Лекция: Роль живых организмов в развитии атмосферы, гидросферы и литосферы. Реферат на тему живые организмы в атмосфере


Атмосфера, человек и жизнь на Земле

Первичная атмосфера Земли состояла из метана, аммиака и других газов. Вместе с развитием планеты атмосфера существенно изменялась. Живые организмы сыграли ведущую роль в образовании того состава атмосферного воздуха, который возник и поддерживается при их участии в настоящее время. Вы можете посмотреть более подробно историю формирования атмосферы на Земле.

Природные процессы, как потребления, так и образования компонентов атмосферы приблизительно уравновешивают друг друга, то есть обеспечивают постоянный состав газов, составляющих атмосферу. 

Как Вы думаете, можно ли считать воздух неиссякаемым и возобновляемым природным достоянием?

Без хозяйственной деятельности человека природа справляется с такими явлениями, как поступление в атмосферу вулканических газов, дыма от природных пожаров, пыли от природных пыльных бурь. Эти выбросы рассеиваются в атмосфере, оседают или выпадают на поверхность Земли с осадками. За них принимаются почвенные микроорганизмы, и в конце концов перерабатывают их в углекислый газ, сернистые и азотные соединения почвы, то есть в «обычные» компоненты воздуха и почвы. В этом и заключается причина того, что атмосферный воздух имеет в среднем постоянный состав. С появлением человека на Земле сначала постепенно, затем бурно и в настоящее время угрожающе начался процесс изменения газового состава воздуха и разрушения природной устойчивости атмосферы. Около 10 000 лет назад люди научились пользоваться огнем. К природным источникам загрязнения прибавились продукты сгорания различного вида топлива. Вначале это были древесина и другие виды растительного материала.

В настоящее время больше всего вреда атмосфере приносит искусственно произведенное топливо — продукты переработки нефти (бензин, керосин, соляровое масло, мазут) и синтетическое топливо. Сгорая, они образуют оксиды азота и серы, угарный газ, тяжелые металлы и другие ядовитые вещества неприродного происхождения (загрязнители).

image066    Учитывая огромный масштаб использования техники в наши дни, можно представить себе, сколько двигателей автомобилей, самолетов, кораблей и другой техники ежесекундно г убят атмосферу Алексашина И.Ю., Космодамианский А.В., Орещенко Н.И. Естествознание: Учебник для 6 класса общеобразовательных учреждений. – СПб.: СпецЛит, 2001. – 239 с.   .

Почему троллейбус и трамвай считаются экологически чистыми видами транспорта по сравнению с автобусом?

Особенно опасны для всего живого те устойчивые аэрозольные системы, которые образуются в атмосфере наряду с кислотными и многими другими газообразными отходами производства.Европа — одна из наиболее густонаселенных и промышленно развитых частей света. Мощная транспортная система, крупная промышленность, высокое потребление органического топлива и минерального сырья ведут к заметному повышению концентраций загрязнителей в воздухе. Практически во всех крупных городах Европы наблюдается  смог Смог - аэрозоль, состоящий из дыма, тумана и пыли, один из видов загрязнения воздуха в крупных городах и промышленных центрах. Подробнее см.: http://ru.wikipedia.org/wiki/Смог    и регулярно фиксируется повышенное содержание в воздухе таких опасных загрязнителей, как оксиды азота и серы, угарный газ, бензол, фенолы, мелкая пыль и др.

image070       

Не вызывает сомнения прямая связь повышения содержания вредных веществ в атмосфере с ростом аллергических заболеваний и болезней органов дыхания, а также рядом других заболеваний.

Необходимы серьезные меры в связи с возрастанием в городах количества автомобилей, планируемым в ряде городов России развитием промышленности, что неизбежно увеличит количество выбросов загрязняющих веществ в атмосферу.

Посмотрите, как решаются проблемы чистоты атмосферного воздуха в «зеленой столице Европы» — Стокгольме.

Комплекс мероприятий для улучшения качества воздуха должен непременно включать улучшение экологических характеристик автомобилей; строительство системы газоочистки на промышленных предприятиях; использование природного газа, а не угля, как топлива на предприятиях энергетики. Сейчас в каждой развитой стране существует служба контроля за состоянием чистоты воздуха в городах и промышленных центрах, что несколько улучшило сложившуюся скверную ситуацию. Так, в Санкт-Петербурге действует автоматизированная система мониторинга атмосферного воздуха Санкт-Петербурга (АСМ). Благодаря ей не только органы государственной власти и местного самоуправления, но и жители города могут узнавать о состоянии атмосферного воздуха.

На здоровье жителей Санкт-Петербурга — мегаполиса с развитой сетью транспортных магистралей — оказывают влияние, в первую очередь, основные загрязняющие вещества: оксид углерода, оксид азота, диоксид азота, взвешенные вещества (пыль), диоксид серы, которые поступают в атмосферный воздух города от выбросов предприятий теплоэнергетики, промышленности, и от транспорта. В настоящее время доля выбросов от автотранспорта составляет 80% от общего объема выбросов основных загрязняющих веществ. (По экспертным оценкам, более чем в 150 городах России преобладающее влияние на загрязнение воздушного бассейна оказывает именно автотранспорт).

А как обстоят дела в вашем городе? Как Вы думаете, что можно и нужно делать, чтобы воздух в наших городах стал чище?

Здесь помещена информация об уровне загрязнения атмосферного воздуха в районах расположения станций АСМ на территории Санкт-Петербурга.

Надо сказать, что в Санкт-Петербурге отмечена тенденция к уменьшению выбросов загрязнителей в атмосферу, однако причины этого явления связаны преимущественно с уменьшением количества работающих предприятий. Понятно, что с экономический точки зрения это не лучший способ снижения загрязнения.

Сделаем выводы.

Воздушная оболочка Земли — атмосфера — необходима для существования жизни. Газы, входящие в состав воздуха, участвуют в таких важных процессах, как дыхание, фотосинтез. Атмосфера отражает и поглощает солнечную радиацию и таким образом защищает живые организмы от губительных рентгеновских и ультрафиолетовых лучей. Углекислый газ удерживает тепловое излучение земной поверхности. Атмосфера Земли уникальна! От нее зависят наше здоровье и жизнь.

Человек бездумно накапливает в атмосфере отходы своей деятельности, что вызывает серьезные экологические проблемы. Нам всем необходимо не только осознавать свою ответственность за состояние атмосферы, но и по мере сил, делать то, что мы можем, для сохранения чистоты воздуха, основы нашей жизни.

u3a.ifmo.ru

Атмосфера как среда обитания живых организмов

Московский  региональный  институт

высшего  социально-экономического  образованияПароваткина  Ирина  Олеговна

                                                                                                       3 упр-07РефератУчебная дисциплина – «Экология»

Атмосфера как среда обитания живых организмов.Проверил -  Колушева Г.В.

к.б.н., доц.

                            Видное – 2010

Содержание.Введение………………………………………………………………………3

1.     Атмосфера как среда обитания живых организмов…………………….4

2.     Загрязнение атмосферы…………………………………………………..8

3.     Меры по охране атмосферы и сохранения жизни на Земле…………..12

Заключение…………………………………………………………………..16

Список литературы………………………………………………………….17Введение.Человек всегда использовал окружающую среду в основ­ном как источник ресурсов, однако в течение очень дли­тельного времени его деятельность не оказывала заметного влияния на биосферу. Лишь в конце прошлого столетия изменения биосферы под влиянием хозяйственной деятель­ности обратили на себя внимание ученых. В первой полови­не нынешнего века эти изменения нарастали и в настоящее время лавиной обрушились на человеческую цивилизацию. Стремясь к улучшению условий своей жизни, человек по­стоянно наращивает темпы материального производства, не задумываясь о последствиях. При таком подходе большая часть взятых от природы ресурсов возвращается ей в виде отходов, часто ядовитых или непригодных для утилиза­ции. Это создает угрозу и существованию биосферы, и само­го человека.

В данной работы мы рассмотрим влияние атмосферы на живые организмы,  виды загрязнения атмосферы и методы её охраны.

1.     Атмосфера как среда обитания живых организмов.Амосфера - газовая оболочка, окружающая небесное тело. Ее характеристики зависят от размера, массы, температуры, скорости вращения и химического состава данного небесного тела, а также определяются историей его формирования начиная с момента зарождения. Атмосфера Земли образована смесью газов, называемой воздухом. Ее основные составляющие – азот и кислород в соотношении приблизительно 4:1.

На человека оказывает воздействие главным образом состояние нижних 15–25 км атмосферы, поскольку именно в этом нижнем слое сосредоточена основная масса воздуха. Наука, изучающая атмосферу, называется метеорологией, хотя предметом этой науки являются также погода и ее влияние на человека. Состояние верхних слоев атмосферы, расположенных на высотах от 60 до 300 и даже 1000 км от поверхности Земли, также изменяется. Здесь развиваются сильные ветры, штормы и проявляются такие удивительные электрические явления, как полярные сияния. Многие из перечисленных феноменов связаны с потоками солнечной радиации, космического излучения, а также магнитным полем Земли. Высокие слои атмосферы – это также и химическая лаборатория, поскольку там,0 в условиях, близких к вакууму, некоторые атмосферные газы под влиянием мощного потока солнечной энергии вступают в химические реакции. Наука, изучающая эти взаимосвязанные явления и процессы, называется физикой высоких слоев атмосферы.Масса атмосферы нашей планеты ничтожна - всего лишь одна миллионная массы Земли. Однако ее роль в природных процессах биосферы огромна. Наличие вокруг земного то шара атмосферы определяет общий тепловой режим по­верхности нашей планеты, защищает ее от вредных космического и ультрафиолетового излучений. Циркуляция атмосферы оказывает влияние на местные климатические условия, а через них - на режим рек, почвенно-растительный покров и на процессы рельефообразования.

Современный газовый состав атмосферы - результат длительного исторического развития земного шара. Он представляет собой в основном газовую смесь двух компо­нентов - азота (78,09%) и кислорода (20,95%). В норме в нем присутствуют также аргон (0,93%), углекислый газ (0,03%) и незначительные количества инертных газов (не­он, гелий, криптон, ксенон), аммиака, метана, озона, диок­сидов серы и других газов. Наряду с газами в атмосфере содержатся твердые частицы, поступающие с поверхности Земли (например, продукты горения, вулканической дея­тельности, частицы почвы) и из космоса (космическая пыль), а также различные продукты растительного, живот­ного или микробного происхождения. Кроме того, важную роль в атмосфере играет водяной пар.

Наибольшее значение для различных экосистем имеют три газа, входящих в состав атмосферы: кислород, углекис­лый газ и азот. Эти газы участвуют в основных биогеохимических циклах.

Кислород играет важнейшую роль в жизни большинст­ва живых организмов нашей планете. Он необходим всем для дыхания. Кислород не всегда входил в состав земной атмосферы. Он появился в результате жизнедея­тельности фотосинтезирующих организмов. Под действием ультрафиолетовых лучей он превращался в озон. По мере накопления озона произошло образование озонового слоя в верхних слоях атмосферы. Озоновый слой, как экран, на­дежно защищает поверхность Земли от ультрафиолетовой радиации, гибельной для живых организмов.

Современная  атмосфера содержит едва ли двадцатую часть кислорода, имеющегося на нашей планете. Главные запасы кислорода сосредоточены в карбонатах, в органи­ческих веществах и окислах железа, часть кислорода рас­творена в воде. В атмосфере, по-видимому, сложилось при­близительное равновесие между производством кислорода в процессе фотосинтеза и его потреблением живыми организ­мами. Но в последнее время появилась опасность, что в результате человеческой деятельности запасы кислорода в атмосфере могут уменьшиться. Особую опасность представ­ляет разрушение озонового слоя, которое наблюдается в последние годы. Большинство ученых связывают это с дея­тельностью человека.

Круговорот кислорода в биосфере необычайно сложен, так как с ним вступает в реакцию большое количество органических и неорганических веществ, а также водород, соединяясь с которым кислород образует воду.

Углекислый газ (диоксид углерода) используется в про­цессе фотосинтеза для образования органических веществ. Именно благодаря этому процессу замыкается круговорот углерода в биосфере. Как и кислород, углерод входит в состав почв, растений, животных, участвует в многообраз­ных механизмах круговорота веществ в природе. Содержание углекислого газа в воздухе, который мы вды­хаем, примерно одинаково в различных районах планеты. Исключение составляют крупные города, в которых содер­жание этого газа в воздухе бывает выше нормы.

Некоторые колебания содержания углекислого газа в воздухе местности зависят от времени суток, сезона года, биомассы растительности. В то же время исследования по­казывают, что с начала века среднее содержание углекис­лого газа в атмосфере, хотя и медленно, но постоянно уве­личивается. Ученые связывают этот процесс главным обра­зом с деятельностью человека.

Азот - незаменимый биогенный элемент, поскольку он входит в состав белков и нуклеиновых кислот. Атмосфе­ра - неисчерпаемый резервуар азота, однако основная часть живых организмов не может непосредственно исполь­зовать этот азот: он должен быть предварительно связан в виде химических соединений.

Частично азот поступает из атмосферы в экосистемы в виде оксида азота, образующегося под действием электри­ческих разрядов во время гроз. Однако основная часть азота поступает в воду и почву в результате его биологичес­кой фиксации. Существует несколько видов бактерий и сине-зеленых водорослей (к счастью, весьма многочислен­ных), которые способны фиксировать азот атмосферы. В результате их деятельности, а также благодаря разложе­нию органических остатков в почве растения-автотрофы получают возможность усваивать необходимый азот.

Круговорот азота  тесно связан с круговоротом углерода. Несмотря на то что круговорот азота сложнее, чем круговорот углерода, он, как правило, происходит бы­стрее.

Другие составные части воздуха не участвуют в биохи­мических циклах, но наличие большого количества загряз­нителей в атмосфере может привести к серьезным наруше­ниям этих циклов.

2.       Загрязнение атмосферы.На всех стадиях своего развития человек был тесно связан с окружающим миром.  Но с тех пор как появилось высокоиндустриальное общество,  опасное  вмешательство  человека  в природу резко усилилось,  расширился объём этого  вмешательства,  оно стало  много образнее  и  сейчас грозит стать глобальной опасностью для человечества.  Расход невозобновимых  видов  сырья повышается, все больше пахотных земель выбывает из экономики, так на них строятся города и заводы.  Человеку приходится все больше вмешиваться  в  хозяйство  биосферы  - той части нашей планеты, в которой существует жизнь. Биосфера Земли в настоящее время  подвергается  нарастающему антропогенному воздействию. При этом можно выделить несколько наиболее  существенных процессов, любой  из которых не улучшает экологическую ситуацию на планете.

Наиболее масштабным  и  значительным  является  химическое загрязнение среды несвойственными  ей  веществами  химической природы. Среди  них - газообразные и аэрозольные загрязнители промышленно-бытового происхождения.  Прогрессирует и накопление углекислого  газа в атмосфере.  Дальнейшее развитие этого процесса будет усиливать нежелательную  тенденцию  в  сторону повышения среднегодовой температуры на планете. Вызывает тревогу  у экологов и продолжающееся загрязнение Мирового  океана нефтью и нефтепродуктами, достигшее уже  11/5  его общей поверхности. Нефтяное загрязнение таких размеров может вызвать  существенные нарушения  газо-  и водообмена между гидросферой и атмосферой. Не вызывает сомнений и значение химического  загрязнения почвы пестицидами и ее повышенная кислотность, ведущая к распаду экосистемы.  В целом все рассмотренные факторы, которым можно приписать загрязняющий эффект, оказывают заметное влияние на процессы, происходящие в биосфере.

www.coolreferat.com

Реферат - Роль живых организмов в развитии атмосферы, гидросферы и литосферы

Одной из наиглавнейших особенностей планеты Земля является существование на ней жизни. Этим она отличается от всех своих соседок по Солнечной системе. Область существования живых организмов на Земле называют биосферой (сферой жизни). Впервые этот термин ввел австрийский геолог Э. Зюсс в 1875 г., но распространился он после издания в 1926 г. трудов выдающегося ученого В. Вернадского.

