Доклад: Органическая химия и здоровье человека. Реферат органическая химия в медицине


Органическая химия и здоровье человека

ОРГАНИЧЕСКАЯ ХИМИЯ И ЗДОРОВЬЕ ЧЕЛОВЕКА

Органическая химия и медицина

Органическая химия теснейшим образом связана с медициной. Огромное количество разнообразных лекарственных средств, которыми располагает сегодня медицина, в подавляющем большинстве органические соединения. Химики - органики в содружестве с медиками, микробиологами и фармацевтами смогли не только установить строение многих природных соединений, используемых в медицине, но и синтезировать некоторые из них. Наряду с этим химики пошли по пути создания соединений, хотя и отличающихся от природных, но обладающих аналогичным, а часто и более эффективным действием. Более того, были получены новые лекарственные средства, которые не знает природа, но способные излечивать многие болезни.

Большую роль в медицине играют синтетические полимерные материалы. Из них делают многое: от одноразовых шприцов до искусственных клапанов сердца.

Какие бывают лекарства и почему они лечат

Лекарства бывают разные. Сколько болезней, столько и лекарств. Часто бывает и так, что одно и то же заболевание лечат многими лекарствами. Обычно лекарственные средства классифицируют по их основному лечебному действию. Одни лекарственные средства обладают противомикробным действием (например, сульфаниламидные препараты: например стрептоцид, норсульфазол, сельфален, фталазол, сульфадимезин и др.). С их помощью удается побороть инфекционные заболевания. Другие лекарства помогают снять боль, но не вызывают потери сознания (например, ацетилсалициловая кислота, или аспирин, прарцетамол, анальгин и др.). Существуют лекарства, которые воздействуют на сердце и кровеносные сосуды (нитроглицерин, анапрелинн, дибазол др.) Получены антигистаминные для лечения аллергических заболеваний, противоопухолевые для лечения злокачественных новообразований и даже психофармакологические препараты, влияющие на психическое состояние человека.

В большинстве своем лекарственные препараты редко бывают простыми веществами. Чаще это сложные по химическому строению органические вещества или их смеси. И хотя число лекарственных препаратов огромно, мы ограничимся рассказом только о двух самых известных и часто применяемых лекарствах - аспирине и белом стрептоциде.

Едва ли найдется человек, который не знаком с аспирином (ацетилсалициловая кислота). Это вещество не обнаружено в природе. Аспирин впервые синтезировал немецкий химик Ш. Герхард в 1853г. путем ацетилирования салициловой кислоты уксусным ангидридом.

При этом в течение 40 лет эта реакция не привлекала к себе внимания, и только в 1893г. другой известный немецкий химик - Ф. Гофман подарил миру это замечательное лекарство. Аспирин обладает обезболивающим, жаропонижающим, противоспалительным и противоревматическим действием.

Аспирин - замечательное лекарство. Но безвредно ли оно? Заметим, что безвредных лекарств вообще не бывает. Что же касается аспирина, то вы должны знать: его нельзя принимать на пустой желудок. Аспирин может вызвать внутрижелудочное кровотечение. Но если нужно срочно прибегнуть к аспирину, то запейте его хотя бы стаканом молока.

Полимеры в медицине

Медицина давно и с успехом использует различные полимерные материалы. Особенно часто их применяют в хирургии. Полимеры используют при операциях на костях и суставах, при закрытии дефекта черепа, восстановлении суставным связок, сухожилий и т.д. Из полимеров изготавливают различные протезы внутренних органов - кровеносных сосудов, пищевода, желчных протоков, клапанов сердца и др. С помощью пластиков исправляют отдельные дефекты лица - заменяют части носа, ушной раковины, глазницы. При операциях на кровеносных сосудах применяют материал из лавсана, пропилена, капрона и кремнийорганических полимеров. При этом сосудистый протез «врастает» в ткани организма, выполняя роль своеобразного каркаса, на котором формируется новая стенка сосуда. Особенно широко применяют полимерные материалы в стоматологии для изготовления искусственных зубов и протезов. Для этого наиболее подходящими материалами оказались полиакриловые полимеры, которые хорошо окрашиваются под цвет собственных зубов и десен, не поглощают остатков пищи и не доступны для микробов. В то же время они достаточно эластичны и прочны. Хорошая совместимость полиакрилового пластика с соединительной тканью позволяет применять его и для исправления крупных дефектов черепа. В последнее время с этой целью стали использовать фторпласт. Биологически инертные кремнийорганические соединения применяют для создания искусственного хрусталика глаза.

В качестве заменителей человеческой крови применяют синтетические кровезаменители - высокомолекулярные химические соединения, которые по своим физическо - химическим свойствам близки к плазме крови (поливиниловый спирт, поливинилпиролидон).

Как известно, потеря человеком половины крови вызывает смерть. Но это происходит не из-за потери эритроцитов, а в результате падения кровеносного давления. Кровообращение замедляется, температура тела падает, нарушается обмен веществ, наступает кислородное голодание центральной нервной системы. Это приводит к остановке дыхания и сердца. Кровезаменяющие жидкости восполняют временно недостающую кровь, поддерживают необходимое давление крови. Но к сожалению, кровезаменители не могут связывать кислород. Поэтому сейчас идут поиски таких кровезаменителей, которые могли бы связывать кислород и доставлять его к клеткам организма, а обратно - оксид углерода (IV). Среди полимеров - кровезаменителей появились и такие которые не только заменяют на короткое время кровь, но и лечат. В молекулы этих соединений введены вещества для лечения туберкулеза, склероза; получены сочетания полимеров - кровезаменителей с антибиотиками, с противораковыми препаратами. Образуя устойчивые водные растворы, они совмещаются с кровяной плазмой и не оказывают на живой организм отрицательного воздействия. Так решается задача использования полимеров в качестве пролонгатов - средств, продлевающих действие лекарств.

Полимерные материалы применяют для упаковки лекарственных препаратов и создания сложным медицинских приборов (аппараты «искусственное сердце» - АИК, «искусственные легкие», «искусственная почка» и др.). Медицинскую практику вошли и заняли достойное место шприцы одноразового пользования.

А разве можно не упомянуть о хирургическом шовном материале, который легко стерилизуется, а после операции бесследно рассасывается в тканях организма?

Ассортимент полимерных материалов, используемых в медицине, с каждым годом расширяется. Это полиэтилен низкого давления, пенополиуретан, полипропилен, эпоксидные, полиэфирные и кремнийорганические полимеры. Нашли применения и специальные клеи, которые при хирургическом вмешательстве могут склеивать ткани, заменяя шовный материал. Не отказались в медицине и от резины: от резиновой грелки до специальной резиновой надувной кровати для больных обширными ожогами.

Полимеры в сельском хозяйстве

Сельское хозяйство в последние годы потребляет различные полимерные материалы в довольно больших количествах. Например, пленочные материалы широко используют при сооружении теплиц и парников. Их также применяют при силосовании кормов, сооружении каналов и водоемов в качестве противофильтрационных материалов.

