОСТ Р 8.625-2006)

–50°C до 150°C Имеют наиболее линейную характеристику, но очень ограниченный диапазон температур. Очень низкое удельное сопротивление, что обуславливает необходимость использования проволоки значительной длины. Это привело к тому, что в американском стандарте, медные термометры имеют номинальное сопротивление 10 Ом. Используются в электрических генераторах, на электростанциях и в некоторых других отраслях промышленности

www.coolreferat.com

Термометры сопротивления

Термометры сопротивления широко применяют для измерения температуры в интервале от –260 до 750С. В отдельных случаях они могут быть использованы для измерения температур до 1000С.

В качестве материала для изготовления термометров сопротивления используются как чистые металлы, так и ряд полупроводников.

Действие термометров сопротивления основано на свойстве проводников и полупроводников изменять свое электрическое сопротивление с изменением температуры окружающей их среды.

Известно, что температурный коэффициент электрического сопротивления металлов положительный (сопротивление возрастает при повышении температуры), а полупроводников – отрицательный (сопротивление уменьшается при повышении температуры). Это объясняется различием в их молекулярном строении. Электрическое сопротивление металла увеличивается с повышением температуры в связи с возрастающим рассеянием электронов на неоднородностях кристаллической решетки, обусловленным увеличением тепловых колебаний ионов вокруг своих положений равновесия. Число носителей тока – электронов проводимости – очень велико и не зависит от температуры. У полупроводников с увеличением температуры резко возрастает число электронов проводимости (носителей тока), поэтому электрическое сопротивление резко уменьшается.

Измерение температуры с помощью электрических термометров сопротивления сводится к измерению активного сопротивления термометра, что обычно осуществляется измерением тока в цепи. Измерительная схема состоит из трех элементов: термометра сопротивления, электроизмерительного прибора для тока и источника питания.

Металлические термометры сопротивления получившие наибольшее распространение, имеют чувствительный элемент в виде тонкой (диаметром 0,05 мм) проволоки 2, намотанной на слюдяную пластину 1 (или пластмассовый цилиндр) и помещенный в защитный чехол 3 (рис. 2.1). проволоку изготовляют в основном из чистых платины или меди. В соответствии с этим различают термометры сопротивления платиновые (ТСП) и термометры сопротивления медные (ТСМ).

У чистых металлов сопротивление больше, чем у сплавов, поэтому для изготовления термометров сопротивления используют чистые металлы.

Для металлических термометров сопротивления ТСП и ТСМ стандартных градуировок стандартизованы градуировочные таблицы, пользуясь которыми можно определить по измеренному значению сопротивления термометра температуру окружающей его среды и, наоборот, определить сопротивление термометра для различных значений температуры.

Металлические термометры сопротивления имеют следующие достоинства: высокую точность измерения, возможность использования в комплекте с ним измерительных приборов со стандартными шкалами, взаимозаменяемость, возможность централизации контроля температуры путем присоединения нескольких взаимозаменяемых термометров сопротивления через переключатель к одному измерительному прибору, возможность использования их с информационно вычислительными системами.

Для изготовления чувствительных элементов полупроводниковых термометров сопротивления (терморезисторов) применяют смеси различных полупроводниковых веществ: окислов меди и марганца, окислов кобальта и марганца, двуокиси титана и окисла магния и т.д. для измерения низких температур используется германиевый термометр сопротивления.

Чувствительный элемент терморезисторов изготовляют различной формы. Наиболее распространены формы в виде небольшого цилиндра, стержня, шайбы и бусинки. Для предохранения от возможных механических повреждений и вредного воздействия среды, температура которой измеряется, чувствительный элемент покрывают эмалью, помещают в защитный чехол.

На рис. 2.2 а представлен полупроводниковый терморезистор, чувствительный элемент которого выполнен в виде небольшого цилиндрического стержня 8, покрытого эмалевой краской и металлической фольгой 3, с контактными колпачками 2, 4 и выводами 1, 5. снаружи терморезистор защищен чехлом 7, в верхней части которого имеется стеклянный изолятор 6.

На рис. 2.2, б показан терморезистор, у которого чувствительный элемент 1 выполнен в виде шарика диаметром 0,5 мм, защищенного стеклянной оболочкой 4. В шарик вмонтированы платиновые электроды 2, соединенные с выводами 3.

