Доклад: Галилей основание современной науки. Реферат по физике галилей


Реферат - Галилей основание современной науки

Тема

«Галилей: основание современной науки»

ВВЕДЕНИЕ

Среди выдающихся естествоиспытателей и деятелей техники прошлого Галилео Галилей благодаря своему большому вкладу в физику и астрономию занимает одно из самых значительных мест. Его имя стало легендарным благодаря проведенному против него процессу инквизиции. Хотя в 1600 году Джордано Бруно был даже сожжен заживо за свои убеждения, имя Галилея все же прочнее запечатлелось в памяти потомков. Дело наверняка в том, что он широко подтверждал свои утверждения экспериментом и приобрел всеобщее профессиональное признание, которое очень помогло ему в идеологическом конфликте между пробивающей себе путь на свободу истиной и основанной на догмах схоластики властью.

Поэтому легенда о Галилео Галилее разрасталась в разных направлениях, однако сегодня можно считать доказанным, что ни кадила в Пизанском соборе, ни наклонная Пизанская башня не сыграли в его научной жизни той роли, какую им приписывали, и что не было той заключительной сцены перед трибуналом инквизиции, в которой Галилей, несмотря ни на что, сказал бы: «А все-таки она движется!» (Eppur si muove!). И, тем не менее, эти легенды все еще остаются неистребимо живучими. И напротив, верно, что Галилей защищал против церковных догм коперниканское учение, а затем отрекся от него, когда его жизни угрожал мученический конец, и что он, тем не менее, сохранил приверженность этому учению до конца своих дней.

Во всяком случае, сегодня твердо установлено, что Галилео Галилей и Иоганн Кеплер были основателями того направления естествознания XVII столетия, которое вылилось, затем в ньютоновскую физику и вместе с ней господствовало над умами в области физического мышления в течение двухсот лет. Главный труд Исаака Ньютона Philosophiae naturalis principia mathematica («Математические начала натуральной философии») увидел свет в 1687 году.

Такой компетентный математик и физик как Жозеф Луи Лагранж так отозвался о важнейшем вкладе Галилея в учение о движении:

«Требовалась исключительная сила духа, чтобы извлечь законы природы из конкретных явлений, которые всегда были у всех перед глазами, но объяснение которых тем не менее ускользало от пытливого взгляда философов».

Метод расширения познания в физике с помощью эксперимента и математики, продемонстрированный на примере движения свободно падающего тела, и его главные труды, а именно Dialogo и Discorsi создали Галилею славу творца и проповедника физического метода нового времени. Галилей с сенсационным успехом ввел в астрономию зрительную трубу как наблюдательный инструмент. Его теоретические идеи указали технике пути развития учения о прочности. Он, наконец, владел столь мастерски своим родным языком, что многие из его публикаций даже занимают видное место в национальной литературе Италии.

Богатое научное наследие, оставленное Галилеем, и его сложный характер как человека вместе с процессом инквизиции привели к появлению почти необозримой литературы о Галилее, в которой часто встречаются прямо противоположные оценки.

Появление данного тома мы можем оправдать лишь тем, что мы попытались оценить вклад Галилея в науку с современных нам позиций и проследить его эволюцию через Ньютона и до Альберта Эйнштейна, т. е. до физики наших дней. Конфликт Галилея с укоренившимися догмами его времени, если рассмотреть его, по сути, отражает не что иное, как ставшее именно в нашем столетии необходимым понимание ответственности ученого за то научное знание, которое он создает.

Галилей направил зрительную трубу на Луну и созвездия. Тем самым он положил начало научному исследованию космоса в то время, когда многие еще страшились погубить свою душу тем, чтобы соучаствовать в таком «кощунственном» использовании зрительной трубы. Сегодня мы уже являемся свидетелями того, как телеуправляемые лунные зонды или люди на космических кораблях совершают облеты этого небесного тела и передают информацию по радио на Землю. Какой оптимизм вселяет такое изменение, на какие свершения становится способен человек, если он творит в мире!

Вторая научная революция. Механистическая картина мира

Трагическая гибель Джордано Бруно произошла на рубеже двух эпох: эпохи Возрождения и эпохи Нового времени. Последняя охватывает три столетия—XVII, XVIII, XIX вв. В этом трехсотлетнем периоде особую роль сыграл XVII век, ознаменовавшийся рождением современной науки, у истоков которой стояли такие выдающиеся ученые, как Галилей, Кеплер, Ньютон.

В учении Галилео Галилея были заложены основы нового механистического естествознания. Как свидетельствуют А. Эйнштейн и Л. Инфельд, «самая фундаментальная проблема, остававшаяся в течение тысячи лет неразрешенной из-за сложности — это проблема движения».[8, с. 8]

До Галилея общепринятым в науке считалось понимание движения, выработанное Аристотелем и сводившееся к следующему принципу: тело движется только при наличии внешнего на него воздействия, и если это воздействие прекращается, тело останавливается. Галилей показал, что этот принцип Аристотеля (хотя и согласуется с нашим повседневным опытом) является ошибочным. Вместо него Галилей сформулировал совершенно иной принцип, получивший впоследствии наименование принципа инерции: тело либо находится в состоянии покоя, либо движется, не изменяя направления и скорости своего движения, если на него не производится какого-либо внешнего воздействия.

«Открытие, сделанное Галилеем, и применение им методов научного рассуждения были одним из самых важных достижений в истории человеческой мысли, и оно отмечает действительное начало физики. Это открытие учит нас тому, что интуитивным выводам, базирующимся на непосредственном наблюдении, не всегда можно доверять, так как они иногда ведут по ложному следу».

Большое значение для становления механики как науки имело исследование Галилеем свободного падения тел. Он установил, что скорость свободного падения тел не зависит от их массы (как думал Аристотель), а пройденный падающим телом путь пропорционален квадрату времени падения. Галилей открыл, что траектория брошенного тела, движущегося под воздействием начального толчка и земного притяжения, является параболой. Галилею принадлежит экспериментальное обнаружение весомости воздуха, открытие законов колебания маятника, немалый вклад в разработку учения о сопротивлении материалов.

Галилей выработал условия дальнейшего прогресса естествознания, начавшегося в эпоху Нового времени. Он понимал, что слепая вера в авторитет Аристотеля сильно тормозит развитие науки. Истинное знание, считал Галилей, достижимо исключительно на пути изучения природы при помощи наблюдения, опыта (эксперимента) и вооруженного математическим знанием разума, а не путем изучения и сличения текстов в рукописях античных мыслителей.

Росту научного авторитета Галилея способствовали его астрономические исследования, обосновывавшие и утверждавшие гелиоцентрическую систему Коперника. Используя построенные им телескопы (в начале это был скромный оптический прибор с трехкратным увеличением, а впоследствии был создан телескоп и с 32-кратным увеличением), Галилей сделал целый ряд интересных наблюдений и открытий. Он установил, что Солнце вращается вокруг своей оси, а на его поверхности имеются пятна. У самой большой планеты Солнечной системы Юпитера — Галилей обнаружил 4 спутника (из 13 известных в настоящее время). Наблюдения за Луной показали, что ее поверхность гористого строения и что этот спутник Земли имеет либрацию, т. е. видимые периодические колебания маятникового характера вокруг центра. Галилей убедился, что кажущийся туманностью Млечный Путь состоит из множества отдельных звезд.

Но самое главное в деятельности Галилея как ученого-астронома состояло в отстаивании справедливости учения Н. Коперника, которое подвергалось нападкам не только со стороны церковных кругов, но и со стороны некоторых ученых, высказывавших сомнения в правильности этого учения. Галилей сумел показать несостоятельность всех этих сомнений и дать блестящее естественнонаучное доказательство справедливости гелиоцентрической системы в знаменитой работе «Диалог о двух системах мира — Птолемеевской и Коперниковой».

