zazdoc.ru

 

Начальная

Windows Commander

Far
WinNavigator
Frigate
Norton Commander
WinNC
Dos Navigator
Servant Salamander
Turbo Browser

Winamp, Skins, Plugins
Необходимые Утилиты
Текстовые редакторы
Юмор

File managers and best utilites

Реферат: Проблемы создания искусственного интеллекта 2. Реферат по искусственному интеллекту


Курсовая работа - Искусственный интеллект

Содержание:

Введение.....................................1

Механический подход..........................2

Электронный подход...........................3

Кибернетический подход.......................6

Нейронный подход.............................8

Появление перцептрона.......................10

Искусственный интеллект и

теоретические проблемы психологии...........12

С конца 40-х годов ученые все большего числа университетских и промышленных исследовательских лабораторий устремились к дерзкой цели: построение компьютеров, действующих таким образом, что по результатам работы их невозможно было бы отличить от человеческого разума.

Терпеливо продвигаясь вперед в своем нелегком труде, исследователи, работающие в области искусственного интеллекта (ИИ), обнаружили, что вступили в схватку с весьма запутанными проблемами, далеко выходящими за пределы традиционной информатики. Оказалось, что прежде всего необходимо понять механизмы процесса обучения, природу языка и чувственного восприятия. Выяснилось, что для создания машин, имитирующих работу человеческого мозга, требуется разобраться в том, как действуют миллиарды его взаимосвязанных нейронов. И тогда многие исследователи пришли к выводу, что пожалуй самая трудная проблема, стоящая перед современной наукой — познание процессов функционирования человеческого разума, а не просто имитация его работы. Что непосредственно затрагивало фундаментальные теоретические проблемы психологической науки. В самом деле, ученым трудно даже прийти к единой точке зрения относительно самого предмета их исследований — интеллекта. Здесь, как в притче о слепцах, пытавшихся описывать слона, пытается придерживаться своего заветного определения.

Некоторые считают, что интеллект — умение решать сложные задачи; другие рассматривают его как способность к обучению, обобщению и аналогиям; третьи — как возможность взаимодействия с внешним миром путем общения, восприятия и осознания воспринятого. Тем не менее многие исследователи ИИ склонны принять тест машинного интеллекта, предложенный в начале 50-х годов выдающимся английским математиком и специалистом по вычислительной технике Аланом Тьюрингом. Компьютер можно считать разумным утверждал Тьюринг,- если он способен заставить нас поверить, что мы имеем дело не с машиной, а с человеком.

Механический подход.

Идея создания мыслящих машин «человеческого типа», которые казалось бы думают, двигаются, слышат, говорят, и вообще ведут себя как живые люди уходит корнями в глубокое прошлое. Еще древние египтяне и римляне испытывали благоговейный ужас перед культовыми статуями, которые жестикулировали и изрекали пророчества (разумеется не без помощи жрецов). Средневековые летописи полны рассказов об автоматах, способных ходить и двигаться почти также как их хозяева — люди. В средние века и даже позднее ходили слухи о том, что у кого-то из мудрецов есть гомункулы (маленькие искусственные человечки) — настоящие живые, способные чувствовать существа. Выдающийся швейцарский врач и естествоиспытатель XVI в Теофраст Бомбаст фон Гогенгейм (более известный под именем Парацельс) оставил руководство по изготовлению гомункула, в котором описывалась странная процедура, начинавшаяся с закапывания в лошадиный навоз герметично закупоренной человеческой спермы. «Мы будем как боги, — провозглашал Парацельс. — Мы повторим величайшее из чудес господних — сотворение человека!»(4)

В XVIII в. благодаря развитию техники, особенно разработке часовых механизмов, интерес к подобным изобретениям возрос, хотя результаты были гораздо более «игрушечными», чем это хотелось бы Парацельсу. В1736 г. французский изобретатель Жак де Вокансон изготовил механического флейтиста в человеческий рост, который исполнял двенадцать мелодий, перебирая пальцами отверстия и дуя в мундштук, как настоящий музыкант. В середине 1750-х годов Фридрих фон Кнаус, австрийский автор, служивший при дворе Франциска I, сконструировал серию машин, которые умели держать перо и могли писать довольно длинные тексты. Другой мастер, Пьер Жак-Дроз из Швейцарии, построил пару изумительных по сложности механических кукол размером с ребенка: мальчика, пишущего письма и девушку, играющую на клавесине.

Успехи механики XIX в. стимулировали еще более честолюбивые замыслы. Так, в 1830-х годах английский математик Чарльз Бэббидж задумал, правда, так и не завершив, сложный цифровой калькулятор, который он назвал Аналитической машиной; как утверждал Бэббидж, его машина принципе могла бы рассчитывать шахматные ходы. Позднее, в 1914 г., директор одного из испанских технических институтов Леонардо Торрес-и-Кеведо действительно из готовил электромеханическое устройство, способное разыгрывать простейшие шахматные эндшпили почти также хорошо, как и человек.

Электронный подход.

Однако только после второй мировой войны появились устройства, казалось бы, подходящие для достижения заветной цели — моделирования разумного поведения; это были электронные цифровые вычислительные Машины. «Электронный мозг», как тогда восторженно называли компьютер, поразил в 1952 г. телезрителей США, точно предсказав результаты президентских выборов за несколько часов до получения окончательных данных. Этот «подвиг» компьютера лишь подтвердил вывод, к которому в то время пришли многие ученые: наступит тот день, когда автоматические вычислители, столь быстро, неутомимо и безошибочно выполняющие автоматические действия, смогут имитировать не вычислительные процессы, свойственные человеческому мышлению, в том числе восприятие и обучение, распознавание образов, понимание повседневной речи и письма, принятие решений в неопределенных ситуациях, когда известны не все факты. Таким образом «заочно» формулировался своего рода «социальный заказ» для психологии, стимулируя различные отрасли науки.

Многие изобретатели компьютеров и первые программисты развлекались составляя программы для отнюдь не технических занятий, как сочинение музыки, решение головоломок и игры, на первом месте здесь оказались шашки и шахматы. Некоторые романтически настроенные программисты даже заставляли свои машины писать любовные письма.

К концу 50-х годов все эти увлечения выделились в новую более или менее самостоятельную ветвь информатики, получившую название «искусственный интеллект». Исследования в области ИИ, первоначально сосредоточенные в нескольких университетских центрах США — Массачусетском технологическом институте, Технологическом институте Карнеги в Питтсбурге, Станфордском университете, — ныне ведутся во многих других университетах и корпорациях США и других стран. В общем исследователей ИИ, работающих над созданием мыслящих машин, можно разделить на две группы. Одних интересует чистая наука и для них компьютер — лишь инструмент, обеспечивающий возможность экспериментальной проверки теорий процессов мышления. Интересы другой группы лежат в области техники: они стремятся расширить сферу применения компьютеров и облегчить пользование ими. Многие представители второй группы мало заботятся о выяснении механизма мышления — они полагают, что для их работы это едва ли более полезно, чем изучение полета птиц и самолетостроения.

В настоящее время, однако, обнаружилось, что как научные так и технические поиски столкнулись с несоизмеримо более серьезными трудностями, чем представлялось первым энтузиастам. На первых порах многие пионеры ИИ верили, что через какой-нибудь десяток лет машины обретут высочайшие человеческие таланты. Предполагалось, что преодолев период «электронного детства» и обучившись в библиотеках всего мира, хитроумные компьютеры, благодаря быстродействию точности и безотказной памяти постепенно превзойдут своих создателей-людей. Сейчас мало кто говорит об этом, а если и говорит, то отнюдь не считает, что подобные чудеса не за горами.

На протяжении всей своей короткой истории исследователи в области ИИ всегда находились на переднем крае информатики. Многие ныне обычные разработки, в том числе усовершенствованные системы программирования, тектовые редакторы и программы распознавания образов, в значительноймере рассматриваются на работах по ИИ. Короче говоря, теории, новыеидеи, и разработки ИИ неизменно привлекают внимание тех, кто стремитсярасширить области применения и возможности компьютеров, сделать их бо-лее «дружелюбными» то есть более похожими на разумных помощников и ак-тивных советчиков, чем те педантичные и туповатые электронные рабы, какими они всегда были.

Несмотря на многообещающие перспективы, ни одну из разработанныхдо сих пор программ ИИ нельзя назвать «разумной» в обычном пониманииэтого слова. Это объясняется тем, что все они узко специализированы; самые сложные экспертные системы по своим возможностям скорее напоми-нают дрессированных или механических кукол, нежели человека с его гиб-ким умом и широким кругозором. Даже среди исследователей ИИ теперьмногие сомневаются, что большинство подобных изделий принесет сущест-венную пользу. Немало критиков ИИ считают, что такого рода ограничениявообще непреодолимы.

К числу таких скептиков относится и Хьюберт Дрейфус, профессорфилософии Калифорнийского университета в Беркли. С его точки зрения, истинный разум невозможно отделить от его человеческой основы, заклю-ченной в человеческом организме. «Цифровой компьютер — не человек, -говорит Дрейфус. — У компьютера нет ни тела, ни эмоций, ни потребнос-тей. Он лишен социальной ориентации, которая приобретается жизнью вобществе, а именно она делает поведение разумным. Я не хочу сказать, что компьютеры не могут быть разумными. Но цифровые компьютеры, зап-рограммированные фактами и правилами из нашей, человеческой, жизни, действительно не могут стать разумными. Поэтому ИИ в том виде, как мыего представляем, невозможен».(1)

Кибернетический подход.

Попытки построить машины, способные к разумному поведению, в зна-чительной мере вдохновлены идеями профессора МТИ Норберта Винера, од-ной из выдающихся личностей в интеллектуальной истории Америки. Помимоматематики он обладал широкими познаниями в других областях, включаянейропсихологию, медицину, физику и электронику.

Винер был убежден, что наиболее перспективны научные исследованияв так называемых пограничных областях, которые нельзя конкретно отнес-ти к той или иной конкретной дисциплины. Они лежат где-то на стыке на-ук, поэтому к ним обычно не подходят столь строго. «Если затруднения врешении какой-либо проблемы психологии имеют математический характер, пояснял он, — то десять несведущих в математике психологов продвинуть-ся не дальше одного столь же несведущего».

Винеру и его сотруднику Джулиану Бигелоу принадлежит разработкапринципа «обратной связи», который был успешно применен при разработкенового оружия с радиолокационным наведением. Принцип обратной связизаключается в использовании информации, поступающей из окружающего ми-ра, для изменения поведения машины. В основу разработанных Винером иБигелоу систем наведения были положены тонкие математические методы; при малейшем изменении отраженных от самолета радиолокационных сигна-лов они соответственно изменяли наводку орудий, то есть — заметив по-пытку отклонения самолета от курса, они тотчас расчитывали его даль-нейший путь и направляли орудия так, чтобы траектории снарядов и само-летов пересеклись.