Для орошения теплиц и парников, транспортировки жидких удобрений и ядохимикатов, устройства систем водоснабжения используются трубы и шланги, которые также изготовлены из полимеров. Такие трубы можно применять и для орошения полей и обводнения пастбищ.

Полимерные материалы применяют при изготовлении поилок для птиц, ленточных транспортеров. Из полимерных материалов делают различные детали сельскохозяйственных машин, работающих в условиях воздействия агрессивных сред, солнечной радиации, атмосферных осадков. Полиэтиленовые мешки для транспортировки минеральных удобрений отличаются от бумажных большей долговечностью и надежностью. Более долговечны различные виды тары и емкости.

Сельскохозяйственное строительство использует изделия из пластмасс для возведения капитальных сооружений. Для этого используют стеклопластик на основе фенолформальдегидных полимеров. В результате не только в несколько раз сокращается расход древесины, цемента и стали, но и значительно возрастает долговечность построек. Этот материал идет на изготовление различных строительных предметов, гидроизоляционных материалов и санитарно - технического оборудования. Таким образом, стеклопластик претендует на видную роль в строительстве и обещают серьезно потеснить традиционные материалы - дерево, камень, сталь и бетон.

Перспективным направлением может оказаться применение полимеров в качестве препаратов, улучшающих структуру почв.

Органическая химия и пищевая промышленность

Органическая химия уже давно нашла применение в пищевой промышленности. Уже сейчас человек задумывается над тем, как более продуктивно получать равноценную пищу из других источников. И это уже удается ученым - химикам и биологам. Оказывается, белок можно получать даже из углеводородов нефти!

Наверное, вы слышали, что во многие пищевые продукты добавляют различные химические вещества. Одни из них придают пище более привлекательный вид, другие - приятный запах, третьи - вкус. Но они могут выполнять и более важную роль - сохранять долго продукты, препятствовать их окислению. Большинство из этих веществ - органические соединения.

Добавки в продукты питания

Одной из проблем создания синтетической пищи является придание продукту не только необходимой структуры, но и определенных свойств - запаха, вкуса, цвета и т.д. Эту роль выполняют специальные органические добавки, которые не только справляются с этой задачей, но и улучшают натуральные продукты питания. Такими добавками могут быть как индивидуальные вещества, так и сложная смесь, состоящая из десятков различных органических соединений. Чаще всего это эфирные масла, сложные эфиры, некоторые спирты, альдегиды, кетоны, а также углеводороды. Приведем только некоторые соединения, обладающие соответствующим запахом:

СН3 - СООСН2 - СН2 - СН (СН3)2изопентилацетат (запах бананов).

С3Н7 - СООС2Н5 этилбутират (запах ананасов).

СН2 = СН - СН2- S - S - Ch3CH = Ch3 диаллилдисульфид (запах чеснока).

При этом запахи отдельных продуктов являются чаще всего результатом сложения запахов смеси органических соединений. Так, в аромате свежеиспеченного хлеба найдено 159 веществ, а фурфурилметилдисульфид - одно из них, хотя и основное. Иногда решающее значение в возникновении запаха имеют соединения, находящиеся в смеси в ничтожных количествах (менее 0,1 %).

В пищевой промышленности применяются различные органические кислоты: уксусная, лимонная молочная, адипиновая, яблочная. В колбасные изделия добавляют для улучшения вкуса мононатриевую соль глутаминовой кислоты.

Среди органических соединений особенно много таких, которые обладают сладким вкусом. Из них наиболее известна сахароза. Но сахароза не самое сладкое вещество. Например, фруктоза слаще ее на 73%, ксилит - вдвое, а сахарин - в 500 раз!

Для улучшения внешнего вида продуктов питания используют различные органические красители, главным образом природные, например красный краситель, содержащийся в вишне, смородине и бруснике - цианидин и близкий ему по строению, придающий красный цвет ягодами земляники - пеларгонидин.

referatwork.ru

Органическая химия и здоровье человека

Главная » Рефераты » Текст работы «Органическая химия и здоровье человека - Химия»

ОРГАНИЧЕСКАЯ ХИМИЯ И ЗДОРОВЬЕ ЧЕЛОВЕКА

Органическая химия и медицина

Органическая химия теснейшим образом связана с медициной. Огромное количество разнообразных лекарственных средств, которыми располагает сегодня медицина, в подавляющем большинстве органические соединения. Химики - органики в содружестве с медиками, микробиологами и фармацевтами смогли не только установить строение многих природных соединений, используемых в медицине, но и синтезировать некоторые из них. Наряду с этим химики пошли по пути создания соединений, хотя и отличающихся от природных, но обладающих аналогичным, а часто и более эффективным действием. Более того, были получены новые лекарственные средства, которые не знает природа, но способные излечивать многие болезни.

Большую роль в медицине играют синтетические полимерные материалы. Из них делают многое: от одноразовых шприцов до искусственных клапанов сердца.

Какие бывают лекарства и почему они лечат

Лекарства бывают разные. Сколько болезней, столько и лекарств. Часто бывает и так, что одно и то же заболевание лечат многими лекарствами. Обычно лекарственные средства классифицируют по их основному лечебному действию. Одни лекарственные средства обладают противомикробным действием (например, сульфаниламидные препараты: например стрептоцид, норсульфазол, сельфален, фталазол, сульфадимезин и др.). С их помощью удается побороть инфекционные заболевания. Другие лекарства помогают снять боль, но не вызывают потери сознания (например, ацетилсалициловая кислота, или аспирин, прарцетамол, анальгин и др.). Существуют лекарства, которые воздействуют на сердце и кровеносные сосуды (нитроглицерин, анапрелинн, дибазол др.) Получены антигистаминные для лечения аллергических заболеваний, противоопухолевые для лечения злокачественных новообразований и даже психофармакологические препараты, влияющие на психическое состояние человека.

В большинстве своем лекарственные препараты редко бывают простыми веществами. Чаще это сложные по химическому строению органические вещества или их смеси. И хотя число лекарственных препаратов огромно, мы ограничимся рассказом только о двух самых известных и часто применяемых лекарствах - аспирине и белом стрептоциде.

Едва ли найдется человек, который не знаком с аспирином (ацетилсалициловая кислота). Это вещество не обнаружено в природе. Аспирин вᴨȇрвые синтезировал немецкий химик Ш. Герхард в 1853г. путем ацетилирования салициловой кислоты уксусным ангидридом.

Однако в течение 40 лет эта реакция не привлекала к себе внимания, и только в 1893г. другой известный немецкий химик - Ф. Гофман подарил миру это замечательное лекарство. Аспирин обладает обезболивающим, жаропонижающим, противоспалительным и противоревматическим действием.