Как уже отмечалось выше, католической церковью в 1616 году было принято решение о запрещении книги Коперника «Об обращениях небесных сфер», а его учение объявлено еретическим. Галилей в этом решении упомянут не был, но ему все же пришлось предстать перед судом инквизиции. После длительных допросов он был вынужден отречься от учения Коперника и принести публичное покаяние.

Спустя 350 лет после смерти Галилея, в октябре 1992 года, он был реабилитирован католической церковью, его осуждение было признано ошибочным, а учение — правильным. Глава римско-католической церкви папа Иоанн-Павел II заявил при этом, что церковь не должна выступать против науки, а наоборот, должна поддерживать научный прогресс (из телевизионной информационной программы «Время», 31 октября 1992 г.).

Взгляд на ньютоновскую и эйнштейновскую физику

Читая Discorsi, глубоко проникаешься удивлением, сколь обширен вклад Галилея в науку, сделанный им в глубокой старости и несмотря на перенесенное им осуждение со всеми его последствиями. В корне ложен образ Галилея, когда представляют, будто после своего отречения он преисполнился покорности или даже занимался самообвинениями как изменивший делу науки. Если учесть все обстоятельства, действовавшие в тогдашнем обществе и в полной мере влиявшие также на Галилея, то можно единственно утверждать, что Галилей знал, на что он идет. Его жизнь была жизнью создавшего целую эпоху исследователя и вместе с тем жизнью борца против догматической псевдо науки, и эта жизнь была преисполнена последовательности в проведении его научной ЛИНИИ:

Даже слепота не парализовала постоянной активности Галилея. Свое письмо самому верному другу Миканцио от 30 января 1638 г. он заканчивал словами:

«Так что я не прекращаю даже в охватившей меня темноте строить рассуждения по поводу то одного, то другого явления природы, и я не смог бы дать своему беспокойному уму отдыха, даже если бы пожелал того. Такое возбуждение мне очень вредит, ибо оно принуждает меня постоянно бодрствовать».

Галилей как сын своего времени субъективно в определенном смысле более тяготел к феодализму, чем к буржуазному обществу, что проявилось и при его переезде из Венецианской республики во Флоренцию, ко двору великого герцога. Однако несомненно, что объективно он сыграл роль сияющего маяка в общественной жизни. Как подчеркивает Кузнецов [4], «инквизиция осудила Галилея, так как наука в его руках стала мощной общественной силой, направленной против пережитков в общественных отношениях».

Рассматривая как Dialogo, так и Discorsi, мы снова и снова обнаруживали, что ставившаяся Галилеем проблематика в идейном отношении непосредственно ведет к ньютоновской и эйнштейновской физике. Поэтому не хотелось бы завершать это изложение, хотя бы просто не указав на те фундаментальные вопросы физики, с которыми имеется такая взаимосвязь.

Известно, что впервые к количественной формулировке законов механики подойти смог только Ньютон, когда он создал аппарат математического анализа, отвечавший потребностям физики. Его Philosophiae Naturalis Princi-pia Mathematica («Математические начала натуральной философии») создали основу для целой ньютоновской эпохи в физике. В этом труде ему удалось собрать квинтэссенцию всех фундаментальных физических знаний того времени. Он исходил из принципиальных основ физического исследования и начал с того, что сформулировал представления об основных для физики понятиях пространства и времени, в которых он усматривал абсолютные категории. Итак, он определил:

--PAGE_BREAK--

«Абсолютное пространство по самой своей сущности, безотносительно к чему-либо внешнему, остается всегда одинаковым и неподвижным.

Абсолютное, истинное, математическое время само по себе и по своей сущности, без всякого отношения к чему-либо внешнему, протекает равномерно...»

Основываясь на этих понятиях пространства и времени, Ньютон, который не желал «измышлять гипотез», построил свою физику. Лишь Эйнштейну удалось почти 250 лет спустя обнаружить, что эти представления о пространстве и времени являются неприемлемыми гипотезами.

Содержание ньютоновской физики состоит из трех аксиом механики Ньютона:

1. Закон инерции. Каждое тело, когда на него не действуют никакие силы, сохраняет состояние покоя или равномерного прямолинейного движения. (О физическом авторстве Галилея в формулировке этого закона мы уже подробно говорили).

2. Закон движения.

3. Закон действия и противодействия. Действию всегда есть равное и противоположное противодействие.

Кроме того, сюда входит еще закон всемирного тяготения Ньютона.

Уже в ньютоновской физике исследователи обратили внимание на два принципиально разных типа систем отсчета, причем под системой отсчета следует понимать совокупность материальных объектов, к которым физики относят свои измерения:

Инерциальные системы, которые находятся в состоянии покоя или равномерного движения относительно системы неподвижных звезд.

Неинерциальные системы, находящиеся относительно системы неподвижных звезд в состоянии ускоренного движения (такова, например, вращающаяся карусель).

Установлено, что ньютоновский закон движения форм-инвариантен (ковариантен) относительно преобразований Галилея. Этот факт констатируется в названном также в честь Галилея принципе относительности Галилея:

«В двух движущихся друг относительно друга инерциальных системах отсчета, связанных между собой преобразованием Галилея, ньютоновский закон движения имеет один и тот же вид».

Значит, никакая инерциальная система ничем не выделяется из других инерциальных систем. В уравнения движения не входит скорость относительно какой-либо инерциальной системы отсчета, которую можно было бы рассматривать как абсолютно покоящуюся относительно пространства и тем самым привилегированную.

В этом состоит самая характерная черта ньютоновской физики, достигшей огромных успехов за более чем двести лет своего существования как в земных, так и в космических приложениях.

К концу XIX столетия техника эксперимента в области электромагнитных явлений, и особенно в оптике, достигла такого высокого уровня развития, что физики были поставлены перед лицом удивительного факта, вытекавшего из результатов знаменитого опыта Майкельсона и анализа распространения света от двойных звезд, с определенностью указывавших на постоянство скорости света. Этот факт состоял в том, что уравнения Максвелла — основные уравнения при описании всех электромагнитных явлений — оказались не форм-инвариантными относительно преобразований Галилея в противоположность уравнениям движения ньютоновской механики, инвариантность которых была установлена выше.

В результате попыток устранить это противоречие между механикой и электродинамикой в 1905 году Альбертом Эйнштейном была создана специальная теория относительности; его предшественниками были Фойгт, Лоренц, Пуанкаре, Хазенэрль и др., которые, однако, по большей части не смогли освободиться от господствовавшей тогда концепции мирового эфира.

Непреходящей заслугой гения Эйнштейна было то, что он, исходя из глубоко философских соображений, поставил во главу угла принцип единства физики и добился согласия между механикой и теорией электромагнетизма. Он произвел последовательное обобщение принципа относительности Галилея и пришел к специальному принципу относительности Эйнштейна: «В двух движущихся относительно друг друга инерциальных системах отсчета законы природы имеют один и тот же вид».

Если сравнить эту формулировку с выражением принципа относительности Галилея, обнаруживается то существенное различие, что принцип относительности Галилея относится только к механике, тогда как эйнштейновский принцип охватывает всю физику (исключая лишь гравитацию).

Зададимся вопросом, какие эпистемологические предположения должен был привлечь Эйнштейн для того, чтобы непротиворечиво реализовать свой принцип относительности. Об этом и пойдет теперь речь.

Эйнштейн подверг основательной критике ньютоновские концепции абсолютного пространства и абсолютного времени и пришел к выводу, что сами по себе пространство и время суть относительные категории, собственно же предметом и основой физического исследования является четырехмерный пространственно-временной континуум. Тем самым был сделан переход от 3-мерного к 4-мерному мышлению. Пассивной ареной, на которой протекают физические явления, стало пространство-время. При этом его геометрия постулировалась как псевдоевклидова, т.е. плоская, и пространство-время рассматривалось как предельно лишенное структуры и бесконечно протяженное. Пока что принципиально новым моментом по сравнению с ньютоновским пространством был переход от трехмерности к четырехмерности. В теории Ньютона абсолютное время играло роль абсолютного стандарта для всего мира, что находило свое отражение в уравнениях физики в том, что время было самостоятельным параметром. Напротив, эйнштейновская релятивизация времени и его объединение с пространством привели к равноправию пространства и времени. В дальнейшем оба понятия должны были фигурировать в законах природы симметричным образом.