В дальнейшем Винер разработал на принципе обратной связи теориикак машинного так и человеческого разума. Он доказывал, что именноблагодаря обратной связи все живое приспосабливается к окружающей сре-де и добивается своих целей. «Все машины, претендующие на „разум-ность“,- писал он, — должны обладать способность преследовать опреде-ленные цели и приспосабливаться, т.е. обучаться». Созданной им наукеВинер дает название кибернетика, что в переводе с греческого означаетрулевой.(2)

Следует отметить, что принцип «обратной связи», введенный Винеромбыл в какой-то степени предугадан Сеченовым в явлении «центральноготорможения» в «Рефлексах головного мозга» (1863 г.) и рассматривалсякак механизм регуляции деятельности нервной системы, и который лег воснову многих моделей произвольного поведения в отечественной психоло-гии.

Нейронный подход.

К этому времени и другие ученые стали понимать, что создателямвычислительных машин есть чему поучиться у биологии. Среди них былнейрофизиолог и поэт-любитель Уоррен Маккалох, обладавший как и Винерфилософским складом ума и широким кругом интересов. В 1942 г. Макка-лох, участвуя в научной конференции в Нью-йорке, услышал доклад одногоиз сотрудников Винера о механизмах обратной связи в биологии. Выска-занные в докладе идеи перекликались с собственными идеями Маккалохаотносительно работы головного мозга. В течении следующего года Макка-лох в соавторстве со своим 18-летним протеже, блестящим математикомУолтером Питтсом, разработал теорию деятельности головного мозга. Этатеория и являлась той основой, на которой сформировалось широко расп-ространенное мнение, что функции компьютера и мозга в значительной ме-ре сходны.

Исходя отчасти из предшествующих исследований нейронов (основныхактивных клеток, составляющих нервную систему животных), проведенныхМаккаллохом, они с Питтсом выдвинули гипотезу, что нейроны можно упро-щенно рассматривать как устройства, оперирующие двоичными числами.Двоичные числа, состоящие из цифр единица и нуль, — рабочий инструментодной из систем математической логики. Английский математик XIXв.Джордж Буль, предложивший эту остроумную систему, показал, что логи-ческие утверждения можно закодировать в виде единиц и нулей, где еди-ница соответствует истинному выссказыванию а нуль — ложному, после че-го этим можно оперировать как обычными числами. В 30-е годы XX в. пи-онеры информатики, в особенности американский ученый Клод Шеннон, по-няли, что двоичные единица и нуль вполне соответствуют двум состояниямэлектрической цепи (включено-выключено), поэтому двоичная система иде-ально подходит для электронно-вычислительных устройств. Маккалох иПиттс предложили конструкцию сети из электронных «нейронов» и показа-ли, что подобная сеть может выполнять практически любые вообразимыечисловые или логические операции. Далее они предположили, что такаясеть в состоянии также обучаться, распознавать образы, обобщать, т.е.она обладает всеми чертами интеллекта.

Теории Маккаллоха-Питтса в сочетании с книгами Винера (2) вызвалиогромный интерес к разумным машинам. В 40-60-е годы все больше кибер-нетиков из университетов и частных фирм запирались в лабораториях имастерских, напряженно работая над теорией функционирования мозга иметодично припаивая электронные компоненты моделей нейронов.

Из этого кибернетического, или нейромодельного, подхода к машин-ному разуму скоро сформировался так называемый «восходящий метод» -движение от простых аналогов нервной системы примитивных существ, об-ладающих малым числом нейронов, к сложнейшей нервной системе человекаи даже выше. Конечная цель виделась в создании «адаптивной сети», «са-моорганизующейся системы» или «обучающейся машины» — все эти названияразные исследователи использовали для обозначения устройств, способныхследить за окружающей обстановкой и с помощью обратной связи изменятьсвое поведение в полном соответствии с господствовавшей в те временабихевиористской школой психологии, т.е. вести себя так же как живыеорганизмы. Однако отнюдь не во всех случаях возможна аналогия с живымиорганизмами. Как однажды заметили Уоррен Маккаллох и его сотрудникМайкл Арбиб, «если по весне вам захотелось обзавестись возлюбленной, не стоит брать амебу и ждать пока она эволюционирует».

Но дело здесь не только во времени. Основной трудностью, с кото-рой столкнулся «восходящий метод» на заре своего существования, былавысокая стоимость электронных элементов. Слишком дорогой оказываласьдаже модель нервной системы муравья, состоящая из 20 тыс. нейронов, неговоря уже о нервной системе человека, включающей около 100 млрд. ней-ронов. Даже самые совершенные кибернетические модели содержали лишьнеколько сотен нейронов. Столь ограниченные возможности обескуражилимногих исследователей того периода.

Появление перцептрона.

Одним из тех, кого ничуть не испугали трудности был Фрэнк Розенб-лат, труды которого казалось отвечали самым заметным устремлениям ки-бернетиков. В середине 1958 г. им была предложена модель электронногоустройства, названного им перцептроном, которое должно было бы имити-ровать процессы человеческого мышления. Перцептрон должен был переда-вать сигналы от «глаза», составленного из фотоэлементов, в блокиэлектромеханических ячеек памяти, которые оценивали относительную ве-личину электрических сигналов. Эти ячейки соединялись между собой слу-чайным образом в соответствии с господствующей тогда теорией, согласнокоторой мозг воспринимает новую информацию и реагирует на нее черезсистему случайных связей между нейронами. Два года спустя была проде-монстрирована первая действующая машина «Марк-1», которая могла нау-чится распознавать некоторые из букв, написанных на карточках, которыеподносили к его «глазам», напоминающие кинокамеры. Перцептрон Розенб-лата оказался наивысшим достижением «восходящего», или нейромодельногометода создания искусственого интеллекта. Чтобы научить перцептронспособности строить догадки на основе исходных предпосылок, в нем пре-дусматривалась некая элементарная разновидность автономной работы или«самопрограммирования». При распознании той или иной буквы одни ееэлементы или группы элементов оказываются гораздо более существеными, чем другие. Перцептрон мог научаться выделять такие характерные осо-бенности буквы полуавтоматически, своего рода методом проб и ошибок, напоминающим процесс обучения. Однако возможности перцептрона были ог-раниченными: машина не могла надежно распознавать частично закрытыебуквы, а также буквы иного размера или рисунка, нежели те, которые ис-пользовались на этапе ее обучения.

Ведущие представители так называемого «нисходящего метода» специ-ализировались, в отличие от представителей «восходящего метода», всоставлении для цифровых компьютеров общего назначения программ реше-ния задач, требующих от людей значительного интеллекта, например дляигры в шахматы или поиска математических доказательств. К числу защит-ников «нисходящего метода» относились Марвин Минский и Сеймур Пейперт, профессора Массачусетского технологического института. Минский началсвою карьеру исследователя ИИ сторонником «восходящего метода» и в1951 г. построил обучающуюся сеть на на вакуумных электронных лампах.Однако вскоре к к моменту создания перцептрона он перешел в противопо-ложный лагерь. В соавторстве с с южно-африканским математиком Пейпер-том, с которым его познакомил Маккаллох, он написал книгу «Перцептро-ны»(3), где математически доказывалось, что перцептроны, подобные ро-зенблатовсим, принципиально не в состоянии выполнять многие из техфункций, которые предсказывал им Розенблат. Минский утверждал, что, неговоря о роли работающих под диктовку машинисток, подвижных роботовили машин, способных читать, слушать и понимать прочитанное или услы-шанное, перцептроны никогда не обретут даже умения распознавать пред-мет частично заслоненный другим. Глядя на торчащий из-за кресла коша-чий хвост, подобная машина никогда не сможет понять, что она видит.

Нельзя сказать, что появившаяся в 1969 г. эта критическая работапокончила с кибернетикой. Она лишь переместила интерес аспирантов исубсидии правительственных организаций США, традиционно финансирующихисследования по ИИ, на другое направление исследований — «нисходящийметод».

Интерес к кибернетике в последнее время возродился, так как сто-ронники «нисходящего метода» столкнулись со столь же неодолимыми труд-ностями. Сам Минский публично выразил сожаление, что его выступлениенанесло урон концепции перцептронов, заявив, что, согласно его тепе-решним представлениям, для реального прорыва вперед в создании разум-ных машин потребуется устройство, во многом похожее на перцептрон. Нов основном ИИ стал синонимом нисходящего подхода, который выражался всоставлении все более сложных программ для компьютеров, моделирующихсложную деятельность человеческого мозга.

Искусственный интеллект и теоретические проблемы психологии.

Можно выделить две основные линии работ по ИИ. Первая связана ссовершенствованием самих машин, с повышением «интеллектуальности» ис-кусственных систем. Вторая связана с задачей оптимизации совместнойработы «искусственного интеллекта» и собственно интеллектуальных воз-можностей человека.

Переходя к собственно психологическим проблемам ИИ О.К. Тихомироввыделяет три позиции по вопросу о взаимодействии психологии и искуст-венного интеллекта. 1) «Мы мало знаем о человеческом разуме, мы хотиего воссоздать, мы делаем это вопреки отсутствию знаний»- эта позицияхарактерна для многих зарубежных специалистов по ИИ. 2) Вторая позициясводится к констатации ограниченности результатов исследований интел-лектуальной деятельности, проводившихся психологами, социологами и фи-зиологами. В качестве причины указывается отсутствие адекватных мето-дов. Решение видится в воссоздании тех или иных интеллектуальных функ-ций в работе машин. Иными словами, если машина решает задачу ранее ре-шавшуюся человеком, то знания, которые можно подчерпнуть, анализируяэту работу и есть основной материал для построения психологических те-орий. 3) Третья позиция характеризуется оценкой исследования в областиискусственного интеллекта и психологии как совершенно независимых. Вэтом случае допускается возможность только потребления, использованияпсихологических знаний в плане психологического обеспечения работ поИИ.

Закономерно возникает вопрос о влиянии работ по искусственномуинтеллекту на развитие психологической науки. О.К.Тихомиров (9) выде-ляет в качестве первого результата — появление новой области психоло-гических исследований, а именно, сравнительные исследования того, какодни и те же задачи решаются человеком и машиной. Кроме того, уже пер-вые работы по искусственному интеллекту показали, что не только об-ласть решения задач затрагивается соспоставительными исследованиями, но и проблема мышления в целом. Возникла потребность в уточнении кри-териев дифференциации «творческих» и «нетворческих» процессов.

Более того, и исследования восприятия и исследования памяти нахо-дятся под сильным влиянием машинных аналогий (монография Р.Клацки).

Оригинальное отражение работ по ИИ несет на себе новая психологи-ческая теория поведения (исследования Д. Миллера К.Прибрама Ю.Галанте-ра). В то время как для традиций отечественной психологии необходиморазведение понятий поведения и деятельности.