Живые существа (растения, животные, микроорганизмы) существуют на поверхности Земли, в ее атмосфере, гидросфере и верхней части литосферы, в целом образуя пленку жизни (сферу) на нашей планете. Верхняя граница биосферы простирается на 85 км над поверхностью Земли. На таких высотах (в стратосфере) во время запусков геофизических ракет в пробах воздуха были обнаружены споры микроорганизмов, правда, в латентном (спящем) виде из за слишком неблагоприятных условий существования. Нижняя граница биосферы достигает глубин литосферы, где температура составляет больше 10000С (в молодых складчатых областях – это приблизительно 1.5 – 2 км и на кристаллических щитах – 7-8 км). Приспосабливаемость живых организмов удивляет. Так, живые бактерииобнаружены в горячих гейзерных источниках с температурой до 980оС, активная и довольно разнообразная жизнь бурлит в трещинах антарктических ледников и на наибольших глубинах Мирового океана, даже в океанических водах пораженных сероводородом, также существуют специфические серные бактерии.

Живые организмы не только приспосабливаются к условиям внешней среды, но и активно их меняют. В. Вернадский доказал, что живые организмы играют очень важную роль в геологических процессах, которые формируют лицо Земли. Химический состав современных атмосферы и гидросферы обусловлен жизнедеятельностью организмов. Большое значение имеют организмы для формирования литосферы – большинство пород, и не только осадочных, а и таких как граниты, так или иначе связаны своим происхождением с биосферой. «Если бы на Земле не было жизни, — писал ученый, — лицо ее было бы таким же неизменным и химически инертным, как недвижимое лицо Луны, как инертные обломки небесных светил».

Согласно последним оценкам, сухая масса живого вещества на Земле составляет 2-3 триллиона тонн. Это сравнительно малая величина, в 10 млн раз меньше массы земной коры и в миллиард — массы Земли. Однако живое вещество отличается от неживого очень высокой активностью, в частности, очень быстрым круговоротом веществ. Все живое вещество атмосферы обновляется в среднем за восемь лет. Биомасса мирового океана восстановляется за 33 дня, его фитомасса каждый день, фитомасса суши – приблизительно за 14 лет. Следует учесть, что жизнедеятельность животных, растений и микроорганизмов сопровождается непрерывным обменом веществ между организмами и средой, в следствие чего все химические элементы земной коры, атмосферы и гидросферы многоразово входили в состав тех или иных организмов. Подсчитано, что вся вода планеты проходит цикл расщепления в растительных клетках и восстановления в растительных и животных организмах, то есть обновляется биосферой приблизительно за 2 млн. лет. Образно выражаясь, мы дышим воздухом, которым дышали динозавры, и пьем воду, которая входила в состав тканей юрских папоротников.

Живые организмы играют огромную роль в аккумуляции солнечной энергии. Например, залежи каменного угля – это не что иное, как солнечная энергия, накопленная зелеными растениями минувших геологических эпох. Так же можно определить и природу многих минералов, в частности карбоната кальция, который образует огромные массы известняков и почти на 100% имеет биогенное происхождение. Важную роль живые организмы играют в накоплении многих металлов, таких как железо, медь, марганец. Большое значение для биосферы и хозяйственной деятельности человека имеет круговорот азота, серы, фосфора и других элементов. Установлено что любой растворимый, но не летучий элемент может совершать круговорот только через биосферу. Живые организмы накапливают некоторые элементы в своих тканях, а водные жители, кроме того, увеличивают их содержание и в своей среде жизни, то есть в воде (например, такие элементы, как молибден, кобальт, никель находятся в водной среде в значительно большем количестве, нежели на суше).

Очевидно, что за миллиарды лет геологической истории жизнь неузнаваемо изменила внешние оболочки нашей планеты.

 

Роль живого вещества в атмосфере.Земная атмосфера, по словам В.И. Вернадского – это «создание жизни». Весь свободный кислород в современной атмосфере имеет биогенное происхождение. В настоящее время это положение оспаривается. Кислород выделяется из пород литосферы в процессе происходящих в них геохимических процессов. Его содержится 2,8·1014 т. Последние 200 млн. лет, содержание кислорода в воздухе остается постоянным за счет фотосинтеза растений. Появление кислорода изменило многие свойства Земли. Озоновый слой стал задерживать ультрафиолетовые лучи, губительные для живых организмов. Усилились процессы выветривания пород, так как кислород – сильный окислитель. При отсутствии его в атмосфере состав литосферы на Земле был совершенно иным. Так, железистые кварциты КМА, а также железорудные месторождения Сибири образовывались в докембрийское время. Это закисные формы железа, которые формируются при малом количестве кислорода. В последующие геологические эпохи таких скоплений железных руд на Земле не было. В атмосфере появился кислород и стали образовываться окисные формы железа, которые более подвижны и крупных месторождений создавать не могут.

Азот атмосферы усваивается растениями, а животные получают его из растительной пищи. Но главная роль в фиксации азота принадлежит почвенным бактериям. Его содержание в атмосфере составляет 3,8·1015 т. Возвращается в атмосферу азот благодаря деятельности других бактерий – денитрификаторов. Без них большая часть атмосферного азота оказалась бы в связанном состоянии в океане и в осадочных горных породах.

Углерод. За время существования на Земле фотосинтезирующих организмов их атмосферы в земную кору перешло большое количество углерода. В современной атмосфере его содержится 7·1011 т. Баланс углерода связан с деятельностью организма, поглощающих и выделяющих углекислый газ. Однако этот баланс местами нарушается хозяйственной деятельностью организма и выбросами в окружающую среду больших объемов углерода.

Таким образом, современная атмосфера – это продукт жизнедеятельности организмов, в том числе человека, определяющих, регулирующих и изменяющих ее состав.

Роль живого вещества в гидросфере. Так же сильно действует живое вещество на гидросферу. Организмы непрерывно потребляют и выделяют воду. Особенно интенсивен процесс транспирации, то есть испарения влаги растениями. Так, лесная растительность Земли ежегодно испаряет 50 млн. км3 воды. Газовый и солевой состав вод суши и океана во многом зависит от организмов, живущих в воде, а также на площади водосборных бассейнов. За счет них в воду поступают: углекислый газ, гуминовые вещества, соединения серы, фосфора, азота и др. элементы. В результате вода становится химически активной, то есть повышается ее способность растворять химический соединения. Микроорганизмы, живущие на дне озер и морей, а также в подземных водах, способны отнимать кислород у сульфатов, нитратов, марганца, гидроокислов железа, что приводит к образованию сероводородных вод и вод, содержащих метан.

Роль живого вещества в литосфере. Воздействие живого вещества на литосферу проявляется:

1. В разрушении горных пород;

2. В образовании особых, органогенных пород.

Процесс выветривания горных пород происходит при непосредственном участии организмов, действующих на них как механически, то есть корневой системой, так и химически – продуктами своей жизнедеятельности. Органогенными породами являются известняки, мела и большинство кремниевых пород, то есть трепела и опоки. Например, мел на юге Воронежской области состоит из раковин фораминифер. Они очень мелкие и видны лишь под микроскопом. Органическое происхождение имеют также известняки, состоящие из остатков кораллов и моллюсков, которые строили свои организмы из карбонатов. В нашем регионе в девонское время отмечался рассвет жизни таких организмов. В результате образовались мощные толщи (до 700) известняков в Курской, Орловской, Липецкой, Тамбовской областях и на севере Воронежской области.

Органогенными также являются: торф, бурый и каменный угли, горючие сланцы, нефть и газ. Запасы органического вещества в земной коре – огромны. Они во много раз превосходят объем живого вещества. Так, запасы углерода, заключенного в горючих ископаемых составляет, в среднем, 200 т/га земной поверхности. В осадочных породах содержится 2·1016 т. органического углерода. Все породы органогенного происхождения занимают 1/3 поверхности суши. Деятельность организмов на Земле привела к изменению химического состава воды, так как огромное количество CaCO3 было выведено из состава гидросферы. Как видно, живые организмы являются очень мощной геохимической силой на нашей планете. Вернадский писал: «убери живое вещество на Земле, наступило бы химическое однообразие, однотонность и очень бы медленно протекали на ней все процессы».

www.ronl.ru

Лекция - Роль живых организмов в развитии атмосферы, гидросферы и литосферы

Одной из наиглавнейших особенностей планеты Земля является существование на ней жизни. Этим она отличается от всех своих соседок по Солнечной системе. Область существования живых организмов на Земле называют биосферой (сферой жизни). Впервые этот термин ввел австрийский геолог Э. Зюсс в 1875 г., но распространился он после издания в 1926 г. трудов выдающегося ученого В. Вернадского.

Живые существа (растения, животные, микроорганизмы) существуют на поверхности Земли, в ее атмосфере, гидросфере и верхней части литосферы, в целом образуя пленку жизни (сферу) на нашей планете. Верхняя граница биосферы простирается на 85 км над поверхностью Земли. На таких высотах (в стратосфере) во время запусков геофизических ракет в пробах воздуха были обнаружены споры микроорганизмов, правда, в латентном (спящем) виде из за слишком неблагоприятных условий существования. Нижняя граница биосферы достигает глубин литосферы, где температура составляет больше 10000С (в молодых складчатых областях – это приблизительно 1.5 – 2 км и на кристаллических щитах – 7-8 км). Приспосабливаемость живых организмов удивляет. Так, живые бактерииобнаружены в горячих гейзерных источниках с температурой до 980оС, активная и довольно разнообразная жизнь бурлит в трещинах антарктических ледников и на наибольших глубинах Мирового океана, даже в океанических водах пораженных сероводородом, также существуют специфические серные бактерии.

Живые организмы не только приспосабливаются к условиям внешней среды, но и активно их меняют. В. Вернадский доказал, что живые организмы играют очень важную роль в геологических процессах, которые формируют лицо Земли. Химический состав современных атмосферы и гидросферы обусловлен жизнедеятельностью организмов. Большое значение имеют организмы для формирования литосферы – большинство пород, и не только осадочных, а и таких как граниты, так или иначе связаны своим происхождением с биосферой. «Если бы на Земле не было жизни, — писал ученый, — лицо ее было бы таким же неизменным и химически инертным, как недвижимое лицо Луны, как инертные обломки небесных светил».

Согласно последним оценкам, сухая масса живого вещества на Земле составляет 2-3 триллиона тонн. Это сравнительно малая величина, в 10 млн раз меньше массы земной коры и в миллиард — массы Земли. Однако живое вещество отличается от неживого очень высокой активностью, в частности, очень быстрым круговоротом веществ. Все живое вещество атмосферы обновляется в среднем за восемь лет. Биомасса мирового океана восстановляется за 33 дня, его фитомасса каждый день, фитомасса суши – приблизительно за 14 лет. Следует учесть, что жизнедеятельность животных, растений и микроорганизмов сопровождается непрерывным обменом веществ между организмами и средой, в следствие чего все химические элементы земной коры, атмосферы и гидросферы многоразово входили в состав тех или иных организмов. Подсчитано, что вся вода планеты проходит цикл расщепления в растительных клетках и восстановления в растительных и животных организмах, то есть обновляется биосферой приблизительно за 2 млн. лет. Образно выражаясь, мы дышим воздухом, которым дышали динозавры, и пьем воду, которая входила в состав тканей юрских папоротников.

Живые организмы играют огромную роль в аккумуляции солнечной энергии. Например, залежи каменного угля – это не что иное, как солнечная энергия, накопленная зелеными растениями минувших геологических эпох. Так же можно определить и природу многих минералов, в частности карбоната кальция, который образует огромные массы известняков и почти на 100% имеет биогенное происхождение. Важную роль живые организмы играют в накоплении многих металлов, таких как железо, медь, марганец. Большое значение для биосферы и хозяйственной деятельности человека имеет круговорот азота, серы, фосфора и других элементов. Установлено что любой растворимый, но не летучий элемент может совершать круговорот только через биосферу. Живые организмы накапливают некоторые элементы в своих тканях, а водные жители, кроме того, увеличивают их содержание и в своей среде жизни, то есть в воде (например, такие элементы, как молибден, кобальт, никель находятся в водной среде в значительно большем количестве, нежели на суше).

Очевидно, что за миллиарды лет геологической истории жизнь неузнаваемо изменила внешние оболочки нашей планеты.

 

Роль живого вещества в атмосфере.Земная атмосфера, по словам В.И. Вернадского – это «создание жизни». Весь свободный кислород в современной атмосфере имеет биогенное происхождение. В настоящее время это положение оспаривается. Кислород выделяется из пород литосферы в процессе происходящих в них геохимических процессов. Его содержится 2,8·1014 т. Последние 200 млн. лет, содержание кислорода в воздухе остается постоянным за счет фотосинтеза растений. Появление кислорода изменило многие свойства Земли. Озоновый слой стал задерживать ультрафиолетовые лучи, губительные для живых организмов. Усилились процессы выветривания пород, так как кислород – сильный окислитель. При отсутствии его в атмосфере состав литосферы на Земле был совершенно иным. Так, железистые кварциты КМА, а также железорудные месторождения Сибири образовывались в докембрийское время. Это закисные формы железа, которые формируются при малом количестве кислорода. В последующие геологические эпохи таких скоплений железных руд на Земле не было. В атмосфере появился кислород и стали образовываться окисные формы железа, которые более подвижны и крупных месторождений создавать не могут.

Азот атмосферы усваивается растениями, а животные получают его из растительной пищи. Но главная роль в фиксации азота принадлежит почвенным бактериям. Его содержание в атмосфере составляет 3,8·1015 т. Возвращается в атмосферу азот благодаря деятельности других бактерий – денитрификаторов. Без них большая часть атмосферного азота оказалась бы в связанном состоянии в океане и в осадочных горных породах.

Углерод. За время существования на Земле фотосинтезирующих организмов их атмосферы в земную кору перешло большое количество углерода. В современной атмосфере его содержится 7·1011 т. Баланс углерода связан с деятельностью организма, поглощающих и выделяющих углекислый газ. Однако этот баланс местами нарушается хозяйственной деятельностью организма и выбросами в окружающую среду больших объемов углерода.

Таким образом, современная атмосфера – это продукт жизнедеятельности организмов, в том числе человека, определяющих, регулирующих и изменяющих ее состав.

Роль живого вещества в гидросфере. Так же сильно действует живое вещество на гидросферу. Организмы непрерывно потребляют и выделяют воду. Особенно интенсивен процесс транспирации, то есть испарения влаги растениями. Так, лесная растительность Земли ежегодно испаряет 50 млн. км3 воды. Газовый и солевой состав вод суши и океана во многом зависит от организмов, живущих в воде, а также на площади водосборных бассейнов. За счет них в воду поступают: углекислый газ, гуминовые вещества, соединения серы, фосфора, азота и др. элементы. В результате вода становится химически активной, то есть повышается ее способность растворять химический соединения. Микроорганизмы, живущие на дне озер и морей, а также в подземных водах, способны отнимать кислород у сульфатов, нитратов, марганца, гидроокислов железа, что приводит к образованию сероводородных вод и вод, содержащих метан.

Роль живого вещества в литосфере. Воздействие живого вещества на литосферу проявляется:

1. В разрушении горных пород;

2. В образовании особых, органогенных пород.

Процесс выветривания горных пород происходит при непосредственном участии организмов, действующих на них как механически, то есть корневой системой, так и химически – продуктами своей жизнедеятельности. Органогенными породами являются известняки, мела и большинство кремниевых пород, то есть трепела и опоки. Например, мел на юге Воронежской области состоит из раковин фораминифер. Они очень мелкие и видны лишь под микроскопом. Органическое происхождение имеют также известняки, состоящие из остатков кораллов и моллюсков, которые строили свои организмы из карбонатов. В нашем регионе в девонское время отмечался рассвет жизни таких организмов. В результате образовались мощные толщи (до 700) известняков в Курской, Орловской, Липецкой, Тамбовской областях и на севере Воронежской области.