Эта фундаментальная идея должна была математически выражаться в том, что каждой системе отсчета следовало приписать свое собственное относительное время. Тем самым был получен ответ и на вопрос о противоречии, возникшем в результате опыта Майкельсона.

В своей знаменитой работе 1905 года «К электродинамике движущихся тел» Эйнштейну удалось вывести названные им в честь Лоренца преобразования, которые описывают переход от одной инерциальной системы отсчета к другой.

Когда относительная скорость систем отсчета мала, (и/с)2 «1, преобразования Лоренца принимают вид

х' = х— ut, y' = y,z '= z, t' = t,

а это и есть преобразования Галилея, записанные через свои компоненты. Тем самым была обеспечена необходимая преемственность между физикой Эйнштейна и физикой Ньютона, причем в случае больших скоростей и высоких энергий последняя вырождается в слишком грубое приближение действительности.

Этот схематический набросок специальной теории относительности приводит нас и к кругу основных идей общей теории относительности [7]. Специальный принцип относительности Эйнштейна, подобно принципу относительности Галилея, ограничивается использованием инерциальных систем отсчета, т. е. систем, находящихся в состоянии равномерного движения. В течение почти 10 лет Эйнштейн работал над тем, чтобы снять это ограничение. В результате в 1915 году ему удалось создать свою общую теорию относительности, справедливую при любых типах движения систем отсчета. Ее сущность формулируется в общем принципе относительности Эйнштейна:

«Законы природы имеют один и тот же вид в произвольных системах обсчета».

Так Эйнштейн освободился от понятия инерциальной системы отсчета.

Математическим аппаратом, позволяющим конкретно выразить эту всеобъемлющую теорию, является тензорное и спинорное исчисление.

Применение общего принципа относительности к механике и теории электромагнетизма не принесло Эйнштейну особых неожиданностей. Однако обобщение ньютоновской теории тяготения привело к открытию совершенно новых фактов о структуре пространства и времени.

Эйнштейн пришел индуктивным путем к заключению, что реальное пространство-время может быть не псевдоевклидовым, т. е. плоским, но искривленным в соответствии с законами римановой геометрии. Он исходил из тех соображений, что пассивная роль пространства-времени в специальной теории относительности не может давать полного выражения сущности пространства-времени как атрибута материи, но что структура пространства-времени должна быть сама следствием состояния движения материи, и обратно, состояние движения материи должно обусловливаться структурой пространства-времени. Эту обоюдную взаимосвязь он сумел математически выразить в своих знаменитых уравнениях гравитационного поля.

Для слабо искривленного пространства-времени, существующего в наших земных условиях, уравнения поля Эйнштейна переходит в указанное выше уравнение поля Ньютона. Тем самым преемственность сменяющих друг друга физических теорий обеспечивается и в этой области.

Теория относительности лежит в основе всех разделов физики, так как их основные постулаты должны быть, в конечном счете, согласованы между собой. Большой успех был достигнут и в квантовой теории, когда Дирак сумел дать ее релятивистскую формулировку.

Особой областью приложения эйнштейновской теории является релятивистская космология, из которой мы черпаем сведения о структуре Вселенной как целого.

ЗАКЛЮЧЕНИЕ

Галилео Галилей сделал много изумительно ценного для физики и тем самым для всего естествознания, когда оно вырвалось из лабиринта схоластических заблуждений духа; он проложил путь научному методу органической связи эксперимента и – хотя еще органической – теории. И что бы ни говорили о дурных сторонах характера Галилея или еще могли бы сказать о них, он все равно остается удивительной личностью.

Бросая сегодня ретроспективный взгляд на физику, мы видим, что современность связывает с эпохой Средних веков цепь идей, в которой сверкают поистине бриллианты. Благодаря гению Галилея, Ньютона, Эйнштейна и многих других наука стала плодом цивилизации, находящимся на службе всего человечества.

Список использованной литературы

Воронов В.К., Гречнева М.В., Сагдеев Р.З. Основы современного естествознания: Учебное пособие для ВУЗов. – М.: Высшая школа, 1999. – 247 с.

Горелов А.А Концепчии современного естествознания. – М.: Центр, 1997. 360 с.

Концепции современного естествознания: Учебное пособие для ВУЗов. – Ростов н/Д: Феникс, 2000. – 576 с.

Кузнецов Б.Г. От Галилея до Эйнштейна. – М.: Наука, 1965. -185 с.

Найдыш В.М. Концепции современного естествознания: Учебное пособие. М.: Гардарики, 2003. – 476 с.

Солопов Е.Ф. Концепции современного естествознания: Учебник для ВУЗов. – М.: Владос. 2001. – 232 с.

Шмутцер Э. Теория относительности – современное представление. Путь к единству физики. – М.: Мир, 1981. – 159 с.

Эйнштейн А., Инфельд Л. Эволюция физики. – М.: 1965

www.ronl.ru

Доклад - Галилей основание современной науки

Тема

«Галилей: основание современной науки»

ВВЕДЕНИЕ

Среди выдающихся естествоиспытателей и деятелей техники прошлого Галилео Галилей благодаря своему большому вкладу в физику и астрономию занимает одно из самых значительных мест. Его имя стало легендарным благодаря проведенному против него процессу инквизиции. Хотя в 1600 году Джордано Бруно был даже сожжен заживо за свои убеждения, имя Галилея все же прочнее запечатлелось в памяти потомков. Дело наверняка в том, что он широко подтверждал свои утверждения экспериментом и приобрел всеобщее профессиональное признание, которое очень помогло ему в идеологическом конфликте между пробивающей себе путь на свободу истиной и основанной на догмах схоластики властью.

Поэтому легенда о Галилео Галилее разрасталась в разных направлениях, однако сегодня можно считать доказанным, что ни кадила в Пизанском соборе, ни наклонная Пизанская башня не сыграли в его научной жизни той роли, какую им приписывали, и что не было той заключительной сцены перед трибуналом инквизиции, в которой Галилей, несмотря ни на что, сказал бы: «А все-таки она движется!» (Eppur si muove!). И, тем не менее, эти легенды все еще остаются неистребимо живучими. И напротив, верно, что Галилей защищал против церковных догм коперниканское учение, а затем отрекся от него, когда его жизни угрожал мученический конец, и что он, тем не менее, сохранил приверженность этому учению до конца своих дней.

Во всяком случае, сегодня твердо установлено, что Галилео Галилей и Иоганн Кеплер были основателями того направления естествознания XVII столетия, которое вылилось, затем в ньютоновскую физику и вместе с ней господствовало над умами в области физического мышления в течение двухсот лет. Главный труд Исаака Ньютона Philosophiae naturalis principia mathematica («Математические начала натуральной философии») увидел свет в 1687 году.

Такой компетентный математик и физик как Жозеф Луи Лагранж так отозвался о важнейшем вкладе Галилея в учение о движении:

«Требовалась исключительная сила духа, чтобы извлечь законы природы из конкретных явлений, которые всегда были у всех перед глазами, но объяснение которых тем не менее ускользало от пытливого взгляда философов».

Метод расширения познания в физике с помощью эксперимента и математики, продемонстрированный на примере движения свободно падающего тела, и его главные труды, а именно Dialogo и Discorsi создали Галилею славу творца и проповедника физического метода нового времени. Галилей с сенсационным успехом ввел в астрономию зрительную трубу как наблюдательный инструмент. Его теоретические идеи указали технике пути развития учения о прочности. Он, наконец, владел столь мастерски своим родным языком, что многие из его публикаций даже занимают видное место в национальной литературе Италии.

