Реферат на тему Нанотехнологии. Реферат на тему нанотехнологии


Реферат - Развитие нанотехнологий - Физика

Федеральное агентство по образованию

Государственное образовательное учреждение

высшего профессионального образования

НИЖЕГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМ.Р.Е. АЛЕКСЕЕВА

Кафедра

«Физика и технология материалов и компонентов электронной техники»

Курсовая работа на тему:

"Нанотехнологии"

по дисциплине «Физика твердого тела»

Руководитель

Водзинский В.Ю. _____________________

"_____" _______________ 2009

Выполнил

Иванов А.С. __________________________

"_____" _______________ 2009

Работа защищена с оценкой _____________

Нижний Новгород 2009

Содержание

Введение

1. Возникновение и развитие нанонауки

2. Виды искусственных наноструктур

3. Некоторые свойства наноструктур

4. Получение искусственных наноматериалов

5. Прикладная нанотехнология

6. Будущее нанотехнологий: проблемы и перспективы

Выводы

Литература

Нанотехнологии — ключевое понятие начала XXI века, символ новой, третьей, научно-технической революции. Это «самые высокие» технологии, на развитие которых ведущие экономические державы тратят сегодня миллиарды долларов. По прогнозам ученых нанотехнологии в XXI веке произведут такую же революцию в манипулировании материей, какую в ХХ веке произвели компьютеры в манипулировании информацией. Их развитие открывает большие перспективы при разработке новых материалов, совершенствовании связи, развитии биотехнологии, микроэлектроники, энергетики, здравоохранения и вооружения. Среди наиболее вероятных научных прорывов эксперты называют значительное увеличение производительности компьютеров, восстановление человеческих органов с использованием вновь воссозданной ткани, получение новых материалов, созданных напрямую из заданных атомов и молекул, а также новые открытия в химии и физике.

Нанотехнологии уже так или иначе затрагивают нашу жизнь. Нанопродукты можно обнаружить в автомобилях и в краске на стенах домов. По прогнозам отраслевой ассоциации NanoBusiness Alliance, к 2010 году мировой рынок нанопродуктов и услуг вырастет до 1 трлн. долларов.

Одна из причин трудного «характера» нанотехнологии заключается в том, что ее сфера — непостижимо малые по своим масштабам элементы. Нанометр — единица измерения, которая дала название нанотехнологии, — составляет одну миллиардную часть метра. Атом водорода, наименьший из существующих в природе, имеет диаметр около 1/10 нм; диаметр человеческого волоса — около 75 тыс. нм.

Еще одна причина ложных представлений о технологии унаследована от ее чисто теоретического прошлого: ее объявляли ключом к победе над болезнями и загрязнением окружающей среды, к созданию настольных фабрик, где невидимые роботы будут производить невообразимые изделия, и даже к фактическому бессмертию. Одновременно ее клеймили как потенциальную чуму, которая приведет к появлению армий нанороботов, вытесняющих людей, или покроет землю серой слизью побочных молекулярных продуктов. Неудивительно, что действительность не имеет ничего общего ни с розовыми мечтами, ни с ужасами.

Нанотехнологии качественно отличаются от традиционных дисциплин, поскольку на таких масштабах привычные, макроскопические, технологии обращения с материей часто неприменимы, а микроскопические явления, пренебрежительно слабые на привычных масштабах, становятся намного значительнее: свойства и взаимодействия отдельных атомов и молекул, квантовые эффекты.

В немалой степени определение нанотехнологии зависит от специалиста, которому задан вопрос.

Теоретик Э. Дрекслер предложил слово «нанотехнология» в 1980 году, описывая им теоретический (в то время) молекулярный производственный процесс с использованием компонентов и устройств размерами от 1 до 100 нм (этот диапазон получил название наномасштаб — nanoscale).

В некоторых книгах можно встретить следующее определение: нанотехнология — это совокупность методов производства продуктов с заданной атомарной структурой путем манипулирования атомами и молекулами.

В связи с данным определением возникает естественный вопрос: каким же образом можно манипулировать веществом на уровне атомов и молекул? Попробуем разобраться в этом, а так же раскрыть суть нанонауки, рассмотреть историю ее развития, выделить объекты ее изучения, методы исследования, и, что самое интересное, понять, как человек реализует огромный потенциал нанонауки в повседневной жизни.

Нанонаука основана на изучении объектов, которые включают компоненты размерами менее 100 нм хотя бы в одном измерении и в результате получают принципиально новые качества. Эта отрасль знаний относительно молода и насчитывает не более столетия. Первым ученым, использовавшим измерения в нанометрах, принято считать Альберта Эйнштейна, который в 1905 году теоретически доказал, что размер молекулы сахара равен 1 нм.

Идею же создания специальных приборов, способных проникнуть в глубину материи до границ наномира, выдвинул выдающийся американский физик сербского происхождения Никола Тесла. Именно он предсказал создание электронного микроскопа.

Первые теоретические исследования, положившие начало разработке инструментального обеспечения нанотехнологий, — это труды российского физика Г.А. Гамова. в 20-е годы XX века он впервые произвел решения уравнений Шредингера. Уникальное свойство, характерное для квантовых частиц, заключается в их способности проникать через преграду, даже когда их энергия ниже потенциального барьера, соответствующего данной преграде. Электрон, встретив на своем пути преграду, для прохождения которой требуется больше энергии, чем есть у него, не отразится от нее, а с потерей энергии (как волна) преодолеет эту преграду. Открытое явление, названное «туннельным эффектом» (туннелированием), позволило объяснить многие экспериментально наблюдавшиеся процессы.

В 1939 году немецкие физики Э. Руска и М. Кноль создали электронный микроскоп, ставший прообразом нового поколения устройств, которые позволили заглянуть в мир нанообъектов.

Вообще мысль о том, что в будущем человечество сможет создавать объекты, собирая их «атом за атомом», восходит к знаменитой лекции «Там внизу много места» одного из крупнейших физиков XX века, профессора Калифорнийского технологического института Ричарда Фейнмана. Опубликованные в феврале 1960 года материалы лекции были восприняты большинством современников как фантастика или шутка. Сам же Фейнман говорил, что в будущем, научившись манипулировать отдельными атомами, человечество сможет синтезировать все что угодно, т.е. использовать атомы как обыкновенный строительный материал.

В 1964 году, спустя шесть лет после изобретения интегральной схемы, Г. Мур, один из основателей американской корпорации Intel, выдвинул предположение о том, что число транзисторов на кристалле будет удваиваться каждые два года. Это наблюдение получило название первого закона Мура. Показав зависимость роста производительности запоминающих микросхем от сроков их изготовления, он обнаружил закономерность: новые модели микросхем каждый раз появлялись через приблизительно равные промежутки времени (18-24 месяца). При этом их емкость возрастала каждый раз примерно вдвое.

В 1968 году сотрудники американского отделения исследования полупроводников Дж. Артур и А. Чо разработали теоретические основы нанообработки поверхностей.

В 1973 году советские ученые Д.А. Бочвар и Е.Г. Гальперн сделали первые теоретические квантово-химические расчеты наномолекулы фуллерена и доказали ее стабильность. Мировая наука вплотную подошла к началу решения прикладных задач в области нанотехнологий.

Современный вид идеи нанотехнологии начали приобретать в 80-е годы XX века в результате исследований Э. Дрекслера, работавшего в лаборатории искусственного интеллекта Массачусетского технологического института.

Дрекслер выдвинул концепцию универсальных молекулярных роботов, работающих по заданной программе и собирающих любые объекты (в том числе и себе подобные) из подручных молекул. Все это также сначала воспринималось как научная фантастика. Ученый уже тогда довольно точно предсказал немало грядущих достижений нанотехнологии, которые с 1989 года сбываются, причем часто со значительным опережением даже его прогнозов.

Многие ученые в мире в той или иной степени работали с объектами наноуровня, но термин «нанотехнология» впервые (в 1974 году) предложил японский физик Н. Танигучи из Токийского университета. Нанотехнология, по Н. Танигучи, — это технология объектов, размеры которых составляют порядка 10-9 м, включающая процесс разделения, сборки и изменения материалов путем воздействия на них одним атомом или одной молекулой.

Накопленные знания в области нанотехнологий позволили по-новому взглянуть на ряд уникальных природных явлений. Так, в 1975 году немецкие ботаники В. Бартлотт и К. Найнуйс обнаружили и запатентовали явление самоочистки поверхностей некоторых растений, а также тот факт, что этот феномен протекает в наноструктурированных поверхностных областях.

Исследования по совершенствованию инструментального обеспечения нанотехнологий вышли на новый уровень. Весной 1981 года немецкие физики К. Бинниг и Э. Руска, а также швейцарец Г. Рорер из Цюрихской лаборатории компании IBM испытали туннельный микроскоп. Сканирующий туннельный микроскоп позволил построить трехмерную картину расположения атомов на поверхностях проводящих материалов. С помощью такого микроскопа стало возможным «захватить» атом с токопроводящей поверхности и поместить его в нужное место, то есть манипулировать атомами, а следовательно, непосредственно собирать из них любое вещество.

В 1985 году коллектив ученых в составе английского астрофизика, Г. Крото, американских химиков Р. Керла, Д. Хита и Ш. О'Брайена под руководством Р. Смолли получил новый класс соединений — фуллерены — и исследовал их свойства. В результате взрыва графитовой мишени лазерным пучком и исследования спектров паров графита была обнаружена молекула фуллерена С60. Грани 60-атомного фуллерена — это 20 почти идеальных правильных шестиугольников и 12 пятиугольников. Позднее удалось получить фуллерены из 76, 78, 84, 90 и даже из нескольких сотен атомов углерода. Ученые также впервые сумели измерить объект размером 1 нм.

В 1986 году Г. Бинниг разработал сканирующий атомно-силовой микроскоп. Такой микроскоп, в отличие от туннельного, может взаимодействовать с любыми объектами, а не только с токопроводящими материалами.

Своего рода сенсацию в сентябре 1989 года совершили американские исследователи Д. Эйглер и Э. Швейцер из Калифорнийского научного центра компании IBM. С помощью 35 атомов ксенона на очищенной в сверхвысоком вакууме и охлажденной до 4 К поверхности монокристалла никеля они выложили название своей фирмы.

В 1991 году японский исследователь С. Ииджима из компании NEC открыл углеродные нанотрубки.

В 1992 году Э. Дрекслер на научном уровне рассмотрел задачи практического применения молекулярных нанотехнологий в новом научно-практическом направлении, которое следует назвать «практическая нанотехнология».

Это дало мощный толчок к началу применения нанотехнологических методов в промышленности. В 1994 году стали появляться первые коммерческие материалы на основе наночастиц — нанопорошки, нанопокрытия, нанохимические препараты и т.д. Началось бурное развитие прикладной нанотехнологии.

В 2004 году С. Деккер соединил углеродную трубку с ДНК, впервые получив единый наномеханизм и открыв дорогу развитию бионанотехнологиям.

Стремительное развитие нанотехнологий вызвано еще и потребностями общества в быстрой переработке огромных массивов информации.

Современные кремниевые чипы могут при всевозможных технических ухищрениях уменьшаться ещё примерно до 2012 года. Но при ширине дорожки в 40-50 нм возрастут квантовомеханические помехи, что равнозначно короткому замыканию. Выходом могли бы послужить наночипы, в которых вместо кремния используются различные углеродные соединения размером в несколько нанометров. В настоящее время ведутся самые интенсивные разработки в этом направлении.