Органогенными также являются: торф, бурый и каменный угли, горючие сланцы, нефть и газ. Запасы органического вещества в земной коре – огромны. Они во много раз превосходят объем живого вещества. Так, запасы углерода, заключенного в горючих ископаемых составляет, в среднем, 200 т/га земной поверхности. В осадочных породах содержится 2·1016 т. органического углерода. Все породы органогенного происхождения занимают 1/3 поверхности суши. Деятельность организмов на Земле привела к изменению химического состава воды, так как огромное количество CaCO3 было выведено из состава гидросферы. Как видно, живые организмы являются очень мощной геохимической силой на нашей планете. Вернадский писал: «убери живое вещество на Земле, наступило бы химическое однообразие, однотонность и очень бы медленно протекали на ней все процессы».

www.ronl.ru

Эволюция живых организмов Земли и их отражение в географической оболочке

Курсовая работа

Эволюция живых организмов Земли и их отражение в географической оболочке

 

 

ВВЕДЕНИЕ

На всё протяжении тысячелетий людям казалось соврешенно очевидным, что живая природа была создана такой, какой мы ее знаем сейчас, и всегда оставалась неизменной. Но это не так, на самом деле Земля имеет свое начало развития.   В данной курсовой работе нами рассматривается процесс эволюции живых организмов на протяжении всей геологической истории Земли на предмет его отражения в развитии географической оболочки. 

В процессе эволюции живых организмов важным является время формирования первых живых организмов и время их бурного развития. Эволюция живых организмов определила и развитие географической оболочки. Напр., появление в биогенном этапе развития географической оболочки фотосинтезирующих растений, способствовало накоплению в атмосфере кислорода и появлению озонового слоя. А в антропогенном периоде, когда возникли люди, существование географической оболочки стоит под вопросом, потому что человек оказывает негативное влияние на географическую оболочку. К негативному влиянию людей относится: загрязнение атмосферы, истребление каких либо животных и др. 

Рассматриваемая мною тема очень актуальна, так как человек должен знать, благодаря чему он возник и существует.

Вышесказанное определило цель курсовой работы, которая заключается в выяснении основных этапов развития живых организмов и их роли в географической оболочке. 

Достижение цели предполагало постановку и решение следующих задач:

- выяснение сущности понятия «биосфера»;

- рассмотрение факторов и процесса эволюции биосферы;

- выявление роли биосферы в развитии географической оболочки.

 

ГЛАВА 1. ЖИВОЕ ВЕЩЕСТВО КАК БИОЛОГИЧЕСКАЯ ФОРМА  ДВИЖЕНИЯ МАТЕРИИ

1.1. Биосфера: понятие, границы и структура

 Биосфера – населенная жизнью оболочка Земли, состав, структура и энергетика которой в существенных чертах обусловлены прошлой или современной деятельностью живых организмов.

По В. И. Вернадскому [5, с.95], биосфера, охватывающая весь земной шар, небеспредельная, ее границы в значительной мере обусловлены существованием в ней живого вещества и определяют границы распространения жизни по земному шару, как по горизонтали, так и по вертикали. При этом, поскольку Земля имеет форму геоида, говорить о горизонтальных границах следует с некоторыми допущениями. Ведь если в экваториальных, тропических и умеренных широтах жизнь распространена повсеместно, то в отношении циркумполярных областей, т. е. территорий, расположенных вокруг Северного и Южного полюсов, следует сделать уточнения.

Воды Северного Ледовитого океана с постоянным ледовым покровом на большой его части в течение круглого года обильно заселены морскими животными. Низкие температуры не служат препятствием для распространения живых организмов и над ледовым покровом. Даже в Верхоянске, который до недавнего времени считался полюсом холода, где абсолютный минимум достиг -71°С, растут лиственничные северотаежные леса. Занесение спор мхов, грибов, лишайников и водорослей, которые могут выдержать еще более низкие температуры, вполне вероятно вплоть до Северного полюса. Там, где есть каменистый субстрат, напр., на северных побережьях островов Северная Земля и Шпицберген, поселяется, хотя и разреженно, мохово-лишайниковая растительность. В Антарктиде лишайники встречаются даже в 360 км от Южного полюса на высоте 2000 м над уровнем моря [5, с.95-96]. Поэтому можно утверждать, что хотя концентрация и разнообразие живых организмов на различных по природным условиям территориях и акваториях изменяются в довольно значительных пределах, жизнь существует на всем земном шаре. Следовательно, горизонтальных границ у биосферы нет, и речь следует вести только о ее вертикальной размерности, она включает – верхнюю часть литосферы, всю гидросферу и нижнюю часть атмосферы.

                                        

                                    Рисунок 1. Границы биосферы [17]

Литосфера – это верхняя твердая оболочка Земли. Ее толщина колеблется в пределах 50–200 км [4, с.33]. Распространение жизни в ней ограничено и резко уменьшается с глубиной. Подавляющее количество видов сосредоточено в верхнем слое, имеющем толщину в несколько десятков сантиметров. Некоторые виды проникают в глубину на несколько метров или десятков метров (роющие животные — кроты, черви; бактерии; корни растений). Наибольшая глубина, на которой были обнаружены некоторые виды бактерий, составляет 3–4 км (в подземных водах и нефтеносных горизонтах). Распространению жизни в глубь литосферы препятствуют различные факторы. Проникновение растений невозможно из-за отсутствия света. Для всех форм жизни существенными препонами служат и возрастающие с глубиной плотность среды и температура. В среднем температурный прирост составляет около 3 °С на каждые 100 м. Именно поэтому нижней границей распространения жизни в литосфере считают трехкилометровую глубину, (где температура достигает около +100 °С).

Гидросфера – водная оболочка Земли, представляет собой совокупность океанов, морей, озер и рек. В отличие от литосферы и атмосферы она полностью освоена живыми организмами. Даже на дне Мирового океана, на глубинах около 12 км, были обнаружены разнообразные виды живых существ (животные, бактерии). При этом основная масса видов обитает в гидросфере в пределах 150–200 м от поверхности  [3,с.171]. Это связано с тем, что до такой глубины проникает свет. А, следовательно, в более низких горизонтах невозможно существование растений и многих видов, зависящих в питании от растений. Распространение организмов на больших глубинах обеспечивается за счет постоянного «дождя» экскрементов, остатков мертвых организмов, падающих из верхних слоев, а также хищничества. Гидробионты обитают как в пресной, так и в соленой воде и по месту обитания делятся на 3 группы:

1) планктон — организмы, живущие на поверхности водоемов и пассивно передвигающиеся за счет движения воды;

2) нектон — активно передвигающиеся в толще воды;

3) бентос — организмы, обитающие на дне водоемов или зарывающиеся в ил.

Атмосфера – газовая оболочка Земли, имеющая определенный химический состав: около 78 % азота, 21 — кислорода, 1 — аргона и 0,03 % углекислого газа [2, с.11].В биосферу входят лишь самые нижние слои атмосферы. Жизнь в них не может существовать без непосредственной связи с литосферой и гидросферой. Крупные древесные растения достигают нескольких десятков метров в высоту, располагая вверх свои кроны. На сотни метров поднимаются летающие животные — насекомые, птицы, летучие мыши. Некоторые виды хищных птиц поднимаются на 3–5 км над поверхностью Земли, высматривая свою добычу. Наконец, восходящими воздушными потоками пассивно заносятся на десятки километров вверх бактерии, споры растений, грибов, семена. При этом все перечисленные летающие организмы или занесенные бактерии лишь временно находятся в атмосфере. Нет организмов, постоянно живущих в воздухе.

Верхней границей биосферы принято считать озоновый слой, располагающийся на высоте от 30  до 50 км над поверхностью Земли  [11,с.35]. Он защищает все живое на нашей планете от мощного ультрафиолетового солнечного излучения, в значительной мере поглощая эти лучи. Выше озонового слоя существование жизни невозможно.

Таким образом, основная часть видов живых организмов сосредоточена на границах атмосферы и литосферы, атмосферы и гидросферы, образуя относительно «тонкую пленку жизни» на поверхности нашей планеты.

1.2 Происхождение жизни на Земле 

После образования Земли как планеты долгое время на ней не было никаких химических соединений. Материя существовала в виде разрозненных атомов водорода и гелия. Постепенно образовывались новые элементы, простейшие химические соединения и водяные пары. Простейшие химические соединения под воздействием электрических разрядов и ультрафиолетового излучения могли образовывать сложные органические соединения – аминокислоты.

Рисунок 2. Происхождение первых простейших организмовна на Земле [18]

Новейшие исследования показывают, что 3 млрд. лет назад в атмосфере Земли было много свободного кислорода, который мог появляться только в результате жизнедеятельности растений. Возраст жизни на Земле, таким образом, определяется в 3 млрд. лет. С того времени как жизнь начала продуцировать огромное количество кислорода, на высоте 20—40 км под влиянием солнечной радиации его молекулы превращались в озон 03. Слой озона образовал экран, который стал задерживать ультрафиолетовую часть солнечной радиации .

Первоначально органические соединения находились в атмосфере, и только когда температура земной коры понизилась до 100° и ниже, пары воды излились дождями. Образовался первичный океан, в который вместе с потоками воды попали и органические соединения. Жизнь начала зарождаться в воде. По теории акад. Л. И. Опарина [9, с.49-51], путем сложных химических реакций в воде возникли высокомолекулярные соединения, давшие сложные белковые молекулы — коацерваты. Последние со временем стали увеличиваться в размерах, делиться на части. На протяжении многих миллионов лет коацерваты все более и более развивались. Начался естественный отбор, который неминуемо приводил зародившиеся живые вещества к более высокой организации. У коацерватов появились новые качества: они стали питаться, дышать, расти и размножаться, передавая эти свойства последующим поколениям.

Первые живые организмы существовали за счет органических соединений, имевшихся вокруг них. Они могли существовать и раз-множаться до тех пор, пока в водах первичного океана имелся до-статочный запас пищи. После завоевания всего пространства они должны были бы погибнуть. Но прежде чем это произошло, какая- то, вначале небольшая часть организмов в процессе мутации превратилась в способных синтезировать необходимые им органические вещества из неорганической материи. Образовались молекулы хлорофилла. Возникли зеленые растения. Начался процесс фотосинтеза. Биогенный круговорот веществ стал приобретать современный характер. Выделявшийся свободный кислород стал активно вступать в соединения с другими веществами в биосфере. Появились сапрофиты, способные минерализовать органическое вещество отмиравших организмов. Эти организмы, разлагая трупы других организмов, начали возвращать вещество в его исходное неорганическое состояние. С этого момента биогенный круговорот веществ замкнулся. Возникли условия для бурного развития разнообразной жизни. Органический мир разделился на три царства, или мира: растений, животных и микроорганизмов. Все это происходило в океане. Затем растения и животные вышли на сушу. Растения сделали это раньше и подготовили условия для выхода на сушу животных.

В течение геологической жизни Земли состав населявших ее живых существ непрерывно менялся. Относительно примитивные формы сменялись более совершенными и высокоорганизованными, лучше приспособившимися к внешней среде и более стойкими и активными в борьбе за существование. В отдельные эпохи происходила почти полная смена крупных систематических групп животных и растений. Эволюция совершалась с нарастающей скоростью. Если всю историю Земли принять за один год (365 дней), то космическая эра будет иметь продолжительность 183 дня, архейская 83, протерозойская  -  69, палеозойская  - 18, мезозойская, кайнозойская  - 3 дня и 14 час. Человек существует 1 ч 15 мин. В этом масштабе на земледелие, которым люди занимаются  около 8000 лет, приходится около полминуты [8, с.63]

1.3 Эволюция живых организмов                                                                                                 

Таблица 1

        Эра        Период Время,  млн. лет            Основные эволюционные события
  Четвертичный    2,4 Вымирание многих видов растений, упадок древесных форм, расцвет травянистых. Эволюция человека. Вымирание крупных видов млекопитающих.
Кайнозойская Неоген     25 Преобладание покрытосеменных и хвойных, увеличение площади степей. Расцвет плацентарных млекопитающих. Появление человекообразных обезьян.
  Палеоген     66 Расцвет покрытосеменных, млекопитающих, птиц.
  Мел    136 Развитие млекопитающих, птиц, цветковых растений. Вымирание многих рептилий.
Мезозойская   Юра    196 Господство рептилий на суше, в воде и воздухе. Возникновение покрытосеменных и птиц.
  Триас    240 Появление млекопитающих. Расцвет рептилий, распространение голосеменных
  Пермь    285 Великое вымирание морских организмов. Появление голосеменных, распространение рептилий.
  Карбон    345 Появление рептилий.  
  Девон    410 Появление древних амфибий, насекомых. Господство рыб. Появление лесов из папоротников и плаунов.
Палеозойская Силур    435 Выход растений и беспозвоночных на сушу.
  Ордовик    500 Обилие морских водорослей. Появление первых позвоночных (бесчелюстных).
  Кембрий    570 Жизнь сосредоточена в морях. Развитие беспозвоночных. Появление высших растений.
  Поздний протерозой   1650 Развитие эукариот, многоклеточных растений и животных.
Протерозойская Ранний протерозой   2600 Развитие низших растений.
  Археозойская       4000 Зарождение жизни, появление прокариот. Господство бактерий и сине-зеленых, появление зеленых водорослей.

       

Палеонтологические данные древнейших осадочных пластов свидетельствуют, что доорганизменный этап эволюции продолжался 1,5—1,6 млрд. лет после образования Земли как планеты.

  

 Рисунок 3.Схема эволюции органического мира [20].  

Архейская эра. Наиболее древние следы жизнедеятельности организмов обнаружены в породах архея, возраст которых от 2,6 до 3,5 млрд.лет и более. Они представлены остатками бактерий и сине-зеленых водорослей, относящихся к прокариотам – организмам, в клетках которых  отсутствует ядро.

Протерозойская эра.    

В протерозойскую эру бактерии и водоросли достигли расцвета, с их участием интенсивно происходят процессы отложения осадков. В результате жизнедеятельности железобактерий в протерозое образовались крупнейшие залежи железных руд. Большинство из первичных растений свободно плавало в морской воде (диатомовые, золотистые водоросли), часть прикреплялась ко дну. А в позднем протерозое (600-650 млн. лет назад) уже существовали губки, кишечнополостные, плоские и кольчатые черви [1]

Палеозойская эра. 

Кембрийский период. В кембрийском периоде жизнь была сосредоточена в воде. Кроме одноклеточных водорослей, растения были представлены многоклеточными водорослями. Благодаря расчлененному слоевищу они активно синтезировали органические вещества. Многоклеточные водоросли явились исходной ветвью для наземных листостебельных растений. А так же в этом периоде в морях были широко распространены беспозвоночные, в том числе плеченогие моллюски, а из членистоногих трилобиты. Самостоятельным типом двухслойных животных того периода были археоциаты, формировавшие рифы в древних морях. Они вымерли, не оставив потомков. На суше обитали лишь бактерии и грибы. К концу кембрия появляется большинство известных типов многоклеточных животных.

Ордовикский период. В ордовикском периоде пышного развития достигли разнообразные кораллы из типа кишечнополостных, трилобиты, моллюски, иглокожие. Появляются первые представители бесчелюстных позвоночных щитковые.

Выход беспозвоночных на сушу был обусловлен поиском новых мест обитания, отсутствием конкурентов и хищников. Первые наземные беспозвоночные были представлены многоножками и паукообразными. Эти группы произошли от каких-то трилобитов, часто оказывавшихся на отмелях во время отливов. 