Богатое научное наследие, оставленное Галилеем, и его сложный характер как человека вместе с процессом инквизиции привели к появлению почти необозримой литературы о Галилее, в которой часто встречаются прямо противоположные оценки.

Появление данного тома мы можем оправдать лишь тем, что мы попытались оценить вклад Галилея в науку с современных нам позиций и проследить его эволюцию через Ньютона и до Альберта Эйнштейна, т. е. до физики наших дней. Конфликт Галилея с укоренившимися догмами его времени, если рассмотреть его, по сути, отражает не что иное, как ставшее именно в нашем столетии необходимым понимание ответственности ученого за то научное знание, которое он создает.

Галилей направил зрительную трубу на Луну и созвездия. Тем самым он положил начало научному исследованию космоса в то время, когда многие еще страшились погубить свою душу тем, чтобы соучаствовать в таком «кощунственном» использовании зрительной трубы. Сегодня мы уже являемся свидетелями того, как телеуправляемые лунные зонды или люди на космических кораблях совершают облеты этого небесного тела и передают информацию по радио на Землю. Какой оптимизм вселяет такое изменение, на какие свершения становится способен человек, если он творит в мире!

Вторая научная революция. Механистическая картина мира

Трагическая гибель Джордано Бруно произошла на рубеже двух эпох: эпохи Возрождения и эпохи Нового времени. Последняя охватывает три столетия—XVII, XVIII, XIX вв. В этом трехсотлетнем периоде особую роль сыграл XVII век, ознаменовавшийся рождением современной науки, у истоков которой стояли такие выдающиеся ученые, как Галилей, Кеплер, Ньютон.

В учении Галилео Галилея были заложены основы нового механистического естествознания. Как свидетельствуют А. Эйнштейн и Л. Инфельд, «самая фундаментальная проблема, остававшаяся в течение тысячи лет неразрешенной из-за сложности — это проблема движения».[8, с. 8]

До Галилея общепринятым в науке считалось понимание движения, выработанное Аристотелем и сводившееся к следующему принципу: тело движется только при наличии внешнего на него воздействия, и если это воздействие прекращается, тело останавливается. Галилей показал, что этот принцип Аристотеля (хотя и согласуется с нашим повседневным опытом) является ошибочным. Вместо него Галилей сформулировал совершенно иной принцип, получивший впоследствии наименование принципа инерции: тело либо находится в состоянии покоя, либо движется, не изменяя направления и скорости своего движения, если на него не производится какого-либо внешнего воздействия.

«Открытие, сделанное Галилеем, и применение им методов научного рассуждения были одним из самых важных достижений в истории человеческой мысли, и оно отмечает действительное начало физики. Это открытие учит нас тому, что интуитивным выводам, базирующимся на непосредственном наблюдении, не всегда можно доверять, так как они иногда ведут по ложному следу».

Большое значение для становления механики как науки имело исследование Галилеем свободного падения тел. Он установил, что скорость свободного падения тел не зависит от их массы (как думал Аристотель), а пройденный падающим телом путь пропорционален квадрату времени падения. Галилей открыл, что траектория брошенного тела, движущегося под воздействием начального толчка и земного притяжения, является параболой. Галилею принадлежит экспериментальное обнаружение весомости воздуха, открытие законов колебания маятника, немалый вклад в разработку учения о сопротивлении материалов.

Галилей выработал условия дальнейшего прогресса естествознания, начавшегося в эпоху Нового времени. Он понимал, что слепая вера в авторитет Аристотеля сильно тормозит развитие науки. Истинное знание, считал Галилей, достижимо исключительно на пути изучения природы при помощи наблюдения, опыта (эксперимента) и вооруженного математическим знанием разума, а не путем изучения и сличения текстов в рукописях античных мыслителей.

Росту научного авторитета Галилея способствовали его астрономические исследования, обосновывавшие и утверждавшие гелиоцентрическую систему Коперника. Используя построенные им телескопы (в начале это был скромный оптический прибор с трехкратным увеличением, а впоследствии был создан телескоп и с 32-кратным увеличением), Галилей сделал целый ряд интересных наблюдений и открытий. Он установил, что Солнце вращается вокруг своей оси, а на его поверхности имеются пятна. У самой большой планеты Солнечной системы Юпитера — Галилей обнаружил 4 спутника (из 13 известных в настоящее время). Наблюдения за Луной показали, что ее поверхность гористого строения и что этот спутник Земли имеет либрацию, т. е. видимые периодические колебания маятникового характера вокруг центра. Галилей убедился, что кажущийся туманностью Млечный Путь состоит из множества отдельных звезд.

Но самое главное в деятельности Галилея как ученого-астронома состояло в отстаивании справедливости учения Н. Коперника, которое подвергалось нападкам не только со стороны церковных кругов, но и со стороны некоторых ученых, высказывавших сомнения в правильности этого учения. Галилей сумел показать несостоятельность всех этих сомнений и дать блестящее естественнонаучное доказательство справедливости гелиоцентрической системы в знаменитой работе «Диалог о двух системах мира — Птолемеевской и Коперниковой».

Как уже отмечалось выше, католической церковью в 1616 году было принято решение о запрещении книги Коперника «Об обращениях небесных сфер», а его учение объявлено еретическим. Галилей в этом решении упомянут не был, но ему все же пришлось предстать перед судом инквизиции. После длительных допросов он был вынужден отречься от учения Коперника и принести публичное покаяние.

Спустя 350 лет после смерти Галилея, в октябре 1992 года, он был реабилитирован католической церковью, его осуждение было признано ошибочным, а учение — правильным. Глава римско-католической церкви папа Иоанн-Павел II заявил при этом, что церковь не должна выступать против науки, а наоборот, должна поддерживать научный прогресс (из телевизионной информационной программы «Время», 31 октября 1992 г.).

Взгляд на ньютоновскую и эйнштейновскую физику

Читая Discorsi, глубоко проникаешься удивлением, сколь обширен вклад Галилея в науку, сделанный им в глубокой старости и несмотря на перенесенное им осуждение со всеми его последствиями. В корне ложен образ Галилея, когда представляют, будто после своего отречения он преисполнился покорности или даже занимался самообвинениями как изменивший делу науки. Если учесть все обстоятельства, действовавшие в тогдашнем обществе и в полной мере влиявшие также на Галилея, то можно единственно утверждать, что Галилей знал, на что он идет. Его жизнь была жизнью создавшего целую эпоху исследователя и вместе с тем жизнью борца против догматической псевдо науки, и эта жизнь была преисполнена последовательности в проведении его научной ЛИНИИ:

Даже слепота не парализовала постоянной активности Галилея. Свое письмо самому верному другу Миканцио от 30 января 1638 г. он заканчивал словами:

«Так что я не прекращаю даже в охватившей меня темноте строить рассуждения по поводу то одного, то другого явления природы, и я не смог бы дать своему беспокойному уму отдыха, даже если бы пожелал того. Такое возбуждение мне очень вредит, ибо оно принуждает меня постоянно бодрствовать».

Галилей как сын своего времени субъективно в определенном смысле более тяготел к феодализму, чем к буржуазному обществу, что проявилось и при его переезде из Венецианской республики во Флоренцию, ко двору великого герцога. Однако несомненно, что объективно он сыграл роль сияющего маяка в общественной жизни. Как подчеркивает Кузнецов [4], «инквизиция осудила Галилея, так как наука в его руках стала мощной общественной силой, направленной против пережитков в общественных отношениях».

Рассматривая как Dialogo, так и Discorsi, мы снова и снова обнаруживали, что ставившаяся Галилеем проблематика в идейном отношении непосредственно ведет к ньютоновской и эйнштейновской физике. Поэтому не хотелось бы завершать это изложение, хотя бы просто не указав на те фундаментальные вопросы физики, с которыми имеется такая взаимосвязь.