Для выпускаемых промышленностью полупроводниковых терморезисторов (ПТР) зависимость их сопротивления от температуры, не превышающей 100С, определяется по формуле:

,

где - сопротивление термометра при температуре Т, выраженной в кельвинах; А, В иb – постоянные коэффициенты, зависящие от материала термометра и его конструкции.

К достоинствам полупроводниковых термометров сопротивления относятся: большая чувствительность, которая примерно на порядок выше чувствительности металлических термометров сопротивления; малая инерционность, что имеет существенное значение для исследования нестационарных тепловых процессов; большое сопротивление (от единиц до сотен килоом), позволяющее не учитывать при измерении температуры изменение сопротивления соединительных проводов при изменении температуры окружающей среды.

Однако полупроводниковые терморезисторы имеют и ряд существенных недостатков, препятствующих широкому распространению их на производстве. К ним в первую очередь относится большой разброс температурных даже внутри одного и того же типа (значительно отличаются номинальные значения сопротивлений и температурные коэффициенты для термометров одного и того же типа). Это исключает взаимозаменяемость и возможность получения градуировочной таблицы для определенного типа полупроводниковых терморезисторов. Каждый экземпляр терморезистора, предназначенный для измерения и сигнализации температуры, необходимо градуировать индивидуально. К другим недостаткам относятся нелинейность зависимости электрического сопротивления от температуры и малая допустимая мощность рассеивания при прохождении измерительного тока.

При измерении температуры в промышленных условиях электрические термометры сопротивления применяют в комплекте с логометрами, автоматическими уравновешенными мостами и автоматическими компенсационными приборами. При этом необходимо иметь в виду, что эти приборы снабжают шкалой, отградуированной в градусах Цельсия, которая действительна только для определенной градуировки термометра сопротивления и заданного значения сопротивления проводов, соединяющих термометр с измерительным прибором.

Рассмотрим схему работы автоматического уравновешенного моста.

Автоматические уравновешенные мосты являются техническими приборами высокого класса точности. Они бывают показывающими, показывающими и самопишущими с записью или на дисковой, или на ленточной диаграмме. Приборы с ленточной диаграммой служат для измерения и записи температуры в одной точке (одноточечные) или в нескольких точках (многоточечные). Приборы с дисковой диаграммой изготавливаются только одноточечными. Шкала автоматических уравновешивающих мостов градуирована в градусах Цельсия с указанием её принадлежности к определенной градуировке термометра сопротивления.

По устройству автоматические уравновешенные мосты отличаются от автоматических потенциометров только измерительной схемой. На рис. 2.3 дана принципиальная схема автоматического уравновешенного моста. В измерительную схему входят; R1, R2 и R3 – резисторы, образующие три плеча мостовой схемы, четвертое плечо образовано сопротивлением термометра;- реохорд;- шунт реохорда, служащий для подгонки сопротивлениядо заданного нормированного значения;- резистор для установки диапазона измерения;- добавочный резистор для подгонки начального значения шкалы;- балластный резистор в цепи питания для ограничения тока;- резисторы для подгонки сопротивления линии до определенного значения. Т0 – токоотвод; С1 и С2 – конденсаторы создающие необходимый фазовый сдвиг (90) между магнитными потоками обмотки возбуждения и управляющей обмотки и необходимое напряжение на обмотке возбуждения; С3 – конденсатор, включенный параллельно управляющей обмотке реверсивного двигателя, шунтирует её для компенсации индуктивной составляющей тока в этой обмотке; СД – двигатель для перемещения диаграммной ленты или каретки печатающего устройства. Все резисторы изготавливаются из манганиновой проволоки, следовательно, колебания температуры воздуха не влияют на значения сопротивлений этих резисторов.

Термометр сопротивления подключен к мосту по техпроводной схеме.

Измерение и запись температуры производятся следующим образом. Изменение сопротивления терморезистора нарушает равновесие мостовой схемы, и в диагонали АВ моста возникает напряжение рассогласования, которое поступает на входной трансформатор, затем усиливается усилителем до значения, достаточного для приведения в действие реверсивного двигателя РД. Выходной вал двигателя, вращаясь в ту или иную сторону в зависимости от знака сигнала рассогласования, перемещает движок реохорда и перо самописца СП. При достижения равновесия мостовой схемы выходной вал двигателя останавливается, а движок реохорда, указатель и перо самописца занимают положение, соответствующее измеряемому сопротивлению термометра, а следовательно, температуре измеряемого объекта.