Силурийский период. В конце периода горообразовательные про-цессы и сокращение площади морей подготовили возможность выхода растений на сушу. В новых условиях многие виды водорослей погибли. Другие дали начало первым наземным споровым растениям – псилофитам. Как адаптация к жизни на суше появляются покровные, механические и проводящие ткани. Формируются споры с толстой оболочкой, предохраняющие организм от высыхания. Из животного происхождения в морях были распространены силура трилобиты.

Девонский период. В девоне численность псилофитов резко сократилась, на смену им пришли плауновидные, хвощевидные и папорот-никовидные растения. Возникновение вегетативных органов повысило эффективность функционирования отдельных частей растений и их жиз-недеятельность как гармонически целостной системы. В конце этого периода древовидные хвощи, плауны и папоротники образовали низинные леса, чему способствовали интенсивные почвообразовательные процессы и особые климатические условия. В этот же период появились и первые голосеменные, возникшие от древних папоротников и унаследовавшие от них внешний древовидный облик. Возникшие семенные растения могли поселяться в более сухих местообитаниях, так как их размножение уже не зависело от наличия влажной среды. В этом периоде от панцирников происходят примитивные челюстноротые – панцирные хрящевые рыбы. Возникновение челюстей объясняется необходимостью активного захвата пищи и перехода к активно плавающему образу жизни. В девоне появились настоящие акулы, а также кистеперые, двоякодышащие и лучеперые рыбы. Эволюция кистеперых и двоякодышащих происходила в пересыхающих и бедных кислородом водоемах. В верхнем девоне на сушу выходят позвоночные. Это обусловлено изменением климата и пересыханием мелких водоемов. От кистеперых рыб, способных дышать атмосферным воздухом и переползать из водоема в водоем, используя плавники, произошли первые земноводные – стегоцефалы. Стегоцефалы обитали в болотистой местности, выходили на сушу, но размножались только в воде.

Каменноугольный период. Среди древовидных широко распростран-    -ялись плаунообразные и сигилляриевые, достигавшие в высоту 30 м и более. Из первичных голосеменных господствовали разнообразные птеридоспермы и кордаиты, напоминавшие стволами хвойных и имевшие длинные лентовидные листья. 

Пермский период.  Исчезли обширные болотные леса карбона. На смену древовидным споровым растениям пришли голосеменные, имеющие развитую стержневую корневую систему и размножающиеся семенами. В пермском периоде вымерли крупные морские моллюски, трилобиты, крупные рыбы, панцирники, крупные насекомые и паукообразные. Погибли и многие амфибии,   до наших дней сохранились лишь мелкие земноводные (тритоны, лягушки, жабы).Вымерших земноводных сменила более прогрессивная группа животных, произошедшая от сцегоцефалов – пресмыкающиеся. У них сухая ороговевшая кожа, более плотные ячеистые легкие и более эффективный тип дыхания, при котором воздух втягивается в легкие и выталкивается обратно путем расширения и сужения грудной клетки. У них внутреннее оплодотворение, яйцо имеет запас питательных веществ и защитные яйцевые оболочки. У пресмыкающихся произошло обособление шейного отдела позвоночника, что позволило им свободно двигать головой и. следовательно, быстро реагировать на внешние со-бытия. У них более совершенные, чем у земноводных, конечности, поднимающие тело над землей и обеспечивающие быстрое передвижение [15, с.47-50]. В это же время возникли терапсиды (вероятные предки млекопитающих, сочетавшие в своем строении признаки амфибий, рептилий и млекопитающих). 

Мезозойская эра.

Триасовый период. В триасе из растений широко распространены голосеменные, особенно хвойные, занявшие господствующее положение. В морях большого разнообразия достигли аммониты, кораллы, иглокожие и др., на суше насекомые, в том числе летающие. В этот период широко расселились рептилии: в морях обитали ихтиозавры, плезиозавры, в воздухе летающие ящеры, разнообразно были представлены они и на земле. В самом начале триаса от пресмыкающихся отделилась группа мелких животных с более совершенным строением скелета и зубов. Эти животные приобрели способность к живорождению, постоянную темпера-туру тела, у них было четырехкамерное сердце и целый ряд других прог-рессивных черт организации. Это были первые примитивные млекопи-тающие, близкие к однопроходным. 

       Юрский период. В  юрском периоде образовались обширные болота и озера. По-прежнему были широко распространены голосеменные.  В этом периоде  рептилии процветали и покорили воду, сушу и воздух. Среди них были гигантские болотные бронтозавры и диплодоки, летающие ящеры и ихтиозавры. От предков птицетазовых динозавров произошли археоптериксы предки птиц.

Меловой период. В середине этого периода появились первые цветковые растения, берущие начало от голосеменных. Первые представители покрытосеменных были кустарниками или низкорослыми деревьями с мелкими листьями. Затем довольно быстро цветковые достигли огромного разнообразия форм со значительными размерами и крупными листьями (например, возникли семейства магнолиевых, платановых, лавровых). Параллельно с ними развивались насекомые, которые, будучи опылителями цветковых растений, в большой мере спо-собствовали их прогрессивной эволюции. Опыление насекомыми и внутреннее оплодотворение создали значительные преимущества цветковых над голосеменными. В настоящее время число видов покрытосеменных составляет около 250 тысяч, т. е. почти половину всех известных ныне видов растений. В конце мелового периода большинство голосеменных.

В меловом периоде  господство рептилий до сих пор продолжалось. Появились настоящие птицы и плацентарные млекопитающие. Признаками высокой степени организации у них являлись постоянная температура тела, полное разделение артериального и венозного токов крови, повы-шенная интенсивность обмена веществ, совершенная терморегуляция, а у млекопитающих, кроме того, живорождение и выкармливание детенышей молоком, развитие коры головного мозга [16, с.204-272]. Прогрессивные черты организации позволили этим группам постепенно занять господствующее положение.

Кайнозойская эра. 

Палеоген. В палеогене были распространены леса тропического и субтропического типа. В это время млекопитающие, приспособившись к различным условиям существования, заняли господствующее положение на суше, в воздухе и в воде. Появились хищные млекопитающие, от которых первыми ответвились современные группы хищных: медвежьи, куньи, кошачьи, псовые. От них также произошли примитивные копытные.

Неоген. В конце неогена начался процесс остепенения суши. В связи с иссушением климата тропические и саванные леса во многих местах Земли сменились открытыми ландшафтами. Эти изменения привели к развитию злаковых растений, приспособленных к существованию в сухом или сезонно-засушливом климате. Питательные и легко перевариваемые стебли, листья и семена травянистых злаков стали идеальной пищей для быстро развивающейся группы травоядных млекопитающих.

А так же появились хоботные, парнокопытные и непарнокопытные и китообразные. От насекомоядных независимо произошли рукокрылые, приматы и грызуны. В это время чрезвычайно разнообразен и богат мир птиц, костистых рыб и насекомых.

Четвертичный период. Важнейшее событие четвертичного периода — появление и становление человека (Homo sapiens), который оказывает огромное влияние на динамику растительного покрова и животного населения в последние несколько тысячелетий [11,с.49]. В послеледниковое время произошло окончательное формирование современного природно-зонального распределения растительного покрова и животного населения Земли. 

 

ГЛАВА 2. ВЛИЯНИЕ АБИОТИЧЕСКИХ И БИОТИЧЕСКИХ ФАКТОРОВ СРЕДЫ НА ЖИВЫЕ ОРГАНИЗМЫ

 2.1 Абиотические факторы среды

Абиотические факторы среды – это комплекс условий внешней среды, оказывающих прямое или косвенное влияние на растения. К абиотическим факторам относятся химические и физические факторы. Xимическими абиотическими факторами являются газовые составляющие атмосферного воздуха и химический состав водоемов, почв. К физическим абиотическим  факторам относятся: температура, влажность, интенсивность солнечного излучения. В отдельную группу в некоторых классификациях выделяют такие абиотические факторы, как орографические, включающие рельеф, геологические различия земной поверхности. Влияние на организм абиотических факторов разнообразно и зависит от интенсивности воздействия каждого отдельно взятого фактора и сочетания их между собой. Численность и распределение определенного вида растений в пределах данной территории обусловлены воздействием лимитирующих абиотических факторов, которые жизненно необходимы, но значения их минимальны (как отсутствие воды в пустынных местностях).

 

                             Рисунок 4. Основные абиотические факторы среды [21].  

Свет. Свет, с одной стороны, служит для организмов первичным источником энергии, без которого невозможна жизнь. С другой стороны, прямое воздействие света на клетку смертельно для организмов. Эволюция биосферы в целом была направлены на «укрощение» поступающего солнечного излучения, использование его полезных составляющих и защиту от вредных. Следовательно, свет – это не только жизненно важный, но и лимитирующий фактор, как на минимальном, так и максимальном уровнях.

Солнечный свет представляет собой электромагнитное излучение с различными длинами волн от 0,05 до 3000 нм и более. Этот поток можно разделить на несколько областей, различающихся физическими свойствами и экологическим значением для различных групп организмов. Границы этих областей приближенно можно представить следующим образом:

•   <150 нм - зона ионизирующей радиации,

•   150 - 400 нм - ультрафиолетовая радиация,

•   400 - 800 нм - видимый свет 

•   800 - 1000 нм - инфракрасная радиация

•   >1000 нм - зона т.н. дальней инфракрасной радиации - мощного фактора теплового режима среды.

Жесткий ультрафиолет с длиной волны менее 290 нм губительный для живых клеток, до поверхности Земли не доходит, так как отражается озоновым экраном. Мягкий ультрафиолет с длиной волны от 150 до 400 нм несет много энергии и вызывает образование витамина D в коже человека, он же воспринимается органами зрения многих насекомых; эти лучи в умеренных дозах стимулируют рост и размножение клеток, повышают содержание витаминов, увеличивают устойчивость к болезням. Видимый свет с длиной волны от 400 до 800 нм используется для фотосинтеза фото- трофными организмами (растениями, фотосинтезирующими бактериями, сине-зелеными) и животными для ориентации. Инфракрасная часть солнечного спектра (тепловые лучи) с длиной волны более 750 нм вызывает нагревание предметов, особенно важна эта часть спектра для животных с непостоянной температурой тела - пойкилотермных.

На биосферу из космоса падает солнечный свет с энергией 2 кал. на 1см2 в 1 мин. Эта так называемая солнечная постоянная. Этот свет, проходя через атмосферу, ослабляется и до поверхности Земли в ясный полдень может дойти не более 67% его энергии. Проходя через облачный покров, воду и растительность, солнечный свет еще больше ослабляется, и в нем значительно изменяется распределение энергии по разным участкам спектра.

Лучистая энергия, достигающая земной поверхности в ясный день, состоит примерно на 10% из ультрафиолетового излучения, на 45%— из видимого света, на 45% — из инфракрасного излучения. Меньше всего при прохождении через облака и воду ослабляется видимый свет. Следовательно, фотосинтез может идти и в пасмурные день, и под слоем чистой воды некоторой толщины. Свет необходим всем живым организмам. Но, некоторые организмы могут развиваться в полной темноте. Например, многие грибы и бактерии.

Особое значение в жизни всех организмов имеет видимый свет. С участием света у растений и животных протекают важнейшие процессы: фотосинтез, транспирация, фотопериодизм, движение, зрение и т.д. На свету происходит образование хлорофилла и осуществляется процесс фотосинтеза, т.е. синтез органических веществ из неорганических. Фотосинтезирующая деятельность зеленых растений обеспечивает планету органическим веществом. Все организмы зависят в питании от земных фотосинтезирующих растений. Растения для фотосинтеза используют, в основном, синие и красные лучи. По отношению к свету их принято делить на светолюбивые (растения степей), теневыносливые (большинство лесообразующих пород) и теневые (мхи, папоротники).

Движение Земли вокруг Солнца вызывает закономерные изменения длины дня и ночи по сезонам года. Сезонная ритмичность в жизнедеятельности организмов определяется, в первую очередь, сокращением световой части суток осенью и увеличением весной. Продолжительность светового дня является важным регулирующим фактором в жизни живых организмов. Сезонные изменения физиологической активности живых организмов в ответ на изменение продолжительности дня и ночи называют фотопериодизмом. Длина светового дня, в отличие от других абиотических факторов, для каждой местности изменяется строго закономерно (самый короткий день 22 декабря, а самый длинный - 22 июня, известна продолжительность любого дня года). В результате естественного отбора выживали организмы, чьи физиологические функции регулировались продолжительностью светового дня. Приспособленность к сезонному изменению продолжительности светового дня привела к появлению длиннодневных и короткодневных растений. Длиннодневные зацветают в начале лета, до осени успевают созреть плоды и семена - это растения средней полосы и северных зон (рожь, пшеница, овес), короткодневные (астры, георгины, хризантемы) - растения южного происхождения, где продолжительность светового дня около 12 часов, поэтому они у нас зацветают при коротком дне осенью. Уменьшение светового дня в конце лета ведет к прекращению роста, стимулирует отложение запасных питательных веществ организмом, вызывает у животных осенью линьку, определяет сроки группирования в стаи, миграции, переход в состояние покоя и спячки. Увеличение длины светового дня стимулирует половую функцию у птиц, млекопитающих, определяет сроки цветения растений.

Температура. Тепловой режим – важнейшее условие существования всех живых организмов, так как все физиологические процессы в них возможны при определенных условиях. Пределы, в которых может существовать жизнь, очень узки - около 300 °С, от -200 °С до +100 °С. На самом деле большинство видов и большая часть активных физиологических процессов приурочены к более узкому диапазону температур. Как правило, это температуры, при которых возможно нормальное строение и функционирование белков,  от 0   до 50 0С. При этом существуют организмы, обладающие специализированными ферментными системами, что обеспечивает им возможность активного существования при температуре тела, выходящей за указанные пределы.

Значение температуры заключается в том, что она изменяет скорость протекания биохимических процессов в клетках, и это отражается на жизнедеятельности организма в целом. По отношению к температуре как к экологическому фактору все организмы подразделяются на две группы: холодолюбивые и теплолюбивые.

Холодолюбивые организмы, способны жить в условиях относительно низких температур и не выносят высоких. Так, древесные и кустарниковые породы Якутии не вымерзают при -70°С, в Антарктиде при такой же температуре обитают лишайники, ногохвостки, пингвины.

У теплолюбивых, жизнедеятельность приурочена к условиям довольно высоких температур. Это преимущественно обитатели жарких тропических районов Земли. Они не переносят низких температур и нередко гибнут уже при 0 °С, хотя физического замораживания их тканей и не происходит. Причиной их гибели, как правило, является нарушение обмена веществ, приводящее к образованию в растениях несвойственных им продуктов, в том числе и вредных, вызывающих отравление.

Живые организмы в процессе эволюции выработали различные формы адаптации к температуре, среди них морфологические, биохимические, физиологические, поведенческие и т.д. Одно из важнейших приспособлений к температуре у растений – форма их роста. Там, где мало тепла – в Арктике, в высокогорье, - много подушковидных растений, много подушковидных растений, растений с прикорневыми розетками листьев, стелющихся форм. Стелющиеся побеги зимуют под снегом и не подвергаются губительном действию низких температур.

У животных морфологические адаптации к температуре также четко прослеживаются. Под действием температурного фактора у животных формируются такие морфологические признаки, как отражательная способность тела, пуховой, перьевой и шерстяной покровы, жировые отложения. Большинство насекомых в Арктике и высоко в горах имеют темную окраску. Это способствует усиленному поглощению солнечного тепла. Эндотермные  животные, обладающие в холодных областях (полярные медведи, киты и т.д.), имеют, как правило, крупные размеры, тогда как обитатели жарких стран (например многие насекомоядные млекопитающие) обычно меньше по размерам. Это явление носит название правило Бергмана. Согласно этому правилу, при продвижении на север средние размеры тела в популяциях эндотермных животных увеличиваются. 