Самым простым наноматериалом могут служить фрагменты вещества, измельченные до наноразмерного состояния или полученные каким-то другим физическим или химическим способом. Хотя бы в одном измерении они должны иметь протяженность не более 100 нм и проявлять качественно новые свойства (физико-химические, функциональные, эксплуатационные и др.)

Реально диапазон рассматриваемых объектов гораздо шире — от отдельных атомов (размером менее 0,1 нм) до органических молекул, содержащих свыше 109 атомов и имеющих размеры даже более 1 мкм в одном или двух измерениях. Принципиально важно, что в них уже в значительной степени проявляется дискретная атомно-молекулярная структура вещества и квантовые эффекты.

Наноструктуры обладают сочетанием ряда параметров и физических явлений, несвойственных традиционным состояниям материалов. Уменьшение размера кристаллов может приводить к существенному изменению свойств материалов. Установлено, что эти изменения проявляются, когда средний размер кристаллических зерен не превышает 100 нм, а наиболее эффективны при размере зерен менее 10 нм. При этом частицы могут иметь сферическую (равноразмерную) форму, быть вытянутыми в виде нанопроволоки или нановолокна или представлять собой наночешуйки (пластинки). Главное, чтобы одно из измерений не превышало 100 нм.

На рис.1 показаны сферические наноразмерные структуры кремния. Здесь диаметр 84% частиц — 44 нм, а 16% — 14 нм.

На рис.2 представлены нановолокна политетрафторэтилена (ПТФЭ). Диаметр нановолокон — 40-60 нм при длине несколько микрометров.

Рис. 1. Наноразмерные частицы кремния диаметром 14-50 нм

Рис. 2. Нановолокна ПТФЭ диаметром 40-60 нм

Еще одной формой наночастиц могут быть слоистые наночешуйки толщиной до 100 нм. На рис.3 представлены наночастицы монтмориллонита (глинистого минерала подкласса слоистых силикатов), модифицированного фторуглеродными соединениями со слоистым строением, которые применяются в качестве добавок к жидким полимерным системам, например, для создания препаратов автохимии.

Рис. 3. Наноразмерные слоистые частицы монтмориллонита, модифицированного фторуглеродными соединениями

Одним из главных химических элементов, которым интересуются ученые в области нанотехнологий, является углерод и его аллотропные формы. До недавнего времени было известно, что углерод образует четыре аллотропных формы — алмаз, графит, карбин (получен искусственно) и лонсдеилит (впервые найден в метеоритах, затем получен искусственно). При этом уже на этапе перехода углерода от обыкновенного угля до графита отмечаются значительные изменения свойств материала.

В 1985 году Р. Керл, Г. Крото и Р. Смоли совершенно неожиданно открыли принципиально новое углеродное соединение — фуллерен (многоатомные молекулы углерода Сn ), уникальные свойства которого вызвали целый шквал исследований. Фуллерен имеет каркасную структуру, очень напоминающую футбольный мяч, состоящий из «заплаток» пяти- и шестиугольной формы. Если представить, что в вершинах этого многогранника находятся атомы углерода, то мы получим самый стабильный фуллерен С60 (молекула С60 содержит фрагменты с пятикратной симметрией, несвойственной неорганическим соединениям в природе, поэтому признано, что молекула фуллерена является органической молекулой).

В молекуле С60, которая является наиболее известным, а также наиболее симметричным представителем семейства фуллеренов, число шестиугольников равно 20. При этом каждый пятиугольник граничит только с шестиугольниками, а каждый шестиугольник имеет три общие стороны с шестиугольниками и три — с пятиугольниками. Каждый атом углерода в молекуле С60 находится в вершинах двух шестиугольников и одного пятиугольника и принципиально неотличим от других атомов углерода. Атомы углерода, образующие сферу, связаны между собой сильной ковалентной связью. Толщина сферической оболочки — 0,1 нм, радиус молекулы С60 — 0,357 нм. Структура молекулы фуллерена интересна тем, что внутри такого углеродного «мячика» образуется полость, в которую благодаря капиллярным свойствам можно ввести атомы и молекулы других веществ, что дает, например, возможность их безопасной транспортировки. По мере исследования фуллеренов были синтезированы и изучены их молекулы, содержащие различное число атомов углерода — от 36 до 540.

Рис. 4. Представители фуллеренов: С60, C70, и C90

Наряду со сфероидальными углеродными структурами могут также образовываться протяженные цилиндрические структуры, так называемые нанотрубки, открытые в 1991 году С. Ииджимой и отличающиеся широким разнообразием физико-химических свойств. Идеальная углеродная нанотрубка — это молекула из более миллиона атомов углерода, представляющая собой цилиндр, полученный при сворачивании графеновой плоскости, диаметром около нанометра и длиной несколько десятков микрон. В стенках трубки атомы углерода расположены в вершинах правильных шестиугольников.

Рис. 5. Структура нанотрубки

Графен как наноматериал представляет собой пленку из атомов углерода, составляющих одну молекулу. Новый материал назван двухмерным фуллереном. Графен стабилен, очень гибок, прочен и проводит электрический ток.

В отличие от фуллеренов нанотрубки могут содержать несколько слоев. Наблюдения, выполненные с помощью электронных микроскопов, показали, что большинство нанотрубок состоят из нескольких графеновых слоев — либо вложенных один в другой, либо навитых на общую ось. Такие многослойные структуры получили названия «луковичные структуры» — онионы.

В настоящее время выяснились совершенно фантастические свойства нанотрубок. По прочности они значительно превосходят железо и близки к алмазу, в то же время по массе такие трубки легче пластика (небольшая нить диаметром 1 мм, состоящая из нанотрубок, могла бы выдержать груз в 20 т). Под действием механических напряжений, превышающих критические, нанотрубки ведут себя довольно экстравагантно: они не «рвутся», не «ломаются», а просто-напросто перестраиваются! Они являются прекрасными проводниками электричества и теплоты и могут использоваться в качестве тончайших кабелей, полупроводников или сверхпроводников. Кроме того, они способны испускать электроны, вследствие чего могут найти применение в сверхтонких дисплеях.

Углерод — не единственный материал для нановолокон и нанотрубок. В настоящее время получены нанотрубки из нитрида бора, карбидов бора и кремния, оксида кремния и ряда других материалов.

Благодаря постоянному развитию нанотехнологий будет наблюдаться процесс непрерывного открытия и создания самых разнообразных форм и разновидностей объектов, которые вследствие указанных выше геометрических характеристик будут отнесены к наноматериалам.

Первым и самым главным признаком наночастиц является их геометрический размер — протяженность не более 100 нм хотя бы в одном измерении. Именно с таких размеров может наблюдаться качественное изменение свойств частиц по сравнению с макрочастицами того же самого вещества. Например, нанонить паутины способна надежно удерживать огромных по сравнению с ее толщиной насекомых.

Именно размерными эффектами определяются многие уникальные свойства наноматериалов. Для различных характеристик (механических, электрических и др.) критический размер может быть различным, как и характер изменений (равномерный или неравномерный). Например, электропроводность начинает зависеть от размера частицы при уменьшении кристалла вещества до размеров 10-20 нм и менее.

Доля атомов, находящихся в поверхностном слое (толщиной около 1 нм), естественно, растет с уменьшением размера частиц вещества. Поверхностные атомы обладают свойствами, отличающимися от «внутренних» атомов, поскольку они связаны с соседями иначе, чем внутри вещества. В результате на поверхности велика вероятность протекания процессов изменения структурного расположения атомов и их свойств. В результате поверхность (или межфазная граница) рассматривается как некое новое состояние вещества.

Учитывая абсолютные размеры наночастиц, с определенными допущениями можно считать, что наночастица представляет собой вещество, близкое по свойствам к межфазной границе. Например, нанотрубки имеют высокую удельную плотность поверхности, поскольку вся масса сосредоточена в поверхностном слое. Кроме того, расстояние между графитовыми слоями в многослойных системах (0,335 нм) оказывается достаточным, чтобы некоторые вещества в атомарном виде (например, молекулы водорода) могли заполнять их межстенное пространство, которое образует уникальную емкость для хранения газообразных, жидких и даже твердых веществ. Нанотрубки обладают уникальными механическими свойствами. Модуль упругости вдоль продольной оси трубки достигает 70·105 МПа (у легированной стали он равен 2,1·105 МПа, а у наиболее упругого металла иттрия — 5,2·105 МПа). Кроме того, однослойные нанотрубки имеют высокую (до 16%) эластичность, то есть способность оказывать влияющей на них силе механическое сопротивление и принимать исходное состояние после ее снятия. Наиболее типична для многослойных нанотрубок структура «русская матрешка» — в них трубки меньшего размера вложены в более крупные. Эксперименты сейчас достигли такого технического уровня, что с помощью специального манипулятора можно вытянуть внутренние слои, оставив внешние слои фиксированными (Рис.6).

Рис. 6. Исследование свойств нанотрубок: 1 – опытная нанотрубка; 2 – нанотрубка после удаления внешних слоев на вершине; 3 – положение после снятия нагрузки нанотрубка с внутренними слоями, вытянутыми при помощи специального наноманипулятора; 4 – релаксация (возврат) внутренних слоев нанотрубки в исходное

Нанотрубка удлиняется подобно удочке, приобретая коническую со ступеньками форму. Трубку укрепляют с одного конца и снимают с нее несколько слоев вблизи вершины, чтобы открыть кончик, за который можно «ухватиться». Затем к заостренному концу подводят манипулятор, двигая которым, можно удлинять или укорачивать трубку, вытягивая внутренние слои из внешней оболочки. Если удалить манипулятор, вытянутая часть возвращается под действием сил притяжения Ван-дер-Ваальса, как пружина. Это указывает на уникальные свойства нанотрубок.

Таким образом, многослойная углеродная нанотрубка является великолепным цилиндрическим подшипником. Если внутреннюю часть оставить неподвижной, а внешнюю заставить вращаться, можно получить почти идеальный подшипник скольжения, в котором поверхность скольжения атомно-гладкая, а силы взаимодействия между поверхностями (силы Ван-дер-Ваальса), т.е. силы трения очень слабые.

С другой стороны, при высоких давлениях фуллерен С60 становится твердым, как алмаз. Его молекулы образуют кристаллическую структуру, состоящую из идеально гладких шаров, свободно вращающихся в гранецентрированной кубической решетке. Благодаря этому свойству С60 можно использовать в качестве твердой смазки.

Другое уникальное свойство наноструктур — квантовые эффекты и необычные электронные свойства наночастиц, прежде всего углеродных нанотрубок.

С позиций квантовой механики электрон может быть представлен волной, описываемой соответствующей волновой функцией. Распространение этой волны в наноразмерных твердотельных структурах контролируется эффектами, связанными с квантовым ограничением, интерференцией и возможностью туннелирования через потенциальные барьеры.

Волна, соответствующая свободному электрону в твердом теле, может беспрепятственно распространяться в любом направлении. Ситуация кардинально меняется, когда электрон попадает в твердотельную структуру, размер которой, по крайней мере в одном направлении, ограничен и сравним с длиной электронной волны. В данных направлениях возможно распространение только волн с длиной, кратной геометрическим размерам структуры. Это значит, что соответствующие им электроны могут иметь только определенные фиксированные значения энергии. Это явление получило название квантового ограничения.

