Начальная

Windows Commander

Far
WinNavigator
Frigate
Norton Commander
WinNC
Dos Navigator
Servant Salamander
Turbo Browser

Winamp, Skins, Plugins
Необходимые Утилиты
Текстовые редакторы
Юмор

File managers and best utilites

План Откуда берётся пыль? Состав пыли. Источники. Пылевые клещи. Борьба с ними. Реферат на тему пыль


Реферат на тему Технические и технологические методы очистки воздушной среды от пыли

Реферат на тему:

«ТЕХНИЧЕСКИЕ И ТЕХНОЛОГИЧЕСКИЕ

МЕТОДЫ ОЧИСТКИ

ВОЗДУШНОЙ СРЕДЫ ОТ ПЫЛИ»

Пыль как газодисперсная система

Интенсификация промышленности приводит к очень сильному загрязнению окружающей среды. Ежегодный ущерб только от загрязнения воздуха в США оценивается в 16 млн. долларов. Промышленными предприятиями в атмосферу планеты ежегодно выбрасывается около миллиарда тонн пылевых частиц (сажи) и газов, то есть примерно по 0,25 тонн на каждого человека.

Многие технологические процессы в строительстве и промышленности сопровождаются выделением пыли, отрицательно воздействующей на организм человека и, в основном, на его органы дыхания.

Для предупреждения профессионального заболевания (вызванного воздействием на работника вредных условий труда) необходимо, чтобы в воздухе рабочей зоны, цеха и т.д. содержание пыли было ниже предельно допустимых концентраций (ПДК).

Вредность воздействия пыли на организм человека зависит, прежде всего, от её вещества, дисперсности, формы частиц, а также от растворимости и твердости пыли­нок. Так, частицы крупнее 10 мкм оседают в верхних дыхательных путях: носовой полости, носоглотке, и только частично достигают бронхов. Чем мельче пыль, тем она опасней. Однако утверждение, что все пылинки крупнее 10 мкм оседают в верхних дыхательных путях, не совсем правильное. Как показали наши исследования, при микроскопическом изучении легких шахтеров, погибших в результате аварий, были обнаружены пылинки до 50 - 70 мкм.

Наибольшую опасность представляют частицы размером 0,2 – 5 мкм.

Более мелкие частицы (меньше 0,2 мкм) не представляют такой опасности для органов дыхания, так как удаляются вместе с выдыхаемым воздухом, почти не вступая во взаимодействие с тканями легких.

Легкие обладают очень важным свойством. Они все время очищаются от пыли с помощью фагоцитов (особый вид лейкоцитов). Но при высоком содержании пыли в воздухе защитное действие организма ослабевает. Пыль, накапливаясь в легких, воздействует на них, приводя к заболеванию – пневмокониозу.

Такое заболевание характеризуется медленным превращением лёгочной ткани из эластичной, способной существенно растягиваться и увеличивать площадь воздухообмена при вдохе, в ткань с образованием множества рубцов (фиброзов).

Существует много разновидностей пневмокониоза. Наиболее распространенным и опасным пневмокониозом считается силикоз, являющийся результатом попадания в легкие большого количества пыли, содержащей свободную двуокись кремния SiО2. От цементной пыли возникает цементоз, силикатной — cиликaтoз, стальной — сидероз, угольной — антракоз. Известны также заболевания: люминитоз, асбетоз, талькоз и др.

Пневмокониоз обычно развивается медленно и может проявить себя через несколько лет после прекращения систематического пребывания в запыленной атмосфере.

Время развития и тяжесть заболевания зависят от многих факторов (химико-минералогический состав пыли, уровень запыленности, дисперсность, заряженность частиц, время пребывания в запыленной атмосфере и др.).

Процесс заболевания силикозом сводится к следующему: пылевые частицы (преимущественно размером менее 5 мкм) проникают вместе с вдыхаемым воздухом в легочные альвеолы и задерживаются на их стенках. Участвуя в реакциях, SiО2 частично превращается в кремниевую кислоту h3Si03. Действие кремниевой кислоты понижает жизнеспособность фагоцитов, что снижает и защитные свойства, и ведет к накоплению пыли в легких и образованию фиброзных уплотнений. Это приводит к отвердению легких и снижению накопления кислорода в крови.

Часто силикоз сопровождается силико-туберкулезом.

Газодисперсная система представляет собой систему, состоящую из двух и более компонентов, из которых одна, называемая дисперсной фазой, находится в состоянии измельчения и более или менее равномерно распределена внутри другой, имеющей непрерывное строение и носящей название дисперсной среды. Дисперсная среда — это воздух, а дисперсная фаза может находиться в твердом (частички пыли), жидком (пары воды и вредных веществ) и газообразном (вредные газы) состоянии. Устойчивость системы обуславливается степенью дисперсности (измельчение), концентрацией дисперсной фазы, плотностью и структурой дисперсных частиц, влажностью, способностью к седиментации и коагуляции. На стабильность систем влияют воздушные потоки. Устойчивость газодисперсной системы зависит от скорости осаждения пыли. Скорость движения пылинок зависит (с физической точки зрения) от сил, действующих в среде, и сопротивления среды. Сопротивление среды (Р) описывается законом Ньютона:

(2.3.19)

где S — проекция поперечного сечения пылинки по направлению движения, м2;

Рг — плотность газовой среды, кг/м3 ;

w — скорость движения пылинки, м/с;

К — коэффициент сопротивления, который является функцией критерия Рейнольдса (Re) и определяется опытным путем.

(2.3.20)

где d — диаметр частицы, м;

μг — динамическая вязкость газовой среды, Па*с.