У животных есть разнообразные поведенческие адаптации к температуре. Они проявляются в миграциях животных в места с более благоприятными температурами, в изменении сроков активности и т.д. В пустынях, где днём поверхность может нагреваться до 60-70 С, на раскаленном песке животных почти не увидишь. Насекомые, рептилии и млекопитающие проводят жаркое время, спрятавшись в норы. В глубине почвы температура не так резко колеблется и сравнительно невысокая. При понижении температуры большинство животных переходит на питание более калорийной пищей. Белки в теплое время года поедают более 100 видов кормов, зимой же питаются, главным образом, семенами хвойных, богатых жирами. У видов, живущих в более холодном климате, различные выступающие части тела (хвост, уши, конечности) меньше, чем у родственных видов из более теплых мест

Газовый состав атмосферы также является важным климатическим фактором. Примерно 3-3,5 млрд. лет назад атмосфера содержала азот, аммиак, водород, метан и водяной пар, а свободный кислород в ней отсутствовал. Состав атмосферы в значительной степени определялся вулканическими газами. Из-за отсутствия кислорода не существовало озонового экрана, задерживающего ультрафиолетовое излучение Солнца. С течением времени за счет абиотических процессов в атмосфере планеты стал накапливаться кислород, началось формирование озонового слоя. Примерно в середине палеозоя потребление кислорода сравнялось с его образованием, в этот период содержание О2 в атмосфере было близко к современному около 20 %. Интересно, что концентрации кислорода и углекислого газа являются лимитирующими для многих высших растений. У многих растений удается повысить эффективность фотосинтеза, повысив концентрацию углекислого газа, однако малоизвестно, что снижение концентрации кислорода также может приводить к увеличению фотосинтеза. В опытах на бобовых и многих других растениях было показано, что понижение содержания кислорода в воздухе до 5 % повышает интенсивность фотосинтеза на 50 % . Крайне важную роль играет также азот. Это важнейший биогенный элемент, участвующий в образовании белковых структур организмов. Ветер оказывает лимитирующее воздействие на активность и распространение организмов.

Влажность в некоторых местах обитания является ограничивающим абиотическим фактором для живых организмов и определяет состав флоры и фауны данной местности, например, в пустыне. Растение поглощает питательные вещества, в основном, в растворенном состоянии. Также вода необходима для осуществления других жизненных процессов растений, а для множества организмов еще и является средой обитания [9, с.51-70]. По потребности в воде различают разные экологические группы растений. К водной растительности относятся растения, которые вне водной среды жить не могут (элодея, ряска). Околоводные (наземно-водные) растения произрастают вдоль побережья водоемов и могут быть частично погруженными в воду во влажных лесах, болотах (кукушкин лен, тростник, сфагнум). Эти растения существуют только при условии высокой увлажненности почвы, и даже при кратковременной нехватке воды эти растении вянут и могут погибнуть. Наземные растения произрастают на суше и могут быть засухоустойчивыми (кактус, ковыль, верблюжья колючка) или способными выдерживать недлительную засуху, произрастающими в условиях умеренной влажности (береза, рожь, дуб). Засухоустойчивые растения имеют приспособления для жизни в засушливых местах, такие как видоизмененные листья, хорошо развитая корневая система[7, с.123].. К примеру, сочные растения-суккуленты накапливают воду в тканях своего организма, к примеру, кактусы.

2.2 Биотические факторы среды

Биотические факторы среды (факторы живой природы) – это совокупность воздействий, оказываемых на растения другими организмами. Каждое растение существует не изолированно, а во взаимодействии с другими растениями, микроорганизмами, грибами, животными. Соответственно, выделяют фитогенные, микробиогенные, микогенные и зоогенные биотические экологические факторы. Взаимоотношения между организмами разных видов, которые сосуществуют на одной территории, очень разнообразны: они могут быть полезны всем организмам либо только одному из них, быть вредными, т.д.     Отличие биотических факторов от абиотических состоит в том, что их воздействие проявляется в виде взаимного влияния живых организмов разных видов друг на друга. Классификация биотических факторов: топические (в зависимости от изменения среды), трофические (по пищевым отношениям между организмами), форические (согласно возможности транспортировки одного организма другим), фабрические (по месту жительства, к примеру, паразита в организме хозяина).

Влияние биотических факторов окружающей среды проявляется в виде воздействия разных живых организмов на растения и всех вместе – на окружающее пространство. Взаимодействия между организмами могут быть прямыми и косвенными.

Примерами действия биотических факторов на растения, являются нейтрализм, паразитизм, комменсализм, аменсализм, симбиоз, конкуренция, поедание. Понятие «нейтрализм» говорит само за себя, при всём этом сосуществующие на одной территории организмы не приносят друг другу ни пользы, ни вреда.

При паразитизме организмы, принадлежащие к разным видам, сосуществуют антагонистически, то есть паразит, обитая в теле своего хозяина, живет за его счет и наносит ему вред, например, многие бактерии и грибы по отношению к организму человека, некоторых высших растений и животных. Среди растений есть много паразитических видов: повилика, заразиха, петров крест, омела, др.

      

                                      Рисунок 5. Биотические факторы среды [23].  

Комменсализм – это совместное проживание разных организмов, когда один организм, поселяясь внутри тела другого и питаясь за его счет, не причиняет вреда носителю (бактерии в кишечнике человека). При аменсализме один из сосуществующих организмов несет ущерб, а другому воздействие первого безразлично (пеницилл убивает бактерий, которые не могут повлиять на него).

Симбиоз – это все формы сожительства организмов разных видов. А взаимовыгодное сосуществование организмов, относящихся к различным видам, называется мутуализм. В качестве примера можно привести факт взаимоотношений между бобовыми растениями и азотфиксирующими клубеньковыми бактериями, которые обитают на их корневой системе. Аналогично взаимодействуют корни высших растений с грибницей шляпочных грибов. И те, и другие организмы получают друг от друга необходимые для жизнедеятельности вещества.

Конкуренция – это тип взаимодействия, при котором растения одного либо разных видов могут соперничать между собой за ресурсы окружающего пространства – воду, освещение, питательные вещества, местоположение, т.д. В этом случае потребление определенных ресурсов одними организмами снижает их доступность для других.

Пример внутривидовой конкуренции – искусственный сосновый лес, где деревья одного возраста соперничают за свет. Те деревья, которые не успевают за растущими быстрее, в тени значительно хуже развиваются, и многие из них погибают. Межвидовая конкуренция прослеживается среди близких по потребностям видов и родов растений, которые входят в состав одной группы, к примеру, в смешанных лесах между грабом и дубом.

Многие животные, питающиеся растениями, растительноядные, а их связь с растениями - поедание. Так, на пастбищах животные поедают только определенные виды растений, не притрагиваясь к другим, ядовитым или имеющим неприятный вкус. С течением времени это приводит к коренным изменениям видового состава растительности на данном участке. Некоторые растения имеют защитные приспособления от поедания животными, например, выделение ядовитых веществ, видоизмененные листья-колючки) [6, с.44-45].

 

ГЛАВА 3. ЗНАЧЕНИЕ И РОЛЬ БИОСФЕРЫ В РАЗВИТИИ ГЕОГРАФИЧЕСКОЙ ОБОЛОЧКИ

3.1. Своеобразие жизни в компонентных оболочках

Географическая оболочка включает в себя три основные компонентные оболочки это атмосфера, гидросфера и литосфера. И в каждой из этих компонентных оболочек жизнь проявляется по-своему.

 

Рисунок 6.Граница биосферы Земли [24].  

Верхняя граница распространения жизни в атмосфере определяется, по всей видимости, не столько низкими температурами, сколько губительным действием радиации. Так, пыльца цветковых и голосеменных растений, споры грибов, мхов, папоротников и лишайников, бактерии и простейшие животные организмы постоянно или с сезонной ритмикой присутствуют в воздухе. Над сушей и акваторией в дожде, снеге, облаках и туманах кроме пыльцы и спор обнаружены микроорганизмы. Вся воз-душная среда представляет собой суспензию жизнеспособных пыльцы, спор и микроорганизмов, содержание которых уменьшается с высотой. Интенсивность радиации, создаваемой космическими лучами, на высоте 9 км в десятки раз больше, чем на уровне моря, а на высотах 15— 18 км возрастает уже в сотни раз. Высотное распространение микроорганизмов ограничивается потоком жесткой ультрафиолетовой радиации Солнца, убивающей все живое.

В. И. Вернадский отмечал, что границы биосферы обусловлены прежде всего полем существования жизни, т. е. полем, где возможно размножение организмов. Можно утверждать, что вся тропосфера, высота которой 8—10 км в полярных широтах и 16—18 км у экватора, в большей или меньшей степени населена живыми организмами, которые находятся в ней либо временно, либо постоянно. Уже в тропопаузе резко изменяются физические и температурные характеристики биосферы, в частности прекращается интенсивное турбулентное перемешивание воздушных масс. Стратосфера, находящаяся выше тропопаузы, вряд ли пригодна для существования микроорганизмов. Верхний предел биосферы, или поля существования жизни, довольно ясно просматривается в тропопаузе. При этом верхний предел занесения спор и микроорганизмов, определяющий «поле устойчивости жизни» (живые организмы существуют, но не размножаются), возможен до верхней границы стратосферы.

Таким образом, область распространения живых организмов ограничена в основном тропосферой. Например, верхняя граница полета орлов находится на высоте 7 км; растения в горных системах и насекомые в воздушной среде не распространены выше 6 км; верхняя граница постоянного обитания человека — 5, обрабатываемых им земель — 4,5 км, леса в горных системах тропиков не растут выше 4 км.

Тропосфера — это воздушная среда, в которой осуществляется только передвижение организмов, нередко при помощи своеобразно приспособленных для этого органов. Настоящего аэропланктона, постоянно обитающего и размножающегося в воздушной среде, видимо, нет. В противном случае тропосфера представляла бы собой «кисель», максимально насыщенный микроорганизмами. Весь цикл своего развития, включая размножение, организмы осуществляют только в литосфере и гидросфере, а также на границе воздушной среды с этими оболочками.

Верхние слои атмосферы и стратосферы, в которые возможно занесение микроорганизмов, а также наиболее холодные и жаркие районы земного шара, где организмы могут существовать лишь в покоящемся состоянии, называются парабиосферой (по Дж. Хатчинсону).

В состав биосферы полностью включается гидросфера — озера, реки, моря и океаны. В морях и океанах наибольшая концентрация жизни приурочена к эвфоти- ческой зоне, куда проникает солнечный свет. Обычно ее глубина не превышает 200 м в морях и континентальных пресноводных бассейнах. Именно в этой зоне, где возможен фотосинтез, сосредоточены все фотосинтезирующие организмы и продуцируется первичная биологическая продукция.

Дисфотическая зона, начинающаяся с глубины 200 м, характеризуется полной темнотой и отсутствием фотосинтезирующих растений. Она представляет собой водную среду обитания активно перемещающихся животных. Вместе с тем через нее непрерывным потоком опускаются на дно морей и океанов отмершие растения, выделения и трупы животных.

О нижнем, литосферном, пределе биосферы ясного представления пока нет. В большинстве работ, посвященных биосфере, указывается, что нижний предел биосферы на континентах составляет в среднем 2—3 км. Здесь в условиях низких по сравнению с более глубокими слоями температуры и давления, но при участии живых организмов (микроорганизмов) и воды прекращается миграция химических элементов. Микробиологические исследования свидетельствуют о том, что микро-организмы присутствуют также в пластовых водах, омывающих нефть, хотя сама нефть стерильна. Под океанами литосферный предел биосферы распространяется на 0,5— 1,0 км и, возможно, на 3,0 км ниже их дна. О более глубоком проникновении жизни в литосферу, несмотря на интенсивные буровые работы, достоверной информации пока нет.

В тропосфере и литосфере взаимодействуют твердая, жидкая и газовая фазы вещества, живое вещество непосредственно влияет на все природные процессы. Оболочка земного шара на границе атмо-, гидро-, литосферы, на которой сконцентрировано живое вещество планеты, получила название биогеосферы Понятие биогеосфера по своему содержанию близко к понятию «ландшафтная оболочка» .Только в биогеосфере возможны постоянное нахождение человека и всесторонняя его деятельность. [2, с.96-99].

3.2. Этапы развития географической оболочки под влиянием биоценозов

Географическая оболочка — целостная материальная система, образованная при взаимодействии  взаимопроникновении атмосферы, гидросферы, литосферы, живого вещества.

В жизни географической оболочки выделяют несколько этапов. Самый ранний – добиосфсрный, затем биосферный этап развития. В настоящее время все чаше ученые начали говорить, что в жизни географической оболочки начинается новый этап – ноосферный. Развитие шло по пути усложнения структуры, в процессе взаимодействия образовывались новые компоненты и комплексы. Каждый новый этап характеризуется возникновением новых круговоротов вещества и энергии.

Добиосферпый (геологический) этап развития продолжался с 4,5 млрл лет до 570 млн лет. В это время произошло формирование материков и океанических впадин, образовались атмосфера и гидросфера. На добиосфсрном этапе взаимодействовали атмосфера, гидросфера, литосфера. Живое вещество существовало, но сплошного распространения не имело. В это время целостность оболочки поддерживали круговороты воды и химических элементов. В результате взаимодействия первичных компонентов — воды,  воздуха, горных пород — формировались компоненты географической оболочки. Образовались природные вола и воздух, г с. компоненты несут в себе результаты взаимодействия оболочек. Природным воздух — это уже не только газы атмосферы, он содержит волу гидросферы и твердые частицы литосферы. В природной воде су-ществуют соли и газы, сформировались осадочные горные породы. На добиосферном этапе верхняя граница географической оболочки вероятно располагалась на высоте 80 км (в этом слое существуют серебристые облака, состоящие из смерзшихся газов и льда, т.с. пары воды при круговоротах заносились па эту' высоту'). Кроме того, на этой высоте проходит граница гомосферы. Нижняя граница проходила по границе осадочного слоя: осадочные горные породы являются результатом воздействия на горные породы волы и воздуха, кроме того, именно здесь располагаются горизонты подземных вод.

На втором, биосферном, этапе во взаимодействие включается живое вещество (с 570 млн. лет по 40 тыс. лет). К круговоротам добавляется биогенный: неорганические элементы на свету за счет реакции фотосинтеза превращаются в органическое вещество, к испарению добавляется транспирация. Компоненты географической оболочки становятся более сложными, в их преобразовании участвует живое вещество. Природная вода приобретает специфический газовый и солевой состав, который явля-ется результатом жизнедеятельности организмов. Образуются коры выветривания и почвы, их образование тоже связано с деятельностью живого вещества. Газы атмосферы прошли через биологические круговороты. К компонентам добавляются растительность и животные. Очевидно, компоненты становятся биогенными. При этом перламутровые облака и осадочные горные пороты оказываются вне зоны активного круговорота. Верхняя граница географической оболочки спускается до озонового экрана (здесь образуются зональные воздушные массы), нижняя граница — очерчивает зону гипергенеза.

На третьем этапе географическая оболочка вступает в ноосферный этап развития. Под ноосферой (сферой разума) понимают сферу взаимодействия природы и общества, в которой разумная деятельность человека становится определяющим фактором развития. На ноосферном этапе к круговоротам добавляется антропогенный круговорот вещества и энергии. Начинают формироваться антропогенные компоненты, они несут в себе результаты воздействия человеческой деятельности. Границы географической оболочки ноосферного  этапа, очевидно, должны расширяться, в перспективе человечество освоит всю Солнечную систему. [14, с.356-361].

Заключение

Биосфера — оболочка Земли, заселённая живыми организмами и преобразованная ими. Биосфера начала формироваться не позднее, чем 3,8 млрд. лет назад, когда на нашей планете стали зарождаться первые организмы. Она проникает во всю гидросферу, верхнюю часть литосферы и нижнюю часть атмосферы, то есть населяет экосферу. Биосфера представляет собой совокупность всех живых организмов. В ней обитает более 3 000 000 видов растений, животных, грибов и бактерий.