Мостовая схема, изображенная на рис 2.2, будет в состоянии равновесия при условии

,

где - приведенное сопротивление участка реохорда левее движка А;- приведенное сопротивление участка реохорда правее движка А.

Для автоматических уравновешенных мостов установлена допускаемая основная погрешность, выраженная в процентах от нормирующего значения. Она составляет 0,25 или0,5.

Отечественная промышленность выпускает следующие основные типы автоматических уравновешенных мостов: показывающие КПМ1 и КВМ1; показывающие и самопишущие с ленточной диаграммой КСМ1, КСМ2 и КСМ4; показывающие и самопишущие с дисковой диаграммой КСМ3. эти приборы имеют дополнительные сигнальные и регулирующие устройства и могут быть использованы в системах сигнализации и регулировки температуры.

studfiles.net

Реферат Терморезистор

Опубликовать скачать

Реферат на тему:

План:

Введение

УГО

Термо́метр сопротивле́ния — датчик для измерения температуры, сопротивление чувствительного элемента которого зависит от температуры. Может быть выполнен из металлического или полупроводникового материала. В последнем случае называется термистором.

1. Металлический термометр сопротивления

Представляет собой резистор, выполненный из металлической проволоки или плёнки и имеющий известную зависимость электрического сопротивления от температуры. Наиболее распространённый тип термометров сопротивления — платиновые термометры. Это объясняется тем, что платина имеет высокий температурный коэффициент сопротивления и высокую стойкость к окислению. Эталонные термометры изготавливаются из платины высокой чистоты с температурным коэффициентом не менее 0,003925. В качестве рабочих средств измерений применяются также медные и никелевые термометры. Действующий стандарт на технические требования к рабочим термометрам сопротивления: ГОСТ Р 8.625-2006 (Термометры сопротивления из платины, меди и никеля. Общие технические требования и методы испытаний). В стандарте приведены диапазоны, классы допуска, таблицы НСХ и стандартные зависимости сопротивление-температура. Стандарт соответствует международному стандарту МЭК 60751 (2008). В стандарте впервые отказались от нормирования конкретных номинальных сопротивлений. Сопротивление изготовленного термометра может быть любым. Промышленные платиновые термометры сопротивления в большинстве случаев используются со стандартной зависимостью сопротивление-температура (НСХ), что обуславливает погрешность не лучше 0,1 °C (класс АА при 0 °C). Термометры сопротивления на основе напыленной на подложку плёнки отличаются повышенной вибропрочностью, но меньшим диапазоном температур. Максимальный диапазон, в котором установлены классы допуска платиновых термометров для проволочных чувствительных элементов составляет 660 °C (класс С), для плёночных 600 °C (класс С).

2. Термисторы

Термистор — полупроводниковый резистор, электрическое сопротивление которого зависит от температуры. Для термистора характерны большой температурный коэффициент сопротивления , простота устройства, способность работать в различных климатических условиях при значительных механических нагрузках, стабильность характеристик во времени.

3. Зависимость сопротивления от температуры

Для промышленных платиновых термометров сопротивления используется уравнение Каллендара-Ван Дьюзена (en), с известными коэффициентами, которые установлены экспериментально и нормированы в международном стандарте МЭК 60751:

R_T = R_0 \left[ 1 + AT + BT^2 + CT^3 (T-100) \right] \; (-200\;{}^{\circ}\mathrm{C} < T < 0\;{}^{\circ}\mathrm{C}), R_T = R_0 \left[ 1 + AT + BT^2 \right] \; (0\;{}^{\circ}\mathrm{C} \leq T < 850\;{}^{\circ}\mathrm{C}).

Здесь, RT сопротивление при T °C, R0 сопротивление при 0 °C, и константы (для платинового сопротивления) -

A = 3.9083 \times 10^{-3} \; {}^{\circ}\mathrm{C}^{-1} B = -5.775 \times 10^{-7} \; {}^{\circ}\mathrm{C}^{-2} C = -4.183 \times 10^{-12} \; {}^{\circ}\mathrm{C}^{-4}.

Поскольку коэффициенты B и C относительно малы, сопротивление растёт почти линейно по мере роста температуры.

Для термометров повышенной точности выполняется градуировка в ряде температурных точек и определяются индивидуальные коэффициенты вышеприведенной зависимости.[1]

Существуют полупроводниковые термометры сопротивления — при увеличении температуры, сопротивление этих датчиков уменьшается. Применяются обычно на транспорте. Для подключения используют обычно 2-х проводную схему подключения.