Критерий Рейнольдса определяет гидравлический режим процесса. При малых значениях критерия Re (К = 24/Re) в движении участвуют малые пылинки, которые движутся с небольшой скоростью. В этом случае режим движения газа относительно частицы ламинарный, т.е. скорость газа на поверхности частиц равна скорости частицы. Далее от частицы газ движется параллельными струями, которые не смешиваются и не образуют завихрений. При больших значениях критерия Re в движении участвуют крупные пылинки, которые движутся с большой скоростью. В этом случае режим движения газа относительно частицы — турбулентный, т.е. пограничный слой газа отрывается от поверхности частицы, происходит перемещение и завихрение струй газа. В данном процессе помимо сил трения (ламинарный режим) участвуют силы инерции, где существенное влияние оказывают и форма, и шероховатость поверхности пылинок.

С точки зрения предупреждения профессиональных заболеваний и охраны окружающей среды нас больше интересует ламинарный режим, в котором участвуют пылинки малых размеров. Такие пылинки очень трудно улавливать, и в настоящее время проблема очистки воздуха представляет важную народнохозяйственную проблему. Крупные пылинки практически улавливаются всеми видами пылеулавливающих аппаратов. Поэтому в дальнейшем будем рассматривать ламинарный режим движения К=24/Re. Используя формулы (2.3.19) и (2.3.20), получим:

(2.3.21)

Эта формула (закон Стокса) широко используется для практических расчетов аэрозолей с интервалом дисперсности от 0,1 до 40 мкм.

Время, в течение которого пылинка может находиться в воздухе во взвешенном состоянии, определяется, прежде всего, её размерами и плотностью. Витание или осаждение пыли зависит от соотношения силы тяжести, действующей на частицу (Fn), и силы сопротивления газовой среды (Fr) . Если размеры пыли и плотность больше, то пылинка, падает с возрастающей скоростью, так как сопротивление газовой среды ничтожно мало (рис.2.3.12, положение I) . Если размеры пыли (шарообразной формы) малы, а сопротивление газовой среды велико, и наступает такой момент, когда Fn = Fr (положение II, рис.2.3.12), то пылинка находится в состоянии витания в восходящем потоке воздуха или падает с постоянной скоростью (w) в спокойном воздухе, подчиняясь закону Стокса. Обычно определяют эту скорость, приравнивая силу тяжести к силе сопротивления газовой среды.

(2.3.22)

где Рп — плотность частицы, кг/м3.

Установившуюся скорость падения частиц пыли шарообразной формы можно определить по упрощенной формуле:

(2.3.23)

Если Fn < Fr, (положение III, рис.2.3.12), то пылинка будет витать в воздухе.

Степень воздействия пыли на кожу, дыхательные органы, глаза зависит от физико-химических свойств пыли, ее токсичности и дисперсности, а также концентрации.

По крупности частичек пыль подразделяется на три класса:

I класс – пыль с размерами частиц 30-40 мкм (видимая). Такая пыль видна невооруженным глазом, в спокойном состоянии оседает с возрастающей скоростью, подчиняясь закону Ньютона. Эти частицы пыли способны к коагуляции и диффузии, хорошо задерживаются бумажными и ватными фильтрами.

II класс – пыль с размерами частиц от 0,1 до 30 мкм (микроскопическая). Эти частицы пыли не видны невооруженным глазом, а различимы в проходящем и отраженном свете под микроскопом. В неподвижном воздухе они оседают с постоянной скоростью, подчиняясь закону Стокса. Эти частицы пыли частично коагулируют, задерживаются на бумажных фильтрах.

III класс – пыль с размерами частиц менее 0,1 мкм (ультрамикроскопическая). Такая пыль обнаруживается только в темном поле (ультрамикроскопирование), не осаждается даже в неподвижном воздухе, находится в постоянном движении, подчиняясь законам теплового (Броуновского) движения не задерживается на бумажных фильтрах.

Существуют классификации, основанные на составе вещества пылинок. Пыль, находящуюся в дисперсной фазе, можно разделить на органическую, неорганическую и смешанную.

К органической относится пыль животного и растительного происхождения: древесная, хлопчатобумажная и другие. К неорганической относится пыль минеральная, кварцевая, керамическая, цементная, металлическая и т.д.

В зависимости от заряда пыль подразделяется на: положительно заряженную; отрицательно заряженную; нейтральную.

По вредности пыль разделяется на инертную и агрессивную (вступающую в химическое взаимодействие с организмом).

В зависимости от отношения к возгоранию пыль подразделяется на: горючую; негорючую; взрывопожароопасную.

Разновидностями аэрозолей являются: дым (взвешенные в воздухе твердые частички), туман (взвешенные в воздухе капли жидкости).

Классификация способов борьбы с пылью

Средства защиты от пыли разделяются на общие, с помощью средств обеспечивается улучшение условий труда в производственном помещении в целом или на рабочих местах вблизи источников пылеобразования, и индивидуальные, применение которых защищает органы дыхания, лицо и глаза рабочих. К общим средствам защиты относятся системы естественной и искусственной вентиляции, применение различных пылеулавливающих аппаратов для удаления пыли из помещений и рабочих зон непосредственно от мест её образования и ряд организационных мер, направленных на снижение запыленности и уборку пыли на промышленных и рабочих местах. Очистка воздуха от пыли рабочих помещений осуществляется путем улавливания и осаждения ее специальными устройствами. Пылеулавливающие аппараты основаны на различных принципах и имеют разнообразные конструктивные решения. В связи с этим предложены различные классификации пылеулавливающих устройств. Все пылеулавливающие устройства можно разделить на четыре большие группы (рис.2.3.13.): а) сухие, механические аппараты; б) аппараты с применением воды; в) аппараты с применением фильтров; г) комбинированные устройства.