Популярные идеи системного анализа позволили сделать сравнениепринципов работы искусственных систем и собственно человеческой дея-тельности важным эвристическим приемом выделения именно специфическогопсихологического анализа деятельности человека.

В 1963 г. выступая на совещании по философским вопросам физиоло-гии ВНД и психологии, А.Н. Леонтьев сформулировал следующую позицию: машина воспроизводит операции человеческого мышления, и следовательносоотношение «машинного» и «немашинного» есть соотнесение операциональ-ного и неоперационального в человеческой деятельности в то время этотвывод был достаточно прогрессивен и выступал против кибернетическогоредукционизма. Однако в последствии при сравнени операций, из которыхслагается работа машины, и операций как единиц деятельности человекавыявились существенные различия — в психологическом смысле «операция»отражает способ достижения результатов, процессуальную характеристику, в то время как прменительно к машинной работе этот термин используетсяв логико-математическом смысле (характеризуется результатом).

В работах по искусственному интеллекту постоянно используетсятермин «цель». Анализ отношения средств к цели А.Ньюэлл и Г.Саймон на-зывают в качестве одной из «эвристик». В психологической теории дея-тельности «цель» является конституирующим признаком действия в отличииот операций (и деятельности в целом). В то время как в искусственныхсистемах «целью» называют некоторую конечную ситуацию к которой стре-мится система. Признаки этой ситуации должны быть четко выявленными иописанными на формальном языке. Цели человеческой деятельности имеютдругую природу. Конечная ситуация может по разному отражаться субъек-том: как на понятийном уровне, так и в форме представлений или перцеп-тивного образа. Это отражение может характеризоваться разной степеньюясностьи, отчетливости. Кроме того, для человека характерно не простодостижение готовых целей но и формирование новых.

Также работа систем искусственно интеллекта, характеризуется непросто наличием операций, программ,«целей», а как отмечает О.К.Тихоми-ров,- оценочными функциями. И у искусственных систем есть своего рода«ценностные орентации». Но специфику человеческой мотивационно-эмоцио-нальной регуляции деятельности составляет использование не толькоконстантных, но и ситуативно возникающих и динамично меняющихся оце-нок, существенно также различие между словесно-логическими и эмоцио-нальными оценками. В существовании потребностей и мотивов видится раз-личие между человеком и машиной на уровне деятельности. Этот тезисповлек за собой цикл исследований, посвященных анализу специфики чело-веческой деятельности. Так в работе Л.П.Гурьевой (7) показана зависи-мость структуры мыслительной деятельности при решении творческих задачот изменения мотивации.

Между прочим, именно недостаточная изученность процесса целеобра-зования нашла свое отражение в формулировании «социального заказа» дляпсихологии со стороны исследователей ИИ, и оказала существенное стиму-лирующее влияние психологической науки.

Информационная теория эмоций Симонова также в значительной степе-ни питается аналогиями с работами систем ИИ. Кроме того проблема воле-вого принятия решения в психологии в некоторых работах рассматриваетсякак формальный процесс выбора одной из множества заданных альтернатив, опуская тем самым специфику волевых процессов. В то же время, Ю.Д.Ба-баевой (5) была предпринята попытка изучения возможности формализациипроцесса целеобразования на основе глубокого психологического анализаэтого процесса в деятельности человека.

Таким образом все три традиционные области психологии — учения опознавательных, эмоциональных и волевых процессах оказались под влия-нием работ по ИИ, что по мнению О.К.Тихомирова привело к оформлениюнового предмета психологии — как наука о переработке информации, науч-ность этого определения достигалась за счет «технизации» психологичес-кого знания.

Обращаясь к проблеме роли ИИ в обучения Л.И.Ноткин (8) рассматри-вает этот процесс как одну из разновидностей взаимодействия человека сЭВМ, и раскрывает среди перспективных возможностей те, которые напр-влены на создание так называемых адаптивных обучающихся систем, имити-рующих оперативный диалог учащегося и преподавателя-человека.

Таким образом роль взаимодействие между исследованиями искусс-твенного интеллекта и психологической наукой можно охарактеризоватькак плодотворный диалог, позволяющий если не решать то хотя бы нау-читься задавать вопросы как высокого философского уровня — «Что естьчеловек ?», так и более прагматические — методические и методологичес-кие.

Литература:

1)Дрейфус Х. Чего не могут вычислительные машины.- М.: Прогресс,1979

2) Винер Н. Кибернетика и общество.-М: ИЛ, 1958

3) Минский М., Пейперт С. Перцептроны -М: Мир,1971

4) Компьютер обретает разум.Москва Мир 1990

В сборнике: Психологические исследования интеллектуальной дея-тельности. Под.ред. О.К.Тихомирова.- М., МГУ,1979.:

5) Бабаева Ю.Д. К вопросу о формализации процесса целеобразования

6) Брушлинский А.В. Возможен ли «искусственный интеллект»?

7) Гурьева Л.П. Об изменении мотивации в условиях использования ис-кусственного интеллекта.

8) Ноткин Л.И. «Искусственный интеллект» и проблемы обучения

9) Тихомиров О.К. «Искусственный интеллект и теоретические вопросы

психологии»

www.ronl.ru

Реферат: Искусственный интеллект

Реферат по информатике

на тему:

«Искусственный интеллект»

Выполнил ученик 11Б класса Ковчегин Игорь

Учитель: Сальникова Надежда Валерьевна

Москва, 2002

Содержание.. 2

Возможно вы искали - Реферат: Искусственный интеллект в управлении фирмой

Введение.. 3

Искусственный интеллект – новая информационная революция.. 5

Основы теории нейроподобных сетей.10

Некоторые сведения о мозге. 10

Нейрон как элементарное звено.10

Похожий материал - Реферат: История развития микропроцессора

Нейроподобный элемент.13

Нейроподобные сети (НПС). 15

Обучение нейроподобной сети.. 18

Заключение.. 20

Список использованной литературы:22

Очень интересно - Реферат: Квантовые компьютеры

По своей сути процессы адаптации являются оптимизационными процессами.

Дж . Холланд , Adaptation in natural and artificial systems.

Понятие искусственный интеллект, как впрочем и просто интеллект, весьма расплывчаты. Если обобщить все сказанное за последние тридцать лет, то оказывается, что человек просто хочет создать себе подобного в той или иной форме, хочет, чтобы какие-то действия выполнялись более рационально, с меньшими затратами времени и энергии. С конца 40-х годов ученые все большего числа университетских и промышленных исследовательских лабораторий устремились к дерзкой цели: построение компьютеров, действующих таким образом, что по результатам работы их невозможно было бы отличить от человеческого разума. В последнее время наблюдается возрастание интереса к искусственному интеллекту, вызванное повышением требований к информационным системам. Умнеет программное обеспечение, умнеет бытовая техника. Мы неуклонно движемся к новой информационной революции, сравнимой по масштабам с развитием Интернета, имя которой – искусственный интеллект.

Искусственный интеллект является сейчас «горячей точкой» научных исследований. В этой точке, как в фокусе, сконцентрированы наибольшие усилия кибернетиков, лингвистов, психологов, философов, математиков и инженеров. Именно здесь решаются многие коренные вопросы, связанные с путями развития научной мысли, с воздействием достижений в области вычислительной техники и робототехник и на жизнь будущих поколений людей. Здесь возникают и получают права гражданства новые методы научных междисциплинарных исследований. Здесь формируется новый взгляд на роль тех или иных научных результатов и возникает то, что можно было бы назвать философским осмыслением этих результатов. Поэтому я посчитал актуальным раскрыть данную тему в реферате.

Терпеливо продвигаясь вперед в своем нелегком труде, исследователи, работающие в области искусственного интеллекта (ИИ), обнаружили, что вступили в схватку с весьма запутанными проблемами, далеко выходящими за пределы традиционной информатики. Оказалось, что прежде всего необходимо понять механизмы процесса обучения, природу языка и чувственного восприятия. Выяснилось, что для создания машин, имитирующих работу человеческого мозга, требуется разобраться в том, как действуют миллиарды его взаимосвязанных нейронов. И тогда многие исследователи пришли к выводу, что, пожалуй, самая трудная проблема, стоящая перед современной наукой – познание процессов функционирования человеческого разума, а не просто имитация его работы. Что непосредственно затрагивало фундаментальные теоретические проблемы психологической науки. В самом деле, ученым трудно даже прийти к единой точке зрения относительно самого предмета их исследований – интеллекта. Некоторые считают, что интеллект – умение решать сложные задачи; другие рассматривают его как способность к обучению, обобщению и аналогиям; третьи – как возможность взаимодействия с внешним миром путем общения, восприятия и осознания воспринятого. Тем не менее многие исследователи ИИ склонны принять тест машинного интеллекта, предложенный в начале 50-х годов выдающимся английским математиком и специалистом по вычислительной технике Аланом Тьюрингом. «Компьютер можно считать разумным, – утверждал Тьюринг, – если он способен заставить нас поверить, что мы имеем дело не с машиной, а с человеком».

Только создав Разум творец смог почувствовать себя Творцом

В.В. Головачев

Вам будет интересно - Реферат: Классификация сейсмических сигналов на основе нейросетевых технологий

Наш мир устроен гораздо сложнее чем мы можем себе представить. Но несмотря на это, даже тот поток информации который человек может воспринять и обработать за определённую единицу времени, неимоверно велик. Чего только стоит одна графика? Что говорить про отдельные случаи, когда этот поток увеличивается (гипноз, медитирование, магическое воздействие на окружающий мир).

Но это в идеале. Слепой человек лишен графического потока, парализованный — лишен осязательной информации, и т.д. То есть в принципе интеллект может функционировать в замкнутом пространстве, не реагируя на внешние факторы. И для этого уже не требуется та вычислительная мощность, в которой нуждается здоровый человек. Для создания ИИ уже достаточно вычислительной мощности современных компьютеров. Но необходима особая структура оперативной памяти, отличная от ёмкостной. Оперативная память должна быть токовой.

Что собой представляет, привычная для пользователя компьютера, оперативная память? Это микросхемы, чипы, построенные из ёмкостных ячеек. Каждая ячейка имеет свой адрес (координаты). Заполненная ячейка – заряженная ёмкость (1), пустая – разряженная (0). На обработку каждой ячейки, запись, стирание, считывание процессор выделяет отдельные циклы. То есть так он (компьютер) и работает: считывает, считает, записывает результат.