Так, с одной стороны, есть трубки с хорошей электронной проводимостью, а с другой стороны, большинство трубок — это полупроводники с шириной запрещенной зоны от 0,1 до 2 эВ. Управляя их зонной структурой, можно, например, значительно увеличить плотность записи запоминающих устройств.

Итак, наночастицы обладают комплексом самых уникальных свойств. Многие из них еще изучены не полностью, а другие, возможно, и не открыты. Эти свойства открывают перед человечеством возможности принципиального изменения современного состояния науки и техники.

Сегодня разработано много методов получения углеродных наноструктур с разными размерами и свойствами, но суть всех методов одна: нанотрубки и фуллерены образуются в результате химических превращений углеродсодержащих материалов в условиях повышенных температур. Рассмотрим несколько наиболее популярных методов.

Электродуговое распыление графит.

Это самый распространенный метод, разработанный. Именно так японский ученый С. Иджима впервые получил нанотрубки в 1991 году. Суть метода такова: в камере, заполненной инертным газом, между графитовыми электродами горит электрический разряд, ионизирующий атомы газа. Катод и стенки камеры охлаждаются при помощи воды или жидкого азота.

Рис. 7. Схема установки дляполучения нанотрубок и фуллеренов

При токе дуги порядка 100 А, давлении газа в несколько раз меньше атмосферного и напряжении на электродах 25-35 В температура образующейся между электродами плазмы достигает 4000 К. При такой температуре поверхность графитового анода интенсивно испаряется. В результате резкого перепада температур атомы углерода уносятся из горячей в более холодную область плазмы[1] и конденсируются в осадок на стенках камеры и поверхности катода.

Рассматривая этот осадок в электронный микроскоп, можно увидеть наряду с сажей и графитом новые структуры — фуллерены и нанотрубки. При этом часть осадка, содержащая графит, сажу и фуллерены, осаждается на холодные стенки камеры, а часть, содержащая графит и нанотрубки, — на катод.

Лазерное испарение графита.

В этом методе испаряемый лазером графит конденсируется на охлаждаемом коллекторе. Графитовая мишень расположена в длинной кварцевой трубке внутри цилиндрической печки с температурой 1000°С. Вдоль трубки с невысокой скоростью прокачивается буферный газ (гелий или аргон). Мишень облучают лазером с энергией 140 мДж, длительностью импульса 8 нс и диаметром сфокусированного пучка около 1,6 мм. Продукты термического распыления графита уносятся из горячей области и осаждаются на поверхности охлаждаемого коллектора. В получаемом осадке помимо наночастиц графита обнаруживаются также фуллерены и нанотрубки.

Рис. 8. Схема установки для получения фуллеренов и нанотрубок лазерным испарением графита

Достоинство данного метода — возможность получения нанотрубок с заданными структурными параметрами. Недостаток — невысокая производительность и трудность масштабирования.

Рис. 9. Схема установки для получения фуллеренов и нанотрубок химическим осаждением из пара

Сегодня получение нанотрубок в количествах, достаточных для изучения, стало обычным делом. Проблема теперь состоит в снижении их себестоимости и получении в промышленных масштабах, поскольку рассмотренные выше методы не позволяют достичь этого. С этой точки зрения интересен третий метод, разработанный российскими учеными под руководством М.М. Томишко.

Метод химического осаждения из пара.

Этот наиболее практичный и массовый способ получения углеродных нанотрубок основан на термохимическом осаждении углеродсодержащего газа на поверхности горячего металлического катализатора.

Углеродсодержащая газовая смесь (обычно смесь ацетилена или метана с азотом) пропускается сквозь кварцевую трубку, помещенную в печь при температуре около 700-1000°С. В трубке находится керамический тигель[2] с катализатором — металлическим порошком. Разложение углеводорода, происходящее в результате химической реакции атомов газа с атомами металла, приводит к образованию на поверхности катализатора фуллеренов и нанотрубок с внутренним диаметром до 10 нм и длиной до нескольких десятков микрон. Как видно из описания, при всех методах получения фуллеренов и углеродных нанотрубок конечный материал содержит часть шлака — сажу, частицы аморфного графита, а в случае использования катализаторов — частицы металлов. Для повышения чистоты полученного продукта используют различные методы очистки — как механические (фильтрация, обработка ультразвуком), так и химические (промывание в химически активных веществах, нагревание).

Рис. 10. Так под микроскопом выглядят нанотрбки, полученные химическим осаждением из пара

Надо сказать, что метод получения наноструктур играет очень важную роль. Он влияет не только на свойства наноструктуры, но и на время ее жизни — период, в течение которого частица способна эти уникальные свойства проявлять. По истечении этого срока наночастицы либо окисляются, либо агрегируются в микрочастицы и приобретают свойства компактных веществ.

1. Наноэлектроника.

Уже в начале нашего века появились серьезные преграды на пути развития электроники. Прежде всего это касается роста степени интеграции и быстродействия интегральных схем. Технология приближается к фундаментальным пределам, определяемым самой природой. Ведущие производители схем уверенно осваивают технологию 90 нм. Казалось бы, еще немного, и будет технология в 50 нм, но… в силу вступают квантовые законы и эффекты. Например, пробел между проводящими дорожками шириной 50 нм будет насквозь «простреливаться» в поперечном направлении электронами за счет туннельного эффекта (о чем говорилось выше). Другие проблемы — отвод тепла, выделяемого элементами схем, сверхплотно расположенными в микрообъеме кристалла, а также уровень собственных шумов, равный полезному сигналу или превышающий его.

В обычных условиях на перестройку всей концепции создания процессоров и микросхем ушло бы лет 50. Однако у человечества нет такого запаса времени. Необходимость скорейшего перехода на новые концепции схемотехники обусловлена тем, что создать что-то принципиально новое на имеющейся технологической базе практически невозможно.

Известно, что все многослойные нанотрубки — полупроводники. В официальном сообщении Международной ассоциации производителей полупроводниковговорится о начале перехода к посткремниевой эре в схемотехнике. В ближайшие 10-15 лет может начаться массовый переход с кремния на углеродные нанотрубки. Например, известный производитель жестких магнитных дисков, компания Seagate, запатентовала технологию повышения плотности записи при помощи нанотрубок в качестве смазочного материала. Дело в том, что плотность записи можно повысить путем сокращения зазора между считывающе-записывающими головками и самой магнитной поверхностью-носителем. Компанияпредлагает ввести головки практически в полный контакт с магнитной поверхностью, например диском, разделив их тончайшим слоем смазочного материала на основе нанотрубок. Специальный лазер будет подогревать часть пластины, где работает считывающая головка, что позволит повысить точность ориентации магнитных частиц. Предполагается, что таким образом можно будет создавать достаточно компактные и недорогие накопители информации емкостью несколько тысяч терабайт.

Другое направление работ в области создания электронной наноразмерной компонентной базы — исследования, проводимые в международном томографическом центре Новосибирского отделения РАН. Российскими учеными созданы необычные ферромагнетики, которые содержат атомы углерода, азота и водорода, а также атомы меди и классические «магнитные элементы» — железо, кобальт и никель. Эти ферромагнетики не требуют изоляции, очень легки и, что самое главное, прозрачны, то есть могут быть использованы для голографической записи информации на всей глубине кристалла, тогда как обыкновенные компакт-диски накапливают информацию только на поверхности. Применение подобных ферромагнетиков может значительно повысить объем хранимой информации в единице объема носителя.

В апреле 2007 года в США поступили в продажу компьютеры с емкостью жесткого диска 1 Тб (1012 байт). На нем можно разместить информацию, равнозначную 50 млрд печатных страниц, около 16 суток видеоматериала в формате DVD, миллион фотографий в высоком разрешении или около 250 тыс. музыкальных файлов (от полутора до двух лет беспрерывного прослушивания).

2. Нанотехнологии в строительстве.

Одна из отраслей промышленности, где нанотехнологии развиваются достаточно интенсивно, — это строительство. Естественно, что основные разработки в этой области должны быть направлены на создание новых, более прочных, легких и дешевых строительных материалов, а также улучшение уже имеющихся материалов: металлоконструкций и бетона за счет их легирования нанопорошками.

Определенные успехи в этой области уже достигнуты. Так, российские ученые из Санкт-Петербурга, Москвы и Новочеркасска создали нанобетон. Специальные добавки — так называемые наноинициаторы — значительно улучшают его механические свойства. Предел прочности нанобетона в 1,5 раза выше прочности обычного, морозостойкость выше на 50%, а вероятность появления трещин — в три раза ниже. При этом вес бетонных конструкций, изготовленных с применением наноматериалов, снижается в 6 раз. Разработчики утверждают, что применение подобного бетона удешевляет конечную стоимость конструкций в 2-3 раза.

Также отмечается и ряд восстанавливающих свойств бетона. При нанесении на железобетонную конструкцию нанобетон заполняет все микропоры и микротрещины и полимеризуется, восстанавливая ее прочность. Если же проржавела арматура, новое вещество вступает в реакцию с коррозийным слоем, замещает его и восстанавливает сцепление бетона с арматурой.

Другой аналогичный пример приводит «Росбалт» от 16.01.08 в публикации «Горьковская железная дорога испытывает новинки наноиндустрии», где указывается следующее: «Одной из интересных разработок, которые предлагает железнодорожникам Нижегородский региональный центр наноиндустрии, является керамический наноцемент — это порошкообразная смесь фосфата и оксида металла, при соединении с водой образующая пастообразный цементный раствор. Такой материал обладает высокой прочностью и огнестойкостью, устойчивым сопротивлением химическому разложению и замерзанию. В отличие от традиционного бетона, он отвердевает даже под водой, а по своим свойствам превосходит привычный цемент».

Другое направление практического применения нанотехнологии в строительстве — различного рода отделочные и защитные покрытия. Например, добавление наноструктур в фасадные краски обеспечивает высокую прочность и стойкость покрытия к внешним воздействиям. При этом грязь на окрашенной поверхности распадается благодаря воздействию света. Сочетание наноструктуры и светостойких пигментов обеспечивает как высокую насыщенность цвета, так и устойчивость покрытия к УФ излучению, что позволяет фасаду зданий и сооружений долгое время сохранять первозданный внешний вид.

Один из примеров использования нанотехнологии — разработка новых окрашивающих материалов для поездов, которая призвана защитить поверхность вагонов от рисования и нанесения надписей, делая ее настолько гладкой, что никакие другие краски не могут на ней закрепиться.

3. Нанотехнологии и медицина.

Рис. 11. Обыкновенное наночудо – мыльные пузыри

Самый яркий и простой пример использования нанотехнологии в медицине и косметике — обыкновенный мыльный раствор, обладающий моющим и дезинфицирующим действием. Мыло — чудо нанотехнологии, уже бывшее таковым, когда никто и не подозревал о существовании наночастиц (рис.11). Однако этот наноматериал не является главным для развития современных нанотехнологий в здравоохранении и косметологии.

Другим древнейшим применением нанотехнологии в косметологии оказался тот факт, что красящие вещества, использовавшиеся аборигенами Австралии для нанесения ярких боевых раскрасок, также содержали наночастицы, обеспечивающие очень длительный и стойкий окрашивающий эффект.