Известно, что впервые к количественной формулировке законов механики подойти смог только Ньютон, когда он создал аппарат математического анализа, отвечавший потребностям физики. Его Philosophiae Naturalis Princi-pia Mathematica («Математические начала натуральной философии») создали основу для целой ньютоновской эпохи в физике. В этом труде ему удалось собрать квинтэссенцию всех фундаментальных физических знаний того времени. Он исходил из принципиальных основ физического исследования и начал с того, что сформулировал представления об основных для физики понятиях пространства и времени, в которых он усматривал абсолютные категории. Итак, он определил:

--PAGE_BREAK--

«Абсолютное пространство по самой своей сущности, безотносительно к чему-либо внешнему, остается всегда одинаковым и неподвижным.

Абсолютное, истинное, математическое время само по себе и по своей сущности, без всякого отношения к чему-либо внешнему, протекает равномерно...»

Основываясь на этих понятиях пространства и времени, Ньютон, который не желал «измышлять гипотез», построил свою физику. Лишь Эйнштейну удалось почти 250 лет спустя обнаружить, что эти представления о пространстве и времени являются неприемлемыми гипотезами.

Содержание ньютоновской физики состоит из трех аксиом механики Ньютона:

1. Закон инерции. Каждое тело, когда на него не действуют никакие силы, сохраняет состояние покоя или равномерного прямолинейного движения. (О физическом авторстве Галилея в формулировке этого закона мы уже подробно говорили).

2. Закон движения.

3. Закон действия и противодействия. Действию всегда есть равное и противоположное противодействие.

Кроме того, сюда входит еще закон всемирного тяготения Ньютона.

Уже в ньютоновской физике исследователи обратили внимание на два принципиально разных типа систем отсчета, причем под системой отсчета следует понимать совокупность материальных объектов, к которым физики относят свои измерения:

Инерциальные системы, которые находятся в состоянии покоя или равномерного движения относительно системы неподвижных звезд.

Неинерциальные системы, находящиеся относительно системы неподвижных звезд в состоянии ускоренного движения (такова, например, вращающаяся карусель).

Установлено, что ньютоновский закон движения форм-инвариантен (ковариантен) относительно преобразований Галилея. Этот факт констатируется в названном также в честь Галилея принципе относительности Галилея:

«В двух движущихся друг относительно друга инерциальных системах отсчета, связанных между собой преобразованием Галилея, ньютоновский закон движения имеет один и тот же вид».

Значит, никакая инерциальная система ничем не выделяется из других инерциальных систем. В уравнения движения не входит скорость относительно какой-либо инерциальной системы отсчета, которую можно было бы рассматривать как абсолютно покоящуюся относительно пространства и тем самым привилегированную.

В этом состоит самая характерная черта ньютоновской физики, достигшей огромных успехов за более чем двести лет своего существования как в земных, так и в космических приложениях.

К концу XIX столетия техника эксперимента в области электромагнитных явлений, и особенно в оптике, достигла такого высокого уровня развития, что физики были поставлены перед лицом удивительного факта, вытекавшего из результатов знаменитого опыта Майкельсона и анализа распространения света от двойных звезд, с определенностью указывавших на постоянство скорости света. Этот факт состоял в том, что уравнения Максвелла — основные уравнения при описании всех электромагнитных явлений — оказались не форм-инвариантными относительно преобразований Галилея в противоположность уравнениям движения ньютоновской механики, инвариантность которых была установлена выше.

В результате попыток устранить это противоречие между механикой и электродинамикой в 1905 году Альбертом Эйнштейном была создана специальная теория относительности; его предшественниками были Фойгт, Лоренц, Пуанкаре, Хазенэрль и др., которые, однако, по большей части не смогли освободиться от господствовавшей тогда концепции мирового эфира.

Непреходящей заслугой гения Эйнштейна было то, что он, исходя из глубоко философских соображений, поставил во главу угла принцип единства физики и добился согласия между механикой и теорией электромагнетизма. Он произвел последовательное обобщение принципа относительности Галилея и пришел к специальному принципу относительности Эйнштейна: «В двух движущихся относительно друг друга инерциальных системах отсчета законы природы имеют один и тот же вид».

Если сравнить эту формулировку с выражением принципа относительности Галилея, обнаруживается то существенное различие, что принцип относительности Галилея относится только к механике, тогда как эйнштейновский принцип охватывает всю физику (исключая лишь гравитацию).

Зададимся вопросом, какие эпистемологические предположения должен был привлечь Эйнштейн для того, чтобы непротиворечиво реализовать свой принцип относительности. Об этом и пойдет теперь речь.

Эйнштейн подверг основательной критике ньютоновские концепции абсолютного пространства и абсолютного времени и пришел к выводу, что сами по себе пространство и время суть относительные категории, собственно же предметом и основой физического исследования является четырехмерный пространственно-временной континуум. Тем самым был сделан переход от 3-мерного к 4-мерному мышлению. Пассивной ареной, на которой протекают физические явления, стало пространство-время. При этом его геометрия постулировалась как псевдоевклидова, т.е. плоская, и пространство-время рассматривалось как предельно лишенное структуры и бесконечно протяженное. Пока что принципиально новым моментом по сравнению с ньютоновским пространством был переход от трехмерности к четырехмерности. В теории Ньютона абсолютное время играло роль абсолютного стандарта для всего мира, что находило свое отражение в уравнениях физики в том, что время было самостоятельным параметром. Напротив, эйнштейновская релятивизация времени и его объединение с пространством привели к равноправию пространства и времени. В дальнейшем оба понятия должны были фигурировать в законах природы симметричным образом.

Эта фундаментальная идея должна была математически выражаться в том, что каждой системе отсчета следовало приписать свое собственное относительное время. Тем самым был получен ответ и на вопрос о противоречии, возникшем в результате опыта Майкельсона.

В своей знаменитой работе 1905 года «К электродинамике движущихся тел» Эйнштейну удалось вывести названные им в честь Лоренца преобразования, которые описывают переход от одной инерциальной системы отсчета к другой.

Когда относительная скорость систем отсчета мала, (и/с)2 «1, преобразования Лоренца принимают вид

х' = х— ut, y' = y,z '= z, t' = t,

а это и есть преобразования Галилея, записанные через свои компоненты. Тем самым была обеспечена необходимая преемственность между физикой Эйнштейна и физикой Ньютона, причем в случае больших скоростей и высоких энергий последняя вырождается в слишком грубое приближение действительности.

Этот схематический набросок специальной теории относительности приводит нас и к кругу основных идей общей теории относительности [7]. Специальный принцип относительности Эйнштейна, подобно принципу относительности Галилея, ограничивается использованием инерциальных систем отсчета, т. е. систем, находящихся в состоянии равномерного движения. В течение почти 10 лет Эйнштейн работал над тем, чтобы снять это ограничение. В результате в 1915 году ему удалось создать свою общую теорию относительности, справедливую при любых типах движения систем отсчета. Ее сущность формулируется в общем принципе относительности Эйнштейна:

«Законы природы имеют один и тот же вид в произвольных системах обсчета».

Так Эйнштейн освободился от понятия инерциальной системы отсчета.

Математическим аппаратом, позволяющим конкретно выразить эту всеобъемлющую теорию, является тензорное и спинорное исчисление.

Применение общего принципа относительности к механике и теории электромагнетизма не принесло Эйнштейну особых неожиданностей. Однако обобщение ньютоновской теории тяготения привело к открытию совершенно новых фактов о структуре пространства и времени.

Эйнштейн пришел индуктивным путем к заключению, что реальное пространство-время может быть не псевдоевклидовым, т. е. плоским, но искривленным в соответствии с законами римановой геометрии. Он исходил из тех соображений, что пассивная роль пространства-времени в специальной теории относительности не может давать полного выражения сущности пространства-времени как атрибута материи, но что структура пространства-времени должна быть сама следствием состояния движения материи, и обратно, состояние движения материи должно обусловливаться структурой пространства-времени. Эту обоюдную взаимосвязь он сумел математически выразить в своих знаменитых уравнениях гравитационного поля.