Существует 3 схемы включения датчика в измерительную цепь:

Two Wire Resistance Thermometer

В схеме подключения простейшего термометра сопротивления используется два провода. Такая схема используется там, где не требуется высокой точности, так как сопротивление выводов включается в измеренное сопротивление и приводит к появлению дополнительной погрешности. Такая схема не применяется для термометров класса А и АА.

В промышленности наиболее распространенной является трёхпроводная схема. Для точных, эталонных измерений используется только четырёхпроводная схема.

4. Преимущества термометров сопротивления

5. Недостатки термометров сопротивления

6. Таблица сопротивлений некоторых термометров сопротивления

Сопротивление в Омах (Ω)
Температурав °C Pt100 Pt1000 нем. PTC нем. NTC NTC NTC NTC NTC
Typ: 404 Typ: 501 Typ: 201 Typ: 101 Typ: 102 Typ: 103 Typ: 104 Typ: 105
−50 80,31 803,1 1032
−45 82,29 822,9 1084
−40 84,27 842,7 1135 50475
−35 86,25 862,5 1191 36405
−30 88,22 882,2 1246 26550
−25 90,19 901,9 1306 26083 19560
−20 92,16 921,6 1366 19414 14560
−15 94,12 941,2 1430 14596 10943
−10 96,09 960,9 1493 11066 8299
−5 98,04 980,4 1561 31389 8466
0 100,00 1000,0 1628 23868 6536
5 101,95 1019,5 1700 18299 5078
10 103,90 1039,0 1771 14130 3986
15 105,85 1058,5 1847 10998
20 107,79 1077,9 1922 8618
25 109,73 1097,3 2000 6800 15000
30 111,67 1116,7 2080 5401 11933
35 113,61 1136,1 2162 4317 9522
40 115,54 1155,4 2244 3471 7657
45 117,47 1174,7 2330 6194
50 119,40 1194,0 2415 5039
55 121,32 1213,2 2505 4299 27475
60 123,24 1232,4 2595 3756 22590
65 125,16 1251,6 2689 18668
70 127,07 1270,7 2782 15052
75 128,98 1289,8 2880 12932
80 130,89 1308,9 2977 10837
85 132,80 1328,0 3079 9121
90 134,70 1347,0 3180 7708
95 136,60 1366,0 3285 6539
100 138,50 1385,0 3390
105 140,39 1403,9
110 142,29 1422,9
150 157,31 1573,1
200 175,84 1758,4

7. Функция получения значения температуры (C++)

Приведённый ниже код позволяет получить значение температуры датчика Pt100 или Pt1000 из его текущего сопротивления.

float GetPt100Temperature(float r) { float const Pt100[] = { 80.31, 82.29, 84.27, 86.25, 88.22, 90.19, 92.16, 94.12, 96.09, 98.04, 100, 101.95, 103.9, 105.85, 107.79, 109.73, 111.67, 113.61, 115.54, 117.47, 119.4, 121.32, 123.24, 125.16, 127.07, 128.98, 130.89, 132.8, 134.7, 136.6, 138.5, 140.39, 142.29, 157.31, 175.84, 195.84}; int t = -50, i, dt = 0; if (r > Pt100[i = 0]) while (250 > t) { dt = (t < 110) ? 5 : (t > 110) ? 50 : 40; if (r < Pt100[++i]) return t + (r - Pt100[i-1]) * dt / (Pt100[i] - Pt100[i-1]); t += dt; }; return t; } float GetPt1000Temperature(float r) { return GetPt100Temperature(r / 10); }

Примечания

  1. Temperatures.ru - www.temperatures.ru/
скачатьДанный реферат составлен на основе статьи из русской Википедии. Синхронизация выполнена 12.07.11 18:54:11Категории: Измерительные приборы, Датчики.Текст доступен по лицензии Creative Commons Attribution-ShareAlike.

wreferat.baza-referat.ru


Смотрите также

 

..:::Новинки:::..

Windows Commander 5.11 Свежая версия.

Новая версия
IrfanView 3.75 (рус)

Обновление текстового редактора TextEd, уже 1.75a

System mechanic 3.7f
Новая версия

Обновление плагинов для WC, смотрим :-)

Весь Winamp
Посетите новый сайт.

WinRaR 3.00
Релиз уже здесь

PowerDesk 4.0 free
Просто - напросто сильный upgrade проводника.

..:::Счетчики:::..

 

     

 

 

.