Наверное, уже многие встречали в открытой продаже так называемую шунгитовую воду, производители которой уверяют в ее уникальных оздоровительных свойствах, якобы полученных в результате воздействия на нее природных фуллеренов. Особенностью ее является тот факт, что такую воду нельзя долго хранить — через несколько часов она теряет свои уникальные свойства.

Проведенные на Украине и в Карелии исследования показали, что эта вода является следствием воздействия на нее фуллеренов, содержащихся в природном минерале — шунгите. Ученые считают, что происхождение шунгита, скорее всего, явилось следствием падения большого углеродного метеорита. Каждая молекула фуллерена способна формировать и удерживать вокруг себя водный кластер, размеры которого во много раз больше его собственного диаметра. Это связано с тем, что в обычной воде состояние и количество образующихся кластеров является нестабильным (мерцающим). Кластеры существуют миллиардные доли секунды (наносекунды) и распадаются, а затем образуются вновь, то есть мерцают.

Эти водные кластеры способны оказывать антиоксидантное действие, т.е. улавливать свободные радикалы, являющиеся «обломками различных органических соединений» и разрушающие живой организм.

Встающие перед человечеством глобальные проблемы требуют незамедлительных действий. В решении многих из них нанотехнологии могут оказать значительную помощь. Так, за последние 20 лет было выявлено не менее 30 инфекционных заболеваний (СПИД, «птичий грипп»), смертность от которых составляет 30% общего числа смертей во всем мире. Ежегодно только в США диагностируется 1,5 млн новых случаев онкологических заболеваний. Смертность от них в мире составляет не менее 500 тыс. человек в год. Согласно прогнозам, к 2020 году количество онкобольных в мире может возрасти на 50% и составить 15 млн человек в год.

Директор Лаборатории нанофотоники, профессор Университета Раиса в Хьюстоне, Наоми Халас и Питер Нордлендер создали новый класс наночастиц с уникальными оптическими свойствами — наногильзы. Имея диаметр в 20 раз меньший, чем у красных кровяных телец (эритроцитов), они свободно перемещаются по кровеносной системе. К поверхности гильз особым образом прикрепляется специальные белки — антитела, поражающие раковые клетки. Через несколько часов после их введения организм облучают инфракрасным светом, который наногильзы преобразуют в тепловую энергию. Эта энергия и разрушает раковые клетки, причем соседние здоровые клетки при этом практически не повреждаются.

Такая уникальная нанотехнология уже успешно протестирована на подопытных мышах с раковыми опухолями. Уже через 10 дней после облучения все больные животные полностью избавились от недуга. Причем, как отмечается, последующие анализы не выявили у них никаких очагов новых злокачественных образований.

Следует отметить, что направление медицинских нанотехнологических исследований также развивается стремительными темпами. При этом уже сейчас полученные на подопытных животных результаты обещают значительные перспективы в лечении людей.

4. Военные нанотехнологии.

Пожалуй, самым первым фактом применения нанотехнологии в военных целях следует считать факт, открытый учеными Дрезденского технического университета при исследовании образца дамасской стали (известной своей высочайшей прочностью), из которой в XVI веке была изготовлена сабля, хранящаяся в Историческом музее г. Берна. После травления поверхности образца металла в соляной кислоте исследователи обнаружили нитеобразные объекты нанометровых поперечных размеров (рис.12).

Рис. 12. Наноструктура дамасской стали и конструкционного материала ApNano

При детальном изучении поверхности с использованием сканирующего туннельного микроскопа оказалось, что это многослойные углеродные нанотрубки, к тому же заполненные внутри цементитом — карбидом железа Fe3 C, обладающим очень высокой твердостью.

Поскольку нанотрубки обладают рекордной прочностью на растяжение (модуль упругости приблизительно равен 1012 ТПа), не приходится удивляться тому, что входящие в состав дамасской стали углеродные нанотрубки обеспечивают материалу сабли столь высокие прочностные свойства.

Создание различного рода защитных средств — одно из направлений военных исследований в области нанотехнологий. Так, израильская компания ApNano Materials недавно испытала один из наиболее стойких к удару материалов, известных человечеству (см. рис.12). Образец материала ApNano, разработанный на основе дисульфида вольфрама, подвергался ударам, которые производились стальным снарядом, выпущенным со скоростью до 1,5 км/с. Исследуемый материал выдержал удар с воздействиями до 250 т/см2, а также статическую нагрузку 350 т/см2, что приблизительно соответствует нагрузке, развиваемой четырьмя локомотивами на область размером с человеческий ноготь.

Такой материал может понадобиться для изготовления шлемов и бронежилетов, а также обшивки военного транспорта. На 11-й Международной выставке средств обеспечения безопасности государства «Интерполитех-2007» Научно-исследовательский институт стали (Москва) и Институт прикладных нанотехнологии (Зеленоград) продемонстрировали первые опытные отечественные образцы «жидкой» брони, которая в перспективе может применяться для бронежилетов и других средств индивидуальной защиты. Ее создание заключается в обработке обычной баллистической ткани гелевой композицией на основе фтора с наночастицами оксида корунда. Обработанная ткань внешне не отличается от аналога, но при ударном воздействии на нее пули или осколка находящийся внутри гель мгновенно затвердевает (см. рис.13), препятствуя разрушению ткани и снижая поражающее воздействие. Российскими специалистами исследовалась эффективность защитных свойств опытного образца ткани из «жидкой» брони и стандартного образца, изготовленного из 18 слоев баллистической ткани. Испытания проводились методом метания в них шариков массой 1,04 г и диаметром 6,3 мм (аналог пули) со скоростью 526 м/с. В результате испытаний было установлено, что «жидкая» броня обеспечивает лучшие защитные свойства, выдерживая нагрузку от шариков, летящих со скоростью до 560 м/с.

Рис. 13. Механизм образования гидрокластеров в полимерной наносистеме: 1) равновесное состояние; 2) невысокая деформация; 3) затвердение при ударном воздействии.

Другим изобретением, которое может быть в перспективе использовано для военных целей, является разработка так называемого плаща-невидимки. Как видим, некоторые фантастические сюжеты русских народных сказок о шапках невидимках и коврах-самолетах начинают сбываться.

Основная задача, стоящая перед разработчиками данного маскирующего устройства, заключается в том, чтобы сделать объект невидимым за счет выполнения двух необходимых требований: свет не должен отражаться от объекта и должен полностью обходить объект. При этом необходимо, чтобы наблюдатель видел только задний фон, а не сам предмет, замаскированный устройством-невидимкой.

Ученые и инженеры из центра нанотехнологии Бирка при университете Пердью, опираясь на теоретические расчеты, выполненные в 2006 году британскими физиками, создали виртуальную модель, состоящую из множества наноигл, торчащих наружу из центральной спицы, которая напоминает круглую массажную щетку. За счет отклонения кончиками игл видимого света объекты позади щетки становятся видны, но сам предмет, окруженный цилиндрическим массивом наноигл, — невидим.

Расчеты показывают, что устройство сделает объект невидимым только при одной строго определенной длине волны в 632,8 нм, что соответствует красному свету. Однако с помощью этой же модели можно создать «плащ-невидимку» для любой длины волны в видимом спектре, утверждает русский ученый В.М. Шалаев. По его словам, хотя модель работает только для одной частоты, ей уже сейчас можно найти практическое применение — например, производство защитной системы, позволяющей сделать солдат незаметными для приборов ночного видения, поскольку системы ночного видения определяют только конкретную длину волны.

Нанотехнологии и наноустройства являются закономерным шагом на пути совершенствования технических систем. И, возможно, не последним: за областью нановеличин лежат области пико (10-12 ), фемто (10-15 ), атто (10-18 ) и т.д. величин с еще неизвестными и непредсказуемыми свойствами.

В настоящее время на рынке продаются только скромные достижения нанотехнологии, вроде самоочищающихся покрытий и упаковок, позволяющих дольше сохранять свежими продукты питания. Однако ученые предсказывают триумфальное шествие нанотехнологий в недалеком будущем, опираясь на факт её постепенного проникновении во все отрасли производства.

По прогнозам американской ассоциации National Science Foundation, объем рынка товаров и услуг в мире с использованием нанотехнологий в ближайшие 10-15 лет может вырасти до 1 трлн долларов:

в сфере здравоохранения использование нанотехнологий может позволить увеличить продолжительность жизни, улучшить ее качество и расширить физические возможности человека;

в фармацевтической отрасли около половины всей продукции будет зависеть от нанотехнологий;

в химической промышленности наноструктурные катализаторы уже применяются при производстве бензина и в других химических процессах;

в транспортной промышленности применение нанотехнологий и наноматериалов позволит создавать более легкие, быстрые, надежные и безопасные автомобили;

в сельском хозяйстве и в сфере защиты окружающей среды применение нанотехнологий может увеличить урожайность сельскохозяйственных культур, обеспечить более экономичные способы фильтрации воды и ускорить развитие таких возобновляемых энергетических источников, как преобразование солнечной энергии.

Это позволит снизить загрязнение окружающей среды и сэкономить значительные ресурсы.

Согласно исследованиям, проведенным Foresight Nanotech Institute в 2005 году, использование нанотехнологий позволит в будущем решить ряд наиболее значимых для человечества проблем. Одна из них — обеспечение мировых энергетических потребностей. Согласно прогнозам, спрос на электроэнергию к 2025 году вырастет на 50%. В настоящее время около 1,6 млрд человек не обеспечены электроэнергией, а у 2,4 млрд единственными источниками энергии и тепла являются сельскохозяйственные отходы и растительные материалы. Использование ископаемого топлива растет и может удвоиться в ближайшее время. С учетом имеющихся запасов природного топлива эта проблема будет с каждым годом только усугубляться.

Предполагается, что нанотехнологии позволят решить энергетические проблемы посредством применения более эффективного освещения, топливных элементов, водородных аккумуляторов, солнечных элементов, распределения источников энергии и децентрализации производства.

Восторженно предвкушая те положительные изменения, которые принесет с собой промышленная революция, не будем столь наивны, чтобы не задуматься о возможных опасностях и проблемах. Многие крупные ученые современности не зря пытаются привлечь внимание не только к позитивным перспективам будущего, но и к возможным негативным последствиям.

Ученые утверждают, что исследования в области нанотехнологий и других областях должны быть остановлены до того, как это навредит человечеству. Но вместо простого запрета исследований в этой области они предлагают установить правительственный контроль над опасными исследованиями, что поможет предотвратить случайную катастрофу.

Страхи перед нанотехнологиями начали появляться с 1986 года после выхода в свет «Машин созидания» Дрекслера, где он не только нарисовал утопическую картину нанотехнологического будущего, но и затронул «обратную сторону» этой медали. Одну из проблем, которая представлялась ему наиболее серьезной, он назвал «проблемой серой слизи». Ее опасность в том, что нанороботы, вышедшие из под контроля в результате случайной или намеренной порчи систем управления, могут начать копировать самих себя до бесконечности, потребляя в качестве строительного материала все на своем пути, включая леса, заводы, домашних животных и людей. Расчёт показывает, что теоретически такой наноробот со своим потомством окажется в состоянии переработать всю биомассу Земли за считанные часы.