“Когда на земле появились первые организмы?” Вот главный вопрос которым задаются ученые в области палеонтологии. Ученые предполагают, что первые организмы возникли из сложных белковых соединений. Эти организмы относились к классу прокариотов - одноклеточные живые организмы, не обладающие оформленным клеточным ядром. Новейшие исследования показывают, что 3 млрд. лет назад в атмосфере Земли было много свободного кислорода. А кислород не мог появиться из неоткуда, можно предполагать, что 3 млрд. лет назад на земле уже существовали фотосинтезирующие организмы, которые производили кислород благодаря солнечной энергии.

Эволюция живых организмов прошла самый долгий этап в геологической истории Земли. Предполагается что первые организмы с которых началась вся эта эволюция были простейшие бактерии и сине-зеленые водоросли, конечно же в то время они относились к классу прокариотов. Со временем эти простейшие организмы усложнились на более усовершенствованные виды. Они стали многоклеточными и многоядерными. Но эволюция продолжается и в наше время, в связи с тем что природные условия, в которых мы проживаем, меняется постоянно, это явление не заметно, потому что оно занимает долгий промежуток времени.

С появление первых организмов на них стали воздействовать разные экологические факторы среды. Эти экологические факторы делятся на два типа: абиотические факторы среды и биотические. Абиотический фактор среды – это фактор не живой природы. К нему относится воздействие температуры, влажности, почвы и атмосферного кислорода на живые организмы. А биотический фактор среды это уже фактор живой природы, то есть взаимодействие двух живых организмов. К биотическим факторам можно отнести конкуренцию между животными, комменсализм, паразитизм и симбиоз.

На развитие географической оболочки повлияло не только космическая роль, но и повлияла также эволюция живых организмов. Под космической ролью понимают бомбардирование Земли метеоритами.

Развитие географической оболочки проходила в три этапа: добиосферный, биосферный и ноосферный. В добиосферном этапе уже существовала атмосфера и гидросфера. Организмы тогда существовали но не были обширно распространены. Особое развитие произошло в биосферном этапе. Когда появились фотосинтезирующие растения в атмосфере стал накапливаться кислород. С появлением кислорода формируется озоновый слой, что способствовало появлению водных растений на сушу. А в третьем ноосферном этапе к круговоротам добавляется антропогенный круговорот вещества и энергии. Начинают формироваться антропогенные компоненты, они несут в себе результаты воздействия человеческой деятельности.

 

                                 СПИСОК ЛИТЕРАТУРЫ

1)Борисяк А.А Курс исторической геологии. – М.: Новосибирск. ОНТИ, Изд. 3-е, 1934.   – 424 с.

2)Вернадский В.И. Биосфера и ноосфера. М.: Айрис-пресс, 2004, – 576 с.

3)Калесник С.В. Основы общего землеведения. – М.: 1955, – 455 с.

4)Кашапов Р.Ш. Живая оболочка Земли. М.: Просвещение, 1984, – 96 с.

5)Киселев В.Н. Биогеография с основами экологии. – М.: 1995, – 352 с. 

6)Коробкин В.И., Предельский Л.В. Экология. – Ростов н/Д.: Феникс, 2004 – 602с.

7)Львович М. И. Вода и жизнь. М., 1986. 254 с. 

8)Марков К. К. Палеография. М.,1960. 268 с.

9)Мильков Ф.Н. Общее землеведение. – М.: Высшая школа, 1990, – 336 с

10)Николайкин Н.И, Николайкина Н.Е, Мелехова О.П. Экология. – М.: Дрофа, 2004 – 624 с

11)Николов Т. Долгий путь жизни. – М.: Мир, 1986. – с.167

12)Потапов А.Д. Экология. – М.: Высшая школа, 2000, – 448 с.  

13)Ратобыльский Н. С., Лярский П. А. Общее землеведение с основами экологии. – М.: "Высшая школа" 1976, –  416 с.

14)Савцова Т.М Общее землеведение. — М.: Издательский центр «Академия», 2003. — 416 с.

15) Чернов А.В.  Историческое землеведение. – М.: Изд-во МГПУ, 2004 – 153 с.

16)Яшин А.Л. Четвертичный период. Палеонтология и археология. – Кишенев.: Издательство Штиинца 1989. – 240 с.

17)http://scienceland.info/geography6/biosphere

18)http://lemur59.ru/node/8908

19)http://lib.convdocs.org/docs/index-37988.html?page=26

20)http://mchost.e-reading-lib.org/bookreader.php/86151/Maklin%2C_Oklend__Ochevidnost%27_sotvoreniya_mira.html

21)http://science3.narod.ru/frev.htm

22)http://900igr.net/kartinki/ekologija/Zemlja-v-opasnosti/012-Prirodnye-javlenija.html

23)http://sentya.ru/biolog/329890/index.html

24)http://rudocs.exdat.com/docs/index-326209.html

25)http://ru.wikipedia.org/wiki/%CF%F0%EE%EA%E0%F0%E8%EE%F2%FB

 

 

 

 

referatwork.ru

Реферат - Состав атмосферы и его формирование в процессе эволюции биосферы

Новосибирский государственный аграрный университет

Агротехнологический факультет

Кафедра агроэкологии и микробиологии

Курсовая работа по сельскохозяйственной экологии на тему:

Состав атмосферы и его формирование в процессе эволюции биосферы.

Выполнила: Кириллова Ксения

студентка 1404 группы

Проверила: профессор,

к.б.н. Коробова Л. Н.

Новосибирск 2011

Введение

Атмосфера это внешняя газовая оболочка Земли, которая начинается у ее поверхности и простирается в космическое пространство приблизительно на 3000 км. История возникновения и развития атмосферы довольно сложная и продолжительная, она насчитывает близко 3 млрд лет. За этот период состав и свойства атмосферы неоднократно изменялись, но на протяжении последних 50 млн лет, как считают ученые, они стабилизировались.

Масса современной атмосферы составляет приблизительно одну миллионную часть массы Земли. С высотой резко уменьшаются плотность и давление атмосферы, а температура изменяется неравномерно и сложно, в том числе из-за влияния на атмосферу солнечной активности и магнитных бурь. Изменение температуры в границах атмосферы на разных высотах поясняется неодинаковым поглощением солнечной энергии газами. Наиболее интенсивнее тепловые процессы происходят в тропосфере, причем атмосфера нагревается снизу, от поверхности океана и суши. Следует отметить, что атмосфера имеет очень большое экологическое значение. Она защищает все живые организмы Земли от губительного влияния космических излучений и ударов метеоритов, регулирует сезонные температурные колебания, уравновешивает и выравнивает суточные. Если бы атмосферы не существовало, то колебание суточной температуры на Земле достигло бы ±200 °С. Атмосфера есть не только животворным «буфером» между космосом и поверхностью нашей планеты, носителем тепла и влаги, через нее происходят также фотосинтез и обмен энергии — главные процессы биосферы. Атмосфера влияет на характер и динамику всех экзогенных процессов, которые происходят в литосфере (физическое и химическое выветривания, деятельность ветра, природных вод, мерзлоты, ледников).

Развитие гидросферы также в значительной мере зависел от атмосферы из-за того, что водный баланс и режим поверхностных и подземных бассейнов и акваторий формировались под влиянием режима осадков и испарений. Процессы гидросферы и атмосферы тесно связанные между собою.

К сожалению, приходиться констатировать, что атмосфера с каждым годом промышленной деятельности человека становиться всё меньше и меньше пригодной для нормальной жизнедеятельности живых организмов.

В своей работе я стремлюсь рассмотреть историю земной атмосферы, а именно её газового состава, начиная с момента образования и заканчивая нашим временем.

Главная задача работы – рассмотреть все компоненты биосферы, главные и второстепенные, выявить их источники появления.

Глобальная роль атмосферы определяет особую ответственность всех государств за сохранение ее состава и предотвращения загрязнения воздушной среды, которое может отрицательно сказаться на развитии биосферы в целом.

1.Появление атмосферы и ее первичный состав

Возраст атмосферы принято приравнивать к возрасту самой планеты Земля – примерно 5000 миллионов лет. На первоначальном этапе своего формирования Земля разогрелась до внушительных температур. «Если, как считает большинство ученых, только что образовавшаяся Земля была чрезвычайно горячей (имела температуру около 9000 C), то большинство газов, составляющих атмосферу, должны были бы покинуть её. По мере постепенного охлаждения и затвердевания Земли газы, растворенные в жидкой земной коре, выходили бы из неё». Из этих газов и сложилась первичная земная атмосфера, благодаря которой стало возможным зарождение жизни[2].

Как только Земля остыла, вокруг неё, из выделенных газов, сформировалась атмосфера. Точное процентное соотношение элементов химического состава первичной атмосферы, к сожалению, определить не представляется возможным, но можно с точностью предположить, что газы, входящие в её состав, были подобны тем, которые теперь выбрасываются вулканами – углекислый газ, водяной пар и азот. «Вулканические газы в виде перегретых паров воды, углекислого газа, азота, водорода, аммиака, кислых дымов, благородных газов и кислорода формировали праатмосферу. В это время накопление кислорода в атмосфере не происходило, поскольку он расходовался на окисление кислых дымов (HCl, ,)[2].

Существуют две теории происхождения самого важного для жизни химического элемента – кислорода. По мере охлаждения Земли температура упала примерно до 100 C, большая часть водяного пара сконденсировалась и выпала на земную поверхность первым дождем, вследствие, чего образовались реки, моря и океаны – гидросфера. «Водяная оболочка на Земле обеспечила возможность накопления эндогенного кислорода, став его аккумулятором и (при насыщении) поставщиком в атмосферу, к этому времени уже очищенную от воды, углекислоты, кислых дымов, и других газов в результате прошедших ливней»[4].

Другая теория утверждает, что кислород образовался при фотосинтезе в результате жизнедеятельности примитивных клеточных организмов, когда растительные организмы расселились по всей Земле, количество кислорода в атмосфере стало быстро увеличиваться. Однако, многие учёные склонны рассматривать обе версии без взаимного исключения[4].

2.Слои атмосферы

Удерживаясь гравитационным полем Земли, атмосфера имеет зональное строение. Нижняя прилегающая к земной поверхности часть атмосферы до высоты 80 км носит название гомосферы. Гомосфера, в свою очередь, подразделяется на три оболочки, различающиеся по характеру температурного режима. Нижняя из них, называемая тропосферой, имеет основное значение для жизни на Земле. Её верхняя граница- тропопауза отделяет тропосферу от стратосферы. Тропопауза у полюсов располагается на высоте 8-10 км, а её высота увеличивается до 17 км. Выше стратосферы до высоты 80-90 км располагается верхний слой гомосферы – мезосфера, в пределах которого температура вновь уменьшается с высотой[2].

Оболочка атмосферы, располагающаяся над гомосферой, получила название гетеросферы. Она состоит из четырех газовых слоев различного химического состава. На высотах 90-200 км расположен слой молекулярного азота. За ним до высоты порядка 1100 км следует слой атомарного кислорода, в составе которого преобладают атомы кислорода. Далее, между 1100 и 3500 км, прослеживается гелиевый слой. Выше этого уровня он сменяется водородным слоем, в котором преимущественную роль играют атомы водорода. Условной границей водородного слоя считают высоту 10000 км, четкой верхней границы он не имеет.

В данной работе основное внимание будет уделено наиболее важной для биосферы зоне атмосферы – гомосфере и особенно ее нижнему слою – тропосфере[2].

3. Современный состав атмосферы.

Химический состав тропосферы определяется присутствием четырех главных компонентов, составляющих более 99,99% её массы – азота, кислорода, аргона и углекислого газа. Кроме того, постоянными газовыми составляющими атмосферы является так же ряд микрокомпонентов, представленных главным образом редкими инертными газами и водородом. Кроме постоянных составных частей в атмосфере обычно присутствуют в переменных количествах ксенокомпоненты, являющиеся временными примесями, поступление которых обязано вулканической деятельности, жизнедеятельности биосферы, а так же производственной и бытовой деятельности человека. Большая часть ксенокомпонентов атмосферы в повышенных концентрациях оказывает отрицательное влияние на развитие растительности и живых организмов и, таким образом, должна рассматриваться как загрязнитель окружающей среды. К числу ксенокомпенентов атмосферы относятся также поступающие в нее в результате различных процессов пылевые частицы, которые часто мигрируют в воздушной среде на большие расстояние[2].

Таблица 1.

Состав атмосферы Земли (без Н2О )

Элементы и соединения Содержание Общая масса, г
Об. % Вес. %
Главные компоненты

78,084

20,946

75,51

23,15

3,865*

1,184*

Второстепенные компоненты

Ar

0,934

0,033

99,997

1,28

0,046

99,986

65,5*

2,33*

Микрокомпоненты

Ne

He

Kr

Xe

h3

182*

53*

12*

0,9*

5*

125*

7,2*

29*

3,6*

0,3*

63,6*

3,7*

14,6*

1,8*

0,2*

Ксенокомпоненты

Rn

15

5

4

4,5

9

7,6

6

6

4,3

4,0

3,1

2,32

4. Главные компоненты атмосферы, их происхождение и источники поступления

4.1 Азот

Это главный химический элемент тропосферы, имеющий огромное значение для развития жизни на нашей планете. Из 16*моль азота, присутствующих в земной коре, 2,7*моль находится в виде в атмосфере, 0,014*моль растворено в океанических водах и 10,3*моль в той или иной форме заключены в горных породах литосферы[8].

Азот постоянно поступает в атмосферу из глубин Земли с вулканическими эманациями, которые содержат от первых единиц до нескольких десятков процентов молекулярного азота (в газах лав гавайских вулканов, например, содержится 5,7 вес. % ). Еще более высокое содержание азота отмечается в газах горячих источников, получивших в связи с этим наименование азотных терм. Лишь около 0,0014*моль азота играют активную роль в круговороте этого элемента, однако роль эта весьма важна. В биосфере происходят широкая аккумуляция и фиксация азота из воздуха различными группами микроорганизмов, заключающаяся в превращении молекулярного азота в или . Процесс этот идет с поглощением энергии. Другие группы бактерий участвуют в окислении и до нитрит-иона (Nitrosomonas) и далее до нитрат-иона ( Nitrobacter ) по общей схеме:

Окисление или + +;

Нитрификация +.

Оба процесса идут с выделением энергии[2].

Нитраты и нитриты, накапливающиеся таким образом в почве, в свою очередь, ассимилируются растениями. При этом вновь происходит восстановление их до , который затем используется при построении аминогрупп. Важнейшим азотсодержащими соединениями животных и растений являются белки, которые содержат до 18% азота. Таким образом, органическое соединение азота, входящие в состав живого вещества, могут рассматриваться как аккумуляторы энергии[2].

Помимо процессов накопления и связывания азота воздуха растениями в природе, правда, в более ограниченных масштабах, развивается и обратный процесс – денитрификация, осуществляемая в анаэробных условиях некоторыми видами бактерий. При этом процессе, также требующих затрат энергии, нитрат – или нитрит-ионы восстанавливаются до молекулярного азота или . Подсчитано, что в результате денитрификации с 1 га почвы в атмосферу ежегодно поступает 50-60 кг азота. Процесс этот идет с выделением энергии по следующей общей схеме:

COOH--+++[2].

В отличие от биосферы, где миграция азота сопровождается образованием и распадом его соединений, для атмосферы образование окислов азота представляет собой хотя и закономерное, но редкое явление. Поэтому соединение азота с кислородом воздуха требует значительной энергии, в атмосфере такого рода реакции происходят только при вспышке молнии. Таким образом, содержание в тропосфере прямо зависит от числа и интенсивности гроз. Об этом можно судить по вариациям содержания нитратов в дождевых водах районов с различным климатом. Максимальное содержание нитрат-иона отмечается в дождевых водах, богатых нрозами тропических регионов, минимальное – в осадках влажных рацонов умеренного климата[2].