Правильное применение аппаратов любой группы дает положительный эффект по улавливанию пыли. Однако при выборе устройств необходимо учитывать их недостатки. Так, сухие механические аппараты характеризуются вторичным уносом пыли, имеют большие габариты (пылеотстойные камеры), ограниченные области применения по крупности пыли.

Рис. 2.3.13. Пылеочистные устройства

Аппараты с применением воды характеризуются потреблением большого ее количества. Использование воды требует дорогостоящей очистки и постройки соответствующих сооружений. В аппаратах с применением воды образуются наросты и кислые жидкости. Существенным недостатком устройств этой группы является вынос частиц жидкости, что отрицательно сказывается на здоровье людей и технологическом оборудовании. Аппараты с применением фильтров обычно очень дорогие, требуют регенерации фильтрующего материала или его замены. Электрофильтры характеризуются обратным взметыванием пыли. Электрофильтры категорически запрещается применять, если пыль обладает взрывчатыми свойствами: эта группа аппаратов требует постоянного квалифицированного ухода.

Комбинированным устройствам присущи недостатки тех пылеочистных аппаратов, которые используются в I, II, III группах. Такая классификация дает возможность с учетом технологии работ выбрать эффективные и экономически более выгодные пылеулавливающие аппараты и способствовать сохранению окружающей среды.

Сухие механические аппараты

Принцип работы пылеосадительных камер основан на использовании силы тяжести при медленном движении пылевого потока в камере. На частицу пыли с одной стороны действует сила воздушного потока, которая заставляет пылинку двигаться вдоль камеры со скоростью:

, (2.3.24)

где L - длина пылеосадительной камеры, м;

t — время движения частицы пыли, с.

На частицу пыли действует сила тяжести, заставляя частицу падать в спокойной среде со скоростью, определяемой по формуле (2.3.22). Тогда скорость движения в пылеосадительных камерах будет равна:

, (2.3.25)

где W1 — суммарная скорость движения пылинки в камере, м/с. Используя выражения (2.3.23) и (2.3.24), получим:

(2.3.26)

Тогда время пребывания пылинки в камере определяем из выражения:

или , (2.3.27)

где t1 — время пребывания пылинки в камере, с.

Пропускная способность камеры равна:

(2.3.28)

где Q – пропускная способность камеры, м³/с;

H, L, b – соответственно высота, длина, ширина камеры, м.

Подставив в уравнение (2.30) выражение (2.29), получим:

. (2.3.29)

Таким образом, основными параметрами, определяющими эффективность аппаратов по степени очистки в зависимости от диаметра и плотности вещества частиц (2.3.26), являются высота и длина пылеотстойных камер (2.3.29). Как показывает формула (2.3.25), резкое уменьшение скорости движения воздуха увеличивает эффективность улавливания пыли. При скоростях движения воздуха 0,3 - 0,4 м/с улавливаются частицы пыли диаметром 15-25 мкм. Для уменьшения скорости воздуха до 0,02-0,01 м/с приходится строить камеры большого сечения. Вторым направлением по повышению эффективности улавливания пыли в камерах (рис.2.3.14) является устройство перегородок, лабиринтов, полок и других устройств и приспособлений, устанавливаемых на пути движения запыленного воздуха. Это направление дает возможность более эффективно использовать скорость осаждения W1 за счёт силы тяжести (2.3.26) и использовать эффект оседания и прилипания к поверхности частиц пыли.

Эффективным средством улавливания пыли является циклон (рис.2.3.15.).

Рис. 2.3.15. Схема циклона:

1 – входной патрубок;

2 – дно конической части;

3 – центробежная труба.

Циклон представляет собой цилиндр, в верхнюю часть которого по касательной подводится воздух. Воздушная струя получает вращательные движения, пылевые частички за счет центробежных сил прижимаются к стенкам и по ним опускаются вниз. Коэффициент очистки до 90%, за счет смачивания 95-98%.

Скорость осаждения пылинок (W2) в циклонах с использованием центробежной силы оценивается по равенству центробежной силы запыленного потока (FП. Ц) :

. (2.30)

к стокcовой силе сопротивления газовой среды:

, (2.31)

где m — масса частицы, кг;

W3 — угловая скорость, рад/с;

R — радиус вращения потока, м.

Следовательно, эффективность улавливания пыли зависит от диаметра частиц, угловой скорости и радиуса вращения потока воздуха. Однако эти и другие формулы дают только качественную сторону процесса, так как не учитывают турбулентных скоростей потока.

Центробежные пылеотделители (циклоны) более эффективны, чем пылестойкие камеры, так как циклон с объемом 0,15 м3 имеет производительность 1000 м3/ч. Циклоны различных конструкций (рис.2.3.19) можно ставить на нагнетающий и всасывающий трубопровод.

Cтруя запыленного воздуха поступает из трубопровода в циклон по касательной к его круглому сечению и движется вниз по спирали между наружным кожухом и внутренней выходной трубой. При таком движении на пылинки действуют центробежные силы, отбрасывающие пылинки к стенке, где они укрупняются в агрегаты. С поступательным движением воздуха эти пылинки опускаются в нижний кожух циклона и в приемный бункер. Циклоны эффективны при очистке воздуха от пыли с размером частиц 10 мкм и более. При размере пылинок 5 мкм эффективность работы не превышает уже 50 %, поэтому внутренние стенки циклона увлажняют. Применяют в сочетании с другими способами улавливания пыли. Скорость движения воздуха для эффективной очистки воздуха должна быть не менее 15-18 м/с.

Мультициклоны - это циклоны диаметром 40-200 см; их соединяют параллельно в батареи для очистки больших объемов воздуха. Для очистки воздуха производственных помещений от крупных частиц пыли (30 мкм и более) применяют пылеуловители различных конструкций, основанных на инерционном принципе осаждения (рис.2.3.17.). В этих устройствах запыленный поток воздуха, встречая сопротивление (сопротивление имеет различные конструктивные решения), резко меняет свое направление, а частицы пыли, стремясь сохранить траекторию своего движения, отделяются от газового потока.