Аспирин - замечательное лекарство. Но безвредно ли оно? Заметим, что безвредных лекарств вообще не бывает. Что же касается аспирина, то вы должны знать: его нельзя принимать на пустой желудок. Аспирин может вызвать внутрижелудочное кровотечение. Но если нужно срочно прибегнуть к аспирину, то заᴨȇйте его хотя бы стаканом молока.

Полимеры в медицине

Медицина давно и с усᴨȇхом использует различные полимерные материалы. Особенно часто их применяют в хирургии. Полимеры используют при оᴨȇрациях на костях и суставах, при закрытии дефекта черепа, восстановлении суставным связок, сухожилий и т.д. Из полимеров изготавливают различные протезы внутренних органов - кровеносных сосудов, пищевода, желчных протоков, клапанов сердца и др. С помощью пластиков исправляют отдельные дефекты лица - заменяют части носа, ушной раковины, глазницы. При оᴨȇрациях на кровеносных сосудах применяют материал из лавсана, пропилена, капрона и кремнийорганических полимеров. При этом сосудистый протез «врастает» в ткани организма, выполняя роль своеобразного каркаса, на котором формируется новая стенка сосуда. Особенно широко применяют полимерные материалы в стоматологии для изготовления искусственных зубов и протезов. Для этого наиболее подходящими материалами оказались полиакриловые полимеры, которые хорошо окрашиваются под цвет собственных зубов и десен, не поглощают остатков пищи и не доступны для микробов. В то же время они достаточно эластичны и прочны. Хорошая совместимость полиакрилового пластика с соединительной тканью позволяет применять его и для исправления крупных дефектов черепа. В последнее время с этой целью стали использовать фторпласт. Биологически инертные кремнийорганические соединения применяют для создания искусственного хрусталика глаза.

В качестве заменителей человеческой крови применяют синтетические кровезаменители - высокомолекулярные химические соединения, которые по своим физическо - химическим свойствам близки к плазме крови (поливиниловый спирт, поливинилпиролидон).

Как известно, потеря человеком половины крови вызывает смерть. Но это происходит не из-за потери эритроцитов, а в результате падения кровеносного давления. Кровообращение замедляется, темᴨȇратура тела падает, нарушается обмен веществ, наступает кислородное голодание центральной нервной системы. Это приводит к остановке дыхания и сердца. Кровезаменяющие жидкости восполняют временно недостающую кровь, поддерживают необходимое давление крови. Но к сожалению, кровезаменители не могут связывать кислород. В связи с этим сейчас идут поиски таких кровезаменителей, которые могли бы связывать кислород и доставлять его к клеткам организма, а обратно - оксид углерода (IV). Среди полимеров - кровезаменителей появились и такие которые не только заменяют на короткое время кровь, но и лечат. В молекулы этих соединений введены вещества для лечения туберкулеза, склероза; получены сочетания полимеров - кровезаменителей с антибиотиками, с противораковыми препаратами. Образуя устойчивые водные растворы, они совмещаются с кровяной плазмой и не оказывают на живой организм отрицательного воздействия. Так решается задача использования полимеров в качестве пролонгатов - средств, продлевающих действие лекарств.

Полимерные материалы применяют для упаковки лекарственных препаратов и создания сложным медицинских приборов (аппараты «искусственное сердце» - АИК, «искусственные легкие», «искусственная почка» и др.). Медицинскую практику вошли и заняли достойное место шприцы одноразового пользования.

А разве можно не упомянуть о хирургическом шовном материале, который легко стерилизуется, а после оᴨȇрации бесследно рассасывается в тканях организма?

Ассортимент полимерных материалов, используемых в медицине, с каждым годом расширяется. Это полиэтилен низкого давления, ᴨȇнополиуретан, полипропилен, эпоксидные, полиэфирные и кремнийорганические полимеры. Нашли применения и сᴨȇциальные клеи, которые при хирургическом вмешательстве могут склеивать ткани, заменяя шовный материал. Не отказались в медицине и от резины: от резиновой грелки до сᴨȇциальной резиновой надувной кровати для больных обширными ожогами.

Полимеры в сельском хозяйстве

Сельское хозяйство в последние годы потребляет различные полимерные материалы в довольно больших количествах. Например, пленочные материалы широко используют при сооружении теплиц и парников. Их также применяют при силосовании кормов, сооружении каналов и водоемов в качестве противофильтрационных материалов.

Для орошения теплиц и парников, транспортировки жидких удобрений и ядохимикатов, устройства систем водоснабжения используются трубы и шланги, которые также изготовлены из полимеров. Такие трубы можно применять и для орошения полей и обводнения пастбищ.

Полимерные материалы применяют при изготовлении поилок для птиц, ленточных транспортеров. Из полимерных материалов делают различные детали сельскохозяйственных машин, работающих в условиях воздействия агрессивных сред, солнечной радиации, атмосферных осадков. Полиэтиленовые мешки для транспортировки минеральных удобрений отличаются от бумажных большей долговечностью и надежностью. Более долговечны различные виды тары и емкости.

Сельскохозяйственное строительство использует изделия из пластмасс для возведения капитальных сооружений. Для этого используют стеклопластик на основе фенолформальдегидных полимеров. В результате не только в несколько раз сокращается расход древесины, цемента и стали, но и значительно возрастает долговечность построек. Этот материал идет на изготовление различных строительных предметов, гидроизоляционных материалов и санитарно - технического оборудования. Итак, стеклопластик претендует на видную роль в строительстве и обещают серьезно потеснить традиционные материалы - дерево, камень, сталь и бетон.

Персᴨȇктивным направлением может оказаться применение полимеров в качестве препаратов, улучшающих структуру почв.

Органическая химия и пищевая промышленность

Органическая химия уже давно нашла применение в пищевой промышленности. Уже сейчас человек задумывается над тем, как более продуктивно получать равноценную пищу из других источников. И это уже удается ученым - химикам и биологам. Оказывается, белок можно получать даже из углеводородов нефти!

Наверное, вы слышали, что во многие пищевые продукты добавляют различные химические вещества. Одни из них придают пище более привлекательный вид, другие - приятный запах, третьи - вкус. Но они могут выполнять и более важную роль - сохранять долго продукты, препятствовать их окислению. Большинство из этих веществ - органические соединения.

Добавки в продукты питания

Одной из проблем создания синтетической пищи является придание продукту не только необходимой структуры, но и определенных свойств - запаха, вкуса, цвета и т.д. Эту роль выполняют сᴨȇциальные органические добавки, которые не только справляются с этой задачей, но и улучшают натуральные продукты питания. Такими добавками могут быть как индивидуальные вещества, так и сложная смесь, состоящая из десятков различных органических соединений. Чаще всего это эфирные масла, сложные эфиры, некоторые спирты, альдегиды, кетоны, а также углеводороды. Приведем только некоторые соединения, обладающие соответствующим запахом:

СН3 - СООСН2 - СН2 - СН (СН3)2изоᴨȇнтилацетат (запах бананов).