А так же ли работает мысль (человеческая оперативная память)? А ведь не так! Мы не выделяем для её обслуживания циклов. Появление, изменение и уничтожение информации в ней конечно связано со временем. Но вычислительная мощность процессора, то есть работа мозга, направленная на обработку внешних воздействий, и поиск информации в статичной (сохранённой) памяти при этом проблем с ресурсами не имеют. Единицы в нашей оперативной памяти не подвергаются вычислительному процессу. Они видоизменяются под воздействием внешних факторов напрямую, «проехала красная машина», «заболела спина», «надо ответить на письмо от друга». В машинном коде эти мысли занимают разное битное пространство памяти. В человеческом – один блок. В таком же блочном виде они сохраняются в статичной памяти. Разный уровень интеллектуальных способностей у людей, видимо, связан с размерами этого блока. Больше блок – легче осмысление крупного массива информации, быстрее поиск в сохранённой памяти. [1]

Все уже, наверное, слышали об электромеханических собаках в Японии, способных узнавать хозяина в лицо, выполнять некоторые простейшие команды и имеющие некоторую способность к обучению. Слышали и про холодильники с выходом в Интернет и про внедрение Microsoft в будущие версии Windows элементов искусственного интеллекта.

Похожий материал - Реферат: Компьютерные вирусы - понятие и классификация

В подобном развитии области искусственного интеллекта нет ничего необычного. Здесь уместно привести гипотезу о встречной эволюции человека и компьютера: человек сначала учиться видеть, ходить, разговаривать, а уже потом развивает способности к вычислениям и логическим выводам. Компьютер же наоборот, рождается как вычислительная система, базирующаяся на формальной логике, в процессе развития приобретает способности к распознаванию образов, синтезу речи и управлению в реальном времени. [2]

В настоящее время различают два основных подхода к моделированию искусственного интеллекта (AI – artificialintelligence): машинный интеллект , заключающийся в строгом задании результата функционирования, и искусственный разум , направленный на моделирование внутренней структуры системы. [3] Разделение работ по искусственному интеллекту на два направления связано с существованием двух точек зрения на вопрос, каким образом строить системы искусственного интеллекта. Сторонники одной точки зрения убеждены, что «важнее всего результат», т.е. хорошее совпадение поведения искусственно созданных и естественных интеллектуальных систем, а что касается внутренних механизмов формирования поведения, то разработчик искусственного интеллекта вовсе не должен копировать или даже учитывать особенности естественных, живых аналогов. Другая точка зрения состоит в том, что именно изучение механизмов естественного мышления и анализ данных о способах формирования разумного поведения человека могут создать основу для построения систем искусственного интеллекта, причем построение это должно осуществляться прежде всего как моделирование, воспроизведение техническими средствами принципов и конкретных особенностей функционирования биологических объектов. [4]

Первое направление, таким образом, рассматривает продукт интеллектуальной деятельности человека, изучает его структуру, и стремится воспроизвести этот продукт средствами современной техники. Моделирование систем машинного интеллекта достигается за счет использования законов формальной логики, теории множеств, графов, семантических сетей и других достижений науки в области дискретных вычислений. [5] Основные результаты заключаются в создании экспертных систем, систем разбора естественного языка и простейших систем управления вида «стимул-реакция». Ясно, что успехи этого направления искусственного интеллекта оказываются тесно связанны с развитием возможностей ЭВМ и искусства программирования, то есть с тем комплексом научно-технических исследований, которые часто называют компьютерными науками.

Второе направление искусственного интеллекта рассматривает данные о нейрофизиологических и психологических механизмах интеллектуальной деятельности и, в более широком плане, разумного поведения человека. Оно стремиться воспроизвести эти механизмы с помощью тех или иных технических устройств, с тем чтобы «поведение» таких устройств хорошо совпадало с поведением человека в определенных, заранее задаваемых пределах. Развитие этого направления тесно связано с успехами наук о человеке. Для него характерно стремление к воспроизведению более широкого, чем в машинном интеллекте, спектра проявлений разумной деятельности человека. Системы искусственного разума базируются на математической интерпретации деятельности нервной системы во главе с мозгом человека и реализуются в виде нейроподобных сетей на базе нейроподобного элемента (рис. 2) – аналога нейрона (рис. 1). [3]

cwetochki.ru

Реферат - Проблемы создания искусственного интеллекта 2

ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«САНКТ — ПЕТЕРБУРГСКИЙ ГОСУДАСТВЕННЫЙ УНИВЕРСИТЕТ

ЭКОНОМИКИ И ФИНАНСОВ»

Реферат по информатике

на тему:

«Проблемы создания искусственного интеллекта»

Выполнила: студентка 119 группы

Константинова В.В.

Руководитель: Смирнова Е.Н.

Санкт-Петербург

2011 г .

Появление в конце 40-х годов XX столетия электронных цифровых вычислительных машин, обладающих универсальными возможностями и высокой производительностью — сразу же породил вопрос: могут ли машины подобного типа «мыслить» подобно человеку? Иными словами, возможно ли создать машину, интеллектуальные возможности которой были тождественны интеллектуальным возможностям человека или даже превосходили возможности человека. Успехи практической имитации некоторых простых интеллектуальных функций в пионерских работах 50-60 годов, а также некоторые теоретические соображения — породили у многих исследователей уверенность в том, что задача создания полноценного «искусственного разума» вполне разрешима и, более того, создание «умных машин» — дело ближайшего будущего, точнее, ближайших 20-30 лет. Однако все сроки прошли, а ожидаемый результат так и не был получен.

Современные «интеллектуальные машины» способны чисто внешним образом имитировать отдельные интеллектуальные функции человека, отдельные психические процессы (распознавание образов, решение логических задач, игра в шахматы и т.п.), но они не обладают интеллектуальностью в подлинном смысле этого слова — они не способны к самообучению, не могут осмысленно понимать человеческую речь и вступать с человеком в осмысленный диалог, не способны творчески подходить к решению проблем, не обладают той гибкостью поведения, которая характерна для человека. Собственно задача создания «машинного эквивалента» человеческого интеллекта современными разработчиками систем «искусственного интеллекта» фактически даже и не ставится. Основные усилия направляются на решение конкретных, практически значимых задач, безотносительно к тому, приближает ли решение этих задач нас к «интегральному» искусственному интеллекту, воспроизводящему все основные интеллектуальные функции человека, или же нет.

Объяснить такой застой можно тем, что реальных путей решения этой задачи нет. Но может быть вопрос в том, что ученые не представляют себе точно, что означает «создать искусственный интеллект». Другими словами, они не имеют цели. Обычно на такое отвечают так: мы пока очень плохо понимаем природу человеческого интеллекта и, поэтому не можем ясно себе представить, каким образом можно создать его машинный аналог. При этом, однако, обычно неявно предполагают, что механизм человеческого мышления в принципе может быть прояснен и представлен в виде некоторого алгоритма, хотя решение этой задачи отодвигается на неопределенное будущее. Вполне возможно такое положение дел, что природа человеческого интеллекта такова, что «прояснить» его механизмы, свести деятельность интеллекта к некоторому набору «функций» или «операций», невозможно в принципе. Тогда решение ограничиться решением частных, конкретных, практически значимых задач, вполне оправдано. В противном случае, если нет принципиальной разницы между человеческим и «машинным» умом, то, следует, видимо, вернуться к «глобалистским» подходам 50-60 годов и направить все усилия на исследование реальных механизмов мышления в надежде открыть некий «алгоритм человеческого ума». Такой подход в случае успеха позволил бы сразу решить практически неограниченное число прикладных задач — поскольку не нужно было бы каждый раз заново разрабатывать «интеллектуальные» программы для решения очередной задачи — ведь подлинно «интеллектуальная» машина была бы способна самостоятельно найти эффективный путь решения любой (или почти любой) поставленной перед ней задачи. Ведь именно эту способность — находить решения (и ставить сами задачи) самостоятельно мы, собственно, и называем интеллектом.

Многие пытались объяснить, что же означает термин «искусственный интеллект». А. Тьюринг был первым, кто попытался ответить на этот вопрос. В 1950 году Тьюринг написал статью «Вычислительные машины и интеллект». Непосредственным поводом написания данной статьи было создание в 1945 году в Пенсильванском университете первой электронной цифровой вычислительной машины ЭНИАК. Тьюринг пытался выяснить, какими возможностями обладают электронные вычислительные машины и можно ли посредством алгоритмических вычислений, осуществляемых с помощью таких машин, имитировать деятельность человеческого интеллекта. Уже его статье ставилась задача создания универсального искусственного интеллекта. Тьюринг писал: «Мы можем надеяться, что машины, в конце концов, будут успешно соперничать с людьми во всех чисто интеллектуальных областях...». Далее он предлагает следующий план: «… снабдить машину хорошими органами чувств, а затем научить ее понимать и говорить по-английски. В этом случае машину можно будет обучать, как ребенка...».

Вскоре были осуществлены первые попытки реализации этого плана. В 1952 году А. Этткинд реализовал на машине программу, моделирующую условный рефлекс: реакция машины на «раздражитель» усиливалась или ослабевала в зависимости от положительного или отрицательного «подкрепления». Несколько позже он же занялся проблемой машинного перевода, надеясь на этом пути прийти к созданию «понимающей» машины.

Хотя первые разработки выглядели весьма обнадеживающими, эти исследования не позволили создать машины, поведение которых хотя бы в отдаленной степени напоминало разумное поведение человека. Неудачи отчасти объяснялись тем, что ранние программы были построены на основе метода сплошного перебора вариантов, что вело к экспоненциальному росту объема вычислений при увеличении размерности задачи. Таким образом, резервы быстродействия и памяти существовавших тогда ЭВМ были быстро исчерпаны. Кроме того, не удалось установить общие правила, с помощью которых любой вид мыслительной деятельности можно было бы представить в виде четкого алгоритма.

Важным шагом в развитии искусственного интеллекта была идея «эвристического программирования». Ее авторы Г. Саймон и А. Ньюэлл анализировали процессы решения логических задач людьми и обнаружили, что испытуемые часто использовали особые приемы (так назывемые «эвристики») которые, не будучи универсальными, тем не менее, во многих случаях приводили к успеху. Ньюэлл и Саймон попытались систематизировать эти приемы и разработали на этой основе программу, имитирующую, по их мнению, «практический интеллект» человека. Эти программы и получили название «эвристических». Впервые эвристики были применены в программе «Логик-теоретик», предназначенной для решения задач элементарной символической логики. Позже (1957 г.) найденные эвристики удалось распространить на более широкий класс задач — в результате была создана программа «Общий решатель задач» (GPS).

Последующие исследования быстро дифференцировались на ряд специализированных направлений. Можно выделить следующие направления, традиционно относимые к области искусственного интеллекта:

  1. Распознавание образов.
  2. Доказательство теорем и решение задач.
  3. Игры и принятие решений.
  4. Естественные языки и их машинное понимание. Машинный перевод.
  5. «Разумные роботы».
  6. Экспертные системы.
  7. Моделирование творческой деятельности.
  8. Моделирование нейронных сетей. Моделирование поведения животных.
  9. Специализированные интеллектуальные системы промышленного, военного, космического и т.п. назначения.