Эти опасения опираются на то, что гипотетические части футуристических микромашин уже выпущены и встают на свои места. Например, один из компонентов наноробота — электронное устройство молекулярных размеров — сейчас уже реализовано.

На сегодняшний день также остро встают следующие вопросы:

способна ли образовательная система обучить достаточно квалифицированных специалистов в области нанотехнологии?

может ли снижение стоимости продукции благодаря нанотехнологиям сделать их легкодоступными для террористов, чтобы разработать опасные микроорганизмы?

каким будет эффект от вдыхания некоторых веществ, которые в настоящее время формируются в молекулярном масштабе? Исследования показали, что та же нанотрубка, представляющая собой соединение сверхтонких игл, имеет

структуру, похожую на асбест, а этот материал при вдыхании вызывает повреждение легких;

что случится, если в окружающую среду будет выпущено большое количества наноматериала, начиная от компьютерных чипов и заканчивая краской для самолетов? Не будут ли наноматериалы вызывать аллергию?

не приведет ли вторжение наночастиц в наши тела к непредсказуемым последствиям? Они могут быть меньше белков. Что случится, если наночастицы вызовут пересворачивание белка?

Эти и другие вопросы, стоящие сегодня перед исследователями, действительно очень актуальны и важны. В бешеной гонке нанотехнологий ученые должны взять на себя всю полноту ответственности за жизнь и здоровье других людей, чтобы не оказаться беззаботными фанатиками, совершившими «революцию» только лишь «во имя революции», не утруждая себя размышлениями о возможных трагических последствиях и катастрофах.

1. Нанотехнологии — символ будущего, важнейшая отрасль, без которой немыслимо дальнейшее развитие цивилизации.

2. Возможности использования нанотехнологий практически неисчерпаемы — начиная от микроскопических компьютеров, убивающих раковые клетки, и заканчивая автомобильными двигателями, не загрязняющими окружающую среду.

3. Нанотехнологии на сегодняшний день находятся в младенческом возрасте, тая в себе огромный потенциал. В дальнейшем ученым предстоит решить множество вопросов, связанных с нанонаукой, и постигнуть ее глубочайшие тайны. Но, несмотря на это, нанотехнологии уже оказывают очень серьезное влияние на жизнь современного человека.

4. Большие перспективы несут в себе и большие опасности. В этом отношении человек должен с максимальной осторожностью отнестись к небывалым возможностям нанотехнологий, направляя свои исследования на мирные цели. В противном случае он может подставить под удар свое собственное существование.

1. Балабанов, В.И. Нанотехнологии. Наука будущего. /В.И. Балабанов. — М.: Эксмо, 2008. — 256 с.

2. Рыбалкина, М. Нанотехнологии для всех. /М. Рыбалкина. — М.: Nanotechnology News Network, 2006. — 444 с.

3. Альтман, Ю. Военные нанотехнологии. /Ю. Альтман. — М.: Техносфера, 2006. — 416 с.

4. Пул, Ч. Нанотехнологии. / Ч. Пул, Ф. Оуэне. — М.: Техносфера, 2006. — 260 с.

5. Кобаяси Н. Введение в нанотехнологию. / Н. Кобаяси, пер. с япон. — М.: БИНОМ. Лаборатория знаний, 2005. — 134 с.

[1] Плазма– ионизированный газ, в котором атомы теряют несколько внешних электронов и превращаются в положительно заряженные ионы.

[2] Тигель – специальный сосуд для плавки, варки или нагрева различных материалов.

www.ronl.ru

Реферат на тему Нанотехнологии

Введение

Слышали ли вы о нанотехнологиях? Я думаю да, и неоднократно. Нанотехнологии - высокотехнологичная отрасль, работающая с отдельными атомами и молекулами. Такая сверхточность позволяет на качественно новом уровне использовать законы природы на благо человека. Разработки в области нанотехнологий находят применение практически в любой отрасли: в медицине, машиностроении, геронтологии, промышленности, сельском хозяйстве, биологии, кибернетике, электронике, экологии. С помощью нанотехнологии возможно осваивать космос очищать нефть, победить многие вирусы, создавать роботов, защищать природу, построить сверхбыстрые компьютеры. Можно сказать, что развитие нанотехнологий в XXI веке изменит жизнь человечества больше, чем освоение письменности, паровой машины или электричества. Наномир сложен и пока еще сравнительно мало изучен, и все же не столь далек от нас, как это казалось несколько лет назад. В своей работе я постараюсь популярно объяснить сущность нанотехнологий и рассказать о достижениях в этой отрасли науки. Так как считаю ее наиболее актуальной и востребованной на сегодняшний день.

1.Что же такое нанотехнологии и «с чем их едят»

Приставка «нано» (по-гречески— «карлик») означает «одна миллиардная доля». То есть один нанометр (1 нм)— одна миллиардная доля метра (10–9 м). Как представить себе такую короткую дистанцию? Проще всего это сделать с помощью денег: нанометр и метр соотносятся по размеру как копеечная монета и Земной шар. Или уменьшим слона до размеров микроба (5000 нм) — тогда блоха у него на спине станет величиной как раз в нанометр. А если бы рост человека вдруг уменьшился до нанометра, то мы могли бы играть в футбол отдельными атомами! Толщина листа бумаги казалась бы нам тогда равной 170 километрам. Нанометрами измеряются лишь самые примитивные существа — вирусы (их длина в среднем 100 нм). Живая природа заканчивается на рубеже примерно в 10 нм — такие размеры имеют сложные молекулы белков. Простые молекулы в десятки раз меньше. Величина атомов — несколько ангстрем (1 ангстрем = 0,1 нм). Например, диаметр атома кислорода — 0,14 нм. Здесь проходит нижняя граница наномира, мира наномасштабов — от сотен до едениц нанометров. Именно в наномире идут процессы фундаментальной важности — совершаются химические реакции, выстраивается строгая геометрия кристаллов, структуры белков. С этими процессами и работают нанотехнологи. Вообще говоря, нанотехнологии не являются самостоятельным разделом науки. Скорее, это именно комплекс прикладных технологий, фундаментальные основы которых изучаются в таких дисциплинах, как коллоидная химия, физика поверхности, квантовая механика, молекулярная биология и т. п. Что такое нано? Приставка «нано» («нанос» по-гречески - карлик) означает «одна миллиардная доля». Один нанометр (1 нм) – одна миллиардная доля метра (10Љ м). Как представить себе такую короткую дистанцию? Проще всего это сделать с помощью денег: нанометр и метр соотносятся по масштабу как копеечная монета и земной шар (кстати, если каждый житель Земли даст по монетке, этого вполне хватит, чтобы выложить цепочку вокруг экватора. Даже если некоторые, как обычно, пожадничают). Уменьшим слона до размеров микроба (5000 нм) – тогда блоха у него на спине станет величиной как раз в нанометр. Если бы рост человека вдруг уменьшился до нанометра, мы могли бы играть в футбол отдельными атомами! Толщина листа бумаги казалась бы нам тогда равной… 170 километрам. Конечно, это только фантазии. Таких крошечных человечков и даже насекомых на свете быть не может. Нанометрами измеряются лишь самые примитивные существа – вирусы (их длина в среднем 100 нм). Живая природа заканчивается на рубеже примерно в десять нанометров – такие размеры имеют сложные молекулы белков, строительные блоки живого. Простые молекулы в десятки раз меньше. Величина атомов – несколько ангстрем (один ангстрем равен 0,1 нм). Например, диаметр атома кислорода – 0,14 нм. Здесь проходит нижняя граница наномира, мира наномасштабов – от сотен до единиц нанометров. Именно в наномире идут процессы фундаментальной важности – совершаются химические реакции, выстраивается строгая геометрия кристаллов, структуры белков. С этими процессами и работают нанотехнологи. Нанотехнологии – это способы создания наноразмерных структур, которые придают материалам и устройствам полезные, а иногда просто необыкновенные свойства. Нанотехнология позволяет поместить частицу лекарства в нанокапсулу и точно нацелить ее на пораженную болезнью клетку, не повредив соседние. Фильтр, пронизанный бесчисленными нанометровыми каналами, которые пропускают воду, но слишком тесны для примесей и микробов, - тоже продукт нанотехнологий. В лабораториях нанотехнологов испытываются суперматериалы – волокна из нанотрубок, которые в тысячи раз прочнее стали, покрытия, делающие предмет невидимым. Ну, а не столь фантастические виды нанопродукции уже продаются в магазинах. Слово «нанокосметика» все чаще звучит в рекламных роликах: наночастицы, входящие в состав косметических кремов, удаляют мельчайшие загрязнения с кожи. Известно, что микробы не любят серебро, но оказывается, что в виде наночастиц оно их просто приводит в ужас и обращает в бегство. Ткани с добавками такого серебра набирают популярность у истинных ценителей гигиены – из них даже делают «наноноски». Впрочем, многие из давно привычных вещей тоже невозможны без «нано»: процессор вашего компьютера содержит миллионы наноразмерных транзисторов, над дисплеем тоже, скорее всего, поработали нанотехнологи. «Нано» уже повсюду – военные используют нанотехнологии, медики используют нанотехнологии, даже производители продуктов питания, и те используют нанотехнологии.

2. Интересное в нанотехнологиях

Эффект лотоса. Известно, что лотос действительно обладает необычными физико-химическими свойствами. Благодаря особому строению и очень высокой гидрофобности его листьев и лепестков цветы лотоса остаются удивительно чистыми. Но как ему удается добиться такой сверхгидрофобности. «Эффект Лотоса» был открыт в 1990-е гг. немецким ботаником, профессором Вильгельмом Бартлоттом. Он показал, что лепестки цветка покрыты крошечными шишечками или «наночастицами». Но лист вдобавок как бы намазан воском. Он вырабатывается в железах растения, что делает его совершенно неуязвимым для воды. На основе этого свойства и с помощью современных нанотехнологий были созданы, так называемые, лотосовые покрытия. При нанесении состава на поверхность образуется слой полимера, который преобразует молекулярную матрицу поверхности, при этом создается устойчивая атомная структура и формируется гидрофобная поверхность, обладающая сильными защитными свойствами. Эта поверхность способна противостоять любым воздействиям извне. Лотосовые покрытия незаменимы во многих сферах жизни человека. Создание стекол, с которых стекают мельчайшие капельки воды с растворенными частичками грязи. Создание плащей и другой специальной одежды. Создание самоочищающихся фасадов зданий. Это только единичные примеры использования уникального свойства лотоса.

Полезная пыль. Одним из самых массовых видов нанопродукции являются ультрадисперсные порошки. Измельчение веществ до наночастиц размерами в десятки или сотни нанометров часто придает им новые полезные качества. Дело в том, что такая наночастица состоит всего лишь из нескольких тысяч или миллионов атомов, поэтому все они оказываются близко к поверхности, на границе с внешним миром, и энергично с ним взаимодействуют. Суммарная поверхность частиц в таком нанопорошке становится огромной.

Например, серебро в форме наночастиц становится чрезвычайно губительным для бактерий — это его свойство успешно применяется в современных ранозаживляющих повязках, а также в антимикробных тканях. Нанопорошок из отработанных шин при добавлении в сырье для асфальта делает дорожное покрытие чрезвычайно износоустойчивым. Нанопорошки глины в последние годы активно используют в изолирующих покрытиях силовых кабелей — такая изоляция очень плохо горит, и это очень хорошо для безопасности зданий. Наночастицы диоксида титана (основы всем известных титановых белил) являются очень эффективным фотокатализатором и используются как активный элемент в фильтрах бытовых воздухоочистителей. А наночастицы платины используют в каталитических дожигателях современных автомобилей для уменьшения выброса в атмосферу вредных веществ.