Для слабо искривленного пространства-времени, существующего в наших земных условиях, уравнения поля Эйнштейна переходит в указанное выше уравнение поля Ньютона. Тем самым преемственность сменяющих друг друга физических теорий обеспечивается и в этой области.

Теория относительности лежит в основе всех разделов физики, так как их основные постулаты должны быть, в конечном счете, согласованы между собой. Большой успех был достигнут и в квантовой теории, когда Дирак сумел дать ее релятивистскую формулировку.

Особой областью приложения эйнштейновской теории является релятивистская космология, из которой мы черпаем сведения о структуре Вселенной как целого.

ЗАКЛЮЧЕНИЕ

Галилео Галилей сделал много изумительно ценного для физики и тем самым для всего естествознания, когда оно вырвалось из лабиринта схоластических заблуждений духа; он проложил путь научному методу органической связи эксперимента и – хотя еще органической – теории. И что бы ни говорили о дурных сторонах характера Галилея или еще могли бы сказать о них, он все равно остается удивительной личностью.

Бросая сегодня ретроспективный взгляд на физику, мы видим, что современность связывает с эпохой Средних веков цепь идей, в которой сверкают поистине бриллианты. Благодаря гению Галилея, Ньютона, Эйнштейна и многих других наука стала плодом цивилизации, находящимся на службе всего человечества.

Список использованной литературы

Воронов В.К., Гречнева М.В., Сагдеев Р.З. Основы современного естествознания: Учебное пособие для ВУЗов. – М.: Высшая школа, 1999. – 247 с.

Горелов А.А Концепчии современного естествознания. – М.: Центр, 1997. 360 с.

Концепции современного естествознания: Учебное пособие для ВУЗов. – Ростов н/Д: Феникс, 2000. – 576 с.

Кузнецов Б.Г. От Галилея до Эйнштейна. – М.: Наука, 1965. -185 с.

Найдыш В.М. Концепции современного естествознания: Учебное пособие. М.: Гардарики, 2003. – 476 с.

Солопов Е.Ф. Концепции современного естествознания: Учебник для ВУЗов. – М.: Владос. 2001. – 232 с.

Шмутцер Э. Теория относительности – современное представление. Путь к единству физики. – М.: Мир, 1981. – 159 с.

Эйнштейн А., Инфельд Л. Эволюция физики. – М.: 1965

www.ronl.ru

Доклад по физике на тему "Галилео Галилей"

Муниципальное бюджетное общеобразовательное учреждение

«Средняя общеобразовательная школа №3»

Галилео Галилей

C:\Users\gena\Desktop\GalileoGalilei.gif

Доклад

Автор: Деева Анастасия,ученица 10 класса «А»Руководитель: Долгушина И.А., учитель физики

Цели и задачи

Вложение № 1

Предметом моего исследования является жизнь Галилея. Это и послужило темой для моего доклада, представленного в pptx-формате (презентация, созданная в программе «Microsoft Power Point»).

Цель исследования: расширение знаний о жизни ученого, его открытиях.

Задачи:▼ Изучить литературу по данной теме▼ Узнать более подробно о жизни ученого и его открытиях▼ Использовать свои личные знания, реализуя их

Методы исследования:Анализ текстов, взятых из различных книг и энциклопедий, поиск информации в Интернете.

Жизнь Галилео Галилея

  1. слайд) 2.1. («Кто же такой, Галилео Галилей?»)Давайте выясним для начала, кто же такой, Галилео Галилей?Он был физиком, математиком, философом, механиком, астрономом. Как мне кажется, на его достижения повлиял как круг его знакомств, так и тяга к знаниям. Далее это будет оговорено подробно (см. 5 слайд)Галилей совершил огромные вклады в науку своего времени.

  1. слайд) 2.2. (Родители Галилея )

Галилей родился в 1564 году в итальянском городе Пиза, в семье родовитого, но обедневшего дворянина, композитора. В семье Винченцо Галилея и Джулии Амманнати.

  1. слайд) 2.3. (Направление Галилея в школу при монастыре)

В 1575 году, когда семья переехала во Флоренцию, Галилей был направлен в школу при монастыре Валломброса, где изучал тогдашние «семь искусств», в частности грамматику, риторику, диалектику, арифметику, познакомился с работами латинских и греческих писателей.

  1. слайд) 2.4. (Пизанский университет)

В 1581 году Галилей поступил по настоянию отца в Пизанский университет, где должен был изучать медицину. В это время он впервые познакомился с физикой Аристотеля, с работами древних математиков – Евклида и Архимеда.

  1. слайд) 2.5. (Труд о движении)

Ко времени пребывания Галилея на кафедре в Пизе относится его труд о движении… В нем он впервые приводит доводы против аристотелевского учения о падении тел. Поводом к новому этапу в научных исследованиях Галилея послужило появление в 1604 году новой звезды, называемой сейчас сверхновой Кеплера. Это пробуждает всеобщий интерес к астрономии, и Галилей выступает с циклом лекций, доказывая истинность гелиоцентрической модели мира. Узнав об изобретении в Голландии зрительной трубы, Галилей в 1609 году конструирует собственноручно первый телескоп (поначалу — трёхкратного увеличения) и направляет его в небо. Галилей отметил также странные «придатки» у Сатурна, но открытию кольца помешали слабость телескопа и поворот кольца, скрывший его от земного наблюдателя. Полвека спустя кольцо Сатурна открыл и описал Гюйгенс, в распоряжении которого был 92-кратный телескоп. Несколько телескопов Галилей дарит Венецианскому сенату, который в знак благодарности назначает его пожизненным профессором с утроенной оплатой. Свои первые открытия с телескопом Галилей описал в сочинении «Звёздный вестник», изданном во Флоренции в 1610 году.

  1. слайд) 2.6. (Переезд по Флоренцию (Тосканский двор))Общеевропейская слава и нужда в деньгах толкнули Галилея на губительный, как позже оказалось, шаг: в 1610 году он покидает спокойную Венецию, где он был недоступен для инквизиции, и перебирается во Флоренцию. Герцог Козимо II Медичи, сын Фердинанда, обещал Галилею почётное и доходное место советника при тосканском дворе. Обещание он сдержал, что освободило Галилея от житейских хлопот и позволило выдать замуж с хорошим приданым двух его сестёр.Обязанности Галилея при дворе герцога Козимо II были необременительны — обучение сыновей герцога и участие в некоторых делах как советника и представителя тосканского герцога. Галилей продолжает научные исследования и открывает фазы Венеры, пятна на Солнце, а затем и вращение Солнца вокруг оси. Свои достижения (а зачастую и свой приоритет) Галилей зачастую излагал в задиристо-полемическим стиле, чем нажил немало новых врагов.

  2. слайд) 2.7. (Галилей перед судом)Папа явно не был заинтересован в жестоком обращении с 70-летним учёным, своим бывшим другом; кроме того, он не хотел раздражать влиятельного тосканского герцога Фердинанда II, непрестанно хлопотавшего о смягчении участи своего старого учителя. Поэтому Галилей провёл в тюрьме всего 18 дней (с 12 по 30 апреля 1633 года).

    ПРИМЕНЯЛАСЬ ЛИ К ГАЛИЛЕЮ ПЫТКА?В приговоре инквизиции были обнаружены слова:«Заметив, что ты при ответах не совсем чистосердечно признаёшься в своих намерениях, мы сочли необходимым прибегнуть к строгому испытанию..»