Параллельно появились философские работы, в которых делались попытки осмыслить данную проблематику. Сразу же нужно подчеркнуть, что философские исследования не оказывали и по сей день не оказывают сколько-нибудь существенного влияния на практические разработки в данной области. Многие философы позитивно восприняли идею возможности компьютерной имитации человеческой психики и попытались использовать эту идею для переосмысления традиционной проблематики философии сознания, философии интеллекта, а также психофизической проблемы. В основе этих попыток лежит так называемая «компьютерная метафора», т.е. уподобление мозга компьютеру, а психики — функции (или программе) этого компьютера. Один из представителей этого направления М. Минский прямо называет мозг «мясным компьютером», а сознание, по его мнению — «это просто то, что мозг делает».Философское осмысление «компьютерной метафоры» породило так называемый «функциональный подход» к решению психофизической проблемы, который можно характеризовать классической формулой: «сознание есть функция мозга».

Однако проблема существует не только в значении термина «искусственный интеллект», но и в способе оценки сходства человеческого и машинного интеллекта. Так, в качестве теста на интеллектуальность Тьюринг предложил свою знаменитую «игру в имитацию», известную ныне как «тест Тьюринга». Машина, по Тьюрингу, обладает свойством «разумности», если в заочном диалоге собеседник-человек не способен будет установить, с кем он имеет дело: с человеком или с разумной машиной.

Хотя такой чисто «прагматический» подход к пониманию «разумности» вызвал резкую критику со стороны философов (критики подчеркивали, что сущностное определение разума здесь подменяется простой констатацией сходства), тем не менее, для практических целей критерий Тьюринга был вполне удовлетворительным, и это обстоятельство в значительной мере предопределило тот прагматический стиль исследований в области искусственного интеллекта, который сохранился и до наших дней. Суть этого стиля — игнорирование всех сколько-нибудь сложных философских вопросов и ориентация лишь на достижение практических целей.

С 1991 года проводятся турниры программ, пытающихся пройти тест Тьюринга. Пока ещё эти программы (так называемые боты) крайне малоразумны. Всё, что они делают — это применяют, более или менее удачно, заранее подсказанные человеком правила. Осмыслить разговор боты даже не пытаются, в основном совершают попытки «обмануть» человека. Создатели закладывают в них ответы на наиболее часто задаваемые вопросы, стараются обойти распространенные ловушки. Например, внимательно следят, а не задаст ли судья один и тот же вопрос дважды? Человек в такой ситуации сказал бы что-то вроде: «Эй, ты уже спрашивал»! Значит, разработчик добавит боту правило тоже так поступать. А вот пример одного из «обманных правил», на которых основаны такие программы: Если человек сказал: «Думаешь ли ты, что фраза?», ответить: «Что ты имеешь в виду, говоря ФРАЗА? Что-то я тебя не понимаю». Так появляются бесконечные диалоги в стиле психоаналитиков:

— Как ты относишься к войне в Афганистане?

— О, я вижу, тебя волнует война в Афганистане? Давай поговорим об этом.

— Сколько на небе звёзд?

— Хмм, хотел бы я знать, сколько на небе звёзд!

— Думаешь ли ты, что жизнь прекрасна?

— Что ты имеешь в виду, говоря «жизнь прекрасна»? Что-то я тебя не понимаю.

Ясно, что при таком подходе создать действительно разумного собеседника нам никогда не удастся.

Ещё один способ оценки искусственного интеллекта – шахматы. Первый чемпионат мира по шахматам между компьютерными программами прошел в 1974 году. Победителем стала советская шахматная программа «Каисса». Не так давно компьютер обыграл и Гарри Каспарова. Однако магистральным путем к созданию интегрального искусственного интеллекта они явно не являются. Их принцип действия — это перебор вариантов плюс использование накопленных в шахматной теории правил (теория эндшпилей, разыгрывание стандартных дебютов и т.п.). Эти правила нигде кроме шахмат, не применяются. Кроме того, шахматный компьютер не способен обучаться, не способен самостоятельно придумывать новые правила. «Шахматное творчество» для него недоступно.

Робота также можно научить играть в футбол. Регулярно проводятся футбольные турниры роботов. Но даже самый лучший робот-футболист не сможет даже на элементарном уровне участвовать в игре в хоккей или в какой-либо другой игре, он не способен учиться, его программа основана, как правило, на очень примитивных инструкциях. Таким образом, ничего специфически «разумного» современные «интеллектуальные» программы не демонстрируют.

Не стоит забывать и о ранее упомянутой проблеме: есть ли реальные пути создания искусственного интеллекта. Одна из первых работ, в которой была дана обстоятельная критика искусственного интеллекта, — это вышедшая в 1971 году работа X. Дрейфуса «Чего не могут вычислительные машины». В этой работе X. Дрейфус тщательно проанализировал допущения, лежащие в основе веры в возможность создания машинного аналога человеческого разума. Дрейфус выделяет четыре основных допущения:

  1. Биологическое (нейродинамические процессы в мозге изоморфны некоторой переключательной схеме).
  2. Психологическое (мышление есть процесс переработки информации, заданной в дискретной форме, причем эта переработка подчинена конкретному алгоритму).
  3. Эпистемологическое (всякое знание можно формализовать).
  4. Онтологическое (все существующее представимо в терминах множества четко определенных, независимых друг от друга элементов).

Дрейфус пытался показать, что биологическое допущение не согласуется с новейшими данными нейрофизиологии, тогда как другие три допущения не являются твердо установленными истинами и могут оказаться несостоятельными.

Одно из основных препятствий на пути создания адекватной машинной модели человеческого интеллекта Дрейфус видит в неосуществимости алгоритмического моделирования человеческих потребностей, мотивов и деятельности целеполагания. При этом он подчеркивает биологический, телесно детерминированный характер человеческих потребностей и важность двигательной активности организма — как средства приобретения особого телесно-моторного опыта. Машину нельзя, по мнению Дрейфуса, запрограммировать таким образом, чтобы она была способна ставить собственные цели, испытывать желания и т.д.

Этот аргумент представляется весьма спорным, особенно если учесть более поздние разработки в области компьютерного моделирования мотивации, эмоций и целеполагания. В целом, следует признать, что работа Дрейфуса не дала определенного ответа на вопрос: возможен ли интегральный искусственный интеллект, равный по своим возможностям интеллекту человека.

Гораздо большее значение имеет так называемый «геделевский аргумент» против искусственного интеллекта. Теорема утверждает, что в достаточно «выразительных» формальных языках непременно найдутся истинные, но недоказуемые утверждения — причем этот результат не зависит от конкретного выбора дедуктики. Это означает, что множество «содержательных» истин всегда превосходит по объему множество истин, доказуемых с помощью любой сколь угодно сложной формализованной системы доказательств. Если смысл теоремы Геделя сводится к невозможности формализации содержательного понятия истины, то уже отсюда следует невозможность создания машины способной различать истину и ложь столь же эффективно, как это делает человек. Преимущество человека перед машиной можно усмотреть в том, что человек способен в любых случаях распознавать истинность «геделевских предложений», а машина делать это не способна. Впервые этот аргумент сформулировал британский математик Дж. Лукас в 1961 г. По мнению Дж. Лукаса, из известной теоремы К. Геделя «о неполноте формальных систем» (доказанной в 1931 г.) вытекает принципиальное различие между человеческим мышлением и любыми, сколь угодно сложными алгоритмическими системами искусственного интеллекта. В 60-е годы аргументация Лукаса была встречена весьма скептически и не повлияла существенно на исследования искусственных интеллектуальных систем. Однако в 1989 году этот аргумент «воскресил» и значительно усилил известный британский физик и математик Р. Пенроуз. Вышедшие одна за другой две его обстоятельные монографии привлекли к себе внимание и вызвали обширную дискуссию, в которой приняли многие известные математики, философы, нейрофизиологи и специалисты по искусственному интеллекту. Но и в этой новой дискуссии опять возобладало скептическое отношение к геделевскому аргументу.

Большое значение для оценки возможности создания интегрального искусственного интеллекта также имеет придуманный американским философом Дж. Сёрлом мысленный эксперимент, известный как «аргумент китайской комнаты». Смысловым ядром аргумента является утверждение о невозможности воспроизведения мыслительных процессов через операции над формальными символами. Кратко аргумент формулируется «Программа лишь манипулирует символами, мозг же придает им смысл». Сёрл задался вопросом: будет ли машинный эквивалент человеческого интеллекта действительно обладать такими психическими функциями, как понимание, чувственное восприятие, мышление и убедительно показал, что на этот вопрос следует ответить однозначно отрицательно. Машина в любом случае будет лишь чисто внешним образом имитировать понимание, восприятие и мышление, ничего на самом деле не понимая, не воспринимая и не мысля.

Подводя итог исследований в области искусственного интеллекта за последние 50 лет, можно сделать вывод, что при должной настойчивости любая локальная область интеллектуальной деятельности человека, по крайней мере, если она не носит ярко выраженного творческого характера, может быть представлена в виде алгоритма и передана машине. Однако конечная цель проекта «искусственный интеллект» — создание универсальной «разумной машины», которая могла бы обучаться, подобно человеку, и самостоятельно совершенствовать свое поведение, осваивая новые виды интеллектуальной деятельности и достигая при этом уровня человека средних способностей — эта цель не достигнута и появляется все больше сомнений в ее принципиальной достижимости. По крайней мере, никакого реального прогресса в создании такого самообучающегося «интегрального» интеллекта достигнуто не было.

Список используемых источников:

1. Дубровский ДИ. Психические явления и мозг. М., 1971.

2. Патнем X. Философия сознания. М., 1999.

3. Пенроуз P. Новый ум короля. М., 2002, Penrose R. Shadows of the Mind. L., 1993.

4. Сёрл Дж. Разум мозга — компьютерная программа?// В мире науки. 1990. №3. С.7-13.

5. Тьюринг А. Может ли машина мыслить? М., 1960.

6. Ярвилехто Т. Мозг и психика. М., 1992.

7. Интернет-журнала «Мембрана» статья Андрея Плахова (http://www.membrana.ru/particle/2121)

8. ru.wikipedia.org/wiki

9. www.boldachev.com/que-ans/ia-probl/

www.ronl.ru

Реферат по информатике на тему: «Искусственный интеллект»

МОСКОВСКИЙ КОМИТЕТ ОБРАЗОВАНИЯ

ЮГО-ВОСТОЧНОЕ ОКРУЖНОЕ УПРАВЛЕНИЕ

Средняя общеобразовательная школа №506

с углубленным изучением экономики

Реферат по информатике

на тему:

«Искусственный интеллект»

Выполнил ученик 11Б класса Ковчегин Игорь

Учитель: Сальникова Надежда Валерьевна

Москва, 2002

Содержание

Содержание 2

Введение 3

Искусственный интеллект – новая информационная революция 5

Основы теории нейроподобных сетей. 10

Некоторые сведения о мозге 10

Нейрон как элементарное звено. 10

Нейроподобный элемент. 13

Нейроподобные сети (НПС) 15

Обучение нейроподобной сети 18

Заключение 20

Словарь терминов 22

^

Введение

По своей сути процессы адаптации являются оптимизационными процессами.