Ультразвуковые аппараты предназначаются главным образом для предварительного укрупнения частичек пыли в агрегаты, размеры которых могут достигать 5-100 мкм. Такое укрупнение (коагуляция) частичек пыли позволяет улавливать их в обычных циклонах. Частицы пыли, находясь в ультразвуковом поле, начинают вибрировать с различными скоростями и сталкиваться. При столкновении они слипаются под действием различных по интенсивности и частоте колебаний звукового поля. Этот процесс называется ортокинетической коагуляцией.

Отметим, что недостатком ультразвуковых установок является вредное воздействие ультразвука на организм человека при больших мощностях, представляющее опасность для жизни людей. Поэтому ультразвуковые аппараты устанавливают в изолированных помещениях, полностью преграждающих выход ультразвуковым волнам в зону работы людей.

Принцип действия мокрых пылеуловителей основан на явлениях, которые В барботажных и пенных аппаратах газ проходит через слой жидкости. Скрубберы, где газ проходит через слой жидкости, в зависимости от подвода воды по отношению к газу, делятся на прямоточные, противоточные и поперечным подводом воды. По скорости газового потока мокрые пылеуловители делятся на скоростные или турбулентные (при прохождении газа через трубы Вентури, где при скоростях 100-150 м/с наблюдаются турбулентные пульсации) и аппараты с небольшой скоростью истечения газа (полые и насадочные скрубберы).

bukvasha.ru

План Откуда берётся пыль? Состав пыли. Источники. Пылевые клещи. Борьба с ними

Муниципальное общеобразовательное

учреждение гимназия № 2

ЧТО ТАКОЕ ПЫЛЬ?

ОТКУДА ОНА БЕРЁТСЯ?

(реферат участника XIII гимназической научной конференции молодых исследователей «Шаг в будущее», секция «Начальные классы»)

Выполнил: ученик 4 «В» класса Денис Шакиров

Научный руководитель: учитель начальных классов

Клафас Валентина Фёдоровна

Сургут, 2011

План

  1. Откуда берётся пыль?

  2. Состав пыли. Источники.

  3. Пылевые клещи. Борьба с ними.

  4. Интересные факты.

  5. Вывод. Польза или вред от пыли.

1. Пыль - загадочная штука. Сколько ни убирай ее, она все равно накапливается. Откуда? Уезжаешь в отпуск, предварительно вымыв до блеска всю квартиру, плотно заперев окна и двери, а вернувшись, обнаруживаешь на полу залежи домашней пыли!

Мы уехали, а пыль еще долго будет оседать. Как раз к нашему возвращению воздух за счет осевшей пыли станет более или менее чистым, зато мебель, полы — все покроется тысячами и тысячами частиц. Плотно закрытые окна и двери для пыли особой преграды не представляют. Была бы щелочка, а пыль, будьте уверены, ее найдет!

Пыль составляет неотъемлемую часть атмосферы.

Никакая самая тщательная уборка не может поменять состав воздуха в помещении.

Чудеса, да и только! Действительно чудеса, если к тому же знать, что она из себя представляет.

2. «Обыкновенная» пыль, которую можно найти повсюду, содержит мельчайшие частички самого разного происхождения. У нас дома в пыли можно найти частички песков пустыни Сахары, пепла из японского вулкана Сакурадзима, соли из Тихого океана, микрочастицы почвы из-под Воронежа, мраморные пылинки древних развалин, пыльцу далеких растений и даже космическую пыль с далеких планет. Или, например, в пыли на балконе можно найти частицы костей давно исчезнувших динозавров и неандертальцев, мельчайшие кусочки янтаря, возраст которых превосходит 50 миллионов лет, следы пингвиньих экскрементов из Антарктиды, а также собачьих из вашего двора, и множество других интересных вещей. Все это кружит в воздухе и проникает в наши квартиры.

Итак, на Россию ежегодно оседают десятки миллионов тонн пыли. Процентов семьдесят ее рождены природой, а оставшиеся тридцать — человеком.

Так вот, наиболее существенным источником естественной (природной) пыли является почва. Выдуваемые ветрами частицы земли поднимаются высоко в небо и переносятся на многие сотни километров.

Океанская пыль — маленькие кристаллики солей, выбрасываемые морями в воздух, - на втором месте. В атмосферу попадают не сами кристаллы, а мельчайшие капельки воды, возникающие при волнении и разрушении поднимающихся со дна пузырьков воздуха. (Кстати, именно поэтому возле морей воздух кажется соленым и пахнет водорослями). Капли мгновенно высыхают, и воздух насыщается солями. Так же, как и частицы почвы, кристаллики поднимаются высоко над землей и парят в соединении с водяными парами в виде облаков.

Вулканы и большие лесные пожары – ещё один значительный источник пыли. Вулканы не только извергающиеся, но и курящиеся, находящиеся в неактивном периоде жизни. Таких «курительных трубок» по всей планете — сотни. Так, чадящий потихоньку вулкан Сакурадзима (Япония, остров Кюсю) ежегодно «награждает» человечество 14 миллионами тонн пыли.

Наконец, не оставляют нас без внимания и пустыни. Например, огромная Сахара, от 60 до 200 миллионов тонн пыли которой оседает каждый год в горах Центральной Америки, осаждается в городах России, Англии, далекой Австралии. Не удивляйтесь, но ваша домашняя пыль может содержать любой из перечисленных выше образцов! А также… космическую пыль, попадающую на планету вместе с метеоритными дождями.