  3. слайд) 2.8 (Гробница)На экране представлена гробница Галилео Галилея, существующая на данный момент во Флоренции (в соборе Санта Кроче)

Термометр Галилея

(10 слайд) 3.1. (Историческая справка) Термометр Галилея — запаянный стеклянный цилиндр, наполненный жидкостью, в которой плавают стеклянные сосудики-буйки. К каждому такому сферическому поплавку прикреплена снизу золотистая или серебристая бирка с выбитым на ней значением температуры. В зависимости от размера термометра количество поплавков внутри бывает от 3-х до 11-ти. В настоящее время термометр представляет эстетическую ценность в качестве эффектного предмета интерьера. Название происходит от имени итальянского физика Галилео Галилея, который в 1592 году изобрел термоскоп, ставший прародителем всех термометров. Согласно одним источникам, сам Галилей имел весьма косвенное отношение к созданию этого прибора, который чаще используется в качестве сувенира, по другим данным, мир этим изобретением конца 16 века обязан именно Галилею.

(10 слайд) 3.2. (Принцип работы)Поплавки по-разному наполнены жидкостью таким образом, что их средняя плотность различна: самая маленькая плотность у верхнего, самая большая — у нижнего, но у всех близка к плотности воды, отличаясь от неё незначительно. С понижением температуры воздуха в помещении соответственно понижается температура воды в сосуде, вода сжимается, и плотность её становится больше. Известно, что тела, плотность которых меньше плотности окружающей их жидкости, всплывают в ней. При понижении температуры в помещении плотность жидкости в цилиндре увеличивается и шарики поднимаются вверх один за другим, при повышении — опускаются. Такой эффект достигается за счет очень высокой точности изготовления термометров. Все шарики калибруются по температуре всплытия в интервале 0,4 °С. Диапазон температур, измеряемых термометром, находится в районе комнатной температуры: 16-28°, шаг: 1 °С. Текущее значение температуры определяется по нижнему из всплывших шариков.

(11 слайд) 3.2.1. (Вложение (видеоролик))Видеоролик требует наглядных пояснений, указанном в пункте 3.2.

Содержание

*

11. Титульный лист_____________________________________11.1. Вложение № 1(цели и задачи)

2. Жизнь Галилео Галилея ____________________________2-92.1. «Кто

же такой, Галилео Галилей?»__________________22.2. Родители Галилея ___________________________________32.3. Направление Галилея в школу при монастыре____________42.4. Пизанский университет ________________________________52.5. Труд о движении______________________________________62.6. Переезд по Флоренцию (Тосканский двор)________________72.7. Галилей перед судом__________________________________82.8. Гробница ____________________________________________9

3. Термометр Галилея_________________________________10-113.1. Историческая справка_________________________________103.2. Принцип работы _____________________________________103.2.1. Вложение (видеоролик)______________________________11

4. Вывод, список литературы ___________________(см. в докладе)

________________________________________________*1 – Вложение на протяжении всей презентации (Аудиозапись)

Вывод

Список литературы

Требуемые цели и задачи достигнуты.

Литература по теме жизни Галилео Галилея изучена, данные об открытиях учёного обработаны, анализ текстов проведен, поиск нужной информации проведён успешно.

1) Видеорепортаж «Жизнь Галилея» в телепередаче «Золотой век Таганки с Вениамином Смеховым»

2) Книга «Галилео Галилей. Его жизнь и научная деятельность» Автор: Предтеченский Е. А. Жанр: биографии и мемуарыСерия: «Жизнь замечательных людей»3) Вики-статья, размещенная в Интернете(Википедия - wikipedia.org)

4) Другие Интернет-сайты.

Видеоролик, использованный во вложении пункта 3.2 (3.2.1.) был скачан с одной из групп сайта «Вконтакте», продающих различные приборы (такие как посуду, и различные аксессуары)Ссылка на группу: vk.com/kupitefal_ru

infourok.ru

Галилео Галилей — реферат

 
Реферат по физике на тему: «Галилео Галилей»
 
 
 
 
           

                                                                                                                                  Выполнил: уч-ца 10 «а» кл.

                                                                                                                      Лопатина Н.А.

 

Содержание:

Введение.

  1. Галилео Галилей – биография.
  2. Научные представления 2-й половины 16 века. Роль Галилео.
  3. Начало пути.
  4. Три года в Пизанском университет.
  5. Падуанский период.
  6. Возвращение во Флоренцию.
  7. Первый процесс.
  8. Второй процесс.
  9. Последние годы.
  10. Еще о Галилео – Галилее.
  11. Еще.

Заключение.

Список  литературы.        

Введение

В этом реферате пойдет рассказ биографии  великого итальянского ученого, физика, механика и астронома, одного из основоположников естествознания; поэта, филолога, критика Галилео Галилея. Ниже пойдет речь о научных представлениях 2-й половины 16 века, роли Галилея, начале его пути, обучении в университете и т.д.              

  1. Галилео-Галилей  – биография.

Галилео-Галилей (1564-1642) — итальянский ученый, физик,  механик и астроном, один из основоположников естествознания; поэт, филолог и критик. Боролся против схоластики, считал основой познания опыт. Заложил основы современной механики: выдвинул идею об относительности движения, установил законы инерции, свободного падения и движения тел по наклонной плоскости, сложения движений; открыл изохронность колебаний маятника; первым исследовал прочность балок.

Галилео-Галилей  построил телескоп с 32-кратным увеличением  и открыл горы на Луне, 4 спутника Юпитера, фазы у Венеры, пятна на Солнце. Активно  защищал гелиоцентрическую систему  мира, за что был подвергнут суду инквизиции (1633), вынудившей его отречься от учения Николая Коперника. До конца жизни Галилей считался «узником инквизиции» и принужден был жить на своей вилле Арчетри близ Флоренции. В 1992 папа Иоанн Павел II объявил решение суда инквизиции ошибочным и реабилитировал Галилея.

Галилео-Галилей  родился 15 февраля 1564, Пиза. Скончался 8 января 1642, Арчетри, близ Флоренции. Знак зодиака -Водолей.                          

  1. Научные представления 2-й половины 16 века. Роль Галилея

В годы детства и юности Галилея практически  безраздельно господствовали представления, сформировавшиеся еще во времена  античности. Некоторые из них, например, геометрия Евклида и статика  Архимеда, сохранили свое значение и в наши дни. Большой багаж  накопили и наблюдения астрономов, приведшие к возникновению прогрессивной  для своего времени системы мира Птолемея (2 в. н. э.). Однако многие положения  античной науки, обретшие со временем статус непререкаемых догм, не выдержали  испытания временем и оказались отвергнутыми, когда главным арбитром в науке был признан опыт.

В первую очередь, это относится к механике Аристотеля и многим другим его естественно-научным представлениям. Именно эти ошибочные положения стали фундаментом официального «идеологического кредо», и требовались не только способности к независимому мышлению, но и просто мужество, чтобы выступить против него. Одним из первых на это отважился Галилео Галилей.

  1. Начало пути

Галилео-Галилей  происходил из знатной, но обедневшей дворянской семьи. Его отец, музыкант и математик, хотел, чтобы сын стал врачом, и в 1581, после окончания монастырской школы, определил его на медицинский факультет Пизанского университета. Но медицина не увлекала семнадцатилетнего юношу. Оставив университет, он уехал во Флоренцию и погрузился в самостоятельное изучение сочинений Евклида и Архимеда. По совету профессора философии Риччи и уступая просьбам сына, отец Галилео перевел его на философский факультет, где более углубленно изучались философия и математика.

В детские  годы Галилей увлекался конструированием механических игрушек, мастерил действующие  модели машин, мельниц и кораблей. Как рассказывал впоследствии его  ученик Вивиани, Галилей еще в юности отличался редкой наблюдательностью, благодаря которой сделал свое первое важное открытие: наблюдая качания люстры в Пизанском соборе, установил закон изохронности колебаний маятника (независимость периода колебаний от величины отклонения). Некоторые исследователи подвергают сомнению рассказ Вивиани об обстоятельствах этого открытия, но достоверно известно, что Галилео-Галилей  не только проверял этот закон на опытах, но и использовал его для определения промежутков времени, что, в частности, было восторженно принято медиками.