С3Н7 - СООС2Н5 этилбутират (запах ананасов).

СН2 = СН - СН2- S - S - Ch3CH = Ch3 диаллилдисульфид (запах чеснока).

Однако запахи отдельных продуктов являются чаще всего результатом сложения запахов смеси органических соединений. Так, в аромате свежеисᴨȇченного хлеба найдено 159 веществ, а фурфурилметилдисульфид - одно из них, хотя и основное. Иногда решающее значение в возникновении запаха имеют соединения, находящиеся в смеси в ничтожных количествах (менее 0,1 %).

В пищевой промышленности применяются различные органические кислоты: уксусная, лимонная молочная, адипиновая, яблочная. В колбасные изделия добавляют для улучшения вкуса мононатриевую соль глутаминовой кислоты.

Среди органических соединений особенно много таких, которые обладают сладким вкусом. Из них наиболее известна сахароза. Но сахароза не самое сладкое вещество. Например, фруктоза слаще ее на 73%, ксилит - вдвое, а сахарин - в 500 раз!

Для улучшения внешнего вида продуктов питания используют различные органические красители, главным образом природные, например красный краситель, содержащийся в вишне, смородине и бруснике - цианидин и близкий ему по строению, придающий красный цвет ягодами земляники - ᴨȇларгонидин.

Перейти в список рефератов, курсовых, контрольных и дипломов по          дисциплине Химия

referatwork.ru

Органическая химия и здоровье человека

ОРГАНИЧЕСКАЯ ХИМИЯ И ЗДОРОВЬЕ ЧЕЛОВЕКА

 

Органическая химия и медицина

Органическая химия теснейшим образом связана с медициной. Огромное количество разнообразных лекарственных средств, которыми располагает сегодня медицина, в подавляющем большинстве органические соединения. Химики – органики в содружестве с медиками, микробиологами и фармацевтами смогли не только установить строение многих природных соединений, используемых в медицине, но и синтезировать некоторые из них. Наряду с этим химики пошли по пути создания соединений, хотя и отличающихся от природных, но обладающих аналогичным, а часто и более эффективным действием. Более того, были получены новые лекарственные средства, которые не знает природа, но способные излечивать многие болезни.

Большую роль в медицине играют синтетические полимерные материалы. Из них делают многое: от одноразовых шприцов до искусственных клапанов сердца.

 

Какие бывают лекарства и почему они лечат

Лекарства бывают разные. Сколько болезней, столько и лекарств. Часто бывает и так, что одно и то же заболевание лечат многими лекарствами. Обычно лекарственные средства классифицируют по их основному лечебному действию. Одни лекарственные средства обладают противомикробным действием (например, сульфаниламидные препараты: например стрептоцид, норсульфазол, сельфален, фталазол, сульфадимезин и др.). С их помощью удается побороть инфекционные заболевания. Другие лекарства помогают снять боль, но не вызывают потери сознания (например, ацетилсалициловая кислота, или аспирин, прарцетамол, анальгин и др.). Существуют лекарства, которые воздействуют на сердце и кровеносные сосуды (нитроглицерин, анапрелинн, дибазол др.) Получены антигистаминные для лечения аллергических заболеваний, противоопухолевые для лечения злокачественных новообразований и даже психофармакологические препараты, влияющие на психическое состояние человека.

В большинстве своем лекарственные препараты редко бывают простыми веществами. Чаще это сложные по химическому строению органические вещества или их смеси. И хотя число лекарственных препаратов огромно, мы ограничимся рассказом только о двух самых известных и часто применяемых лекарствах – аспирине и белом стрептоциде.

Едва ли найдется человек, который не знаком с аспирином (ацетилсалициловая кислота). Это вещество не обнаружено в природе. Аспирин впервые синтезировал немецкий химик Ш. Герхард в 1853г. путем ацетилирования салициловой кислоты уксусным ангидридом.

Однако в течение 40 лет эта реакция не привлекала к себе внимания, и только в 1893г. другой известный немецкий химик – Ф. Гофман подарил миру это замечательное лекарство. Аспирин обладает обезболивающим, жаропонижающим, противоспалительным и противоревматическим действием.

Аспирин – замечательное лекарство. Но безвредно ли оно? Заметим, что безвредных лекарств вообще не бывает. Что же касается аспирина, то вы должны знать: его нельзя принимать на пустой желудок. Аспирин может вызвать внутрижелудочное кровотечение. Но если нужно срочно прибегнуть к аспирину, то запейте его хотя бы стаканом молока.

 

Полимеры в медицине

Медицина давно и с успехом использует различные полимерные материалы. Особенно часто их применяют в хирургии. Полимеры используют при операциях на костях и суставах, при закрытии дефекта черепа, восстановлении суставным связок, сухожилий и т.д. Из полимеров изготавливают различные протезы внутренних органов – кровеносных сосудов, пищевода, желчных протоков, клапанов сердца и др. С помощью пластиков исправляют отдельные дефекты лица – заменяют части носа, ушной раковины, глазницы. При операциях на кровеносных сосудах применяют материал из лавсана, пропилена, капрона и кремнийорганических полимеров. При этом сосудистый протез «врастает» в ткани организма, выполняя роль своеобразного каркаса, на котором формируется новая стенка сосуда. Особенно широко применяют полимерные материалы в стоматологии для изготовления искусственных зубов и протезов. Для этого наиболее подходящими материалами оказались полиакриловые полимеры, которые хорошо окрашиваются под цвет собственных зубов и десен, не поглощают остатков пищи и не доступны для микробов. В то же время они достаточно эластичны и прочны. Хорошая совместимость полиакрилового пластика с соединительной тканью позволяет применять его и для исправления крупных дефектов черепа. В последнее время с этой целью стали использовать фторпласт. Биологически инертные кремнийорганические соединения применяют для создания искусственного хрусталика глаза.

В качестве заменителей человеческой крови применяют синтетические кровезаменители – высокомолекулярные химические соединения, которые по своим физическо – химическим свойствам близки к плазме крови (поливиниловый спирт, поливинилпиролидон).

Как известно, потеря человеком половины крови вызывает смерть. Но это происходит не из-за потери эритроцитов, а в результате падения кровеносного давления. Кровообращение замедляется, температура тела падает, нарушается обмен веществ, наступает кислородное голодание центральной нервной системы. Это приводит к остановке дыхания и сердца. Кровезаменяющие жидкости восполняют временно недостающую кровь, поддерживают необходимое давление крови. Но к сожалению, кровезаменители не могут связывать кислород. Поэтому сейчас идут поиски таких кровезаменителей, которые могли бы связывать кислород и доставлять его к клеткам организма, а обратно – оксид углерода (IV). Среди полимеров – кровезаменителей появились и такие которые не только заменяют на короткое время кровь, но и лечат. В молекулы этих соединений введены вещества для лечения туберкулеза, склероза; получены сочетания полимеров – кровезаменителей с антибиотиками, с противораковыми препаратами. Образуя устойчивые водные растворы, они совмещаются с кровяной плазмой и не оказывают на живой организм отрицательного воздействия. Так решается задача использования полимеров в качестве пролонгатов – средств, продлевающих действие лекарств.