С азотом связан ряд важных проблем, непосредственно касающихся состояния окружающей среды:

1. Проблема загрязнения атмосферы окислами азота;

2. Эксценссивное использование азота атмосферы в процессах техногенеза;

3. Загрязнение гидросферы и почв продуктами переработки атмосферного азота.

Техногенное поступление окислов азота в тропосферу происходит при всех процессах сжигания твердого и жидкого топлива и для индустриально развитых стран измеряется десятками миллионов тонн в год. Повышая окислительную способность атмосферы и увеличивая кислотность метеорных осадков, а так же содержание нитратов в водах районов загрязнения, аномальные концентрации окислов азота воздухе могут привлечь нежелательные изменения развития экосистем, являясь отрицательным фактором для окружающей среды. В списке наиболее важных загрязнителей, рекомендуемых для международного контроля, окислы азота помещены на пятом месте.

Не менее, а может быть более серьезную проблему для окружающей среды представляют извлечение и использование азота воздуха человеком для разнообразных промышленных и главным образом сельскохозяйственных нужд (азотные удобрения). В результате количество неактивного азота, извлекаемого из атмосферы и преобразуемого в активные соединения азота с кислородом и водородом, в конечном итоге превышает поступление его в атмосферу в результате денирификации[2].

4.2 Кислород

Запасы кислорода в атмосфере составляют порядка 1,5*моль. Единственным источником поступления кислорода в окружающую среду являются процессы фотосинтеза. Зеленые растения биосферы ежегодно выделяют в атмосферу около 4,67*г кислорода. Из этого количества 11,3% производят наземные растения и 88,7% водные растения. Таким образом, растения и особенно растения океана играют исключительную роль в накоплении кислорода в атмосфере Земли. В процессах гипергенеза на поверхность земной коры происходит непрерывное связывание свободного кислорода атмосферы при окислении закисного железа ( с образованием окисного ), соединений двухвалентного марганца, сульфидов, органических остатков[3].

За всю историю существования нашей планеты в результате бактериального и растительного фотосинтеза выделилось 1,8-2,3*г . Эта величина получена на основе данных о количестве органического углерода, захороненного в осадках. Для окисления горных пород, находящихся на Земле, потребовалось бы почти на порядок большее количество кислорода. Следовательно, фотосинтезирующие организмы могли лишь частично сформировать кислородную атмосферу Земли[3].

На основе изучения изотопного состава воздуха показано, что кислород атмосферы состоит на 2/3 из кислорода геологического происхождения и на 1/3 из кислорода, генерированного фотосинтезирующими организмами. Первичный кислород образовался в результате дегазации базальтовой магмы ( поступление из земных недр продолжается и в настоящее время). Коллектором этого газа служат воды океана. Биогенный кислород появился позже. В итоге современная атмосфера формируется за счет как абиогенного, так и биогенного кислорода.

Деятельность человека в основном направлена на уменьшение количества кислорода в атмосфере. В связывании свободного кислорода воздуха заключается сущность сжигания любого органического топлива. Ежегодно человеком в процессе сжигания из атмосферы извлекается около 9*г кислорода, что составляет почти 2% его количества, вырабатываемого за этот период растениями биосферы. Отрицательное влияние деятельности человека на развитие лесов также вносит ощутимый «вклад» в уменьшение поступления кислорода в атмосферу вследствие фотосинтеза. Хотя эта отрицательная роль человека в некоторой степени компенсируется орошением и сельскохозяйственным озеленением засушливых земель, однако масштабы этих процессов до настоящего времени несоизмеримы[2].

5. Второстепенные компоненты атмосферы

5.1 Аргон

Это наиболее распространенный инертный газ атмосферы, который почти полностью имеет радиогенное происхождение и образуется в результате распада радиоактивного изотопа калия-40 по схеме

+е→.

Период полураспада , который составляет 0,0119% природного калия, равен 1,3 млрд. лет. Таким образом, поступление аргона в воздушную оболочку Земли из литосферы происходит постоянно. Изотопный состав следующий: 96,6%; 0,063%; 0,337%[2].

5.2 Углекислый газ

В атмосфере содержится 58*моль углерода в составе углекислого газа. В отличие от кислорода, основная масса которого заключена в атмосфере, лишь около 2% свободного находится в газообразном состоянии в воздухе. Оставшиеся 98% углекислого газа ( 2943*моль углерода) растворены в гидросфере и, таким образом, заключены в Мировом океане[3].

Зеленые растения в процессе фотосинтеза накапливают углерод из воздуха, превращая углекислый газ в сложные углеводороды, имеющие общую формулу –СООН-. Биологический цикл углерода в окружающей среде может быть изображен следующей схемой:

→-СООН-→

газ тв. вещ-во газ

Органическое вещество, являющееся аккумулятором солнечной энергии, в определенных условиях после гибели растений и живых организмов может быть преобразовано в ископаемые, обогащенные углеродом, твердые и жидкие органические продукты, концентрирующие энергию, аккумулированную живым веществом. Эти продукты – каменный уголь и нефть – являются в настоящее время главной энергетической базой человеческого общества и уже в течение ряда столетий повсеместно используются в качестве горючих полезных ископаемых. Образование последних происходило в результате захоронения органических остатков в осадочных породах, что преграждало доступ к ним свободного кислорода. В противном случае в процессе разложения весь углерод органического веществ был окислен до .Особенно благоприятные условия для захоронения отмерших растительных остатков в девонском и каменноугольном периодах палеозойской эры. Захоронение органических остатков в течение геологического времени сохранило в атмосфере значительное количество кислорода. На важную роль геохимическую роль захоронения углерода для формирования кислородной атмосферы земного шара указывал В. И. Вернадский. Однако в последнее столетие человек с поразительной быстротой использует горючие ископаемые, которые накапливались в земной коре в течение сотен миллионов лет. Ежегодно в атмосферу выводится порядка 0,42*моль углерода. Столь значительные поступления техногенного углекислого газа в течение последнего столетия существенно увеличили его содержание в атмосфере. Эффект воздействия растущей концентрации в атмосфере на окружающую среду в течение длительного времени обсуждается специалистами. Главную заботу при этом вызывает способность углекислого газа к абсорбции длинноволнового излучения, что может привести к так называемому парниковому эффекту, следствием которого должно быть постепенное потепление климата. При существующих масштабах накопления расчетный уровень потепления составляет 2ºС[3].

При переходе человечества на использование иных видов энергии ( ядерной, солнечной, геотермальной и т. д. приток в атмосферу резко сократится. При сохранении существующих темпов роста потребления ископаемого топлива запасов каменного угля на Земле хватит на 150 лет, а нефти и газа соответственно на 50 и 49 лет. Таким образом, после 2020 г следует ожидать резкого уменьшения поступления техногенного в атмосферу. В последующие несколько тысяч лет в результате регулирующего воздействия океана содержание углекислого газа в атмосфере будет понижено до уровня, соответствующего природному равновесию[1].

6.Микрокомпоненты атмосферы

6.1 Редкие инертные газы ( неон, криптон, гелий, ксенон, радон)

Инертные газы в условиях атмосферы Земли и в биосфере не вступают в какие-либо химические реакции, полностью оправдывая свое название. Наиболее распространенный из них – аргон – по массе составляет более 1% атмосферы, а наименее распространенный – радон – всего 6*%[5].

Происхождение основной массы неона в атмосфере остается не вполне ясным. является самым распространенным, стабильным изотопом атмосферного неона ( 90,92% ). По всей вероятности, он освобождается и поступает в атмосферу в процессе разрушения магматических горных пород, а так же из вулканических источников. Два других стабильных изотопа (0,257%) и (8,82%), судя по имеющимся данным, имеют радиогенное происхождение. Считается, что основная масса неона в связи с легкостью этого газа ( неон легче в 1,5 раза воздуха) была потеряна атмосферой на ранних стадиях геологической эволюции Земли[6].

Криптон ксенон – весьма редкие инертные газы, находящиеся в атмосфере в состоянии крайнего рассеяния. Они поступают в атмосферу с вулканическими эманациями и газами термальных источников[3].

Гелий – наиболее легкий из инертных газов, являющийся конечным продуктом распада урана и тория. Каждый грамм урана, рассеянного в горных породах, в течение года выделяет 1,16*мл гелия, каждый грамм тория соответственно 2,43*мл. В отличие от прочих инертных газов гелий, несмотря на крайне низкое его содержание в атмосфере, в ряде случаев накапливается в литосфере в значительных количествах, играя заметную роль в составе рудничных газов, а также в природных газах, богатых азотом. Обогащены гелием и газы некоторых термальных источников. Количество гелия, поступившего в атмосферу в процессе геологической эволюции литосферы, должно быть значительно больше его количества, присутствующего в настоящее время в тропосфере и стратосфере. В этой связи был сделан вывод о непрерывном уходе (диссипации) гелия из атмосферы Земли в космическое пространство. В космосе и атмосфере Солнца гелий в отличие от атмосферы Земли является вслед за водородом наиболее распространенным элементом[2].

Радон – радиоактивный инертный газ – вследствие своей недолговечности не является постоянным компонентом атмосферы и поэтому рассматривается в группе ксенокомпонентов атмосферы[2].

6.2 Водород

Содержание свободного водорода в атмосфере ничтожно. Его источником являются вулканические процессы, многие магматические и осадочные горные породы, а так же биогенные процессы, идущие при участии водородообразующих бактерий[2].

В атмосфере водород неустойчив и легко соединяется с кислородом. Таким образом, его относительно постоянное на данный геологический период содержание в атмосфере может рассматриваться как динамическое равновесие, определяемое физико-химическими и гравитационными факторами. Большинство исследователей признает возможность ухода (диссипации) атомов водорода за пределы атмосферы в космическое пространство.

Из числа изотопов водорода в атмосфере присутствуют тритий — Т, количество которого измеряется значением 4*ат. %. Тритий образуется естественным путем в верхних слоях атмосферы в результате бомбардировки атомов азота нейтронами космических лучей по схеме +n→+T. Образование трития имеет место также при ядерных взрывах в атмосфере. Однако в связи с запрещением испытаний атомного оружия в атмосфере количество техногенного трития, имеющего сравнительно короткий период полураспада ( 12,262 лет ), в атмосфере значительно уменьшилось[2].

7.Ксенокомпоненты атмосферы, включая антропогенные загрязнители.

7.1 Метан и другие газообразные углероды

Незначительное количество метана постоянно отмечается в земной атмосфере. Он образуется в процессе разложения органического вещества при условии недостатка кислорода почвах, особенно в болотах ( болотный газ ) и захороненных осадках. Процесс преобразования захороненного органического вещества в каменные угли и жидкие углеводороды сопровождается отделением значительного количества метана. Так, метан составляет около 90% массы газа в его месторождениях. Поступление метана из осадочных толщ, газовых, нефтяных и угольных месторождений, а также из разлагающихся в восстановительных условиях органических остатков является естественным источником этого наиболее простого углеводорода в атмосфере. Некоторая часть метана в биосфере окисляется особыми видами бактерий до углекислого газа и воды по схеме:

+ 2+ 2.

Содержание более тяжелых, чем метан углеводородов в тропосфере ничтожно и практически не поддается определению. Тяжелыми углеводородами обогащены газы нефтяных месторождений ( 17% ), в то время как в месторождениях газа среднее содержание тяжелых углеводородов в среднем составляет около 3%[6].

7.2 Окись углерода

В отличие от углекислого газа, являющегося вместе с кислородом основой жизни на Земле. Окись углерода СО не характерна для природных процессов в окружающей среде. Обладая токсическими свойствами, окись углерода отрицательно действует на живые организмы. Концентрации СО, превышающие 10 мг на 1 м³ воздуха, опасны для здоровья человека[2].

Появление окиси углерода в тропосфере является полностью следствием деятельности человека, если исключить образование некоторого количества ее во время лесных пожаров. В этой связи содержание окиси углерода в воздухе может служить объективным показателем степени его загрязненности[2].

Исходя из годового потребления жидкого топлива различными странами, поступление техногенной окиси углерода в тропосферу может быть оценено в 230 млн. т/год[2].

Содержание окиси углерода в воздухе уже в настоящее время в ряде крупных городов (Нью-Йорк, Лос-Анджелес, Токио и др.) представляет угрозу для здоровья людей, особенно в жаркие и безветренные периоды года[2].

7.3 Сероводород

Поступление незначительных количеств природного сероводорода в атмосферу в основном обусловлено процессами бактериального разложения органического вещества в условиях резкого недостатка кислорода. Некоторое количество выбрасывается в атмосферу вместе с другими газами в результате вулканических процессов, а также поступает на поверхность с термальными источниками[1].

Бактерии-десульфузаторы, участвующие в процессах разложения органического вещества, проходящих без доступа воздуха, восстанавливают присутствующий в органических остатках сульфат-ион . При этом отработанный у сульфат-иона кислород используется для дальнейшего окисления органического вещества. Бактерии этой группы могут использовать в пищу не только разлагающиеся остатки растений и животных, но также и ископаемые углеводороды – различные битумы, нефть и т. д. По подсчетам, количество сероводорода, ежегодно выделяемого в результате деятельности бактерий-десульфуризаторов, измеряется ( в расчете на серу ) в 4,2*моль. Из них лишь 1,0*моль поступает с континентов, а остальная часть ( 3,2*моль) поставляется океанами[1].

В тропосфере сероводород неустойчив и в результате реакции с кислородом воздуха преобразуется в S. Хотя эта реакция в изолированных условиях протекает достаточно медленно, однако присутствие в тропосфере аэрозолей и мельчайших капелек воды резко ускоряет ее прохождение[1].

Повышение концентрации в воздухе представляет опасность для здоровья и даже жизни живых существ, в том числе и человека. В этой связи промышленные источники, выделяющие в составе отходов , должны строго контролироваться. К их числу относится ряд химических производств, в том числе процессы переработки каменных углей, осуществляемые без доступ воздуха, и т. д[1].

7.4 Сернистый газ

Содержание природного в атмосфере ничтожно, его источниками являются вулканические процессы и окисление в воздухе сероводорода, поступающего в результате жизнедеятельности бактерий-десульфузаторов. Незначительные количества выделяются в воздух также в результате окисления с поверхности рудных месторождений, содержащих сульфиды. В почвенном воздухе над месторождениями сульфидных руд содержание сернистого газа составляет 25-50 частей на миллиард при фоновой концентрации от -15 до 10 частей на миллиард. Таким образом, источники природного ограничены в масштабах. Однако поступление в тропосферу значительных количеств техногенного сернистого газа уже в настоящее время представляет одну из наиболее серьезных проблем загрязнения окружающей среды[2].

Присутствие в атмосфере оказывает не только прямое отрицательное воздействие на жизнедеятельность животных и растений. Взаимодействуя с кислородом воздуха, преобразуется в крайне реакционноспособный , который с водой атмосферы дает серную кислоту. Разрушительные свойства последней общеизвестны. Реакция окисления сернистого газа до

О +М →+ ;

2+ + окислители → ;

+ .

Где М – любая молекула газа. Первая реакция требует одновременно столкновения молекулы , атомарного газа и любой другой газообразной молекулы, которая служит для отвода образуемой в процессе столкновения и реакции энергии. Иначе этот процесс же пойдет в обратном направлении и вновь будет преобразован в с отщеплением атома кислорода. Особенно благоприятные условия для прохождения этой реакции существуют в пределах озонового слоя атмосферы, где атомарный кислород непрерывно генерируется в процессе распада молекул на О и . В результате в стратосфере на высоте порядка 18 км существует слой с повышенной концентрацией , поскольку легко соединяется с присутствующей в атмосфере водой. Вторая реакция для быстрого осуществления требует присутствия окислителей. Последние всегда накапливаются в воздухе, загрязненном в результате производственной деятельности человека. Таким образом, окисление до с последующим образованием серной кислоты особенно интенсивно происходит в атмосфере городов и в районах промышленных предприятий[2].