«Человеческая» пыль это в основном отходы от сжигания минерального топлива — нефти, газа, угля, дерева. С ними все более или менее ясно. Важной составной частью оказалась резиновая пыль от истирающихся об асфальт и бетон автомобильных шин. Как правило, ее тучи не поднимаются выше четвертого этажа, а на уровне седьмого этажа ее уже практически нет. К этой основной, встречающейся повсюду пыли добавляется и пыль, характерная для того или иного региона. Если недалеко от вашего дома добывают известняк, производят цемент или керамзит, все это отражается на составе пыли у вас на кухне, на шкафу или на подушке. Также добавляется «профессиональная» пыль: мука у мукомолов и пекарей, сахарная и шоколадная пудра у кондитеров, древесная пыль у мебельщиков. Огромное количество пыли образуется и из-за постоянного отшелушивания омертвевших частиц кожи человека. Можно сказать, что каждого из нас окружает персональная «пыльная аура», которой мы дышим всю жизнь и распространяем повсюду. Туда входят частицы пыли из наших волос, перхоти, волокон одежды, каучука и кожи нашей обуви.   

Впрочем, есть и еще кое-что, причем в очень больших количествах. Это… клещи — микроскопические живые существа, живущие в домашней пыли.

3. Эти страшные звери, похожие на микроскопических носорогов, обитают в матрацах, подушках, в постельном белье и мягкой мебели, в скоплениях пыли на полу и прочих «пылесборниках».

Сегодня известно, примерно, 150 видов таких клещей. Питаются они омертвевшими чешуйками человеческой кожи. Но не стоит бояться быть съеденным заживо — к живой плоти они равнодушны. В среднем в помещениях около 100 клещей на грамм пыли. Подсчитано, что в двуспальной кровати их порядка двух миллионов. Дома с повышенной влажностью - любимое место клещей. Поэтому, кстати, они не боятся влажной уборки, но их число резко уменьшается после сухой уборки. Из квартиры в квартиру клещи переносятся сквозняками, заносятся на одежде, обуви или с мебелью, но перейти самостоятельно в соседний дом для них то же самое, что человеку пешком пересечь Россию. Клещей преимущественно находят в матрасах, которые обеспечивают им подходящий климат и пищу (кусочки отшелушевающейся с человека кожи). У некоторых людей эти клещи и их экскременты (каждый выделяет до 20 микроскопических горошин в сутки) вызывают аллергию. Аллерген клеща является относительно крупной частицей, которая летает в воздухе.

С клещом трудно бороться, т.к. в течение своей жизни (а это около 4-х месяцев) он откладывает около 300 яиц, а по количеству экскрементов превосходит свой собственный вес более чем в 200 раз.

Традиционные способы борьбы с пылевыми клещами:

- Мороз (низкие температуры)

- Солнце (ультрафиолетовое излучение)

- Влажная уборка 20%-ным раствором поваренной соли

- Пароочистители

- Регулярная уборка с пылесосом

Специальные способы борьбы:

  • Регулярная замена матрасов, подушек, постельных принадлежностей

  • Замена ковров виниловым полом

  • Покрытие матрасов и подушек полиэтиленом

  • Понижение влажности в доме отчасти помогают сократить популяцию клещей.

  • Покупайте синтетические подушки. Постельные клещи любят синтетические подушки так же сильно, как и подушки из пуха и перьев, но у синтетических есть одно главное преимущество: их можно стирать в горячей воде.

Также существуют химические средства против пылевых клещей (добавки в стирку, спреи для обработки мягкой мебели и т.д.) Действие препаратов начинается сразу после проведения обработки и сохраняется 30-60 дней. Однако при их использовании следует соблюдать инструкцию и меры предосторожности.

А ещё швейцарскими учёными разработана вакцина против аллергии на пылевых клещей.

4. Наиболее высокая концентрация загрязняющих веществ в воздухе приходится на высоту 1-1,5 метров. А, значит, больше всего от вредной пыли страдают дети! В жилых помещениях с гладкими полами скапливается чуть ли не вдвое больше пыли, чем в комнатах с ковровым покрытием. И это неудивительно: ковер является своеобразным пылеуловителем. Там, где его нет, пыль при малейшем сквозняке, при каждом шаге поднимается в воздух.

В типичной трехкомнатной квартире за год образуется до 40 кг пыли.

За год человек отшелушевает около 2 кг омертвевшей кожи. Больше всего чешуи человек теряет во сне.

Учёными были проведены эксперименты,  и выяснилось, что в плотно запертой квартире с закрытыми окнами за две недели набралось около 12 тысяч пылевых частиц на квадратном сантиметре пола и горизонтальных поверхностей мебели.

В обычной городской квартире содержится около 100 миллионов частиц пыли в одном литре воздуха, а мы вдыхаем до 5 миллиардов частиц в день, что составляет примерно две столовые ложки пыли.

Наш организм имеет не плохую защиту от пылевых частиц. Они прилипают к слизи, покрывающую поверхность дыхательных путей и вместе с этой слизью к выходу - в гортань. Движут их бесчисленные реснички, которыми усажена выстилка дыхательных путей. Эти реснички синхронно выполняют волнообразные движения, выводящие все микроскопические частицы, попавшие внутрь легких, наружу. Откашливание и отхаркивание удаляет их. Однако если запыление воздуха превышает нормы, эта система не справляется.

До 80 % резервных возможностей иммунной системы расходуется на нейтрализацию пыли, попадающей в дыхательные органы и в кровоток.

Пыль представляет собой предмет серьезных научных исследований. В библиотеках можно найти огромное количество книг, посвященных разным видам пыли. Есть среди них даже труд «Пыль и закон».

  1. Нельзя сказать, что пыль совершенно бесполезна для жизни на Земле. Пыль составляет неотъемлемую часть атмосферы. Она уменьшает количество солнечных лучей, доходящих до поверхности Земли. Нагреваясь лучами, пыль нагревает и саму атмосферу; поглощая излучение, она одновременно сохраняет и тепло земной поверхности.