Полимерные материалы применяют для упаковки лекарственных препаратов и создания сложным медицинских приборов (аппараты «искусственное сердце» - АИК, «искусственные легкие», «искусственная почка» и др.). Медицинскую практику вошли и заняли достойное место шприцы одноразового пользования.

А разве можно не упомянуть о хирургическом шовном материале, который легко стерилизуется, а после операции бесследно рассасывается в тканях организма?

Ассортимент полимерных материалов, используемых в медицине, с каждым годом расширяется. Это полиэтилен низкого давления, пенополиуретан, полипропилен, эпоксидные, полиэфирные и кремнийорганические полимеры. Нашли применения и специальные клеи, которые при хирургическом вмешательстве могут склеивать ткани, заменяя шовный материал. Не отказались в медицине и от резины: от резиновой грелки до специальной резиновой надувной кровати для больных обширными ожогами.

 

Полимеры в сельском хозяйстве

Сельское хозяйство в последние годы потребляет различные полимерные материалы в довольно больших количествах. Например, пленочные материалы широко используют при сооружении теплиц и парников. Их также применяют при силосовании кормов, сооружении каналов и водоемов в качестве противофильтрационных материалов.

Для орошения теплиц и парников, транспортировки жидких удобрений и ядохимикатов, устройства систем водоснабжения используются трубы и шланги, которые также изготовлены из полимеров. Такие трубы можно применять и для орошения полей и обводнения пастбищ.

Полимерные материалы применяют при изготовлении поилок для птиц, ленточных транспортеров. Из полимерных материалов делают различные детали сельскохозяйственных машин, работающих в условиях воздействия агрессивных сред, солнечной радиации, атмосферных осадков. Полиэтиленовые мешки для транспортировки минеральных удобрений отличаются от бумажных большей долговечностью и надежностью. Более долговечны различные виды тары и емкости.

Сельскохозяйственное строительство использует изделия из пластмасс для возведения капитальных сооружений. Для этого используют стеклопластик на основе фенолформальдегидных полимеров. В результате не только в несколько раз сокращается расход древесины, цемента и стали, но и значительно возрастает долговечность построек. Этот материал идет на изготовление различных строительных предметов, гидроизоляционных материалов и санитарно – технического оборудования. Таким образом, стеклопластик претендует на видную роль в строительстве и обещают серьезно потеснить традиционные материалы – дерево, камень, сталь и бетон.

Перспективным направлением может оказаться применение полимеров в качестве препаратов, улучшающих структуру почв.

 

Органическая химия и пищевая промышленность

Органическая химия уже давно нашла применение в пищевой промышленности. Уже сейчас человек задумывается над тем, как более продуктивно получать равноценную пищу из других источников. И это уже удается ученым – химикам и биологам. Оказывается, белок можно получать даже из углеводородов нефти!

Наверное, вы слышали, что во многие пищевые продукты добавляют различные химические вещества. Одни из них придают пище более привлекательный вид, другие – приятный запах, третьи – вкус. Но они могут выполнять и более важную роль – сохранять долго продукты, препятствовать их окислению. Большинство из этих веществ – органические соединения.

Добавки в продукты питания

Одной из проблем создания синтетической пищи является придание продукту не только необходимой структуры, но и определенных свойств – запаха, вкуса, цвета и т.д. Эту роль выполняют специальные органические добавки, которые не только справляются с этой задачей, но и улучшают натуральные продукты питания. Такими добавками могут быть как индивидуальные вещества, так и сложная смесь, состоящая из десятков различных органических соединений. Чаще всего это эфирные масла, сложные эфиры, некоторые спирты, альдегиды, кетоны, а также углеводороды. Приведем только некоторые соединения, обладающие соответствующим запахом:

СН3 – СООСН2 – СН2 – СН (СН3)2 изопентилацетат (запах бананов).

С3Н7 – СООС2Н5 этилбутират (запах ананасов).

СН2 = СН – СН2 - S – S – Ch3CH = Ch3 диаллилдисульфид (запах чеснока).

Однако запахи отдельных продуктов являются чаще всего результатом сложения запахов смеси органических соединений. Так, в аромате свежеиспеченного хлеба найдено 159 веществ, а фурфурилметилдисульфид – одно из них, хотя и основное. Иногда решающее значение в возникновении запаха имеют соединения, находящиеся в смеси в ничтожных количествах (менее 0,1 %).

В пищевой промышленности применяются различные органические кислоты: уксусная, лимонная молочная, адипиновая, яблочная. В колбасные изделия добавляют для улучшения вкуса мононатриевую соль глутаминовой кислоты.

Среди органических соединений особенно много таких, которые обладают сладким вкусом. Из них наиболее известна сахароза. Но сахароза не самое сладкое вещество. Например, фруктоза слаще ее на 73%, ксилит – вдвое, а сахарин – в 500 раз!

Для улучшения внешнего вида продуктов питания используют различные органические красители, главным образом природные, например красный краситель, содержащийся в вишне, смородине и бруснике - цианидин и близкий ему по строению, придающий красный цвет ягодами земляники – пеларгонидин.

www.neuch.ru

Реферат - Медицина и полимеры

Медицинские полимеры

Развитие методов синтеза и модификации медицинских полимеров и сополимеров, взаимопроникновение идей и методов химии, биологии и медицины позволяют перейти к решению важнейших задач теоретической и практической медицины, осуществлению самых дерзновенных идей человечества. В настоящее время широким фронтом ведутся работы по синтезу физиологически активных полимерных лекарственных веществ, полусинтетических гормонов и ферментов, синтетических генов. Большие успехи достигнуты в создании сополимерных заменителей плазмы человеческой крови. Сейчас уже не редкость, когда человеку в случае необходимости восполняют до 30% крови растворами медицинских сополимеров. Синтезированы и с хорошими результатами применяются в клинической практике эквиваленты различных тканей и органов человека: костей, суставов, зубов. Созданы протезы кровеносных сосудов, искусственные клапаны и желудочки сердца. Синтез полупроницаемых полимерных мембран и умелое использование разнообразных свойств сополимерных материалов привели к созданию аппаратов «искусственное сердце-легкое» и «искусственная почка». Они позволяют временно заменить соответствующие органы человека, в частности проводить сложные хирургические операции на сердце и легких. Медицинские полимеры и сополимеры используются для культивирования клеток и тканей, хранения и консервации крови, кроветворной ткани – костного мозга, консервации кожи и многих других органов. В терапии широко используются сополимеры – ионообменники (ионообменные смолы) для удаления из организма щелочных металлов, радиоактивных элементов, для введения в организм дополнительных количеств необходимых ионов металлов. Изучается возможность применения ионообменников для коррекции электролитного и кислотно-щелочного равновесия биологических сред при сердечной, печеночной и почечной недостаточности. На основе синтетических сополимеров создаются противовирусные вещества, пролонгаторы важнейших лекарственных средств, противораковые препараторы. Использование медицинских полимеров для изготовления хирургических инструментов и оборудования (шприцы и системы для переливания крови разового использования, бактерицидные пленки, нити, клетки) коренным образом изменило и усовершенствовало технику медицинского обслуживания. Синтез медицинских полимеров может осуществляться по двум механизмам, лежащим в основе получения синтетических макромолекул: полконденсации и полимеризации.