Умение  наблюдать и делать выводы из увиденного всегда отличало Галилея. Еще в молодости  он понял, что «... явления природы, как бы незначительны, как бы во всех отношениях маловажны ни казались, не должны быть презираемы философом, но все должны быть в одинаковой мере почитаемы. Природа достигает большого малыми средствами, и все ее проявления одинаково удивительны». По существу, это высказывание можно считать декларацией экспериментального подхода Галилея к изучению явлений природы.

В 1586 Галилео-Галилей  публикует описание сконструированных им гидростатических весов, предназначенных для измерения плотности твердых тел и определения центров тяжести. Эта, как и другие его работы, оказывается замеченной. У него появляются влиятельные покровители, и благодаря их протекции он получает в 1589 место профессора в Пизанском университете (правда, с минимальным окладом).

  1. Три года в Пизанском университете

Начав читать лекции по философии и математике в университете, Галилей оказался перед непростым выбором. С одной  стороны — обретшие статус нерушимых  догм воззрения Аристотеля, с другой — плоды собственных размышлений  и, что еще важнее, — опыта. Аристотель утверждал, что скорость падения  тел пропорциональна их весу. Это  утверждение уже вызывало сомнения, а проведенные Галилеем в присутствии  многочисленных свидетелей наблюдения за падением с Пизанской башни  шаров различного веса, но одинаковых размеров, наглядно опровергали его. Аристотель учил, что различным телам  присуще различное «свойство  легкости», отчего одни тела падают быстрее  других, что понятие покоя абсолютно, что для того, чтобы тело двигалось, его постоянно должен подталкивать воздух, а следовательно, движение тел свидетельствует об отсутствии пустоты.

Уже в 1590, через год после начала работы в Пизе, Галилео-Галилей  пишет трактат «О движении», в котором выступает с резкими возражениями против воззрений перипатетиков (последователей Аристотеля). Это не могло не вызвать резко неодобрительного отношения к нему со стороны представителей казенной схоластической науки. Кроме того, Галилей в то время был сильно стеснен в средствах, и потому был рад получить (опять благодаря своему покровителю) приглашение правительства Венецианской республики на работу в университет в Падую.

  1. Падуанский период

Переход в 1592 в Падуанский университет, где  Галилей занял кафедру математики, ознаменовал собой начало плодотворнейшего периода в его жизни. Здесь  он вплотную подходит к изучению законов  динамики, исследует механические свойства материалов, изобретает первый из физических приборов для исследования тепловых процессов — термоскоп, совершенствует подзорную трубу и первым догадывается использовать ее для астрономических  наблюдений, здесь становится самым  активным и авторитетным сторонником  системы Коперника, обретая благодарность  и уважение потомков и активную враждебность многочисленных современников.

Важнейшим достижением Галилео-Галилея  в динамике было создание принципа относительности, ставшего основой современной теории относительности. Решительно отказавшись от представлений Аристотеля о движении, Галилей пришел к выводу, что движение (имеются в виду только механические процессы) относительно, то есть нельзя говорить о движении, не уточнив, по отношению к какому «телу отсчета» оно происходит; законы же движения безотносительны, и поэтому, находясь в закрытой кабине (он образно писал «в закрытом помещении под палубой корабля»), нельзя никакими опытами установить, покоится ли эта кабина или же движется равномерно и прямолинейно («без толчков», по выражению Галилея).

Термоскоп фактически явился прообразом термометра, и чтобы подойти к его изобретению, Галилей должен был радикально пересмотреть существующие в то время представления  о тепле и холоде.

Первые  известия об изобретении в Голландии  подзорной трубы дошли до Венеции  уже в 1609. Заинтересовавшись этим открытием, Галилей значительно  усовершенствовал прибор. 7 января 1610 произошло  знаменательное событие: направив построенный  телескоп (примерно с 30-кратным увеличением) на небо, Галилей заметил возле  планеты Юпитер три светлые точки; это были спутники Юпитера (позже  Галилей обнаружил и четвертый). Повторяя наблюдения через определенные интервалы времени, он убедился, что  спутники обращаются вокруг Юпитера. Это  послужило наглядной моделью  кеплеровской системы, убежденным сторонником которой сделали Галилея размышления и опыт.

Были  и другие важные открытия, которые  еще больше подрывали доверие  к официальной космогонии с ее догмой о неизменности мироздания: появилась новая звезда; изобретение  телескопа позволило обнаружить фазы Венеры и убедиться, что Млечный  Путь состоит из огромного числа  звезд. Открыв солнечные пятна и  наблюдая их перемещение, Галилео Галилей  совершенно правильно объяснил это вращением Солнца. Изучение поверхности Луны показало, что она покрыта горами и изрыта кратерами. Даже этот беглый перечень позволил бы причислить Галилея к величайшим астрономам, но его роль была исключительной уже потому, что он произвел поистине революционный переворот, положив начало инструментальной астрономии в целом.

Сам Галилей  понимал важность сделанных им астрономических  открытий. Он описал свои наблюдения в  сочинении, вышедшем в 1610 под гордым названием «Звездный вестник».

  1. Возвращение во Флоренцию

После выхода «Звездного вестника» с посвящением  новому Тосканскому герцогу Козимо II Медичи Галилей принимает приглашение герцога вернуться во Флоренцию, где становится придворным «философом» и «первым математиком» университета, без обязательства читать лекции. К тому времени слава о работах Галилея прокатилась по всей Италии, вызывая восхищение одних и яростную ненависть других. Правда, какое-то время враждебные чувства не проявлялись. Более того, когда в 1611 Галилео-Галилей  приехал в Рим, ему был оказан восторженный прием «первыми лицами» города и церкви. Он еще не знал, что за ним учреждена секретная слежка.

К 1612 наступление  противников Галилея усилилось. В 1613 его ученик аббат Кастелли, профессор Пизанского университета, сообщает ему, что поднят вопрос о несовместимости открытий Галилея со Священным Писанием, причем в числе обвинителей активно выступает и мать герцога Тосканского.

В ответном письме Кастелли, явившемся по сути программным документом, Галилео-Галилей  дал глубокий и развернутый ответ на все обвинения, предприняв попытку четко разграничить сферы науки и церкви. Почти два года церковь молчала, возможно, не имея о письме точных сведений, хотя о нем уже было известно в Пизе, Риме и Флоренции. Когда же копия письма (к тому же с намеренными искажениями) была направлена в инквизицию, то узнавший об этом Галилей в начале февраля 1616 едет в Рим в надежде отстоять свое учение.

  1. Первый процесс

Обстоятельства  и на этот раз благоприятствовали Галилею. Незадолго до его приезда  в Рим появилось сочинение  одного священника, в котором высказывалась  мысль, что учение Коперника не противоречит религии. Рекомендательные письма герцога  Тосканского убедили инквизицию, что обвинения Галилея в ереси  безосновательны. Галилео-Галилею, однако, предстояло решить самую трудную  задачу: легализовать свои научные  взгляды, и он начал действовать.

По воспоминаниям  современников, Галилей обладал  блестящим даром популяризатора и полемиста, и его многочисленные выступления имели несомненный  успех. Но он переоценил силу научных  доводов и недооценил силу власти защитников идеологических догм. В марте 1616 конгрегация иезуитов выпустила декрет, в котором объявила учение Коперника еретическим, а его книги запрещенными. Имя Галилея в декрете не было названо, но частным образом ему было приказано принести покаяние церкви и отказаться от своих взглядов. Галилей формально подчинился приказу и вынужденно изменил тактику. В течение многих лет он не выступал с открытой пропагандой учения Коперника. За этот период Галилей выпустил единственное большое сочинение — полемический трактат «Пробирные весы» (1623) по поводу трех комет, появившихся в 1618. По форме, остроумию и изысканности стиля это — одно из лучших произведений Галилея.

freepapers.ru


Смотрите также