Наномедицина. К сожалению, медицинский наноробот (нанобот), описанием которого так любят щеголять в популярной литературе, — это фантастика. Однако это не умаляет успехов нанотехнологий в современной медицине. Одно из основных направлений работы — нанокапсулы для адресной доставки лекарств. Такой метод позволяет воздействовать только на пораженные клетки, не повреждая при этом здоровые. Эта идея была сформулирована еще в начале XX столетия немецким врачом Паулем Эрлихом и названа им «волшебной пулей» — но лишь нанотехнологии (например, помещение действующего вещества в капсулу из липосом) позволили добиться ее реализации. Препараты такого типа (липосомальные) для лечения некоторых форм рака и грибковых инфекций, гепатопротекторы и даже противогриппозные вакцины выпускаются серийно уже с середины 1990-х годов.

Заключение

Нанотехнология – без сомнения самое передовое и многообещающее направление развития науки и техники на сегодняшний день. Возможности её поражают воображение, мощь – вселяет страх. Нанотехнология в корне изменит нашу жизнь. Появятся новые возможности, идеи, вопросы и ответы. Описанные технологии все же уже пройденный этап (хотя и открывающий большие дороги развития), и взоры ученых обращены к новым горизонтам. Уже сегодня имеются проекты по конструированию устройств, состоящих всего из одной молекулы. Речь идет о переключателях, шарикоподшипниках, приводах и даже целых двигателях для нанокронштейнов. Некоторые разработки ведутся в области самовоспроизводимых механизмов на базе человеческой молекулы ДНК.

Список литературы

    1. Свидиненко Ю. Нанотехнологии в нашей жизни / Свидиненко Ю. // Наука и жизнь. - 2005. - № 5.

    2. Мамонтов Д. Наука. Десять в минус девятой/ Мамонтов Д.// Популярная механика. - 2009. - № 4.

    3. Нанометр / Нанознайка: эффект лотоса Нанотехнологическое сообщество [Электронный ресурс]. -Электрон.сооб. - 2009. - 12 апр. - Режим доступа: http://www.nanometer.ru/2009/04/12/internet_olimpiada_154173.html

    4. НИАЦ "Н и Н"/ Популярно о нанотехнологиях // Популярные нанотехнологии [Электронный ресурс]. -Электрон. форум. - 2008. - 16 апр. -Режим доступа: http://popnano.ru/studies/index.php?task=view&id=70

    5. НАНО? Это просто!// РУСНАНО [Электронный ресурс]. - Электрон. журн. - 2008. - Режим доступа: http://popular.rusnano.com/

Ссылки (links):
  • http://www.nanometer.ru/2009/04/12/internet_olimpiada_154173.html
  • http://popnano.ru/studies/index.php?task=view&id=70
  • http://popular.rusnano.com/
  • bukvasha.ru