Она обогащает почву микроэлементами, а невидимые простым глазом клещи, живущие в постелях, уничтожают отшелушенные частички нашей кожи.

Однако вреда в пыли значительно больше, чем пользы. Отдельные составляющие пыли, в частности, выделения того же постельного клеща, могут вызвать аллергию, а большие массы пыли приводят к болезням дыхательных путей.

Влияние «профессиональных» пылей на здоровье человека – отдельная проблема, которой занимаются врачи. Накапливаясь в организме, та или иная пыль может через много лет вызвать характерные для данной профессии изменения в организме человека. Отметим, что наибольшему влиянию пыли подвержены органы дыхания, кожа, глаза, кровь и пищеварительный тракт.

Исследования атмосферы крупных городов показали, что над ними всегда висит постоянная пылевая шапка, высота которой достигает 500 метров и более.

Если сельский житель вдыхает приблизительно 40 миллионов пылинок в минуту, то горожанин за это же время загружает в свои легкие до миллиарда пылинок. Причем городская промышленная пыль часто содержит мышьяк, свинец, марганец, селен и другие элементы, которые могут вызвать хронические отравления. Пылинки с острыми режущими гранями (стеклянная, кварцевая пыль) вызывают развитие хронических воспалительных процессов в верхних и средних дыхательных путях.

Человек изобрел множество способов и приспособлений для борьбы с пылью  - от метлы и мокрой тряпки до современных пылесосов, однако все они далеки от совершенства. Пыль всегда была, есть и будет, можно только уменьшить её видимое или невидимое количество. Также можно сделать вывод: если пыль существует, значит это для чего-нибудь нужно. Это нужно хотя бы для того, чтобы приучать к труду детей: ведь не сложно взять тряпочку и вытереть пыль с поверхности стола или тумбочки. Вот еще один, на этот раз воспитательный, плюс в пользу пыли: она помогает в воспитании и развитии трудолюбия.

Источники:

1) ›Заметки›1338

2) www.mymedia.kz

3) › teoria/otkuda-beretsya-pyl

4) › articles/dust_is_in_a_house

5) .ua › lmenu/dust/

refdb.ru

Производственная пыль и ее влияние на организм человека — реферат

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«Омский государственный технический университет»

 

 

 

 

РЕФЕРАТ

по дисциплине «Медико-биологические основы безопасности жизнедеятельности»

на тему «Производственная пыль и ее влияние на организм человека»

 

 

Выполнила:

студент группы ЗБП-411

Башарслан К.О.

Проверила:

доцент, к.мед.н.

          Иванова Л.А.

 

 

г. Омск-2014

СОДЕРЖАНИЕ

 

 

 

 

Введение           3

Характеристика вредного фактора       3-6 

Влияние на организм человека, профессиональные заболевания  6-9 

Мероприятия по борьбе и средства защиты     9-11

Литература           12

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Введение.

 

 

Производственная пыль является наиболее распространенным вредным фактором производственной среды. Многочисленные технологические процессы и операции в промышленности, на транспорте, в сельском хозяйстве сопровождаются образованием и выделением пыли, воздействию которой могут подвергаться большие контингенты работающих.

В горнорудной промышленности значительное количество пыли возникает во время бурения и при взрывных работах, в угольной – при работе комбайнов и породопогрузочных машин, при сортировке угля и т.д. Вся промышленность строительных материалов связана с процессами дробления, помола, смешения и транспортировки пылевидного сырья и продукта (цемент, кирпич, шамот и др.). В нефтяной и газовой промышленности пыль образуется при бурении скважин, проведении электросварочных работ, при неполном сгорании топлива. В химической и нефтехимической промышленности многие производства (например, катализаторное) также связаны с пылеобразованием.

В сельском хозяйстве пыль образуется при рыхлении и удобрении почвы, использовании порошкообразных пестицидов, очистке зерна и семян, хлопка, льна и др.

Пыль выводит из строя оборудование, снижает качество продукции, уменьшает освещенность производственных помещений, может быть причиной профессиональных заболеваний органов дыхания, поражения глаз и кожи, острых и хронических отравлений работающих.

Некоторые виды производственной пыли способны к самовозгоранию и даже взрыву, что позволяет относить пыль не только к вредным, но и опасным производственным факторам.

Поэтому борьба с пылью является важной гигиенической и социально-экономической задачей. 

 

 

 

Характеристика вредного фактора.

 

 

Производственной пылью называют взвешенные в воздухе, медленно оседающие твердые частицы размерами от нескольких десятков до долей мкм. Пыль представляет собой аэрозоль, т.е. дисперсную систему, в которой дисперсной фазой являются твердые частицы, а дисперсионной средой – воздух.

Пыль – это физическое состояние твердого вещества. Специфической особенностью пылевидного состояния является раздробленность вещества на мельчайшие частицы и, следовательно, чрезвычайно большая поверхность твердых частиц, в связи, с чем свойства пыли приобретают самостоятельное значение.

Измельчение 1 см3 твердого тела до частиц размером 0,1 мкм увеличивают его общую поверхность с 6 см2 до 600 000 см2, т.е. в 100 тысяч раз.