Синтез полимеров методом поликонденсации

Синтез полиэфирных смол. Полиэфирные смолы получаются в результате реакции поликонденсации дикарбоновых кислот и многоатомных спиртов. Широкое применение в различных областях техники и медицины нашел полиэтилентерефталат. Эти волокна являются основой для изготовления протезов кровеносных сосудов. Современные протезы кровеносных сосудов получаю на текстильных производствах в виде гофрированных трубок различного диаметра. Важнейшей характеристикой протезов кровеносных сосудов является пористость (порозность) боковой стенки сосуда. Наличие небольших отверстий в этой стенке позволяет естественным тканям кровеносных сосудов прорастать в них, обеспечивая тем самым вживление и функционирование протеза. Биологическая пористость оценивается количеством крови, проходящей через единицу боковой поверхности протеза за минуту. Протезы из полиэфирных волокон вот уже более 20 лет с успехом используются для замены пораженных участков сосудистой системы. Синтез силиконовых каучуков (полисилоксанов).Синтез полисилоксанов осуществляется в результате последовательных реакций поликонденсации низкомолекулярных кремнийорганических многоатомных спиртов. В настоящее время синтезируют новые, более совершенные марки полисилоксанов. Среди них необходимо отметить трифторпропиленметилполисилоксан. Этот полимер обладает максимальной совместимостью с кровью и в меньшей степени, чем другие полимеры, вызывает образование тромбов. Полисилоксаны и силиконовые резины на их основе широко используются для создания медицинских изделий, контактирующих с кровью: элементов искусственных клапанов сердца, мембраны искусственных клапанов сердца, частей аппаратов искусственного кровообращения и искусственной почки. Жидкие кремнийорганические полимеры – силиконовые масла – обладают еще одним чрезвычайно перспективным для использования в медицине свойством. Силиконовые масла, так же как и некоторые фторсодержащие олигомеры и полимеры, способны растворять и удерживать до 20% кислорода. Это свойство легло в основу их использования в качестве новых перспективных плазмозаменителей и «дыхательных жидкостей». Возможно, в будущем плазмозаменителей можно будет использовать аппаратах искусственного кровообращения. Все большее применение в качестве медицинских полимеров находят полиэфируретаны. Они обладают удовлетворительной тромборезистентностью и применяются для изготовления различных медицинских изделий, контактирующих с кровью в течении небольшого времени. Основным недостатком синтеза медицинских полимеров методами поликонденсации является образование побочных продуктов и невозможность полного превращения исходных низкомолекулярных соединений в высокомолекулярные. Необходимо отметить, что все исходные низкомолекулярные соединения являются токсичными веществами, поэтому получение медицинских марок полимеров требует специальных условий проведения процессов и дополнительной очистки конечных продуктов.

Синтез полимеров методом полимеризации.

В отличие от поликонденсации при полимеризации получаются макромолекулярные соединения из низкомолекулярных без образования побочных продуктов и практически при полном превращении мономеров в полимеры. Совершенствование процессов полимеризации дает возможность отделять не прореагировавшие мономеры на стадии получения полимеров и таким образом добиваться высокой чистоты синтезируемых продуктов. Синтез медицинских сополимеров необходимо проводить таким образом, чтобы количество не прореагировавших мономеров было минимальным. Не прореагировавший мономер, даже если он находится внутри полимерного материала или изделия, например протеза, с течением времени мигрирует наружу и действует на организм как токсичное соединение. Синтетические сополимеры позволяют изучать и моделировать фармакологические свойства биологических сополимеров, которые в настоящее время широко используются для лечения ряда заболевания. Например, гормон инсулин – белок, состоящий из двух полипептидных цепей, содержащих 21 и 30 аминокислотных остатков, - уже около60 лет используется для лечения сахарного диабета, фермент рибонуклеаза – для ограничения развития некоторых опухолей и лечения заболеваний бронхов и легких, фермент холинэстераза – для устранения травматического шока. Для лечения различных сердечно – сосудистых заболеваний используются трипсин (лечение тромбофлебитов), кокарбоксилаза (для расширения сосудов больных атеросклерозом). Широко применяются в медицине белки альбумин и глобулины и нуклеиновые кислоты ДНК, РНК. Благодаря успехам химии полимеров был осуществлен синтез искусственного инсулина. Синтетический инсулин не содержит примесей, имеющихся в ощутимых количествах в обычном инсулине, который получают из биологического сырья. Поэтому эффективность синтетического инсулина намного выше эффективности биологического инсулина самой высокой степе очистки. Некоторые синтетические сополимеры являются активными итерфероногенами, т. е. При их введении в организм человека происходит образование белка интерферона (группа низкомолекулярных белков).Интерферон подавляет размножение различных вирусов в клетках, защищает клетки от бактерий и внутриклеточных паразитов, относящихся к типу простейших. Интерферон способен отличать нуклеиновые кислоты вируса от нуклеиновые кислот клетки. По своей активности интерферон намного превосходит все известные антибиотики. Методом сополимеризации можно получить макромолекулы различной. Это очень важное обстоятельство, так как значение молекулярной массы имеет решающее значение, например, для синтеза плазмозаменителей. Изучение плазмозаменителей показало, что они не только действуют как заменители плазмы крови, но и проявляют физиологическую активность, способствуя быстрому связыванию и выведению из организма токсинов микроорганизмов и токсичных продуктов обмена веществ, т. е. Обладают дезинтоксикационным действием. Синтетические сополимеры широко используются для введения в организм в качестве дезинтоксикационных средств. Большое значение для медицины имеют сополимеры, содержащие в своей цепи ионообменные группировки – ионообменные смолы. Ионообменные смолы широко применяются для восстановления кислотно-щелочного баланса организма. В настоящее время есть данные о положительных результатах использования ионообменных смол для лечения сердечно – сосудистых и желудочно – кишечных заболеваний, печеночной и почечной недостаточности, сахарного диабета.