Дж. Холланд, Adaptation in natural and artificial systems.

Понятие искусственный интеллект, как впрочем и просто интеллект, весьма расплывчаты. Если обобщить все сказанное за последние тридцать лет, то оказывается, что человек просто хочет создать себе подобного в той или иной форме, хочет, чтобы какие-то действия выполнялись более рационально, с меньшими затратами времени и энергии. С конца 40-х годов ученые все большего числа университетских и промышленных исследовательских лабораторий устремились к дерзкой цели: построение компьютеров, действующих таким образом, что по результатам работы их невозможно было бы отличить от человеческого разума. В последнее время наблюдается возрастание интереса к искусственному интеллекту, вызванное повышением требований к информационным системам. Умнеет программное обеспечение, умнеет бытовая техника. Мы неуклонно движемся к новой информационной революции, сравнимой по масштабам с развитием Интернета, имя которой – искусственный интеллект.

Искусственный интеллект является сейчас «горячей точкой» научных исследований. В этой точке, как в фокусе, сконцентрированы наибольшие усилия кибернетиков, лингвистов, психологов, философов, математиков и инженеров. Именно здесь решаются многие коренные вопросы, связанные с путями развития научной мысли, с воздействием достижений в области вычислительной техники и робототехники на жизнь будущих поколений людей. Здесь возникают и получают права гражданства новые методы научных междисциплинарных исследований. Здесь формируется новый взгляд на роль тех или иных научных результатов и возникает то, что можно было бы назвать философским осмыслением этих результатов. Поэтому я посчитал актуальным раскрыть данную тему в реферате.

Терпеливо продвигаясь вперед в своем нелегком труде, исследователи, работающие в области искусственного интеллекта (ИИ), обнаружили, что вступили в схватку с весьма запутанными проблемами, далеко выходящими за пределы традиционной информатики. Оказалось, что прежде всего необходимо понять механизмы процесса обучения, природу языка и чувственного восприятия. Выяснилось, что для создания машин, имитирующих работу человеческого мозга, требуется разобраться в том, как действуют миллиарды его взаимосвязанных нейронов. И тогда многие исследователи пришли к выводу, что, пожалуй, самая трудная проблема, стоящая перед современной наукой – познание процессов функционирования человеческого разума, а не просто имитация его работы. Что непосредственно затрагивало фундаментальные теоретические проблемы психологической науки. В самом деле, ученым трудно даже прийти к единой точке зрения относительно самого предмета их исследований – интеллекта. Некоторые считают, что интеллект – умение решать сложные задачи; другие рассматривают его как способность к обучению, обобщению и аналогиям; третьи – как возможность взаимодействия с внешним миром путем общения, восприятия и осознания воспринятого. Тем не менее многие исследователи ИИ склонны принять тест машинного интеллекта, предложенный в начале 50-х годов выдающимся английским математиком и специалистом по вычислительной технике Аланом Тьюрингом. «Компьютер можно считать разумным, – утверждал Тьюринг, – если он способен заставить нас поверить, что мы имеем дело не с машиной, а с человеком».^ Только создав Разум творец смог почувствовать себя Творцом

В.В. Головачев

 Наш мир устроен гораздо сложнее чем мы можем себе представить. Но несмотря на это, даже тот поток информации который человек может воспринять и обработать за определённую единицу времени, неимоверно велик. Чего только стоит одна графика? Что говорить про отдельные случаи, когда этот поток увеличивается (гипноз, медитирование, магическое воздействие на окружающий мир).

Но это в идеале. Слепой человек лишен графического потока, парализованный — лишен осязательной информации, и т.д. То есть в принципе интеллект может функционировать в замкнутом пространстве, не реагируя на внешние факторы. И для этого уже не требуется та вычислительная мощность, в которой нуждается здоровый человек. Для создания ИИ уже достаточно вычислительной мощности современных компьютеров. Но необходима особая структура оперативной памяти, отличная от ёмкостной. Оперативная память должна быть токовой.

Что собой представляет, привычная для пользователя компьютера, оперативная память? Это микросхемы, чипы, построенные из ёмкостных ячеек. Каждая ячейка имеет свой адрес (координаты). Заполненная ячейка – заряженная ёмкость (1), пустая – разряженная (0). На обработку каждой ячейки, запись, стирание, считывание процессор выделяет отдельные циклы. То есть так он (компьютер) и работает: считывает, считает, записывает результат.

А так же ли работает мысль (человеческая оперативная память)? А ведь не так! Мы не выделяем для её обслуживания циклов. Появление, изменение и уничтожение информации в ней конечно связано со временем. Но вычислительная мощность процессора, то есть работа мозга, направленная на обработку внешних воздействий, и поиск информации в статичной (сохранённой) памяти при этом проблем с ресурсами не имеют. Единицы в нашей оперативной памяти не подвергаются вычислительному процессу. Они видоизменяются под воздействием внешних факторов напрямую, «проехала красная машина», «заболела спина», «надо ответить на письмо от друга». В машинном коде эти мысли занимают разное битное пространство памяти. В человеческом – один блок. В таком же блочном виде они сохраняются в статичной памяти. Разный уровень интеллектуальных способностей у людей, видимо, связан с размерами этого блока. Больше блок – легче осмысление крупного массива информации, быстрее поиск в сохранённой памяти. [1]

Все уже, наверное, слышали об электромеханических собаках в Японии, способных узнавать хозяина в лицо, выполнять некоторые простейшие команды и имеющие некоторую способность к обучению. Слышали и про холодильники с выходом в Интернет и про внедрение Microsoft в будущие версии Windows элементов искусственного интеллекта.

В подобном развитии области искусственного интеллекта нет ничего необычного. Здесь уместно привести гипотезу о встречной эволюции человека и компьютера: человек сначала учиться видеть, ходить, разговаривать, а уже потом развивает способности к вычислениям и логическим выводам. Компьютер же наоборот, рождается как вычислительная система, базирующаяся на формальной логике, в процессе развития приобретает способности к распознаванию образов, синтезу речи и управлению в реальном времени. [2]

В настоящее время различают два основных подхода к моделированию искусственного интеллекта (AI – artificial intelligence): машинный интеллект, заключающийся в строгом задании результата функционирования, и искусственный разум, направленный на моделирование внутренней структуры системы. [3] Разделение работ по искусственному интеллекту на два направления связано с существованием двух точек зрения на вопрос, каким образом строить системы искусственного интеллекта. Сторонники одной точки зрения убеждены, что «важнее всего результат», т.е. хорошее совпадение поведения искусственно созданных и естественных интеллектуальных систем, а что касается внутренних механизмов формирования поведения, то разработчик искусственного интеллекта вовсе не должен копировать или даже учитывать особенности естественных, живых аналогов. Другая точка зрения состоит в том, что именно изучение механизмов естественного мышления и анализ данных о способах формирования разумного поведения человека могут создать основу для построения систем искусственного интеллекта, причем построение это должно осуществляться прежде всего как моделирование, воспроизведение техническими средствами принципов и конкретных особенностей функционирования биологических объектов. [4]

Первое направление, таким образом, рассматривает продукт интеллектуальной деятельности человека, изучает его структуру, и стремится воспроизвести этот продукт средствами современной техники. Моделирование систем машинного интеллекта достигается за счет использования законов формальной логики, теории множеств, графов, семантических сетей и других достижений науки в области дискретных вычислений. [5] Основные результаты заключаются в создании экспертных систем, систем разбора естественного языка и простейших систем управления вида «стимул-реакция». Ясно, что успехи этого направления искусственного интеллекта оказываются тесно связанны с развитием возможностей ЭВМ и искусства программирования, то есть с тем комплексом научно-технических исследований, которые часто называют компьютерными науками.

Второе направление искусственного интеллекта рассматривает данные о нейрофизиологических и психологических механизмах интеллектуальной деятельности и, в более широком плане, разумного поведения человека. Оно стремиться воспроизвести эти механизмы с помощью тех или иных технических устройств, с тем чтобы «поведение» таких устройств хорошо совпадало с поведением человека в определенных, заранее задаваемых пределах. Развитие этого направления тесно связано с успехами наук о человеке. Для него характерно стремление к воспроизведению более широкого, чем в машинном интеллекте, спектра проявлений разумной деятельности человека. Системы искусственного разума базируются на математической интерпретации деятельности нервной системы во главе с мозгом человека и реализуются в виде нейроподобных сетей на базе нейроподобного элемента (рис. 2) – аналога нейрона (рис. 1). [3]

Нейроподобные сети в последнее время являются одним из самых перспективных направлений в области искусственного интеллекта и постепенно входят в бытность людей в широком спектре деятельности.

Сети первой группы, такие как сети обратного распространения ошибки, сети Хопфилда и др. используются для распознавания образов, анализа и синтеза речи, перевода с одного языка на другой и прогнозирования. Это вызвано такими особенностями сетей как восстановление изображения по его части, устойчивостью к зашумлению входного сигнала, прогнозирование изменения входов и параллельность вычислений. Также, немаловажной характеристикой является способность функционировать даже при потере некоторой части сети.

Сети второй группы используются как системы управления в реальном времени несложных объектов. Это управление популярными в последнее время интеллектуальными агентами, выполняющими роль виртуальных секретарей. Особенностями данной группы является появление некоторых внутренних стимулов, возможностью к самообучению и функционированию в реальном времени.

И, наконец, сети третьей группы, являющиеся дальнейшим развитием предыдущих, представляют собой уже нейроподобные системы и нацелены они на создание экзотических в настоящее время виртуальных личностей, информационных копий человека, средой обитания которых является глобальная сеть Интернет. Данное направление только зарождается, но есть немалый шанс, что мы станем свидетелями ситуации рождения виртуальных людей, подробно описанной фантастами и режиссерами. [6]

Сейчас в Интернете повсеместно можно встретить признаки зарождения подобных проектов, призывы объединиться всем научным потенциалом способного думать человечества в целях очеловечивания Интернета, преобразования его в разумную систему или среду обитания разумных систем. Раз существуют подобные предпосылки, значит не что не оставит полет человеческой мысли на пути достижения поставленной цели.

На основании вышеизложенного можно сделать вывод о том, что основные направления искусственного интеллекта связаны с моделированием, но в случае машинного интеллекта мы имеем дело с моделированием феноменологическим, имитационным, а в случае искусственного разума – с моделированием структурным.^ Что позволяет человеку анализировать поступающую информацию? В терминологии нейрогенетики введено ключевое понятие – нейросеть. Именно совокупность нейросетей образует отделы нервной системы человека, которые в свою очередь определяют всю деятельность, придают существу разум, интеллект.