По происхождению пыль разделяют на органическую, неорганическую и смешанную. Органическая пыль может быть естественной, животного или растительного происхождения (древесная, хлопковая, льняная, костяная, шерстяная и др.) и искусственной – пыль пластмасс, резины, смол, красителей и других синтетических веществ. Неорганическая пыль может быть минеральной (кварцевая, силикатная, асбестовая, цементная, наждачная, фарфоровая и др.) и металлической (цинковая, железная, медная, свинцовая, марганцевая). В условиях производства особенно распространена пыль смешанного состава, состоящая из минеральных и металлических частиц (например, смесь пыли железа и кремния), органическая и неорганическая (например, пыль злаков и почвы). В зависимости от способа образования различают аэрозоли дезинтеграции и аэрозоли конденсации. Аэрозоли дезинтеграции образуются при механическом измельчении, дроблении и разрушении твердых веществ (бурение, дробление, размол и др.), при механической обработке изделий (шлифовка, полировка и др.). Аэрозоли конденсации образуются при термических процессах возгонки твердых веществ (плавление, электросварка и др.) вследствие охлаждения и конденсации паров металлов и неметаллов.

Нередко встречаются аэрозоли, дисперсная фаза которых содержит частицы, образующиеся как при измельчении, так и конденсации паров (шлифовально-полировальные, заточные работы и др.).

В зависимости от размера частиц (дисперсности) различают видимую пыль размером более 10 мкм (быстро выпадающую из воздуха) микроскопическую – размером от 0,25 до 10 мкм (медленно выпадающую из воздуха), ультрамикроскопическую – менее 0,25 мкм (длительно витающую в воздухе по законам броуновского движения). Производственная пыль, как правило, полидисперсна, т.е. в воздухе встречаются одновременно пылевые частицы различных размеров. В любом образце пыли обычно число мелких частиц больше, чем крупных.

Из различных свойств пыли наибольшее значение имеют химический состав, растворимость, дисперсность, взрывоопасность, форма частиц, электрозаряженность, адсорбционные свойства.

Растворимость пыли, зависящая от ее химического состава, может иметь как положительное, так и отрицательное гигиеническое значение. Если пыль не токсична, как, например, сахарная, то хорошая растворимость такой пыли – благоприятный фактор, который способствует быстрому удалению ее из легких. В случае токсичной пыли (никеля, бериллия) хорошая растворимость сказывается отрицательно, так как в этом случае токсичные вещества попадают в кровь и приводят к быстрому развитию явлений отравления.

Нерастворимая, в частности, волокнистая пыль надолго задерживается слизистой оболочкой дыхательных путей, нередко приводя к патологическому состоянию.

Дисперсность производственной пыли имеет большое гигиеническое значение, так как от размера пылевых частиц зависит длительность пребывания пыли в воздухе и характер воздействия на органы дыхания. В легкие при дыхании проникает пыль размером от 0,2 до 5 мкм. Более крупные пылинки задерживаются слизистой оболочкой верхних дыхательных путей, а более мелкие – выдыхаются. Дисперсность частиц имеет значение не только для элиминации пыли из легких. От величины частиц зависит степень фиброгенного действия пыли. С повышением дисперсности степень биологической агрессивности пыли увеличивается до определенного предела, а затем уменьшается. Наибольшей фиброгенной активностью обладают аэрозоли дезинтеграции с размером пылинок от 1-2 до 5 мкм и аэрозоли конденсации с частицами менее 0,3-0,4 мкм.

Взрывоопасность является важным свойством некоторых пылей. Пылевые частицы, сорбируя кислород воздуха, становятся легко воспламеняющимися при наличии источников зажигания. Известны взрывы каменноугольной, сахарной, мучной пыли. Способностью взрываться и воспламеняться при наличии источника зажигания обладают также крахмальная, сажевая, алюминиевая, цинковая и некоторые другие виды пылей.

Для различных пылей взрывоопасная концентрация вещества неодинакова. Для пыли крахмальной, алюминиевой и серной минимальной взрывоопасной концентрацией является 7 г/м3 воздуха, для сахарной – 10,3 г/м3.

Форма пылинок влияет на устойчивость аэрозоля в воздухе и поведение в организме. Форма пылевых частиц, образующихся в производственных условиях, может быть различной: сферической, плоской, волокнистой, оскольчатой, игольчатой и др.

При образовании аэрозолей конденсации пылинки большей частью имеют округлую форму, а в составе аэрозолей дезинтеграции – неправильную многоугольную, плоскую форму. Частицы сферической формы быстрее выпадают из воздуха, но и легче проникают в легочную ткань. Пылевые частицы слюды, имеющие пластинчатую форму, и пыль стекловолокна, имеющая игольчатую форму, могут длительно витать в воздухе, даже если размер их равен 50 мкм и более. Нитевидные частицы асбеста, хлопка, пеньки и др. практически не оседают из воздуха, даже если длина их превышает сотни и тысячи микрон. Пылинки стекловолокна, асбеста и других, имеющих острые края, попадая на слизистые оболочки верхних дыхательных путей, глаз и кожу, могут оказывать травмирующее и раздражающее действие.

Электрозаряженность пылевых частиц влияет на устойчивость аэрозоля и его биологическую активность. В момент образования пыли (бурение, дробление, измельчение твердых веществ) большинство частиц (85–95%) приобретает электрический заряд обоих знаков – положительный и отрицательный. Часть пыли заряжается за счет адсорбции ионов из воздуха, а также в результате трения частиц в пылевом потоке. Величина наведенных зарядов различна и зависит от размеров, условий образования и массы частиц. Установлено, что крупные пылинки несут больший заряд. Наличие разноименно заряженных частиц пыли приводит к укрупнению и выпадению частиц пыли из воздуха. Установлено, что пылинки, несущие электрический заряд, несколько дольше задерживаются в организме. Аэрозоли дезинтеграции имеют большую величину заряда, чем аэрозоли конденсации.

Адсорбционные свойства пыли находятся в зависимости от дисперсности и суммарной поверхности. Чем меньше раздроблено вещество, тем больше его суммарная поверхность и адсорбционная активность.

Пыль может быть носителем микробов, грибов, клещей. Описаны легочные формы сибирской язвы у рабочих, вдыхающих пыль шерсти.