    Реферат на тему Нанотехнология

    Нанотехнологическая революция стартовала! Мы все чаще слышим слова нанонаука, нанотехнология, наноструктурированные материалы и объекты. Отчасти они уже вошли в повседневную жизнь, ими обозначают приоритетные направления научно-технической политики в развитых странах . Так, в США действует программа “Национальная нанотехнологическая инициатива” (в 2001 г. ее бюджет был 485 млн долл., что сопоставимо с годовым бюджетом всей Российской академии наук). Евросоюз недавно принял шестую рамочную программу развития науки, в которой нанотехнологии занимают главенствующие позиции. Минпромнауки РФ и РАН также имеют перечни приоритетных, прорывных технологий с приставкой “нано-”. По оценкам специалистов в области стратегического планирования, сложившаяся сейчас ситуация во многом аналогична той, что предшествовала тотальной компьютерной революции, однако последствия нанотехнологической революции будут еще обширнее и глубже. Да, собственно, она уже началась и взрывообразно захватывает все новые и новые области. В журнале “Природа” были опубликованы статьи, посвященные отдельным направлениям нанонауки ; теперь постараемся бросить взгляд на нее как на единое целое. Углубляясь в наноджунгли Итак, что же сейчас понимают под нанотехнологиями? Сама десятичная приставка “нано-” происходит от греческого слова “nanos”, что переводится как “карлик” и означает одну миллиардную часть чего-либо. Таким образом, чисто формально в сферу этой деятельности попадают объекты с размерами R (хотя бы вдоль одной координаты), измеряемыми нанометрами. Реально диапазон рассматриваемых объектов гораздо шире - от отдельных атомов (R Научные основы и объекты нанонауки и нанотехнологии. Новая парадигма в технологии - “снизу вверх”, вытесняющая и дополняющая старую - “сверху вниз” (т.е. от большой заготовки - к готовому изделию путем отсечения лишнего материала), - базируется на глубоких знаниях свойств каждого атома из таблицы Менделеева и использует силы притяжения между ними при нанометровых расстояниях. В результате действия этих сил могут образовываться атомные конфигурации, стабильность которых определяется типом и прочностью внутренних связей, абсолютной температурой и характером окружения. Чем меньше частица и ниже температура, тем сильнее проявляются ее квантовые качества. Свойства наночастиц сильно изменяются по сравнению с макрочастицами того же вещества, как правило, уже при размерах RcЈ 10-100 нм. Для различных характеристик (механических, электрических, магнитных, химических) этот критический размер может быть разным, как и характер их изменений (монотонный-немонотонный) при R c. Ввиду резкой зависимости свойств вещества от числа одинаковых атомов в кластере ее иногда аллегорически называют даже третьей координатой таблицы Менделеева. Среди причин размерных эффектов в наномасштабных объектах есть как вполне очевидные, так и заслуживающие дополнительных комментариев. Например, ясно, что доля атомов a, находящихся в тонком приповерхностном слое (~1 нм), растет с уменьшением размера частички вещества R, поскольку a ~ S/V ~ R2/R3 ~ 1/R (здесь S - поверхность частички, V - ее объем). Также общеизвестно, что поверхностные атомы обладают свойствами, отличающимися от “объемных”, поскольку они связаны с соседями по-иному, нежели в объеме. В результате на поверхности может произойти атомная реконструкция и возникнет другой порядок расположения атомов. Для атомов, оказавшихся на краях моноатомных террас, уступов и впадин на них, где координационные числа значительно ниже, чем в объеме, возникают совершенно особые условия. Взаимодействие электронов со свободной поверхностью порождает специфические приповерхностные состояния (уровни Тамма). Все это вместе взятое заставляет рассматривать приповерхностный слой как некое новое состояние вещества. Заметим также, что поверхность служит стоком (причем почти бесконечной емкости) для большинства дефектов кристаллической структуры благодаря действию сил изображения * и других причин. * Силы изображения получили свое название по методу расчета электрических полей, который заключается в мысленном помещении симметрично за границей раздела точно такого же объекта, но противоположно заряженного. Силы изображения убывают по мере удаления от поверхности, но если размер частички достаточно мал, они могут “высосать” из объема на поверхность большинство дефектов и сделать его более совершенным в структурном и химическом отношениях. Далее, вспомним: рассматривая любой процесс переноса (протекание электрического тока, теплопроводность, пластическую деформацию и т.п.), мы приписываем носителям некоторую эффективную длину свободного пробега Rf. При R >> Rf рассеяние (или захват и гибель) носителей происходит в объеме и слабо зависит от геометрии объекта. При R f ситуация радикально меняется и все характеристики переноса начинают сильно зависеть от размеров образца. Примеры специфического поведения вещества на субмикронном масштабном уровне и основные причины специфики нанообъектов. Наконец, если объект имеет атомарный масштаб в одном, двух или трех направлениях, его свойства могут резко отличаться от объемных для того же материала из-за проявления в поведении квантовых закономерностей. Например, когда хотя бы один из размеров объекта становится соизмеримым с длиной волны де Бройля для электронов, вдоль этого направления начинается размерное квантование. Для анализа свойств нанообъектов используют широкий спектр физических подходов и методов. Что и как получают Всего за несколько последних лет разработаны сотни наноструктурированных продуктов конструкционного и функционального назначения и реализованы десятки способов их получения и серийного производства . Можно выделить несколько основных областей их применения: высокопрочные нанокристаллические и аморфные материалы, тонкопленочные и гетероструктурные компоненты микроэлектроники и оптотроники следующего поколения, магнитомягкие и магнитотвердые материалы, нанопористые материалы для химической и нефтехимической промышленности (катализаторы, адсорбенты, молекулярные фильтры и сепараторы), интегрированные микроэлектромеханические устройства, негорючие нанокомпозиты на полимерной основе, топливные элементы, электрические аккумуляторы и другие преобразователи энергии, биосовместимые ткани для трансплантации, лекарственные препараты.   Теоретические основы технологий различного масштабно-временного уровня. Наиболее крупнотоннажным (после строительных) является производство высокопрочных конструкционных материалов, главным образом металлов и  сплавов. Потребность в них и материалоемкость изделий из них зависят от механических свойств: упругости, пластичности, прочности, вязкости разрушения и др. Известно, что прочность материалов определяется химическим составом и реальной атомарной структурой (т.е. наличием определенной кристаллической решетки - или ее отсутствием - и всем спектром ее несовершенств). Высоких прочностных показателей можно добиваться двумя прямо противоположными способами: снижая концентрацию дефектов структуры (в пределе приближаясь к идеальному монокристаллическому состоянию) или, наоборот, увеличивая ее вплоть до создания мелкодисперсного нанокристаллического или аморфного состояния. Оба пути широко используют в современном физическом материаловедении и производстве. Схематическая зависимость прочности от плотности атомарных дефектов в материале. G - модуль сдвига. Разработаны составы и технологии нанесения сверхтвердых покрытий толщиной около 1 мкм, уступающих по твердости только алмазу. При этом резко увеличивается износостойкость режущего инструмента, жаростойкость, коррозионная стойкость изделия, сделанного из сравнительно дешевого материала. По пленочной технологии можно создавать не только сплошные или островковые покрытия, но и щетинообразные, с упорядоченным расположением нановорсинок одинаковой толщины и высоты. Они могут работать как сенсоры, элементы экранов высокого разрешения и в других приложениях. Способность углерода образовывать цепочки –С–С–С– используется Природой для создания биополимеров, а человеком - синтетических полимеров и разнообразных пластмасс. В 1985 г. Х.Крото с сотрудниками обнаружили в парах графита, полученных его испарением под лазерным пучком, кластеры (или многоатомные молекулы) углерода. Наиболее стабильными из них оказались С60 и С70. Как выяснилось в результате структурного анализа, первый из них имел форму футбольного, а второй - регбийного мяча. Позднее их стали называть фуллеренами в честь американского архитектора Р.Фуллера, получившего в 1954 г. патент на строительные конструкции в виде многогранных сфероидов для перекрытия больших помещений. Шарообразные (или дынеобразные) молекулы имеют необычную симметрию и уникальные свойства. Все ковалентные связи в них насыщены, и между собой они могут взаимодействовать только благодаря слабым ван-дер-ваальсовым силам. При этом последних хватает, чтобы построить из сферических молекул кристаллические структуры (фуллериты). К каждой такой молекуле можно «привить» другие атомы и молекулы, можно поместить чужеродный атом в центральную полость фуллереновой молекулы, как в суперпрочный контейнер, или полимеризовать их, раскрыв внутренние связи, и т.д. Впоследствии научились выращивать однослойные и многослойные углеродные нанотрубки. Крайне важно, что свойствами нанотрубок удается управлять, изменяя их хиральность — скрученность решетки относительно продольной оси. При  этом легко можно получить проволоку нанометрового диаметра как с металлическим типом проводимости, так и с запрещенной зоной заданной ширины. Соединение двух таких нанотрубок образует диод, а трубка, лежащая на поверхности окисленной кремниевой пластинки, — канал полевого транзистора. Такие наноэлектронные устройства уже созданы и показали свою работоспособность. Нанотрубки с  регулируемым внутренним диаметром служат основой идеальных молекулярных сит высокой селективности и газопроницаемости, контейнеров для хранения газообразного топлива, катализаторов. Кроме того, нанотрубки могут использоваться как сенсоры, атомарно острые иголки, элементы экранов дисплеев сверхвысокого разрешения. Основные методы создания тонкопленочных структур можно разбить на два больших класса, базирующихся на физическом (в первую очередь, молекулярно-лучевой эпитаксии) и химическом осаждении. При малой толщине (до нескольких атомных слоев) двумерная подвижность осаждаемых на подложку атомов может быть очень высокой. В результате быстрой диффузии по поверхности происходит самосборка нанообъектов, обладающих ярко выраженными квантовыми свойствами: образуются квантовые точки, квантовые ямы, квантовые проволоки, кольца и др. Если систему квантовых точек покрыть слоем инертного материала, а затем снова напылить активный материал, то опять образуются островки, самоупорядочивающиеся на поверхности и даже скоррелированные с положением их предшественников. Повторяя такие процедуры множество раз, можно получить объемно упорядоченные структуры (квазирешетки) из квантовых ям или точек, называемые гетероструктурами, и сделать на их основе лазерные источники света, фотоприемники (в том числе инфракрасного излучения в области длин волн 8—14 мкм, соответствующей максимуму теплового излучения человеческого тела), накопители информации. Вся современная микроэлектроника базируется на планарных полупроводниковых технологиях, которые дают возможность создавать самые разнообразные многослойные тонкопленочные структуры с функциями сенсоров, логической и арифметической обработки сигнала, его хранения и передачи по электронным или оптическим линиям связи. Наноэлектроника следующих поколений Любые достижения в нанонауке сначала рассматриваются под углом их приложимости к информационным технологиям. Можно выделить несколько крупных направлений атаки на этом участке фронта: – уже упоминавшиеся различные устройства на углеродных нанотрубках; – одноэлектроника, спинтроника и джозефсоновская электроника, в том числе квантовые компьютеры; – молекулярная электроника, в частности, с использованием фрагментов ДНК; – сканирующие зондовые методы. Несмотря на нарастающий уровень трудностей, в течение трех последних десятилетий поддерживается неизменный и очень высокий темп роста всех существенных характеристик в микроэлектронике. Наиболее революционные достижения приближаются к квантовым пределам, положенным самой Природой - когда работает один электрон, один спин, квант магнитного потока, энергии и т.д. Это сулит быстродействие порядка ТГц (~1012 операций в секунду), плотность записи информации ~103 Тбит/см2, что на много порядков выше, чем достигнутые сегодня, а энергопотребление - на несколько порядков ниже. При такой плотности записи в жестком диске размерами с наручные часы можно было бы разместить громадную библиотеку национального масштаба или фотографии, отпечатки пальцев, медицинские карты и биографии абсолютно всех (!) жителей Земли. Действительно, с принципиальной точки зрения для оперирования в двоичной системе исчисления необходимы элементы, которые способны реализовывать два устойчивых (стабильных во времени и не разрушаемых термическими флуктуациями) состояния, соответствующие “0” и “1”, и допускать быстрое переключение между ними. Такие функции может выполнять электрон в двухуровневой системе (например, в двухатомной молекуле - перейти с одного атома на другой). Это реализовало бы заветную мечту - одноэлектронное устройство. К сожалению, пока лучшие современные электронные средства неэкономно “тратят” сотни, тысячи электронов на одну операцию. Другая возможность - переориентировать спин электрона из одного устойчивого состояния в другое (например, воздействуя магнитным полем), чем и занимается спинтроника. Динамика развития микроэлектроники в предшествующие 30 лет и прогноз на следующее десятилетие на примере роста параметров больших интегральных схем оперативной памяти для персональных компьютеров. Магнитные квантовые эффекты задействованы также в работе сверхпроводящих элементов, включающих джозефсоновский переход. Последние представляют собой две сверхпроводящие пленки, разделенные тонким слоем (~1 нм) диэлектрика. Один или несколько джозефсоновских контактов включаются в обычную электрическую цепь. Электроны в сверхпроводнике ведут себя скоррелированно, в результате чего ток и созданный им магнитный поток квантуются: в кольце из двух джозефсоновских контактов, включенных параллельно, может укладываться только целое число длин электронных волн, а внутри такого кольца может существовать не любой магнитный поток, а только кратный целому числу квантов магнитного потока. Это обеспечивает автоматический переход от аналогового способа представления информации к дискретному. Элементы быстрой одноквантовой логики, в которых единицей информации служит квант магнитного потока, позволяют обрабатывать сигналы с частотами выше 100 ГГц при крайне низком уровне диссипации энергии. Особенно ценно то, что такая структура является одновременно и логическим элементом, и ячейкой памяти. Поскольку объем данных, передаваемых в Интернете, удваивается каждые три-четыре месяца, в ближайшей перспективе даже лучшие из разрабатываемых сейчас полупроводниковых приборов не смогут пропускать такие большие потоки. Трехмерные структуры, состоящие из сложенных в стопу джозефсоновских электронных схем, видятся сейчас как единственная альтернатива планарным полупроводниковым микросхемам. Наноструктурированная джозефсоновская электроника как нельзя лучше подходит в качестве физической среды для конструирования квантовых компьютеров . На основе двумерных сеток джозефсоновских контактов может быть также создан новый тип компьютерной памяти, строящийся не на базе традиционной логики, а использующий ассоциативную, распределенную по всей структуре память, подобно нейронным сетям живых организмов. Такая система будет способна распознавать образы, принимать оперативные решения в многофакторных ситуациях (например, в экономике, оборонных задачах, космических исследованиях) в реальном времени без механического перебора всех возможных вариантов. По-видимому, криогенная электроника не будет конкурировать с традиционной полупроводниковой во всех существующих сейчас областях применения. Ее задача - обеспечить основу для новых поколений суперкомпьютеров и высокопроизводительных опорных телекоммуникационных систем, создание которых было бы коммерчески оправданно, несмотря на затраты, обусловленные необходимостью глубокого охлаждения. В физических лабораториях уже разработано множество джозефсоновских элементов и устройств для применения в качестве не только логических элементов и ячеек памяти, устройств квантового кодирования и передачи данных, но и генераторов и приемников миллиметровых и субмиллиметровых излучений, а также высокочувствительных датчиков магнитного поля, электрического заряда, напряжения, тока, теплового потока и т.д. Подобные датчики при регистрации малых сигналов имеют чувствительность вблизи фундаментального квантового предела, т.е. в тысячи, десятки тысяч раз выше, чем у традиционных полупроводниковых устройств. Это позволяет использовать их в бесконтактной медицинской диагностике (магнитокардиографы, магнитоэнцефалографы). На повестке дня - создание магнитной томографии, позволяющей по картине магнитного поля следить за функционированием органов, внутриутробным развитием плода в реальном масштабе времени. Как реальная альтернатива “кремниевой” электронике в недалеком будущем многими специалистами рассматривается молекулярная электроника. Тому есть несколько причин. Природа создала за миллионы лет эволюции самые разнообразные молекулы, выполняющие все необходимые для сложного организма функции: сенсорные, логически-аналитические, запоминающие, двигательные. Зачем разрабатывать и производить искусственные структуры из отдельных атомов при наличии готовых строительных “блоков”? Тем более что они имеют оптимальную конфигурацию, структуру и нанометровые размеры. В настоящее время существующих фундаментальных знаний и нанотехнологий достаточно лишь для демонстрации принципиальных возможностей создания практически всех структур, необходимых для информационных технологий и микроробототехники . Однако нет сомнений, что в ближайшем будущем они будут играть важную роль во многих приложениях. Молекулярная электроника входит составной частью в более крупную отрасль - нанобиотехнологию, занимающуюся биообъектами и биопроцессами на молекулярном и клеточном уровне  и держащую ключи к решению многих проблем экологии, медицины, здравоохранения, сельского хозяйства, национальной обороны и безопасности. Глаза и пальцы нанотехнологии Появление наноструктур потребовало новых методов и средств, позволяющих изучать их свойства. С момента изобретения Г.Биннингом и Г.Рорером первого варианта сканирующего туннельного зондового микроскопа в 1982 г. прошло всего 20 лет, но за это время из остроумной игрушки он превратился в один из мощнейших инструментов нанотехнологии. Сейчас известны десятки различных вариантов зондовой сканирующей микроскопии (SPM - scanning probe microscopy). Как видно из названия, общее у этих методов - наличие зонда (чаще всего это хорошо заостренная игла с радиусом при вершине ~10 нм) и сканирующего механизма, способного перемещать его над поверхностью образца в трех измерениях. Грубое позиционирование осуществляют трехкоординатными моторизированными столами. Тонкое сканирование реализуют с помощью трехкоординатных пьезоактюаторов, позволяющих перемещать иглу или образец с точностью в доли ангстрема на десятки микрометров по х и y и на единицы микрометров - по z. Все известные в настоящее время методы SPM можно условно разбить на три основные группы: – сканирующая туннельная микроскопия; в ней между электропроводящим острием и образцом приложено небольшое напряжение (~0.01-10 В) и регистрируется туннельный ток в зазоре, зависящий от свойств и расположения атомов на исследуемой поверхности образца; – атомно-силовая микроскопия; в ней регистрируют изменения силы притяжения иглы к поверхности от точки к точке. Игла расположена на конце консольной балочки (кантилевера), имеющей известную жесткость и способной изгибаться под действием небольших ван-дер-ваальсовых сил, которые возникают между исследуемой поверхностью и кончиком острия. Деформацию кантилевера регистрируют по отклонению лазерного луча, падающего на его тыльную поверхность, или с помощью пьезорезистивного эффекта, возникающего в самом кантилевере при изгибе; – ближнепольная оптическая микроскопия; в ней зондом служит оптический волновод (световолокно), сужающийся на том конце, который обращен к образцу, до диаметра меньше длины волны света. Световая волна при этом не выходит из волновода на большое расстояние, а лишь слегка “вываливается” из его кончика. На другом конце волновода установлены лазер и приемник отраженного от свободного торца света. При малом расстоянии между исследуемой поверхностью и кончиком зонда амплитуда и фаза отраженной световой волны меняются, что и служит сигналом, используемым при построении трехмерного изображения поверхности. В лучших модификациях туннельной и атомно-силовой микроскопии удается обеспечить атомное разрешение, за которое пучковая электронная микроскопия боролась более полувека и сейчас достигает ее в крайне редких случаях. Размеры и стоимость зондовых микроскопов значительно ниже, чем у традиционных электронных, а возможностей даже больше: они могут работать при комнатной, повышенной и криогенной температуре, на воздухе, в вакууме и в жидкости, в условиях действия сильных магнитных и электрических полей, СВЧ - и оптического облучения и т.п. Зондовыми методами можно исследовать самые разнообразные материалы: проводящие, диэлектрические, биологические и другие - без трудоемкой подготовки образцов. Они могут использоваться для локального определения атомных конфигураций, магнитных, электрических, тепловых, химических и других свойств поверхности. Особенно интересны попытки зарегистрировать спин-зависимые явления, определяющие величину туннельного тока в зависимости от поляризации одного-единственного электрона в атоме на исследуемой поверхности. Это прямой путь к решению задач одноэлектроники и спинтроники. Очень важно, что помимо исследовательских функций сканирующая туннельная микроскопия может выполнять еще и активные - обеспечивать захват отдельных атомов, перенос их в новую позицию, атомарную сборку проводников шириной в один атом, локальные химические реакции, манипулирование отдельными молекулами. Типовая схема осуществления сканирующих зондовых методов исследования и модификации поверхности в нанотехнологии (а) и три основных типа приборов: б - туннельный микроскоп, в - атомно-силовой микроскоп и г - ближнепольный оптический микроскоп. Обычно используют два основных способа манипуляции атомами с помощью иглы - горизонтальный и вертикальный. Процесс вертикальной манипуляции отличается от горизонтальной тем, что после захвата нужный атом отрывают от поверхности, поднимая зонд на несколько ангстрем. Это, разумеется, требует больших усилий, чем “перекатывание” атома по поверхности, но зато потом процесс переноса не зависит от встречающихся на ней препятствий (ступеней, ям, адсорбированных атомов). Процесс отрыва атома от поверхности контролируют по скачку тока. После перемещения в необходимое место его “сбрасывают”, приближая острие к поверхности и переключая напряжение на игле. В сущности это пока лишь демонстрация возможности достижения теоретического предела в оперировании веществом при конструировании полезных человеку устройств. Осуществление атомных манипуляций в массовом масштабе, пригодном для производства, требует преодоления многих сложностей: необходимости криогенных температур и сверхвысокого вакуума, низкой производительности и надежности и т.д. Гораздо больших успехов зондовые методы достигли в нанолитографии - “рисовании” на поверхности различных наноструктур с характерными размерами в десятки нм. Ближе всего к практическим приложениям подошли процессы трех типов: химического окисления поверхности, индуцируемого движущимся острием; осаждения с острия наноостровков металла на поверхность за счет скачка напряжения; контролируемого наноиндентирования и наноцарапания. Минимальные размеры элементов, создаваемых этими способами, составляют около 10 нм, что позволяет в принципе осуществлять очень плотную запись, но производительность и надежность оставляют желать много лучшего. Диапазон от 1 до 10 нм пока не освоен для литографии даже в лабораторных условиях.   Развитие зондовых методов в направлении силового нанотестинга поверхности дает возможность исследовать механические свойства тонких приповерхностных слоев в нанообъемах, атомные механизмы наноконтактной деформации при сухом трении, абразивном износе, механическом сплавлении и др. . Усовершенствование зондов для сканирующей микроскопии вызвало к жизни поток публикаций о разработке и применении миниатюрных механических, химических, тепловых, оптических и других сенсоров для различных задач. Кантилеверы, создававшиеся первоначально для нужд атомно-силовой микроскопии, демонстрируют высокую чувствительность не только к приложенным силам, но и к химическим реакциям на поверхности, магнитному полю, теплу, свету. Массивы кантилеверов из кремния, получаемые хорошо разработанными в полупроводниковой промышленности технологиями и содержащие несколько десятков (а иногда и сотен) отдельных датчиков, позволяют реализовать на одном чипе функции “электронного носа” или “электронного языка” для химического анализа газов и жидкостей, воздуха, продуктов питания. Так, разработан сенсор, представляющий собой кантилевер с “пришитой” химически биомолекулой на кончике острия. Эта молекула (например, антитело или энзим) может селективно вступать в химическое взаимодействие только с избранными веществами, которые могут находиться в многокомпонентном растворе. Захват определенной молекулы из раствора и связывание ее на кончике острия приводит к изменению резонансной частоты кантилевера на известную величину, что расценивается как доказательство присутствия детектируемых молекул в пробе. Легко понять, что чувствительность и избирательность таких сенсоров позволяет обнаруживать и регистрировать отдельные молекулы в растворе! Отметилась зондовая техника и среди претендентов, обещающих повысить плотность записи информации. В частности, компания IBM финансирует проект “Millipede” (от лат. - тысяченожка), возглавляемый одним из нобелевских лауреатов 1986 г. Биннингом. Первоначально в качестве прототипа использовали модифицированный атомно-силовой микроскоп, который наносил на поверхность пластика отпечатки путем наноиндентирования. Однако для этого нужен весьма жесткий и массивный кантилевер, что делает процесс записи и считывания малопроизводительным. В проекте для увеличения производительности предлагается использовать одновременно несколько тысяч кантилеверов, собранных в матрицу (опытный образец имеет 1024 острия, размещенных на площади 3ґ3 мм2). Каждый кантилевер имеет длину 70 мкм, ширину 10 мкм и толщину 0.5 мкм. На его свободном конце сформировано острие высотой 1.7 мкм и радиусом в вершине менее 20 нм. Для уменьшения требуемых при наноиндентировании усилий, снижения массы кантилевера и увеличения стойкости острия последнее нагревают короткими импульсами тока до 300-400°С, что локально размягчает пластиковую пленку, на которую записывается информация. В процессе доводки - матрица 64ґ64 острия на площади около 7 мм2. Она имеет общую производительность несколько сотен Мбайт/с как при записи, так и при считывании. Биннинг с оптимизмом заявляет, что за несколько лет группа надеется преодолеть терабитный барьер (имеется в виду ~Тбайт/дюйм2) и приблизиться к атомной плотности записи (~103 Тбайт/см2), что в принципе достижимо методами атомно-силовой микроскопии. Заметим, что помимо IBM и другие компании (“Hewlett-Packard”, “Hitachi”, “Philips”, “Nanochip”) ведут интенсивные разработки устройств со сверхвысокой плотностью записи. Так что сейчас трудно сказать, какие из этих продуктов ждет коммерческий успех. Но интуиции нобелевских лауреатов, видимо, стоит доверять, как это делают такие гиганты, как IBM. Итак, зондовые методы стали универсальным средством исследования, атомарного дизайна, проведения химических реакций между двумя выбранными атомами (молекулами), записи и хранения информации с предельно возможным в природе разрешением ~10–10 м (для атомарных структур), а также последующего ее считывания. Что впереди? Дальнейшее развитие нанотехнологии предусматривает переход от отдельных элементов и их сборок к интегрированию сенсорной, логически-аналитической, двигательной и исполнительной функции в одном устройстве. Первый шаг в этом направлении - создание микро-нано-электромеханических систем (MEMS/NEМS). И наноострия, и нанокантилеверы, и просто нанопроводники могут быть очень чувствительными и селективными сенсорами, расположенными на одном чипе с электроникой. К ним можно добавить нанонасосы, и в результате получится аналитическая химическая лаборатория, размещающаяся на пластине площадью ~1 см2. Существуют уже анализаторы боевых отравляющих веществ, биологического оружия, искусственный нос и искусственный язык для аттестации пищевых продуктов (вин, сыров, фруктов, овощей). Министерство обороны США, например, финансирует программу создания “Smart dust” - умной пыли, т.е. большого семейства микророботов, размером в пылинку, которые смогут, рассыпавшись над территорией противника, проникать во все щели, каналы связи, создавать свою сеть, собирать и передавать оперативную информацию, проводить спецоперации и т.д. Есть и более гуманистические проекты: создать специальные микророботы-“доктора”, которые будут сочетать функции диагноста, терапевта и хирурга, перемещаясь по кровеносной, лимфатической или другой системе человека. Уже изготовлены образцы таких роботов, имеющих все функциональные узлы и размеры около 1 мм, и существует реальная перспектива уменьшения их размеров до микронного и субмикронного уровня. Ключевые технологии и материалы всегда играли большую роль в истории цивилизации, выполняя не только узко производственные функции, но и социальные. Достаточно вспомнить, как сильно отличались каменный и бронзовый века, век пара и век электричества, атомной энергии и компьютеров. По мнению многих экспертов, XXI в. будет веком нанонауки и нанотехнологий, которые и определят его лицо. Воздействие нанотехнологий на жизнь обещает иметь всеобщий характер, изменить экономику и затронуть все стороны быта, работы, социальных отношений. С помощью нанотехнологий мы сможем экономить время, получать больше благ за меньшую цену, постоянно повышать уровень и качество жизни.  