Мозг является, пожалуй, самой сложной из известных нам систем переработки информации. Достаточно сказать, что в нем содержится около 100 миллиардов нейронов, каждый из которых имеет в среднем 10 000 связей. При этом мозг чрезвычайно надежен: ежедневно погибает большое количество нейронов, а мозг продолжает функционировать. Обработка огромных объемов информации осуществляется мозгом очень быстро, за доли секунды, несмотря на то, что нейрон является медленнодействующим элементом со временем реакции не менее нескольких миллисекунд.

Пока не слишком понятно, как мозгу удается получить столь впечатляющее сочетание надежности и быстродействия. Довольно хорошо изучена структура и функции отдельных нейронов, имеются данные об организации внутренних и внешних связей между нейронами некоторых структурных образований мозга, совсем мало известно об участии различных структур в процессах переработки информации. [7]

Ниже приводятся некоторые сведения об устройстве и работе нервной системы, которые используются при построении моделей нейронных сетей. ^ Нервные клетки, или нейроны, представляют собой особый вид клеток в живых организмах, обладающих электрической активностью, основное назначение которых заключается в оперативном управлении организмом. Схематическое изображение нейрона приведено на рисунке 1.

Рисунок 1. Схема строения нейрона

Нейрон имеет тело (сому) – 1, дерево входов (дендриты) – 4 и выходов (аксон и его окончания) – 2. Сома, как правило, имеет поперечный размер в несколько десятков микрон. Длина дендритов может достигать 1 мм, дендриты сильно ветвятся, пронизывая сравнительно большое пространство в окрестности нейрона. Длина аксона может достигать сотен миллиметров. Начальный сегмент аксона – 3, прилегающий к телу клетки, утолщен. Иногда этот сегмент называют аксонным холмиком. По мере удаления от клетки он постепенно сужается и на расстоянии нескольких десятков микрон на нем появляется миэлиновая оболочка, имеющая высокое электрическое сопротивление. На соме и на дендритах располагаются окончания (коллатерали) аксонов, идущих от других нервных клеток. Каждое такое окончание имеет вид утолщения, называемого синаптической бляшкой, или синапсом. Поперечные размеры синапса, как правило, не превышают нескольких микрон, чаще всего эти размеры составляют около 1 мкм. [7]

Входные сигналы дендритного дерева (постсинаптические потенциалы1) взвешиваются и суммируются на пути к аксонному холмику, где генерируется выходной импульс (спайк) или группа импульсов. Его наличие (или интенсивность), следовательно, является функцией взвешенной суммы входных сигналов. Выходной сигнал проходит по ветвям аксона и достигает синапсов, которые соединяют аксоны с дендритными деревьями других нейронов. Через синапсы сигнал трансформируется в новый входной сигнал для смежных нейронов. Этот входной сигнал может быть положительным и отрицательным (возбуждающим или тормозящим) в зависимости от вида синапсов. Величина входного сигнала, генерируемого синапсом, может быть различной даже при одинаковой величине сигнала, приходящего в синапс. Эти различия определяются эффективностью или весом синапса. Синаптический вес может изменяться в процессе функционирования синапса. [7] Многие ученые считают такое изменение нейрофизиологическим коррелятом (следом) памяти. При этом роль механизмов молекулярной памяти заключается в долговременном закреплении этих следов.

Нейроны можно разбить на три большие группы: рецепторные, промежуточные и эффекторные. Рецепторные нейроны обеспечивают ввод в мозг сенсорной информации. Они трансформируют сигналы, поступающие на органы чувств (оптические сигналы в сетчатке глаза, акустические в ушной улитке или обонятельные в хеморецепторах носа), в электрическую импульсацию своих аксонов. Эффекторные нейроны передают приходящие на них сигналы исполнительным органам. На конце их аксонов имеются специальные синаптические соединения с исполнительными органами, например мышцами, где возбуждение нейронов трансформируется в сокращения мышц. Промежуточные нейроны осуществляют обработку информации, получаемой от рецепторов, и формируют управляющие сигналы для эффекторов. Они образуют центральную нервную систему. [7]

^

Рисунок 2. Схема строения нейроподобного элемента.
Нейроподобный элемент, который обычно используется при моделировании нейронных сетей, приведен на рисунке 2. На нейроподобный элемент поступает набор входных сиг­налов x1...хn (или входной вектор ), представляющий собой выходные сигналы других нейроподобных элементов. Этот входной вектор соответствует сигналам, поступающим в синапсы2 биологиче­ских нейронов. Каждый входной сигнал умножается на соответ­ствующий вес связи w1…wn – аналог эффективности синапса. Вес связи является скалярной величиной, положительной для возбуждающих и отрицательной для тормозящих связей. Взвешенные весами связей входные сиг­налы поступают на блок суммации, соот­ветствующий телу клетки, где осущест­вляется их алгебраическая суммация и определяется уровень возбуждения нейроподобного элемента S [8]:

Выходной сигнал нейрона у определяется путем пропускания уров­ня возбуждения S через нелинейную функцию f:

,

где θ — некоторое постоянное смещение (аналог порога нейрона). Обычно используются простейшие нелинейные функции:

В такой модели нейрона пренебрегают многими известными харак­теристиками биологического прототипа, которые некоторые исследо­ватели считают критическими. Например, в ней не учитывают нелиней­ность пространственно-временной суммации, которая особенно про­является для сигналов, приходящих по возбуждающим и тормозя­щим синапсам, различного рода временные задержки, эффекты син­хронизации и частотной модуляции, рефрактерность3 и т. п. Несмотря на это нейроподобные сети, простроенные на основе таких простых нейроподобных элементов, демонстрируют ассоциативные свойства, напоминающие свойства биологических систем. [8]^ Что такое искусственные нейронные сети? Что они могут делать? Как они работают? Как их можно использовать? Эти и множество подобных вопросов задают специалисты из разных областей.

Что же такое нейроподобная сеть? Это искусственный аналог биологической сети, по своим параметрам максимально приближающийся к оригиналу. Нейроподобные сети прошли длинный путь становления и развития, от полного отрицания возможности их применения до воплощения во многие сферы деятельности человека.

Современные цифровые вычислительные машины способны с высоким быстродействием и точностью решать формализованные задачи с вполне определенными данными по заранее известным алгоритмам. Однако в тех случаях, когда задача не поддается формализации, а входные данные неполны, зашумлены или противоречивы, применение традиционных компьютеров становится неэффективным. Альтернативой им становятся специализированные компьютеры, реализующие нетрадиционные нейросетевые технологии. Сильной стороной этих комплексов является нестандартный характер обработки информации. Она кодируется и запоминается не в отдельных ячейках памяти, а в распределении связей между нейронами и в их силе, поэтому состояние каждого отдельного нейрона определяется состоянием многих других нейронов, связанных с ним. Следовательно, потеря одной или нескольких связей не оказывает существенного влияния на результат работы системы в целом, что обеспечивает ее высокую надежность. [9]

Высокая «естественная» помехоустойчивость и функциональная надежность касаются как искаженных (зашумленных) потоков информации, так и в смысле отказов отдельных процессорных элементов. Этим обеспечиваются высокая оперативность и достоверность обработки информации, а простая дообучаемость и переобучаемость НПС позволяют при изменении внешних факторов своевременно осуществлять переход на новые виды решаемых задач.

Приведенные выше преимущества нейросетевой обработки данных определяют области применения НПС:

  • обработка и анализ изображений;
  • распознавание речи независимо от диктора, перевод;
  • обработка высокоскоростных цифровых потоков;
  • автоматизированная система быстрого поиска информации;
  • классификация информации в реальном масштабе времени;
  • планирование применения сил и средств в больших масштабах;
  • решение трудоемких задач оптимизации;
  • адаптивное управление и предсказание.

Основные положения теории деятельности головного мозга и математическая модель нейрона были разработаны У. Маккалоком и Ч. Питтсом в 1943 году и опубликованы в статье «Логическое исчисление идей, относящихся к нервной деятельности», которая была издана на русском языке в сборнике «Автоматы» только спустя 13 лет. Согласно предложенной модели мозг представляет собой ансамбль нейронов, имеющих одинаковую структуру. Каждый нейрон реализует некоторую функцию, называемую пороговой, над входными значениями. Если значение функции превышает определенную величину – порог (что характеризует суммарную значимость полученной нейроном информации), нейрон возбуждается и формирует выходной сигнал для передачи его другим нейронам. Пройдя путь от рецепторов (слуховых, зрительных и других) через нейронные структуры мозга до исполнительных органов, входная информация преобразуется в набор управляющих воздействий, адекватных ситуации [8].

Отдельные нейроны, соединяясь между собой, образуют новое качество, которое, в зависимости от характера межнейронных соединений, имеет различные уровни биологического моделирования:

  • группа нейронов;
  • нейронная сеть;
  • нервная система;
  • мыслительная деятельность;
  • мозг.
Другими словами, нейроподобная сеть — это параллельная связная сеть простых адаптивных элементов, которая взаимодействует с объектами реального мира аналогично биологической нервной системе. [8] С инженерной точки зрения такая сеть представляет собой сильно распараллеленную динамическую систему с топологией направленного графа, которая может выполнять переработку информации посредством изменения своего состояния в ответ на постоянный или импульсный входной сигнал.

В настоящее время основными направлениями реализации НПС являются:

  • программная реализация на цифровых ЭВМ традиционной архитектуры;
  • программно-аппаратная реализация в виде сопроцессоров к ЭВМ общего назначения;
  • аппаратная реализация путем создания нейрокомпьютеров на базе нейроплат в виде параллельных нейроподобных структур.
Ранние варианты реализации НПС относятся к первым двум из указанных направлений. Первое направление характеризуется универсальностью, дешевизной и низкой скоростью обучения и функционирования НПС. Для второго направления характерна высокая скорость моделирования функционирования НПС, но при этом существуют серьезные физические ограничения числа моделируемых элементов и связей между ними, а также возможностей обучения и до обучения. По мере развития элементной базы ЭВМ стало возможным самостоятельное развитие третьего направления, которое положило начало индустрии нейрокомпьютеров, представляющих совокупность аппаратных и программных средств для реализации моделей нейронных сетей.