 

 

 

 

Влияние на организм человека, профессиональные заболевания.

 

 

 

В зависимости от состава пыль может оказывать на организм фиброгенное, раздражающее, токсическое, аллергическое действие.

Пыль некоторых веществ и материалов (стекловолокна, слюды и др.) оказывает раздражающее действие на верхние дыхательные пути, слизистую оболочку глаз, кожи. Пыли токсичных веществ (свинца, хрома, бериллия и др.), попадая через легкие в организм человека, оказывают характерное для них токсическое действие в зависимости от их физико-химических и химических свойств.

 Профессиональные заболевания  под действием пыли относятся  к числу наиболее тяжелых и  распространенных во всем мире  профессиональных заболеваний. Основными  пылевыми профессиональными заболеваниями  являются пневмокониозы, хронический  бронхит и заболевания верхних  дыхательных путей.

Пневмокониоз (легочный пылевой фиброз) – хроническое профессиональное заболевание легких, характеризующееся развитием фиброзных изменений в результате длительного ингаляционного воздействия фиброгенных производственных аэрозолей. Данная группа заболеваний иллюстрирует фиброгенное действие пыли на организм - такое, при котором в легких происходит разрастание соединительной ткани, нарушающее нормальное строение и функции органа. Очень высокой фиброгенной активностью обладает диоксид кремния или кремнезем.

 

 

 

Пневмокониозы подразделяются на следующие виды:

  • Силикоз, обусловленный вдыханием кварцевой пыли, содержащей свободный диоксид кремния – SiO. Действие кварцсодержащей пыли на организм связано с добычей полезных ископаемых, поскольку около 60% всех горных пород состоит из кремнезема.
  • Силикатоз, возникающий от вдыхания пыли силикатов – солей кремневой кислоты (асбестоз, талькоз, каолиноз и т.д.).
  • Карбокониоз, обусловленный воздействием углеродсодержащих видов пыли – каменного угля, кокса, сажи, графита.
  • Металлокониозы – пневмокониозы от воздействия пыли металлов и их оксидов: железа, алюминия и др. (сидероз, алюминоз).
  • Пневмокониозы от смешанной пыли: а) со значительным – более 10% содержанием свободного диоксида кремния; б) не имеющей в составе свободного диоксида кремния или с содержанием его до 10%.
  • Пневмокониозы от органической пыли: растительного (биссиноз от пыли хлопка и льна), животного и синтетического происхождения (пыль пластмасс).

 

Силикоз – наиболее частая форма пневмокониоза. Развивается обычно у работающих в условиях высокой запыленности, нередко при выполнении тяжелого физического труда при стаже 5 лет и более. Силикоз известен с давних пор как профессиональное заболевание горняков («чахотка горнорабочих»). Наиболее распространен среди шахтеров угольных шахт, встречается также у рабочих горнорудной промышленности, особенно у бурильщиков, крепильщиков. Силикоз – общее заболевание организма, которое сопровождается нарушением функции дыхания (одышка, кашель, боли в груди), развитием хронического бронхита, изменением обменных процессов, нарушением деятельности центральной и вегетативной нервной системы. Наиболее частое осложнение – туберкулез. Характерным для силикоза является его прогрессирование даже после прекращения контакта с пылью.

Заболевания органов дыхания под действием пыли, содержащей двуокись кремния в связанном с другими элементами (Mg, Ca, Al, Fe) состоянии. К силикатам относят многие минералы: асбест, тальк, каолин и др.; искусственные соединения: слюда, цемент, стекловолокно и др. Пыль, вызывающая силикатозы, встречается во многих производствах, например, при добыче, обработке, разрыхлении, смешении, транспортировке ископаемых, производстве резины, цемента и др.

Силикатозы развиваются в более поздние сроки и менее склонны к прогрессированию и осложнению, чем силикозы. Действие силикатной пыли слабее, чем кварца. Наиболее агрессивна пыль силиката магния – асбеста – волокнистого минерала, вызывающего асбестоз. Активность пыли асбеста объясняется как механическим повреждением тканей пылевыми частицами с острыми иглоподобными краями, так и химическим действием. Нередко асбестоз осложняется хронической пневмонией, туберкулезом, раком легких.

К силикатозам относится также талькоз, который развивается у рабочих текстильной, резиновой, бумажной, парфюмерной, керамической и других отраслей промышленности, контактирующих с тальком 15-20 лет. Течение талькоза доброкачественное. Талькоз нередко осложняется хроническими бронхитами.

При высокой запыленности воздуха в шахтах у рабочих может развиться в результате вдыхания угольной пыли – антракоз. Течение его по сравнению с силикозом более благоприятное. Вдыхание смешанной пыли угля и породы, содержащей свободный диоксид кремния, вызывает антракосиликоз – более тяжелую по сравнению с антракозом форму пневмокониоза.

Металлокониозы характеризуются относительно медленным развитием и отсутствием тенденции к прогрессированию легочного фиброза. Наиболее распространены сидероз и алюминоз. Сидероз встречается, главным образом, у рабочих доменных печей, алюминоз – у рабочих электролизных цехов по получению алюминия из бокситов и работающих с порошкообразным алюминием.

student.zoomru.ru


Смотрите также

 

..:::Новинки:::..

Windows Commander 5.11 Свежая версия.

Новая версия
IrfanView 3.75 (рус)

Обновление текстового редактора TextEd, уже 1.75a

System mechanic 3.7f
Новая версия

Обновление плагинов для WC, смотрим :-)

Весь Winamp
Посетите новый сайт.

WinRaR 3.00
Релиз уже здесь

PowerDesk 4.0 free
Просто - напросто сильный upgrade проводника.

..:::Счетчики:::..

 

     

 

 

.