Литература: Химия и медицина. К. А. Макаров

www.ronl.ru

Органическая химия в биологии и медицине

     Содержание 

 

     Органическая  химия изучает соединения, в состав которых обязательно входит элемент  углерод. Исключение составляет лишь небольшое  число соединений, таких как оксид углерода (II), оксид углерода (IV), угольная кислота и ее соли, рассматриваемых в курсе неорганической химии. Кроме углерода, в состав органических соединений могут входить элементы: водород, хлор, кислород, азот, фосфор и др. Таким образом, органическая химия — это химия соединений углерода. Она изучает строение, свойства и применение органических соединений.

     Органические  вещества были известны еще в древние  времена: люди знали о брожении виноградного сока, в результате чего образуется спирт, получали уксусную кислоту при  скисании вина, некоторые красители, например индиго, из растений. Уже в древности люди пользовались такими органическими веществами как масла, жиры, сахар, крахмал, смолы и т. п.

     В первоначальный период развития химии  не делалось различия между неорганическими и органическими веществами. Химические вещества в то время классифицировались лишь на основе их физических свойств. Поэтому, например, жирные масла ставились в один ряд с купоросным маслом (серная кислота). В конце XVII в. вещества делились на три группы: растительные, животные и минеральные. В дальнейшем, особенно в конце XVIII в., начались исследования органических веществ. Из растений были выделены и изучены такие важные органические кислоты как щавелевая, лимонная, яблочная, молочная и др. Исследовались продукты жизнедеятельности животных организмов, например, были выведены и изучены мочевина и мочевая кислота.

     По  мере изучения органических веществ  были установлены факты, доказывающие, что между веществами растительного  и животного происхождения нет принципиальной разницы. Например, при окислении растительного вещества — сахара получается муравьиная кислота — вещество животного происхождения; жиры содержатся и в животных, и в растительных организмах. Накопленные факты заставили пересмотреть представления о веществах растительного и животного происхождения и ввести общее понятие «органические вещества». Химия, занимающаяся изучением этих веществ, была названа органической.

     Современное человеческое общество живет и продолжает развиваться, активно используя  достижения науки и техники, и  практически немыслимо остановиться на этом пути или вернуться назад, отказавшись от использования знаний об окружающем мире, которыми человечество уже обладает. Накоплением этих знаний, поиском закономерностей в них и их применением на практике занимается наука. Человеку как объекту познания свойственно разделять и классифицировать предмет своего познания (вероятно, для простоты исследования) на множество категорий и групп; так и наука в свое время была поделена на несколько больших классов: естественные науки, точные науки, общественные науки, науки о человеке и пр. Каждый из этих классов делится, в свою очередь, на подклассы и т. д. и т. п. Но среди этого многообразия наук есть науки "лидеры" и науки "отстающие". Одними из современных наук "лидеров" и являются биология и медицина.

     Большая часть современной естественнонаучной литературы в той или иной мере посвящена исследованию именно живой природы. Биологическими проблемами занимаются сейчас десятки наук. Очень продуктивными оказываются и науки, связанные с претворением новейших биологических открытий в жизнь.

     Можно без преувеличения сказать, что  одной из таких отраслей приложения биологии многие из нас обязаны здоровьем и даже жизнью. Речь идет о медицине, которая в настоящие годы переходит не только к использованию лекарств нового поколения и применению в практике новых материалов, но к таким методам лечения, которые позволяют воздействовать на болезнь в самом ее начале, а то и до начала! Это стало возможным в связи с исследованием молекулярных механизмов развития множества заболеваний и коррекцией нарушений не привычным методом введения в организм недостающих веществ, а путем воздействия на естественные процессы биорегуляции (с помощью специальных биорегуляторов или на генетическом уровне). Решение множества ключевых проблем современности, таких как производство продуктов питания, многих лекарств и других веществ связано с активным внедрением в жизнь биотехнологий.

     Столь ощутимый прогресс биологии был бы невозможен без ее активного взаимодействия с другими науками. Но парадокс современного состояния науки состоит в том, что множество исследований оказывается "на стыке наук", для продуктивного решения проблемы приходится привлекать ученых различных специальностей; более того, многие ученые в настоящее время, в век узкой специализации, вынуждены овладевать смежными специальностями, и множество современных исследований с трудом можно отнести к какой-нибудь одной отрасли науки. При решении биологических проблем тесно переплетаются идеи и методы биологии, химии, физики, математики и других областей знания. Именно проблема взаимодействия органической химии с биологическими дисциплинами и их приложениями в медицине и рассмотрена в данной работе.

 

     Истоки  органической химии восходят к глубокой древности (уже тогда знали о спиртовом и уксуснокислом брожении, крашении индиго и ализарином). Однако в средние века (период алхимии) были известны лишь немногие индивидуальные органические вещества. Все исследования этого периода сводились главным образом к операциям, при помощи которых, как тогда думали, одни простые вещества можно превратить в другие.

     Начиная с 16 в. (период ятрохимии) исследования были направлены в основном на выделение и использование различных лекарственных веществ: был выделен из растений ряд эфирных масел, приготовлен диэтиловый эфир, сухой перегонкой древесины получены древесный (метиловый) спирт и уксусная кислота, из винного камня — винная кислота, перегонкой свинцового сахара — уксусная кислота, перегонкой янтаря — янтарная кислота. Большая роль в становлении органической химии принадлежат А. Лавуазье, который разработал основные количественные методы определения состава химических соединений.

     Слияние химии соединений растительного  и животного происхождения в  единую химическую науку органической химии осуществил Й. Берцелиус, который ввел сам термин и понятие органического вещества, образование последнего, по Берцелиусу, возможно только в живом организме при наличии "жизненной силы". Это заблуждение опровергли Ф. Вёлер (1828), который получил мочевину (органическое вещество) из цианата аммония (неорганическое вещество), А. Кольбе, синтезировавший уксусную кислоту, М. Бертло, получивший метан из h3S и CS2, A. M. Бутлеров, синтезировавший сахаристые вещества из формалина.

     В первой половине 19 в. был накоплен обширный опытный материал и сделаны первые обобщения, определившие бурное развитие органической химии: развиты методы анализа органических соединений (Берцелиус, Ю. Либих, Ж. Дюма, М. Шеврёль), создана теория радикалов (Вёлер, Ж. Гей-Люссак, Либих, Дюма) как групп атомов, переходящих неизменными из исходной молекулы в конечную в процессе реакции; теория типов (Ш. Жерар, 1853), в которой органические соединения конструировались из неорганических веществ — "типов" (тип водорода, воды, хлористого водорода, аммиака) замещением в них атомов на органические фрагменты; введено понятие изомерии (Берцелиус).

     Исследования  Э. Франклендом (1852) металлоорганических соединений позволили установить четырехвалентность углерода, заложить основы теории валентности (Ф. Кекуле, 1858) и постулировать существование углерод-углеродных простых и двойных связей. Революционный вклад внес А. Купер (1858), который ввел понятие валентного штриха. С тех пор и по настоящее время химики используют язык так называемых конституционных (структурных) формул молекул органических соединений, в которых связи между отдельными атомами обозначаются с помощью одного (простая, или одинарная, связь), двух (двойная) или трех (тройная) валентных штрихов.