    Литература 1. Нанотехнология в ближайшем десятилетии / Под ред. М.К.Роко, Р.С.Уильямса, П.Аливисатоса. М., 2002. 2. Головин Ю.И. Введение в нанотехнологию. М., 2003. 3. Drexler E.K., Peterson C.H., Pergamit G. Unbounding the future: The nanotechnology revolution. N.Y., 1993. 4. Regis E., Chimsky M. Nano: The emerging science of nanotechnology. 1996. 5. Дьячков П.Н. Углеродные нанотрубки. Материалы для компьютеров XXI века // Природа. 2000. №11. С.23-30. 6. Валиев К.А., Кокин А.А. От кванта к квантовым компьютерам // Природа. 2002. №12. С.28-36. 7. Ковальчук М.В., Клечковская В.В., Фейгин Л.А. Молекулярный конструктор Ленгмюра-Блоджетт // Природа. 2003. №11. С.11-19. 8. Владимиров Ю.А. О пользе белковой кристаллографии // Природа. 2003. №11. С.26-34. 9. Головин Ю.И., Тюрин А.И. // Природа. 2003. №4. С.60-68. 10. Андриевский Р.А. // Перспективные материалы. 2001. №6. С.24-35. 11. Трефилов В.И., Щур Д.В., Тарасов Б.П. и др. Фуллерены - основа материалов будущего. Киев, 2001. 12. Осипьян Ю.А., Кведер В.В. // Материаловедение. 1997. Т.1. №1. С.3-9; №2. С.5-11. 13. Алферов Ж.И. // Физика и техника полупроводников. 1998. Т.32. №3. С.3-18. 14. Минкин В.И. // Рос. хим. журн. 2000. Т.44. №6. С.3-13. 15. Дедков Г.В. // УФН. 2000. Т.170. №6. С.585-618. 16. Golovin Yu.I., Tyurin A.I., Farber B.Y. // J. Mater. Sci. 2002. V.37. P.895-904. 17. Golovin Yu.I., Ivolgin V.I., Korenkov V.V. et al. // Phil. Mag. A. 2002. V.82. №10. P.2173-2177. 18. Vettiger P., Cross G., Despont M. et al. // IEEE Transactions on Nanotechnology. March 2002. V.1. №1. P.39-55. 19. Social Implications of Nanoscience and Nanotechnology / Eds M.C.Roco and W.S.Bainbridge. Dordrecht, 2001.

    bukvasha.ru


    Смотрите также