На сегодняшний день известно уже более 200 различных парадигм4 нейронных сетей (не только детерминированных, но и вероятностных), десятки НПС реализованы в специализированных кристаллах и платах, на их основе созданы мощные рабочие станции и даже суперкомпьютеры. Современные технологии достигли того рубежа, когда стало возможным изготовление технической системы из 3…4 млрд. нейронов (именно такое количество их в мозгу человека). Однако их соединение продолжает оставаться проблемой.^ Одно из важнейших свойств нейроподобной сети — способность к самоорганизации, самоадапта­ции с целью улучшения качества функционирования. Это достигается обучением сети, алгоритм которого задается набором обучающих правил. Обучающие правила определяют, каким образом изменяются связи в ответ на входное воздействие. Многие из них являются разви­тием высказанной Д. О. Хеббом идеи о том, что обучение основа­но на увеличении силы связи (синаптического веса) между одновремен­но активными нейронами. Таким образом, часто используемые в сети связи усиливаются, что объясняет феномен обучения путем повторения и привыкания. Математически это правило можно записать сле­дующим образом:

,

где wij(t) и wij(t+1) – значение веса связи от i-го к j-му нейрону соответственно до и после его изменения, α — скорость обучения, yi и yj –выходные сигналы i-го и j-го нейронов. [10] В настоящее время существует множество разнообразных обучающих правил (алгоритмов обучения). Некоторые из них будут представлены в параграфах, посвященных рассмотрению конкретных нейросетевых моделей.

Заключение

Многие споры вокруг проблемы создания искусственного интеллекта имеют эмоциональную подоплеку. Признание возможности искусственного разума представляется чем-то унижающим человеческое достоинство. Однако нельзя смешивать вопросы возможностей искусственного разума с вопросом о развитии и совершенствовании человеческого разума. Повсеместное использование ИИ создаёт предпосылки для перехода на качественно новую ступень прогресса, даёт толчок новому витку автоматизации производства, а значит и повышению производительности труда. Разумеется, искусственный разум может быть использован в негодных целях, однако это проблема не научная, а скорее морально-этическая.

Однако развитие кибернетики выдвигает ряд проблем, которые все же требуют пристального внимания. Эти проблемы связаны с опасностями, возникающими в ходе работ по искусственному интеллекту.

Первая проблема связана с возможной потерей стимулов к творческому труду в результате массовой компьютеризации или использования машин в сфере искусств. Однако в последнее время стало ясно, что человек добровольно не отдаст самый квалифицированный творческий труд, так как он для самого человека является привлекательным.

Вторая проблема носит более серьезный характер, и на нее неоднократно указывали такие специалисты, как Н. Винер, Н. М. Амосов, И. А. Полетаев и др. Состоит она в следующем. Уже сейчас существуют машины и программы, способные в процессе работы самообучаться, т. е. повышать эффективность приспособления к внешним факторам. В будущем, возможно, появятся машины, обладающие таким уровнем приспособляемости и надежности, что необходимость человеку вмешиваться в процесс отпадет. В этом случае возможна потеря самим человеком своих качеств, ответственных за поиск решений. Налицо возможная деградация способностей человека к реакции на изменение внешних условий и, возможно, неспособность принятия управления на себя в случае аварийной ситуации. Встает вопрос о целесообразности введения некоторого предельного уровня в автоматизации процессов, связанных с тяжелыми аварийными ситуациями. В этом случае у человека, "надзирающим" за управляющей машиной, всегда хватит умения и реакции таким образом воздействовать на ситуацию, чтобы погасить разгорающуюся аварийную ситуацию. Таковые ситуации возможны на транспорте, в ядерной энергетике. Особо стоит отметить такую опасность в ракетных войсках стратегического назначения, где последствия ошибки могут иметь фатальный характер. Несколько лет назад в США начали внедрять полностью компьютеризированную систему запуска ракет по командам суперкомпьютера, обрабатывающего огромные массивы данных, собранных со всего света. Однако оказалось, что даже при условии многократного дублирования и перепроверки, вероятность ошибки оказалась бы столь велика, что отсутствие контролирующего оператора привело бы к непоправимой ошибке. От системы отказались.

Люди будут постоянно решать проблему искусственного интеллекта, постоянно сталкиваясь все с новыми проблемами. И, видимо, процесс этот бесконечен.^ ИНТЕЛЛЕКТ (от лат. intellectus — познание, понимание, рассудок), способность мышления, рационального познания. Латинский перевод древнегреческого понятия нус («ум»), тождественный ему по смыслу.

^ , раздел информатики, включающий разработку методов моделирования и воспроизведения с помощью ЭВМ отдельных функций творческой деятельности человека, решение проблемы представления знаний в ЭВМ и построение баз знаний, создание экспертных систем, разработку т. н. интеллектуальных роботов.

КИБЕРНЕТИКА (от греч. kybernetike — искусство управления), наука об управлении, связи и переработке информации. Основной объект исследования — т. н. кибернетические системы, рассматриваемые абстрактно, вне зависимости от их материальной природы. Примеры кибернетических систем — автоматические регуляторы в технике, ЭВМ, человеческий мозг, биологические популяции, человеческое общество. Каждая такая система представляет собой множество взаимосвязанных объектов (элементов системы), способных воспринимать, запоминать и перерабатывать информацию, а также обмениваться ею. Современная кибернетика состоит из ряда разделов, представляющих собой самостоятельные научные направления. Теоретическое ядро кибернетики составляют информации теория, теория алгоритмов, теория автоматов, исследование операций, теория оптимального управления, теория распознавания образов. Кибернетика разрабатывает общие принципы создания систем управления и систем для автоматизации умственного труда. Основные технические средства для решения задач кибернетики — ЭВМ. Поэтому возникновение кибернетики как самостоятельной науки (Н. Винер, 1948) связано с созданием в 40-х гг. 20 в. этих машин, а развитие кибернетики в теоретических и практических аспектах — с прогрессом электронной вычислительной техники

ЛОГИКА (греч. logike), наука о способах доказательств и опровержений; совокупность научных теорий, в каждой из которых рассматриваются определенные способы доказательств и опровержений. Основателем логики считается Аристотель. Различают индуктивную и дедуктивную логику, а в последней — классическую, интуиционистскую, конструктивную, модальную и др. Все эти теории объединяет стремление к каталогизации таких способов рассуждений, которые от истинных суждений-посылок приводят к истинным суждениям-следствиям; каталогизация осуществляется, как правило, в рамках логических. исчислений. Особую роль в ускорении научно-технического прогресса играют приложения логики в вычислительной математике, теории автоматов, лингвистике, информатике и др.

^ , вызывается нарушением правил или законов логики; признак формальной несостоятельности содержащих ее определений, рассуждений, выводов и доказательств.

^ , раздел математики, в котором изучаются общие свойства множеств, преимущественно бесконечных. Понятие множества — простейшее математическое понятие, оно не определяется, а лишь поясняется при помощи примеров: множество книг на полке, множество точек на прямой (точечное множество) и т. д.

Рисунок 3. Модуляция колебаний (сверху вниз): амплитудная, частотная и амплитудно-фазовая; S – амплитуда, t – время.
^ , изменение амплитуды, частоты, фазы или др. характеристик колебаний по заданному закону, медленное по сравнению с периодом этих колебаний. Различают модуляцию колебаний амплитудную, частотную и фазовую (рис.3).

НЕЙРОН (от греч. neuron — нерв), нервная клетка, состоящая из тела и отходящих от него отростков — относительно коротких дендритов и длинного аксона; основная структурная и функциональная единица нервной системы (см. схему). Нейроны проводят нервные импульсы от рецепторов в центральную нервную систему (чувствительный нейрон), от центральной нервной системы к исполнительным органам (двигательный нейрон), соединяют между собой несколько других нервных клеток (вставочные нейроны). Взаимодействуют нейроны между собой и с клетками исполнительных органов через синапсы. У коловратки число нейронов 102, у человека — более 1010.

ПАРАДИГМА (от греч. paradeigma — пример, образец), в философии, социологии — исходная концептуальная схема, модель постановки проблем и их решения, методов исследования, господствующих в течение определенного исторического периода в научном сообществе. Смена парадигм представляет собой научную революцию.

РАЗУМ, ум, способность понимания и осмысления. В ряде философских течений — высшее начало и сущность (панлогизм), основа познания и поведения людей (рационализм).

РЕФРАКТЕРНОСТЬ (от франц. refractaire — невосприимчивый), в физиологии — отсутствие или снижение возбудимости нерва или мышцы после предшествующего возбуждения. Рефрактерность лежит в основе торможения. Рефрактерный период длится от нескольких десятитысячных (во многих нервных волокнах) до нескольких десятых (в мышечных волокнах) долей секунды.

СИНАПС (греч. synapsis — соединение, связь), зона контакта между нейронами и другими образованиями (нервными, мышечными или железистыми клетками), служащая для передачи информации от клетки, генерирующей нервный импульс к другим клеткам.

^ , биоэлектрические потенциалы, возникающие в местах специализированных межклеточных контактов — синапсах — во время передачи возбуждения от одной клетки (пресинаптической) к другой (постсинаптической).

СИНХРОНИЗАЦИЯ, приведение двух или нескольких процессов к такому их протеканию, когда одинаковые или соответствующие элементы процессов совершаются с неизменным сдвигом во времени либо одновременно (напр., речь оратора и переводчика при синхронном переводе, производственные операции).

ЧАСТОТНАЯ МОДУЛЯЦИЯ, изменение частоты колебаний по заданному закону, медленное по сравнению с периодом этих колебаний.

^

  1. Шихов Е. Варианты реализации искусственного интеллекта – ресурс Интернета, http://neural.narod.ru/, 2002
  2. Эндрю А. Искусственный интеллект – М.: Мир, 1985.
  3. Квасный Р. Искусственный интеллект – ресурс Интернета, http://neural.narod.ru/, 2001.
  4. Брушлинский А.В. Возможен ли искусственный интеллект?
  5. Н. Винер Н. Кибернетика – М.: Наука, электронная версия, 1998.
  6. Труды третьего международного симпозиума «Интеллектуальные системы» – Псков: 1998.
  7. Федюкович Н. И. Анатомия и физиология: Учеб. Пособие. – Мн.: ООО «Полифакт-Альфа», 1999.
  8. Соколов Е. Н., Вайткявичус Г.Г. Нейроинтеллект: от нейрона к нейрокомпьютеру – М.: Наука, 1989.
  9. Цыганков В. Д. Нейрокомпьютер и его применение – М.: СолСистем, 1993.
  10. Ноткин Л.И. Искусственный интеллект и проблемы обучения.
  11. Венда В. Ф. Системы гибридного интеллекта – М.: Машиностроение, 1990
  12. Волгин Л. И. Комплементарная алгебра нейросетей – Таллин: АО «KLTK», 1993.
  13. Чернухин Ю. В. Нейропроцессоры – Таганрог, 1994.

Смотрите также

 

..:::Новинки:::..

Windows Commander 5.11 Свежая версия.

Новая версия
IrfanView 3.75 (рус)

Обновление текстового редактора TextEd, уже 1.75a

System mechanic 3.7f
Новая версия

Обновление плагинов для WC, смотрим :-)

Весь Winamp
Посетите новый сайт.

WinRaR 3.00
Релиз уже здесь

PowerDesk 4.0 free
Просто - напросто сильный upgrade проводника.

..:::Счетчики:::..

 

     

 

 

.