     Одновременно  продолжается интенсивное развитие синтеза. Создаются первые промышленные производства органических соединений (А. Гофман, У. Перкин-старший — синтетические красители: мовеин, фуксин, цианиновые и азокрасители). Усовершенствование открытого Н. Н. Зининым (1842) способа синтеза анилина послужило основой создания анилинокрасочной промышленности. В лаборатории А. Байера синтезированы природные красители — индиго, ализарин, индигоидные, ксантеновые, антрахиноновые.

     Идея  неразрывной связи химической и  физической свойств молекулы с ее строением, идея единственности этого строения впервые была высказана Бутлеровым (1861), который создал классическую теорию химического строения (атомы в молекулах соединяются согласно их валентностям, химические и физические свойства соединений определяются природой и числом входящих в их состав атомов, а также типом связей и взаимным влиянием непосредственно несвязанных атомов). Теория химического строения определила дальнейшее бурное развитие органической химии: в 1865 г. Кекуле предложил формулу бензола, позднее высказал идею об осцилляции связей; В. В. Марковников и А. М. Зайцев сформулировали ряд правил, впервые связавших направление химической реакции с химическим строением вступающего в реакцию вещества. Экспериментальные данные И. Вислиценуса (1873) об идентичности структурных формул (+)-молочной кислоты (из кислого молока) и (±)-молочной кислоты послужили толчком для создания стереохимической теории (Я. Вант-Гофф и Ж. Ле Бель, 1874), в которой постулировалось тетраэдрическое строение фрагмента с четырехвалентным атомом углерода, что в случае четырех различных заместителей предсказывало существование пространственно-зеркальных изомеров; для соединений с двойной связью (тетраэдры соединяются по ребру) — наличие геометрической изомерии. На этой основе возникла стереохимия — наука о трехмерной ориентации атомов в молекулах и вытекающих отсюда следствиях, касающихся свойств соединений.

     Работами  Байера, К. Лаара, Л. Клайзена, Л. Кнорра развиты представления о таутомерии — подвижной изомерии. Все эти теоретические представления способствовали мощному развитию синтетической химии.

     К концу 19 в. были получены все важнейшие  представители углеводородов, спиртов, альдегидов и кетонов, карбоновых кислот, галогено- и нитропроизводных, азот- и серосодержащих структур, гетероциклов ароматической природы. Разработаны методы получения диенов, ацетиленов и алленов (А. Е. Фаворский). Открыты многочисленные реакции конденсации (Ш. Вюрц, А. П. Бородин, У. Перкин, Клайзен, А. Михаэль, Ш. Фридель, Дж. Крафтс, Э. Кнёвенагель и др.). Исключительные успехи были достигнуты Э. Г. Фишером в изучении углеводов, белков и пуринов, в использовании ферментов в органическом синтезе (1894), им же был осуществлен синтез полипептидов. Основой промышленности душистых веществ становятся работы О. Валлаха по химии терпенов. Выдающимися даже для нашего времени являются пионерские работы Р. Вильштеттера [установление структуры кокаина (1897) и хлорофилла (1907-1911)]. Фундаментальный вклад в развитие органического синтеза был внесен В. Гриньяром (1900-1920) и Н. Д. Зелинским (1910) — создание исключительно плодотворного метода синтеза магнийорганических соединений и открытие каталитических превращений углеводородов; последнее сыграло выдающуюся роль в развитии химии нефти. Химия свободных радикалов началась с работ М. Гомберга (1900), открывшим трифенилметильный радикал, и была продолжена работами А. Е. Чичибабина, Г. Виланда и Ш. Гольдшмидта.

     Разработка  Ф. Преглем в начале 20 в. методов микроанализа органических веществ способствовала дальнейшему быстрому развитию химии природных соединений, что ознаменовалось работами Виланда (1910) по установлению природы желчных кислот; А. Виндауса (1913-1915) — природы холестерина; работами Г. Фишера (1927-1929) по синтезу таких ключевых соединений как порфирин, билирубин и гемин; У. Хоуорса (Хеуорс) — по установлению структуры углеводов, синтезу витамина С; П. Каррера, Р. Куна (1911-1939) — по получению каротиноидов и витаминов В2, В6, Е и К; химия алкалоидов, половых гормонов, терпенов была создана работами А. Бутенандта (1929-1961), Л. Ружички (1920-1924), А. П. Орехова и Р. Робинсона.

     К середине 20 в. органический синтез претерпевает бурное развитие. Это определялось открытием таких основополагающих процессов как получение олефинов с использованием илидов (Г. Виттиг, 1954), диеновый синтез (О. Дильс, К. Альдер, 1928), гидроборирование непредельных соединений (Г. Браун, 1959), синтез нуклеотидов и синтез гена (А. Тодд, X. Корана). Не менее значительны успехи в химии металлоорганических соединений (А. Н. Несмеянов, Г. А. Разуваев). В 1951 г. был осуществлен синтез ферроцена, установление "сэндвичевой" структуры которого Р. Вудвордом и Дж. Уилкинсоном положило начало химии металлоценовых соединений и вообще химии органических соединений переходных металлов. В 1955 г. Э. О. Фишер синтезировал дибензолхром и разработал метод синтеза ареновых производных переходных металлов.

     В 20-30-е гг. 20 столетия А. Е. Арбузов создает основы химии фосфорорганических соединений, что впоследствии привело к открытию новых типов физиологически активных соединений, комплексонов и др.

     В 60-е гг. Г. Шилл осуществил синтез таких "неклассических" соединений как  катенаны и ротаксаны. В 60-80-е гг. Ч. Педерсен, Д. Крам и Ж. М. Лен разрабатывают химию краун-эфиров, криптандов и других родственных структур, способных образовывать прочные молекулярные комплексы, и тем самым подходят к важнейшей проблеме «молекулярного узнавания».

     Современный период развития органической химии  характеризуется в области теории все большим проникновением методов квантовой механики в органическую химию. С их помощью химики пытаются решить вопрос о причинах того или иного проявления взаимного влияния атомов в молекулах. В области развития органического синтеза современный период характеризуется исключительными успехами в получении природных веществ, участвующих в жизнедеятельности растений и животных. Синтезированы хлорофилл, гемин и многие гормоны, витамины, алкалоиды и антибиотики. Успешно решается величайшая проблема огромного философского значения — проблема синтеза белка. В последние годы расшифровано строение молекул ряда белков и уже синтезированы простейшие белковые вещества. Выявлена роль нуклеиновых кислот в синтезе белка, в хранении и передаче наследственной информации. Осуществлен синтез гена. В промышленности наблюдается исключительный прогресс в производстве необходимых для развития техники новых материалов, природных веществ и их заменителей, в использовании прогрессивных каталитических методов, сверхвысоких давлений, в разработке методов очистки органических веществ.

stud24.ru


Смотрите также