Высокая растворимость , образующейся в результате окисления сернистого газа, в воде определяет быстрое удаление серной кислоты из атмосферы с дождями. В результате проблема загрязнения атмосферы сернистым газом слилась с проблемой «кислых дождей». Возможные экологические последствия столь резкого окисления дождевых вод пока еще не вполне ясны. Беспокойство экологов, в частности, вызывает влияние кислых дождевых вод на растительность, связанное с интенсивным выщелачиванием почв. Было зафиксировано также резко отрицательное воздействие увеличения кислотности речной и озерной воды на рыбную фауну. Исследования по программе «Здоровье населения и система наблюдений за окружающей средой», выполнявшиеся в рамках ООН, показали, что вредное воздействие на здоровье населения в большой мере оказывают присутствующие в воздухе сульфаты, чем сернистый газ, не окисленный еще до состояния [2].

7.5 Галоиды

О распространении галоидов в атмосфере имеется очень мало данных. Исключением является хлор, присутствие которого в атмосфере находит отражение в варьирующих содержаниях хлор-иона в дождевых водах. Помимо ничтожной доли хлора, которая поступает в атмосферу с вулканическими газами, содержащими десятые доли процента этого элемента, весь хлор атмосферы является составной частью хлоридов, выдуваемых ветром с поверхностей морей и океана, и в меньшей степени из засоленных почв[6].

Присутствие фтора в атмосфере ничтожно. Некоторое увеличение его содержания ( в два – четыре раза превышающее геохимический фон ) отмечалось над рудными месторождениями, содержащими минералы фтора. Освобождение фтор-иона в данном случае, вероятно, является следствием взаимодействия серной кислоты, образующейся при окислении пирита с наиболее распространенным минералом фтора – флюоритом . Техногенное загрязнение воздуха газообразными соединениями фтора HFи обычно отмечается в радиусе нескольких километров от алюминиевых заводов и предприятий по производству суперфосфата. Содержание 1 фтора в воздухе губительно действует на некоторые растения. Предельно допустимыми максимальными концентрациями фтор-иона в воздухе являются 0,02 мг/м³ (разовая) и 0,005 мг/м³( среднесуточная)[6].

7.6 Озон

Содержание озона в атмосфере крайне незначительно. Подобно окислам азота озон образуется в атмосфере под действием электрических разрядов во время грозы ( молнии ), а так же синтезируются из кислорода под воздействием коротковолновой космической ультрафиолетовой радиации. В пределах атмосферы повышенные концентрации озона образуют так называемый озоновый слой, имеющий крайне важное значение для жизни на Земле. Нижняя граница озонового слоя располагается на высоте 15-25 км. Максимальная концентрация озона характерна для верхней приграничной зоны слоя, в пределах которой задерживается большая часть ультрафиолетового излучения и происходит синтез молекул озона. Если бы коротковолновое УФ-излучение в начальной его интенсивности достигло бы бисферы, то оно явилось бы губительным для жизни на Земле[3].

Играя столь важную для окружающей среды роль в стратосфере, повышенное содержание озона является крайне нежелательным на более низких уровнях, в тропосфере. Являясь сильнейшим окислителем, озон оказывает токсичное и разрушительное действие на живую материю. В тропосфере озон может возникать в результате превращения окислов азота и органического вещества. Таким образом, загрязнение тропосферы техногенными окислами азота в определенных условиях влечет за собой и нежелательное повышение содержания озона в окружающей среде[3].

7.7 Радон

Это инертный газ, являющийся продуктом распада изотопов радия, присутствующих в горных породах в крайне незначительном количестве. Период полураспада наиболее долгоживущего из изотопов радона равен всего четырем дням, еще быстрее распадается два других изотопа ( актинон) и ( торон). Таким образом, изотопы радона, мигрируя из горных пород в атмосферу, быстро распадаются и не успевают достичь ее высоких слоев[6].

7.8 Ртуть

Ядовитые свойства ртути выделяют этот легколетучий металл в качестве опасного загрязнителя атмосферы. В результате естественных процессов на поверхность земного шара ежегодно поступает около 1000 т ртути. При этом считается, что поступление ртути в атмосферу из таких естественных источников, как вулканы ( в том числе грязевые ) и фумаролы, превышает количество техногенной ртути, выбрасываемой в воздух человеком, хотя имеющиеся данные недостаточны для такой оценки[5].

Как показали тщательные исследования, ртуть, поступающая в атмосферу, достаточно быстро удаляется из нее с дождевыми водами и просто гравитационным осаждением, обогащая таким образом почвы и гидросферу[5].

Источниками поступления техногенной ртути в атмосферу являются:

-сжигание твердого и жидкого органического топлива ( каменные угли содержат 0,05-13,3 ;

-металлургическая переработка руд цветных металлов, как правило, содержащих примеси ртути;

— частичное испарение летучих органических соединений ртути, образованных бактериями, из почв и осадков.

Практически вся ртуть в процессах переработки этих руд возгоняется в воздух. В результате суммарное поступление техногенной ртути в атмосферу, по всей вероятности, несколько превышает 1100 т/год ( без учета частичного испарения органических соединений ртути из почв и осадков, которое количественно оценить невозможно )[5].

8. Атмосфера города Новосибирска

В рейтинге уровня загрязненности атмосферы среди городов –миллионеров Новосибирск занимает серединную строку. Наш город не сравнить с Норильском, где выбросы вредных веществ уже превалили за 2 млн. тонн, но и до Кисловодска ( 700 тонн загрязняющих веществ ) Новосибирску еще очень далеко[10].

Общее увеличение выбросов в 2006 году составило 4,154 тыс. тонн. Это обусловлено, в основном, увеличением парка автомобилей[10].

В 2006 году передвижными источниками выброшено в атмосферу 242,786 тыс. тонн загрязняющих веществ, по сравнению с 2005 годом произошло увеличение количества выбросов на 9,302 тыс. тонн, связанных с увеличением количества автотранспорта на улицах города[10].

В 2006 году стационарными источниками промышленных предприятий города выброшено в атмосферу 104,052 тыс. тонн загрязняющих веществ, в том числе:

-твердые частицы — 23,534 тыс. тонн;

-диоксиды серы – 38,451 тыс. тонн;

— оксид углерода – 11,843 тыс. тонн;

-оксиды азота – 24,457 тыс. тонн;

-углеводороды – 0,097 тыс. тонн;

-летучие органические соединения – 1,746 тыс. тонн;

— прочие газообразные и жидкие вещества – 3,924 тыс. т.

Отчиталось по статистической форме 2- ТП (воздух) за 2006 год 226 предприятий.

Наиболее существенный вклад в загрязнение атмосферы по отрасли электроэнергетики внесли такие предприятия как: подразделения ТЭЦ-2, ТЭЦ-3, ТЭЦ-4, ТЭЦ-5 ОАО «Новосибирскэнерго». По существу, к этому необходимо добавить и выбросы печей частных дмовладений[10].

Таблица 2.

Динамика выбросов загрязняющих веществ о Новосибирских ТЭЦ, тыс. тонн

Загрязняющие вещества Годы
2003 2004 2005 2006
Зола угольная 16,1 16,2 19,7 17,-15
22,93 21,21 26,6 25,-15
29,74 29,71 36,2 35,86
CO 1,89 1,50 1,70 1,58
Всего 74,4 72,13 84,22 81,93

Динамика выбросов напрямую зависит от количественного и качественного состава сожженного топлива. По сравнению с 2005 годом произошло снижение выбросов за счет снижения объемов сожженного угля – основного вида топлива ТЭЦ г. Новосибирска.

Предприятия, которые также оказывают влияние на состояние атмосферного воздуха, расположены по всей территории города.

По сравнению с 2005 годом выбросы загрязняющих веществ в атмосферу от стационарных источников уменьшилось на 5,148 тыс. тонн ( 4,7%), в основном, за счет уменьшения расходов сожженного топлива. Анализ порайонных выбросов показывает, что общее уменьшение выбросов по городу произошло за счет уменьшения выбросов в Калининском районе. Это, в свою очередь, обусловлено снижением выбросов от основного вкладчика предприятий Калининского района – ТЭЦ – 4[7].

По показателям выбросов о стационарных источников самые неблагоприятные районы: Октябрьский, Ленинский и Калининский (районы расположения ТЭЦ города ). По остальным районам разница валовых выбросов в 2005 и 2006 годах незначительная, как в сторону увеличения, так и в сторону уменьшения выбросов[7].

Вследствие функционирования большого количества промышленных предприятий, предприятий теплоэнергетического комплекса, а также увеличения количества автотранспорта на автомагистралях Новосибирска, воздух города загрязнен специфическими примесями: метаном, ксилолом, толуолом, аммиаком, сажей[10].

Таблица 3.

Валовый выброс загрязняющих веществ от различных источников

Годы Новосибирские ТЭЦ, т/га %

Котельные

т/г

% Технологические, т/г % Автомобили, т/г %
2000 74942 24,7 14100 4,5 12692 4,2 201131 66,4
2001 63301,7 21,4 10547,7 3,6 12692 4,3 209617 70,8
2002 67996,6 22 14359,4 5 11788 4 21438 69
2003 74402,7 23 12593,2 3,9 13058,1 4,1 219400 69
2004 72131,6 21,8 16959,4 5,1 9333 2,8 232351 70,3
2005 84223 24,6 14988 4,4 9992 2,9 233484 68,1
2006 81930 23,6 9543 2,8 12579 3,6 242786 70,0

В 206 году наблюдается значительный рост технологических выбросов по сравнению с 2005 годом за счет увеличения объемов производства в городе. Произошло снижение выбросов от источников энергоснабжения города за счет снижения расхода топлива из-за теплой зимы в 2006 г.

Загрязнение атмосферы в городе осталось на прежнем уровне, изменились лишь структура источников загрязнения: если в 2005 году выбросы Нвосибирских ТЭЦ составляли 25%, то в 2006 году – 23,6%, технологические выбросы увеличились в 2006 г. по сравнению с 2005 г. с 2,9% до 3,6% за счет роста производства, выбросы от автотранспорта увеличились с 68% до 70%[10].

Заключение

Оценка и прогноз химического состояния приземной атмосферы, связанного с природными процессами ее загрязнения, существенно отличается от оценки и прогноза качества этой природной среды, обусловленного антропогенными процессами. Вулканической и флюидной активностью Земли, другими природными феноменами нельзя управлять. Речь может идти только о минимизации последствий негативного воздействия, которое возможно лишь в случае глубокого понимания особенностей функционирования природных систем разного иерархического уровня, и, прежде всего, Земли как планеты. Необходим учет взаимодействия многочисленных факторов, изменчивых во времени и пространстве, К главным факторам относятся не только внутренняя активность Земли, но и ее связи с Солнцем, космосом. Поэтому мышление «простыми образами» при оценке и прогнозе состояния приземной атмосферы недопустимо и опасно.

Как уже отмечалось выше, на территории города произошло незначительное уменьшение выбросов загрязняющих веществ в атмосферу от стационарных источников на 5,151 тыс. тонн ( 4,7%), в основном за счет уменьшения расходов сожженного угля ( основного энергетического топлива ТЭЦ г. Новосибирска ). Общее увеличение выбросов вредных веществ в атмосферу в 2006 г. по сравнению с 2005 г. произошло за счет увеличения автотранспорта на 9,302 тыс. тонн (3,8%).

Список используемой литературы.

1) Батчер А. Введение в химию биосферы. –Издательство «Мир», Москва 1977 г.

2) Беус А.А. Геохимия окружающей среды. –Издательство «Недра», Москва 1976 г.

3) Бримблкумб П. Состав и химия атмосферы.- Издательство «Мир», Москва 1988 г.

4) Галимов Э.М. Проблема зарождения и эволюции биосферы.- Москва 2008 г.

5) Исидоров В.А. Органическая химия атмосферы.- «Химиздат», С.-Петербург 2001 г.

6) Мак-Ивел М., Филлипс Л. Химия атмосферы.-Издательство «Мир», Москва 1978 г.

7) Селегей Т.С. Формирование уровня загрязнения атмосферного воздуха в городах Западной Сибири. –Издательство «Наука», Новосибирск 2005 г.

8) Суркова Г.В. Химия атмосферы.- Издательство «Москва Университет» 2007 г.

9) Тарасова Н.П. Химия окружающей среды.- «ИКЦ Академкнига», Москва 2007 г.

10)Журнал о состоянии атмосферного воздуха г.Новосибирска, 2006 г.

Содержание

Введение

1. Появление атмосферы и ее первичный состав………………..5

2. Слои атмосферы…………………………………………………7

3. Современный состав атмосферы………………………………8

4. Главные компоненты атмосферы, их происхождение и источники поступления………………………………………..10

4.1 Азот…………………………………………………………10

4.2 Кислород…………………………………………………..14

5. Второстепенные компоненты атмосферы……………………..16

5.1 Аргон……………………………………………………....16

5.2 Углекислый газ……………………………………………17

6. Микрокомпоненты атмосферы…………………………………20

6.1 Редкие инертные газы……………………………………20

6.2 Водород……………………………………………………22

7.Ксенокомпоненты атмосферы, включая антропогенные загрязнители………………………………………………………..23

7.1 Метан и другие газообразные углероды…………………23

7.2 Окись углерода……………………………………………..24

7.3 Сероводород………………………………………………..25

7.4 Сернистый газ………………………………………………27

7.5 Галоиды……………………………………………………..30

7.6 Озон………………………………………………………….31

7.7 Радон………………………………………………………...32

7.8 Ртуть…………………………………………………………33

8.Атмосфера г. Новосибирска……………………………………..34

Заключение………………………………………………………….38

www.ronl.ru

Атмосфера Влияние на животных

Атмосфера

Цель исследования

Атмосфера необходим на Земле всем живым существам. Без неё невозможно образование органических веществ зелеными растениями, дыхание живых организмов, расселение плодов органических веществ зелеными растениями, дыхание живых организмов, расселение плоды и семян и многое другое. Атмосфеа-основная среда распространения большого числа бактерий и спор грибов. Различные условия жизни живых организмов в наземно-воздушной среде связаны с составом атмосферы и её свойствами. Состав атмосферы не постоянен. Относительно высокое и постоянное содержание кислорода в приземном слое атмосферы не ограничивает жизнь организмов. Лишь местами, например в условиях скопления различных гниющих растительных остатков, создается временный недостаток кислорода. Содержание же углекислого газа в отдельных местах приземного слоя атмосферы может сильно меняться. В крупных городах, например, в безветренную погоду его количество увеличивается в десятки раз.

В наземно-воздушной среде жизни значительную роль играет воздух.

Находящийся в атмосфере кислород необходим для дыхания живых организмов. Углекислый газ зеленые растения используют для образования органических веществ. Азот входит в состав органических веществ (белков).

ПЛОТНОСТЬ И ДАВЛЕНИЕ ВОЗДУХА КАК ФАКТОРЫ НАЗЕМНО-ВОЗДУШНОЙ СРЕДЫ ЖИЗНИ

С малой плотностью газов в стртосфере связана предельная величина тела наземных организмов. На суше в окружении воздуха никогда не существовали такие гиганты, как синий кит. Они были бы раздавлены своей же тяжестью (киты, выброшенные на берег, погибают от сдавливания внутренних органов). Масса тела самого крупного наземного животного слона в несколько раз меньше массы тела синего кита.

Атмосфера и все составляющие её вещества обладают массой, поэтому она давит на поверхность Земли. Атмосферное давление меняется с изменением погоды и от высоты над уровнем моря. Давление в горах на высоте 5800 м наполовину ниже, чем над уровнем моря. атмосфера при таком давлении (разреженный воздух) имеет пониженное содержание кислорода. Поэтому людям, поднявшимся высоко в горы, трудно дышать. У альпинистов на большой высоте над уровнем моря довольно быстро появляются усталость, одышка, учащается сердцебиение.

Опыт-природный барометр

ВЫВОД

Над презентацией работал ученик 7А Васильев Дмитрий

dok.opredelim.com


Смотрите также